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Abstract. Exponential Diophantine equations of the form pX + qY = Z2, with un-
knowns (X,Y, Z) in the set of positive integers, are of interest to many number theorists.
Many of these equations are solved using congruence techniques and the quadratic reci-
procity. The goal of this paper is to show unsolvability of some Diophantine equations
of this type using the concept of elliptic curves. Similar types of exponential Diophan-
tine equations are also considered in this study. To illustrate the results, examples are
provided.

Keywords: exponential Diophantine equation, elliptic curve, congruences, factoriza-
tion.

1. Introduction

Solving Diophantine equations is one of the oldest problems in Number Theory
but is one of the hot topics of research in this field of mathematics in the past few
years. Recently, several papers have been devoted in finding the non-negative
integer solutions of Diophantine equations of the form

(1) pX + qY = Z2

with unknowns (X,Y, Z). Such equations are called exponential Diophantine
equations as they require solutions in the exponents. In 2007, Acu [1] found the
complete set of solutions of the Diophantine equation 2X + 5Y = Z2. In 2012
and 2013, Sroysang ([8],[9]) worked on the equations 3X + 5Y = Z2 and 8X +
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19Y = Z2. On the other hand, Rabago [4] looked into Diophantine equations
3X+19Y = Z2 and 3X+91Y = Z2. Many other similar problems were considered
in the references [11], [10], [5], [6], [7], [15] and [2].

Most of the tools used in the said studies were the congruence and factoriza-
tion techniques. In 2019, Mina and Bacani [3] were able to provide some criteria
for showing non-existence of solutions over the set of positive integers for such
equations by using the values of the Legendre and Jacobi symbols.

In this paper, we will present several ways on determining whether equation
(1) has no solutions in the set of positive integers. These are done by trans-
forming such equations to another family of equations whose rational points
form an abelian group structure. These equations are no other than equations
that describe elliptic curves. The use of elliptic curves in solving Diophantine
equations is not new and has already been done in the past. A classical example
would be the Fermat equation

(2) a4 + b4 = c4, a ̸= 0.

Using the transformation

x = 2
b2 + c2

a2
and y = 4

b(b2 + c2)

a3
,

we get a corresponding elliptic curve

y2 = x3 − 4x

which has only the following rational solutions: (x, y) = (0, 0), (2, 0), (−2, 0).
These all correspond to b = 0, so there are no nontrivial solutions to (2).

We will also be dealing with equations of the form

(3) pX + qY = Zn

where n = 3 or 6. This type of equation is generally not possible to study when
using only congruence techniques. Most of the cases we will be dealing with
require one of the exponents to be even. There are some theorems that guarantee
non-existence of solutions to (1), such as those presented in [3] which deal with
the case where one of the exponents is odd. Note that since computation of ranks
of elliptic curves is generally a hard problem, most of the results will focus on
the case where the bases p and q are fixed. We use a free mathematical software
SAGE [13] for the computation of ranks and torsion subgroups of elliptic curves.

Throughout the paper, we will denote by N, N0, Z and Q the sets of positive
integers, non-negative integers, integers and rational numbers, respectively.

2. Basic concepts about elliptic curves

An elliptic curve defined over Q is a curve that is described by the following
general Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,
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where a1, a2, a3, a4, a6 ∈ Q. By completing the square, we get(
y +

a1x

2
+

a2
2

)2
= x3 +

(
a2 +

a21
4

)
x2 +

(
a4 +

a1a3
2

)
x+

(
a23
4

+ a6

)
,

which can be written as

y21 = x3 + a′2x
2 + a′4x+ a′6,

where y1 = y + a1x/2 + a3/2 and a′2 = a2 + a21/4. Furthermore, if we let
x1 = x+ a′2/3, then we get the simpler Weierstrass equation

y21 = x31 +Ax1 +B, for some A,B ∈ Q.

In other words, an elliptic curve defined over the rationals is given by the fol-
lowing equation:

E : y2 = x3 +Ax+B,

where A and B are rational numbers. In addition, the discriminant ∆ := 4A3+
27B2 must be nonzero. It is well-known that the rational points on the elliptic
curve E over Q forms an abelian group called the Mordell-Weil group with the
point at infinity O acting as the identity. The group is isomorphic to E(Q)tors⊕
Zr, where E(Q)tors is the group of elements of finite order, called the torsion
subgroup, and r ≥ 0 is called the rank of E. There are ways of solving the
torsion subgroup, such as using the well-known Nagell-Lutz Theorem, but the
computation of rank r is generally a hard problem.

One of the results in the theory of elliptic curves is the transformation of
a quartic equation to the Weierstrass equation of elliptic curve, and vice-versa.
The proof of this theorem can be seen in [12].

Theorem 2.1. Consider the following equation

v2 = au4 + bu3 + cu2 + du+ q2,

with coefficients a, b, c, d, q ∈ Q. Let

x =
2q(v + q) + du

u2
, y =

4q2(v + q) + 2q(du+ cu2)− (d2u2/2q)

u3
.

Define a1 = d/q, a2 = c− (d2/4q2), a3 = 2qb, a4 = −4q2a, a6 = a2a4. Then,

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The inverse transformation is given by

u =
2q(x+ c)− (d2/2q)

y
, v = −q +

u(ux− d)

2q
.

The point (u, v) = (0, q) corresponds to the point (x, y) = O, and (u, v) = (0,−q)
corresponds to (x, y) = (−a2, a1a2 − a3).
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The next theorem is a well-known result regarding the torsion subgroup of
the elliptic curve y2 = x3 +B.

Theorem 2.2. Let E : y2 = x3 + B be an elliptic curve for some sixth power-
free integer B. Then, the torsion subgroup E(Q)tors of E(Q) is isomorphic to
one of the following groups:

1. Z/6Z if B = 1,

2. Z/3Z if B ̸= 1 is a square or B = −432,

3. Z/2Z if B ̸= 1 is a cube,

4. {O}, otherwise.

3. Main results

For the first two theorems, we present some results about the transformation
of the exponential Diophantine equation (1) into the Weierstrass equation of
elliptic curve.

Theorem 3.1. Let p be prime and q be an odd number such that gcd(p, q) = 1.
Then, the exponential Diophantine equation (1) has no solutions (X,Y, Z) in N
if X ≡ 0 (mod 3) and Y ≡ 0 (mod 4).

Proof. Suppose (X,Y, Z) is a solution of (1) such that X ≡ 0 (mod 3) and
Y ≡ 0 (mod 4). This implies that X = 3X1 and Y = 4Y1, for some X1, Y1 ∈ N.
By factoring pX + qY = Z2, we get

(pX1)3 = (Z + (qY1)2)(Z − (qY1)2).

Since p is prime, there exist two non-negative integers α and β, α < β such that
α+ β = 3X1 and

pα(pβ−α − 1) = pβ − pα = (Z + (qY1)2)− (Z − (qY1)2) = 2(qY1)2.

Since gcd(p, q) = 1, we find that α = 0 and we get the equation

(pX1)3 − 1 = 2(qY1)2.

Multiplying both sides by 8 yields (4qY1)2 = (2pX1)3 − 8. By substituting
x = 2pX1 and y = 4qy1 , we obtain the elliptic curve E1 : y2 = x3 − 8. Using
SAGE, we find that its rank is r = 0 and its torsion subgroup E1(Q)tors is
isomorphic to Z/2Z. We see that the rational points on E1(Q) are (2, 0) and the
point at infinity O, all of which are of finite order. This yields (pX1 , q) = (1, 0),
which is a contradiction to the assumption that q is positive. Therefore, (1) has
no solutions in N.
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Theorem 3.2. Let p be prime and q be an odd number such that gcd(p, q) = 1.
Then, the Diophantine equation (1) can be transformed to the elliptic curve
E2 : y

2 = x3− 8q3 if X ≡ 0 (mod 3) and Y ≡ 2 (mod 4). Moreover, if the rank
of E2 is zero, then (1) has no solutions in N.

Proof. Let (X,Y, Z) be a solution such that X = 3X1 and Y = 4Y1 + 2, for
some X1 ∈ N and Y1 ∈ N0. By factoring pX + qY = Z2, we have

(pX1)3 = (Z + q2Y1+1)(Z − q2Y1+1).

Since p is prime, there exist two non-negative integers α and β, α < β such that
α+ β = 3X1, and

pα(pβ−α − 1) = pβ − pα = (Z + q2Y1+1)− (Z − q2Y1+1) = 2q2Y1+1.

Since gcd(p, q) = 1, we find that α = 0 and we get the equation

(pX1)3 − 1 = 2q2Y1+1, or (pX1)3 − 1 = 2q · (qY1 )2.

Multiplying both sides by 8q3 yields (4qY1+2)2 = (2q·pX1)3−8q3. By substituting
x = 2q·pX1 and y = 4qY1+2, we obtain the elliptic curve E2 : y

2 = x3−8q3. Using
Theorem 2.2, we find that E2(Q)tors is isomorphic to Z/2Z. The torsion points
on E2(Q) are (2q, 0) and the point at infinity O. This yields (pX1 , q) = (1, 0)
which gives no solutions to the original equation since q is assumed to be positive.
Moreover, since the rank of E2 is assumed to be zero, this means that there are
no other rational points on E2, and consequently on (1). Hence, (1) has no
solutions in N.

Remark 3.1. In Theorems 3.1 and 3.2, the elliptic curves y2 = x3 − 8 and
y2 = x3 − 8q3 are also called Mordell curves [14]. The determination of values
of q for which the second curve has rank zero is a difficult problem.

Let us now apply these two theorems to a specific exponential Diophantine
equation of the form (1).

Example 3.1. The Diophantine equation 19X + 27Y = Z2 has no solutions
(X,Y, Z) in N.

Proof. Taking the equation in modulo 4 gives us 3X +3Y ≡ Z2 (mod 4). Since
Z2 is even, Z2 ≡ 0 (mod 4). Thus, 3X + 3Y ≡ 0 (mod 4). This implies that X
and Y are of different parity. For the sake of our purpose, we will only deal with
the case where X is odd and Y is even. The other cases yield no solution via
congruence considerations. By letting Y = 2Y1, for some Y1 ∈ N and factoring,
we get

19X = (Z + 27Y1)(Z − 27Y1).

Using the same reasoning as done in the proof of Theorem 3.1, we get the
equation

19X − 1 = 2 · 27Y1 .
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Factoring this equation, we get (19−1)(19X−1+19X−2+ · · ·+1) = 18 ·3 ·27Y1−1.
This implies that 19X−1 +19X−2 + · · ·+1 = 3 · 27Y1−1. Taking modulo 3 yields
X ≡ 0 (mod 3), i.e. X = 3X1, for some X1 ∈ N.

Now, if Y1 is odd, then our equation becomes (19X1)3 + (272Y2+1)2 = Z2,
where Y1 = 2Y2 +1. Now, we can transform the equation into the elliptic curve
y2 = x3−157464. This has rank zero with torsion subgroup isomorphic to Z/2Z.
Using Theorem 3.2, the equation has no solutions in N.

For the second part of the proof, if Y1 is even, i.e., Y1 = 2Y2, for some
Y2 ∈ N, then the original equation becomes (19X1)3 + (27Y1)4 = Z2. This
resulting equation has no solutions in N using Theorem 3.1.

For the next results, we will consider another family of exponential Diophan-
tine equations of the form (3).

Theorem 3.3. Let p be prime and q be an odd number such that gcd(p, q) = 1.
Then, the Diophantine equation pX+qY = Z6 can be transformed into the elliptic
curve E3 : y2 = x3 − 4p3 if X ≡ 1 (mod 2) and Y ≡ 0 (mod 2). Moreover, if
the rank of E3 is zero, then pX + qY = Z6 has no solutions in N.

Proof. Let X = 2X1+1 and Y = 2Y1, for some X1 ∈ N0, Y1 ∈ N. By factoring,
we have the following,

p2X1+1 = (Z3 + (qY1)2)(Z3 − (qY1)2).

Since p is prime, there exist two non-negative integers α and β, α < β such that
α+ β = 2X1 + 1 and

pα(pβ−α + 1) = pβ + pα = (Z3 + (qY1)2) + (Z3 − (qY1)2) = 2Z3.

Note that p ̸ | Z, otherwise p | q which is not possible since gcd(p, q) = 1. Hence,
α = 0 and we get the equation

p · (pX1)2 − 1 = 2Z3.

Multiplying both sides by 4p3 yields (2pX1+2)2 = (2pZ)3− 4p3. By substituting
x = 2pZ and y = 2pX1+2, we obtain the elliptic curve E3 : y

2 = x3− 4p3. Using
Theorem 2.2 the torsion subgroup E3(Q)tors is isomorphic to {O}. This implies
that if the rank of E3 is zero, then there are no solutions in N to the original
equation.

Next, we are going to consider a larger family of equations of the form
pX + qY = Z3, but this time both p and q are primes. In this case, we have the
following two results.

Theorem 3.4. Let p and q be distinct odd primes. Then, the Diophantine
equation pX + qY = Z3 has no solutions (X,Y, Z) in N with X ≡ 0 (mod 2)
and Y ≡ 0 (mod 6).
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Proof. Let X = 2X1 and Y = 6Y1, for some X1, Y1 ∈ N. By factoring, we have
the following:

p2X1 = (Z − q2Y1)(Z2 + Zq2Y1 + q4Y1).

Since p is prime, there exist two non-negative integers α and β, α < β such that
α+ β = 2X1 and

pβ−α =
pβ

pα
=

Z2 + Zq2Y1 + q4Y1

Z − q2Y1
= Z2 + 2q2Y1 +

3q4Y1

Z − q2Y1
.

This means that Z − q2Y1 divides 3q4Y1 . Since q is prime, Z − q2Y1 = 3qj or
Z−q2Y1 = qj , for some 0 ≤ j ≤ 4Y1. If j > 0, then q | Z which is a contradiction.
Hence j = 0 and we have either Z− q2Y1 = 3 or Z− q2Y1 = 1. For the first case,
we have

pX + q6Y1 = (q2Y1 + 3)3 = q6Y1 + 9q4Y1 + 27q2Y1 + 27,

which implies that pX = 9q4Y1 + 27q2Y1 + 27. This means that 9 | pX or p = 3.
This gives us 3X−2 = q4Y1 + 3q2Y1 + 3. Since gcd(p, q) = gcd(3, q) = 1, we have
X = 2 and consequently, 1 = q4Y1 + 3q2Y1 + 3, a contradiction.

For the second case, we have

pX + q6Y1 = (q2Y1 + 1)3 = q6Y1 + 3q4Y1 + 3q2Y1 + 1.

This implies that p2X1 = 3q4Y1 + 3q2Y1 + 1. Let u = qY1 and v = pX1 so that
v2 = 3u4 + 3u2 + 1. Using Theorem 2.1, if we let x̂ = 2v+2

u2 and ŷ = 4v+4+6u2

u3

and define a1 = 0, a2 = 3, a3 = 0, a4 = −12 and a6 = −36, then we get the
elliptic curve

ŷ2 = x̂3 + 3x̂2 − 12x̂− 36.

By letting x = x̂+ 1 and y = ŷ, we obtain the elliptic curve

E4 : y
2 = x3 − 15x− 22.

We have computed its rank to be r = 0 and the torsion subgroup E4(Q)tors of
E4 to be {O, (−2, 0)} ∼= Z/2Z. This means that (x, y) = (−2, 0) is the only
Q-rational point on E4. We retrieve (x̂, ŷ) = (−3,−1), which corresponds to no
integer point in the original equation.

Theorem 3.5. Let p̂ and q be distinct odd primes, and p = p̂k, for some k ∈ N.
Then, the Diophantine equation pX+qY = Z3 can be transformed into the elliptic
curve E4 : y2 = x3 − 15p2x − 22p3 if X ≡ 1 (mod 2), Y ≡ 0 (mod 6) and k is
even. Moreover, if the Mordell-Weil group of E4 is trivial, then pX + qY = Z3

has no solutions in N.

Proof. Let k = 2k1, X = 2X1 + 1 and Y = 6Y1, for some X1,∈ N0, k1, Y1 ∈ N.
By factoring, we have the following:

p2X1+1 = (Z − q2Y1)(Z2 + Zq2Y1 + q4Y1).
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Since p = p̂k, where p̂ is prime, there exist two non-negative integers α and β,
α < β such that α+ β = k(2X1 + 1) and

p̂β−α =
p̂β

p̂α
=

Z2 + Zq2Y1 + q4Y1

Z − q2Y1
= Z2 + 2q2Y1 +

3q4Y1

Z − q2Y1
.

This means that Z − q2Y1 divides 3q4Y1 . Since q is prime, Z − q2Y1 = 3qj or
Z−q2Y1 = qj , for some 0 ≤ j ≤ 4Y1. If j > 0, then q | Z which is a contradiction.
Hence, j = 0 and we have either Z − q2Y1 = 3 or Z − q2Y1 = 1. For the first
case, we have

pX + q6Y1 = (q2Y1 + 3)3 = q6Y1 + 9q4Y1 + 27q2Y1 + 27,

which implies that pX = 9q4Y1 +27q2Y1 +27. This means that 9 | pX or that is,
p̂ = 3. This gives us 3k(X−2) = q4Y1 +3q2y1 +3. Since gcd(p, q) = gcd(3k, q) = 1,
we have X = 2 which gives 1 = q4Y1 +3q2Y1 +3, a contradiction. For the second
case, we have

pX + q6Y1 = (q2Y1 + 1)3 = q6Y1 + 3q4Y1 + 3q2Y1 + 1.

This implies that p · p2X1+1 = 3pq4Y1 + 3pq2Y1 + p. Let u = qY1 and v = pX1+1

so that v2 = 3pu4 + 3pu2 + 1. Using Theorem 2.1, if we let x̂ = 2p̂k1v+2p
u2 and

ŷ = 4p2v+4pp̂k1+6pp̂k1u2

u3 and define a1 = 0, a2 = 3p, a3 = 0, a4 = −12p2 and
a6 = −36p3, then we get the elliptic curve

ŷ2 = x̂3 + 3px̂2 − 12p2x̂− 36p3.

By letting x = x̂+ 1 and y = ŷ, we obtain the elliptic curve

E5 : y
2 = x3 − 15p2x− 22p3.

One can use the SAGE to determine the torsion and the rank of this elliptic
curve for a specific value of p. Moreover, if the Mordell-Weil group of E4 is
trivial, then pX + qY = Z3 has no solutions in N.

We have the following example demonstrating the use of Theorem 3.4 and
Theorem 3.5.

Example 3.2. Consider the Diophantine equation 7X + 11Y = Z3 over the set
of positive integers. Taking modulo 7, we get Z3 ≡ 4Y (mod 7). Now, since
Z3 ≡ 0, 1, 6 (mod 7), we get 4Y ≡ 1 (mod 7) or that is Y ≡ 0 (mod 3). Using
Theorem 3.4, the equation has no solutions in N if X and Y are even. On
the other hand, consider the Diophantine equation 49X + 11Y = Z3 where X
is odd and Y is even. Using Theorem 3.5, this can be transformed into the
elliptic curve E : y2 = x3 − 36015x − 2588278 which has rank 0. Furthermore,
its torsion subgroup is isomorphic to Z/2Z. We can easily see that (−98, 0) is
the only non-trivial torsion point of E which does not correspond to an integer
solution in the original equation.
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4. Summary

In this paper, we presented a way of determining nonsolvability of exponential
Diophantine equations of type pX + qY = Zn, where n is either 2, 3 or 6, via
transformation to a Weierstrass equation of elliptic curves. We did this because
the rational points on an elliptic curve form an abelian group, and so are easier
to determine. Theorems 3.1 and 3.2 are dedicated for the case when n = 2, and
Theorems 3.3, 3.4 and 3.5 for the case when n = 3 and 6. These theorems do
not cover all possible scenarios when solving a certain Diophantine equation but
are effective in reducing the number of cases to be considered when solving for
its solutions. For future works, some of the results can be extended to a more
general family of exponential Diophantine equations or to any similar types of
equation.
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