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Abstract. Let R be a commutative ring with 1 ̸= 0, Z(R) be the set of zero-divisors
of R, and Reg(R) be the set of regular elements of R. In this paper, we introduce and
investigate the dot total graph of R and denote by TZ(R)(Γ(R)). It is the (undirected)
simple graph with all elements of R as vertices, and any two distinct vertices x, y ∈ R are
adjacent if and only if xy ∈ Z(R). The graph TZ(R)(Γ(R)) is shown to be connected and
has a small diameter of at most two. Furthermore, TZ(R)(Γ(R)) divides into two distinct
subsets of R, i.e., Z(R) and Reg(R). Following that, the connectivity, clique number,
and girth of the graph TZ(R)(Γ(R)) were investigated. Finally, the traversability of the
graph TZ(R)(Γ(R)) is investigated.
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1. Introduction

Throughout this paper, let R be a commutative ring with unity 1 ̸= 0. In 1988,
Beck [10] considered Γ(R) as a simple graph, whose vertices are the elements of
R and any two different elements x and y are adjacent if and only if xy = 0,
but he was mainly interested in colorings. In 1993, Anderson and Naseer [6]
continued this study by giving a counterexample, where R is a finite local ring.

*. Corresponding author
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In 1999, Anderson and Livingston [3], associated a (simple) graph Γ(R) to R
with vertices Z(R)∗ = Z(R) \ {0}, the set of nonzero zero-divisors of R, and for
distinct x, y ∈ Z(R)∗, the vertices x and y are adjacent if and only if xy = 0
and they were interested to study the interplay of ring-theoretic properties of
R with graph-theoretic properties of Γ(R). In 2008, Anderson and Badawi [4]
introduced the total graph of R, denoted by T (Γ(R)), as the (undirected) graph
with all elements of R as vertices and for distinct x, y ∈ R, the vertices x and
y are adjacent if and only if x + y ∈ Z(R). In 2012, Abbasi and Habibi [2]
introduced and studied the total graph of a commutative ring R with respect
to proper ideal I, denoted by T (ΓI(R)). In addition, some fundamental graphs
with vector spaces can be identified in [7, 8].

Let G be a graph. We say that G is connected if there is a path between
any two distinct vertices of G. For distinct vertices x and y of G, we define
d(x, y) to be the length of the shortest path from x to y (d(x, y) = ∞ if there
is no such path). The diameter of G is diam(G) = sup{d(x, y) | x and y are
distinct vertices of G}. The girth of G, denoted by gr(G), is defined as the
length of the shortest cycle in G (gr(G) = ∞ if G contains no cycle). Note
that if G contains a cycle, then gr(G) ≤ 2 diam(G) + 1. The complement G
of a graph G is that graph whose vertex set is V (G) and such that for each
pair u, v of distinct vertices of G, uv is an edge of G if and only if uv is not an
edge of G. The degree of vertex v, written degG(v) or deg(v), is the number
of edges incident to v, (or the degree of the vertex v is the number of vertices
adjacent to v). In a connected graph G, a vertex v is said to be a cut-vertex
of G if and only if G \ {v} is disconnected. Let V (G) be a vertex set of G.
Then the subset U ⊆ V (G) is called as vertex-cut if G \U is disconnected. The
connectivity of a graph G denoted by k(G) and is defined as the cardinality of
a minimum vertex-cut of G, also the same concepts we have for the edges. In a
connected graph G, an edge e is said to be a bridge of G if and only if G \ {e}
is disconnected. Let E(G) be an edge set of G. Then the subset X ⊆ E(G) is
called an edge-cut if G \X is disconnected. The edge-connectivity of a graph G
denoted by λ(G) and is defined as the cardinality of a minimum edge-cut of G.
A complete subgraph of a graph G is called a clique. The clique number denoted
by ω(G), is the greatest integer n ⩾ 1 such that Kn ⊆ G, and ω(G) = ∞ if
Kn ⊆ G for all n ⩾ 1. A nontrivial connected graph G is Eulerian if and only
if every vertex of G has even degree. Also, G contains an Eulerian trail if and
only if exactly two vertices of G have odd degree. In addition, let G be a graph
of order n ≥ 3. If deg(u) + deg(v) ≥ n for each pair u, v of nonadjacent vertices
of G, then G is Hamiltonian. The present paper is organise as follows:

In Section 2, we introduce the definition of the total graph of R with re-
spect to multiplication. We give some examples, and show that TZ(R)(Γ(R)) is
always connected with diam(TZ(R)(Γ(R))) ⩽ 2 and gr(TZ(R)(Γ(R))) ⩽ 5, and
we establish if the graph TZ(R)(Γ(R)) is a complete graph or a star graph based
on the type of ring and we observe that if R is not trivial then TZ(R)(Γ(R)) is
not null graph. Also, we find the degree of each vertex of TZ(R)(Γ(R)). Further,
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in Section 3, we study the connectivity of Kn ∨Km when TZ(R)(Γ(R)) has no
cut-vertex and TZ(R)(Γ(R)) has a bridge. We also, find the k(TZ(R)(Γ(R))).

Furthermore, in Section 4, we study the clique number of the graph Kn ∨Km.
Also, we find the girth of TZ(R)(Γ(R)) i.e., gr(Kn∨Km). Finally, in Section 5, we
study the traversability of the graph TZ(R)(Γ(R)) when the graph TZ(R)(Γ(R))
have an Eulerian trail and TZ(R)(Γ(R)) is Hamiltonian. Further, we generalized
the definition of the graph TZ(R)(Γ(R)) and denoted by TA(Γ(B)). Also, we
investigate some properties viz complement graph, spaning subgraph, induced
subgraph of TA(Γ(B)).

2. Definition and properties of TZ(R)(Γ(R))

We begin this section by define dot total graph of a commutative ring and
denoted by TZ(R)(Γ(R)). We demonstrate that TZ(R)(Γ(R)) is always connected
and has small diameter which is less than or equal to two and girth which is less
than or equal to five. We start with some examples which motivate later results
and we associate some examples from zero-divisor graph of a commutative ring,
total graph and compare them with TZ(R)(Γ(R)).

Definition 2.1. Let R be a commutative ring with 1 ̸= 0 and Z(R) be the set of
zero-divisors of R, and Reg(R) be the set of regular elements of R. We define
an undirected simple graph TZ(R)(Γ(R)), whose vertices are all the elements of
R and any two distinct vertices x and y of TZ(R)(Γ(R)) are adjacent if and only
if xy ∈ Z(R).

Example 2.1. We have several rings with its set of zero-divisor Z(R) and its set
of regular elements Reg(R) and comparisons Γ(R), T (Γ(R)) and TZ(R)(Γ(R)):

(i) R = Z4, Z(R) = {0, 2} and Reg(R) = {1, 3} ( see Fig.1 )

2

(a) Γ(R)

0 1

2 3

(b) T (Γ(R))

0 1

2 3

(c) TZ(R)(Γ(R))

Figure 1: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z4

(ii) R = Z2[x]/(x
2) = {0, 1, x, 1 + x}, Z(R) = {0, x} and Reg(R) = {1, 1 + x}

(see Fig. 2)

(iii) R = Z9, Z(R) = {0, 3, 6} and Reg(R) = {1, 2, 4, 5, 7, 8} (see Fig. 3)
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(a) Γ(R)

0 1

x 1 + x

(b) T (Γ(R))

0 1

x 1 + x

(c) TZ(R)(Γ(R))

Figure 2: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z2[x]/(x
2)
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(c) TZ(R)(Γ(R))

Figure 3: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z9

(1, 0)(0, 1)

(a) Γ(R)

(0, 0) (0, 1)

(1, 0) (1, 1)

(b) T (Γ(R))

(0, 0) (0, 1)

(1, 0) (1, 1)

(c) TZ(R)(Γ(R))

Figure 4: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z2 × Z2

(iv) R = Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, Z(R) = {(0, 0), (0, 1), (1, 0)}
and Reg(R) = {(1, 1)} (see Fig. 4)

(v) R = Z3[x]/(x
2) = {0, 1, 2, x, 2x, 1 + x, 2 + x, 1 + 2x, 2 + 2x}, Z(R) =

{0, x, 2x} and Reg(R) = {1, 2, 1 + x, 2 + x, 1 + 2x, 2 + 2x} (see Fig. 5)

(vi) R = Z6, Z(R) = {0, 2, 3, 4} and Reg(R) = {1, 5} (see Fig. 6)
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(a) Γ(R)

1 + 2x

2 + 2x

1 + x1

2 + x22xx

0

(b) T (Γ(R))

0

x2x

12 + 2x

21 + x1 + 2x 2 + x

(c) TZ(R)(Γ(R))

Figure 5: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z3[x]/(x
2)
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(c) TZ(R)(Γ(R))

Figure 6: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z6

(vii) R = Z8, Z(R) = {0, 2, 4, 6} and Reg(R) = {1, 3, 5, 7} (see Fig. 7)

(viii) R = Z7, Z(R) = {0} and Reg(R) = {1, 2, 3, 4, 5, 6} (see Fig 8 )

Remark 2.1.

(1) Note that these examples show that non isomorphic rings may have the
same zero-divisor graph, but in dot total graph the non isomorphic rings
R1 and R2 have the following:

(a) If |R1| ≠ |R2|, then TZ(R1)(Γ(R1)) ≇ TZ(R2)(Γ(R2)).

(b) If |R1| = |R2|, then they may have the same dot total graph.

(2) For any integral domain R, we know that Γ(R) = ∅ ( null graph ), but
here TZ(R)(Γ(R)) is complete bipartite graph of the form K1,n is called
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(c) TZ(R)(Γ(R))

Figure 7: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z8
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(c) TZ(R)(Γ(R))

Figure 8: (a)Γ(R), (b)T (Γ(R)) and (c)TZ(R)(Γ(R)), when R = Z7

a star graph and n = |R| − 1, if R is finite ( previous Example (viii) )
otherwise n = ∞, if R is infinite.

(3) Let R be a commutative ring. Then the following statements hold:

(i) If x ∈ Z(R), then x is adjacent to each vertex y ∈ R.

(ii) If x ∈ Reg(R), then x is adjacent to y ∈ Z(R), only.

(iii) Any two distinct verties of Reg(R) are not adjacent in TZ(R)(Γ(R)).

(4) T (Γ(R)) may be connected and may not. That is, if R is a finite commu-
tative ring and Z(R) is not an ideal of R, then T (Γ(R)) is connected [4],
but TZ(R)(Γ(R)) is connected as we prove in next theorem.

We next show that the all dot total graphs of R are connected and study
the diameter and girth.

Theorem 2.1. TZ(R)(Γ(R)) is connected and diam(TZ(R)(Γ(R))) ≤ 2. More-
over, if TZ(R)(Γ(R)) contains a cycle, then gr(TZ(R)(Γ(R))) ≤ 5.

Proof. Let x and y be distinct vertices of TZ(R)(Γ(R)).

Case(i) If x, y ∈ Z(R), then x− y is a path in TZ(R)(Γ(R)).

Case(ii) If x, y ∈ Reg(R), then there is some z ∈ Z(R) such that xz ∈ Z(R) and
yz ∈ Z(R). Thus x− z − y is a path.
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Case(iii) If x ∈ Z(R) and y ∈ Reg(R), then x− y is a path.

Thus TZ(R)(Γ(R)) is connected and diam(TZ(R)(Γ(R))) ≤ 2. Since for any
undirected graph H, gr(H) ≤ 2 diam(H) + 1, H contains a cycle (for reference
see [12]). Thus gr(TZ(R)(Γ(R))) ≤ 5.

Remark 2.2. For any commutative ring R with 1 ̸= 0, we know that Γ(R)
is connected and has diam(Γ(R)) ≤ 3 and if Γ(R) contains a cycle, then
gr(Γ(R)) ≤ 7 (for reference see [3]). Also, the same results hold for ΓI(R) (for
reference see [15]). In addition, if T (Γ(R)) is connected, then diam(T (Γ(R))) =
d(0, 1) (for reference see [4]). But for TZ(R)(Γ(R)), we get a connected graph
which has diam(TZ(R)(Γ(R))) ≤ 2 and if TZ(R)(Γ(R)) contains a cycle, then
gr(TZ(R)(Γ(R))) ≤ 5.

The graph TZ(R)(Γ(R)) has a very special form. In fact, if |Z(R)| = m and

|Reg(R)| = n then TZ(R)(Γ(R)) ∼= Kn ∨Km, where ∨ is used for the join of two
graphs.

Theorem 2.2. The graph Kn ∨Km is complete iff n = 1.

Proof. Suppose Kn ∨ Km is complete. Then each distinct vertices in R are
adjacent. If n > 1, then there is at least two vertices x and y in Kn which are
non adjacent, which is a contradiction. Hence n = 1.

Conversely, suppose that n = 1. Then it is clear that Kn ∨Km is complete
graph.

Corollary 2.1. TZ(R)(Γ(R)) is not complete if and only if |Reg(R)| ⩾ 2.

Corollary 2.2. TZ(R)(Γ(R)) is Kn with vertices of regular elements of R, where
n = |Reg(R)| and other vertices are isolated (elements of Z(R)).

Remark 2.3. Let R be a finite commutative ring. Then the following state-
ments hold:

(i) If Z(R) is an ideal, then T (Γ(R)) is not connected [11, 13] and for any
element x ∈ R, there are two possibilities:

(a) If 2 ∈ Z(R), then deg(x) = |Z(R)| − 1 for each x ∈ R.

(b) If 2 /∈ Z(R), then deg(x) = |Z(R)| − 1 for each x ∈ Z(R) and
deg(x) = |Z(R)| for each x ∈ Reg(R).

(ii) If Z(R) is not an ideal, then T (Γ(R)) is connected and deg(x) = |Z(R)|−1
for each x ∈ R.

In the next theorem, we find the degree of each vertex of TZ(R)(Γ(R)) ∼=
Kn ∨Km.

Theorem 2.3. The degree of vertices in the graph Kn∨Km are m or m+n−1.
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Proof. Since vertices in the graph Kn ∨ Km are belong to either Km or Kn,
we have the following two cases:

Case(i) If x ∈ Km, then x is adjacent to each vertex in Kn ∨Km except x, that
is, x is adjacent to m+ n− 1 vertices and hence degree of x is m+ n− 1.

Case(ii) If x ∈ Kn, then x is adjacent to the vertices, which belongs to Km, that
is, x is adjacent to m vertices and hence deg(x) = m.

Corollary 2.3. The graph Kn ∨Km is regular graph iff n = 1.

Remark 2.4. For any graph G, δ(G) is the minimum degree of G and ∆(G)
is the maximum degree of G. Here for G = TZ(R)(Γ(R)), δ(G) = |Z(R)| and
∆(G) = |R| − 1.

3. Connectivity of Kn ∨Km

In this section, we study the connectivity of Kn ∨Km.

Theorem 3.1. The graph Kn ∨Km has a cut vertex iff m = 1. i.e., R is an
integral domain.

Proof. Assume that the vertex x of Kn ∨Km is a cut-vertex. Then there exist
u,w ∈ Kn ∨Km such that x lies on every path from u to w. Thus we have the
following two cases:

Case(i) If u is adjacent to w, then we get a contradiction.

Case(ii) If u is not adjacent to w, then u,w ∈ Kn and x ∈ Km. Now, if m > 1,
then Km have more than one vertices. i.e., x ̸= y ∈ Km. Therefore,
there is at least one path from u to w and x does not lie on it, which is a
contradiction. Hence m = 1.

Conversely, assume that m = 1. Then it is clear that Kn ∨ Km has a cut
vertex.

Theorem 3.2. The graph Kn∨Km has a bridge iff m = 1. i.e., R is an integral
domain.

Proof. Suppose that Kn ∨Km has a bridge. Now we have the following cases:

Case(i) If |R| = 2, then it is clear that m = 1.

Case(ii) If |R| ⩾ 3, then either V (Kn ∨Km) ⊆ V (Kn) or V (Kn ∨Km) ⊆ V (Km)
and we know that there is no edge between any two elements of Kn, and
we have an edge either between each x, y ∈ V (Km) or each x ∈ V (Km)
with all y ∈ R. Therefor we have the following subcases:
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Subcase(a) If x, y ∈ V (Km) and |R| ⩾ 3, then there exists z ∈ R such that x and
y are adjacent to z. We note that x− y − z − x is a cycle, and there
is no bridge between them, we get a contradiction.

Subcase(b) If x ∈ V (Km), y ∈ V (Kn) and |R| ⩾ 3, then there exists at least one
element z ∈ R \ {x, y}. There are two possibilities:

If z ∈ V (Km), then z is adjacent to x and y. Thus x− z − y− x is a
cycle and there is no bridge between them. This is a contradiction.

If z ∈ V (Kn) and only x ∈ V (Km) (here x = 0, additive identity),
then x is adjacent to each z ∈ V (Kn) and there is no adjacency
between any two elements of Kn. Thus there are more than one
vertex adjacent to x and 0 = x ∈ V (Km) only, otherwise, there is a
cycle. Thus all edges are bridge. Hence m = 1.

Converse of the proof is trivial.

Remark 3.1. If the ring R ∼= Z2 or R is an integral domain, then TZ(R)(Γ(R))
has a bridge and vice versa.

Theorem 3.3. k(Kn ∨Km) = m.

Proof. We know that, for any graph G, k(G) ⩽ λ(G) ⩽ δ(G) and by Re-
mark 2.4, δ(Kn ∨Km) = |Z(R)| = m. Therefore,

k(Kn ∨Km) ⩽ m.

Now if x ∈ V (Km), then x is adjacent to each vertex y ∈ R. Hence the minimum
vertex-cut is the set of all those vertices in V (Km), otherwise, Kn ∨ Km is
connected. Hence k(Kn ∨Km)) = m.

Remark 3.2. For any commutative ring R with 1 ̸= 0, Z(R) is the minimum
vertex-cut of TZ(R)(Γ(R)).

4. Clique number of Kn ∨Km

In this section, we study the clique number of Kn ∨Km.

Theorem 4.1. ω(Kn ∨Km) = m+ 1.

Proof. We know that each pair of elements in Km are adjacent. In general,
they are adjacent to all elements of Kn ∨Km. Thus each element is adjacent at
least to one element in Kn. Since |Km| = m, we find that m + 1 elements are
adjacent. This completes the proof.

Corollary 4.1. If m ⩾ 2, then gr(Kn∨Km) = 3. If m = 1,i.e., R is an integral
domain, then gr(Kn ∨Km) = ∞.
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Proof. Suppose that m ⩾ 2. Then by the same arguments as used in the above
theorem, and given that |Km| = m ⩾ 2, we find that at least two elements are
in Km. Let u, v ∈ Km. Also, Kn ∨Km has at least one element w ∈ Kn. Then
u − w − v − u is a cycle of length 3, which is the smallest cycle in Kn ∨ Km.
Hence gr(Kn ∨Km) = 3.

Suppose that m = 1. Then there is no cycle in Kn ∨Km. Hence gr(Kn ∨
Km) = ∞.

5. Traversability of TZ(R)(Γ(R))

In this section, we show that TZ(R)(Γ(R)) can not be an Eulerian graph. Also,
we discover the types of rings that make the graph TZ(R)(Γ(R)) have an Eulerian
trail. Further, we find out when the graph TZ(R)(Γ(R)) is Hamiltonian graph.

Theorem 5.1. TZ(R)(Γ(R)) can not be an Eulerian graph.

Proof. First of all, we prove that TZ(R)(Γ(R)) is an Eulerian if and only if |R| is
odd and |Z(R)| is even. Moreover, |Reg(R)| is odd. Suppose that TZ(R)(Γ(R))
is an Eulerian. Then every vertex of TZ(R)(Γ(R)) has even degree. Since the
degree of each vertex of TZ(R)(Γ(R)) either (|R| − 1) or |Z(R)| (Theorem 2.3),
we have the following cases:

Case(i) If x ∈ Z(R), then deg(x) = |R| − 1, which is even, and we get |R| is odd.

Case(ii) If x ∈ Reg(R), then deg(x) = |Z(R)|, which is even. Thus |Z(R)| is even.

Hence |R| is odd and |Z(R)| is even. Moreover, |Reg(R)| is odd.
Conversely, suppose that |R| is odd and |Z(R)| is even. Then |R| − 1 is

even and |Z(R)| is also even. Since the degree of each vertex of TZ(R)(Γ(R)) is
either |R| − 1 or |Z(R)|, degree of each vertex of TZ(R)(Γ(R)) is even. Hence
TZ(R)(Γ(R)) is an Eulerian.

Second, we show that there is no ring R such that TZ(R)(Γ(R)) be an Eulerian
graph. If u ∈ Reg(R) = U(R) then un = 1 where n = |U(R)|. So, if n is an odd
number, then −1 = (−1)n = 1. Hence 2 = 0 and Char(R) = 2. Thus |R| = 2k.
So, there is no ring R such that TZ(R)(Γ(R)) be an Eulerian graph.

Theorem 5.2. TZ(R)(Γ(R)) has an Eulerian trail iff R ∼= Z2,Z3,Z4,
Z2[x]
(x2)

.

Proof. Suppose that |Z(R)| = |Reg(R)| = 1. Then TZ(R)(Γ(R)) has an Eule-
rian trail and R ∼= Z2. Now suppose that |Z(R)| > 1 or |Reg(R)| > 1. Then we
prove that TZ(R)(Γ(R)) has an Eulerian trail if and only if either |Z(R)| = 2 and
|Reg(R)| is even or |Reg(R)| = 2 and |Z(R)| is odd. Suppose that TZ(R)(Γ(R))
has an Eulerian trail. Then exactly two vertices of TZ(R)(Γ(R)) have odd de-
gree. Let u and v be the two vertices of odd degree and let x1, x2, ..., xn be the
vertices of even degree. Then we have the following cases:
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Case(i) If u, v ∈ Z(R) and xi ∈ Reg(R) for all 1 ≤ i ≤ n, then deg(u) = deg(v)
is odd and deg(xi) for all 1 ≤ i ≤ n is even, therefor |R| − 1 is odd and
|Z(R)| = 2 is even, thus |R| is even and |Z(R)| = 2. Hence |Z(R)| = 2
and |Reg(R)| is even. Moreover, |R| is even.

Case(ii) If u, v ∈ Z(R) and there exists at least one xj ∈ Z(R), then deg(u) =
deg(v) = deg(xj) is odd. Hence there are more than two odd vertices in
TZ(R)(Γ(R)), we get a contradiction.

Case(iii) If u, v ∈ Reg(R) and xi ∈ Z(R) for all 1 ≤ i ≤ n, then deg(u) = deg(v)
is odd and deg(xi) for all 1 ≤ i ≤ n is even. Note that |Z(R)| is odd and
|R| − 1 is even. We get |Z(R)| is odd and |R| is odd. Since u, v ∈ Reg(R)
only, we have |Reg(R)| = 2. Hence |Reg(R)| = 2 and |Z(R)| is odd.
Moreover, |R| is odd.

Case(iv) If u, v ∈ Reg(R) and there exists at least one xj ∈ Reg(R), then deg(u) =
deg(v) = deg(xj) is odd. Thus there are more than two odd vertices in
TZ(R)(Γ(R)), we get a contradiction.

Case(v) If u ∈ Z(R) and v ∈ Reg(R), then deg(u) = deg(v) = deg(xi) for all
1 ≤ i ≤ n is odd. Thus all the vertices of TZ(R)(Γ(R)) have odd degree,
we get a contradiction.

Therefore in all the cases, we get that either |Z(R)| = 2 and |Reg(R)| is even
or |Reg(R)| = 2 and |Z(R)| is odd.

Conversely, suppose that either |Z(R)| = 2 and |Reg(R)| is even or |Reg(R)| =
2 and |Z(R)| is odd. Now we assume that |Z(R)| = 2 and |Reg(R)| is even, let
x be any vertex of TZ(R)(Γ(R)), then we have the following cases:

Case(i) If x ∈ Z(R), then deg(x) = |R| − 1, which is odd. Since |Z(R)| = 2
and |Reg(R)| is even, there are only two vertices in Z(R) have odd degree
and each other vertices in Reg(R) have even degree. Hence TZ(R)(Γ(R))
contains an Eulerian trail.

Case(ii) If x ∈ Reg(R), then deg(x) = |Z(R)| = 2, which is even, by the same
argument, there are only two vertices x1, x2 ∈ Z(R) such that x1 and
x2 are adjacent to each vertices in Reg(R) and x1 adjacent to x2 and
deg(x1) = deg(x2) = |Reg(R)|+ 1 which is odd. Therefor, there are only
two vertices in Z(R) have odd degree and each other vertices in Reg(R)
have even degree. Hence TZ(R)(Γ(R)) contains an Eulerian trail.

After that, we assume that |Reg(R)| = 2 and |Z(R)| is odd. Then |R| is odd,
and let x be any vertex of TZ(R)(Γ(R)). Then we have the following cases:

Case(i) If x ∈ Z(R), then deg(x) = |R|−1, which is even. Since |Reg(R)| = 2 and
|Z(R)| is odd, there are only two vertices in Reg(R) have odd degree and
each other vertices in Z(R) have even degree. Hence TZ(R)(Γ(R)) contains
an Eulerian trail.
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Case(ii) If x ∈ Reg(R), then deg(x) = |Z(R)|, which is odd, thus |R| is odd. By
the same argument, there are only two vertices in Reg(R) have odd degree
and each other vertices in Z(R) have degree |R| − 1, which is even. Hence
TZ(R)(Γ(R)) contains an Eulerian trail.

From all the above cases we conclude that TZ(R)(Γ(R)) contains an Eulerian
trail. Hence if either |Z(R)| = 2 and |Reg(R)| is even or |Reg(R)| = 2 and
|Z(R)| is odd, then TZ(R)(Γ(R)) contains an Eulerian trail.

Second, we show that TZ(R)(Γ(R)) has an Eulerian trail iff R ∼= Z3,Z4,
Z2[x]
(x2)

.

(i) Assume |Z(R)| = 2. Let 0 ̸= x ∈ Z(R). Since ann(x), Rx ⊆ Z(R) we
conclude ann(x) = Rx = Z(R). So, the isomorphism R

ann(x)
∼= Rx implies

|R| = 4. Hence R ∼= Z4 or R ∼= Z2[x]
(x2)

.

(ii) It is well known that every commutative artinian ring is isomorphic to
direct product of finitely many local rings. If R is a finite local ring with
the unique maximal ideal M , then |R| = pr,m = |Z(R)| = |M | = ps and
n = |Reg(R)| = |U(R)| = pr − ps. In particular, m|n. So, if n = 1, then
R ∼= Z2. If n = 2, then m = 1 or m = 2. If m = 1, then R ∼= Z3. If m = 2,
then |R| = 4 and R ∼= Z4. So, the only odd order ring with |Reg(R)| = 2
is Z3.

Remark 5.1. In the above theorem, if |Z(R)| = 2, then Eulerian trail of
TZ(R)(Γ(R)) begins at one of these two elements of Z(R) and ends at other.
Also, if |Reg(R)| = 2, then Eulerian trail of TZ(R)(Γ(R)) begins at one of these
two elements of Reg(R) and ends at other.

Theorem 5.3. Let R has a maximal ideal of index 2 and |R| > 2, then
TZ(R)(Γ(R)) is Hamiltonian.

Proof. The graph Kn∨Km is Hamiltonian iff m ≥ max{n, 2}. So, TZ(R)(Γ(R))

is Hamiltonian iff |R| > 2 and |Z(R)| ≥ |R|
2 iff |R| > 2 and |U(R)|

|R| ≤ 1

2
.

Since |U(R)|
|R| =

|U( R
J(R)

)|
| R
J(R)

| (J(R) is the Jacobson radial of R). So, TZ(R)(Γ(R))

is Hamiltonian if TZ( R
J(R)

)(Γ(
R

J(R))) is Hamiltonian. Also If TZ(R)(Γ(R)) is

Hamiltonian and |R/J(R)| > 2, then TZ( R
J(R)

)(Γ(
R

J(R))) is Hamiltonian. Since

R
J(R)

∼=
∏

Mi∈Max(R)

R

Mi

∼=
∏

Fqi ( R
Mi

∼= Fqi is a field). So,
|U( R

J(R)
)|

| R
J(R)

| =
∏ qi−1

qi
.

In particular, if R has a maximal ideal of index 2 and |R| > 2, then TZ(R)(Γ(R))
is Hamiltonian. Also TZ(R)(Γ(R)) is Hamiltonian for a local ring (R,M) iff
|R/M | = 2 and |R| > 2.

Corollary 5.1. Let R be a local ring and has k maximal ideal. If TZ(R)(Γ(R))
is Hamiltonian, then R/J(R) ∼= F , i.e., k = 1 and J(R) is maximal ideal of R.
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Corollary 5.2. Let R be a finite commutative ring with 1 ̸= 0, such that |R| =
n ≥ 3. If |Z(R)| ≥ n

2 for each pair u, v of Reg(R), then TZ(R)(Γ(R)) + uv is
Hamiltonian if and only if TZ(R)(Γ(R)) is Hamiltonian.

Let A,B ⊆ R. Define TA(Γ(B)) be a graph whose vertex set is B and two
distinct vertices x, y are adjacent if xy ∈ A.

Theorem 5.4. The graph TA(Γ(B)) is the complement graph of TAc(Γ(B))
where Ac = R \A.

Proof. Let u and v be two distinct vertices ofB. Then TA(Γ(B)) and TAc(Γ(B))
have the same set of vertices. Since uv ∈ A if and only if uv /∈ Ac, we get that
uv is an edge of TA(Γ(B)) if and only if uv is not an edge of TAc(Γ(B)).

Theorem 5.5. The graph TA(Γ(B)) is a spaning subgraph of TC(Γ(B)) if A ⊆
C.

Proof. Let A ⊆ C. Since TA(Γ(B)) and TC(Γ(B)) have the same set of vertices
depending on B, we have to prove that the edge set of TA(Γ(B)) contains in
the edge set of TC(Γ(B)). To complete the prove, assume, on contrary, that
the edge set of TA(Γ(B)) contains the edge set of TC(Γ(B)). Then for every
two distinct vertices u, v ∈ B that adjacent in TC(Γ(B)) should be adjacent in
TA(Γ(B)). By definitions of TC(Γ(B)) and TA(Γ(B)), we get that C ⊆ A, which
is a contradiction. Hence TA(Γ(B)) is the spanning subgraph of TC(Γ(B)).

Corollary 5.3. The graph TA(Γ(B)) is an induced subgraph of TA(Γ(C)) if
B ⊆ C.

Corollary 5.4. If A is multiplicatively closed subset of R and B ⊆ A, then
TA(Γ(B)) is a complete graph.

Corollary 5.5. If A and B are two disjoint multiplicatively closed subsets of
R, then TA(Γ(B)) is the empty graph.
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