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Abstract. The fundamentals concept of boundary asymptotic gradient observer of
full order type ∂ΩAGFO-observer via internal case in link with the strategic sensors
in different system domains have been presented. The results so obtained for linear
dynamical systems which is created by a strongly continuous semi-group (SCS-group)
in Hilbert space H1/2(∂Ω) have been analyzed. Consequently, the existence of sufficient
conditions for ∂ΩAGFO-estimator in parabolic infinite dimensional systems have been
studied and scrutinized. In addition to that, we have observed at the junction inter-
face that the interior solution is harmonized with the exterior solution for asymptotic
gradient full observation.
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1. Introduction

In literature, a distributed parameter systems and observability concepts on a
special domain Ω have been widely developed and tackled by several authors
[1-2]. The determination of Luenberger observer is to offer an asymptotic for-
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mal approximation for the current state of deliberated system [3-4]. Recently,
Al-Saphory and El Jai et al. have explored a new direction of regional analy-
sis for distributed parameter systems in finite time interval and infinite, with
regional or regional boundary cases associated with strategic sensors and ac-
tuators as in [5-15]. In this paper, we familiarize and explore the notion of
∂ΩAGFO-observer connected to extended internal region approach of the con-
sidered system domain [7, 12]. Therefore the usual boundary case have been
developed through an extension to previous works as in [13-14]. In addition to
that, boundary detectability and boundary strategic sensors have been deliber-
ated and analyzed.

The incentive of studying this notion is there exist several problem in the
real world needs to be studied as in [4, 16]. Indeed, the authors have obtained a
more general mathematical model of the BAGFO-observer which characterized
by internal gradient strategic (zone, pointwise or filament) sensors (Figure 1).

Figure 1: Mathematical modeling with positions of sensors.

The rest of the paper is prearranged as follows. Section 2 is enthusias-
tic to the considered system and preliminaries. In Section 3, we study ∂ΩG-
observability and ∂ΩAG-detectability and extant some original results. In sec-
tion 4 we familiarize ∂ΩAGFO-observer concepts in terms of ∂ΩAG-detectability
and ∂ΩG-strategic sensors. Also, the matching of inside to the outside solution
at a junction interface has been studied in the sense of Banerjee et al. [16].
Finally, some applications for distributed diffusion systems with the devoted
different domains and strategic sensors have been demonstrated.

2. Preliminaries of system inceptions

Assume Ω be an open set in Rn , through smooth boundary ∂Ω with the following
sets

Π = Ω× (0,∞); Ξ = ∂Ω× (0,∞).

Suppose that the following spaces specify as separable Hilbert type given by

W = H1(Ω); U = L2(0,∞, Rp); Y = L2(0,∞, Rq).

So, these spaces represent respectively as state space; input space and measure-
ment space such that p with q the numbers of controls and information [17].
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Thus, the system can be written as:

(1)


∂w

∂t
(ξ, t) = Aw(ξ, t) +Bu(t) Π

w(µ, t) = 0 Ξ

w(ζ, 0) = w(ξ) Ω

augmented with the output function

(2) y(., t) = Cw(., t) Π

where Ω grips for the closure of Ω and w0(ξ) which is made-up to be uniden-
tified in the state space W = H1(Ω). Therefore, A is a linear self-adjoint
transformation of 2nd differential case, with compact resolvent. Now, operators
B ∈ L(Rp,W) and C ∈ L(H1(Ω),Rq) be contingent on the structures of control
and information [18], which means, in various situations [12]. Consequently, we
obtain B /∈ L(Rp,W) and C /∈ L(H1/2(∂Ω),Rq). Accordingly, the system (1)
has a unique solution [17-18] which is assumed as

(3) w(ζ, t) = SA(t)w0(ζ) +

∫ t

0
SA(t− τ)Bu(τ) dτ Π

� K an operator is defined by following

K : W −→ Y,
w −→ CSA(·)w

and,

y(·, t) = K(t)w(·, 0),

where K is bounded linear operator [14-15].

� K∗ : Y −→ W is the adjoint operator of K, is defined by

K∗y∗ =

∫ t

0
S∗
A(τ)C

∗y∗(·, τ) dτ.

� The operator ∇ signifies the gradient, which is assumed to have the form

(4)

∇ : H1(Ω) −→ (H1(Ω))n

w −→ ∇w =

(
∂w

∂ζ1
, · · · , ∂w

∂ζn

)
∇∗ is the adjoint of ∇ and specified by{

∇∗ : (H1(Ω))n −→ H1(Ω)

w −→ ∇∗
w = v
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Such that v is characterized a solution of the Dirichlet problem{
∆v = −div(w) Ω

v = 0 ∂Ω

Thus, an extension of the trace operator [19] which is denoted by γ defined as

γ : (H1(Ω))n −→ (H1/2(∂Ω))n

and the adjoints is correspondingly given by γ∗.
� Systems (1)-(2) are assumed to be exactly observable (or EΩ-observable)

and weakly observable (or WΩ- observable) on [0, T ] if ImK∗ = H1(Ω) and
ImK∗ = H1(Ω) respectively.

� The semi-group (SA(t))t≥0 is asymptotically stable in H1(Ω) (or ΩA-
stable), if, for +ve constants MΩ and αΩ, then

∥SA(·)∥L(H1(Ω),W) ≤ MΩe
−αΩt, t ≥ 0.

� System (1) is called ΩA-stable if the transformation A produces SCS-group
(SA(t))t≥0 which is ΩA-stable.

� Systems (1)-(2) are assumed to be asymptotically detectable (ΩA-detectable)
if the transformation HΩ : Y −→ H1(Ω) such that the operator (A−HΩC) cre-
ates a SCS-group (SHΩ

(t))t≥0, which is ΩA-stable.

3. ∂ΩG-observability and ∂ΩAG-detectability

The observability definitions to boundary case for parabolic, hyperbolic linear,
semi-linear and nonlinear have been extended [20-23] with duel concept [24].
Though, we come across to some definitions and theorems to elucidate the con-
cept of ∂ΩAG-detectability and ∂ΩG-observability in the state space H1/2(∂Ω)
in it’s an extension from [5,14].

Definition 3.1. System (1) together with information (2) is assumed to be
exactly gradient observable (or EΩG-observable) on [0, T ] if:

Im∇K∗ =
(
H1(Ω)

)n
.

Definition 3.2. System (1) together with information (2) is assumed to be
weakly gradient observable (or WΩG-observable) on [0, T ] if:

Im∇K∗ =
(
H1(Ω)

)n
.

Definition 3.3. System (1) together with information (2) is assumed to be
exactly boundary gradient observable (E∂ΩG-observable) on [0, T ], if:

Imγ∇K∗ =
(
H1/2(∂Ω)

)n
.
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Definition 3.4. System (1) together with information (2) is assumed to be
weakly gradient observable W∂ΩG-observable on [0,T], if:

Imγ∇K∗ =
(
H1/2(∂Ω)

)n
.

Remark 3.1. We can deduced that, the equation:

Imγ∇K∗ =
(
H1/2(∂Ω)

)n

is equivalent to:
ker∇K∗γ∗ = {0}.

From previous results, we present the characterization of exactly boundary
gradient observable system in Ω (EG∂Ω-observable) in the following result.

Proposition 3.1. System (1) together with information (2) is said to be E∂ΩG-
observable on [0, T ] if and only if ∃ αE∂ΩG ≥ 0, such that:

(5) ∥γ∇w∥L(H1(Ω),(H1/2(∂Ω))
n
) ≤ αE∂ΩG ∥Kw0∥Y , for all w0 ∈ W

Now, we give the concept of boundary gradient strategic sensor (∂ΩG-
strategic sensor).

Definition 3.5. Sensor (D, f) is ∂ΩG-strategic, if the corresponding system is
W∂ΩG-observable.

Definition 3.6. The semi-group (SA(t))t≥0 is supposed to be boundary asymp-
totic gradient stable on (H1/2(∂Ω))n (∂ΩAG-stable), if for some positive con-
stants M∂ΩAG, α∂ΩAG > 0, then:

∥γ∇SA(t)∥(H1/2(∂Ω))
n ≤ M∂ΩAGe

−α∂ΩAGt, for all t ≥ 0.

Remark 3.2. If the semi-group (SA(t))t≥0 is ∂ΩAG-stable, then for all w0 ∈
(H1/2(∂Ω))n the solutions associated to the autonomous system of (1) satisfies:

(6) lim
t→∞

∥γ∇SAw(·, t)∥(H1/2(∂Ω))
n = lim

t→∞
∥γ∇SAw(·)∥(H1/2(∂Ω))

n = 0

Definition 3.7. System (1) is assumed to be ∂ΩAG-stable, if the transformation
A produces SCS-group (SA(t))t≥0 which is ∂ΩAG-stable.

Definition 3.8. System (1) together with the information (2) is assumed to be
∂ΩAG-detectable if there is transformation such that (A−H∂ΩAGC) , produces
a SCS-group (SH∂ΩAG

(t))t≥0 which is ∂ΩAG-stable.

Though, one can assume the following results. Consequently, the notion of
∂ΩAG-detectability is a weaker property than the exact E∂ΩG-observability
[1,14].
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4. Boundary asymptotic gradient full-order observer

A methodology that permits a construction and reconstruct asymptotically gra-
dient in full order estimator (∂ΩAGFO-estimator) of T̂w(ξ, t) has been pre-
sented in this section. This technique evades the evaluation inverse problem,
and related to calculate the unknown initial state [3,10], which permits to guess
a current state in ∂Ω with no needs to the outcome of the initial state of the
main system.

4.1 Modernization of ∂ΩAGFO-estimator

Assume the following system:

(7)



∂w

∂t
(ζ, t) = Aw(ζ, t) +Bu(t) Π

w(µ, t) = 0 Ξ

w(ζ, 0) = w0(ζ) Ω

y(·, t) = Cw(·, t) Π

For a region ∂Ω, assume that for T̂ ∈ L((H1/2(Ω))n, (H1/2(∂Ω))n) and T̂ =
γT, ∃ V(·, t), such that:

(8) V(ζ, t) = T̂w(ζ, t) Π

where V(·, t) is a state system. Therefore, if we can form a system which is an
asymptotic approach for V(·, t), then it will be give an asymptotic estimation for
T̂w(ζ, t) (i.e. it structure an asymptotic observer to the restriction of Tw(ζ, t)
on ∂Ω).

Equations (2)-(8) provides:

(9)

[
y
V

]
=

[
C

T̂

]
w

Suppose there exists two linear bounded operators R and S, where R : R −→
(H1/2(∂Ω))n and S : (H1/2(∂Ω))n −→ (H1/2(∂Ω))n, such that RC + ST̂ = I,
then by deriving V(ζ, t), we have:

∂V
∂t = T̂ ∂w

∂t (ζ, t) = T̂Aw(ζ, t) + T̂Bu(t)

= T̂ASV(ζ, t) + T̂ASRy(ζ, t) + T̂Bu(t) Π

Consider (∂ΩAGFO-estimator for x) as:

(10)


∂V
∂t

(ζ, t) = F∂ΩAGV(ζ, t) +G∂ΩAGu(t) +H∂ΩAGy(·, t) Π

V(ζ, 0) = V0(ζ) Ω

V(µ, t) = 0 Ξ
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with F∂ΩΩAG generates SCS-group (SF∂Ω
(t))t≥0, that is ∂ΩAG-stable on W =

H1/2(∂Ω), that means ∃ MF∂Ω
, αF∂Ω

> 0, such that:

(11) ∥χ∂ΩSF∂Ω
(.)∥L((H1/2(∂Ω))

n
,(H1/2(∂Ω))

n
) ≤ MF∂Ω

e−αF∂Ω
t, t ≥ 0 Π

and G∂Ω ∈ L(Rp, (H1/2(∂Ω))n) and H∂Ω ∈ L(Rp, (H1/2(∂Ω))n). The solution
of (10) is given by:

(12) V(., t) = SF∂Ω
(t)V0(·) +

∫ t

0
SF∂Ω

(t− τ) [G∂Ωu(τ) +H∂Ωy(·, τ)] dτ Π

Now, in the case when T̂ = I and W = V in equation (8), the operator equation
[4]:

T̂A− F∂ΩAGT̂ = H∂ΩAGC

of the ∂ΩEFO-observer becomes to:

F∂ΩAGAG = A−H∂ΩAGC,

where A and C are identified. Hence, the operator H∂ΩAG has to be known such
that the operator F∂ΩAG is ∂ΩAG-stable.

Also, for the equation (7), the dynamical system can be deliberated as:

(13)


∂V
∂t

(ζ, t) = AV(ζ, t) +Bu(t) +H∂ΩAG (y(., t)− CV(ζ, t)) Π

V(µ, t) = 0 Ξ

V(ζ, 0) = 0 Ω

which is named ∂ΩEFO-observer.

4.2 Junction interface conditions

We examine the three regions E, E1 and E2 as in (Figure 2) of junction condi-
tions [16] used to generalize an approach may be called asymptotic observer to
build the gradient of current state on the ∂Ω. Thus, the boundary observer on

Figure 2: Ω, ∂Ω and regions junction conditions.

∂Ω might be gotten as an observer of internal regional type in E2. If we have
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the following mapping R holds an extension of continuous linear operator [19],
R : (H1/2(∂Ω))n −→ (H1(Ω))n, such that:

(14) γ∇Rh(µ, t) = h(µ, t), for all h ∈
(
H1/2(∂Ω)

)n
Ξ

Let ∀w0 ∈ ∂Ω there exists r > 0 is an random and appropriately small real with
the following sets:

E =
⋃

w0∈∂Ω
B(w0, r) = {w ∈ Ω or w ∈ E1 : ∥w − w0∥ < r, w0 ∈ ∂Ω} ,

where:

E1 =
⋃

w0∈∂Ω
B(w0, r) = {w ∈ E or w /∈ Ω : ∥w − w0∥ < r, w0 ∈ ∂Ω}

and

E2 =
⋃

w0∈∂Ω
B(w0, r) = {w ∈ E or w /∈ E1 : ∥w − w0∥ < r, w0 ∈ ∂Ω} ⊂ Ω

and then we have:

E = E1 ∪ E2, ∂Ω = E1 ∩ Ē2 and E2 = E ∩ Ω,

where B(w0, r) represents a ball of radius r centered in w0(µ, t) and ∂Ω is
boundary of the domain Ω.

For the a region E2 of the domain Ω and let χE2 be a function assumed as:

χE2 :
(
H1(Ω)

)n →
(
H1(E2)

)n
,

w : χE2w = w|E2
,

where w|E2
is the restriction of w to E2 with adjoint operator χ∗

E2
(for more

details see references [7-9]).

Definition 4.1. System (7) is E2AG-stable, then the autonomous system solu-
tion linked to (7), asymptotically converges to 0 when t approaches to ∞.

Definition 4.2. System (7) is called E2AG-detectable, if there exists an operator
HE2AG : O −→ (H1(E2))

n, such that the operator A−HE2AGC produces a SCS-
group (SE2AG(t))t>0, which is E2AG-stable.

So, the process of junction conditions from interior to exterior of E2AG-
detectability might be assumed as follows [ 23-26]:

Proposition 4.1. If the system (7) is Ē2AG-detectable, then it is ∂ΩAG-
detactable.
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Proof. Suppose that w(ζ, t) ∈ H1/2(∂Ω) and w̄(ζ, t) be an extension toH1/2(Ē2)
with ∂Ω ⊂ Ē2.

Trace theorem [19] with equation (14) tells, there exist Rw̄(ζ, t) ∈ (H1(Ω))n

with a bounded support such that:

(15) γ (RRE2w̄(ζ, t)) = w(ζ, t) Π

where RE2 : (H1(E2))
n −→ (H1/2(∂Ω))n. Since the system (7) is Ē2-detectable,

then it is E2-detectable [18, 25]. Accordingly, there exists an operator χE2∇K∗ :
O −→ (H1(E2))

n specified by:

(16) H∂ΩAGw(·, t) = γ∇K∗y(ζ, t) Π

such that the operator A−H∂ΩAGC produces a SCS-group (S∂Ω(t))t>0 which
is ∂ΩAG-stable. For every ∈ O, then we get:

χE2∇K∗y(ξ, t) = χE2RRE2w̄(ξ, t)

and hence:
H∂ΩAG =

(
γχ∗

E2
∇K∗y

)
: Y −→

(
H1/2(∂Ω)

)n

such that A−H∂ΩAGCproduces a semi-group (S∂Ω(t))t>0, which is ∂ΩAG-stable.
To conclude, the system (7) is ∂ΩAG-detectable.

Proposition 4.2. If the dynamical system (13) is Ē2AGFO-observer for the
systems (7) then, its ∂ΩAGFO-observer.

Proof. In view of assumptions as in Proposition 4.3 with equations (15) and
(16) and since the dynamical systems (13) Ē2AGFO-observer, so we can assume
that:

I- The systems (13) is E2AGFO-observer [25-26], thus there exists a dynam-
ical system with w(ξ, t) ∈ W, such that:

χE2 T̂w(ζ, t) = χE2RRE2w̄(ζ, t).

Then, we have:

(17)
(
γχ∗

E2
χE2RT̂w

)
(ζ, t) = w(ζ, t) Π

II- The equations (2) and (16) allow:[
y
V

]
(ζ, t) =

[
C(

γχ∗
E2
χE2RT̂

) ]
w(ζ, t) Π

and there exists two linear bounded operator R̄ and C satisfy the relation:

R̄C
(
γχ∗

E2
χE2RT̂

)
+ γχ∗

E2
χE2RT̂ = I∂ΩAG.

III- There exist an operator FĒ2
is Ē2AGFO-observer, such that ∂ΩAG-stable

(see [28]). To end with the dynamical system (13) is ∂ΩAGFO-observer
for the system (7).
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4.3 Sensors and ∂ΩAG -detectability

The boundary asymptotic gradient detectability concept with the spatial struc-
ture of sensors can be linked [6]. Now, for that determination assume that J
has unstable modes to have a clear picture of this concept with respect to sensor
structures [5].

Proposition 4.3. Assume that there is q zone sensors (Di, fi)1≤i≤q and ρ(A)
is the spectrum of A holds for finite J eigenvalues of ReλJ ≥ 0. Then, (7) is
∂ΩAG-detectable if and only if:

I- q ≥ m,

II- rank Gi = mi, i = 1, 2, · · · , J , where supmi = m < ∞ and j = 1, 2, · · · ,mi,

G = (G)ij =


< φnj , fi(.) >L2(Di), zone case

φnj(bi), poitwise case

< Φnj , fi(.) >L2(Γi), boundary zone case

Proof. The proof can be established as in [25] with case of state gradient w(ξ, t)
belong to sub region Γ, such that Γ = ∂Ω.

Remark 4.1. If the system (7) is ∂ΩAG-detectable, then it is possible to con-
struct an ∂ΩAGFO-observer for the original system [5, 25].

Proposition 4.4. If the systems (7) is ∂ΩAG-detectable, then the dynamical
system (13) is ∂ΩAGFO-observer of the systems (7) that means:

(18) lim
t→∞

[w(ζ, t)− V(ζ, t)] = 0 Π

Proof. Assume φ(ζ, t) = w(ζ, t)− V(ζ, t), where V(ζ, t) is the solution of (13).
Differentiate equation (18) and use of equations (7) and (13), we attain:

∂φ
∂t (ζ, t) =

∂w
∂t (ζ, t)−

∂V
∂t (ζ, t)

= (A−H∂ΩAGC)φ(ζ, t) Π.

The system (7) is ∂ΩAG-detectable. Hence, there exists an operator H∂ΩAG ∈
L(O, (H1/2(∂Ω))n), such thatA−H∂ΩAGC produces a SCS-group (S∂ΩAG(t))t≥0m
which is ∂ΩAG-stable on (H1/2(∂Ω))n, and there exists M∂ΩAG, ω∂ΩAG > 0,
such that:

∥φ∥(H1/2(∂Ω))n ≤ ∥γ∇S∂ΩAG(t)∥(H1/2(∂Ω))n∥φ0∥ ≤ M∂ΩAGe
−ω∂ΩAGt∥φ0∥

with
φ0(ζ) = w0(ζ)− V0(ζ)

and hereafter, we got the following:

lim
t→∞

[w(ζ, t)− V(ζ, t)] = 0 Π.
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5. Applications to ∂ΩAGFO-Observer

The distributed diffusion systems defined in the domain Ω have been considered
as an application to ∂ΩAGFO-observer [12, 27]. Several applications in real
life problems associated with different types of sensor have been prolonged. For
two-dimensional system, the domain:

Ω =]0, a1[×]0, a2[

with the boundary is given by the following form:

∂Ω = [0, a1]× {a2} ∪ [0, a1]× {0} ∪ {0} × [0, a2] ∪ a1 × [0, a2]

is a region of Ω̄.
The eigenfunctions of (16) are defined by:

(19) φnm(ζ1, ζ2) =

(
4

a1a2

)1/2

cosnπ

(
ζ1
a1

)
cosnπ

(
ζ2
a2

)
associated with eigenvalues:

(20) λnm = −
(
n2

a21
+

m2

a22

)
π2, n,m ≥ 1

If we assume that
a21
a22

/∈ Q [28-30], then the multiplicity of the eigenvalues λnm

is rnm = 1 for every n,m = 1, 2, · · · , J , then one sensor (D, f) may be sufficient
for ∂ΩAGFO-observer [26-30].

5.1 Rectangular domain

A sufficient conditions which is characterized some cases of the ∂ΩAGFO-
observer in the rectangular domain of system (21) with various sensor locations
cases have been provided in this section.

5.1.1 Internal zone sensors case

Assume the following two dimensional system that is defined by parabolic equa-
tion:

(21)


∂w

∂t
(ζ1, ζ2, t) =

∂2w

∂w∂ζ21
(ζ1, ζ2, t) +

∂2w

∂ζ21
(ζ1, ζ2, t) Π

w(µ1, µ2, t) = 0 Ξ

w(ζ1, ζ2, 0) = w0(ζ1, ζ2) Ω

together with the information is represented via internal pointwise or zone sen-
sors

(22) y(·, t) =
∫
D
w(ζ1, ζ2, t)f(ζ1, ζ2) dζ1dζ2 Π
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where the zone sensor is situated interior to the domain Ω (Figure 3), with
support of:

D = [ζ10 − l1, ζ10 + l1]× [ζ20 − l2, ζ20 + l2] ⊂ Ω and L2(D)

In this case the system (21) together with the information (22) have an associ-

Figure 3: Ω, ∂Ω with sensor position D of internal zone type.

ated dynamical system, that is specified by the following formula:

(23)



∂V
∂t

(ζ1, ζ2, t) =
∂2V

∂w∂ζ21
(ζ1, ζ2, t) +

∂2V
∂ζ21

(ζ1, ζ2, t)

−H∂ΩGA(CV(ζ1, ζ2, t)− y(t)) Π

V(µ1, µ2, t) = 0 Ξ

V(ζ1, ζ2, 0) = z0(ζ1, ζ2) Ω

Hence, the following important result is obtained.

Proposition 5.1. Assume that f1 and f2 are symmetric about ζ = ζ01 and
ζ = ζ02 respectively, then the process (23) is ∂ΩAGFO-observer for systems
(21)-(22) if nζ01/a1 and mζ02/a2 /∈ N , for every n,m = 1, 2, · · · , J .

5.1.2 Pointwise sensors case

Assume the system (21) together with information (24) which is measured by
internal pointwise sensors. Then, the output function can be formulated as:

(24) y(t) =

∫
Ω
w(ζ1, ζ2, t)δ(ζ1 − b1, ζ2 − b2) dζ1dζ2 Π

So, the following result is prophesied.

Proposition 5.2. Let b = (b1, b2) is the sensor positioned in Ω, then the dy-
namic system (23) is ∂ΩAGFO-observer for the system (21)-(24), if (nb1)/(a1)
and (mb2)/(a2 /∈ N), for every n,m = 1, 2, · · · , J .
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Figure 4: Ω, ∂Ω with sensor position b of pointwise zone type.

Figure 5: Ω, ∂Ω with sensor position σ of filament zone type.

5.1.3 Filament pointwise sensors case

Assume that the filament sensor positioned in Ω, where σ = Im(γ) ⊂ Ω is
symmetric with respect to the line b = (b1, b2) (Figure 5). More precisely, the
sensor is line of pointwise positioned in Ω, then the output function still given
by equation (21).

Proposition 5.3. Let the sensor is located in b = (b1, b2), then the process (23)
is ∂ΩAGFO-observer to (21)-(24), if (nb1)/(a1) and (mb2)/(a2 /∈ N), for every
n,m = 1, 2, · · · , J .

5.2 Circular domain

Remark 5.1. The results in 5.1 can be extended to the case of circular domain
with the internal zone and pointwise sensor as in [27-28].

6. Conclusion

The crossing problem from interior to exterior of asymptotic gradient full order
observer have been explored and achieved in rigorous results. Thus, the char-
acterizations of this approach are presented in connection with corresponding
notions as stability, detectability, strategic sensor and considered domain. Then,
the boundary asymptotic gradient reconstruction state via full-order observer in
parabolic distributed parameter systems is examined and proved. Many inter-
esting results concerning the choice of sensors structure are given and illustrated
in specific situations to diffusion systems. Moreover, many problem still opened
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for instance, hyperbolic distributed parameter systems and it’s development of
the sense of these results as in [22] with another operators (see [31-32]).
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