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Abstract. In this paper, we introduce a new certain differential operator An
λf(z) with

subclass S∗
p (α, λ, n, β) for functions of the form f(z) = 1

zp +
∑∞

k=1 akz
k. For functions in

S∗
p (α, λ, n, β) , we give coefficient inequalities, distortion theorem, radii of starlikeness

and convexity.
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1. Introduction and preliminaries

Let A denote the class of functions f of the form:

(1) f(z) = z +

∞∑
k=2

akz
k

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. As usual, we
denote by S the subclass of A, consisting of functions which are also univalent in
U. We recall here the definitions of the well-known classes of starlike functions
and convex functions:

S∗ =

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> 0

}
(z ∈ U),

Sc =

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0

}
(z ∈ U)
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Later Acu and Owa [2] studied the classes extensively. The class S∗
w is defined

by geometric property that the image of any circular arc centered at w is starlike
with respect to f(w) and the corresponding class Sc

w is defined by the property
that the image of any circular arc centered at w is convex. We observe that the
definitions are somewhat similar to the ones introduced by Amourah in [3] and
[4] for starlike and convex functions.

Let S denoted the subclass of A(p) consisting of the function of the form:

f(z) =
1

zp
+

∞∑
k=1

ak+p−1z
k+p−1,(2)

(ak+p−1 > 0, z ∈ U∗ = {z : z ∈ C and 0 < |z| < 1}).

The function f(z) in S is said to be starlike functions of order α if and only
if

(3) Re

{
−zf ′(z)

f(z)

}
> α (z ∈ U∗),

for some α(0 ≤ α < 1). We denote by S∗(α) the class of all starlike functions of
order α. Similarly, a function f in S is said to be convex of order α if and only
if

(4) Re

{
−1− zf ′′(z)

f ′(z)

}
> α (z ∈ U∗),

for some α(0 ≤ α < 1). We denote by V R(α) the class of all convex functions
of order α. We note that the class S∗(α) and various other subclasses have
been studied rather extensively by Nehari and Netanyahu [5], Acu and Owa [2],
Amourah ([6],[7],[10],[11],[13]), Aouf [12], Miller [8] and Royster [9].

For the function f ∈ A(p), the definition of linear operator An
λf(z) intro-

duced by [1] to define the linear operator An
λf(z) as the following:

A0
λf(z) = f(z),

A1
λf(z) = (1 + pλ)A0

λf(z) + λz
(
A0

λf(z)
)′
,

and for n = 1, 2, 3, · · ·

An
λf(z) = A(An−1

λ f(z)),(5)

=
1

zp
+

∞∑
k=1

[1 + 2pλ+ kλ− λ]n ak+p−1z
k+p−1,(6)

for λ ≥ 0, z ∈ U∗, p ∈ N and n ∈ N0 = N ∪ {0}.
Then, we can observe easily that for

λz (An
λf(z))

′ = An+1
λ f(z)− (1 + pλ)An

λf(z), (p ∈ N, n ∈ N0)
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Definition 1.1. A function f(z) ∈ S is said to be in Sp (α, λ, n, β) if and only
if

(7)

∣∣∣∣z(An
λf(z))

′

pAn
λf(z)

+ α+ αβ

∣∣∣∣ ≤ Re

{
−
z(An

λf(z))
′

pAn
λf(z)

}
+ α− αβ,

for some 0 ≤ β < 1, α ≥ 1
2+β , p ∈ N and n ∈ N0 and for all z ∈ U∗.

Let A∗(p) denote the subclass of A(p) consisting of functions of the form:

(8) f(z) =
1

zp
+

∞∑
k=1

akz
k, (ak ≥ 0).

Further, we define the class Sp (α, λ, n, β) by

(9) S∗
p (α, λ, n, β) = Sp (α, λ, n, β) ∩ A∗(p).

In this paper, coefficient inequalities, growth and distortion theorem, radii of
starlikeness and convexity.

2. Coefficient inequalities

In this section, the result provides a sufficient condition for a function, regular
in U∗, to be in S∗

p (α, λ, n, β) .

Theorem 2.1. Let the function f(z) be given by (8). If

(10)
∞∑
k=1

[p (αβ + 1) + k − 1] γnak+p−1 ≤ p (1− αβ) , (z ∈ U∗)

where γn = (1 + 2pλ+ kλ− λ)n , 0 ≤ β < 1, α ≥ 1
2+β , p ∈ N and n ∈ N0.

Proof. Suppose that f ∈ S∗
p (α, λ, n, β) . Then, by the inequality (7), we get

that ∣∣∣∣z(An
λf(z))

′

pAn
λf(z)

+ α+ αβ

∣∣∣∣ ≤ Re

{
−
z(An

λf(z))
′

pAn
λf(z)

}
+ α− αβ.

That is,

Re

{
z(An

λf(z))
′

pAn
λf(z)

+ α+ αβ

}
≤

∣∣∣∣z(An
λf(z))

′

pAn
λf(z)

+ α+ αβ

∣∣∣∣
≤ Re

{
−
z(An

λf(z))
′

pAn
λf(z)

}
+ α− αβ.

That is,

Re

{
2z(An

λf(z))
′

pAn
λf(z)

2αβ

}
≤ 0.
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Hence, by the inequalities (7) and (8)

(11) Re

{
−2p (1− αβ) +

∑∞
k=1 2 [p (αβ + 1) + k − 1] γnak+p−1zk+2p−1

p+
∑∞

k=1 pγnak+p−1zk+2p−1

}
≤ 0.

Taking z to be real and putting z → 1− through real values, then the
inequality (11) yields

−2p (1− αβ) +
∑∞

k=1 2 [p (αβ + 1) + k − 1] γnak+p−1

p+
∑∞

k=1 pγnak+p−1
≤ 0

Hence,
∞∑
k=1

[p (αβ + 1) + k − 1] γnak+p−1 ≤ p (1− αβ)

This completes the proof of Theorem 2.1.

Corollary 2.1. Let the function f(z) be defined by (8). If f ∈ S∗
p (α, λ, n, β) ,

then

(12) ak+p−1 ≤
p (1− αβ)

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n
, (k ∈ N).

The result (12) is sharp for functions of the form:

(13) f(z) =
1

zp
+

p (1− αβ)

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n
zk+p−1, (k ∈ N).

where 0 ≤ β < 1, α ≥ 1
2+β , p ∈ N and n ∈ N0.

Proof. Since f ∈ S∗
p (α, λ, n, β) , then from Theorem 2.1 above, we get that

∞∑
k=1

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n ak+p−1 ≤ p (1− αβ) .

Next, note that

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n ak+p−1

≤
∞∑
k=1

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n ak+p−1 ≤ p (1− αβ) .

Hence,

ak+p−1 ≤
p (1− αβ)

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

Thus, the equality (12) is attained for the function f given by

f(z) =
1

zp
+

p (1− αβ)

[p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n
zk+p−1.
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3. Growth and distortion theorem

In this section we will prove the following growth and distortion theorems for
the class S∗

p (α, λ, n, β).

Theorem 3.1. Let the function f(z) given by (8) be in the class S∗
p (α, λ, n, β) ,

where 0 ≤ β < 1, α ≥ 1
2+β , p ∈ N, p > m, 0 < |z| = r < 1 and n ∈ N0. Then,

we have{
(p+m− 1)!

(p− 1)!
− (1− αβ)

(1 + αβ) (1 + 2pλ)n
.

p!

(2p−m− 1)!
r3p−1

}
r−(p+m)

≤
∣∣∣f (m)(z)

∣∣∣(14)

≤
{
(p+m− 1)!

(p− 1)!
− (1− αβ)

(1 + αβ) (1 + 2pλ)n
.

p!

(2p−m− 1)!
r3p−1

}
r−(p+m).

The result is sharp for the function f given by

(15) f(z) =
1

zp
+

∞∑
k=1

(1− αβ)

(1 + αβ) (1 + 2pλ)n
zk+p−1.

Proof. Since f ∈ S∗
p (α, λ, n, β) , from Theorem 2.1 readily yields the inequality

(1 + αβ) (1 + 2pλ)n

(p− 1)!

∞∑
k=1

(k + p− 1)!ak+p−1,(16)

≤ [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n ak+p−1 ≤ p (1− αβ) ,(17)

that is,

∞∑
k=1

(k + p− 1)!ak+p−1 ≤
p (1− αβ) (p− 1)!

(1 + αβ) (1 + 2pλ)n
(18)

=
(1− αβ) p!

(1 + αβ) (1 + 2pλ)n
.

By differentiating the function f in the form m times with respect to z, we get
that

f (m)(z) = (−1)m
(p+m− 1)!

(p− 1)!
z−(p+m)

+
∞∑
k=1

(k + p− 1)!

(k + p−m− 1)!
ak+p−1z

k+p−m−1.(19)
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From (18) and (19), we get that

∣∣∣f (m)(z)
∣∣∣ ≤ (p+m− 1)!

(p− 1)!
r−(p+m) +

∞∑
k=1

(k + p− 1)!

(k + p−m− 1)!
ak+p−1r

k+p−m−1

≤

{
(p+m− 1)!

(p− 1)!
+

∞∑
k=1

(k + p− 1)!

(2p−m− 1)!
ak+p−1r

3p−1

}
r−(p+m)(20)

≤
{
(p+m− 1)!

(p− 1)!
+

(1− αβ)

(1 + αβ) (1 + 2pλ)n
p!

(2p−m− 1)!
r3p−1

}
r−(p+m),(21)

and∣∣∣f (m)(z)
∣∣∣ ≥ (p+m− 1)!

(p− 1)!
r−(p+m)

−
∞∑
k=1

(k + p− 1)!

(k + p−m− 1)!
ak+p−1r

k+p−m−1(22)

≥

{
(p+m− 1)!

(p− 1)!
−

∞∑
k=1

(k + p− 1)!

(2p−m− 1)!
ak+p−1r

3p−1

}
r−(p+m)

≥
{
(p+m− 1)!

(p− 1)!
− (1− αβ)

(1 + αβ) (1 + 2pλ)n
p!

(2p−m− 1)!
r3p−1

}
r−(p+m).

We can easily prove that the bounds of (14) are attained for the function f
given by the form (15).

This completes the proof of Theorem 3.1.

4. Radii of starlikeness and convexity

The radii of starlikeness and convexity for the class S∗
p (α, λ, n, β) is given by

the following theorems.

Theorem 4.1. If the function f(z) given by (8) is in the class S∗
p (α, λ, n, β) ,

where 0 < β ≤ 1 and n ∈ N0, then f(z) is starlike of order µ( 0 ≤ µ < p) in
|z| < r1, that is

(23) Re

{
−zf ′(z)

f(z)

}
> µ,

where

(24) r1 = inf
k≥1

{
(p− µ) [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

p(k + 2µ− 1) (1− αβ)

} 1
k+2p−1

.
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Proof. It suffices to prove that∣∣∣∣∣∣
zf ′(z)
f(z) + p

zf ′(z)
f(z) − p+ 2µ

∣∣∣∣∣∣ =
∣∣∣∣ ∑∞

k=1 (k + 2p− 1) ak+p−1z
k+2p−1

2(p− µ)−
∑∞

k=1 (k + 2µ− 1) ak+p−1zk+2p−1

∣∣∣∣(25)

≤
∑∞

k=1 (k + 2p− 1) ak+p−1 |z|k+2p−1

2(p− µ)−
∑∞

k=1 (k + 2µ− 1) ak+p−1 |z|k+2p−1
.

Then, the following

(26)

∣∣∣∣∣∣
zf ′(z)
f(z) + p

zf ′(z)
f(z) − p+ 2µ

∣∣∣∣∣∣ ≤ 1, (0 ≤ µ < p, p ∈ N)

will hold if

(27)
∞∑
k=1

k + 2µ− 1

p− µ
ak+p−1 |z|k+2p−1 ≤ 1.

Then, by Corollary 2.1 the inequality (27) will be true if

k + 2µ− 1

(p− µ)
|z|k+2p−1 ≤ [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

p (1− αβ)

that is,

(28) |z|k+2p−1 ≤ (p− µ) [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

p (k + 2µ− 1) (1− αβ)
.

This completes the proof of Theorem 4.1.

Theorem 4.2. If the function f(z) given by (8) is in the class S∗
p (α, λ, n, β) ,

where 0 < β ≤ 1 and n ∈ N0, then f(z) is convex of order µ( 0 ≤ µ < p) in
|z| < r2, that is,

Re

{
−1− zf ′′(z)

f ′(z)

}
> µ,

where

r2 = inf
k≥1

{
(p− µ) [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

(k + µ− 1)(k + 2µ− 1) (1− αβ)

} 1
k+2p−1

,

(k ≥ 1).(29)

Proof. By using the same technique employed in the proof of Theorem 4.1, we
can show that∣∣∣∣∣∣

1+ zf ′′(z)
f ′(z) +p

zf ′′(z)
f ′(z) − p+ 2µ

∣∣∣∣∣∣ =
∣∣∣∣ ∑∞

k=1(k+p−1)(k+2p−1)ak+p−1z
k+2p−1

2p(p−µ)z−p−
∑∞

k=1(k + p− 1)(k + 2µ− 1)ak+p−1zk+2p−1

∣∣∣∣
≤

∑∞
k=1(k + p− 1)(k + 2p− 1)ak+p−1 |z|k+2p−1

2p(p− µ)−
∑∞

k=1(k + p− 1)(k + 2µ− 1)ak+p−1 |z|k+2p−1
.
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Then, the following

(30)

∣∣∣∣∣∣
1 + zf ′′(z)

f ′(z) + p

zf ′′(z)
f ′(z) − p+ 2µ

∣∣∣∣∣∣ ≤ 1

will hold if

(31)
∞∑
k=1

(k + µ− 1) (k + 2µ− 1)

p (p− µ)
ak+p−1 |z|k+2p−1 ≤ 1.

Then, by Corollary 2.1 the inequality (31) will be true if

(k + µ− 1) (k + 2µ− 1)

p (p− µ)
|z|k+2p−1 ≤ [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

p (1− αβ)

that is,

(32) |z|k+2p−1 ≤ (p− µ) [p (αβ + 1) + k − 1] (1 + 2pλ+ kλ− λ)n

(k + µ− 1) (k + 2µ− 1) (1− αβ)
.

Therefore, the inequality (32) leads us to the disk |z| < r2, where r2 is given by
the form (29).
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