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Abstract. The ecological food web problems and their impact on the environment play
vital role for balancing of some environments in our daily life. In the present work, the
analytic results of an ecological food web-model are rigorously examined and analyzed.
The model includes interactions and natural variables occur in different organisms of
the species that influence by the competition and refuge as two basic conditions. The
persistence of variant species for the resources competition is also analyzed. The global
asymptotic stability of the positive equilibrium points is investigated numerically based
on the Runge-Kutta predictor-corrector algorithm. Finally, the effects of the variation
of each parameter on the proposed model are inspected numerically.

Keywords: food web-model, global stability, persistence, period dynamic, stage-
structure.

1. Introduction

Our external environment suffers from many problems, including environmental,
economic, social, ..., etc, as well as, the spread of epidemics and infectious
diseases of all kinds. However, with the current technological universe and the
increase of population, many scientists are motivating to orient their interest
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for studying such natural phenomena, through mathematical modeling to be
analyzed deeply [1, 2, 3, 4, 5, 6, 7, 8].

With the time, and the arrival of the age of technology accompanied by the
increase in the population, these problems have become more complex and more
difficult. Therefore, it has become necessary to use modern technologies to help
us in diagnosing and analyzing the scientific results that obtained in theory. A
comprehensive number of studies have been developed to solve such difficulty
and complexity. Marcus R. [9] presented two finite-difference algorithms for
studying the dynamics of spatially extended predator-prey interactions with
the Holling type II functional response and logistic growth of the prey. Naji,and
Hussien, [10] proposed an epidemic model that describes the dynamics of the
spread of two different types of infectious diseases that spread through both
horizontal and vertical transmission in the host population. Whereas, Li, Hongli,
et al. [11] investigated a three-species food chain model in a patchy environment,
where the prey species, mid-level predator species, and top predator species can
disperse among n different patches (n ≥ 0).

The environmental-model that deals with endangered species (lemur ani-
mals) and two types of hunters (the black panthers and hyenas animals) that
are link together by a food web is studied and analyzed theoretically by Al-
Jubouri, et al. in [12].

The essential contribution of this study lies in demonstrating the theoretical
aspect of model (2) given in [12]. New criteria are introduced to study the
global stability of its unique equilibrium points, as well as, their existence. The
simulations results substantiate the feasibility of the analytical findings.

2. Mathematical formulation

The idea of the proposed ecological-model is based on three-types of different
species link together by a food web model. A high dimensional prey- predator
model proposed in [12] is shown in Figure 1, and expressed mathematically in
equation (1).

This model will be represented by the following nonlinear autonomous dif-
ferential equations,

dI1
dT

= rI2 − I1

(
ρ1(1−m)

b1 + (1−m)I1
P1 + a1(1−m)P2 + β + d1 + c1I1

)
,

dI2
dT

= βI1 − I2

(
ρ2(1−m)

b2 + (1−m)I2
P1 + a2(1−m)P2 + d2 + c2I2

)
,

dP1

dT
= P1

(
e1ρ1(1−m)I1
b1 + (1−m)I1

+
e2ρ2(1−m)I2
b2 + (1−m)I2

− d3 − c3P2

)
,(2.1)

dP2

dT
= P2 (e3a1(1−m)I1 + e4a2(1−m)I2 − d4 − c4P1) .

This model consists of a two stage-structure of prey species (Lemur animals),
which is an immature I1(t), and a mature I2(t), with a mid-level predator
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Figure 1: Sketch, showing the idea of mathematical simulation of an Ecological-
model.

(Hyenas) P1(t), and a top-level predator (the black panthers) P2(t). Each of,
I1, I2, P1, and P2 are representing the densities of populations at time (t). Fur-
thermore, all the parameters used are positive and will be described biologically
through Table 1.

Table 1: The inputs of the mathematical model(1).
Parameters

Code in Model (1) Biological Description

r Actual increase average of a mature prey
β Actual increase average of an immature prey
c1,2 Competition average for an immature and mature prey
d1,2 Natural death average for an immature and mature prey
ρ1,2 Predation average for the prey- by a mid- level predator
b1,2 Semi saturation average for a mid- level predator
a1,2 Predation average for the prey- by a top- level predator
c3,4 Competition average between a predators species
d3,4 Death average for a predators after loss prey species
m Refuge average

(1−m) The number of prey exposed to predation by a predators
e1,...,4 Conversion average of a sustenance
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Using the dimensionless variables technique, we have,

t = rT, x =
c1
r
I1, y =

c2
r
I2, z =

ρ1c1
r2

P1 ,and w =
a1(1−m)

r
P2.

A coordination to these assumptions, the model becomes as,

dx

dt
= υ1y − x

(
z

υ2 + x
+ w + (υ3 + υ4) + x

)
= f1(x, y, z, w);x(0) ≥ 0,

dy

dt
= υ5x− y

(
υ6z

υ7 + y
+ υ8w + υ9 + y

)
= f2(x, y, z, w); y(0) ≥ 0,

dz

dt
= z

(
υ10x

υ2 + x
+

υ11y

υ7 + y
− υ12 − υ13w

)
= f3(x, y, z, w); z(0) ≥ 0,(2.2)

dw

dt
= w (υ14x+ υ15y − υ16 − υ17z) = f4(x, y, z, w);w(0) ≥ 0.

Here:
υ1 =

c1
c2
; υ2 =

b1c1
r(1−m) ; υ3 =

β
r ; υ4 =

d1
r ; υ5 =

βc2
rc1

; υ6 =
ρ2c2
ρ1c1

; υ7 =
b2c2

r(1−m) ;

υ8 = a2
a1
; υ9 =

d2
r
; υ10 = e1ρ1

r ; υ11 = e2ρ2
r ; υ12 = d3

r ; υ13 = c2
a1(1−m) ; υ14 =

e3a1(1−m)
c1

; υ15 =
e4a2(1−m)

c2
; υ16 =

d4
r ; υ17 =

rc4
ρ1c1

.

Since these functions are Lipschitzian on R4
+ = {(x, y, z, w) ∈ R4

+ : x(0) ≥
0, y(0) ≥ 0, z(0) ≥ 0 and w(0) ≥ 0}, then the solution of the model (2) exists
and unique.

3. Boundedness

Theorem 1. All the trajectories of model (2), with the initial points in R4
+ are

uniformly bounded. For the proof, we refer the reader to see [12].

4. Existence and stability analysis

The model (2) have at most five- biologically reasonable equilibrium points
Hi = (x, y, z, w), i = 0, ..., 4, which are exist under the conditions established
in [12].

In the following, the stability of model (2) near proper equilibrium points
Hi, i = 0, ..., 4 is discussed in [12].

1. The trivial point H0 = (0, 0, 0, 0), if the following condition hold

(4.1) u5 <
u9(u3 + u4)

u1
.

Then, the trajectories of model (2) tending to the asymptotically stable point
H0.

2. The predators-free point H1 = (x̄, ȳ, 0, 0), if the following conditions hold

u12 + u16 > n3 + n4,(4.2)

n3n4 + u12u16 > u16n3 + u12n4.(4.3)



94R. MUDAR HUSSIEN, K. QAHTAN AL-JUBOURI, N.M. G. AL-SAIDI and F. NAZARIMEHR

Then, the trajectories of model (2) tending to the asymptotically stable point
H1.

3. The mid-level predator-free point H2 = (¯̄x, ¯̄y, 0, ¯̄w), if the following con-
ditions hold

¯̄w > max{Γ1,Γ2},(4.4)

Γ3 > Γ4,(4.5)

Γ5 > Γ6.(4.6)

Then, the trajectories of model(2)tending to the asymptotically stable point H2.
For more details see [12].

4. The top-level predator-free point H3 = (¯̄̄x, ¯̄̄y, ¯̄̄z, 0), if the following condi-
tions hold

¯̄̄z >
u14 ¯̄̄x+ u15 ¯̄̄y

u17
,(4.7)

u12 < c3 < u12 + c1 + c2,(4.8)

((u12 + c1 + c2)− c3)ψ1 > (c3 − (u12 + c1 + c2))ψ2 +Q3.(4.9)

Then, the trajectories of model(2) tending to the asymptotically stable point
H2. For more details see [12].

5. Finally, the coexistence equilibrium point H4 = (x∗, y∗, z∗, w∗), if the
following conditions hold

p212 <
4

9
p11p22,(4.10)

p213 <
4

9
p11p33,(4.11)

p214 <
4

9
p11p44,(4.12)

p223 <
4

9
p22p33,(4.13)

p224 <
4

9
p22p44,(4.14)

p234 >
4

9
p33p44.(4.15)

Then, the trajectories of model(2) tending to the asymptotically stable point
H2. For more details see [12].

5. Numerical simulations

In this section, the quantitative behavior of model (2) is determined based on
Runge-Kutta predictor-corrector method using MATLAB. These simulations
demonstrate the previously obtained theoretical results of stability and equi-
librium of the proposed model given in [12]. Also, the global dynamics and
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persistence have been proven and materialized numerically. As in the Figures
2-9. Furthermore, the effects of changing parameter values of model (2) were
investigated. The proposed system was simulated numerically for the following
parameter values:

υ1 = 0.9, υ2 = 0.4, υ3 = 0.3, υ4 = 0.4, υ5 = 2.5, υ6 = 0.4,

υ7 = 0.6, υ8 = 0.2, υ9 = 0.7, υ10 = 0.9, υ11 = 0.9,(5.1)

υ12 = 0.25, υ13 = 0.09, υ14 = 0.9, υ15 = 1.1, υ16 = 0.04, υ17 = 0.33.

Taking the above data into consideration, the time series of the trajectories of
model (2) are shown in Figure 2.

Figure 2: The time series of system (2), starting with four different ini-
tial points (0.1, 0.3, 0.5, 0.7) , (0.4, 0.5, 0.7, 0.9), (0.8, 0.9, 1.5, 1.5) and
(0.5, 0.7, 0.2, 0.4).
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It illustrates that model (2) has globally asymptotically stable as the solution
of model (2) approaches asymptotically to the positive equilibrium point H4 =
(0.254, 0.714, 0.2, 0.309), which confirmed the obtained analytical results.

Next, we need to analyze the results of the asymptotic stability of points
Hi, i = 0, 1, 2, 3. Some parameter values affect the dynamical behavior of model
(2). At each time, the effect of varying of one parameter while the others are
fixed is discussed. The results are summarized in Table 1.

It can be seen that varying the value of parameters υi, i = 3, 4, 5 does not
affect the dynamic of model(2). Therefore, the solution of the model (2) still
converges to the coexisting (positive) equilibrium point H4 = (x∗, y∗, z∗, w∗).
Figures (3-6) show the time series of model (2) according to different parame-
ters, which converge to the equilibrium points Hi ; for i = 0, 1, 2, 3.

Table 2: The numerical behaviors and persistence of model (2) by changing of
a specific parameter and fixing the other.

Variable parameters in Numerical behavior of Persistence of
model(2) model(2) model(2)

0.01 ⩽ υ1 < 0.9 Converge to stable point H0 = (0, 0, 0, 0) Not Persist
0.9 ⩽ υ1 ⩽ 1 Converge to stable point in Int.R4

+ Persist
υ1 > 1 Converge to stable point in xy − plane Persist

0.3 < υ2 ⩽ 1.1 Converge to stable point in Int.R4
+ Persist

0.01 ⩽ υ5 < 0.6 Converge to stable point H0 = (0, 0, 0, 0) Not Persist
0.6 ⩽ υ5 < 2.5 Converge to stable point in xyw − space Persist
2.5 ⩽ υ5 < 3 Converge to stable point in Int.R4

+ Persist
υ5 ⩾ 3 Converge to periodic dynamics in Int.R4

+ Persist
0.13 < υ7 < 0.6 Converge to periodic dynamics in Int.R4

+ Persist
0.6 ⩽ υ7 < 1 Converge to stable point in Int.R4

+ Persist
0.01 ⩽ υ8 ⩽ 0.35 Converge to stable point in Int.R4

+ Persist
0.3 < υ9 < 0.7 Converge to stable point in xyz − space Persist
0.7 ⩽ υ9 ⩽ 0.95 Converge to stable point in Int.R4

+ Persist
0.8 ⩽ υ10 < 1 Converge to stable point in Int.R4

+ Persist
1 ⩽ υ10 < 2 Converge to stable point in xyz − space Persist
0.9 ⩽ υ11 < 2 Converge to stable point in Int.R4

+ Persist
υ11 ⩾ 2 Converge to periodic dynamics in Int.R4

+ Persist
0.2 < υ12 ⩽ 0.25 Converge to stable point in Int.R4

+ Persist
0.01 ⩽ υ13 ⩽ 0.1 Converge to stable point in Int.R4

+ Persist
0.1 < υ13 ⩽ 0.7 Converge to stable point in xyw − space Persist
0.01 ⩽ υ14 ⩽ 0.9 Converge to stable point in Int.R4

+ Persist
0.3 < υ15 ⩽ 1.1 Converge to stable point in Int.R4

+ Persist
0.035 < υ16 ⩽ 0.5 Converge to stable point in Int.R4

+ Persist
0.5 < υ16 ⩽ 2 Converge to stable point in xyz − space Persist

0.33 ⩽ υ17 < 0.8 Converge to stable point in Int.R4
+ Persist

0.8 ⩽ υ17 ⩽ 2 Converge to stable point in xy − plane Persist
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Figure 3: Time series of the trajectories for the data given in equation (18), with
υ1 = 0.01, which shows that the trajectories converge asymptotically
to the vanishing equilibrium point H0 = (0, 0, 0, 0).

Figure 4: Time series of the trajectories for the data given in equation (18), with
υ17 = 0.8, which shows that the trajectories converge asymptotically
to the predators-free equilibrium point H1 = (0.596, 0.416, 0, 0).

Figure 3 confirms the obtained analytic results regarding the existence of a
locally asymptotically stable trivial equilibrium point H0 = (0, 0, 0, 0), when de-
creasing the intra-specific competition rate between the prey species (immature
and mature prey) relative to the food and a refuge within limits (0.01 ⩽ υ1 <
0.9). Increasing υ1 in the range (0.9 ⩽ υ1 ⩽ 1) and keeping other parameters
constant as equation (18) shows that the solution of model(2) converges asymp-
totically to the positive equilibrium point H4 = (x∗, y∗, z∗, w∗) in Int.R4

+, see
Figure 2. In addition, model (2) converges asymptotically to the predators-free
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Figure 5: Time series of the trajectories for the data given in equation (18),
with υ13 = 0.7, which shows that the trajectories converge asymp-
totically to the mid-level predator-free equilibrium point H2 =
(0.018, 0.212, 0, 0.314).

Figure 6: Time series of the trajectories for the data given in equation (18),
with υ16 = 0.95, which shows that the trajectories converge asymp-
totically to the top-level predator-free equilibrium point H3 =
(0.075, 0.142, 0.898, 0).

point H1 = (x̄, ȳ, 0, 0) when υ1 > 1. In Figure 4, (0.33 ⩽ υ17 < 0.8) repre-
sents the growth rate of the prey populations (immature and mature prey). To
compete the predators for the predation of prey, it will expand, so the solution
of model (2) converges asymptotically to the predators-free equilibrium point
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Figure 7: Time series of the trajectories for the data given in equation (18),
with υ5 = 3, which shows that the trajectories approach the period
dynamics in Int.R4

+.

Figure 8: Time series of the trajectories for the data given in equation (18),
with υ7 = 0.1, which shows that the trajectories approach the period
dynamics in Int.R4

+.

H1 = (0.596, 0.416, 0, 0). Decreasing the range (0.33 ⩽ υ17 < 0.8), lead to ap-
proaching the positive equilibrium point H4 = (x∗, y∗, z∗, w∗) in Int.R4

+. For
the constant parameters of equation (18), with (0.1 < υ13 ⩽ 0.7), which rep-
resents the inter-specific competition rate between the predators species (Top
and mid-level predators) relative to the food and existence, the solution of
model (2) converges asymptotically to the mid-level predator-free equilibrium
point H2 = (0.018, 0.212, 0, 0.314) as shown in Figure 5, while it approaches
asymptotically to the positive equilibrium point H4 = (x∗, y∗, z∗, w∗) when
(0.01 ⩽ υ13 ⩽ 0.1) as shown in Figure 2. When the natural death rate for
the top-level predator population relative to their growth rate is in the range
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Figure 9: Time series of the trajectories for the data given in equation (18),
with υ11 = 2, which shows that the trajectories approach the period
dynamics in Int.R4

+.

(0.5 < υ16 ⩽ 2), the solution of model (2) converges asymptotically to the top-
level hunter-free equilibrium point H3 = (0.075, 0.142, 0.898, 0) as shown in Fig-
ure 6. But, it still approaches to positive equilibrium point H4 = (x∗, y∗, z∗, w∗)
in (0.035 < u16 ⩽ 0.5).

Numerical simulations of model(2) shows that the model has periodic dy-
namics, as presented in Figures (7-9). For constant parameters of equation
(18), Figure 7 shows that the solution curves of model (2) approach to periodic
dynamics in Int.R4

+, when (υ5 ⩾ 3), which represents the growing rate for im-
mature prey relative to compete the prey population for existence. Reducing
the half-saturation constant for mid-level predator relative to compete the ma-
ture prey population to refuge within the limits (0.13 < υ7 < 0.6) which causes
an approaching to periodic dynamics in Int.R4

+, see Figure 8. Expansion the
predation rate, the mid-level predator for the mature prey population relative
to their growth rate within limits (υ11 ⩾ 2) leads to approaching the periodic
dynamics in Int.R4

+, as shown in Figure 9. Otherwise, model (2) still has a
globally asymptotically stable positive equilibrium point.

6. Discussion and conclusions

This study aims to analyze a mathematical model (2) describing a food web-
model with ecological reactions that occur between different species. We used
computational algorithms, through which, the nature of the relationship of these
organisms to the external environment and its direct impact on maintaining
the balance of nature has been known to them through computer simulation.
Initially, the effects of the variation of each parameter on the proposed model
are studied and analyzed numerically. This can be summarize as follows:
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1. Consider that the parameters’ values in equation (18) are fixed, then the
time series of the trajectories of model (2) converges to a globally asymp-
totically stable positive equilibrium point H4 = (0.254, 0.714, 0.2, 0.309),
this can be seen obviously in Figure 2.

2. The trajectories of model (2) again converges to the positive equilibrium
point H4 = (x∗, y∗, z∗, w∗), when changing the parameters values υi, i =
3, 4, 5, because it does not affect the nature of the dynamic behavior of
model(2).

3. The trajectories of model (2) converges to the trivial equilibrium point
H0 = (0, 0, 0, 0), when decreasing the intra-specific competition rate be-
tween the prey species (immature and mature prey) are relative to the food
and refuge within the limits (0.01 ⩽ υ1 < 0.9), as shown in Figure 3. Oth-
erwise, it converges to the positive equilibrium point H4 = (x∗, y∗, z∗, w∗).

4. The trajectories of model (2) converges to the predators-free equilibrium
pointH1 = (0.596, 0.416, 0, 0), when expanding the growth rate of the prey
species (immature and mature prey) within the limits (0.33 ⩽ υ17 < 0.8),
as shown in Figure 4. Otherwise, it converges to the positive equilibrium
point H4 = (x∗, y∗, z∗, w∗).

5. The trajectories of model (2) converges to the mid-level predator-free equi-
librium point H2 = (0.018, 0.212, 0, 0.314), when the inter-specific compe-
tition rate between the predators species (Top and mid-level predators)
are relative to the food and existence within the limits (0.1 < υ13 ⩽ 0.7),
as shown in Figure 5. Otherwise, it converges to the positive equilibrium
point H4 = (x∗, y∗, z∗, w∗).

6. The trajectories of model (2) converges to the top-level predator-free equi-
librium point H3 = (0.075, 0.142, 0.898, 0), when the natural death rate
for the top-level predator population is relative to their growth rate in the
range (0.5 < υ16 ⩽ 2), as shown in Figure 6. Otherwise, it converges to
the positive equilibrium point H4 = (x∗, y∗, z∗, w∗).

Moreover, the computer simulations of food web-model (2) showed us that
model (2) possesses periodic dynamic behavior, this can be seen obviously
in Figures (7-9). For more details see Table 2.

However, from these numerical analyses and results discussion, we conclude
that the global stability of such complex ecological model that includes inter-
actions and occur in different organisms is demonstrated. Moreover, such envi-
ronmental, which has many conflicting can coexist within a common environ-
ment. Besides, the numerical experiments give a guarantee that a balance can
be reached and the organisms can overcomes the danger of extinction.
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