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Convergence of a modified PRP conjugate gradient method
with a new formula of step-size
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Abstract. We present in this paper the global convergence of a modified PRP (Polak-
Ribière-Polyak) conjugate gradient method suggested by Min and Jing [11], by using
a new formula of step-size that combination by Wu [14], and by Sun and colleagues
[3, 12]. Some numerical results are also presented.

Keywords: conjugate gradient methods, global convergence, PRP method, step-size,
line search.

1. Introduction

Let us consider the following unconstrained minimization problem: f (x) , x ∈
Rn, where f is a differentiable objective function, has the following form

(1.1) xk+1 = xk + αkdk,

(1.2) where dk =

{
−gk, for k = 1,

−gk + βkdk−1, for k ≥ 2,

where gk = ∇f(xk) is the gradient of f at xk.
Motivated by the ideas of Wei and al. [14] and Dai and Wen [5], which

spured Min and Jing [11] construct two modified PRP methods, in which the
parameter βk is specified as follows:

(1.3) βMPRP
k =

gTk yk−1

µ|gTk dk−1|+ ∥gk−1∥2
,
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where ∥.∥ means the Euclidean norm, yk−1 = gk−gk−1, and µ ≥ 0 is a constant.
Let us remark that the descent direction dk is defined by

(1.4) gTk dk = −c ∥gk∥2 ,

where 0 < c < 1.

The global convergence properties of conjugate gradient method have been
studied by many researchers [2-9].

In the implementation of any conjugate gradient (CG) method, the step-size
is often determined by certain line search conditions such as the Wolfe conditions
[13]. These types of line search involve extensive computation of function values
and gradients, which often becomes a significant burden for large-scale problems,
which spured Sun [12], and Wu [14] to pursue the conjugate gradient method
where they calculated the step-size instead of the line search. The new formula
for step-size αk in the form

(1.5) αk =
−δgTk dk

(ḡk+1 − gk)Tdk + γ ∥dk∥2
,

where

(1.6) δ ∈ (0, (κ+ γ)/τ), γ ≥ 0,

τ and κ confirm the Assumption 2.1 below, ḡk+1 denote ▽f(xk + dk).

In this paper, our goal is to employ the step-formula (1.5) to prove the
convergence of a modified PRP conjugate gradient method.

This paper is organized as follows. Some preliminary results on the family
of CG methods with the new-form step-size formula (1.5) are given in Section
2. Section 3 includes the main convergence properties of the modified PRP
conjugate gradient method.

2. Properties of the new step-size

The present section gathers technical results concerning the step-size αk gener-
ated by (1.5).

Assumption 2.1. The function f is LC1 and strongly convex in Rn, i.e, there
exists constants τ > 0 and κ ≥ 0 such that

(2.1) ∥▽f(u)−▽f(v)∥ ≤ τ ∥u− v∥ ,∀u, v ∈ Rn,

and

(2.2) [▽f(u)−▽f(v)]T (u− v) ≥ κ ∥u− v∥2 ,∀u, v ∈ Rn.

Note that Assumption 2.1 implies that the level set L = {x ∈ Rn|f(x) ≤ f(x1)}
is bounded.
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Lemma 2.2 Suppose that Assumption 2.1 holds. Then the following inequalities

(2.3) κ ∥sk∥2 ≤ yTk sk ≤ τ ∥sk∥2 ,

where sk = xk+1 − xk, yk = gk+1 − gk and

(2.4) (κ+ γ) ∥dk∥2 ≤ (ḡk+1 − gk)
Tdk + γ ∥dk∥2 ≤ (τ + γ) ∥dk∥2 ,

hold for all k.

Proof. It is straightforward from (2.1) and (2.2) that (2.3) holds. Now, we
prove (2.4) is true

(ḡk+1 − gk)
Tdk + γ ∥dk∥2 ≤ ∥ḡk+1 − gk∥ ∥dk∥+ γ ∥dk∥2

≤ (τ + γ) ∥dk∥2 .(2.5)

Then, by (2.2), we have

(2.6) (ḡk+1 − gk)
Tdk + γ ∥dk∥2 ≥ κ ∥dk∥2 + γ ∥dk∥2 ≥ (κ+ γ) ∥dk∥2 .

Hence, it follows from (2.5) and (2.6) that (2.4) hold for all k.

Lemma 2.3. Suppose that xk is given by (1.1), (1.2) and (1.5). Then

(2.7) gTk+1dk = ρkg
T
k dk,

holds for all k, where 0 < ρk = 1− δΦk ∥dk∥2 /[(ḡk+1 − gk)
Tdk + γ ∥dk∥2],

and

(2.8) Φk =

{
0, for αk = 0,

(gk+1 − gk)
T (xk+1 − xk)/ ∥xk+1 − xk∥2 , for αk ̸= 0.

Proof. If αk = 0, then ρk = 1 and xk+1 = xk. Thus, (2.7) is true.
Now, we suppose that αk ̸= 0. From (2.8) and (2.6), we have

gTk+1dk = gTk dk + (gk+1 − gk)
Tdk

= gTk dk + α−1
k (gk+1 − gk)

T (xk+1 − xk)

= gTk dk + α−1
k Φk ∥xk+1 − xk∥2

= gTk dk + αkΦk ∥dk∥2

= gTk dk − {δgTk dk/[(ḡk+1 − gk)
Tdk + γ ∥dk∥2]}Φk ∥dk∥2

= {1− δΦk ∥dk∥2 /[(ḡk+1 − gk)
Tdk + γ ∥dk∥2]}gTk dk

= ρkg
T
k dk.

The proof is complete.
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Corollary 2.4. Suppose that Assumption 2.1 holds. Then

δκ

τ + γ
≤ 1− ρk ≤ δτ

κ+ γ
,(2.9)

holds for all k.

Proof. It follows From (2.3) and (2.4), we obtain (2.9).

Lemma 2.5. Suppose that Assumption 2.1 holds and {xk} is generated by
(1.1), (1.2) and (1.5). Then

(2.10)
∑
dk ̸=0

(gTk dk)
2

∥dk∥2
<∞.

Proof. By the mean-value theorem, we have

(2.11) f(xk+1)− f(xk) = ḡT (xk+1 − xk),

where ḡ = ▽f(x̄) for some x̄ ∈ [xk,xk+1]. Now, by the Cauchy-Schwartz in-
equality, (1.5), and Assumption 2.1 we obtain

ḡT (xk+1 − xk) = gTk (xk+1 − xk) + (ḡ − gk)
T (xk+1 − xk)

≤ gTk (xk+1 − xk) + ∥ḡ − gk∥ ∥xk+1 − xk∥
≤ gTk (xk+1 − xk) + τ ∥xk+1 − xk∥2

= αkg
T
k dk + τα2

k ∥dk∥
2

= αkg
T
k dk − ταkδg

T
k dk ∥dk∥

2 /[(ḡk+1 − gk)
Tdk + γ ∥dk∥2]

= αkg
T
k dk(1−

τδ ∥dk∥2

(ḡk+1 − gk)Tdk + γ ∥dk∥2
).(2.12)

By from (2.4) and (2.12), we obtain

αkg
T
k dk = − δ

(ḡk+1 − gk)Tdk + γ ∥dk∥2
(gTk dk)

2

≤ − δ

(τ + γ)

(gTk dk)
2

∥dk∥2
,(2.13)

by (2.12) and (1.6), we have

(2.14) 1− τδ ∥dk∥2

(ḡk+1 − gk)Tdk + γ ∥dk∥2
≥ 1− τδ

κ+ γ
> 0.

From (2.13) and (2.14), it follows that

(2.15) Ω =
δ

τ + γ
(1− τδ

κ+ γ
) > 0.
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From (2.11) we have,

(2.16) f(xk+1)− f(xk) ≤ −Ω
(gTk dk)

2

∥dk∥2
≤ 0,

which implies f(xk+1) ≤ f(xk). Hence, it follows from (2.16) that (2.10) is true.
The proof is complete.

Lemma 2.6. Suppose that Assumption 2.1 holds, then we have

(2.17)
∑
k

α2
k ∥dk∥

2 <∞.

Proof. By (1.5) and (2.4) we have∑
k

α2
k ∥dk∥

2 =
∑
k

(δgTk dk)
2

[(ḡk+1 − gk)Tdk + ∥dk∥2]2
∥dk∥2

≤ (
δ

κ+ γ
)2

∑
dk ̸=0

(gTk dk)
2

∥dk∥2
<∞.(2.18)

The proof is complete.

3. Global convergence of the modified PRP method

In this section, we discuss the convergence properties of a modified PRP method
conjugate gradient method, in which βMPRP

k is given by (1.3).
We give the following algorithm firstly.

Algorithm 3.1
Step 0: Given x1 ∈ Rn, set d1 = −g1, k = 1.
Step 1: If ∥gk∥ = 0 then stop else go to Step 2.
Step 2: Set xk+1 = xk + αkdk where dk is defined by (1.2), and αk is defined
by (1.5).
Step 3: Compute βMPRP

k+1 using formula (1.3).
Step 4: Set k := k + 1, go to Step 1.

In 1992, Gilbert and Nocedal introduced the property (*) which plays an
important role in the studies of CG methods. This property means that the
next research direction approaches the steepest direction automatically when a
small step-size is generated, and the step-sizes are not produced successively [15].

Property (*). Consider a CG method of the form (1.1) and (1.2). Suppose
that, for all k,

(3.1) 0 < r ≤ ∥gk∥ ≤ r̄,
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where r and r̄ are two constants. If there exist b > 1 and λ > 0 such that for
all k,

(3.2) |βMPRP
k | ≤ b,

and

(3.3) ∥sk∥ ≤ λ =⇒ |βMPRP
k | ≤ 1

2b
,

where sk−1 = αk−1dk−1 .
The following Lemma shows that the MPRP method has Property (*).

Lemma 3.2. Consider the method of form (1.1) and (1.2). Suppose that
Assumption 2.1 hold, then, the method βMPRP

k has Property (∗).

Proof. Consider any constant r and r̄ which satisfy (3.1).

Let b =
2r̄2

r2
> 1, λ =

r4

4τ r̄3
. By (1.3) we have

(3.4) |βMPRP
k | ≤ |

gTk yk−1

µ|gTk dk−1|+ ∥gk−1∥2
| ≤ ∥gk∥2 + ∥gk∥ ∥gk−1∥

∥gk−1∥2
≤ 2r̄2

r2
= b.

From (2.1), holds. If then

(3.5) |βMPRP
k | ≤ ∥gk∥ ∥gk − gk−1∥

∥gk−1∥2
≤ τ ∥sk−1∥ ∥gk∥

∥gk−1∥
≤ τλr̄

r2
=

1

2b
.

The proof is finished.

Theorem 3.3. Under Assumption 2.1, the method defined by (1.1), (1.2), (1.5)
and (1.3) will generate a sequence {xk} such that limk−→∞ inf ∥gk∥ = 0.

Proof. Suppose on the contrary that ∥gk∥ ≥ ψ, for all k.
Since L is bounded, both {xk} and {gk} are bounded. By using

(3.6) ∥dk∥ ≤ ∥gk∥+ |βMPRP
k | ∥dk−1∥ ,

one can show that {∥dk∥} is uniformly bounded. Definition (1.2) implies the
following relation

|gTk dk| = |gTk (−gk + βMPRP
k dk−1)|(3.7)

≥ ∥gk∥2 − |βMPRP
k | ∥gk∥ ∥dk−1∥ .(3.8)

From (1.3) and using the Cauchy-Schwarz inequality, we have

(3.9) |βMPRP
k | = |

gTk (gk − gk−1)

µ|gTk dk−1|+ ∥gk−1∥2
|.
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From (2.1) and (2.18) we have

∥gk − gk−1∥ ≤ ταk−1 ∥dk−1∥

≤ (
τδ

κ+ γ
)
|gTk−1dk−1|
∥dk−1∥

≤
|gTk−1dk−1|
∥dk−1∥

.(3.10)

From (1.4), (2.7) we have

(3.11) µ|gTk dk−1|+ ∥gk−1∥2 = (µρk−1 +
1

c
)|gTk−1dk−1| = m|gTk−1dk−1|, (m > 1).

By (3.9), (3.10), and (3.11) we have

|βMPRP
k | ∥dk−1∥ ≤ ∥gk∥

m
.(3.12)

Hence by substituting (3.12) in (3.8), we have

(3.13) |gTk dk| ≥ A ∥gk∥2 , A =
m− 1

m
,

for large k. Thus we have

(3.14)
(gTk dk)

2

∥dk∥2 ∥gk∥2
≥ A2 ∥gk∥

2

∥dk∥2
.

Since ∥gk∥ ≥ ψ and ∥dk∥ is bounded above, we conclude that there is ε > 0 such

that
(gTk dk)

2

∥dk∥2 ∥gk∥2
≥ ε, which implies

∑
dk ̸=0

(gTk dk)
2

∥dk∥2
= ∞.

This is a contradiction to Lemma 2.5.

4. Numerical experiments and discussions

In this part, we present the numerical experiments of the new formula (1.5) and
apply it using (1.3), computer
(Processor: Intel(R)core(TM)i3-3110M cpu@2.40GHZ, Ram 4.00 GB) through
the Matlab programme.
10 testing problems have been taken from [1].

This will lead us to test for the global convergence properties of our method.
Stopping criteria is set to ∥gk∥ ≤ ε where ε = 10−6. Taking into consideration
the following parameters: γ = 1.5 and µ = 0.5.

Table 1 list numerical results. The meaning of each column is as follows:
“Problem ”the name of the test problem, “δ”, “Xzero”, “k ”the number of
iterations, “Time”, “Xoptimal”.

The following results showed the effectiveness of the proposed method.
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Table 1

Problem δ Xzero k Time Xopimal

1 Booth 1 (1 1) 46 0.118 (1.0 3.0)
2 Branin 1.5 (1 1) 54 0.113 (3.1416 2.275)
3 Sphere 1 (-1 1) 64 0.015 ( -0.230 -0.230)
4 Exponential 1 (-1 1) 59 0.082 (-0.6406 -0.6406)
5 Himmelblau 2 (1 1) 258 0.084 ( 0.6403 -0.6403)
6 Matyas 1 (-1 1) 34 0.047 ( 0.6403 -0.6403)
7 McCormick 1 (-1 1) 36 0.048 (-0.5472 -1.5472)
8 Rosenbrock 0.4 (1 1) 4999 0.735 ( 0.4198 1.9116)
9 SIX-HUMP CAMEL 2 (1 1) 15 0.031 ( -0.0898 0.7127)
10 THREE-HUMP CAMEL 1.5 (1 1) 46 0.1180 ( 0.2665 -0.2935)
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