Fixed point theorems for monotone mappings on partial M^{*}-metric spaces

Maha S. Alsauodi
Department of Mathematics
University of Jordan
Amman
Jordan
alsoudimaha@gmail.com
Gharib M. Gharib
Department of Mathematics
Zarqa University
Zarqa
Jordan
ggharib@zu.edu.jo

Abed Al-Rahman M. Malkawi*
Department of Mathematics
University of Jordan
Amman
Jordan
Abd9180065@ju.edu.jo

Ayat M. Rabaiah
Department of Mathematics
University of Jordan
Amman
Jordan
Aya916322@ju.edu.jo

Wasfi Shatanawi

Department of General Sciences
Prince Sultan University
Riyadh
Saudi Arabia
and
Department of Mathematics
Hashemite University
Zarqa
Jordan
wshatanawi@psu.edu.sa
swasfi@hu.edu.jo

Abstract. In this paper, we introduce the concept of partial M^{*}-metric on a nonempty set X, and we give some properties supported by some examples to illustrate
*. Corresponding author
our results. Furthermore, we establish some fixed points results for partial M^{*}-metric. Also, we extend our result for monotone mappings on partial M^{*}-metric spaces.
Keywords: M^{*}-metric spaces, fixed point, partial metric.

1. Introduction

Bakhtin [2] and Czerwik [3] are defined a b-metric space and the idea of a $b-$ metric space the triangle inequality axiom is weaker than for metric space. Also, many authors gives many fixed point theorems in a b-metric space (see [6-15]), Aydi et al. [8] gave some interesting theories for fixed point for set-valid quasi contraction in b-metric space.

In 2021 [37], Malkawi et al. introduced the notion of $M R$-metric space and $M R$-metric space is a generalization of a b-metric space $[2,3]$ and the tetrahedral inequality axiom is weaker than for a D-metric space [1]. Also, there are many fixed point theorems in different type spaces for more information. I Refer to the reader to look at $[4-36]$.

Definition 1 ([37]). Let X be a non empty set and $R \geq 1$ be a real number. $M: X \times X \times X \rightarrow[0, \infty)$ a function which is called an $M R$-metric, if it satisfies the following axioms for each $x, y, z \in X$.
$(M 1): M(x, y, z) \geq 0$.
(M2): $M(x, y, z)=0$ iff $x=y=z$.
(M3): $M(x, y, z)=M(p(x, y, z))$; for any permutation $p(x, y, z)$ of x, y, z.
$(M 4): M(x, y, z) \leq R[M(x, y, \ell)+M(x, \ell, z)+M(\ell, y, z)]$.
A pair (X, M) is called an $M R$-metric space.
Also, Gharib et al. [38] introduced the concept of M^{*}-metric spaces, the importance of which lies in this property $M^{*}(x, x, y)=M^{*}(x, y, y)$. It is worth noting that these characteristics need not be satisfied in MR-metric space [37].

Definition 2 ([38]). Let X be a non empty set and $R \geq 1$ be a real number. A function $M^{*}: X \times X \times X \rightarrow[0, \infty)$ is called M^{*}-metric, if the following properties are satisfied for each $x, y, z \in X$.
$\left(M^{*} 1\right): M^{*}(x, y, z) \geq 0$.
$\left(M^{*} 2\right): M^{*}(x, y, z)=0$ iff $x=y=z$.
$\left(M^{*} 3\right): M^{*}(x, y, z)=M^{*}(p(x, y, z))$; for any permutation $p(x, y, z)$ of x, y, z.
$\left(M^{*} 4\right): M^{*}(x, y, z) \leq R M^{*}(x, y, u)+M^{*}(u, z, z)$.
A pair $\left(X, M^{*}\right)$ is called an M^{*}-metric space.
The following are examples of M^{*}-metric space.
Example 1. a) Let (X, d) be a metric space then $M^{*}(x, y, z)=\frac{1}{R} \max \{d(x, y)$, $d(y, z), d(z, x)\}$ and $M^{*}(x, y, z)=\frac{1}{R}[d(x, y), d(y, z), d(z, x)]$ are M^{*}-metric on X.
b) If $X=\mathbb{R}^{n}$, then

$$
M^{*}(x, y, z)=\frac{1}{R}[\|x+y-2 z\|+\|y+z-2 x\|+\|z+x-2 y\|]
$$

for every $x, y, z \in \mathbb{R}^{n}$ is an M^{*}-metric on X.
Example 2. Let $\psi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{+}$be a mapping defined as the following:

$$
\psi(x, y)=0 \text { if } x=y, \psi(x, y)=\frac{1}{2} \text { if } x>y, \psi(x, y)=\frac{1}{3} \text { if } x<y .
$$

Then, clearly ψ is not a metric, since $\psi(1,2) \neq \psi(2,1)$. Define $G: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow$ \mathbb{R}^{+}by

$$
G(x, y, z)=\frac{1}{R} \max \{\psi(x, y), \psi(y, z), \psi(z, x)\}
$$

Then, G is an M^{*}-metric.
Example 3. Let $\psi: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a mapping defined as the following:
$\psi(x, y)=\max \{x, y\}$. Clearly it is not a metric. Define $G: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow$ \mathbb{R}^{+}by

$$
\psi(x, y)=\frac{1}{R}[\max \{x, y\}+\max \{y, x\}+\max \{z, x\}]-x-y-z
$$

for every $x, y, z \in \mathbb{R}^{+}$. Then G is an M^{*}-metric.

2. Partial M^{*}-metric space

The Authors defined b-metric space by replacing the triangular inequality axiom with a weaker one. Also, for some work on b-metric, we refer the reader to [40, 41, 42, 43, 44, 45, 46].
Now, we present the concept of a partial M^{*}-metric space and prove its properties.
Definition 3. A partial M^{*}-metric on a nonempty set X is a function M_{p}^{*} : $X \times X \times X \rightarrow \mathbb{R}^{+}$such that for all $x, y, z, a \in X:$
$\left(M_{p}^{*} 1\right) x=y=z \Leftrightarrow M_{p}^{*}(x, x, x)=M_{p}^{*}(x, y, z)=M_{p}^{*}(y, y, y)=M_{p}^{*}(z, z, z)$,
$\left(M_{p}^{*} 2\right) M_{p}^{*}(x, x, x) \leq M_{p}^{*}(x, y, z)$,
$\left(M_{p}^{*} 3\right) M_{p}^{*}(x, y, z)=M_{p}^{*}(p\{x, y, z\})$, where p is a permutation function,
$\left(M_{p}^{*} 4\right) M_{p}^{*}(x, y, z) \leq R M_{p}^{*}(x, y, a)+M_{p}^{*}(a, z, z)-M_{p}^{*}(a, a, a)$.
$\left(X, M_{p}^{*}\right)$ is a partial M^{*}-metric space on a nonempty set X and M_{p}^{*} is a partial M^{*}-metric on X. It is clear that, if $M_{p}^{*}(x, y, z)=0$, then from $\left(M_{p}^{*} 1\right)$ and $\left(M_{p}^{*} 2\right) x=y=z$. But if $x=y=z, M_{p}^{*}(x, y, z)$ may not be 0 . The basic example of a partial M^{*}-metric space $\left(\mathbb{R}^{+}, M_{p}^{*}\right)$ is $M_{p}^{*}(x, y, z)=\frac{1}{R} \max \{x, y, z\}$ for all $x, y, z \in \mathbb{R}^{+}$.

It is obvious that every M^{*}-metric is a partial M^{*}-metric, but the converse need not be true. We will explain this in the following example.
Example 4. Let $M_{p}^{*}:: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a nonempty defined as follows:

$$
M_{p}^{*}(x, y, z)=\frac{1}{R}[|x-y|+|y-z|+|x-z|]+\max \{x, y, z\},
$$

such that $R \geq 1$. Then clearly it is a partial M^{*}-metric, but it is not an M^{*} metric.

Example 5. Let (X, p) be a partial b-metric space and $M_{p}^{*}:: \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow$ \mathbb{R}^{+}be a nonempty defined as:

$$
M_{p}^{*}(x, y, z)=\frac{1}{R}[p(x, y)+p(x, z)+p(y, z)]-p(x, x)-p(y, y)-p(z, z)
$$

Then, clearly M_{p}^{*} is a partial M^{*}-metric, but it is not an M^{*}-metric.
Remark 1. $M_{p}^{*}(x, x, y)=M_{p}^{*}(x, y, y)$
Proof.

$$
M_{p}^{*}(x, y, y) \leq R M_{p}^{*}(y, y, y)+M_{p}^{*}(y, x, x)-M_{p}^{*}(y, y, y)
$$

$$
\begin{align*}
M_{p}^{*}(x, x, y) & \leq R M_{p}^{*}(x, x, x)+M_{p}^{*}(x, y, y)-M_{p}^{*}(x, x, x) \\
& \leq R M_{p}^{*}(x, x, x)+M_{p}^{*}(x, y, y)-R M_{p}^{*}(x, x, x) \\
& \leq M_{p}^{*}(x, y, y) . \tag{2.1}
\end{align*}
$$

$$
\leq R M_{p}^{*}(y, y, y)+M_{p}^{*}(y, x, x)-R M_{p}^{*}(y, y, y)
$$

$$
\begin{equation*}
\leq M_{p}^{*}(y, x, x) \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2), we get $M_{p}^{*}(x, x, y)=M_{p}^{*}(x, y, y)$.
Lemma 1. Let $\left(X, M_{p}^{*}\right)$ be a partial M^{*}-metric space. If we define $p(x, y)=$ $M_{p}^{*}(x, y, y)$, then (X, p) is a partial b-metric space

Proof. $\left(M_{p}^{*} 1\right) x=y \Leftrightarrow M_{p}^{*}(x, x, x)=M_{p}^{*}(x, y, y)=p(y, y, y) \Leftrightarrow p(x, x)=$ $p(x, y)=p(y, y)$,
$\left(M_{p}^{*} 2\right) M_{p}^{*}(x, x, x) \leq M_{p}^{*}(x, y, y)$ implies that $p(x, x) \leq p(x, y)$,
$\left(M_{p}^{*} 3\right) M_{p}^{*}(x, y, y)=M_{p}^{*}(y, x, x)$ implies that $p(x, y)=p(y, x)$,
$\left(M_{p}^{*} 4\right) M_{p}^{*}(y, y, x) \leq R M_{p}^{*}(y, y, z)+M_{p}^{*}(z, x, x)-M_{p}^{*}(z, z, z)$ implies that

$$
p(x, y) \leq R[p(y, z)+p(z, x)]-p(z, z) .
$$

Let $\left(X, M_{p}^{*}\right)$ be a partial M^{*}-metric space. For $r>0$ define

$$
B_{M_{p}^{*}}(x, r)=\left\{y \in X: M_{p}^{*}(x, y, y)<M_{p}^{*}(x, x, x)+r\right\} .
$$

Definition 4. Let $\left(X, M_{p}^{*}\right)$ be a partial M^{*}-metric space and $A \subset X$.
(1) If, for every $x \in A$ there exists $r>0$ such that $B_{M_{p}^{*}}(x, r) \subset A$, then the subset A is called an open subset of X.
(2) $\left\{x_{n}\right\}$ is a sequence in a partial M^{*}-metric space $\left(X, M_{p}^{*}\right)$ converges to x if and only if $M_{p}^{*}(x, x, x)=\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x\right)$. That is for each $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
M_{p}^{*}\left(x, x, x_{n}\right)<M_{p}^{*}(x, x, x)+\epsilon \forall n \geq n_{0}, \tag{1}
\end{equation*}
$$

or equivalently, for each $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
M_{p}^{*}\left(x, x_{n}, x_{m}\right)<M_{p}^{*}(x, x, x)+\epsilon \forall n, m \geq n_{0} . \tag{2}
\end{equation*}
$$

Indeed, if (1) holds then

$$
\begin{aligned}
M_{p}^{*}\left(x, x_{n}, x_{m}\right) & =M_{p}^{*}\left(x_{n}, x, x_{m}\right) \\
& \leq R M_{p}^{*}\left(x_{n}, x, x\right)+M_{p}^{*}\left(x, x_{m}, x_{m}\right)-M_{p}^{*}(x, x, x) \\
& <R \epsilon+\epsilon+M_{p}^{*}(x, x, x) .
\end{aligned}
$$

Conversely, set $m=n$ in (2) we have $M_{p}^{*}\left(x_{n}, x_{n}, x\right)<M_{p}^{*}(x, x, x)+\epsilon$.
(3) $\left\{x_{n}\right\}$ is a sequence in a partial M^{*}-metric space $\left(X, M_{p}^{*}\right)$ is called a Cauchy if $\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{m}, x_{m}\right)$ exists.

Let $\tau_{M_{p}^{*}}$ be the set of all open subsets X, then $\tau_{M_{p}^{*}}$ is a topolpgy on X (induced by the partial M^{*}-metric M_{p}^{*}).

A partial M^{*}-metric space (X, M_{p}^{*}) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges to a point $x \in X$ with respect to $\tau_{M_{p}^{*}}$.

If a sequence $\left\{x_{n}\right\}$ in a partial M^{*}-metric space $\left(X, M_{p}^{*}\right)$ converges to x, then we have

$$
\begin{aligned}
M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right) & \leq R M_{p}^{*}\left(x_{n}, x_{n}, x\right)+M_{p}^{*}\left(x, x_{m}, x_{m}\right)-M_{p}^{*}(x, x, x) \\
& <R \epsilon+\epsilon+M_{p}^{*}(x, x, x) .
\end{aligned}
$$

Lemma 2. Let $\left(X, M_{p}^{*}\right)$ be a partial M^{*}-metric space. If $r>0$, then the ball $B_{M_{p}^{*}}(x, r)$ with center $x \in X$ and radius r is an open ball.

Proof. Let $y \in B_{M_{p}^{*}}(x, r)$, then $M_{p}^{*}(x, y, y)<M_{p}^{*}(x, x, x)+r$. Let $R M_{p}^{*}(x, y, y)-$ $M_{p}^{*}(x, x, x)=\delta$. Let $z \in B_{M_{p}^{*}}(y, r-\delta)$, by triangular inequality, we have

$$
\begin{aligned}
M_{p}^{*}(x, x, z) \leq & R M_{p}^{*}(x, y, y)+M_{p}^{*}(y, z, z)+M_{p}^{*}(y, y, y) \\
= & R M_{p}^{*}(x, y, y)-M_{p}^{*}(x, x, x)+M_{p}^{*}(z, z, y) \\
& -M_{p}^{*}(y, y, y)+M_{p}^{*}(x, x, x) \\
< & \delta+r-\delta+M_{p}^{*}(x, x, x) \\
= & M_{p}^{*}(x, x, x)+r .
\end{aligned}
$$

Thus, $z \in B_{M_{p}^{*}}(x, r)$. Hence $B_{M_{p}^{*}}(y, r-\delta) \subseteq B_{M_{p}^{*}}(x, r)$. Therefore, the ball $B_{M_{p}^{*}}(x, r)$ is an open ball.

Each partial M^{*}-metric M_{p}^{*} on X generates a topology $\tau_{M_{p}^{*}}$ on X which has as a base the family of open M_{p}^{*}-balls $\left\{B_{M_{p}^{*}}(x, \epsilon): x \in X, \epsilon>0\right\}$.

The following example shows that a convergent sequence $\left\{x_{n}\right\}$ in a partial M^{*}-metric space (X, M_{p}^{*}) need not be a Cauchy sequence. In particular, it shows that the limit of a convergent sequence is not necessarily unique, to explain that see the following example

Example 6. Let $X=[0, \infty)$ and $M_{p}^{*}(x, y, z)=\frac{1}{R} \max \{x, y, z\}$. Then, it is clear that $\left(X, M_{p}^{*}\right)$ is a complete partial M^{*}-metric space. Let

$$
x_{n}= \begin{cases}1, & n=2 k \\ 2, & n=2 k+1\end{cases}
$$

Then, clearly it is convergent sequence and for every $x \geq 2$ we have

$$
\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x\right)=M_{p}^{*}(x, x, x)
$$

therefore

$$
L\left(x_{n}\right)=\left\{x: x_{n} \rightarrow x\right\}=[2, \infty) .
$$

But, $\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{m}, x_{m}\right)$ does not exist. Hence $\left\{x_{n}\right\}$ is not a Cauchy sequence.

The following Lemma plays an important role in this paper.
Lemma 3. Let (X, p) be a partial b-metric space then there exists a partial $M^{*}-$ metric M_{p}^{*} on X such that
(a) $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the partial $M^{*}-$ metric space $\left(X, M_{p}^{*}\right)$,
(b) the partial b-metric space (X, p) is complete if and only if the partial M^{*}-metric space $\left(X, M_{p}^{*}\right)$ is complete. Furthermore, $M_{p}^{*}(x, x, y)=p(x, y)$, for every $x, y \in X$.

Proof. Define

$$
M_{p}^{*}(x, y, z)=\frac{1}{R} \max \{p(x, y), p(x, z), p(y, z)\}, \quad \forall x, y, z \in X
$$

Then, it is easy to see that M_{p}^{*} is a partial M^{*}-metric and $M_{p}^{*}(x, x, y)=p(x, y)$, for every $x, y \in X$.

The following Lemma shows that under certain conditions the limit is unique.
Lemma 4. Let $\left\{x_{n}\right\}$ be a convergent sequence in a partial M^{*}-metric space $\left(X, M_{p}^{*}\right)$ such that $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$. If

$$
\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)=M_{p}^{*}(x, x, x)=M_{p}^{*}(y, y, y),
$$

then $x=y$.
Proof. As

$$
M_{p}^{*}(x, y, y)=M_{p}^{*}(x, x, y) \leq R M_{p}^{*}\left(x, x, x_{n}\right)+M_{p}^{*}\left(x_{n}, y, y\right)-M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)
$$

therefore

$$
M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) \leq R M_{p}^{*}\left(x, x, x_{n}\right)+M_{p}^{*}\left(x_{n}, y, y\right)-M_{p}^{*}(x, y, y) .
$$

By given assumptions, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x\right) & =M_{p}^{*}(x, x, x), \\
\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, y\right) & =M_{p}^{*}(y, y, y), \\
\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) & =M_{p}^{*}(x, x, x) .
\end{aligned}
$$

Therefore

$$
M_{p}^{*}(x, x, x) \leq R M_{p}^{*}(x, x, x)+M_{p}^{*}(y, y, y)-M_{p}^{*}(x, y, y),
$$

which shows that $M_{p}^{*}(y, y, y) \leq(1-R) M_{p}^{*}(x, x, x)+M_{p}^{*}(x, y, y) \leq M_{p}^{*}(y, y, y)$. So,

$$
M_{p}^{*}(y, y, y) \leq M_{p}^{*}(x, y, y) \leq M_{p}^{*}(y, y, y) .
$$

Also,

$$
M_{p}^{*}(x, y, y)=M_{p}^{*}(y, y, x) \leq R M_{p}^{*}\left(y, y, x_{n}\right)+M_{p}^{*}\left(x_{n}, x, x\right)-M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)
$$

implies that

$$
M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) \leq R M_{p}^{*}\left(y, y, x_{n}\right)+M_{p}^{*}\left(x_{n}, x, x\right)-M_{p}^{*}(x, y, y),
$$

by on taking limit as $n \rightarrow \infty$ gives

$$
M_{p}^{*}(y, y, y) \leq R M_{p}^{*}(y, y, y)+M_{p}^{*}(x, x, x)-M_{p}^{*}(x, y, y)
$$

which shows that

$$
M_{p}^{*}(x, x, x) \leq(1-R) M_{p}^{*}(y, y, y)+M_{p}^{*}(x, y, y) \leq M_{p}^{*}(x, x, x) .
$$

So,

$$
M_{p}^{*}(x, x, x) \leq M_{p}^{*}(x, y, y) \leq M_{p}^{*}(x, x, x) .
$$

Thus, $M_{p}^{*}(x, x, x)=M_{p}^{*}(x, y, y)=M_{p}^{*}(y, y, y)$. Therefore, $x=y$.
Lemma 5. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in partial M^{*}-metric space $\left(X, M_{p}^{*}\right)$ such that

$$
\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x, x\right)=\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)=M_{p}^{*}(x, x, x)
$$

and

$$
\lim _{n \rightarrow \infty} M_{p}^{*}\left(y_{n}, y, y\right)=\lim _{n \rightarrow \infty} M_{p}^{*}\left(y_{n}, y_{n}, y_{n}\right)=M_{p}^{*}(y, y, y)
$$

Then $\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, y_{n}, y_{n}\right)=M_{p}^{*}(x, y, y)$. In particular, $\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, y_{n}, z\right)$ $=M_{p}^{*}(x, y, z)$, for every $z \in X$.

Proof. As $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converges to a $x \in X$ and $y \in X$ respectively, for each $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that

$$
\begin{aligned}
M_{p}^{*}\left(x, x, x_{n}\right) & <M_{p}^{*}(x, x, x)+\frac{\epsilon}{2 R} \\
M_{p}^{*}\left(y, y, y_{n}\right) & <M_{p}^{*}(y, y, y)+\frac{\epsilon}{2 R} \\
M_{p}^{*}\left(x, x, x_{n}\right) & <M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)+\frac{\epsilon}{2 R}
\end{aligned}
$$

and

$$
M_{p}^{*}\left(y, y, y_{n}\right)<M_{p}^{*}\left(y_{n}, y_{n}, y_{n}\right)+\frac{\epsilon}{2 R}
$$

for $n \geq n_{0}$. Now,

$$
\begin{align*}
M_{p}^{*}\left(x_{n}, x_{n}, y_{n}\right) \leq & R M_{p}^{*}\left(x_{n}, x_{n}, x\right)+M_{p}^{*}\left(x, y_{n}, y_{n}\right)-M_{p}^{*}(x, x, x) \\
\leq & R M_{p}^{*}\left(x_{n}, x_{n}, x\right)+R M_{p}^{*}\left(y, y_{n}, y_{n}\right)+M_{p}^{*}(x, x, y) \\
& -M_{p}^{*}(y, y, y)-M_{p}^{*}(x, x, x) \\
< & M_{p}^{*}(x, y, y)+\frac{R \epsilon}{2 R}+\frac{R \epsilon}{2 R} \\
= & M_{p}^{*}(x, y, y)+\epsilon \tag{1}
\end{align*}
$$

and so we have

$$
M_{p}^{*}\left(x_{n}, y_{n}, y_{n}\right)-M_{p}^{*}(x, y, y)<\epsilon
$$

Also,

$$
\begin{align*}
M_{p}^{*}(x, y, y) \leq & R M_{p}^{*}\left(x_{n}, y, y\right)+M_{p}^{*}\left(x, x, x_{n}\right)-M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) \\
\leq & R M_{p}^{*}(x, x, x)+R M_{p}^{*}\left(x_{n}, x_{n}, y_{n}\right)+M_{p}^{*}\left(y_{n}, y, y\right) \\
& -M_{p}^{*}\left(y_{n}, y_{n}, y_{n}\right)-M_{p}^{*}\left(x_{n}, x_{n}, x\right) \\
< & M_{p}^{*}\left(x_{n}, x_{n}, y\right)+\frac{R \epsilon}{2 R}+\frac{R \epsilon}{2 R} \\
= & M_{p}^{*}(x, y, y)+\epsilon \tag{2}
\end{align*}
$$

Thus,

$$
M_{p}^{*}(x, x, y)-M_{p}^{*}\left(x_{n}, x_{n}, y_{n}\right)<\epsilon
$$

Hence, for all $n \geq n_{0}$, we have $\left|M_{p}^{*}\left(x_{n}, x_{n}, y_{n}\right)-M_{p}^{*}(x, x, y)\right|<\epsilon$. Hence, the result follows.

Lemma 6. If M_{p}^{*} is a partial M^{*}-metric on X, then the functions $M_{p^{s}}^{*}, M_{p^{m}}^{*}$: $X \times X \times X \rightarrow \mathbb{R}^{+}$are given by:

$$
\begin{aligned}
M_{p^{s}}^{*}(x, y, z) & =R M_{p}^{*}(x, x, y)+R M_{p}^{*}(y, y, z)+M_{p}^{*}(z, z, x) \\
& -M_{p}^{*}(x, x, x)-M_{p}^{*}(y, y, y)-M_{p}^{*}(z, z, z)
\end{aligned}
$$

and

$$
M_{p^{m}}^{*}(x, y, z)=\max \left\{\begin{array}{l}
2 R M_{p}^{*}(x, x, y)-M_{p}^{*}(x, x, x)-M_{p}^{*}(y, y, y), \\
2 R M_{p}^{*}(y, y, z)-M_{p}^{*}(y, y, y)-M_{p}^{*}(z, z, z), \\
2 R M_{p}^{*}(z, z, x)-M_{p}^{*}(z, z, z)-M_{p}^{*}(x, x, x)
\end{array}\right\},
$$

for every $x, y, z \in X$ are equivalent M^{*}-metrics on X.
Proof. It is easy to see that $M_{p^{s}}^{*}$ and $M_{p^{m}}^{*}$ are M^{*}-metrics on X. Let $x, y, z \in X$. It is obvious that

$$
M_{p^{m}}^{*}(x, y, z) \leq 2 M_{p^{s}}^{*}(x, y, z) .
$$

On the other hand, since $a+b+c \leq 3 \max \{a, b, c\}$, it provides that

$$
\begin{aligned}
M_{p^{s}}^{*}(x, y, z) & =R M_{p}^{*}(x, x, y)+R M_{p}^{*}(y, y, z)+M_{p}^{*}(z, z, x) \\
& -M_{p}^{*}(x, x, x)-M_{p}^{*}(y, y, y)-M_{p}^{*}(z, z, z) \\
& \leq \frac{1}{2}\left[2 R M_{p}^{*}(x, x, y)-M_{p}^{*}(x, x, x)-M_{p}^{*}(y, y, y)\right] \\
& +\frac{1}{2}\left[2 R M_{p}^{*}(y, y, z)-M_{p}^{*}(y, y, y)-M_{p}^{*}(z, z, z)\right] \\
& +\frac{1}{2}\left[2 R M_{p}^{*}(z, z, x)-M_{p}^{*}(z, z, z)-M_{p}^{*}(x, x, x)\right] \\
& \leq \frac{3}{2} \max \left\{\begin{array}{l}
2 R M_{p}^{*}(x, x, y)-M_{p}^{*}(x, x, x)-M_{p}^{*}(y, y, y), \\
2 R M_{p}^{*}(y, y, z)-M_{p}^{*}(y, y, y)-M_{p}^{*}(z, z, z), \\
2 R M_{p}^{*}(z, z, x)-M_{p}^{*}(z, z, z)-M_{p}^{*}(x, x, x)
\end{array}\right\} \\
& =\frac{3}{2} M_{p^{m}}^{*}(x, y, z) .
\end{aligned}
$$

Thus, we have

$$
\frac{1}{2} M_{p^{m}}^{*}(x, y, z) \leq M_{p^{s}}^{*}(x, y, z) \leq \frac{3}{2} M_{p^{m}}^{*}(x, y, z)
$$

These inequalities implies that $M_{p^{s}}^{*}$ and $M_{p^{m}}^{*}$ are equivalent.
Remark 2. Note that:

$$
M_{p^{s}}^{*}(x, x, y)=2 R M_{p}^{*}(x, x, y)-M_{p}^{*}(x, x, x)-M_{p}^{*}(y, y, y)=M_{p^{m}}^{*}(x, x, y) .
$$

A mapping $F: X \rightarrow X$ is said to be continuous at $x_{0} \in X$, if for every $\epsilon>0$, there exists $\delta>0$ such that $F\left(B_{M_{p}^{*}}\left(x_{0}, \delta\right)\right) \subseteq B_{M_{p}^{*}}\left(F x_{0}, \epsilon\right)$.

The following lemma plays an important role to prove fixed point results on a partial M^{*}-metric space.

Lemma 7. Let $\left(X, M_{p}^{*}\right)$ be a partial M^{*}-metric space.
(a) $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X, M_{p}^{*}\right)$ if and only if it is a Cauchy sequence in the M^{*}-metric space ($X, M_{p^{s}}^{*}$)
(b) A partial M^{*}-metric space $\left(X, M_{p}^{*}\right)$ is complete if and only if the M^{*} metric space $\left(X, M_{p^{s}}^{*}\right)$ is complete. Furthermore,

$$
\lim _{n \rightarrow \infty} M_{p^{s}}^{*}\left(x_{n}, x_{n}, x\right)=0
$$

if and only if

$$
M_{p}^{*}(x, x, x)=\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x\right)=\lim _{n, m \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right) .
$$

Proof. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $\left(X, M_{p}^{*}\right)$, we want to prove $\left\{x_{n}\right\}$ is a Cauchy sequence in the M^{*}-metric space ($X, M_{p^{s}}^{*}$).

Since $\left\{x_{n}\right\}$ be a Cauchy sequence in $\left(X, M_{p}^{*}\right)$, then there exists $\alpha \in \mathbb{R}$ and for every $\epsilon>0$, there is $n_{\epsilon} \in \mathbb{N}$ such that $\left|M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right)-\alpha\right|<\frac{\epsilon}{4 R}$ for all $n, m \geq n_{\epsilon}$. Hence

$$
\begin{aligned}
M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{m}\right) & \leq \mid 2 R M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right)-M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) \\
& -M_{p}^{*}\left(x_{m}, x_{m}, x_{m}\right)+2 \alpha-2 \alpha \mid \\
& \leq\left|2 R M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right)-2 \alpha\right|+\left|M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)-\alpha\right| \\
& +\left|M_{p}^{*}\left(x_{m}, x_{m}, x_{m}\right)-\alpha\right| \leq 4 R \frac{\epsilon}{4 R}=\epsilon,
\end{aligned}
$$

for all $n, m \geq n_{\epsilon}$. Thus $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X, M_{p^{s}}^{*}\right)$.
Now, we prove that completeness of ($X, M_{p^{s}}^{*}$) implies completeness of (X, M_{p}^{*}).
Indeed, if $\left\{x_{n}\right\}$ be a Cauchy sequence in $\left(X, M_{p}^{*}\right)$ then it is $\left\{x_{n}\right\}$ be a Cauchy sequence in $\left(X, M_{p^{s}}^{*}\right)$. Since the M^{*}-metric space $\left(X, M_{p^{s}}^{*}\right)$ is complete we deduce that there exists $y \in X$ such that $\lim _{n \rightarrow \infty} M_{p^{s}}^{*}\left(x_{n}, x_{n}, y\right)=0$. Thus,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sup \left|M_{p}^{*}\left(x_{n}, x_{n}, y\right)-M_{p}^{*}(y, y, y)\right| \\
& \leq \lim _{n \rightarrow \infty}\left|2 R M_{p}^{*}\left(x_{n}, x_{n}, y\right)-M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)-M_{p}^{*}(y, y, y)\right|=0
\end{aligned}
$$

Hence, we follow that $\left\{x_{n}\right\}$ is a convergent sequence in $\left(X, M_{p}^{*}\right)$. That is meaning

$$
\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, y\right)=M_{p}^{*}(y, y, y) .
$$

Now, we prove that every Cauchy sequence $\left\{x_{n}\right\}$ in $\left(X, M_{p^{s}}^{*}\right)$ is a Cauchy sequence in $\left(X, M_{p}^{*}\right)$. Let $\epsilon=\frac{1}{2 R}$, then there exists $n_{0} \in \mathbb{N}$ such that $M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{m}\right)$ $<\frac{1}{2 R}$ for all $n, m \geq n_{0}$. Since

$$
\begin{aligned}
M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) & \leq 4 R M_{p}^{*}\left(x_{n_{0}}, x_{n_{0}}, x_{n}\right)-3 M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) \\
& -M_{p}^{*}\left(x_{n_{0}}, x_{n_{0}}, x_{n_{0}}\right)+M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) \\
& \leq 2 R M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{n_{0}}\right)+M_{p}^{*}\left(x_{n_{0}}, x_{n_{0}}, x_{n_{0}}\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) & \leq 2 R M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{n_{0}}\right)+M_{p}^{*}\left(x_{n_{0}}, x_{n_{0}}, x_{n_{0}}\right) \\
& \leq 1+M_{p}^{*}\left(x_{n_{0}}, x_{n_{0}}, x_{n_{0}}\right) .
\end{aligned}
$$

Consequently the sequence $\left\{M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)\right\}$ is bounded in \mathbb{R} and so there exists an $a \in \mathbb{R}$ such that a sub sequence $\left\{M_{p}^{*}\left(x_{n_{k}}, x_{n_{k}}, x_{n_{k}}\right)\right\}$ is convergent to a, i.e. $\lim _{k \rightarrow \infty} M_{p}^{*}\left(x_{n_{k}}, x_{n_{k}}, x_{n_{k}}\right)=0$.

It remains to prove that $\left\{M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)\right\}$ is a Cauchy sequence in \mathbb{R}. Since $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X, M_{p^{s}}^{*}\right)$, for $\epsilon>0$, there exists n_{ϵ} such that $M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{m}\right)<\frac{\epsilon}{2 R}$ for all $n, m \geq n_{\epsilon}$. Hence, for all $n, m \geq n_{\epsilon}$,

$$
\begin{aligned}
& \left|M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)-M_{p}^{*}\left(x_{m}, x_{m}, x_{m}\right)\right| \leq 4 R M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right)-3 M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right) \\
& -M_{p}^{*}\left(x_{m}, x_{m}, x_{m}\right)+M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)-M_{p}^{*}\left(x_{m}, x_{m}, x_{m}\right) \\
& \leq 2 R M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{m}\right)<\epsilon .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left|M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)-a\right| & \leq\left|M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right)-M_{p}^{*}\left(x_{n_{k}}, x_{n_{k}}, x_{n_{k}}\right)\right| \\
& +\left|M_{p}^{*}\left(x_{n_{k}}, x_{n_{k}}, x_{n_{k}}\right)-a\right|<\epsilon+\epsilon=2 \epsilon,
\end{aligned}
$$

for all $n, n_{k} \geq n_{\epsilon}$. Hence $\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)=a$.
Now, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, M_{p}^{*}). We have

$$
\begin{aligned}
& \left|2 R M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right)-2 a\right| \\
& =\left|R M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{m}\right)+M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)-a+M_{p}^{*}\left(x_{m}, x_{m}, x_{m}\right)-a\right| \\
& \leq R M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{m}\right)+\left|M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)-a\right|+\left|M_{p}^{*}\left(x_{m}, x_{m}, x_{m}\right)-a\right| \\
& <\frac{\epsilon}{2 R}+2 \epsilon+2 \epsilon=\left(\frac{1}{2 R}+4\right) \epsilon .
\end{aligned}
$$

Hence, $\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(X, M_{p}^{*}\right)$.
We shall have established the lemma if we prove that ($X, M_{p^{s}}^{*}$) is complete if so is $\left(X, M_{p}^{*}\right)$. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $\left(X, M_{p^{s}}^{*}\right)$. Then $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, M_{p}^{*}) and so it is convergent to point $y \in X$ with

$$
\lim _{n, m \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right)=\lim _{m \rightarrow \infty} M_{p}^{*}\left(y, y, x_{m}\right)=M_{p}^{*}(y, y, y) .
$$

Thus, for $\epsilon>0$, there exists $n_{\epsilon} \in \mathbb{N}$ such that

$$
\left|M_{p}^{*}\left(y, y, x_{n}\right)-M_{p}^{*}(y, y, y)\right|<\frac{\epsilon}{2 R}
$$

and

$$
\left|M_{p}^{*}(y, y, y)-M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)\right|<\frac{\epsilon}{2 R}
$$

whenever $n \geq n_{\epsilon}$. As a consequence, we have

$$
\begin{aligned}
M_{p^{s}}^{*}\left(y, y, x_{n}\right) & =2 R M_{p}^{*}\left(y, y, x_{n}\right)-M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)-M_{p}^{*}(y, y, y) \\
& \leq\left|R M_{p}^{*}\left(y, y, x_{n}\right)-M_{p}^{*}(y, y, y)\right|+\left|R M_{p}^{*}\left(y, y, x_{n}\right)-M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)\right| \\
& <R \frac{\epsilon}{2 R}+R \frac{\epsilon}{2 R}=\epsilon
\end{aligned}
$$

whenever $n \geq n_{\epsilon}$. Therefore ($X, M_{p^{s}}^{*}$) is complete.
Finally, it is easy to check that $\lim _{n \rightarrow \infty} M_{p^{s}}^{*}\left(a, a, x_{n}\right)=0$ if and only if

$$
M_{p}^{*}(a, a, a)=\lim _{n \rightarrow \infty} M_{p}^{*}\left(a, a, x_{n}\right)=\lim _{n, m \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x_{m}\right)
$$

Definition 5. Let $\left(X, M_{p}^{*}\right)$ be a partial M^{*}-metric space, then M_{p}^{*} is said to first type if

$$
M_{p}^{*}(x, x, y) \leq M_{p}^{*}(x, y, z)
$$

for all $x, y, z \in X$.

3. Fixed point result

We begin this section giving the concept of weakly increasing mappings.
Definition 6 ([39]). Let (X, \preceq) be a partially ordered set. Two mappings S, T : $X \rightarrow X$ are said to be $S-T$ weakly increasing if $S x \preceq T S x$ for all $x \in X$.

Remark 3 ([39]). (i) Two weakly increasing mappings need not be nondecreasing. for examples see [4].
(ii) \mathcal{F} denote the set of all functions $F:[0, \infty) \rightarrow[0, \infty)$ such that F is nondecreasing and continuous, $F(0)=0<F(t)$, for every $t>0$ and $F(x+y) \leq$ $F(x)+F(y)$ for all $x, y \in[0,+\infty)$.
(iii) Ψ denote the set of all functions $\psi:[0, \infty) \rightarrow[0, \infty)$ where ψ is continuous, nondecreasing function such that $\sum_{n=0}^{\infty} \psi^{n}(t)$ is convergent for each $t>0$. From the conditions on ψ, it is clear that $\lim _{n \rightarrow \infty} \psi^{n}(t)=0$ and $\psi(t)<t$, for every $t>0$.

Now, we begin the our main results is as follows:
Theorem 8. Let (X, \preceq) be a partially ordered set and suppose that the partial M^{*}-metric space M_{p}^{*} is a first type on X and $\left(X, M_{p}^{*}\right)$ is a complete partial M^{*}-metric space. Let $S, T, G: X \rightarrow X$ be three self-mappings such that $S-T$, $T-G$ and $G-S$ are weakly increasing mappings such that

$$
\begin{equation*}
F\left(M_{p}^{*}(S x, T y, G z)\right) \leq \frac{1}{R} \psi(R F(\varphi(x, y, z)) \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$ with x, y, z are comparable with respect to partially order \preceq, where $F \in \mathcal{F}, \psi \in \Psi$ and

$$
\varphi(x, y, z)=\max \left\{\begin{array}{c}
M_{p}^{*}(x, y, z), M_{p}^{*}(x, x, S x), \tag{3.2}\\
M_{p}^{*}(y, y, T y), M_{p}^{*}(z, z, G z)
\end{array}\right\} .
$$

Further assume that if, for every increasing sequence $\left\{x_{n}\right\}$ convergent to $x \in X$, we have $x_{n} \preceq x$. Then S, T and G have a common fixed point.

Proof. Let x_{0} be arbitrary point of X. We can define a sequence in X as follows $x_{3 n+1}=S x_{3 n}, x_{3 n+2}=T x_{3 n+1}$ and $x_{3 n+3}=G x_{3 n+2}$ for $n=0,1,2, \ldots$

Since $S-T, T-G$ and $G-S$ are weakly increasing mappings, we have $x_{1}=S x_{0} \preceq T S x_{0}=x_{2}=T x_{1} \preceq G T x_{1}=x_{3}=G x_{2} \preceq S G x_{2}=x_{4}$ and continuing this process, we have $x_{1} \preceq x_{2} \preceq \cdots \preceq x_{n} \preceq x_{n+1} \preceq \cdots$
Case 1. Suppose there exists $n_{0} \in \mathbb{N}$ such that $M_{p}^{*}\left(x_{3 n_{0}}, x_{3 n_{0}+1}, x_{3 n_{0}+2}\right)=0$. Now, we show that $M_{p}^{*}\left(x_{3 n_{0}+1}, x_{3 n_{0}+2}, x_{3 n_{0}+3}\right)=0$. Otherwise, from (3.1), we get

$$
\begin{aligned}
F\left(M_{p}^{*}\left(x_{3 n_{0}+2}, x_{3 n_{0}+2}, x_{3 n_{0}+3}\right)\right) & \leq F\left(M_{p}^{*}\left(x_{3 n_{0}+1}, x_{3 n_{0}+2}, x_{3 n_{0}+3}\right)\right) \\
& =F\left(M_{p}^{*}\left(S x_{3 n_{0}}, T x_{3 n_{0}+1}, G x_{3 n_{0}+2}\right)\right) \\
& \leq \frac{1}{R} \psi\left(R F\left(\varphi\left(x_{3 n_{0}}, x_{3 n_{0}+1}, x_{3 n_{0}+2}\right)\right)\right) \\
& =\frac{1}{R} \psi\left(R F\left(\varphi\left(x_{3 n_{0}+2}, x_{3 n_{0}+2}, x_{3 n_{0}+3}\right)\right)\right) \\
& <F\left(x_{3 n_{0}+2}, x_{3 n_{0}+2}, x_{3 n_{0}+3}\right),
\end{aligned}
$$

which is a contradiction. Hence $M_{p}^{*}\left(x_{3 n_{0}}, x_{3 n_{0}+1}, x_{3 n_{0}+1}\right)=0$. Therefore, $x_{3 n_{0}}=$ $x_{3 n_{0}+1}=x_{3 n_{0}+2}=x_{3 n_{0}+3}$. Thus, $S x_{3 n_{0}}=T x_{3 n_{0}}=G x_{3 n_{0}}=x_{3 n_{0}}$. That is $x_{3 n_{0}}$ is a common fixed point of S, T and G.

Case 2: Assume $M_{p}^{*}\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)>0$ for all $n \in \mathbb{N}$. Now, we want to prove

$$
\begin{equation*}
F\left(M_{p}^{*}\left(x_{n-1}, x_{n}, x_{n+1}\right)\right) \leq \psi\left(F\left(M_{p}^{*}\left(x_{n-2}, x_{n-1}, x_{n}\right)\right)\right) \tag{3.3}
\end{equation*}
$$

Setting $x=x_{3 n}, y=x_{3 n+1}$ and $z=x_{3 n+2}$ in (3.2), we have

$$
\varphi\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)=\max \left\{\begin{array}{c}
M_{p}^{*}\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), \\
M_{p}^{*}\left(x_{3 n}, x_{3 n}, x_{3 n+1}\right), \\
M_{p}^{*}\left(x_{3 n}, x_{3 n}, x_{3 n+2}\right), \\
M_{p}^{*}\left(x_{3 n+2}, x_{3 n+2}, x_{3 n+3}\right)
\end{array}\right\} .
$$

Since M_{p}^{*} is of the first type, we get
$\varphi\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right) \leq \max \left\{M_{p}^{*}\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), M_{p}^{*}\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right\}$.
If $M_{p}^{*}\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)$ is maximum in the R.H.S. of the above inequality, we have from (3.1) that

$$
\begin{aligned}
F\left(M_{p}^{*}\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) \leq & F\left(M_{p}^{*}\left(S x_{3 n}, T x_{3 n+1}, G x_{3 n+2}\right)\right) \\
< & \frac{1}{R} \psi\left(R F\left(\varphi\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)\right) \\
\leq & \frac{1}{R} \psi\left(R F \left(\operatorname { m a x } \left\{M_{p}^{*}\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right),\right.\right.\right. \\
& \left.\left.\left.M_{p}^{*}\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right\}\right)\right) \\
= & \frac{1}{R} \psi\left(R F\left(M_{p}^{*}\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right)\right) \\
< & \left.<M_{p}^{*}\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right),
\end{aligned}
$$

which is a contradiction. Thus,

$$
F\left(M_{p}^{*}\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) \leq \psi\left(F\left(M_{p}^{*}\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)\right)
$$

Similarly, we have

$$
F\left(M_{p}^{*}\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+4}\right)\right) \leq \psi\left(F\left(M_{p}^{*}\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right)\right)
$$

and

$$
F\left(M_{p}^{*}\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right) \leq \psi\left(F\left(M_{p}^{*}\left(x_{3 n-1}, x_{3 n}, x_{3 n+1}\right)\right)\right)
$$

Therefore, for every $n \in \mathbb{N}$, we have

$$
F\left(M_{p}^{*}\left(x_{n}, x_{n+1}, x_{n+2}\right)\right) \leq \psi\left(F\left(M_{p}^{*}\left(x_{n-1}, x_{n}, x_{n+1}\right)\right)\right)
$$

Now, we have $F\left(M_{p}^{*}\left(x_{n}, x_{n+1}, x_{n+2}\right)\right) \leq \psi\left(F\left(M_{p}^{*}\left(x_{n-1}, x_{n}, x_{n+1}\right)\right)\right) \leq \cdots \leq$ $\psi^{n}\left(F\left(M_{p}^{*}\left(x_{0}, x_{1}, x_{2}\right)\right)\right)$.

Hence

$$
\lim _{n \rightarrow \infty} F\left(M_{p}^{*}\left(x_{n}, x_{n+1}, x_{n+2}\right)\right)=0
$$

so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n+1}, x_{n+2}\right)=0 \tag{3.4}
\end{equation*}
$$

Since M_{p}^{*} is first type and F is non-decreasing, we have

$$
F\left(M_{p}^{*}\left(x_{n}, x_{n}, x_{n+1}\right)\right) \leq F\left(M_{p}^{*}\left(x_{n}, x_{n+1}, x_{n+2}\right)\right) \leq \psi^{n}\left(F\left(M_{p}^{*}\left(x_{0}, x_{1}, x_{2}\right)\right)\right)
$$

Since $F(x, y) \leq F(x)+F(y)$ and $M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{n+1}\right) \leq 2 R M_{p}^{*}\left(x_{n}, x_{n}, x_{n+1}\right)$, we have

$$
F\left(M_{p^{s}}^{*}\left(x_{n}, x_{n}, x_{n+1}\right)\right) \leq 2 R F\left(M_{p}^{*}\left(x_{n}, x_{n}, x_{n+1}\right)\right) \leq 2 R \psi^{n}\left(F\left(M_{p}^{*}\left(x_{0}, x_{1}, x_{2}\right)\right)\right)
$$

Now, from

$$
\begin{aligned}
M_{p^{s}}^{*}\left(x_{n+k}, x_{n}, x_{n}\right) & \leq R M_{p^{s}}^{*}\left(x_{n+k}, x_{n+k-1}, x_{n+k-1}\right) \\
& +R M_{p^{s}}^{*}\left(x_{n+k-1}, x_{n+k-2}, x_{n+k-2}\right)+\cdots+M_{p^{s}}^{*}\left(x_{n+1}, x_{n}, x_{n}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
& F\left(M_{p^{s}}^{*}\left(x_{n+k}, x_{n}, x_{n}\right)\right) \leq F\left(R M_{p^{s}}^{*}\left(x_{n+k}, x_{n+k-1}, x_{n+k-1}\right)\right) \\
&+\cdots+F\left(M_{p^{s}}^{*}\left(x_{n+1}, x_{n}, x_{n}\right)\right) \\
& \leq 2 R^{2} \psi^{n+k-1}\left(M_{p}^{*}\left(x_{0}, x_{1}, x_{2}\right)\right) \\
&+\cdots+2 R^{2} \psi^{n}\left(M_{p}^{*}\left(x_{0}, x_{1}, x_{2}\right)\right) \\
& \leq 2 R^{2} \sum_{i=n}^{\infty} \psi^{i}\left(M_{p}^{*}\left(x_{0}, x_{1}, x_{2}\right)\right)
\end{aligned}
$$

Since $\sum_{n=0}^{\infty} \psi^{n}(t)$ is convergent for each $t>0$ it follows that $\left\{x_{n}\right\}$ is a Cauchy sequence in the M^{*}-metric space ($X, M_{p^{s}}^{*}$). Since (X, M_{p}^{*}) is complete, then from Lemma 2.7 follows that the sequence $\left\{x_{n}\right\}$ converges to some x in the M^{*}-metric space $\left(X, M_{p^{s}}^{*}\right.$). Hence $\lim _{n \rightarrow \infty} M_{p^{s}}^{*}\left(x_{n}, x, x\right)=0$. Again, from Lemma 2.7, we have

$$
\begin{equation*}
M_{p}^{*}(x, x, x)=\lim _{n \rightarrow \infty} M_{p}^{*}\left(x, x, x_{n}\right)=\lim _{n, m \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{m}, x_{m}\right) \tag{3.5}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is a Cauchy sequence in the M^{*}-metric space ($X, M_{p^{s}}^{*}$) and

$$
M_{p^{s}}^{*}\left(x_{n}, x_{m}, x_{m}\right)=2 R M_{p}^{*}\left(x_{n}, x_{m}, x_{m}\right)-M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)-M_{p}^{*}\left(x_{m}, x_{m}, x_{m}\right),
$$

we have

$$
\lim _{n, m \rightarrow \infty} M_{p^{s}}^{*}\left(x_{n}, x_{m}, x_{m}\right)=0
$$

and by (3.4), we have

$$
\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{n}, x_{n}\right)=0,
$$

thus by definition $M_{p^{s}}^{*}$, we have

$$
\lim _{n, m \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{m}, x_{m}\right)=0 .
$$

Therefore, by (3.5), we have

$$
\begin{aligned}
M_{p}^{*}(x, x, x) & =\lim _{n \rightarrow \infty} M_{p}^{*}\left(x_{n}, x, x\right) \\
& =\lim _{n, m \rightarrow \infty} M_{p}^{*}\left(x_{n}, x_{m}, x_{m}\right)=0 .
\end{aligned}
$$

Now, by the inequality (3.1) for $x=x, y=x_{3 n+1}$ and $z=x_{3 n+2}$, then we have

$$
F\left(M_{p}^{*}\left(S x, x_{3 n+2}, x_{3 n+3}\right)\right) \leq \frac{1}{R} \psi\left(R F\left(\varphi\left(x, x_{3 n+1}, x_{3 n+2}\right)\right)\right),
$$

and by letting $n \rightarrow \infty$ and using Lemma 2.5, we obtain

$$
F\left(M_{p}^{*}(S x, x, x)\right) \leq \frac{1}{R} \psi\left(R F\left(M_{p}^{*}(S x, x, x)\right)\right)<F\left(M_{p}^{*}(S x, x, x)\right)
$$

which is a contradiction. Hence, $M_{p}^{*}(S x, x, x)=0$. Thus $S x=x$. Similarly, by using the inequality (3.1) for $y=x, x=x_{3 n}$ and $z=x_{3 n+2}$, then we have

$$
F\left(M_{p}^{*}\left(x_{3 n}, T x, x_{3 n+3}\right)\right) \leq \frac{1}{R} \psi\left(R F\left(\varphi\left(x_{3 n}, x, x_{3 n+2}\right)\right)\right),
$$

and letting $n \rightarrow \infty$ and using Lemma 2.5, we obtain

$$
F\left(M_{p}^{*}(x, T x, x)\right) \leq \frac{1}{R} \psi\left(R F\left(M_{p}^{*}(x, T x, x)\right)<F\left(M_{p}^{*}(x, T x, x)\right),\right.
$$

which is a contradiction. Hence, $T x=x$. Similarly, by using the inequality (3.1) for $z=x, x=x_{3 n}$ and $y=x_{3 n+1}$, we can show that $G x=x$.

References

[1] B.C. Dhage, Generalized metric spaces and topological structure II, Pure. Appl. Math. Sci., 40 (1994), 37-412.
[2] I.A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26-37.
[3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5-11.
[4] B.C. Dhage, Generalized metric spaces and topological structure I, Analele Ştinţ. Univ. "Al.I. Cuza" Iaşi, 45 (2000), 3-24.
[5] S.V.R. Naidu, K.P.R. Rao, N. Srinivasa Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces, Int. J. Math. Sci., 51 (2004), 2719-2740.
[6] A. Aghajani, M. Abbas, J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64 (2014), 941-960.
[7] H. Aydi et al., A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory Appl., 13 (2012), 337-346.
[8] H. Aydi et al., A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012.
[9] I. A Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. Gos. Ped. Inst. Unianowsk, 30 (1989), 26-37.
[10] M. Boriceanu, Strict fixed point theorems for multivalued operators in b metric spaces, Int. J. Modern Math., 4 (2009), 285-301.
[11] M. Boriceanu, M. Bota, Adrian Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), 367-377.
[12] M. Boriceanu, Fixed point theory for multivalued generalized contractions on a set with two b-metric, Creative Math. \& Inf., 17 (2008), 326-332.
[13] H. Huang, SH. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 2013, 2013:112.
[14] N. Hussain, D. DoriL, Z. Kadelburg, S. RadenoviLc., Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., 2012.
[15] N. Hussain, M.H. Shah. KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), 1677-1684.
[16] M.A. Khamsi, N. Hussain, KKN mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123-3129.
[17] Z. Mustafa, J.R. Roshan, V. Parvaneh, Coupled coincidence point results for (ψ, ϕ)-weakly counteractive mappings in partially ordered G_{b}-metric Spaces, Fixed Point Theory Appl., 2013, 2013:206.
[18] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, Analele Universităţ̧ii de Vest, Timişoara Seria Matematică Informatică XLVIII., 3 (2010), 125-137.
[19] M. Pacurar, A fixed point results for ϕ-contraction on b-metric spaces without the boundedness assumption, Fasciculi Mathematici., 43 (2010), 127136.
[20] V. Parvaneh, J.R. Roshan, S. Radenovic, Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed point Theory and Applications., 2013, 2013:130.
[21] J.R. Roshan, N.Shobkolaei, S. Sedghi, M. Abbas, Common fixed point of four maps in b-metric spaces, Hacettepe J. Math. Stat., 43 (2014), 613-624.
[22] W. Shatanawi, A. Pitra, R. Lazovi, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl., 2013, 2013:120.
[23] N. Mlaiki, N. Ozguz, A. Mukhelmer, N. Tas, A new extension of the $M_{b^{-}}$ metric spaces, Journal of Mathematical Analysis, 9 (2018), 118-133.
[24] R. George, A. Belhenniche, S. Benahmed, Z. Mitrovi, N. Mlaiki, L. Guran , On an open question in controlled rectangular b-metric spaces, Mathematics, 8 (2020), 2239.
[25] H. Saleh, S. Sessa, W. Alfaqih, M. Imdad, and N. Mlaiki, Fixed circle and fixed disc results for new types of c-contractive mappings in metric spaces, Symmetry, 12 (2020), 1825.
[26] E. Karapinar, F. Khojasteh, Z. Mitrović and V. Rakočević, On surrounding quasi-contractions on non-triangular metric spaces, Open Mathematics, 18 (2020), 1113-1121.
[27] E. Ghasab, H. Majani, E. Karapinar and G. Rad, New fixed point results in F-quasi-metric spaces and an application, Advances in Mathematical Physics, 2020, Article ID 9452350, 6 pages.
[28] E. Karapiner, F. Khojasteh, W. Shatanawi, Revisiting Ćirić-type contraction with Caristi's approach, Symmetry, 11 (2019), 726.

FIXED POINT THEOREMS FOR MONOTONE MAPPINGS ON PARTIAL ...
[29] H. Afshari, E. Karapınar, Afshari and Karapınar advances in difference equations a discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces, Springer Open Journal, 20, 616.
[30] E. Karapinar, F. Khojasteh, Z. Mitrović, V. Rakočević, On surrounding quasi-contractions on non-triangular metric spaces, Open Mathematics, 18 (2020), 1113-1121.
[31] C. Alegre, A. Fulga, E. Karapinar, P. Tirado, A discussion on p-geraghty contraction on mw-quasi-metric spaces, Mathematics, 8 (2020), 1437.
[32] E. Karapinar, S. Moustafa, A. Shehata, R. Agarwal, Fractional hybrid differential equations and coupled fixed-point results for α-admissible $F \psi_{1}, \psi_{2}$ contractions in M-metric spaces, Hindawi Discrete Dynamics in Nature and Society, 2020, Article ID 7126045, 13 pages.
[33] A. Malkawi, A. Tallafha, W. Shatanawi, Coincidence and fixed point results for (ψ, L)-M-weak contraction mapping on $M R$-metric spaces, Italian Journal of Pure and Applied Mathematics, accepted (2020).
[34] A. Malkawi, A. Tallafha, W. Shatanawi, Coincidence and fixed point results for generalized weak contraction mapping on b-metric spaces, Nonlinear Functional Analysis and Applications, 26 (2021), 177-195.
[35] A. Rabaiah, A. Tallafha, W. Shatanawi, Common fixed point results for mappings under nonlinear contraction of cyclic form in $M R$-metric spaces, Nonlinear Functional Analysis and Applications, accepted (2021).
[36] A. Rabaiah, A. Tallafha and W. Shatanawi, Common fixed point results for mappings under nonlinear contraction of cyclic form in b-metric spaces, Advances in Mathematics Scientific Journal, accepted (2020).
[37] A. Malkawi, A. Rabaiah, W. Shatanawi, A. Talafhah, MR-metric spaces and an application, 2021, preprint.
[38] G. Gharib, A. Malkawi, M. Alsauodi, A. Rabaiah, W. Shatanawi, A Common fixed point theorem in M^{*}-metric space and an Application, preprint, 2020.
[39] N. Shobkolaei, S. Sedghi, S.M. Vaezpour, K.P.R. Rao, Fixed point theorems for monotone mappings on partial D^{*}-metric spaces, Mathematics Moravica, 16 (2012), 37-52.
[40] E. Karapinar, A. Fulga, A. Petrusel, On Istratescu type contractions in b-metric spaces, Mathematics, 8 (2020), 388.
[41] M. A. Alghamdi, S. Gulyaz-Ozyurt, A note on extended Z-contraction, Mathematics, 8 (2020), 195.
[42] H. Aydi, E. Karapinar, M. F. Bota, S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 88 (2012).
[43] H. Aydi, M. F. Bota, E. K., S. Moradi, A common fixed point for weak phicontraction on b-metric spaces, Fixed Point Theory, 13 (2012), 337-346.
[44] E. Karapinar, A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes, 12 (2011), 185-191.
[45] E. Karapinar, I.M. Erthan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., 24 (2011).
[46] E. Karapinar, Generalizations of Caristi Kirk's theorem on partial metric spaces, Fixed Point Theory Appl., 4 (2011).

Accepted: October 27, 2021

