Certain classes of meromorphic functions by using the linear operator

Sultan Abdullah Alzahrani*
King Faisal Air Academy
Scientific Studies Squadron
Adress Details: 2782, AL Fairouz 7847
Irqah Riyadh, 12534
Kingdom Of Saudi Arabia
sultan.aa@hotmail.com
Maslina Darus
School of Mathematical Sciences Faculty of Science and Technology
University Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan
Malaysia
maslina@ukm.edu.my

Abstract

In this paper, we introduce a new certain differential operator $A_{\lambda}^{n} f(z)$ with subclass $S_{p}^{*}(\alpha, \lambda, n, \beta)$ for functions of the form $f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k} z^{k}$. For functions in $S_{p}^{*}(\alpha, \lambda, n, \beta)$, we give coefficient inequalities, distortion theorem, radii of starlikeness and convexity. Keywords: analytic functions, meromorphic functions, starlike, convex.

1. Introduction and preliminaries

Let \mathcal{A} denote the class of functions f of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. As usual, we denote by S the subclass of \mathcal{A}, consisting of functions which are also univalent in \mathbb{U}. We recall here the definitions of the well-known classes of starlike functions and convex functions:

$$
\begin{gathered}
S^{*}=\left\{f \in \mathcal{A}: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0\right\} \quad(z \in \mathbb{U}) \\
S^{c}=\left\{f \in \mathcal{A}: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0\right\} \quad(z \in \mathbb{U})
\end{gathered}
$$

*. Corresponding author

Later Acu and Owa [2] studied the classes extensively. The class S_{w}^{*} is defined by geometric property that the image of any circular arc centered at w is starlike with respect to $f(w)$ and the corresponding class S_{w}^{c} is defined by the property that the image of any circular arc centered at w is convex. We observe that the definitions are somewhat similar to the ones introduced by Amourah in [3] and [4] for starlike and convex functions.

Let S denoted the subclass of $\mathcal{A}(p)$ consisting of the function of the form:

$$
\begin{align*}
& f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k+p-1} z^{k+p-1}, \tag{2}\\
& \quad\left(a_{k+p-1}>0, z \in \mathbb{U}^{*}=\{z: z \in \mathbb{C} \text { and } 0<|z|<1\}\right) .
\end{align*}
$$

The function $f(z)$ in S is said to be starlike functions of order α if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad\left(z \in \mathbb{U}^{*}\right) \tag{3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $S^{*}(\alpha)$ the class of all starlike functions of order α. Similarly, a function f in S is said to be convex of order α if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad\left(z \in \mathbb{U}^{*}\right) \tag{4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote by $V R(\alpha)$ the class of all convex functions of order α. We note that the class $S^{*}(\alpha)$ and various other subclasses have been studied rather extensively by Nehari and Netanyahu [5], Acu and Owa [2], Amourah ([6],[7],[10],[11],[13]), Aouf [12], Miller [8] and Royster [9].

For the function $f \in \mathcal{A}(p)$, the definition of linear operator $A_{\lambda}^{n} f(z)$ introduced by [1] to define the linear operator $A_{\lambda}^{n} f(z)$ as the following:

$$
\begin{aligned}
& A_{\lambda}^{0} f(z)=f(z), \\
& A_{\lambda}^{1} f(z)=(1+p \lambda) A_{\lambda}^{0} f(z)+\lambda z\left(A_{\lambda}^{0} f(z)\right)^{\prime},
\end{aligned}
$$

and for $n=1,2,3, \cdots$

$$
\begin{align*}
A_{\lambda}^{n} f(z) & =A\left(A_{\lambda}^{n-1} f(z)\right), \tag{5}\\
& =\frac{1}{z^{p}}+\sum_{k=1}^{\infty}[1+2 p \lambda+k \lambda-\lambda]^{n} a_{k+p-1} z^{k+p-1}, \tag{6}
\end{align*}
$$

for $\lambda \geq 0, z \in \mathbb{U}^{*}, p \in \mathbb{N}$ and $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.
Then, we can observe easily that for

$$
\lambda z\left(A_{\lambda}^{n} f(z)\right)^{\prime}=A_{\lambda}^{n+1} f(z)-(1+p \lambda) A_{\lambda}^{n} f(z), \quad\left(p \in \mathbb{N}, n \in \mathbb{N}_{0}\right)
$$

Definition 1.1. A function $f(z) \in S$ is said to be in $S_{p}(\alpha, \lambda, n, \beta)$ if and only if

$$
\begin{equation*}
\left|\frac{z\left(A_{\lambda}^{n} f(z)\right)^{\prime}}{p A_{\lambda}^{n} f(z)}+\alpha+\alpha \beta\right| \leq \operatorname{Re}\left\{-\frac{z\left(A_{\lambda}^{n} f(z)\right)^{\prime}}{p A_{\lambda}^{n} f(z)}\right\}+\alpha-\alpha \beta, \tag{7}
\end{equation*}
$$

for some $0 \leq \beta<1, \alpha \geq \frac{1}{2+\beta}, p \in \mathbb{N}$ and $n \in \mathbb{N}_{0}$ and for all $z \in \mathbb{U}^{*}$.
Let $\mathcal{A}^{*}(p)$ denote the subclass of $\mathcal{A}(p)$ consisting of functions of the form:

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} a_{k} z^{k}, \quad\left(a_{k} \geq 0\right) \tag{8}
\end{equation*}
$$

Further, we define the class $S_{p}(\alpha, \lambda, n, \beta)$ by

$$
\begin{equation*}
S_{p}^{*}(\alpha, \lambda, n, \beta)=S_{p}(\alpha, \lambda, n, \beta) \cap \mathcal{A}^{*}(p) \tag{9}
\end{equation*}
$$

In this paper, coefficient inequalities, growth and distortion theorem, radii of starlikeness and convexity.

2. Coefficient inequalities

In this section, the result provides a sufficient condition for a function, regular in \mathbb{U}^{*}, to be in $S_{p}^{*}(\alpha, \lambda, n, \beta)$.

Theorem 2.1. Let the function $f(z)$ be given by (8). If

$$
\begin{equation*}
\sum_{k=1}^{\infty}[p(\alpha \beta+1)+k-1] \gamma_{n} a_{k+p-1} \leq p(1-\alpha \beta), \quad\left(z \in \mathbb{U}^{*}\right) \tag{10}
\end{equation*}
$$

where $\gamma_{n}=(1+2 p \lambda+k \lambda-\lambda)^{n}, 0 \leq \beta<1, \alpha \geq \frac{1}{2+\beta}, p \in \mathbb{N}$ and $n \in \mathbb{N}_{0}$.
Proof. Suppose that $f \in S_{p}^{*}(\alpha, \lambda, n, \beta)$. Then, by the inequality (7), we get that

$$
\left|\frac{z\left(A_{\lambda}^{n} f(z)\right)^{\prime}}{p A_{\lambda}^{n} f(z)}+\alpha+\alpha \beta\right| \leq \operatorname{Re}\left\{-\frac{z\left(A_{\lambda}^{n} f(z)\right)^{\prime}}{p A_{\lambda}^{n} f(z)}\right\}+\alpha-\alpha \beta .
$$

That is,

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{z\left(A_{\lambda}^{n} f(z)\right)^{\prime}}{p A_{\lambda}^{n} f(z)}+\alpha+\alpha \beta\right\} \leq\left|\frac{z\left(A_{\lambda}^{n} f(z)\right)^{\prime}}{p A_{\lambda}^{n} f(z)}+\alpha+\alpha \beta\right| \\
& \leq \operatorname{Re}\left\{-\frac{z\left(A_{\lambda}^{n} f(z)\right)^{\prime}}{p A_{\lambda}^{n} f(z)}\right\}+\alpha-\alpha \beta .
\end{aligned}
$$

That is,

$$
\operatorname{Re}\left\{\frac{2 z\left(A_{\lambda}^{n} f(z)\right)^{\prime}}{p A_{\lambda}^{n} f(z)} 2 \alpha \beta\right\} \leq 0 .
$$

Hence, by the inequalities (7) and (8)
(11) $\operatorname{Re}\left\{\frac{-2 p(1-\alpha \beta)+\sum_{k=1}^{\infty} 2[p(\alpha \beta+1)+k-1] \gamma_{n} a_{k+p-1} z^{k+2 p-1}}{p+\sum_{k=1}^{\infty} p \gamma_{n} a_{k+p-1} z^{k+2 p-1}}\right\} \leq 0$.

Taking z to be real and putting $z \rightarrow 1^{-}$through real values, then the inequality (11) yields

$$
\frac{-2 p(1-\alpha \beta)+\sum_{k=1}^{\infty} 2[p(\alpha \beta+1)+k-1] \gamma_{n} a_{k+p-1}}{p+\sum_{k=1}^{\infty} p \gamma_{n} a_{k+p-1}} \leq 0
$$

Hence,

$$
\sum_{k=1}^{\infty}[p(\alpha \beta+1)+k-1] \gamma_{n} a_{k+p-1} \leq p(1-\alpha \beta)
$$

This completes the proof of Theorem 2.1.
Corollary 2.1. Let the function $f(z)$ be defined by (8). If $f \in S_{p}^{*}(\alpha, \lambda, n, \beta)$, then

$$
\begin{equation*}
a_{k+p-1} \leq \frac{p(1-\alpha \beta)}{[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}}, \quad(k \in \mathbb{N}) . \tag{12}
\end{equation*}
$$

The result (12) is sharp for functions of the form:

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\frac{p(1-\alpha \beta)}{[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}} z^{k+p-1},(k \in \mathbb{N}) \tag{13}
\end{equation*}
$$

where $0 \leq \beta<1, \alpha \geq \frac{1}{2+\beta}, p \in \mathbb{N}$ and $n \in \mathbb{N}_{0}$.
Proof. Since $f \in S_{p}^{*}(\alpha, \lambda, n, \beta)$, then from Theorem 2.1 above, we get that

$$
\sum_{k=1}^{\infty}[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n} a_{k+p-1} \leq p(1-\alpha \beta) .
$$

Next, note that

$$
\begin{aligned}
& {[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n} a_{k+p-1}} \\
& \leq \sum_{k=1}^{\infty}[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n} a_{k+p-1} \leq p(1-\alpha \beta) .
\end{aligned}
$$

Hence,

$$
a_{k+p-1} \leq \frac{p(1-\alpha \beta)}{[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}}
$$

Thus, the equality (12) is attained for the function f given by

$$
f(z)=\frac{1}{z^{p}}+\frac{p(1-\alpha \beta)}{[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}} z^{k+p-1} .
$$

3. Growth and distortion theorem

In this section we will prove the following growth and distortion theorems for the class $S_{p}^{*}(\alpha, \lambda, n, \beta)$.

Theorem 3.1. Let the function $f(z)$ given by (8) be in the class $S_{p}^{*}(\alpha, \lambda, n, \beta)$, where $0 \leq \beta<1, \alpha \geq \frac{1}{2+\beta}, p \in \mathbb{N}, p>m, 0<|z|=r<1$ and $n \in \mathbb{N}_{0}$. Then, we have

$$
\begin{align*}
& \left\{\frac{(p+m-1)!}{(p-1)!}-\frac{(1-\alpha \beta)}{(1+\alpha \beta)(1+2 p \lambda)^{n}} \cdot \frac{p!}{(2 p-m-1)!} r^{3 p-1}\right\} r^{-(p+m)} \\
& \leq\left|f^{(m)}(z)\right| \tag{14}\\
& \leq\left\{\frac{(p+m-1)!}{(p-1)!}-\frac{(1-\alpha \beta)}{(1+\alpha \beta)(1+2 p \lambda)^{n}} \cdot \frac{p!}{(2 p-m-1)!} r^{3 p-1}\right\} r^{-(p+m)} .
\end{align*}
$$

The result is sharp for the function f given by

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\sum_{k=1}^{\infty} \frac{(1-\alpha \beta)}{(1+\alpha \beta)(1+2 p \lambda)^{n}} z^{k+p-1} . \tag{15}
\end{equation*}
$$

Proof. Since $f \in S_{p}^{*}(\alpha, \lambda, n, \beta)$, from Theorem 2.1 readily yields the inequality

$$
\begin{align*}
& \frac{(1+\alpha \beta)(1+2 p \lambda)^{n}}{(p-1)!} \sum_{k=1}^{\infty}(k+p-1)!a_{k+p-1} \tag{16}\\
& \leq[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n} a_{k+p-1} \leq p(1-\alpha \beta) \tag{17}
\end{align*}
$$

that is,

$$
\begin{align*}
\sum_{k=1}^{\infty}(k+p-1)!a_{k+p-1} & \leq \frac{p(1-\alpha \beta)(p-1)!}{(1+\alpha \beta)(1+2 p \lambda)^{n}} \tag{18}\\
& =\frac{(1-\alpha \beta) p!}{(1+\alpha \beta)(1+2 p \lambda)^{n}}
\end{align*}
$$

By differentiating the function f in the form m times with respect to z, we get that

$$
\begin{align*}
f^{(m)}(z) & =(-1)^{m} \frac{(p+m-1)!}{(p-1)!} z^{-(p+m)} \\
& +\sum_{k=1}^{\infty} \frac{(k+p-1)!}{(k+p-m-1)!} a_{k+p-1} z^{k+p-m-1} . \tag{19}
\end{align*}
$$

From (18) and (19), we get that

$$
\begin{align*}
&\left|f^{(m)}(z)\right| \leq \frac{(p+m-1)!}{(p-1)!} r^{-(p+m)}+\sum_{k=1}^{\infty} \frac{(k+p-1)!}{(k+p-m-1)!} a_{k+p-1} r^{k+p-m-1} \\
&(20) \leq\left\{\frac{(p+m-1)!}{(p-1)!}+\sum_{k=1}^{\infty} \frac{(k+p-1)!}{(2 p-m-1)!} a_{k+p-1} r^{3 p-1}\right\} r^{-(p+m)} \tag{20}\\
&(21) \quad \leq\left\{\frac{(p+m-1)!}{(p-1)!}+\frac{(1-\alpha \beta)}{(1+\alpha \beta)(1+2 p \lambda)^{n}} \frac{p!}{(2 p-m-1)!} r^{3 p-1}\right\} r^{-(p+m)}, \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
\left|f^{(m)}(z)\right| & \geq \frac{(p+m-1)!}{(p-1)!} r^{-(p+m)} \\
(22) & -\sum_{k=1}^{\infty} \frac{(k+p-1)!}{(k+p-m-1)!} a_{k+p-1} r^{k+p-m-1} \tag{22}\\
& \geq\left\{\frac{(p+m-1)!}{(p-1)!}-\sum_{k=1}^{\infty} \frac{(k+p-1)!}{(2 p-m-1)!} a_{k+p-1} r^{3 p-1}\right\} r^{-(p+m)} \\
& \geq\left\{\frac{(p+m-1)!}{(p-1)!}-\frac{(1-\alpha \beta)}{(1+\alpha \beta)(1+2 p \lambda)^{n}} \frac{p!}{(2 p-m-1)!} r^{3 p-1}\right\} r^{-(p+m)} .
\end{align*}
$$

We can easily prove that the bounds of (14) are attained for the function f given by the form (15).

This completes the proof of Theorem 3.1.

4. Radii of starlikeness and convexity

The radii of starlikeness and convexity for the class $S_{p}^{*}(\alpha, \lambda, n, \beta)$ is given by the following theorems.

Theorem 4.1. If the function $f(z)$ given by (8) is in the class $S_{p}^{*}(\alpha, \lambda, n, \beta)$, where $0<\beta \leq 1$ and $n \in \mathbb{N}_{0}$, then $f(z)$ is starlike of order $\mu(0 \leq \mu<p)$ in $|z|<r_{1}$, that is

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\mu \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{1}=\inf _{k \geq 1}\left\{\frac{(p-\mu)[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}}{p(k+2 \mu-1)(1-\alpha \beta)}\right\}^{\frac{1}{k+2 p-1}} \tag{24}
\end{equation*}
$$

Proof. It suffices to prove that

$$
\begin{align*}
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+p}{\frac{z f^{\prime}(z)}{f(z)}-p+2 \mu}\right| & =\left|\frac{\sum_{k=1}^{\infty}(k+2 p-1) a_{k+p-1} z^{k+2 p-1}}{2(p-\mu)-\sum_{k=1}^{\infty}(k+2 \mu-1) a_{k+p-1} z^{k+2 p-1}}\right| \tag{25}\\
& \leq \frac{\sum_{k=1}^{\infty}(k+2 p-1) a_{k+p-1}|z|^{k+2 p-1}}{2(p-\mu)-\sum_{k=1}^{\infty}(k+2 \mu-1) a_{k+p-1}|z|^{k+2 p-1}}
\end{align*}
$$

Then, the following

$$
\begin{equation*}
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}+p}{\frac{z f^{\prime}(z)}{f(z)}-p+2 \mu}\right| \leq 1, \quad(0 \leq \mu<p, p \in \mathbb{N}) \tag{26}
\end{equation*}
$$

will hold if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{k+2 \mu-1}{p-\mu} a_{k+p-1}|z|^{k+2 p-1} \leq 1 \tag{27}
\end{equation*}
$$

Then, by Corollary 2.1 the inequality (27) will be true if

$$
\frac{k+2 \mu-1}{(p-\mu)}|z|^{k+2 p-1} \leq \frac{[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}}{p(1-\alpha \beta)}
$$

that is,

$$
\begin{equation*}
|z|^{k+2 p-1} \leq \frac{(p-\mu)[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}}{p(k+2 \mu-1)(1-\alpha \beta)} \tag{28}
\end{equation*}
$$

This completes the proof of Theorem 4.1.

Theorem 4.2. If the function $f(z)$ given by (8) is in the class $S_{p}^{*}(\alpha, \lambda, n, \beta)$, where $0<\beta \leq 1$ and $n \in \mathbb{N}_{0}$, then $f(z)$ is convex of order $\mu(0 \leq \mu<p)$ in $|z|<r_{2}$, that is,

$$
\operatorname{Re}\left\{-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\mu
$$

where

$$
\begin{align*}
& r_{2}=\inf _{k \geq 1}\left\{\frac{(p-\mu)[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}}{(k+\mu-1)(k+2 \mu-1)(1-\alpha \beta)}\right\}^{\frac{1}{k+2 p-1}} \\
& \quad(k \geq 1) \tag{29}
\end{align*}
$$

Proof. By using the same technique employed in the proof of Theorem 4.1, we can show that

$$
\begin{aligned}
\left|\frac{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+p}{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p+2 \mu}\right| & =\left|\frac{\sum_{k=1}^{\infty}(k+p-1)(k+2 p-1) a_{k+p-1} z^{k+2 p-1}}{2 p(p-\mu) z^{-p}-\sum_{k=1}^{\infty}(k+p-1)(k+2 \mu-1) a_{k+p-1} z^{k+2 p-1}}\right| \\
& \leq \frac{\sum_{k=1}^{\infty}(k+p-1)(k+2 p-1) a_{k+p-1}|z|^{k+2 p-1}}{2 p(p-\mu)-\sum_{k=1}^{\infty}(k+p-1)(k+2 \mu-1) a_{k+p-1}|z|^{k+2 p-1}}
\end{aligned}
$$

Then, the following

$$
\begin{equation*}
\left|\frac{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+p}{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p+2 \mu}\right| \leq 1 \tag{30}
\end{equation*}
$$

will hold if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(k+\mu-1)(k+2 \mu-1)}{p(p-\mu)} a_{k+p-1}|z|^{k+2 p-1} \leq 1 . \tag{31}
\end{equation*}
$$

Then, by Corollary 2.1 the inequality (31) will be true if

$$
\frac{(k+\mu-1)(k+2 \mu-1)}{p(p-\mu)}|z|^{k+2 p-1} \leq \frac{[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}}{p(1-\alpha \beta)}
$$

that is,

$$
\begin{equation*}
|z|^{k+2 p-1} \leq \frac{(p-\mu)[p(\alpha \beta+1)+k-1](1+2 p \lambda+k \lambda-\lambda)^{n}}{(k+\mu-1)(k+2 \mu-1)(1-\alpha \beta)} . \tag{32}
\end{equation*}
$$

Therefore, the inequality (32) leads us to the disk $|z|<r_{2}$, where r_{2} is given by the form (29).

References

[1] M. K. Aouf, Certain subclasses of meromorphically p-valent functions with positive or negative coefficients, Mathematical and Computer Modelling, 47 (2008), 997-1008.
[2] M. Acu, S. Owa, On some subclasses of univalent functions, Journal of Inequalities in Pure and Applied Mathematics, 6 (2005), 1-14.
[3] T. Al-Hawary, A. A. Amourah, M. Darus, Differential sandwich theorems for p-valent functions associated with two generalized differential operator and integral operator, International Information Institute (Tokyo), Information, 17 (2014), 3559.
[4] Ala Amourah, Faber polynomial coefficient estimates for a class of analytic bi-univalent functions, AIP Conference Proceedings, AIP Publishing LLC, 2096 (2019).
[5] Z. Nehari, E. Netanyahu, On the coefficients of meromorphic schlicht functions, Proceedings of the American Mathematical Society, 8 (1957), 15-23.
[6] A. A. Amourah, Feras Yousef, Some properties of a class of analytic functions involving a new generalized differential operator, Boletim da Sociedade Paranaense de Matemática, 38 (2020), 33-42.
[7] Feras Yousef, A. A. Amourah, M. Darus, Differential sandwich theorems for $p-v a l e n t$ functions associated with a certain generalized differential operator and integral operator, Italian Journal of Pure and Applied Mathematics, 36 (2016), 543-556.
[8] J. Miller, Convex meromorphic mappings and related functions, Proceedings of the American Mathematical Society, (1970), 220-228.
[9] W. C. Royster, Meromorphic starlike multivalent functions, Transactions of the American Mathematical Society, (1963), 300-308.
[10] A. A. Amourah, T. Al-Hawary, M. Darus, Some Properties of the Class of Univalent Functions Involving a New Generalized Differential Operator, Journal of Computational and Theoretical Nanoscience, 13 (2016), 67976799.
[11] A. A. Amourah, T. Al-Hawary, M. Darus, On certain subclass of p-valent functions with negative coefficient associated with a new generalized operator, Journal of Analysis and Applications, 14 (2016), 33-48.
[12] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. Appl., 7 (1991), 209-219.
[13] A. Amourah, Maslina Darus, Some properties of a new class of univalent functions involving a new generalized differential operator with negative coefficients, Indian J. Sci. Tech., 36 (2016), 1-7.

Accepted: October 6, 2021

