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1. Introduction

Hyperstructure theory was first initiated by Marty [15] in 1934. Let H be a
non-empty set and o : H × H −→ P ∗(H) be a hyperopration where P ∗(H) is
the family of non-empty subset of H. The couple (H,o) is called a hypergroupoid.
For any two non-empty subset A and B of H and x ∈ H, we define A ◦ B =⋃

a∈A,b∈B a ◦ b, A ◦ x = A ◦ {x} and B o x = B o {x}. A hypergroupoid (H,o)
is called semihypergroup if for all a, b, c ∈ H, we have (a ◦ b) ◦ c = a ◦ (b ◦ c)
which means that

⋃
u∈a◦b u ◦ c =

⋃
v∈b◦c a ◦ v and hypergrupoid (H,o) is called

qusihypergroup if for all a of H, we have a ◦ H = H ◦ a = H, which is called
reproduction axiom. This axiom means that for any x, y ∈ H, there exist
u, v ∈ H such that y ∈ x ◦ u, y ∈ v ◦ x. A hypergroupoid (H, ◦) which is both a
semihypergroup and a qusihypergroup is called hypergroup.

*. Corresponding author
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Definition 1.1 ([6]). A polygroup is a hypergroup ⟨P, ·, e,−1 ⟩ where e ∈ P,−1 is
a unitary operation on P, and the following axiom hold for all x, y, z ∈ P

(i) e · x = x · e = x;

(ii) x ∈ y · z =⇒ y ∈ x · z−1 =⇒ z ∈ y−1 · x.

Definition 1.2 ([5]). Let (H, ·) be a hypergroup and ρ ⊆ H×H be an equivalence
relation. For non-empty subset A and B of H, we define A ¯̄ρ B if and only if
a ρ b, for all a ∈ A and b ∈ B. The relation ρ is called strongly regular on the
left (on the right) if x ρ y, then a ◦ x ¯̄ρ a ◦ y (x ◦ a ¯̄ρ y ◦ b, respectively), for all
x, y, a ∈ H.

Moreover, ρ is called strongly regular if it is strongly regular on the left and
on the right.

Theorem 1.3 ([4]). If (H, ·) is a hypergroup and ρ is a strongly regular relation
on H, then H/ρ is a group under the operation:

ρ(x)⊗ ρ(y) = ρ(z), ∀z ∈ x · y.

For all n ≥ 1, we define the relation βn on a semihypergroup H, as follows,
a βn b, if and only if there exists (x1, . . . , xn) in Hn such that {a, b} ⊆

∏n
i=1 xi

and β =
⋃

n≥1 βn, where β1 = {(x, x);x ∈ H}, is the diagonal relation on H.
This relation was introduced by Koskas [14]. Suppose that β∗ is the transitive
closure of β, the relation β∗ is a strongly regular relation [4].

In [11], γ =
⋃

n≥1 γn, where γ1 is the diagonal relation and for every integer
n > 1, γn is the relation defined as follows, x γn y if and only if there exists
(z1, · · · , zn) in Hn and τ ∈ Sn such that x ∈

∏n
i=1 zi and y ∈

∏n
i=1 zτ(i), where

Sn is the symmetric group of order n. Suppose that γ∗ is the transitive closure
of γ. The relation γ∗ is a strongly regular relation [11].

The relation β∗ is the least equivalence relation on hypergroup H such that
the quotient H/β∗ is a group, while γ∗ is the least equivalence relation on
hypergroup H, such that the quotient H/γ∗ is an abelian group.

In [12], τn =
⋃

m≥1 τm,n, where τ1,n is the diagonal relation and for every
integer m > 1, τm,n is the relation defined as follows, x τm,n y if and only if
there exists (z1, · · · , zm) in Hm, and σ ∈ Sm such that σ(i) = i, if zi /∈ H(n)

such that x ∈
∏m

i=1 zi and y ∈
∏m

i=1 zσ(i), where

(1) H(0) = H;

(2) H(k+1) = {h ∈ H(k) | xy ∩ hyx ̸= ∅ ; x, y ∈ H(k)}.

Clearly, for every integer n ≥ 1, the relation τn is reflexive and symmetric.
Now, suppose that τ∗n is the transitive closure of τn. The relation τ∗n is

strongly regular such that the quotient H/τ∗n is a solubale group of the class
at most n+ 1.
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In [1], νn =
⋃

m≥1 νm,n, where ν1,n is the diagonal relation and for every
integer m > 1, νm,n is the relation defined as follows, x νm,n y if and only if,
there exists (z1, · · · , zm) in Hm and σ ∈ Sm such that σ(i) = i, if zi /∈ Ln(H)
such that x ∈

∏m
i=1 zi and y ∈

∏m
i=1 zσ(i), where

(1) L0(H) = H;

(2) Lk+1(H) = {h | xy ∩ hyx ̸= ∅ ; x ∈ Lk(H), y ∈ H}.

Clearly, for every integer n ≥ 1, the relation νn is reflexive and symmetric.
Now, suppose that ν∗n is the transitive closure of νn. The relation ν∗n is

strongly regular such that the quotient H/ν∗n is a nilpotent group of the class
at most n+ 1.

In [2], ξn,s =
⋃

m≥1 ξm,n,s, where ξ1,n,s is the diagonal relation and for every
integer m ≥ 1, ξm,n,s is the relation defined as follows:

x ξm,n,s y if and only if, there exists (z1, · · · , zm) in Hm and δ ∈ Sm such
that δ(i) = i if zi /∈ Ln,s(H) such that x ∈

∏m
i=1 zi and y ∈

∏m
i=1 zδ(i), where

(1) L0,s(H) = H;

(2) Lk+1,s(H) = {h | xs ∩ hsx ̸= ∅ ; x ∈ Lk,s(H)}, ∀k ≥ 0,

for fix element s ∈ H.
Obviously, for every n ≥ 1, the relation ξn,s is reflexive and symmetric. Now

let ξ∗n,s be the transitive closure of ξn,s.
In [2], the authors proved that the relation ξ∗n,s is strongly regular such that

the quotient H/ξ∗n,s is an n-Engel group.
Let n ̸= 0, 1 be an integer. A group G is said to be n-Bell if [xn, y] = [x, yn]

for all x and y in G, where [x, y] is the commutator of x and y. The study of
n-Bell groups was introduced by Kappe and Brandl in [3], [13] and it was also
the subject of several papers, see for instance [8], [9], [10] and [18]. For example
all of groups of finite exponent dividing n, groups of finite exponent dividing
n− 1, 2-Engel groups and n-Levi groups, are n-Bell groups (see, [9]).

In this paper, we define a new relation θn on a polygroup and then we show
that θ∗n is a strongly regular relation. In continue, we bring some results related
to θ∗n and one of the main result of this paper is about the relation of θ∗n and
n-Bell groups for n = 2 and 3. Also, if we set θ∗ =

⋂
n≥1 θ

∗
n, then we show that

P/θ∗ is a Bell group for any finite polygoup P .
In a polygroup P , the commutator of two elements x, y in P is defined by

[x, y] = {t | t ∈ xyx−1y−1}. If A ⊆ P, then [A, y] = {t | t ∈ AyA−1y−1}.

Theorem 1.4 ([2], Theorem 2.2). Let P be a polygroup. Then, for all x, y, h,∈
P , {h | xy ∩ hyx ̸= ∅} = {h | h ∈ xyx−1y−1}.

Remark 1.5. Let P be a polygroup. Then, for all x, y, h,∈ P and n ∈ N ,
{h | xny ∩ hyxn ̸= ∅} = {h | h ∈ xnyx−ny−1}.

Theorem 1.6 ([2], Theorem 2.10). H/ξ∗n,s is an n-Engel group.
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Theorem 1.7 ([1], Theorem 2.9). H/ν∗n is a nilpotent group of the class at most
n+ 1.

2. New strongly regular relation θ∗n

Now, we introduce a new strongly regular relation θ∗n on a polygroup P .
In the whole of this paper, P is a polygroup and Sn is symmetric group.

Definition 2.1. Let P be a polygroup. For fix elements x, y ∈ P , we define:

(1) L0,x,y(P ) = P ;

(2) Ln+1,x,y(P ) = {h | h ∈ Ln,x,y(P ), xn+1y ∩ hyxn+1 ̸= ∅}.

Let θn =
⋃

m≥1 θm,n where θ1,n is diagonal relation and for every integer m ≥
1, θm,n is relation defined as follows:

x θm,n y if and only if, there exists (z1, · · · , zm) in Pm and ζ ∈ Sm if, zi /∈
Ln,x,y(P ) and z−1

i /∈ Ln,y,x(P ), then ζ(i) = i and x ∈
∏m

i=1 zi and y ∈
∏m

i=1 zζ(i).
Clearly, θn is reflexive and symmetric. Let θ∗n be the transitive closure of θn.

Theorem 2.2. For every n ∈ N, the relation θ∗n is strongly regular relation.

Proof. Suppose that n ∈ N. Clearly, θ∗n is an equivalence relation. In order
to prove that it is strongly regular. First we have to show that if x θn y, then
x · z ¯̄θn y · z , z · x ¯̄θn z · y, for every z ∈ P . Suppose that xθny. Then, there
exists m ∈ N such that x θm,n y. Hence, there exists (z1, · · · , zm) ∈ Pm, ζ ∈ Sm

with ζ(i) = i if zi /∈ Ln,x,y(P ) and z−1
i /∈ Ln,y,x(P ) such that x ∈

∏m
i=1 zi and

y ∈
∏m

i=1 zζ(i). Suppose that z ∈ P. We have x · z ⊆ (
∏m

i=1 zi) · z, y · z ⊆
(
∏m

i=1 zζ(i)) · z. Now, suppose that zm+1 = z and we define the permutation
ζ ′ ∈ Sm+1 as follows:{

ζ ′(i) = ζ(i), for all 1 ≤ i ≤ m,

ζ ′(m+ 1) = m+ 1.

Thus, x · z ⊆
∏m+1

i=1 zi, y · z ⊆
∏m+1

i=1 zζ′(i). such that ζ ′(i) = i if zi /∈ Ln,x,y(P )

and z−1
i /∈ Ln,y,x(P ). Therefore, x · z ¯̄θn y · z. Similary, we have z · x ¯̄θn z · y.

Now, if x θ∗n y, then, there exists k ∈ N and (x = u0, u1, · · · , uk = y) ∈
P k+1 such that x = u0 θn u1 θn · · · θn uk−1 θn uk = y. Hence, we obtain
x · z = u0 · z ¯̄θ∗n u1 · z ¯̄θ∗n u2 · z ¯̄θ∗n · · · ¯̄θ∗n uk−1 · z ¯̄θ∗n uk · z = y · z and so
x · z ¯̄θ∗n y · z. Similarly, we can prove that z · x ¯̄θ∗n z · y, therefore ¯̄θ∗n is strongly
regular relation on P .

Proposition 2.3. For every n ∈ N, we have θ∗n+1 ⊆ θ∗n.

Proof. Let x θn+1 y, so, there exists m ∈ N and (z1, · · · , zm) ∈ Pm and ζ ∈ Sm

such that ζ(i) = i if zi /∈ Ln+1,x,y(P ) and z−1
i /∈ Ln+1,y,x(P ), such that x ∈∏m

i=1 zi and y ∈
∏m

i=1 zζ(i). Now, let ζ1 = ζ, since Ln+1,x,y(P ) ⊆ Ln,x,y(P ) and
Ln+1,y,x(P ) ⊆ Ln,y,x(P ), we have x θn y.
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Corollary 2.4. If P is a commutative hypergroup, then β∗ = θ∗n = ξ∗n = ν∗n =
γ∗.

Definition 2.5 ([13]). Let G be a group and n be an integer. The n-Bell center
of G denoted by Bn and defined as follows:

Bn = B(G,n) = {x ∈ G | [xn, y] = [x, yn], ; ∀y ∈ G}.

Clearly, B(G, 0) = B(G, 1) = G, and easy to see that B(G, 2) and B(G, 3) are
subgroup of G.

Remark 2.6. For every integer n, a group is n-Bell if B(G,n) = G.

Theorem 2.7. If P is a polygroup and ρ is a strongly regular relation on P ,
then for fix elements x, y ∈ P ;

Ln+1,x̄,ȳ(
P

ρ
) = {[x̄n+1, ȳ]},

where x̄, ȳ are the classes of x,y with respect to ρ.

Proof. The proof follows from definition of commutator of two elements in a
polygroup, Theorem 1.4 and Remark 1.5.

3. n-Bell groups derived from polygroups for n ∈ {2, 3}

In this section, we obtain an n-Bell group derived from polygroup for n = 2, 3,
and then we propose an open problem related to n-Bell groups.

Theorem 3.1. Let P be a polygroup. Then, for n ∈ {2, 3}, P/θ∗n is an n-Bell
group.

Proof. Let G = P/θ∗n. For n ∈ {2, 3}, we have B(G,n) ≤ G. By Remark 2.6,
it is enough to prove that G ≤ B(G,n). For this we should show that for every
h̄ ∈ Ln,x̄,ȳ(G) we have h̄−1 ∈ Ln,ȳ,x̄(G) and is obvious by Theorem 2.7.

Definition 3.2 ([16]). A group G is called an Engel group if, for each ordered
pair (x, y) of elements in G, there is a positive integer n = n(x, y), such that
[x,n y] = 1.

Theorem 3.3 ([17]). Let G be a group. Then

(a) G is a n-Bell group if and only if G is a (1− n)-Bell group;

(b) G is a 2-Bell group if and only if G is a 2-Engel group;

(c) G is a 3-Bell group if and only if G is a 3-Engel group satisfying the
identity [x, y, y]3 = 1, for all x, y ∈ G. In addition G has nilpotent of class
at most 4.
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Definition 3.4. Let H1 and H2 be two hypergroups (polygroups), and ρ1 and
ρ2 be two strongly regular relations. If H1/ρ1 and H2/ρ2 are isommorphism
groups, then we say that ρ1 is “the same” property to ρ2.

Remark 3.5. According to the above definition, θ∗2 is the same property to ξ∗2,s,
by Theorem 3.1, 3.3 and apply Theorem 1.6, and θ∗3 is the same property to ξ∗3,s
and ν∗3 , by Theorem 3.1, 3.3 and apply Theorem 1.6 and 1.7.

Example 3.6 ([2]). Let H be {e, a, b, c, d, f, g}. Consider the non-commutative
polygroup (H, ·), defined on H as follows: It is easy to see that H/β∗ ∼= S3 (for

. e a b c d f g

e e a b c d f,g f,g

a a e d f,g b c c

b b f,g e d c a a

c c d f,g e a b b

d d c a b f,g e e

f f,g b c a e d d

g f,g b c a e d d

more details, see [7]). Since S3 is not nilpotent, we conclude that β
∗ ̸= ν∗n, hence

H/ν∗n is an abelian group of order less than 6 and the class of nilpotency of H/ν∗n
is one for all n ∈ N [1], besides, S3 is not Engel and H/ξ∗n,s ⊆ H/β∗ ∼= S3, then
it concluded H/ξ∗n,s is an abelian group of order less than 6 and H/ξ∗ is 1-Engel
group. Then, H/θ∗2 is not 2-Bell or 3-Bell group, by apply the Remark 3.5.

Remark 3.7. We know that B(G,n) is called the n-Bell center of G. It is open
problem whether the n-Bell center always forms a subgroup. But, it is shown
that B(G, 2) is characteristic subgroup of all right 2-Engel elements and B(G, 3)
is characteristic subgroup of G which is nilpotent of class at most 4 (see, [13]).

Hence, according to above remark, we can put the following open problem:

Open Problem 3.8. Let H be non-commutative polygroup, for all n ≥ 4, is
H/θ∗n a n-Bell group?

4. On Bell groups derived from finite polygroup

In this section, we introduce a strongly regular relation θ∗ on finite polygroup
P such that P/θ∗ is a Bell group.

Definition 4.1. Let P be a finite polygroup. Then, we define the relation θ∗ on
P by θ∗ =

⋂
n≥1 θ

∗
n.

Definition 4.2. An equivalence relation ρ on a finite polygroup P , is called Bell
if and only if its derived group P/ρ is a Bell group.
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Example 4.3. θ∗2 and θ∗3 are Bell relations. By using the Remark 3.5, and
Example 3.3 in [2], Bell relations θ∗2 and θ∗3 are the same with Engel relations
ξ∗2,s and ξ∗3,s.

Theorem 4.4. (a) The relation θ∗ is a strongly regular relation on a finite
polygroup P .

(b) P/θ∗ is a Bell group.

Proof. (a) Since θ∗ =
⋂

n≥1 θ
∗
n, it is easy to see that θ∗ is strongly regular

relation on P.

(b) By using Proposition 2.3, we conclude that there exists k ∈ N (k ≥ 1)
such that θ∗k+1 = θ∗k and so θ∗ = θ∗m for some m ∈ N.

5. Transitivity of θ∗

Definition 5.1. Let X be a non-empty subset of P and x, y are fix elements of
P . Then, we say that X is a θ-part of P if for every t ∈ N, (z1, · · · , zt) ∈ P t and
for every ζ ∈ St if zi /∈

⋃
n≥1 Ln,x,y(P ) , z−1

i /∈
⋃

n≥1 Ln,y,x(P ), then ζ(i) = i,
then

t∏
i=1

zi ∩X ̸= ∅ =⇒
t∏

i=1

zζ(i) ⊆ X.

Theorem 5.2. Let X be a non-empty subset of a polygroup P . Then the fol-
lowing conditions are equivalent:

(1) X is a θ-part of P.

(2) x ∈ X, x θ y =⇒ y ∈ X.

(3) x ∈ X, x θ∗ y =⇒ y ∈ X.

Proof. (1) =⇒ (2) : If (x, y) ∈ P 2 is a pair, such that x ∈ X, x θ y, then there
exist (z1, · · · , zt) ∈ P t such that x ∈

∏t
i=1 zi ∩X, y ∈

∏t
i=1 zζ(i) and ζ(i) = i if

zi /∈
⋃

n≥1 Ln,x,y(P ), z−1
i /∈

⋃
n≥1 Ln,y,x(P ). Since X is a θ-part of P , we have∏t

i=1 zζ(i) ⊆ X and so y ∈ X.

(2) =⇒ (3) : Suppose that (x, y) ∈ P 2 is a pair, such that x ∈ X, x θ∗ y,
then there exist (z1, · · · , zt) ∈ P t such that x = z0 θ z1 θ · · · θ zt = y. Now,
by using (2) “t” times iterated then, we obtain y ∈ X.

(3) =⇒ (1) : Suppose that x ∈
∏t

i=1 zi ∩X and ζ ∈ St such that ζ(i) = i if
zi /∈

⋃
n≥1 Ln,x,y(P ), z−1

i /∈
⋃

n≥1 Ln,y,x(P ). Let y ∈
∏t

i=1 zζ(i). Since x θ y by

(3), we have y ∈ X. Consequently,
∏t

i=1 zζ(i) ⊆ X and so X is a θ-part.

Theorem 5.3. The following conditions are equivalent:

(1) For every a ∈ P , θ(a) is a θ-part of P .
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(2) θ is transitive.

Proof. (1) =⇒ (2) : Suppose that x θ∗ y. Then, there is (z1, · · · , zt) ∈ P t such
that x = z0 θ z1 θ · · · θ zt = y. Since θ(zi), for all 0 ≤ i ≤ t, is a θ-part, we
have zi ∈ θ(zi−1), for all 0 ≤ i ≤ t, thus y ∈ θ(x), which means that x θ y.

(2) =⇒ (1) : Suppose that x ∈ P, z ∈ θ(x) and z θ y. By transitivity of θ,
we have y ∈ θ(x). Now, according to Theorem 5.2, θ(x) is a θ-part of P.

Definition 5.4. Let A be a non-empty subset of a polygroup P . The intersection
of all θ-part, which contain A is called θ-closure of A in P and it will be denoted
by K(A).

In follows, we determine the set Z(A).
Assume that Z1(A) = A and Zn+1(A) = {x ∈ P |∃(z1, · · · , zt) ∈ P t, x ∈∏t

i=1 zi, ∃ζ ∈ St if zi /∈
⋃

s≥1 Ls,x,y(P ), & z−1
i /∈

⋃
s≥1 Ls,y,x(P ) then, ζ(i) = i

and
∏t

i=1 zζ(i) ∩ Zn(A) ̸= ∅}.
We denote Z(A) =

⋃
n≥1 Zn(A).

Theorem 5.5. For any non-empty subset A of P , the following statements hold:

(1) Z(A) = K(A);

(2) K(A) =
⋃

a∈AK(a).

Proof. (1) It is enough to prove that:

(a) Z(A) is a θ-part.

(b) If A ⊆ B and B is a θ-part, then Z(A) ⊆ B.

In order to (a), suppose that
∏t

i=1 zi ∩ Z(A) ̸= ∅ and ζ ∈ St such that
ζ(i) = i if zi /∈

⋃
n≥1 Ln,x,y(P ) and z−1

i /∈
⋃

n≥1 Ln,y,x(P ). Therefore,

there exists n ∈ N such that
∏t

i=1 zi ∩ Z(A) ̸= ∅, where it follows that∏t
i=1 zζ(i) ⊆ Zn+1(A) ⊆ Z(A).

Now, we prove (b) by induction on n. We have Z1(A) = A ⊆ B.

Suppose that Zn(A) ⊆ B. We prove that Zn+1(A) ⊆ B. If z ∈ Zn+1(A),
then z ∈

∏t
i=1 zi and there exists ζ ∈ St such that ζ(i) = i, if zi /∈⋃

s≥1 Ls,x,y(P ), z−1
i /∈

⋃
s≥1 Ls,y,x(P ), and also

∏t
i=1 zζ(i) ∩ Zn(A) ̸= ∅.

Therefore,
∏t

i=1 zζ(i) ∩B ̸= ∅ and hence z ∈
∏t

i=1 zi ⊆ B.

(2) It is clear that for all a ∈ A, K(a) ⊆ K(A). By part (1), we have K(A) =⋃
n≥1 Zn(A) and Z1(A) = A =

⋃
a∈A a. It is enough to prove that Zn(A) =⋃

a∈A Zn(a), for all n ∈ N. We follow by induction on n. Suppose it is
true for n. We prove that Zn+1(A) =

⋃
a∈A Zn+1(a). If z ∈ Zn+1(A),

then z ∈
∏t

i=1 zi and there exists ζ ∈ St such that ζ(i) = i, if zi /∈⋃
s≥1 Ls,x,y(P ) and z−1

i /∈
⋃

s≥1 Ls,y,x(P ) and also
∏t

i=1 zζ(i) ∩ Zn(A) ̸= ∅.
By the hypothesis of induction

∏t
i=1 zζ(i) ∩ Zn(a

′) ̸= ∅, for some a′ ∈ A.
therefore, z ∈ Zn+1(a

′), and so Zn+1(A) ⊆
⋃

a∈A Zn+1(a). Hence, K(A) =⋃
a∈AK(a).
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Theorem 5.6. The following relation is equivalence relation on P ,

x Z y ⇐⇒ x ∈ Z(y),

for every (x, y) ∈ P 2, where Z(y) = Z({y}).

Proof. It is easy to see that Z is reflexive and transitive. For the proof of
symmetric of relation Z, it is enough that we prove the following statements:

(1) For all n ≥ 2 and x ∈ H, Zn(Z2(x)) = Zn+1(x).

(2) x ∈ Zn(y) if and only if y ∈ Zn(x).

We prove (1) by induction on n. Suppose that z ∈ Z2(Z2(x)). Then,
z ∈

∏t
i=1 zi and there is ζ ∈ St such that ζ(i) = i, if zi /∈

⋃
s≥1 Ls,x,y(P ),

z−1
i /∈

⋃
s≥1 Ls,y,x(P ) and also

∏t
i=1 zζ(i) ∩ Z2(x) ̸= ∅, thus z ∈ Z3(x). if

z ∈ Zn+1(Z2(x)), then z ∈
∏t

i=1 zi and there exists ζ ∈ St such that ζ(i) = i, if
zi /∈

⋃
s≥1 Ls,x,y(P ), z−1

i /∈
⋃

s≥1 Ls,y,x(P ) and also
∏t

i=1 zζ(i) ∩ Zn(Z2(x)) ̸= ∅.
By hypothesis of induction, we have

∏t
i=1 zζ(i)∩Zn+1(x) ̸= ∅ and so z ∈ Zn+2(x).

Now, we prove (2) by induction on n, too. It is clear that x ∈ Z2(y) if
and only if y ∈ Z2(x). Then x ∈

∏t
i=1 zi and there exists ζ ∈ St such that

ζ(i) = i, if zi /∈
⋃

s≥1 Ls,x,y(P ), z−1
i /∈

⋃
s≥1 Ls,y,x(P ) and also

∏t
i=1 zζ(i) ∩

Zn(y) ̸= ∅. Suppose that b ∈
∏t

i=1 zζ(i) ∩ Zn(y), then, we have y ∈ Zn(b). From

x ∈
∏t

i=1 zi ∩ Z1(x) and b ∈
∏t

i=1 Zζ(i) we conclude that b ∈ Z2(x). Therefore,
y ∈ Zn(Z2(x)) = Zn+1(x).

6. Conclusion

In this paper, we have introduced a new strongly regular relation θ∗n on a poly-
group P and we have shown that P/θ∗n is a n-Bell group for n = 2, 3.

We defined the same relation structure between two strongly regular relations
on a hypergroup (polygroup), and we bring an open problem relate to n-Bell
group of P/θ∗n. In continue, we obtained some results related to θ∗n. We try
to answer the mention open problem and in this regard, for the other research
work.
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