Strongly regular relation and n-Bell groups derived from it

Aazam Nokhbeh
Phd Student of Mathematics
Tarbiat Modares University
Tehran
Iran
a.nokhbeh@modares.ac.ir

Ali Iranmanesh*

Department of Mathematics
Faculty of Mathematical Sciences
Tarbiat Modares University
P. O. Box 14115-137

Tehran
Iran
iranmanesh@modares.ac.ir

M.M Zahedi

Graduate University of Advanced Technology
Kerman
Iran
zahedi_mm@kgut.ac.ir

Abstract

A new strongly regular relation θ_{n}^{*} is defined on polygroup P such that the quotient P / θ_{n}^{*}, the set of all equivalence classes, is a Bell group for $n \in\{2,3\}$. Keywords: hypergroup, polygroup, regular and strongly regular equivalence relations, n-Bell, n-Engel, n-Kappe, n-Levi and n-Abelian groups.

1. Introduction

Hyperstructure theory was first initiated by Marty [15] in 1934. Let H be a non-empty set and $o: H \times H \longrightarrow P^{*}(H)$ be a hyperopration where $P^{*}(H)$ is the family of non-empty subset of H . The couple (H, o) is called a hypergroupoid. For any two non-empty subset A and B of H and $x \in H$, we define $A \circ B=$ $\bigcup_{a \in A, b \in B} a \circ b, A \circ x=A \circ\{x\}$ and $B \circ x=B \circ\{x\}$. A hypergroupoid (H, o) is called semihypergroup if for all $a, b, c \in H$, we have $(a \circ b) \circ c=a \circ(b \circ c)$ which means that $\bigcup_{u \in a \circ b} u \circ c=\bigcup_{v \in b o c} a \circ v$ and hypergrupoid (H, o) is called qusihypergroup if for all a of H, we have $a \circ H=H \circ a=H$, which is called reproduction axiom. This axiom means that for any $x, y \in H$, there exist $u, v \in H$ such that $y \in x \circ u, y \in v \circ x$. A hypergroupoid (H, \circ) which is both a semihypergroup and a qusihypergroup is called hypergroup.
*. Corresponding author

Definition 1.1 ([6]). A polygroup is a hypergroup $\left\langle P, \cdot, e,{ }^{-1}\right\rangle$ where $e \in P,^{-1}$ is a unitary operation on P, and the following axiom hold for all $x, y, z \in P$
(i) $e \cdot x=x \cdot e=x$;
(ii) $x \in y \cdot z \Longrightarrow y \in x \cdot z^{-1} \Longrightarrow z \in y^{-1} \cdot x$.

Definition 1.2 ([5]). Let (H, \cdot) be a hypergroup and $\rho \subseteq H \times H$ be an equivalence relation. For non-empty subset A and B of H, we define $A \overline{\bar{\rho}} B$ if and only if $a \rho b$, for all $a \in A$ and $b \in B$. The relation ρ is called strongly regular on the left (on the right) if $x \rho y$, then $a \circ x \overline{\bar{\rho}} a \circ y$ ($x \circ a \overline{\bar{\rho}} y \circ b$, respectively), for all $x, y, a \in H$.

Moreover, ρ is called strongly regular if it is strongly regular on the left and on the right.

Theorem 1.3 ([4]). If (H, \cdot) is a hypergroup and ρ is a strongly regular relation on H, then H / ρ is a group under the operation:

$$
\rho(x) \otimes \rho(y)=\rho(z), \quad \forall z \in x \cdot y
$$

For all $n \geq 1$, we define the relation β_{n} on a semihypergroup H, as follows, $a \beta_{n} b$, if and only if there exists $\left(x_{1}, \ldots, x_{n}\right)$ in H^{n} such that $\{a, b\} \subseteq \prod_{i=1}^{n} x_{i}$ and $\beta=\bigcup_{n \geq 1} \beta_{n}$, where $\beta_{1}=\{(x, x) ; x \in H\}$, is the diagonal relation on H. This relation was introduced by Koskas [14]. Suppose that β^{*} is the transitive closure of β, the relation β^{*} is a strongly regular relation [4].

In [11], $\gamma=\bigcup_{n \geq 1} \gamma_{n}$, where γ_{1} is the diagonal relation and for every integer $n>1, \gamma_{n}$ is the relation defined as follows, $x \gamma_{n} y$ if and only if there exists $\left(z_{1}, \cdots, z_{n}\right)$ in H^{n} and $\tau \in S_{n}$ such that $x \in \prod_{i=1}^{n} z_{i}$ and $y \in \prod_{i=1}^{n} z_{\tau(i)}$, where S_{n} is the symmetric group of order n. Suppose that γ^{*} is the transitive closure of γ. The relation γ^{*} is a strongly regular relation [11].

The relation β^{*} is the least equivalence relation on hypergroup H such that the quotient H / β^{*} is a group, while γ^{*} is the least equivalence relation on hypergroup H, such that the quotient H / γ^{*} is an abelian group.

In [12], $\tau_{n}=\bigcup_{m \geq 1} \tau_{m, n}$, where $\tau_{1, n}$ is the diagonal relation and for every integer $m>1, \tau_{m, n}$ is the relation defined as follows, $x \tau_{m, n} y$ if and only if there exists $\left(z_{1}, \cdots, z_{m}\right)$ in H^{m}, and $\sigma \in S_{m}$ such that $\sigma(i)=i$, if $z_{i} \notin H^{(n)}$ such that $x \in \prod_{i=1}^{m} z_{i}$ and $y \in \prod_{i=1}^{m} z_{\sigma(i)}$, where
(1) $H^{(0)}=H$;
(2) $H^{(k+1)}=\left\{h \in H^{(k)} \mid x y \cap h y x \neq \emptyset ; x, y \in H^{(k)}\right\}$.

Clearly, for every integer $n \geq 1$, the relation τ_{n} is reflexive and symmetric.
Now, suppose that τ_{n}^{*} is the transitive closure of τ_{n}. The relation τ_{n}^{*} is strongly regular such that the quotient H / τ_{n}^{*} is a solubale group of the class at most $n+1$.

In [1], $\nu_{n}=\bigcup_{m \geq 1} \nu_{m, n}$, where $\nu_{1, n}$ is the diagonal relation and for every integer $m>1, \nu_{m, n}$ is the relation defined as follows, $x \nu_{m, n} y$ if and only if, there exists $\left(z_{1}, \cdots, z_{m}\right)$ in H^{m} and $\sigma \in S_{m}$ such that $\sigma(i)=i$, if $z_{i} \notin L_{n}(H)$ such that $x \in \prod_{i=1}^{m} z_{i}$ and $y \in \prod_{i=1}^{m} z_{\sigma(i)}$, where
(1) $L_{0}(H)=H$;
(2) $L_{k+1}(H)=\left\{h \mid x y \cap h y x \neq \emptyset ; x \in L_{k}(H), y \in H\right\}$.

Clearly, for every integer $n \geq 1$, the relation ν_{n} is reflexive and symmetric.
Now, suppose that ν_{n}^{*} is the transitive closure of ν_{n}. The relation ν_{n}^{*} is strongly regular such that the quotient H / ν_{n}^{*} is a nilpotent group of the class at most $n+1$.

In [2], $\xi_{n, s}=\bigcup_{m \geq 1} \xi_{m, n, s}$, where $\xi_{1, n, s}$ is the diagonal relation and for every integer $m \geq 1, \xi_{m, n, s}$ is the relation defined as follows:
$x \xi_{m, n, s} y$ if and only if, there exists $\left(z_{1}, \cdots, z_{m}\right)$ in H^{m} and $\delta \in S_{m}$ such that $\delta(i)=i$ if $z_{i} \notin L_{n, s}(H)$ such that $x \in \prod_{i=1}^{m} z_{i}$ and $y \in \prod_{i=1}^{m} z_{\delta(i)}$, where
(1) $L_{0, s}(H)=H$;
(2) $L_{k+1, s}(H)=\left\{h \mid x s \cap h s x \neq \emptyset ; x \in L_{k, s}(H)\right\}, \forall k \geq 0$,
for fix element $s \in H$.
Obviously, for every $n \geq 1$, the relation $\xi_{n, s}$ is reflexive and symmetric. Now let $\xi_{n, s}^{*}$ be the transitive closure of $\xi_{n, s}$.

In [2], the authors proved that the relation $\xi_{n, s}^{*}$ is strongly regular such that the quotient $H / \xi_{n, s}^{*}$ is an n-Engel group.

Let $n \neq 0,1$ be an integer. A group G is said to be n-Bell if $\left[x^{n}, y\right]=\left[x, y^{n}\right]$ for all x and y in G , where $[x, y]$ is the commutator of x and y. The study of n-Bell groups was introduced by Kappe and Brandl in [3], [13] and it was also the subject of several papers, see for instance [8], [9], [10] and [18]. For example all of groups of finite exponent dividing n, groups of finite exponent dividing $n-1$, 2-Engel groups and n-Levi groups, are n-Bell groups (see, [9]).

In this paper, we define a new relation θ_{n} on a polygroup and then we show that θ_{n}^{*} is a strongly regular relation. In continue, we bring some results related to θ_{n}^{*} and one of the main result of this paper is about the relation of θ_{n}^{*} and n-Bell groups for $n=2$ and 3 . Also, if we set $\theta^{*}=\bigcap_{n \geq 1} \theta_{n}^{*}$, then we show that P / θ^{*} is a Bell group for any finite polygoup P.

In a polygroup P, the commutator of two elements x, y in P is defined by $[x, y]=\left\{t \mid t \in x y x^{-1} y^{-1}\right\}$. If $A \subseteq P$, then $[A, y]=\left\{t \mid t \in A y A^{-1} y^{-1}\right\}$.

Theorem 1.4 ([2], Theorem 2.2). Let P be a polygroup. Then, for all x, y, h, \in $P,\{h \mid x y \cap h y x \neq \emptyset\}=\left\{h \mid h \in x y x^{-1} y^{-1}\right\}$.

Remark 1.5. Let P be a polygroup. Then, for all $x, y, h, \in P$ and $n \in N$, $\left\{h \mid x^{n} y \cap h y x^{n} \neq \emptyset\right\}=\left\{h \mid h \in x^{n} y x^{-n} y^{-1}\right\}$.

Theorem 1.6 ([2], Theorem 2.10). $H / \xi_{n, s}^{*}$ is an n-Engel group.

Theorem 1.7 ([1], Theorem 2.9). H / ν_{n}^{*} is a nilpotent group of the class at most $n+1$.

2. New strongly regular relation θ_{n}^{*}

Now, we introduce a new strongly regular relation θ_{n}^{*} on a polygroup P.
In the whole of this paper, P is a polygroup and S_{n} is symmetric group.
Definition 2.1. Let P be a polygroup. For fix elements $x, y \in P$, we define:
(1) $L_{0, x, y}(P)=P$;
(2) $L_{n+1, x, y}(P)=\left\{h \mid h \in L_{n, x, y}(P), x^{n+1} y \cap h y x^{n+1} \neq \emptyset\right\}$.

Let $\theta_{n}=\bigcup_{m>1} \theta_{m, n}$ where $\theta_{1, n}$ is diagonal relation and for every integer $m \geq$ $1, \theta_{m, n}$ is relation defined as follows:
$x \theta_{m, n} y$ if and only if, there exists $\left(z_{1}, \cdots, z_{m}\right)$ in P^{m} and $\zeta \in S_{m}$ if, $z_{i} \notin$ $L_{n, x, y}(P)$ and $z_{i}^{-1} \notin L_{n, y, x}(P)$, then $\zeta(i)=i$ and $x \in \prod_{i=1}^{m} z_{i}$ and $y \in \prod_{i=1}^{m} z_{\zeta(i)}$. Clearly, θ_{n} is reflexive and symmetric. Let θ_{n}^{*} be the transitive closure of θ_{n}.

Theorem 2.2. For every $n \in \mathbb{N}$, the relation θ_{n}^{*} is strongly regular relation.
Proof. Suppose that $n \in \mathbb{N}$. Clearly, θ_{n}^{*} is an equivalence relation. In order to prove that it is strongly regular. First we have to show that if $x \theta_{n} y$, then $x \cdot z \overline{\overline{\theta_{n}}} y \cdot z, z \cdot x \overline{\bar{\theta}}_{n} z \cdot y$, for every $z \in P$. Suppose that $x \theta_{n} y$. Then, there exists $m \in \mathbb{N}$ such that $x \theta_{m, n} y$. Hence, there exists $\left(z_{1}, \cdots, z_{m}\right) \in P^{m}, \zeta \in S_{m}$ with $\zeta(i)=i$ if $z_{i} \notin L_{n, x, y}(P)$ and $z_{i}^{-1} \notin L_{n, y, x}(P)$ such that $x \in \prod_{i=1}^{m} z_{i}$ and $y \in \prod_{i=1}^{m} z_{\zeta(i)}$. Suppose that $z \in P$. We have $x \cdot z \subseteq\left(\prod_{i=1}^{m} z_{i}\right) \cdot z, y \cdot z \subseteq$ $\left(\prod_{i=1}^{m} z_{\zeta(i)}\right) \cdot z$. Now, suppose that $z_{m+1}=z$ and we define the permutation $\zeta^{\prime} \in S_{m+1}$ as follows:

$$
\left\{\begin{array}{l}
\zeta^{\prime}(i)=\zeta(i), \\
\zeta^{\prime}(m+1)=m+1 .
\end{array} \text { for all } 1 \leq i \leq m,\right.
$$

Thus, $x \cdot z \subseteq \prod_{i=1}^{m+1} z_{i}, y \cdot z \subseteq \prod_{i=1}^{m+1} z_{\zeta^{\prime}(i)}$. such that $\zeta^{\prime}(i)=i$ if $z_{i} \notin L_{n, x, y}(P)$ and $z_{i}^{-1} \notin L_{n, y, x}(P)$. Therefore, $x \cdot z \overline{\overline{\theta_{n}}} y \cdot z$. Similary, we have $z \cdot x \overline{\bar{\theta}}_{n} z \cdot y$. Now, if $x \theta_{n}^{*} y$, then, there exists $k \in \mathbb{N}$ and $\left(x=u_{0}, u_{1}, \cdots, u_{k}=y\right) \in$ P^{k+1} such that $x=u_{0} \underline{\theta}_{n} u_{1} \theta_{n} \cdots \theta_{n} u_{k-1} \theta_{n} u_{k_{-}}=y$. Hence, we obtain $x \cdot z \equiv u_{0} \cdot z \overline{\overline{\theta_{n}^{*}}} u_{1} \cdot z \overline{\bar{\theta}_{n}^{*}} u_{2} \cdot z \overline{\overline{\theta_{n}^{*}}} \ldots \overline{\overline{\theta_{n}^{*}}} u_{k-1} \cdot z \overline{\overline{\theta_{n}^{*}}} u_{k} \cdot z=y \cdot z$ and so $x \cdot z \overline{\overline{\theta_{n}^{*}}} y \cdot z$. Similarly, we can prove that $z \cdot x \overline{\bar{\theta}}_{n}^{*} z \cdot y$, therefore $\overline{\bar{\theta}_{n}^{*}}$ is strongly regular relation on P.

Proposition 2.3. For every $n \in \mathbb{N}$, we have $\theta_{n+1}^{*} \subseteq \theta_{n}^{*}$.
Proof. Let $x \theta_{n+1} y$, so, there exists $m \in \mathbb{N}$ and $\left(z_{1}, \cdots, z_{m}\right) \in P^{m}$ and $\zeta \in S_{m}$ such that $\zeta(i)=i$ if $z_{i} \notin L_{n+1, x, y}(P)$ and $z_{i}^{-1} \notin L_{n+1, y, x}(P)$, such that $x \in$ $\prod_{i=1}^{m} z_{i}$ and $y \in \prod_{i=1}^{m} z_{\zeta(i)}$. Now, let $\zeta_{1}=\zeta$, since $L_{n+1, x, y}(P) \subseteq L_{n, x, y}(P)$ and $L_{n+1, y, x}(P) \subseteq L_{n, y, x}(P)$, we have $x \theta_{n} y$.

Corollary 2.4. If P is a commutative hypergroup, then $\beta^{*}=\theta_{n}^{*}=\xi_{n}^{*}=\nu_{n}^{*}=$ γ^{*}.

Definition 2.5 ([13]). Let G be a group and n be an integer. The n-Bell center of G denoted by B_{n} and defined as follows:

$$
B_{n}=B(G, n)=\left\{x \in G \mid\left[x^{n}, y\right]=\left[x, y^{n}\right], ; \forall y \in G\right\}
$$

Clearly, $B(G, 0)=B(G, 1)=G$, and easy to see that $B(G, 2)$ and $B(G, 3)$ are subgroup of G.

Remark 2.6. For every integer n, a group is n-Bell if $B(G, n)=G$.
Theorem 2.7. If P is a polygroup and ρ is a strongly regular relation on P, then for fix elements $x, y \in P$;

$$
L_{n+1, \bar{x}, \bar{y}}\left(\frac{P}{\rho}\right)=\left\{\left[\bar{x}^{n+1}, \bar{y}\right]\right\}
$$

where \bar{x}, \bar{y} are the classes of x, y with respect to ρ.
Proof. The proof follows from definition of commutator of two elements in a polygroup, Theorem 1.4 and Remark 1.5.

3. n-Bell groups derived from polygroups for $n \in\{2,3\}$

In this section, we obtain an n-Bell group derived from polygroup for $n=2,3$, and then we propose an open problem related to n-Bell groups.

Theorem 3.1. Let P be a polygroup. Then, for $n \in\{2,3\}, P / \theta_{n}^{*}$ is an n-Bell group.

Proof. Let $G=P / \theta_{n}^{*}$. For $n \in\{2,3\}$, we have $B(G, n) \leq G$. By Remark 2.6, it is enough to prove that $G \leq B(G, n)$. For this we should show that for every $\bar{h} \in L_{n, \bar{x}, \bar{y}}(G)$ we have $\bar{h}^{-1} \in L_{n, \bar{y}, \bar{x}}(G)$ and is obvious by Theorem 2.7.

Definition 3.2 ([16]). A group G is called an Engel group if, for each ordered pair (x, y) of elements in G, there is a positive integer $n=n(x, y)$, such that $\left[x,{ }_{n} y\right]=1$.

Theorem 3.3 ([17]). Let G be a group. Then
(a) G is a n-Bell group if and only if G is a $(1-n)$-Bell group;
(b) G is a 2-Bell group if and only if G is a 2-Engel group;
(c) G is a 3-Bell group if and only if G is a 3-Engel group satisfying the identity $[x, y, y]^{3}=1$, for all $x, y \in G$. In addition G has nilpotent of class at most 4.

Definition 3.4. Let H_{1} and H_{2} be two hypergroups (polygroups), and ρ_{1} and ρ_{2} be two strongly regular relations. If H_{1} / ρ_{1} and H_{2} / ρ_{2} are isommorphism groups, then we say that ρ_{1} is "the same" property to ρ_{2}.

Remark 3.5. According to the above definition, θ_{2}^{*} is the same property to $\xi_{2, s}^{*}$, by Theorem 3.1, 3.3 and apply Theorem 1.6, and θ_{3}^{*} is the same property to $\xi_{3, s}^{*}$ and ν_{3}^{*}, by Theorem 3.1, 3.3 and apply Theorem 1.6 and 1.7.

Example 3.6 ([2]). Let H be $\{e, a, b, c, d, f, g\}$. Consider the non-commutative polygroup (H, \cdot), defined on H as follows: It is easy to see that $H / \beta^{*} \cong S_{3}$ (for

\cdot	e	a	b	c	d	f	g
e	e	a	b	c	d	f,g	f,g
a	a	e	d	f,g	b	c	c
b	b	f,g	e	d	c	a	a
c	c	d	f,g	e	a	b	b
d	d	c	a	b	f,g	e	e
f	f,g	b	c	a	e	d	d
g	f,g	b	c	a	e	d	d

more details, see [7]). Since S_{3} is not nilpotent, we conclude that $\beta^{*} \neq \nu_{n}^{*}$, hence H / ν_{n}^{*} is an abelian group of order less than 6 and the class of nilpotency of H / ν_{n}^{*} is one for all $n \in \mathbb{N}$ [1], besides, S_{3} is not Engel and $H / \xi_{n, s}^{*} \subseteq H / \beta^{*} \cong S_{3}$, then it concluded $H / \xi_{n, s}^{*}$ is an abelian group of order less than 6 and H / ξ^{*} is 1-Engel group. Then, H / θ_{2}^{*} is not 2 -Bell or 3 -Bell group, by apply the Remark 3.5.

Remark 3.7. We know that $B(G, n)$ is called the n-Bell center of G. It is open problem whether the n-Bell center always forms a subgroup. But, it is shown that $B(G, 2)$ is characteristic subgroup of all right 2-Engel elements and $B(G, 3)$ is characteristic subgroup of G which is nilpotent of class at most 4 (see, [13]).

Hence, according to above remark, we can put the following open problem:
Open Problem 3.8. Let H be non-commutative polygroup, for all $n \geq 4$, is H / θ_{n}^{*} a n-Bell group?

4. On Bell groups derived from finite polygroup

In this section, we introduce a strongly regular relation θ^{*} on finite polygroup P such that P / θ^{*} is a Bell group.

Definition 4.1. Let P be a finite polygroup. Then, we define the relation θ^{*} on P by $\theta^{*}=\bigcap_{n \geq 1} \theta_{n}^{*}$.

Definition 4.2. An equivalence relation ρ on a finite polygroup P, is called Bell if and only if its derived group P / ρ is a Bell group.

Example 4.3. θ_{2}^{*} and θ_{3}^{*} are Bell relations. By using the Remark 3.5, and Example 3.3 in [2], Bell relations θ_{2}^{*} and θ_{3}^{*} are the same with Engel relations $\xi_{2, s}^{*}$ and $\xi_{3, s}^{*}$.

Theorem 4.4. (a) The relation θ^{*} is a strongly regular relation on a finite polygroup P.
(b) P / θ^{*} is a Bell group.

Proof. (a) Since $\theta^{*}=\bigcap_{n \geq 1} \theta_{n}^{*}$, it is easy to see that θ^{*} is strongly regular relation on P.
(b) By using Proposition 2.3, we conclude that there exists $k \in \mathbb{N}(k \geq 1)$ such that $\theta_{k+1}^{*}=\theta_{k}^{*}$ and so $\theta^{*}=\theta_{m}^{*}$ for some $m \in \mathbb{N}$.

5. Transitivity of θ^{*}

Definition 5.1. Let X be a non-empty subset of P and x, y are fix elements of P. Then, we say that X is a θ-part of P if for every $t \in \mathbb{N},\left(z_{1}, \cdots, z_{t}\right) \in P^{t}$ and for every $\zeta \in S_{t}$ if $z_{i} \notin \bigcup_{n \geq 1} L_{n, x, y}(P), z_{i}^{-1} \notin \bigcup_{n \geq 1} L_{n, y, x}(P)$, then $\zeta(i)=i$, then

$$
\prod_{i=1}^{t} z_{i} \cap X \neq \emptyset \Longrightarrow \prod_{i=1}^{t} z_{\zeta(i)} \subseteq X
$$

Theorem 5.2. Let X be a non-empty subset of a polygroup P. Then the following conditions are equivalent:
(1) X is a θ-part of P.
(2) $x \in X, x \theta y \Longrightarrow y \in X$.
(3) $x \in X, x \theta^{*} y \Longrightarrow y \in X$.

Proof. $(1) \Longrightarrow(2)$: If $(x, y) \in P^{2}$ is a pair, such that $x \in X, x \theta y$, then there exist $\left(z_{1}, \cdots, z_{t}\right) \in P^{t}$ such that $x \in \prod_{i=1}^{t} z_{i} \cap X, y \in \prod_{i=1}^{t} z_{\zeta(i)}$ and $\zeta(i)=i$ if $z_{i} \notin \bigcup_{n \geq 1} L_{n, x, y}(P), z_{i}^{-1} \notin \bigcup_{n \geq 1} L_{n, y, x}(P)$. Since X is a θ-part of P, we have $\prod_{i=1}^{t} z_{\zeta(i)} \subseteq X$ and so $y \in X$.
$(2) \Longrightarrow(3)$: Suppose that $(x, y) \in P^{2}$ is a pair, such that $x \in X, x \theta^{*} y$, then there exist $\left(z_{1}, \cdots, z_{t}\right) \in P^{t}$ such that $x=z_{0} \theta z_{1} \theta \cdots \theta z_{t}=y$. Now, by using (2) " t " times iterated then, we obtain $y \in X$.
$(3) \Longrightarrow(1)$: Suppose that $x \in \prod_{i=1}^{t} z_{i} \cap X$ and $\zeta \in S_{t}$ such that $\zeta(i)=i$ if $z_{i} \notin \bigcup_{n \geq 1} L_{n, x, y}(P), z_{i}^{-1} \notin \bigcup_{n \geq 1} L_{n, y, x}(P)$. Let $y \in \prod_{i=1}^{t} z_{\zeta(i)}$. Since $x \theta y$ by (3), we have $y \in X$. Consequently, $\prod_{i=1}^{t} z_{\zeta(i)} \subseteq X$ and so X is a θ-part.

Theorem 5.3. The following conditions are equivalent:
(1) For every $a \in P, \theta(a)$ is a θ-part of P.
(2) θ is transitive.

Proof. $(1) \Longrightarrow(2)$: Suppose that $x \theta^{*} y$. Then, there is $\left(z_{1}, \cdots, z_{t}\right) \in P^{t}$ such that $x=z_{0} \theta z_{1} \theta \cdots \theta z_{t}=y$. Since $\theta\left(z_{i}\right)$, for all $0 \leq i \leq t$, is a θ-part, we have $z_{i} \in \theta\left(z_{i-1}\right)$, for all $0 \leq i \leq t$, thus $y \in \theta(x)$, which means that $x \theta y$.
$(2) \Longrightarrow(1)$: Suppose that $x \in P, z \in \theta(x)$ and $z \theta y$. By transitivity of θ, we have $y \in \theta(x)$. Now, according to Theorem 5.2, $\theta(x)$ is a θ-part of P.

Definition 5.4. Let A be a non-empty subset of a polygroup P. The intersection of all θ-part, which contain A is called θ-closure of A in P and it will be denoted by $K(A)$.

In follows, we determine the set $Z(A)$.
Assume that $Z_{1}(A)=A$ and $Z_{n+1}(A)=\left\{x \in P \mid \exists\left(z_{1}, \cdots, z_{t}\right) \in P^{t}, x \in\right.$ $\prod_{i=1}^{t} z_{i}, \exists \zeta \in S_{t}$ if $z_{i} \notin \bigcup_{s \geq 1} L_{s, x, y}(P), \& z_{i}^{-1} \notin \bigcup_{s \geq 1} L_{s, y, x}(P)$ then, $\zeta(i)=i$ and $\left.\prod_{i=1}^{t} z_{\zeta(i)} \cap Z_{n}(A) \neq \emptyset\right\}$.

We denote $Z(A)=\bigcup_{n \geq 1} Z_{n}(A)$.
Theorem 5.5. For any non-empty subset A of P, the following statements hold:
(1) $Z(A)=K(A)$;
(2) $K(A)=\bigcup_{a \in A} K(a)$.

Proof. (1) It is enough to prove that:
(a) $Z(A)$ is a θ-part.
(b) If $A \subseteq B$ and B is a θ-part, then $Z(A) \subseteq B$.

In order to (a), suppose that $\prod_{i=1}^{t} z_{i} \cap Z(A) \neq \emptyset$ and $\zeta \in S_{t}$ such that $\zeta(i)=i$ if $z_{i} \notin \bigcup_{n \geq 1} L_{n, x, y}(P)$ and $z_{i}^{-1} \notin \bigcup_{n \geq 1} L_{n, y, x}(P)$. Therefore, there exists $n \in \mathbb{N}$ such that $\prod_{i=1}^{t} z_{i} \cap Z(A) \neq \emptyset$, where it follows that $\prod_{i=1}^{t} z_{\zeta(i)} \subseteq Z_{n+1}(A) \subseteq Z(A)$.
Now, we prove (b) by induction on n. We have $Z_{1}(A)=A \subseteq B$.
Suppose that $Z_{n}(A) \subseteq B$. We prove that $Z_{n+1}(A) \subseteq B$. If $z \in Z_{n+1}(A)$, then $z \in \prod_{i=1}^{t} z_{i}$ and there exists $\zeta \in S_{t}$ such that $\zeta(i)=i$, if $z_{i} \notin$ $\bigcup_{s \geq 1} L_{s, x, y}(P), z_{i}^{-1} \notin \bigcup_{s \geq 1} L_{s, y, x}(P)$, and also $\prod_{i=1}^{t} z_{\zeta(i)} \cap Z_{n}(A) \neq \emptyset$. Therefore, $\prod_{i=1}^{t} z_{\zeta(i)} \cap B \neq \emptyset$ and hence $z \in \prod_{i=1}^{t} z_{i} \subseteq B$.
(2) It is clear that for all $a \in A, K(a) \subseteq K(A)$. By part (1), we have $K(A)=$ $\bigcup_{n \geq 1} Z_{n}(A)$ and $Z_{1}(A)=A=\bigcup_{a \in A} a$. It is enough to prove that $Z_{n}(A)=$ $\bigcup_{a \in A} Z_{n}(a)$, for all $n \in \mathbb{N}$. We follow by induction on n . Suppose it is true for n. We prove that $Z_{n+1}(A)=\bigcup_{a \in A} Z_{n+1}(a)$. If $z \in Z_{n+1}(A)$, then $z \in \prod_{i=1}^{t} z_{i}$ and there exists $\zeta \in S_{t}$ such that $\zeta(i)=i$, if $z_{i} \notin$ $\bigcup_{s \geq 1} L_{s, x, y}(P)$ and $z_{i}^{-1} \notin \bigcup_{s \geq 1} L_{s, y, x}(P)$ and also $\prod_{i=1}^{t} z_{\zeta(i)} \cap Z_{n}(A) \neq \emptyset$. By the hypothesis of induction $\prod_{i=1}^{t} z_{\zeta(i)} \cap Z_{n}\left(a^{\prime}\right) \neq \emptyset$, for some $a^{\prime} \in A$. therefore, $z \in Z_{n+1}\left(a^{\prime}\right)$, and so $Z_{n+1}(A) \subseteq \bigcup_{a \in A} Z_{n+1}(a)$. Hence, $K(A)=$ $\bigcup_{a \in A} K(a)$.

Theorem 5.6. The following relation is equivalence relation on P,

$$
x Z y \Longleftrightarrow x \in Z(y)
$$

for every $(x, y) \in P^{2}$, where $Z(y)=Z(\{y\})$.
Proof. It is easy to see that Z is reflexive and transitive. For the proof of symmetric of relation Z, it is enough that we prove the following statements:
(1) For all $n \geq 2$ and $x \in H, Z_{n}\left(Z_{2}(x)\right)=Z_{n+1}(x)$.
(2) $x \in Z_{n}(y)$ if and only if $y \in Z_{n}(x)$.

We prove (1) by induction on n. Suppose that $z \in Z_{2}\left(Z_{2}(x)\right)$. Then, $z \in \prod_{i=1}^{t} z_{i}$ and there is $\zeta \in S_{t}$ such that $\zeta(i)=i$, if $z_{i} \notin \bigcup_{s \geq 1} L_{s, x, y}(P)$, $z_{i}^{-1} \notin \bigcup_{s \geq 1} L_{s, y, x}(P)$ and also $\prod_{i=1}^{t} z_{\zeta(i)} \cap Z_{2}(x) \neq \emptyset$, thus $z \in Z_{3}(x)$. if $z \in Z_{n+1}\left(Z_{2}(x)\right)$, then $z \in \prod_{i=1}^{t} z_{i}$ and there exists $\zeta \in S_{t}$ such that $\zeta(i)=i$, if $z_{i} \notin \bigcup_{s \geq 1} L_{s, x, y}(P), z_{i}^{-1} \notin \bigcup_{s \geq 1} L_{s, y, x}(P)$ and also $\prod_{i=1}^{t} z_{\zeta(i)} \cap Z_{n}\left(Z_{2}(x)\right) \neq \emptyset$. By hypothesis of induction, we have $\prod_{i=1}^{t} z_{\zeta(i)} \cap Z_{n+1}(x) \neq \emptyset$ and so $z \in Z_{n+2}(x)$.

Now, we prove (2) by induction on n, too. It is clear that $x \in Z_{2}(y)$ if and only if $y \in Z_{2}(x)$. Then $x \in \prod_{i=1}^{t} z_{i}$ and there exists $\zeta \in S_{t}$ such that $\zeta(i)=i$, if $z_{i} \notin \bigcup_{s \geq 1} L_{s, x, y}(P), z_{i}^{-1} \notin \bigcup_{s \geq 1} L_{s, y, x}(P)$ and also $\prod_{i=1}^{t} z_{\zeta(i)} \cap$ $Z_{n}(y) \neq \emptyset$. Suppose that $b \in \prod_{i=1}^{t} z_{\zeta(i)} \cap Z_{n}(y)$, then, we have $y \in Z_{n}(b)$. From $x \in \prod_{i=1}^{t} z_{i} \cap Z_{1}(x)$ and $b \in \prod_{i=1}^{t} Z_{\zeta(i)}$ we conclude that $b \in Z_{2}(x)$. Therefore, $y \in Z_{n}\left(Z_{2}(x)\right)=Z_{n+1}(x)$.

6. Conclusion

In this paper, we have introduced a new strongly regular relation θ_{n}^{*} on a polygroup P and we have shown that P / θ_{n}^{*} is a n-Bell group for $n=2,3$.

We defined the same relation structure between two strongly regular relations on a hypergroup (polygroup), and we bring an open problem relate to n-Bell group of P / θ_{n}^{*}. In continue, we obtained some results related to θ_{n}^{*}. We try to answer the mention open problem and in this regard, for the other research work.

References

[1] H. Aghabozorgi, B. Davvaz, M. Jafarpour, Nilpotent groups derived from hypergroups, J. Algebra, 382 (2013), 177-184.
[2] R. Ameri, E. Mohammadzadeh, Engel groups derived from hypergroups, European Journal of Combinatorics, 44 (2015), 191-197.
[3] R. Brandl, L.C. Kappe, On n-Bell groups, Comm. Algebra, 17 (1989), 787807.
[4] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, Tricesimo, 1993.
[5] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers, Dordrecht, 2003.
[6] B. Davvaz, Applications of the γ^{*}-relation to polygroups, Comm. Algebra, 35 (2007), 2698-2706.
[7] B. Davvaz, Polygroup theory and related systems, World Scientific, 2013.
[8] C. Delizia, P. Moraves, C. Nicotera, Locally graded Bell groups, Publ. Math. Debrecen, 71 (2007), 1-9.
[9] C. Delizia, M.R.R. Moghadam, A.H. Rhemtulla, The structure of Bell groups, J. Group Theory, 9 (2006), 117-125.
[10] C. Delizia, A. Tortora, Locally graded groups with a Bell condition on infinite subset, J. Group Theory, 12 (2009), 753-759.
[11] D. Freni, A new characterization of the derived hypergroup via strongly regular equivalences, Comm. Algebra, 30 (2002), 3977-3989.
[12] M. Jafarpour, H. Aghabozorgi, B. Davvaz, Solvable groups derived from hypergroups, J. Algebra. Appl., 15 (2016), 9.
[13] L.C. Kappe, M.L. Newell, On the Levi and Bell centers of a group, Prossedings of the second international group theory conference, Bressanone, Brixen, 1989, 11-17.
[14] M. Koskas, Groupoides, demi-hypergroups et hypergroups, J. Math. Pures et Appl., 49 (1970), 155-192.
[15] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm, Sweden, (1934), 45-49.
[16] D.J.S. Rabinson, A course in the theory of groups, Springer-Verlag, 80 (1993).
[17] B. Taeri, A combinatorial condition on variety of groups, Arch. Math. (Basel), 77 (2001), 456-460.
[18] A. Tortora, Some properties of Bell groups, Comm. Algebra, 37 (2009), 431-438.

Accepted: February 14, 2018

