On bi-univalent functions involving Srivastava-Attiya operator

Mazin Sh. Mahmoud
Department of Mathematics
College of Education for Pure Sciences
Tikrit University
Salahaddin
Iraq
maz2004in@yahoo.com

Abdul Rahman S. Juma
Department of Mathematics
College of Education for Pure Science
University of Anbar
Ramadi
Iraq
dr_juma@hotmail.com

Raheam A. Al-Saphory*
Department of Mathematics
College of Education for Pure Sciences
Tikrit University
Salahaddin
Iraq
saphory@tu.edu.iq

Abstract. Two subclasses $L \sum_{\Sigma}^{b, \delta}(\mu, \alpha)$ and $L \sum_{\Sigma}^{b, \delta}(\mu, \beta)$ of the class \sum of Bi-univalent functions have been introduced by making use of the Srivastava-Attiya operator. The estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions have been found for these subclasses. The results obtained are quit interesting and new.
Keywords: univalent function, bi-univalent function, coefficients bounds, and SrivastavaAttiya operator.

1. Introduction

Let Σ denotes the class of functions f of the form [1]

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which satisfy the following two continuous:
i. Holomorphic in the unit disk $U=\{z \in \mathbb{C}:|z|<1\}$,
*. Corresponding author
ii. Normalized by $f(0)=f^{\prime}(0)-1=0$.

In addition, with $z \in U$, the general form of Hurwitz-Lerch Zeta function $\varphi(\delta, b, z)$ which are used with the convolution of holomorphic function can be defined by:

$$
\begin{equation*}
\varphi(\delta, b, z)=\sum_{K=0}^{\infty} \frac{z^{k}}{(k+b)^{\delta}}=b^{-\delta}+\frac{z}{(1+b)^{\delta}}+\sum_{k=2}^{\infty} \frac{z^{k}}{(k+b)^{\delta}}, \tag{2}
\end{equation*}
$$

such that b is a complex number with $b \neq 0,-1,-2, \ldots, \mu \in \mathbb{C}$, and $\operatorname{Re}(\delta)>1$.
Also, Srivastava and Attiya [2] defined the linear operators $Q_{\delta, b}: \Sigma \longrightarrow \Sigma$ by means of:

$$
\begin{equation*}
Q_{\delta, b} f(z)=G_{\delta, b} * f(z)=z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{\delta} a_{k} z^{k}, \tag{3}
\end{equation*}
$$

where $G_{\delta, b} \in \Sigma$ to be:

$$
\begin{equation*}
G_{\delta, b}=(1+b)^{\delta}\left[\varphi(\delta, b, z)-b^{-\delta}\right]=z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{\delta} z^{k} \tag{4}
\end{equation*}
$$

Remark 1.1. $Q_{0, b}$ and $Q_{-\delta, b}$ denotes the identity and inverse operator of $Q_{\delta, b}$ respectively.

Koebe one-quarter theorem includes the image of U under every univalent functions $f \in A$ with an open disk centered at origin and radius $\frac{1}{4}$. Therefore, the inverse of every univalent function $f \in A$ can be written as $f^{-1}: f(U) \longrightarrow U$ satisfying:

$$
\begin{aligned}
& f^{-1}(f(z))=z, z \in U \\
& f\left(f^{-1}(\omega)\right)=\omega,|\omega|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}
\end{aligned}
$$

Furthermore, we notice that the inverse function has the series expansion which can be written in the form:

$$
\begin{equation*}
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\ldots \tag{5}
\end{equation*}
$$

In addition, a function $f \in A$ is bi-univalent if both f and the inverse $g=f^{-1}$ are univalent in U.

Recently, several authors are concentrating on these functions, which are defined to the class Σ composed with various other features of the bi-univalent function class Σ, considering the most two important subclasses of univalent functions $S^{*}(\beta)$ and $C(\beta)$ of order β (see [2-7]). Consequently via definition, the classes $S^{*}(\beta)$ and $C(\beta)$ can be written as:

$$
S^{*}(\beta)=\left\{f \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta, z \in U \text { and } 0 \leq \beta<1\right\}
$$

and

$$
C(\beta)=\left\{f \in S: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\beta, z \in U \text { and } 0 \leq \beta<1\right\} .
$$

For $0 \leq \beta<1$, if both f and its inverse f^{-1} are starlike and convex function of order β, then a function $f \in \sum d$ is in the class $S_{\Sigma}^{*}(\beta)$, or $C_{\Sigma}(\beta)$. These classes are introduced and investigated by Brannan and Taha [3]. Moreover, the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the classes $S_{\Sigma}^{*}(\beta)$ and $C_{\Sigma}(\beta)$ have been found.

The main objective of this study is to present new two subclasses of the class Σ related to the Srivastava-Attiya operator $[2,7,10]$ and accordingly to find the estimation of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses [11-13].

In order to prove our main results, we have to remembrance the following lemma.

Lemma 1.1. If a function $h(z) \in P([6])$

$$
\begin{equation*}
h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots, z \in U . \tag{6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|c_{k}\right| \leq 2, k \in N \tag{7}
\end{equation*}
$$

P is the family of all functions p, that an analytic in U for which $h(0)=1$ and $\operatorname{Re}(h(z))>0$.

2. Coefficient estimates of $L \sum_{\Sigma}^{b, \delta}(\mu, \alpha)$

Definition 2.1. Let $f(z)$ related by (1). Then, it be in the class $L \sum_{\Sigma}^{b, \delta}(\mu, \alpha)$, if the following are fulfilled [4]:

$$
\begin{equation*}
f \in \sum, \arg \left|\left\{(1-\mu) \frac{Q_{\delta, b} f(z)}{z}+\mu\left(Q_{\delta, b} f(z)\right)^{\prime}\right\}\right|<\frac{\alpha \pi}{2} \tag{8}
\end{equation*}
$$

with $0<\alpha \leq 1, \mu \geq 1, z \in U$, and

$$
\begin{equation*}
\arg \left|\left\{(1-\mu) \frac{Q_{\delta, b} g(\omega)}{\omega}+\mu\left(Q_{\delta, b} g(\omega)\right)^{\prime}\right\}\right|<\frac{\alpha \pi}{2}, \tag{9}
\end{equation*}
$$

where $0<\alpha \leq 1, \mu \geq 1, z \in U$, and the function g is extended by $g=f^{-1}$ and given by:

$$
\begin{equation*}
f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\ldots \tag{10}
\end{equation*}
$$

For the functions in the class $L \sum_{\Sigma}^{b, \delta}(\mu, \alpha)$, we find the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

Theorem 2.1. Let $f(z)$ which is given by (1) supposed to be in the class $L \sum_{\Sigma}^{b, \delta}(\mu, \alpha), 0<\alpha \leq 1$ and $\mu \geq 1, \delta \geq 1$. Then:

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 a}{\sqrt{\alpha\left(\left(\frac{1+b}{3+b}\right)^{\delta}(2+4 \mu)\right)+(1-\alpha)\left(\frac{1+b}{2+b}\right)^{2 \delta}(1+\mu)^{2}}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2 \alpha}{\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)} \tag{12}
\end{equation*}
$$

Proof. The inequalities (11) and (12) are equivalent to:

$$
\begin{equation*}
(1-\mu) \frac{Q_{\delta, b} f(z)}{z}+\mu\left(Q_{\delta, b} f(z)\right)^{\prime}=(p(z))^{\alpha} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\mu) \frac{Q_{\delta, b} f(\omega)}{\omega}+\mu\left(Q_{\delta, b} f(\omega)\right)^{\prime}=(q(\omega))^{\alpha}, \tag{14}
\end{equation*}
$$

where $p(z)$ and $q(w)$ satisfies the inequalities:

$$
\operatorname{Re}(p(z))>0, z \in U \text { and } \operatorname{Re}(q(w))>0, w \in U
$$

Moreover, the functions $p(z)$ and $q(w)$ can be written as:

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
q(\omega)=1+q_{1} \omega+q_{2} \omega^{2}+\ldots \tag{16}
\end{equation*}
$$

As well, $g(w)$ is given as in (3).
Now, by equating the coefficients in equations (11) and (12), we get:

$$
\begin{align*}
& \left(\frac{1+b}{2+b}\right)^{\delta}(1+\mu) a_{2}=p_{1} \alpha, \tag{17}\\
& \left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu) a_{3}=p_{2} \alpha+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}, \tag{18}\\
& \left(\frac{1+b}{2+b}\right)^{\delta}(1+\mu) a_{2}=-q_{1} \alpha \tag{19}\\
& \left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)\left(2 a_{2}^{2}-a_{3}\right)=q_{2} \alpha+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} . \tag{20}
\end{align*}
$$

From equations (18) and (19), we obtained:

$$
\begin{equation*}
p_{1}=-q_{1} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left(\frac{1+b}{3+b}\right)^{\delta}(2 \mu+1)^{2} a_{2}^{2}=\alpha\left(p_{1}+q_{1}\right)+\frac{\alpha(\alpha-1)}{2}\left(q_{1}^{2}+p_{1}^{2}\right) . \tag{22}
\end{equation*}
$$

From (20), (21) and (22), we got:

$$
\begin{equation*}
a_{2}^{2}=\frac{\alpha^{2}\left(q_{2}^{2}+p_{2}^{2}\right)}{\alpha\left(\left(\frac{1+b}{3+b}\right)^{\delta}(2+4 \mu)\right)+(1-\alpha)\left(\frac{1+b}{2+b}\right)^{2 \delta}(1+\mu)^{2}} . \tag{23}
\end{equation*}
$$

By applying lemma (1) on the coefficients p_{2} and q_{2}, we obtained:

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{\alpha\left(\left(\frac{1+b}{3+b}\right)^{\delta}(2+4 \mu)\right)+(1-\alpha)\left(\frac{1+b}{2+b}\right)^{2 \delta}(1+\mu)^{2}}} \tag{24}
\end{equation*}
$$

Now, to find the bound on $\left|a_{3}\right|$, subtract (20) from (18) to get:

$$
\begin{equation*}
2\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu) a_{3}-2\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu) a_{2}^{2}=\alpha\left(p_{2}-q_{2}^{2}\right) \tag{25}
\end{equation*}
$$

From (23) and with the help of $p_{1}^{2}=q_{1}^{2}$, substitute the value of a_{2}^{2} to get:

$$
\begin{gather*}
\alpha\left[\left(4 \alpha(1+2 \mu)\left(\frac{1+b}{3+b}\right)^{\delta}+(1-\alpha)(1+\mu)^{2}\left(\frac{1+b}{3+b}\right)^{\delta}\right) p_{2}\right. \\
a_{3}=\frac{\left.-(1-\alpha)(1+\mu)^{2}\left(\frac{1+b}{2+b}\right)^{2 \delta} q_{2}^{2}\right]}{2\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)\left[2 \alpha(1+2 \mu)\left(\frac{1+b}{3+b}\right)^{\delta}+(1-\alpha)(1+\mu)^{2}\left(\frac{1+b}{2+b}\right)^{2 \delta}\right]} \tag{26}
\end{gather*}
$$

Now, considering Lemma 1.1 again and using the substations of coefficients p_{1}, p_{2}, q_{1} and q_{2}, to get:

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2 \alpha}{\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)} \tag{27}
\end{equation*}
$$

Hence, the proof of the Theorem 2.2 is completed.

Now, assuming $\mu=1$ and $b=1$ in above theorem, then we have:

Corollary 2.1. If $f(z)$ given by (1) is in $L_{\Sigma}^{1, \delta}(1, \alpha), 0<\alpha \leq 1$ and $\mu \geq 1, \delta \geq 1$, then we have:

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{6 \alpha\left(\frac{1}{2}\right)^{\delta}+4(1-\alpha)\left(\frac{1}{2}\right)^{2 \delta}}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2 \alpha}{\left(\frac{1}{2}\right)^{\delta}(1+2 \mu)} \tag{29}
\end{equation*}
$$

Assuming $\alpha=1$ in theorem 2.2 , we have the following corollary:
Corollary 2.2. Let $f(z)$ which is given by (1) belonged to the class $L \sum_{\Sigma}^{b, \delta}(\mu, 1), 0<$ $\alpha \leq 1$ and $\mu \geq 1, \delta \geq 1$. Then:

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2}{\sqrt{\left(\left(\frac{1+b}{3+b}\right)^{\delta}(2+4 \mu)\right)}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2}{\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)} \tag{31}
\end{equation*}
$$

3. Coefficient estimates of $L \sum_{\Sigma}^{b, \delta}(\beta, \mu)$

Definition 3.1. Let $f(z)$ related by (1). Then it be in the class $L \sum_{\Sigma}^{b, \delta}(\beta, \mu)$ if the following conditions are fulfilled:

$$
\begin{equation*}
f \in \sum \text { and } \operatorname{Re}\left\{(1-\mu) \frac{Q_{\delta, b} f(z)}{z}+\mu\left(Q_{\delta, b} f(z)\right)^{\prime}\right\}>\beta \tag{32}
\end{equation*}
$$

where $0<\beta \leq 1, \mu \geq 1, z \in U$ and

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\mu) \frac{Q_{\delta, b} g(\omega)}{\omega}+\mu\left(Q_{\delta, b} g(\omega)\right)\right\}>\beta \tag{33}
\end{equation*}
$$

such that $0<\beta \leq 1, \mu \geq 1, z \in U$. Thus, the function g is introduced that the inverse of f given as in (5).
Theorem 3.1. If $f(z)$ which is given by (1) supposed to be in $L \sum_{\Sigma}^{b, \delta}(\beta, \mu)$, $0 \leq \beta<1$ and $\mu \geq 0$, then:

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)}} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2(1-\beta)}{\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)} \tag{35}
\end{equation*}
$$

Proof. The inequalities (32) and (33) are equivalent to:

$$
\begin{equation*}
(1-\mu) \frac{Q_{\delta, b} f(z)}{z}+\mu\left(Q_{\delta, b} f(z)\right)^{\prime}=\beta+(1-\beta) p(z) \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\mu) \frac{Q_{\delta, b} g(\omega)}{\omega}+\mu\left(Q_{\delta, b} g(\omega)\right)^{\prime}=\beta+(1-\beta) q(z) \tag{37}
\end{equation*}
$$

By equating coefficients in equations (36) and (37) produces:

$$
\begin{align*}
& \left(\frac{1+b}{2+b}\right)^{\delta}(1+\mu) a_{2}=p_{1}(1-\beta) \tag{38}\\
& \left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu) a_{3}=p_{2}(1-\beta) \tag{39}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\frac{1+b}{2+b}\right)^{\delta}(1+\mu) a_{2}=-q_{1}(1-\beta) \tag{40}\\
& \left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)\left(2 a_{2}^{2}-a_{3}\right)=q_{2}(1-\beta) \tag{41}
\end{align*}
$$

From equations (39) and (40), we obtained:

$$
\begin{equation*}
p_{1}=-q_{1} \tag{42}
\end{equation*}
$$

and also from (39) and (41), we obtain:

$$
\begin{equation*}
2\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu) a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right) \tag{43}
\end{equation*}
$$

So, we get:

$$
\begin{equation*}
a_{2}^{2}=\frac{\left(p_{2}+q_{2}\right)(1-\beta)}{2\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)} . \tag{44}
\end{equation*}
$$

By applying lemma 1.1 for the coefficients p_{2} and q_{2}, we obtained:

$$
\begin{equation*}
\left|a_{2}^{2}\right| \leq \sqrt{\frac{2(1-\beta)}{\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)}} \tag{45}
\end{equation*}
$$

which is the looked-for inequality as given in the (34).
Now, by subtracting (41) from (39), we have:

$$
\begin{equation*}
2\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu) a_{3}^{2}=(1-\beta)\left(p_{2}-q_{2}\right)+2\left(\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu) a_{2}^{2}\right. \tag{46}
\end{equation*}
$$

Then, substitute the value of a_{2}^{2} from (43), to obtain:

$$
\begin{equation*}
a_{3}^{2}=\frac{\left(p_{2}-q_{2}\right)(1-\beta)}{2\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)} . \tag{47}
\end{equation*}
$$

Now, with the help of the Lemma 1.1, we got:

$$
\begin{equation*}
\left|a_{3}^{2}\right| \leq \frac{2(1-\beta)}{\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)} \tag{48}
\end{equation*}
$$

which is the bound on $\left|a_{3}^{2}\right|$ as stated in (35).
Assuming $\beta=0$ in theorem 3.2, we have the following corollary:
Corollary 3.1. Let $f(z)$ given by (1) supposed to be in the class $L_{\Sigma}^{b, \delta}(0, \mu)$, $0 \leq \beta<1$ and $\mu \geq 0, z \in U$. Then:

$$
\begin{align*}
& \left|a_{2}^{2}\right| \leq \sqrt{\frac{2}{\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)}} \tag{49}\\
& \left|a_{3}^{2}\right| \leq \frac{2}{\left(\frac{1+b}{3+b}\right)^{\delta}(1+2 \mu)} \tag{50}
\end{align*}
$$

Conclusion

We have been shown the existence of novel two subclasses types paly an interested roll to the Srivastava-Attiya operator with their original results. Consequently, the obtained outcomes have demonstrated the estimation of the coefficients $|a 2|$ and $|a 3|$ for associated complex functions in new subclasses. Many problem still opened for example extend the obtained results to the case of differential operator in Hebert space as in [14-15] or with another operator types (see [16-17]).

References

[1] P. L. Duren, Univalent functions, in: Grunddlehren der mathematischen Wissenschaften, Band 259, Springer -Verlag, New York, Berlin, Hidelberg and Tokyo, 1983.
[2] H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), 207-216.
[3] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and its Applications, (1985), 53-60.
[4] T. Panigrahi, Coefficient bounds for a of bi-univalent analytic function associated with Hohlov operator, 16 (2013), 91-100.
[5] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.
[6] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43 (2013), 59-65.
[7] D. Breaz, N. Breaz, H.M. Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., 22 (2009), 41-44.
[8] A.S. Juma, F,S, Aziz, Appling Ruschewwyh derivative on two subclasses of bi-univalent functions, IJBAS-IJENS, 12 (2012), 68-74.
[9] X-F. Li, A. P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum., 7 (2012), 1495-1504.
[10] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc, 135 (1969), 429-449.
[11] S. Khan, N. Khan, S. Hussain, Q. Ahmad, M. Zaighum, Some subclass of bi-univalent function associated to Srivastava-Attya operator, Bulletan Mathematical Analysis and Applications, 9 (2017), 37-44.
[12] H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23 (2015), 242-246.
[13] Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25 (2012), 990-994.
[14] R. Al-Saphory, Z. Khalid, M. Jasim, Junction interface conditions for asymptotic gradient full-observer in Hilbert space, Italian Journal of Pure and Applied Mathematics, 49 (2023), 1-16.
[15] S. Rekkab, S. Benhadid, R. Al-Saphory, An asymptotic analysis of the gradient remediability problem for disturbed distributed linear systems, Baghdad Science Journal, 19 (2022), 1623-1635.
[16] M. Abdul Ameer, A. R. Juma, R. Al-Saphory, On differential subordination of higher-order derivatives of multivalent functions, Journal of Physics: Conference Series, 1818 (012188) (2021), 1-10.
[17] M. Abdul Ameer, A. S. Juma, R. Al-Saphory, Harmonic meromorphic starlike functions of complex order involving Mittag-Leffler operator, Italian Journal of Pure and Applied Mathematics, 48 (2022), 1-9.

Accepted: May 22, 2020

