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A note on conjugacy degrees of a finite group
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Abstract. Let G be a group, g1, g2, . . . , gk are a complete set of representatives for
the conjugacy classes of G. Then

k(G) =
1

|G|2
k∑

i=1

|(gi)G|2 =

k∑
i=1

1

|CG(gi)|2

is called the conjugate degree of G (see [6]). In this short paper, we investigate the
influence of the conjugacy degree of G on the structure of finite groups. The authors
get the formulas of the conjugacy degree of the dihedral group and the generalized
quaternion group and classify those groups G such that k(G) ≥ 1

3 .
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1. Introduction

All groups considered in this paper are finite and G always denotes a group. Let
π(|G|) stand for the set of all prime divisors of the order of G. The symbol [A]B
denotes the semidirect product of the groups A and B, where B is an operator
group of A. Let Cn be the cyclic group of order n, where n is a positive integer.
The other notions and notations are standard, as in [1].

In the past few years, there has been a growing interest in the application of
probability in finite group theory. One of the most important aspects that have
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been studied is the probability that two elements of a finite group G commute.
In 1979, D.J. Rusin [2] introduced the commutativity degree of G denoted by
d(G).

(*) d(G) =
1

|G|2
|{(x, y) ∈ (G,G)|xy = yx}|.

Evidently, G is an abelian group if and only if d(G) = 1, and the author also
get, if 1

2 < d(G) < 1, then d(G) ∈ {1
2(1 +

1
4n )|n ∈ N, n ≥ 1}. Later, P. Lescot

continues to research on this topic, and get the following results. If G is non
abelian, then d(G) ≤ 5

8 ; if d(G) > 1
2 , then G is nilpotent (see [5]). If d(G) = 1

2 ,
and G is not nilpotent, then G/Z(G) ∼=

∑
3 and G′ ∼= Z3 (see [4]).

As we know, the elements of any group may be partitioned into conjugacy
classes, so the conjugacy relation plays an important role in group theory. In [6],
S. Blackburn, J. Britnell and M. Wildon replace ‘community of elements’ with
‘conjugation of elements’, introduce the concept of the probability that a pair
of elements of a finite group are conjugate in 2012, we call it conjugate degree
of G, denoted by

k(G) =
1

|G|2
|{(x, y) ∈ (G,G)|x ∼ y}| = 1

|G|2
k∑

i=1

|(gi)G|2 =
k∑

i=1

1

|CG(gi)|2
,

where ∼ is the conjugacy relation, g1, g2, . . . , gk are a complete set of representa-
tives for the conjugacy classes of G. Using this concept, the authors investigate
the structure of finite groups, and show that G is abelian whenever k(G)|G| < 7

4 .
Specializing to the symmetric group Sn, they show that k(Sn) ≤ C/n2 for an
explicitly determined constant C. This bound leads to an elementary proof of
a result of Flajolet et al. (see [3]), that k(Sn) ∼ A/n2 as n → ∞ for some con-
stant A. In this paper, we continue to research on this topic. We investigate the
influence of the conjugacy degree of G on the structure of finite groups, and get
the formulas of the conjugacy degree of the dihedral group and the generalized
quaternion group and classify those groups G such that k(G) ≥ 1

3 .

2. Preliminaries

For the same of convenience, we list here some known results which will be useful
in the sequel.

Lemma 2.1 ([6, Proposition 4.2]). Suppose that G is a finite group and that
t ∈ G is a self-centralizing involution. Then k(G) = 1/4 + 1/|G| − 1/|G|2 and
G has a normal abelian subgroup A of odd order such that |G : A| = 2.

To state our following lemma, we shall need the majorization (or dominance)
order, denoted by ≽, which is defined on Rk by setting

(x1, x2, . . . , xk) ≽ (y1, y2, . . . , yk),

if and only if
∑j

i=1 xi ≥
∑j

i=1 yi for all j such that 1 ≤ j ≤ k.



1150 Y. XU, C.J. WANG and Y.R. RAN

Lemma 2.2 ([6, Lemma 3.3]). Let x, y ∈ Rk be decreasing k-tuples of real
numbers such that

∑k
i=1 xi =

∑k
i=1 yi = 1. Suppose that x ≽ y. Then

∑k
i=1 x

2
i ≥∑l

i=1 y
2
i , and equality holds if and only if x = y.

3. Main results

The dihedral groupD2n (n ≥ 2) is the symmetry group of a regular polygon with
n sides and it has the order 2n. The most convenient abstract description of
D2n is obtained by using its generators: a rotation a of order n and a reflection
b of order 2. Under these notations, we have

D2n = ⟨a, b|an = b2 = 1, bab = a−1⟩ = [⟨a⟩]⟨b⟩.

Proposition 3.1. The conjugacy degree k(D2n) of the dihedral group D2n is
given by the following equality:

k(D2n) =


n2 + 4n− 4

8n2
, n is even;

n2 + 2n− 1

4n2
, n is odd.

Proof. By the definition of the dihedral group D2n, we have that D2n =
{e, a, . . . , an−1, b, ba, . . . , ban−1}.

Case 1. n is even. Then n
2 is integer, Z(D2n) = {e, a

n
2 }. Observing that each

element of the center Z(D2n) forms a conjugacy class containing just itself. And
{ai, (ai)−1} forms a conjugate class, where i < n and i ̸= 0, n2 , so there are n−2

2
conjugate classes of this type. Since an = b2 = 1, bab = a−1, we have that ba =
a−1ba = baa = ba2, (ba2)a = a−1(ba2)a = ba4, . . . , (ban−2)a = a−1(ban−2)a =
ban = b; And (ba)a = a−1(ba)a = baaa = ba3, (ba3)a = a−1(ba3)a = ba5, . . . ,
(ban−1)a = a−1(ban−1)a = ba. So {b, ba2, . . . , ban−2} forms a conjugate class
and {ba, ba3, . . . , ban−1} forms a conjugate class. By the definition of conjugacy

degree of G, we get that k(D2n) =
1+1+n−2

2
×22+2×(n

2
)2

(2n)2
= n2+4n−4

8n2 .

Case 2. n is odd. By the similar argument as in Case 1, {e} forms a conjugate
class; {ai, (ai)−1} forms a conjugate class, where i < n and i ̸= 0, thus there
are n−1

2 conjugate classes of this type; And {b, ba, . . . , ban−1} forms a conjugate
class by n is odd; Thus by the definition of conjugacy degree of G, we get that

k(D2n) =
1+n−1

2
×22+n2

(2n)2
= n2+2n−1

4n2 .

Therefore,

k(D2n) =


n2+4n−4

8n2 , n is even;

n2+2n−1
4n2 , n is odd.

It is easy to check that k(D2n) = n2+4n−4
8n2 or n2+2n−1

4n2 , is a monotonic de-
creasing function. If n is even, then limn→∞ k(D2n) =

1
8 , so

1
8 < k(D2n) ≤ 1

4 .
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If n is odd and n ≥ 2, then limn→∞ k(D2n) =
1
4 , so

1
4 < k(D2n) ≤ 7

18 . Thus for
any integer n, we have 1

8 < k(D2n) ≤ 7
18 .

We can also calculate the conjugate degree of D2n by using GAP (see [7]),
the following is calculation program.
gap > G := DihedralGroup(2n);
gap > CC := ConjugacyClasses(G);
gap > a := 0;;
gap > i := 1;;
gap > A := 0;;
gap > L := Length(CC);
gap > while i <= L do
> A := Size(Centralizer(CC[i]));
> a := a+ 1/A2;
> Print(a, ” n”);
> i := i+ 1;
>od;

Some authors define generalized quaternion group to be the same as dicyclic
group.

⟨a, b|a2n = 1, b2 = an, b−1ab = a−1⟩,

for some integer n ≥ 2. This group is denoted Q4n and has order 4n.

Proposition 3.2. The conjugacy degree k(Q4n) of the generalized quaternion
group Q4n is given by the following equality:

k(Q4n) =
n2 + 2n− 1

8n2
.

Proof. By the definition of the generalized quaternion group Q4n, we have
that Q4n = {e, a, . . . , a2n−1, b, ab, . . . , a2n−1b}. By the similar argument as in
Proposition 3.1, Z(Q4n) = {e, an}, then each element of the center Z(Q4n)
forms a conjugacy class containing just itself; {ai, a2n−i} forms a conjugate
class, where 0 < i < 2n and i ̸= n, so there are 2n−2

2 conjugate classes
of this type; Since ab = ba2n−1, ba = a2n−1b, we get that ba = a−1ba =
a2n−2b, (a2n−2b)a = a−1(a2n−2b)a = a2n−4b, . . . , (a2b)a = a−1(a2b)a = b.
Thus {b, a2b, . . . , a2n−2b} forms a conjugate class. And (ab)a = a−1(ab)a =
a2n−1b, (a2n−1b)a = a−1(a2n−1b)a = a2n−3b, . . . , (a3b)a = a−1(a3b)a = ab. So
{ab, a3b, . . . , a2n−1b} forms a conjugate class. By the definition of conjugacy

degree of G, we get that k(Q4n) =
1+1+ 2n−2

2
×22+2×n2

(4n)2
= n2+2n−1

8n2 .

It is easy to check that k(Q4n) =
n2+2n−1

8n2 is a monotonic decreasing function.
And limn→∞ k(Q4n) =

1
8 , so

1
8 < k(Q4n) ≤ 7

32 by n ≥ 2.

Of course, we can also calculate the conjugate degree of Q4n by using
GAP (see [7]), the calculation program is similar to the program for calcu-
lating D2n. In the calculation program of D2n, we just only replace ‘G :=
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DihedralGroup(2n)’ with ‘G := QuaternionGroup(4n)’, then we can get what
we want.

Now, we can get the following result by using the Propositions.

Theorem 3.1. Let G be a non-trivial finite group. Then k(G) ≥ 1/3 if and
only if G is isomorphic to one of the following groups: C2, C3, D6 and D10.

Proof. Let ci(G) be the size of the ith smallest centralizer in a finite group G,
m be the number of conjugacy classes of G and let

r(G) = (1/c1(G), 1/c2(G), . . . , 1/cm(G)).

Since the size of the ith largest conjugacy class of G is |G|/ci(G), we have that∑m
i=1 1/ci(G) = 1.
If c1(G) > 2, then we have that (1/3, 1/3, 1/3) ≽ r(G). Hence, either

(1/3, 1/3, 1/3) = r(G), that is, |G| = 3, G ∼= C3 or by Lemma 2.2, we have
that

k(G) =
m∑
i=1

1/ci(G)2 < 1/3.

So, c1(G) = 2, that is, G contains an element t such that |CG(t)| = 2. Since
⟨t⟩ ≤ CG(t), we get that ⟨t⟩ = CG(t). Thus we have that t is a self-centralizing
involution. By Lemma 2.1 and the hypothesis, we get that k(G) = 1/4+1/|G|−
1/|G|2 ≥ 1/3, that is, |G|2 − 12|G| + 12 ≤ 0, so 6 − 2

√
6 ≤ |G| ≤ 6 + 2

√
6. By

Lemma 2.1, we get that 2 ∈ π(|G|) and 2 ̸∈ π(|G|/2), so |G| = 2, 6, 10. It is
clear that, if |G| = 6, then G ∼= C6 or D6. If |G| = 10, then G ∼= C10 or D10.
By Proposition 3.1, we get that k(D6) = 7/18 > 1/3, k(D10) = 17/50 > 1/3,
while, k(C2) = 1/2, k(C6) = 1/6, k(C10) = 1/10. By k(G) ≥ 1/3, we get that
G is isomorphic to one of C2, D6 and D10.

The proof of Theorem is completed.
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