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Abstract. In this paper, we introduce the concept of partial M*—metric on a
nonempty set X, and we give some properties supported by some examples to illustrate
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our results. Furthermore, we establish some fixed points results for partial M*—metric.
Also, we extend our result for monotone mappings on partial M*—metric spaces.
Keywords: M*—metric spaces, fixed point, partial metric.

1. Introduction

Bakhtin [2] and Czerwik [3] are defined a b—metric space and the idea of a
b—metric space the triangle inequality axiom is weaker than for metric space.
Also, many authors gives many fixed point theorems in a b-metric space (see
[6—15]), Aydi et al. [8] gave some interesting theories for fixed point for set-valid
quasi contraction in b-metric space.

In 2021 [37], Malkawi et al. introduced the notion of M R-metric space and
M R-metric space is a generalization of a b-metric space [2, 3] and the tetrahedral
inequality axiom is weaker than for a D —metric space [1]. Also, there are many
fixed point theorems in different type spaces for more information. I Refer to
the reader to look at [4 — 36].

Definition 1 ([37]). Let X be a non empty set and R > 1 be a real number.
M: X xXxX —[0,00) a function which is called an M R-metric, if it satisfies
the following axioms for each x,y,z € X.

(M1) : M(z,y,z) > 0.

(M2): M(z,y,2) =0 iff t =y = z.

(M3): M(x,y,z) = M(p(z,y,2)); for any permutation p(x,y, z) of x,y, 2.

(M4): M(x,y,2) < R[M(z,y,0) + M(z,l,z) + M(¢,y, z)].

A pair (X, M) is called an M R-metric space.

Also, Gharib et al. [38] introduced the concept of M*-metric spaces, the
importance of which lies in this property M*(x,z,y) = M*(z,y,y). It is worth
noting that these characteristics need not be satisfied in MR-metric space [37].

Definition 2 ([38]). Let X be a non empty set and R > 1 be a real number.
A function M* : X x X x X — [0,00) is called M*-metric, if the following
properties are satisfied for each x,y,z € X.

(M*1): M*(x,y,z) > 0.

(M*2) : M*(z,y,2) =0 iff t =y = z.

(M*3) : M*(x,y, z) = M*(p(x,y, 2)); for any permutation p(x,y, z) of z,y, 2.

(M*4): M*(z,y,z) < RM*(z,y,u) + M*(u, z, 2).

A pair (X, M*) is called an M*-metric space.

The following are examples of M*-metric space.

Example 1. a) Let (X, d) be a metric space then M*(z,y, z) = 5 max{d(z,y),
d(y,z),d(z,z)} and M*(z,y,2) = H[d(z,y),d(y, 2),d(z,2)] are M*-metric on
X.

b) If X = R, then

1
M*(z,y,2) = gllle+y =22l +lly + 2 = 22 + lo + 2 = 24]],



156 ALSAUODI, GHARIB, MALKAWI, RABAIAH AND SHATANAWI

for every x,y, z € R™ is an M*-metric on X.

Example 2. Let ¢ : R x R — R™ be a mapping defined as the following:

1

1
Y(z,y) =0if 2 =y, ¥(x,y) = 5 if & >y, (z,y) = 3 if v <y.

Then, clearly ® is not a metric, since ¥(1,2) # 1(2,1). Define G : RxR xR —
RT by
1
G(:Ev Y, Z) = E max{i/f(l” y)7 ¢(y, Z)) d}(za :L')}
Then, G is an M*-metric.

Example 3. Let ¢ : R™ x Rt — RT be a mapping defined as the following:
Y(z,y) = max{z,y}. Clearly it is not a metric. Define G : RT x Rt x RT —
R* by

¥(a,y) = plmax{z,y} + max(y, o} + max{z )]~ 7~y — 2

for every z,y,2 € R*. Then G is an M*-metric.

2. Partial M*-metric space

The Authors defined b—metric space by replacing the triangular inequality ax-
iom with a weaker one. Also, for some work on b-metric, we refer the reader to
[40, 41, 42, 43, 44, 45, 46].

Now, we present the concept of a partial M*—metric space and prove its prop-
erties.

Definition 3. A partial M*-metric on a nonempty set X is a function M, :
X x X x X = R* such that for all z,y,z,a € X :

(Mp1) z =y =2& Mj(x,z,z) = My(z,y,2) = M;(y,y,y) = M, (2, z,2),
(My2) My (x,x,2) < M(z,y,2),

(M;3) My(z,y,z) = My(p{z,y, 2}), where p is a permutation function,

(M;4) M;(.%’,y, Z) < RM;(x,y,a) + M;(aa Zs Z) - M;(CL)aaa)'

(X, My ) is a partial M*-metric space on a nonempty set X and My is a
partial M*-metric on X. It is clear that, if M (z,y,2) = 0, then from (M;1)
and (M,2) z =y = 2. But if x = y = 2, M (z,y,2) may not be 0. The basic
example of a partial M*-metric space (RT, M) is My (z,y,2) = %max{x, Y, 2}
for all z,y,z € RT.

It is obvious that every M*—metric is a partial M*—metric, but the converse
need not be true. We will explain this in the following example.

Example 4. Let M :: RY x RT x RT — R* be a nonempty defined as follows:

1
M;(x,y,z) = EH‘T _y’ + |y - Z| + |$— Z” —i—max{x,y,z},

such that R > 1. Then clearly it is a partial M*-metric, but it is not an M*-
metric.
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Example 5. Let (X,p) be a partial b-metric space and M, :: RT x RT xRt —
R* be a nonempty defined as:

. 1
M, (z,y,2) = Zlp(z,y) + (2, 2) + p(y, 2)] = p(, 2) = p(y,y) — p(2, 2).
Then, clearly M is a partial M*-metric, but it is not an M*-metric.

Remark 1. M (x,z,y) = My (z,y,y)

Proof.
My (z,x,y) < RM(z, z,2) + My (z,y,y) — My (z, 2, )
< RM*(w z,r) + My (2, y,y) — RM,(z,z, )
(2.1) My (z,y,y).
My (z,y,y) < RMy(y,y,y) + My (y, x,2) — My (y,9, )
(2.2) < M;(y,2,2).
From (2.1) and (2.2), we get M (z,z,y) = My (z,9,y). O

Lemma 1. Let (X, M;) be a partial M*—metric space. If we define p(x,y) =
My (x,y,y), then (X,p) is a partial b-metric space

Proof. (M;1) x =y & Mj(z,z,x) = Mj(z,y,y) = py,y,y) < plz,z) =
p(z,y) = p(y,y),

(My2) My(z,x,2) < My(z,y,y) implies that p(z,z) < p(z,y),
(M, ) My(z,y,y) = M*(y,x z) implies that p(z,y) = p(y, z),
(M, )M*(y Yy, )<RM (v,y,2) + My (2,2, x) — Mj(2, 2, 2) implies that

p(z,y) < R[p(y, z) + p(2, )] — p(2,2). O

Let (X, M;) be a partial M*—metric space. For 7 > 0 define

Bugs(2,7) = {y € X : M (2,9,9) < M (w,2,2) +1}.

Definition 4. Let (X, M) be a partial M*—metric space and A C X.

(1) If, for every x € A there exists v > 0 such that By (z,7) C A, then the
subset A is called an open subset of X.

(2) {zn} is a sequence in a partial M*—metric space (X, M,) converges to x
if and only if My (z,r,x) = limy, 00 My (Tn, Tn, x). That is for each e > 0, there
exists ng € N such that

(1) My (2, ,2n) < My (2, 2,7) + € Yn > ny,
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or equivalently, for each € > 0, there exists ng € N such that

(2) My (%, T, ) < My (z,2,7) + € Vn,m > ng.

Indeed, if (1) holds then

M;(x7xnal‘m) = M;(xmxaxm)
< RM,(zy,z,7) + My (2, Tm, Tm) — M, (7,7, 7)

P
< Re+e+ My(v,z,7).

Conversely, set m =n in (2) we have My (zpn, Tn, ) < My (z,2,7) + €.

(3) {zn} is a sequence in a partial M*—metric space (X, M) is called a
Cauchy if limy, 00 My (T, Tm, Tm) evists.

Let Tary be the set of all open subsets X, then TMy US @ topolpgy on X (induced
by the partial M*—metric My).

A partial M*—metric space (X, M;) 18 said to be complete if every Cauchy
sequence {xy} in X converges to a point x € X with respect to M-

If a sequence {z,,} in a partial M*—metric space (X, M) converges to z,
then we have

My (%, Tn, Tm) < RMp(Tn, Tn, ) + My (2, Tm, Tm) — My (2, 2, )
< Re+e+ My(v,z,7).

Lemma 2. Let (X, My) be a partial M*—metric space. If r > 0, then the ball
Bugs (z,7) with center x € X and radius r is an open ball.

Proof. Lety € B (z,7), then My (z,y,y) < My (z,z,z)+r. Let RM;(z,y,y)—
My (z,z,2) = 6. Let z € Basz (y,r — 0), by triangular inequality, we have
My(z,2,2) < RMy(z,y,y)+ My(y, 2, 2) + My(y,y,y)
= RM;(CC,y,y)—M;($,$,$)+M;(Z,Z,y)
_M;(y’ Y, y) + M;(J,‘, xz, ﬂf)
< d+r—06+My(z,z,
= Mj(z,z,z)+r.

Thus, z € B (2, 7). Hence Bagy (y,7 — §) € B (z,7). Therefore, the ball
By (z,7) is an open ball. O

Each partial M*—metric M; on X generates a topology Tr On X which
has as a base the family of open My —balls {Bys(z,€) : x € X, e > 0}.

The following example shows that a convergent sequence {x,} in a partial
M*—metric space (X, My ) need not be a Cauchy sequence. In particular, it
shows that the limit of a convergent sequence is not necessarily unique, to explain
that see the following example
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Example 6. Let X = [0,00) and M (z,y,2) = % max{z,y, z}. Then, it is clear
that (X, M) is a complete partial M*—metric space. Let

1, n=2k
Ty =
2, n=2k+1.
Then, clearly it is convergent sequence and for every x > 2 we have

nl;rglo My (wp, Ty, x) = My (7,2, 2),

therefore
L(z,) ={x: 2z, — z} = [2,00).

But, limy, 00 My (T, Tm, Tm) does not exist. Hence {x,} is not a Cauchy se-
quence.

The following Lemma plays an important role in this paper.

Lemma 3. Let (X,p) be a partial b—metric space then there erxists a partial
M*—metric M, on X such that

(a) {zn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence
in the partial M*—metric space (X, M),

(b) the partial b—metric space (X,p) is complete if and only if the partial
M*—metric space (X, M) is complete. Furthermore, M (x,z,y) = p(z,y), for
every x,y € X.

Proof. Define

. 1
Mp (90,3/7 Z) = EmaX{p(x,y),p(x,z),p(y, Z)}a Va,y,z € X.

Then, it is easy to see that M, is a partial M*—metric and M, (z,z,y) = p(z,y),
for every z,y € X. O

The following Lemma shows that under certain conditions the limit is unique.

Lemma 4. Let {x,} be a convergent sequence in a partial M*-metric space
(X, M) such that z, — = and xn, — y. If

Nm My (2, T, on) = My (2, 2,2) = M;(y,y,y),

n—oo

then x = y.
Proof. As

My (z,y,y) = M, (z,2,y) < RM,(x,2,2,) + My (2n,y,y) — My (Tn, Tn, Tn),

therefore

M;(l‘n, Ty, Tp) < RM;(ZUa T, Tp) + M;(xna YY) — M;(CE, Y, y)-
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By given assumptions, we have

nlLH;O My (vp, vy, x) = My(z,z,),
nh_)n(f)lo My (T, T, wp) = My(x,2,7).

Therefore

My (z,z,7) < RMy (2, z,2) + My (y,y,y) — M, (2,9, v),

‘évhich shows that My (y,y,y) < (1— R)My(z,z,2) + My (2, y,y) < My(y,y,y).
07

My (y,y,y) < My(z,y,y) < My (y,v,y).
Also,

M;(Zli,y,y) = M;(ya y,ﬂj‘) < RM;(yvya IL‘n) + M;(xnvl‘a :Z:) - M;(l'n,l'n, IL‘n),

implies that
M;(:UTH Tn, xn) S RM;(yv Y, l'n) + M;(I’n, xZ, l‘) - M;(.’E, Y, y)u
by on taking limit as n — oo gives
My (y,y,y) < RM,(y,y,y) + M, (z, 2, x) — My (2,y,y),

which shows that

P
So,
My (x,z,2) < M, (z,y,y) < M, (z,z,7).
Thus, M (z,z,x) = M, (z,y,y) = M, (y,y,y). Therefore, x = y. O

Lemma 5. Let {z,} and {y,} be two sequences in partial M*—metric space
(X, M) such that

nh_)rgo My (vp, z,7) = nh_)rgo My (wp, Ty, vp) = M, (z, 2, 7),

and
lim M;(fymyay) = nh_{Iolo M;(ym Yn, Yn) = M;(ya%y)'

n—o0

Then limy, 00 My (Tn, Yn, Yn) = My (2, y,y). In particular, iy, oo My (T, Yn, 2)

= My (2,9, z), for every z € X.
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Proof. As {z,} and {y,} converges to a z € X and y € X respectively, for
each € > 0 there exists ng € N such that

My (v, z,2,) < My(z,2,2)+ <

p ﬁa
, €
Mp (y7y7yn) < M;(%%?J) + ﬁv
€
My(z,2,20) < My (T, Tp,T,) + 3R

and
* * €
Mp (y’ ya yn) < Mp (ynv yn, yn) + ﬁ

for n > ng. Now,

M;(xna xnayn) < RM;(xna-xn,x) + M;(.%', Yn, yn) - M;(.%,JL‘,.CE)
~M;(y,y,y) — M, (z,z, )
Re  Re
M — 4+ —
(1) = My(z,y,y) +¢,

and so we have
M;(:Ena Yn, yn) - M;(:L‘, Y, y) <e.

Also,
M;(:Ea Y, y) < RM;(l‘n, Y, y) + M;('Ia €z, xn) - M;(ﬂfn, In, xn)
< RM,(z,x,z) + RM;(Tn, Tn,Yn) + My (Yn, ¥, y)
_M;(yna Yn, yn) - M;(l"m Tn, x)
. Re  Re
< Mp(xn)xnay)_’_ﬁ_’_ﬁ
(2) = My(z,y,y) +e.
Thus,

M;(fﬂ,ﬂ?;y) - M;(J:naxnyyn) < €.

Hence, for all n > ng, we have |M;(xn,xn,yn) — M;,‘(x,x,y)’ < €. Hence, the

result follows. O

Lemma 6. If My is a partial M*-metric on X, then the functions Mys, Mpym :
X x X x X = RT are given by:

M;S<x7yaz) = RM;(@',[I},y) + RM;(y,y,Z) + M;<sz7x)
- M;(.CIZ, €, l’) - M;(yv Y, y) - M;(zv 2, Z)
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and

QRM;(IE,JI,y) - M;(ﬂj‘,l’,l’) - M;(y’yay)7
M;m(l‘,y, Z) = max 2RM;(ya Y, Z) - M;(y7y7y) - M;(Z7 Zs Z), ’

2RMy (2,2, ) — My(2,2,2) — My (2,2, 7)

for every x,y,z € X are equivalent M*-metrics on X.

Proof. It is easy to see that My and M are M*-metrics on X. Let z,y,2 € X.
It is obvious that
Mym(2,y, 2) < 2M(x,y, 2).

On the other hand, since a + b+ ¢ < 3max{a,b,c}, it provides that

M;S(xaya Z) = RM;(ZL‘,ZE,Z/) + RM;(y,y,Z) + M[;k(z’ Z,l’)
- M;(ZE,.’E,IL’) - M;(ya Y, y) - M*(Z,Z7 Z)

p
1 * * *
< 5 [2RMp (x,x,y) - Mp (.T,.%',l') - Mp (yvyay)]
1 *
1
5 [QRM*(Z z,2) — My (2, 2,2) *M*(l‘,a?,it)}
3 2RM1(96 T,y) — Mé(x T, ) — Mg(y,y,y),
< §max 2RM y Y,z ) M]Zk Y, Y, y) M]Zk(zaz7z)7
2RM (2,2,2) — Mj(z,2,2) — My (x,z,)
3
= 5 Mpn (2, y, 2).
Thus, we have
1 * 3 *
QMpm(mayaz) < M (l’ Y,z ) iMpm(x’yaZ)'
These inequalities implies that M. and Mym are equivalent. O

Remark 2. Note that:

M;s(JJ,IE,y) = 2RM;($,[E,y) - M;(a:,:c,x) - M (y Y, y) M 7”($ T y)

A mapping F' : X — X is said to be continuous at zg € X, if for every € > 0,
there exists § > 0 such that F(Basy (w0,6)) C B (Fxo, €).

The following lemma plays an important role to prove fixed point results on
a partial M*-metric space.

Lemma 7. Let (X, M}) be a partial M*-metric space.
(a) {xn} is a Cauchy sequence in (X, M) if and only if it is a Cauchy
sequence in the M*-metric space (X, M;,‘s)
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(b) A partial M*-metric space (X, M) is complete if and only if the M*-
metric space (X, My.) is complete. Furthermore,

lim M. (T, Tn, ) =0
n—oo

if and only if

My (z,z,7) = nh_}ngo My (T, Tn, T) = n’}iriloo M5 (s Ty Tn)-
Proof. Let {x,} be a Cauchy sequence in (X, M), we want to prove {x,} is a
Cauchy sequence in the M*-metric space (X, M ).

Since {zy,} be a Cauchy sequence in (X, M), then there exists o € R and
for every € > 0, there is n. € N such that ’M;(:Un,xn,xm) — a‘ < 47 for all
n, m > n.. Hence

M;S (Tn, T, Tm) < ’2RM; (Tn, T, Tm) — M;($n, Ty, Tp)
— M (T, Tny Tm) + 200 — 204}
< ‘2RM;(xn,xn,mm) - 204‘ + }M;(xn,wn,xn) — a‘
x €
+ |Mp(fvm,$m,xm) — oz’ < 4RE =,
for all n,m > ne. Thus {z,,} is a Cauchy sequence in (X, Ms).

Now, we prove that completeness of (X, M) implies completeness of (X, M ).

Indeed, if {z,,} be a Cauchy sequence in (X, M) then it is {,,} be a Cauchy
sequence in (X, M. ). Since the M*-metric space (X, M. ) is complete we deduce

that there exists y € X such that limy, o My« (Tn, Zn,y) = 0. Thus,

n]gr;o sup ‘M;(xn7xn7y) - M;(ya ?J,y)’
< lim \2RM;(a;n,xn,y) - M;(xmxmxn) - M;(yv:%y)‘ =0.

n—oo

Hence, we follow that {z,} is a convergent sequence in (X, M, ). That is
meaning
lim My (wn, Tn,y) = My (y,9,9).

n—oo
Now, we prove that every Cauchy sequence {z,} in (X, M) is a Cauchy se-
quence in (X, M}). Let e=5r, then there exists ng € N such that My (T, T, Trn)
< ﬁ for all n,m > ng. Since

M; (xru Tn, xn) < 4RM; (xno y Lng s xn) - 3M;(33na Tn, xn)
- M;(]Ino, Lng, zno) + M;((L’n, Ly xn)

< 2RM s (%, Ty Tng) + My (Tng, Tngs Tng )-
Thus, we have

M;(xn,a:n,xn) S QRM;; (.Q?n,xn, xno) + M;($n0,$n0,$n0)
<1+ My (Tng, Tngs Tng)-
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Consequently the sequence {M;(:rn, Tn, xn)} is bounded in R and so there
exists an a € R such that a sub sequence {M; (@n, xnk,xnk)} is convergent to
a, i.e. limg o0 My (T, Tny,, Tny,) = 0.

It remains to prove that {M; (Tn, Tn, xn)} is a Cauchy sequence in R. Since
{7y} is a Cauchy sequence in (X, M), for € > 0, there exists n. such that

M (zp, T, ¥m) < 55 for all n,m > n.. Hence, for all n,m > n,

‘M;(wn,mn,a?n) - M;(l’m,l‘m,l’m)‘ < ARM, (Tn, Tn, Tm) — 3M (Tp, T, Tn,)

_ M;(:cm, Ty Tim) + M;(:cn, Ty T) — M;(xm7 Ty Tin)
< 2RMps (T, Tpy Tip) < €.
On the other hand,
‘M;(xn’xnaxn) - a" S }M;($naxn7$m) - M;(xnka$nku$nk)’
+ ‘M;(xnk,xnk,a:nk) - a‘ < e+ €= 2,

for all n,ng > n.. Hence limy, 0o M (Tn, Tn, Tn) = a.

Now, we show that {x,} is a Cauchy sequence in (X, M}). We have

|2RM;(;U”, Ty Tm) — Qa‘
= |RM;5 (Tns Ty Tm) + My (T, Tn, Tn) — a+ My (T, T, Tm) — a|
< RM;S (xny Ln, Im) + |M;(-'I7na Tn, xn) - (Z‘ + ’M;(xma Tm, -Tm) - a’
€ 1
— +2 2¢ = (== +4)e.
<2R+ €+ 2¢ (2R~I— )e
Hence, {,} is a Cauchy sequence in (X, M).
We shall have established the lemma if we prove that (X, M) is complete
if so is (X, My). Let {z,} be a Cauchy sequence in (X, My.). Then {x,} is a
Cauchy sequence in (X, M) and so it is convergent to point y € X with
lim My (2, Tn, Tm) = lUm My(y,y, 2m) = My (y,y,y)-

n,m—0o0 m—ro0

Thus, for € > 0, there exists n € N such that

€

‘M;(yvyvxn) - M;(y7y7y>‘ < ﬁ

and
€

}M;(y,y,y) - M;(.Ctn,xmxn)‘ < R

whenever n > n.. As a consequence, we have

My (y,y, 2n) = 2RM (y,y, ¥n) — My (T, Tn, Tn) — My (y, Y, y)

< |RM; (y, y, xn) =My (y, 4, y)| + |RM;; (y, y, on) — My (2, T,y )|
€ €
< Rﬁ + Rﬁ = €,
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whenever n > n.. Therefore (X, M,.) is complete.

Finally, it is easy to check that lim, . Mp:(a,a,z,) = 0 if and only if

My(a,a,a) = nh_)rréo My(a,a,z,) = n}%rgoo My (Tp, T, T ). O
Definition 5. Let (X, M) be a partial M*-metric space, then M, is said to

first type if
My (z,2,y) < My(z,y,2),

forall x,y,z € X.

3. Fixed point result

We begin this section giving the concept of weakly increasing mappings.

Definition 6 ([39]). Let (X, =) be a partially ordered set. Two mappings S,T :
X — X are said to be S — T weakly increasing if Sx X T'Sx for all x € X.

Remark 3 ([39]). (i) Two weakly increasing mappings need not be nondecreas-
ing. for examples see [4].

(ii) F denote the set of all functions F' : [0,00) — [0,00) such that F' is
nondecreasing and continuous, F'(0) = 0 < F(t), for every t > 0 and F(z+y) <
F(z) + F(y) for all z,y € [0, +00).

(iii) ¥ denote the set of all functions # : [0, 00) — [0, 00) where 9 is contin-
uous, nondecreasing function such that "7 11" (t) is convergent for each ¢ > 0.
From the conditions on ), it is clear that lim,, ., 9" (t) = 0 and ¥(t) < ¢, for
every t > 0.

Now, we begin the our main results is as follows:
Theorem 8. Let (X, X) be a partially ordered set and suppose that the partial
M*-metric space My is a first type on X and (X, M;) 18 a complete partial

M*-metric space. Let S,T,G : X — X be three self-mappings such that S — T,
T —G and G — S are weakly increasing mappings such that

(3.1) F(M; (2, Ty, G2) < £(RF(p(x,9,2))

for all z,y,z € X with x,y,z are comparable with respect to partially order <,
where F' € F, ¢ € ¥ and

M*(-f,y,Z),M*(:C,:U’Sx)’
(3.2) o(z,y,2) = max{ P P '
Mp (yvvay)y Mp (Z, z, GZ)

Further assume that if, for every increasing sequence {x,} convergent to
x € X, we have xp, 2 x. Then ST and G have a common fized point.
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Proof. Let xy be arbitrary point of X. We can define a sequence in X as follows
T3n+1 = S$3n, T3n+2 = T$3n+1 and I3n4+3 = Gx3n+2 forn = 0, 1, 2,

Since S — T, T — G and G — S are weakly increasing mappings, we have
1 = Sxzg R TSxg = 290 = Tx1 X GTx1 = 23 = Gzg = SGxy = x4 and
continuing this process, we have r1 <29 <X -+ 2, JxTpy1 X -+
Case 1. Suppose there exists ng € N such that M} (23n0, Z3ne+1, T3ng+2) = 0.
Now, we show that M (Z3n,+1, 3ne+2; T3ne+3) = 0. Otherwise, from (3.1), we
get

My (%3n9+15 T3n9+25 T3ne+3))

M (S73ng, TT3n0+1, GT3ne+2))

F(M,(23n0+2, T3no+25 T3no+3)) <

< T/J(RF(QO(JIgnO,.’L‘3n0+17$3n0+2)))

= —YP(RF(0(X3n0+25 T3n9+2 T3ng+3)))

=y

< F(23n9+2, £3n0+2+ T3n9+3)»

which is a contradiction. Hence M (2350, 3n0+1, T3ng+1) = 0. Therefore, x3,,, =
T3no+1 = T3ng+2 = T3ng+3. Lhus, Sx3p, = T'T3n, = GT3p, = T3n,. That is x3,,
is a common fixed point of 5,7 and G.

Case 2: Assume M;(l’gn,l‘gnJrl,IEgnJrg) > 0 for all n € N. Now, we want to
prove

(33) F(M;(xn—la T, xn—l—l)) < ZZJ(F(M;(LL'»”_Q, Ln—1, xn)))
Setting © = x3y, ¥y = T3p4+1 and z = x3,42 in (3.2), we have
My (T30, T3n+1, Tan+2),
M; ($3n7 T3n,y $3n+1)7

M; <x3n7 Z3n, x3n+2),
My (T3n+2, T3nt2, T3n+3)

©(Z3n, T3n+1, Tant2) = Max

Since M, is of the first type, we get

@3, T3n11, L3n+2) < max { M (230, £3n41, Z3n+2), My (L3041, T3n12, L3n43) | -

If M3 (3041, T3n+2, T3n+3) is maximum in the R.H.S. of the above inequual-
ity, we have from (3.1) that

F(M,(23n+1, T3n+2, T3n+3)) < F(My(Sz3n, TT3n41, GT3n+2))
1

< —(RF((23n, T3n41, T3n+2)))

=]

1 *
< Ew(RF(max { M (230, T3041, Z3n12),
M (23041, T3n+2, T3n43) }))
1
= RY(RE (M, (23041, 23042, T3n+3)))

< F(Mpy (23041, T3n+2, T3n+3)),
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which is a contradiction. Thus,

F(My (23041, ¥3n+2, T3n+3)) < Y(F(My (T30, T3nt1, T3n+2)))-

Similarly, we have

F (M (23n+2, T3n+3, T3n+4)) < V(F(My (T3n+1, T3n+2, T3n+3))),

and
F(My (23, 23n+1, T3n+2)) < Y(F(Mp(23n-1, T30, T3n+1)))-

Therefore, for every n € N, we have
F(M;(xn7$n+17$n+2>) < P(F (M, (xn 1, Tns Tnt1)))-

Now, we have F(M (Tny Tnt1, Tnta)) < Y(F(M, (xn 1Ty Tng1))) <o
Y (F (M (o, 71, 22))).

IN

Hence
lim F(M (Tny Trg1, Tnt2)) =0,
n—oo
so that
(3.4) nh_}n;OM (Tny Tyt 1, Tny2) = 0.

Since M, is first type and F' is non-decreasing, we have
F(My (20, Tn, Tny1)) < F(Mpy(2n, Tni1, Tng2)) < " (F(My (20, 21, 72))).

Since F(x,y) < F(x) + F(y) and My« (2p, Tn, Tni1) < 2RM ) (Tp, Tn, Tng1),
we have

F(M;s(l'n,$n,l’n+1)) < 2RF( (xnaxnyxn—l-l)) < 2an( ( ('ZUOM,BI’:UQ)))

Now, from
M;5 ("En—&-ka Tn, xn) < RM;‘ (.’En+k, Tn4k—1, 'In-i-k‘—l)
+ RM;:S (l'n—&—k—ly Lntk—2, xn—l—k—Q) +---+ M;a ($n+1u T, xn)u
we have
F(M;S (anrk? Tn,y xn)) F(RM (xn+k7 Tn+k—1, xn+k71))
+ - +F(M (I’n+1,$n,$n))
< 2RPYMTN (M (o, w1, w2))
oo 2R%Y" (M, (w0, 1, 72))

< 2R2Z’¢) 170,.%‘1,332))
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Since Y7 " (t) is convergent for each ¢ > 0 it follows that {x,,} is a Cauchy
sequence in the M*-metric space (X, M, ). Since (X, M) is complete, then from
Lemma 2.7 follows that the sequence {x,, } converges to some z in the M*-metric
space (X, Mp:). Hence limy, oo My (2pn, 7, z) = 0. Again, from Lemma 2.7, we
have

(3.5) My (z,2,2) = nh_)n;o My (z,2,2n) = n}rlLIBoo My (Tp, Ty, Trn)-

Since {w,} is a Cauchy sequence in the M*-metric space (X, M;.) and

M;S(xnu xmymm) == 2RMg(xnaxm7xm) - M;(xnvxn7$n) - M;(mm; xmym'm):

we have

lim M (T, T, Tm) = 0
n,Mm—00

and by (3.4), we have

. *
lim My (2n, Tn, T5) = 0,
n—o0

thus by definition M., we have

lim M, (7, ¥m, Tm) = 0.
n,m—00

Therefore, by (3.5), we have
My (z,z,2) = nh_}rgo My (vy, T, x)
= nﬂl)irl}loo My (T, T, Tr) = 0.
Now, by the inequality (3.1) for z = z, y = 23,41 and z = x3,12, then we

have
1

F(M, (S, 13012, Z3n43)) < Rdﬁ(RF(SO(%1‘3n+1,1’3n+2))),

and by letting n — oo and using Lemma 2.5, we obtain
* 1 * *
F(Mp(5$a$7x)) < Ew(RF(Mp(Sxaxvx))) < F(Mp(swvxax))a

which is a contradiction. Hence, M (Sz,z,r) = 0. Thus Sz = . Similarly, by
using the inequality (3.1) for y = x, x = x3, and z = x3,42, then we have

1
F(M;($3anx7x3n+3)) S E¢(RF(¢(x3n7$7x3n+2)))a

and letting n — oo and using Lemma 2.5, we obtain

F(M,(z,Tz,z)) < %Q/J(RF(M;($, Tz,z)) < F(M,(z,Tz,)),

which is a contradiction. Hence, Tx = z. Similarly, by using the inequality
(3.1) for z =z, x = 3y, and y = 3,41, we can show that Gx = z. O
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