Convergence of a modified PRP conjugate gradient method with a new formula of step-size

Khelifa Bouaziz*
Department of Science and Technology
Larbi Tebessi University
Tebessa
Algeria
khalifa.bouaziz@univ-tebessa.dz
Tahar Bachawat
Mohamed cherif Messaadia University
Souk-Ahras
Algeria
t.bechouat@gmail.com

Abstract

We present in this paper the global convergence of a modified PRP (Polak-Ribière-Polyak) conjugate gradient method suggested by Min and Jing [11], by using a new formula of step-size that combination by Wu [14], and by Sun and colleagues [3, 12]. Some numerical results are also presented. Keywords: conjugate gradient methods, global convergence, PRP method, step-size, line search.

1. Introduction

Let us consider the following unconstrained minimization problem: $f(x), x \in$ R^{n}, where f is a differentiable objective function, has the following form

$$
\begin{gather*}
x_{k+1}=x_{k}+\alpha_{k} d_{k}, \tag{1.1}\\
\text { where } d_{k}= \begin{cases}-g_{k}, & \text { for } k=1 \\
-g_{k}+\beta_{k} d_{k-1}, & \text { for } k \geq 2\end{cases}
\end{gather*}
$$

where $g_{k}=\nabla f\left(x_{k}\right)$ is the gradient of f at x_{k}.
Motivated by the ideas of Wei and al. [14] and Dai and Wen [5], which spured Min and Jing [11] construct two modified PRP methods, in which the parameter β_{k} is specified as follows:

$$
\begin{equation*}
\beta_{k}^{M P R P}=\frac{g_{k}^{T} y_{k-1}}{\mu\left|g_{k}^{T} d_{k-1}\right|+\left\|g_{k-1}\right\|^{2}}, \tag{1.3}
\end{equation*}
$$

*. Corresponding author
where $\|$.$\| means the Euclidean norm, y_{k-1}=g_{k}-g_{k-1}$, and $\mu \geq 0$ is a constant. Let us remark that the descent direction d_{k} is defined by

$$
\begin{equation*}
g_{k}^{T} d_{k}=-c\left\|g_{k}\right\|^{2} \tag{1.4}
\end{equation*}
$$

where $0<c<1$.
The global convergence properties of conjugate gradient method have been studied by many researchers [2-9].

In the implementation of any conjugate gradient (CG) method, the step-size is often determined by certain line search conditions such as the Wolfe conditions [13]. These types of line search involve extensive computation of function values and gradients, which often becomes a significant burden for large-scale problems, which spured Sun [12], and Wu [14] to pursue the conjugate gradient method where they calculated the step-size instead of the line search. The new formula for step-size α_{k} in the form

$$
\begin{equation*}
\alpha_{k}=\frac{-\delta g_{k}^{T} d_{k}}{\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2}}, \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \in(0,(\kappa+\gamma) / \tau), \gamma \geq 0, \tag{1.6}
\end{equation*}
$$

τ and κ confirm the Assumption 2.1 below, \bar{g}_{k+1} denote $\nabla f\left(x_{k}+d_{k}\right)$.
In this paper, our goal is to employ the step-formula (1.5) to prove the convergence of a modified PRP conjugate gradient method.

This paper is organized as follows. Some preliminary results on the family of CG methods with the new-form step-size formula (1.5) are given in Section 2. Section 3 includes the main convergence properties of the modified PRP conjugate gradient method.

2. Properties of the new step-size

The present section gathers technical results concerning the step-size α_{k} generated by (1.5).
Assumption 2.1. The function f is $L C^{1}$ and strongly convex in R^{n}, i.e, there exists constants $\tau>0$ and $\kappa \geq 0$ such that

$$
\begin{equation*}
\|\nabla f(u)-\nabla f(v)\| \leq \tau\|u-v\|, \forall u, v \in R^{n} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
[\nabla f(u)-\nabla f(v)]^{T}(u-v) \geq \kappa\|u-v\|^{2}, \forall u, v \in R^{n} \tag{2.2}
\end{equation*}
$$

Note that Assumption 2.1 implies that the level set $L=\left\{x \in R^{n} \mid f(x) \leq f\left(x_{1}\right)\right\}$ is bounded.

Lemma 2.2 Suppose that Assumption 2.1 holds. Then the following inequalities

$$
\begin{equation*}
\kappa\left\|s_{k}\right\|^{2} \leq y_{k}^{T} s_{k} \leq \tau\left\|s_{k}\right\|^{2}, \tag{2.3}
\end{equation*}
$$

where $s_{k}=x_{k+1}-x_{k}, y_{k}=g_{k+1}-g_{k}$ and

$$
\begin{equation*}
(\kappa+\gamma)\left\|d_{k}\right\|^{2} \leq\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2} \leq(\tau+\gamma)\left\|d_{k}\right\|^{2}, \tag{2.4}
\end{equation*}
$$

hold for all k.
Proof. It is straightforward from (2.1) and (2.2) that (2.3) holds. Now, we prove (2.4) is true

$$
\begin{align*}
\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2} & \leq\left\|\bar{g}_{k+1}-g_{k}\right\|\left\|d_{k}\right\|+\gamma\left\|d_{k}\right\|^{2} \\
& \leq(\tau+\gamma)\left\|d_{k}\right\|^{2} \tag{2.5}
\end{align*}
$$

Then, by (2.2), we have

$$
\begin{equation*}
\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2} \geq \kappa\left\|d_{k}\right\|^{2}+\gamma\left\|d_{k}\right\|^{2} \geq(\kappa+\gamma)\left\|d_{k}\right\|^{2} . \tag{2.6}
\end{equation*}
$$

Hence, it follows from (2.5) and (2.6) that (2.4) hold for all k.

Lemma 2.3. Suppose that x_{k} is given by (1.1), (1.2) and (1.5). Then

$$
\begin{equation*}
g_{k+1}^{T} d_{k}=\rho_{k} g_{k}^{T} d_{k} \tag{2.7}
\end{equation*}
$$

holds for all k, where $0<\rho_{k}=1-\delta \Phi_{k}\left\|d_{k}\right\|^{2} /\left[\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2}\right]$, and

$$
\Phi_{k}= \begin{cases}0, & \text { for } \alpha_{k}=0 \tag{2.8}\\ \left(g_{k+1}-g_{k}\right)^{T}\left(x_{k+1}-x_{k}\right) /\left\|x_{k+1}-x_{k}\right\|^{2}, & \text { for } \alpha_{k} \neq 0\end{cases}
$$

Proof. If $\alpha_{k}=0$, then $\rho_{k}=1$ and $x_{k+1}=x_{k}$. Thus, (2.7) is true.
Now, we suppose that $\alpha_{k} \neq 0$. From (2.8) and (2.6), we have

$$
\begin{aligned}
g_{k+1}^{T} d_{k} & =g_{k}^{T} d_{k}+\left(g_{k+1}-g_{k}\right)^{T} d_{k} \\
& =g_{k}^{T} d_{k}+\alpha_{k}^{-1}\left(g_{k+1}-g_{k}\right)^{T}\left(x_{k+1}-x_{k}\right) \\
& =g_{k}^{T} d_{k}+\alpha_{k}^{-1} \Phi_{k}\left\|x_{k+1}-x_{k}\right\|^{2} \\
& =g_{k}^{T} d_{k}+\alpha_{k} \Phi_{k}\left\|d_{k}\right\|^{2} \\
& =g_{k}^{T} d_{k}-\left\{\delta g_{k}^{T} d_{k} /\left[\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2}\right]\right\} \Phi_{k}\left\|d_{k}\right\|^{2} \\
& =\left\{1-\delta \Phi_{k}\left\|d_{k}\right\|^{2} /\left[\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2}\right]\right\} g_{k}^{T} d_{k} \\
& =\rho_{k} g_{k}^{T} d_{k} .
\end{aligned}
$$

The proof is complete.

Corollary 2.4. Suppose that Assumption 2.1 holds. Then

$$
\begin{equation*}
\frac{\delta \kappa}{\tau+\gamma} \leq 1-\rho_{k} \leq \frac{\delta \tau}{\kappa+\gamma} \tag{2.9}
\end{equation*}
$$

holds for all k.
Proof. It follows From (2.3) and (2.4), we obtain (2.9).
Lemma 2.5. Suppose that Assumption 2.1 holds and $\left\{x_{k}\right\}$ is generated by (1.1), (1.2) and (1.5). Then

$$
\begin{equation*}
\sum_{d_{k} \neq 0} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}<\infty \tag{2.10}
\end{equation*}
$$

Proof. By the mean-value theorem, we have

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x_{k}\right)=\bar{g}^{T}\left(x_{k+1}-x_{k}\right), \tag{2.11}
\end{equation*}
$$

where $\bar{g}=\nabla f(\bar{x})$ for some $\bar{x} \in\left[x_{k}, x_{k+1}\right]$. Now, by the Cauchy-Schwartz inequality, (1.5), and Assumption 2.1 we obtain

$$
\begin{align*}
\bar{g}^{T}\left(x_{k+1}-x_{k}\right) & =g_{k}^{T}\left(x_{k+1}-x_{k}\right)+\left(\bar{g}-g_{k}\right)^{T}\left(x_{k+1}-x_{k}\right) \\
& \leq g_{k}^{T}\left(x_{k+1}-x_{k}\right)+\left\|\bar{g}-g_{k}\right\|\left\|x_{k+1}-x_{k}\right\| \\
& \leq g_{k}^{T}\left(x_{k+1}-x_{k}\right)+\tau\left\|x_{k+1}-x_{k}\right\|^{2} \\
& =\alpha_{k} g_{k}^{T} d_{k}+\tau \alpha_{k}^{2}\left\|d_{k}\right\|^{2} \\
& =\alpha_{k} g_{k}^{T} d_{k}-\tau \alpha_{k} \delta g_{k}^{T} d_{k}\left\|d_{k}\right\|^{2} /\left[\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2}\right] \\
& =\alpha_{k} g_{k}^{T} d_{k}\left(1-\frac{\tau \delta\left\|d_{k}\right\|^{2}}{\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2}}\right) . \tag{2.12}
\end{align*}
$$

$$
\begin{align*}
\alpha_{k} g_{k}^{T} d_{k} & =-\frac{\delta}{\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2}}\left(g_{k}^{T} d_{k}\right)^{2} \\
& \leq-\frac{\delta}{(\tau+\gamma)} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}, \tag{2.13}
\end{align*}
$$

by (2.12) and (1.6), we have

$$
\begin{equation*}
1-\frac{\tau \delta\left\|d_{k}\right\|^{2}}{\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\gamma\left\|d_{k}\right\|^{2}} \geq 1-\frac{\tau \delta}{\kappa+\gamma}>0 \tag{2.14}
\end{equation*}
$$

From (2.13) and (2.14), it follows that

$$
\begin{equation*}
\Omega=\frac{\delta}{\tau+\gamma}\left(1-\frac{\tau \delta}{\kappa+\gamma}\right)>0 . \tag{2.15}
\end{equation*}
$$

From (2.11) we have,

$$
\begin{equation*}
f\left(x_{k+1}\right)-f\left(x_{k}\right) \leq-\Omega \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}} \leq 0 \tag{2.16}
\end{equation*}
$$

which implies $f\left(x_{k+1}\right) \leq f\left(x_{k}\right)$. Hence, it follows from (2.16) that (2.10) is true. The proof is complete.

Lemma 2.6. Suppose that Assumption 2.1 holds, then we have

$$
\begin{equation*}
\sum_{k} \alpha_{k}^{2}\left\|d_{k}\right\|^{2}<\infty \tag{2.17}
\end{equation*}
$$

Proof. By (1.5) and (2.4) we have

$$
\begin{align*}
\sum_{k} \alpha_{k}^{2}\left\|d_{k}\right\|^{2} & =\sum_{k} \frac{\left(\delta g_{k}^{T} d_{k}\right)^{2}}{\left[\left(\bar{g}_{k+1}-g_{k}\right)^{T} d_{k}+\left\|d_{k}\right\|^{2}\right]^{2}}\left\|d_{k}\right\|^{2} \\
& \leq\left(\frac{\delta}{\kappa+\gamma}\right)^{2} \sum_{d_{k} \neq 0} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}<\infty \tag{2.18}
\end{align*}
$$

The proof is complete.

3. Global convergence of the modified PRP method

In this section, we discuss the convergence properties of a modified PRP method conjugate gradient method, in which $\beta_{k}^{M P R P}$ is given by (1.3).

We give the following algorithm firstly.

Algorithm 3.1

Step 0: Given $x_{1} \in R^{n}$, set $d_{1}=-g_{1}, k=1$.
Step 1: If $\left\|g_{k}\right\|=0$ then stop else go to Step 2.
Step 2: Set $x_{k+1}=x_{k}+\alpha_{k} d_{k}$ where d_{k} is defined by (1.2), and α_{k} is defined by (1.5).
Step 3: Compute $\beta_{k+1}^{M P R P}$ using formula (1.3).
Step 4: Set $k:=k+1$, go to Step 1 .
In 1992, Gilbert and Nocedal introduced the property $\left(^{*}\right)$ which plays an important role in the studies of CG methods. This property means that the next research direction approaches the steepest direction automatically when a small step-size is generated, and the step-sizes are not produced successively [15].

Property (*). Consider a CG method of the form (1.1) and (1.2). Suppose that, for all k,

$$
\begin{equation*}
0<r \leq\left\|g_{k}\right\| \leq \bar{r} \tag{3.1}
\end{equation*}
$$

where r and \bar{r} are two constants. If there exist $b>1$ and $\lambda>0$ such that for all k,

$$
\begin{equation*}
\left|\beta_{k}^{M P R P}\right| \leq b \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|s_{k}\right\| \leq \lambda \Longrightarrow\left|\beta_{k}^{M P R P}\right| \leq \frac{1}{2 b} \tag{3.3}
\end{equation*}
$$

where $s_{k-1}=\alpha_{k-1} d_{k-1}$.
The following Lemma shows that the MPRP method has Property (*).
Lemma 3.2. Consider the method of form (1.1) and (1.2). Suppose that Assumption 2.1 hold, then, the method $\beta_{k}^{M P R P}$ has Property ($*$).

Proof. Consider any constant r and \bar{r} which satisfy (3.1).
Let $b=\frac{2 \bar{r}^{2}}{r^{2}}>1, \lambda=\frac{r^{4}}{4 \tau \bar{r}^{3}}$. By (1.3) we have

$$
\begin{equation*}
\left|\beta_{k}^{M P R P}\right| \leq\left|\frac{g_{k}^{T} y_{k-1}}{\mu\left|g_{k}^{T} d_{k-1}\right|+\left\|g_{k-1}\right\|^{2}}\right| \leq \frac{\left\|g_{k}\right\|^{2}+\left\|g_{k}\right\|\left\|g_{k-1}\right\|}{\left\|g_{k-1}\right\|^{2}} \leq \frac{2 \bar{r}^{2}}{r^{2}}=b \tag{3.4}
\end{equation*}
$$

From (2.1), holds. If then

$$
\begin{equation*}
\left|\beta_{k}^{M P R P}\right| \leq \frac{\left\|g_{k}\right\|\left\|g_{k}-g_{k-1}\right\|}{\left\|g_{k-1}\right\|^{2}} \leq \frac{\tau\left\|s_{k-1}\right\|\left\|g_{k}\right\|}{\left\|g_{k-1}\right\|} \leq \frac{\tau \lambda \bar{r}}{r^{2}}=\frac{1}{2 b} \tag{3.5}
\end{equation*}
$$

The proof is finished.

Theorem 3.3. Under Assumption 2.1, the method defined by (1.1), (1.2), (1.5) and (1.3) will generate a sequence $\left\{x_{k}\right\}$ such that $\lim _{k \rightarrow \infty} \inf \left\|g_{k}\right\|=0$.

Proof. Suppose on the contrary that $\left\|g_{k}\right\| \geq \psi$, for all k.
Since L is bounded, both $\left\{x_{k}\right\}$ and $\left\{g_{k}\right\}$ are bounded. By using

$$
\begin{equation*}
\left\|d_{k}\right\| \leq\left\|g_{k}\right\|+\left|\beta_{k}^{M P R P}\right|\left\|d_{k-1}\right\| \tag{3.6}
\end{equation*}
$$

one can show that $\left\{\left\|d_{k}\right\|\right\}$ is uniformly bounded. Definition (1.2) implies the following relation

$$
\begin{align*}
\left|g_{k}^{T} d_{k}\right| & =\left|g_{k}^{T}\left(-g_{k}+\beta_{k}^{M P R P} d_{k-1}\right)\right| \tag{3.7}\\
& \geq\left\|g_{k}\right\|^{2}-\left|\beta_{k}^{M P R P}\right|\left\|g_{k}\right\|\left\|d_{k-1}\right\| . \tag{3.8}
\end{align*}
$$

From (1.3) and using the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\left|\beta_{k}^{M P R P}\right|=\left|\frac{g_{k}^{T}\left(g_{k}-g_{k-1}\right)}{\mu\left|g_{k}^{T} d_{k-1}\right|+\left\|g_{k-1}\right\|^{2}}\right| . \tag{3.9}
\end{equation*}
$$

From (2.1) and (2.18) we have

$$
\begin{align*}
\left\|g_{k}-g_{k-1}\right\| & \leq \tau \alpha_{k-1}\left\|d_{k-1}\right\| \\
& \leq\left(\frac{\tau \delta}{\kappa+\gamma}\right) \frac{\left|g_{k-1}^{T} d_{k-1}\right|}{\left\|d_{k-1}\right\|} \leq \frac{\left|g_{k-1}^{T} d_{k-1}\right|}{\left\|d_{k-1}\right\|} . \tag{3.10}
\end{align*}
$$

From (1.4), (2.7) we have

$$
\begin{equation*}
\mu\left|g_{k}^{T} d_{k-1}\right|+\left\|g_{k-1}\right\|^{2}=\left(\mu \rho_{k-1}+\frac{1}{c}\right)\left|g_{k-1}^{T} d_{k-1}\right|=m\left|g_{k-1}^{T} d_{k-1}\right|,(m>1) . \tag{3.11}
\end{equation*}
$$

By (3.9), (3.10), and (3.11) we have

$$
\begin{equation*}
\left|\beta_{k}^{M P R P}\right|\left\|d_{k-1}\right\| \leq \frac{\left\|g_{k}\right\|}{m} \tag{3.12}
\end{equation*}
$$

Hence by substituting (3.12) in (3.8), we have

$$
\begin{equation*}
\left|g_{k}^{T} d_{k}\right| \geq A\left\|g_{k}\right\|^{2}, A=\frac{m-1}{m} \tag{3.13}
\end{equation*}
$$

for large k. Thus we have

$$
\begin{equation*}
\frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}\left\|g_{k}\right\|^{2}} \geq A^{2} \frac{\left\|g_{k}\right\|^{2}}{\left\|d_{k}\right\|^{2}} \tag{3.14}
\end{equation*}
$$

Since $\left\|g_{k}\right\| \geq \psi$ and $\left\|d_{k}\right\|$ is bounded above, we conclude that there is $\varepsilon>0$ such that $\frac{\left(g_{k}^{T} \overline{d_{k}}\right)^{2}}{\left\|d_{k}\right\|^{2}\left\|g_{k}\right\|^{2}} \geq \varepsilon$, which implies $\sum_{d_{k} \neq 0} \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}=\infty$.

This is a contradiction to Lemma 2.5.

4. Numerical experiments and discussions

In this part, we present the numerical experiments of the new formula (1.5) and apply it using (1.3), computer
(Processor: Intel(R)core(TM)i3-3110M cpu@2.40GHZ, Ram 4.00 GB) through the Matlab programme.
10 testing problems have been taken from [1].
This will lead us to test for the global convergence properties of our method. Stopping criteria is set to $\left\|g_{k}\right\| \leq \varepsilon$ where $\varepsilon=10^{-6}$. Taking into consideration the following parameters: $\gamma=1.5$ and $\mu=0.5$.

Table 1 list numerical results. The meaning of each column is as follows:
"Problem "the name of the test problem, " δ ", "Xzero", "k "the number of iterations, "Time", "Xoptimal".

The following results showed the effectiveness of the proposed method.

Table 1

	Problem	δ	Xzero	k	Time	Xopimal
1	Booth	1	(1 1)	46	0.118	(1.0 3.0)
2	Branin	1.5	(11)	54	0.113	(3.1416 2.275)
3	Sphere	1	(-1 1)	64	0.015	(-0.230-0.230)
4	Exponential	1	(-1 1)	59	0.082	(-0.6406-0.6406)
5	Himmelblau	2	(11)	258	0.084	(0.6403-0.6403)
6	Matyas	1	(-1 1)	34	0.047	(0.6403-0.6403)
7	McCormick	1	(-1 1)	36	0.048	(-0.5472-1.5472)
8	Rosenbrock	0.4	(11)	4999	0.735	(0.41981 .9116)
9	SIX-HUMP CAMEL	2	(11)	15	0.031	(-0.0898 0.7127)
10	THREE-HUMP CAMEL	1.5	(1 1)	46	0.1180	($0.2665-0.2935$)

Acknowledgements

The authors would like to thank the referees and the editors for their careful reading and some useful comments on improving the presentation of this paper.

References

[1] N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim., 10 (2008), 147-161.
[2] Kh. Bouaziz, Y. Laskri, Convergence of a two-parameter family of conjugate gradient methods with a fixed formula of stepsize, Boletim da Sociedade Paranaense de Matematica, 38 (2020), 127-140.
[3] X. Chen, J. Sun, Global convergence of a two-parameter family of conjugate gradient methods without line search, Journal of Computational and Applied Mathematics, 146 (2002), 37-45.
[4] Y. Dai, Y. Yuan, A three-parameter family of nonlinear conjugate gradient methods, Mathematics of Computation, 70 (2001), 1155-1167.
[5] Y.H. Dai, Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
[6] R. Fletcher, Practical methods of optimization, John Wiley \& Sons, 1987.
[7] R. Fletcher, C. M. Reeves, Function minimization by conjugate gradients, The Computer Journal, 7 (1964), 149-154.
[8] M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, NBS, 49 (1952).
[9] Y. Liu, C. Storey, Efficient generalized conjugate gradient algorithms, part 1: Theory, Journal of Optimization Theory and Applications, 69 (1991), 129-137.
[10] B. T. Polyak, The conjugate gradient method in extremal problems, USSR Computational Mathematics and Mathematical Physics, 9 (1969), 94-112.
[11] S. Min, L. Jing, Three modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property, Journal of Inequalities and Applications, 1 (2015), 125.
[12] J. Sun, J. Zhang, Global convergence of conjugate gradient methods without line search, Annals of Operations Research, 103 (2001), 161-173.
[13] P. Wolfe, Convergence conditions for ascent methods, II: Some corrections, SIAM review, 13 (1971), 185-188.
[14] Q.-j. Wu, A nonlinear conjugate gradient method without line search and its global convergence, In Computational and Information Sciences (ICCIS), 2011 International Conference on IEEE, 2001, 1148-1152.
[15] Z. Yueqin, Z. Hao and Z. Chuanlin, Global convergence of a modified PRP conjugate gradient method, Procedia Engineering, Elsevier, 31 (2012), 986995.
[16] W. Zengxin, Y. Shengwei, L, Liying, The convergence properties of some new conjugate gradient methods, Applied Mathematics and Computation, Elsevier, 183 (2006), 1341-1350.
[17] D. Zhifeng, W. Fenghua, Another improved Wei-Yao-Liu nonlinear conjugate gradient method with sufficient descent property, Applied Mathematics and Computation, Elsevier, 2018 (2012), 7421-7430.

Accepted: November 23, 2020

