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1. Introduction

In this paper, we study the Fredholm property of regular hypoelliptic operators
in multianisotropic weighted Sobolev spaces. The class of regular hypoelliptic
operators is an important subclass of Hyormander’s hypoelliptic operators (see
[1]). They were introduced in late 60s-70s and studied by many authors: V. P.
Mikhailov [2], J. Friberg [3], L. R. Volevich, S. G. Gindikin. [4]. Corresponding
characteristic polynomials of regular hypoelliptic operators are ”multi-quasi-
elliptic”, so they are natural generalization of elliptic and quasielliptic polyno-
mials.

The analysis of the Fredholm property of regular hypoelliptic operators in
Sobolev spaces in Rn has certain difficulties - characteristic polynomials of such
operators are not homogeneous as in elliptic case and Fredholm theorems for
compact manifolds cannot always be used in this case.

The Fredholm property of elliptic operators in special weighted spaces is
studied in the works of L. A. Bagirov [5], R. B. Lockhart, R. C. McOwen [6, 7],
E. Schrohe [8] and others.

L. A. Bagirov [9], G. A. Karapetyan, A. A. Darbinyan [10], A. G. Tumanyan
[11, 12] studied the Fredholm property of quiasielliptic operators in weighted
anisotropic spaces. For quasielliptic operators with constant coefficients isomor-
phism properties in some special scales of weighted Sobolev spaces are studied
in G. V. Demidenko’s works (see [13, 14]). In the works of L. Rodino, P. Bog-
giatto, E. Buzano (see [15]) the Fredholm property is studied for the special



1010 ANI TUMANYAN

classes of pseudodifferential operators acting in multianisotropic spaces with
special polynomial weights.

In this work, necessary conditions are obtained for fulfillment of special a pri-
ori estimates for differential operators acting in multianisotropic Sobolev spaces
in Rn (Theorem 3.1 and Theorem 3.4). Necessary and sufficient conditions are
obtained for the Fredholm property of regular hypoelliptic operators with vari-
able coefficients acting in multianisotropic Sobolev spaces in Rn with certain
weight functions (Theorem 3.6).

2. Basic notions and definitions

Definition 2.1. A bounded linear operator A, acting from a Banach space X
to a Banach space Y , is called an n–normal operator, if the following conditions
hold:

1. the image of operator A is closed (Im(A) = Im(A));

2. the kernel of operator A is finite dimensional (dimKer(A) <∞).

An operator A is called a Fredholm operator if conditions 1-2 hold and

3. the cokernel of operator A is finite dimensional
(dim coker(A) = dimY/ Im(A) <∞).

The difference between the dimension of the kernel and the cokernel of op-
erator A is called index of the operator:

ind(A) = dimKer(A)− dim coker(A).

Definition 2.2. For a bounded linear operator A, acting from a Banach space
X to a Banach space Y , bounded linear operator R1 : Y → X and R2 : Y → X
are called respectively left and right regularizers if the following holds: R1A =
IX + T1, AR2 = IY + T2, where IX , IY – identity operators, T1 : X → X and
T2 : Y → Y are compact operators.

Definition 2.3. For a bounded linear operator A, acting from a whole Banach
space X to a Banach space Y , bounded linear operator R : Y → X is called a
regularizer for operator A, if it is left and right regularizer.

Let n ∈ N and Rn be Euclidean n-dimensional space, Zn
+, Nn be the sets of

n-dimensional multi-indices and multi-indices with natural components respec-
tively.

Let N ⊂ Zn
+ be a finite set of multi-indices, R = R(N ) be a minimum

convex polyhedron containing all the points N .

Definition 2.4. A polyhedron R is called a completely regular if the following
holds: a) R is a complete polyhedron: R has a vertex at the origin and further
vertices on each coordinate axes in Rn; b) all components of the outer normals
of (n− 1)–dimensional non-coordinate faces of R are positive.
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Let R be a completely regular polyhedron. Denote by Rn−1
j (j = 1, . . . , In−1)

(n−1)–dimensional non-coordinate faces of R with corresponding outer normal
µj such that all multi-indices α ∈ Rn−1

j satisfy (α : µj) = α1

µj
1

+ . . . + αn

µj
n
= 1,

∂′R =
⋃In−1

j=1 Rn−1
j . For k > 0 denote by kR := {kα = (kα1, kα2 . . . , kαn) : α ∈

R}.
Consider the differential form

(1) P (x,D) =
∑
α∈R

aα(x)D
α,

where Dα = Dα1
1 . . . Dαn

n , Dj = i−1 ∂
∂xj

, x = (x1, . . . , xn) ∈ Rn, aα(x) ∈ C(Rn).

Denote by

P (x, ξ) =
∑
α∈R

aα(x)ξ
α.(2)

For each (n− 1)–dimensional non-coordinate face Rn−1
j (j = 1, . . . , In−1) denote

by

Pj(x,D) =
∑

α∈Rn−1
j

aα(x)D
α, Pj(x, ξ) =

∑
α∈Rn−1

j

aα(x)ξ
α.

For ξ ∈ Rn denote by

|ξ|R =
∑
α∈R

|ξα|, |ξ|∂′R =
∑

α∈∂′R
|ξα|.

Definition 2.5. A differential form P (x,D) is called regular at a point x0 ∈ Rn,
if there exists a constant δ > 0 such that:

1 + |P (x0, ξ)| ≥ δ|ξ|R, ∀ξ ∈ Rn.

Definition 2.6. A differential form P (x,D) is called regular in Rn, if P (x,D)
is regular at each point x ∈ Rn.

Definition 2.7. A differential form P (x,D) is called uniformly regular in Rn,
if there exists a constant δ > 0 such that:

1 + |P (x, ξ)| ≥ δ|ξ|R,∀ξ ∈ Rn,∀x ∈ Rn.

Let’s consider some examples of regular differential forms.

1. Letm ∈ N andR be a Newton polyhedron for the set of points (0, 0, . . . , 0),
(m, 0, . . . , 0), . . . , (0, 0, . . . ,m). In this case conditions from definitions 2.5–
2.7 coincide with ellipticity conditions and differential form P (x,D) is
elliptical.
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2. Let ν ∈ Nn andR be a Newton polyhedron for the set of points (0, 0, . . . , 0),
(ν1, 0, . . . , 0), . . . , (0, 0, . . . , νn). In this case conditions from definitions
2.5–2.7 coincide with quasiellipticity of differential form P (x,D).

3. Let n = 2 and R be a Newton polyhedron for the points (0, 0), (8, 0), (0, 8)
and (6, 4). Then,

P (x,D) = a1D
8
1 + a2D

6
1D

4
2 + a3D

8
2 + q(x)

is a regular differential form in R2 with some a1, a2, a3 > 0 and q ∈ C(R2).

4. Let n = 3 and R be a Newton polyhedron for the points (0, 0, 0), (8, 0, 0),
(0, 8, 0), (6, 4, 0), (6, 0, 6), (0, 6, 6) and (0, 0, 12). Then,

P (x,D) = D8
1 +D6

1D
4
2 +D8

2 +D6
1D

6
3 +D6

2D
6
3 +D12

3 + q(x)

is a regular differential form in R3 with q ∈ C(R3).

For k ∈ R and completely regular polyhedron R denote

Hk,R(Rn) := {u ∈ S′ : ∥u∥k,R := (

∫
|û(ξ)|2(1 + |ξ|∂′R)

2kdξ)
1
2 <∞},

where S′ is the set of tempered distributions, û is a Fourier transform of function
u.

Denote

Q := {g ∈ C(Rn) : ∃c > 0 such that g(x) ≥ c > 0, ∀x ∈ Rn}.

For m ∈ Z+ and completely regular polyhedron R denote

Qm,R := {g(x) ∈ Q : Dβg(x) ∈ C(Rn),
1

g(x)
⇒ 0, max

|x−y|≤1

|g(x)− g(y)|
g(y)

⇒ 0,

|Dβg(x)|
g(x)1+(β:µj)

⇒ 0 as |x| → ∞, ∀β ∈ mR, β ̸= 0, j = 1, . . . , In−1}.

The examples of weight functions from Qm,R include polynomial functions
as well as special exponential functions, for example:

(1 + |x|R)l, l > 0, exp (1 + |x|R)r, 0 < r <
1

µmax
,

where µmax = max1≤i≤In−1 max1≤s≤n{µis}. For k ∈ Z+, q ∈ Q, completely
regular polyhedron R and Ω ⊂ Rn denote

Hk,R
q (Rn) :=

{u : ∥u∥
Hk,R

q (Rn)
:= ∥u∥k,R,q :=

∑
α∈kR

∥Dαu · qk−maxi(α:µ
i)∥L2(Rn) <∞},
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Hk,R
q (Ω) := {u : ∥u∥

Hk,R
q (Ω)

:=
∑
α∈kR

∥Dαu · qk−maxi(α:µ
i)∥L2(Ω) <∞}.

Let k ∈ Z+, q ∈ Q and the coefficients of differential expression P (x,D) of
the form (1) satisfy the following conditions:

(3) |Dβaα(x)| ≤ Cα,β q(x)
1−maxi(α−β:µi) ∀α ∈ R, β ∈ kR.

Then, it is easy to check that P (x,D) generates a bounded linear operator,

acting from Hk+1,R
q (Rn) to Hk,R

q (Rn).

3. Main results

For N > 0 and x0 ∈ Rn denote

KN (x0) := {x ∈ Rn : |x− x0| ≤ N},KN := KN (0).

Theorem 3.1. Let k ∈ Z+, q ∈ Q and the differential form P (x,D) with some
constant κ > 0 satisfies the following estimate:

(4) ∥u∥k+1,R,q ≤ κ(∥Pu∥k,R,q + ∥u∥L2(Rn)),∀u ∈ Hk+1,R
q (Rn).

Then, P (x,D) is uniformly regular in Rn.

Proof. Let x0, ξ ∈ Rn, |ξ| ̸= 0, N > 0 and φ ∈ C∞
0 (Rn) such that suppφ ⊂

KN (x0) and ∥φ∥L2(Rn) = 1. For λ > 0 and j ∈ {1, . . . , In−1} denote by λ
1

µj ξ =

(λ
1

µ
j
1 ξ1, . . . , λ

1

µ
j
n ξn), where µ

j is outer normal of Rn−1
j . Denote by uλ,j(x) =

exp(i(λ
1

µj ξ, x))φ(x). For β ∈ (k + 1)R, we have

Dβuλ,j(x) = λ(β:µ
j)ξβ exp(i(λ

1

µj ξ, x))φ(x)

+
∑

0≤γ<β

Cγ
βλ

(γ:µj)ξγ exp(i(λ
1

µj ξ, x))Dβ−γφ(x).

From last equality, for β ∈ (k + 1)R, we get

∥Dβuλ,j · qk+1−maxi(β:µ
i)∥L2(Rn) = λ(β:µ

j)|ξβ|∥φ · qk+1−maxi(β:µ
i)∥L2(Rn)

+ o(λ(β:µ
j)),

when λ→ ∞. Then, we get

(5) ∥uλ,j∥k+1,R,q =
∑

β∈(k+1)R

λ(β:µ
j)|ξβ|∥φ · qk+1−maxi(β:µ

i)∥L2(Rn) + o(λk+1),

when λ→ ∞.
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Notice that, for α ∈ R the following holds: (α : µj) ≤ 1 and (α : µj) = 1
if only if α ∈ Rn−1

j . Taking it into account along with the fact that φ ∈
C∞
0 (Rn), suppφ ⊂ KN (x0) for β ∈ kR we get

∥Dβ(P (x,D)uλ,j)qk−maxi(β:µ
i)∥L2(Rn)

≤ λ(β:µ
j)λ|ξβ| max

x∈KN (x0)
|Pj(x, ξ)|∥φ · qk−maxi(β:µ

i)∥L2(Rn) + o(λk+1).

From the last estimate, we get

∥Puλ,j∥k,R,q ≤
∑
β∈kR

λ(β:µ
j)+1|ξβ| max

x∈KN (x0)
|Pj(x, ξ)|

×∥φ · qk−maxi(β:µ
i)∥L2(Rn) + o(λk+1),(6)

when λ→ ∞. Then, from (4) and (5)–(6) we get∑
β∈(k+1)Rn−1

j

λk+1|ξβ|∥φ∥L2(Rn) + o(λk+1)

≤ κ
∑

β∈kRn−1
j

λk+1|ξβ| max
x∈KN (x0)

|Pj(x, ξ)|∥φ∥L2(Rn) + o(λk+1),

when λ→ ∞.
In last inequality we take into account that ∥φ∥L2(Rn) = 1, divide by λk+1

and tend λ→ ∞. Then the following is obtained:∑
β∈(k+1)Rn−1

j

|ξβ| ≤ κ
∑

β∈kRn−1
j

|ξβ| max
x∈KN (x0)

|Pj(x, ξ)|.

Since R is completely regular polyhedron for k ∈ Z+ and j ∈ {1, . . . , In−1},
there exist such constants δ1 > 0, δ2 > 0 such tat

(7)

∑
β∈(k+1)Rn−1

j

|ξβ| ≥ δ1(
∑

β∈Rn−1
j

|ξβ|)k+1,

∑
β∈kRn−1

j

|ξβ| ≤ δ2(
∑

β∈Rn−1
j

|ξβ|)k.

From (7), we get

δ1
∑

β∈Rn−1
j

|ξβ| ≤ κδ2 max
x∈KN (x0)

|Pj(x, ξ)|.

Since the coefficients of P (x,D) are continuous, tending N → 0, we obtain

(8) |Pj(x0, ξ)| ≥ δ3
∑

β∈Rn−1
j

|ξβ|, ∀ξ ∈ Rn,
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where δ3 =
δ1
κδ2

> 0.
Since constant δ3 does not depend on the choice of x0 ∈ Rn, we get

(9) |Pj(x, ξ)| ≥ δ3
∑

β∈Rn−1
j

|ξβ|, ∀x ∈ Rn,∀ξ ∈ Rn.

Similarly analogous inequalities can be obtained for all j ∈ {1, . . . , In−1}.
Then applying Theorem 6.1 from [2] we obtain that P (x,D) is uniformly regular
in Rn.

Theorem 3.2. (Theorem 7.1 [19]) Let E, F and E0 be Banach spaces such that
E is compactly embedded in E0. Let A be a bounded linear operator acting from
E to F . An operator A : E → F is an n−normal operator if and only if there
exists a constant C > 0 such that

∥x∥E ≤ C(∥Ax∥F + ∥x∥E0), ∀x ∈ E.

Applying the last theorem for operator P (x,D), acting from Hk+1,R
q (Rn) to

Hk,R
q (Rn), we get

Theorem 3.3. Let k ∈ Z+, q ∈ Q and P (x,D) be differential form (1). Then

operator P (x,D), acting from Hk+1,R
q (Rn) to Hk,R

q (Rn), is an n−normal oper-
ator if and only if there exist constants κ > 0 and N > 0 such that the following
holds

∥u∥k+1,R,q ≤ κ(∥Pu∥k,R,q + ∥u∥L2(KN )) , ∀u ∈ Hk+1,R
q (Rn).

Corollary 3.1. Let k ∈ Z+, q ∈ Q and operator P (x,D), acting from

Hk+1,R
q (Rn) to Hk,R

q (Rn), be a Fredholm operator. Then P (x,D) is uniformly
regular in Rn.

Proof. Since operator P (x,D), acting from Hk+1,R
q (Rn) to Hk,R

q (Rn) is a Fred-
holm operator, then it is an n−normal operator. From Theorem 3.3, we get
that there exist such constants κ > 0 and N > 0 that the following estimate
holds

∥u∥k+1,R,q ≤ κ(∥Pu∥k,R,q + ∥u∥L2(KN )) ≤ κ(∥Pu∥k,R,q + ∥u∥L2(Rn)),

for all u ∈ Hk+1,R
q (Rn). From last estimate using Theorem 3.1 we obtain that

P (x,D) is uniformly regular in Rn.

Remark 3.1. It is easy to check that in the case q ≡ 1 inverse statement is
true with some smoothness conditions on the coefficients of P (x,D). In next
theorem 3.4 it is proved that under the special conditions on the weight function
q and coefficients of the differential form P (x,D) uniform regularity in Rn (in
the sense of definition (2.7)) does not imply the fulfillment of a priori estimate
of the form (4) and stronger conditions are necessary for it.
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Let k ∈ Z+ and q ∈ Qk,R. Consider the differential form P (x,D) (see (1)),
which is expressed in the following way:

(10) P (x,D) =
∑
α∈R

aα(x)D
α =

∑
α∈R

(a0α(x)q(x)
1−maxi(α:µ

i) + a1α(x))D
α,

where aα(x) = a0α(x)q(x)
1−maxi(α:µ

i)+a1α(x), D
β(a0α(x)) = O(q(x)mini(β:µ

i)) and
Dβ(a1α(x)) = o(q(x)1−maxi(α−β:µi)), when |x| → ∞ for all α ∈ R, β ∈ kR.

Theorem 3.4. Let k ∈ Z+, q ∈ Qk,R and P (x,D) be the differential form (10)
with the coefficients that satisfy lim|x|→∞max|x−y|≤1 |a0α(x)− a0α(y)| = 0 for all
α ∈ R.

Let there exists a constant κ > 0 such that:

(11) ∥u∥k+1,R,q ≤ κ(∥Pu∥k,R,q + ∥u∥L2(Rn)),∀u ∈ Hk+1,R
q (Rn).

Then, P (x,D) is regular in Rn and there exist constants δ > 0 and M > 0
such that

(12) |
∑
α∈R

a0α(x)λ
1−maxi(α:µ

i)ξα| ≥ δ(λ+ |ξ|∂′R), ∀ξ ∈ Rn, λ > 0, |x| > M.

Proof. Regularity of P (x,D) in Rn follows from Theorem 3.1. It remains to
prove that inequality (12) holds.

Let M ∈ R+, xM ∈ Rn\KM , φ ∈ C∞
0 (Rn), suppφ ⊂ K1(xM ), ∥φ∥L2(Rn) = 1

and ξ ∈ Rn. Let j ∈ {1, . . . , In−1}.
Consider the function ũj(x) = exp(i(q(xM )

1

µj ξ, x))φ(x) where µj is an outer
normal of non-coordinate face Rn−1

j such that all multi-indices α ∈ Rn−1
j satisfy

(α : µj) = 1.

Denote by Rj = {α ∈ R : (α : µj) = max1≤i≤In−1(α : µi)}.
Since lim|x|→∞max|x−y|≤1

|q(x)−q(y)|
q(y) = 0, then for any r ∈ R+ the following

inequality is fulfilled

(13) |q(x)r − q(xM )r| ≤ εr(M)q(xM )r,∀x ∈ K1(xM ),

where εr(M) → 0 when M → ∞.

Using inequality (13) and the fact that supp ũj ⊂ K1(xM ) it is easy to see
that there exists a function ε(M) such that ε(M) → 0 when M → ∞ and the
following inequalities hold:

(14) ∥ũj∥k+1,R,q ≥ (1− ε(M))∥ũj∥k+1,R,q(xM ),

(15) ∥Pũj∥k,R,q ≤ (1 + ε(M))∥Pũj∥k,R,q(xM ).
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Taking into consideration the definition of function ũj one can check that for
any β ∈ (k+1)Rj with some constants C1 > 0 and σ = σ(R) > 0 the following
holds

∥Dβũj∥L2(Rn)q(xM )k+1−(β:µj) ≥ |ξβ|q(xM )k+1∥φ∥L2(Rn)

− C1

∑
0≤γ<β

|ξγ |q(xM )k+1−σ.

For β ∈ (k + 1)(R \ Rj) with some constants C2 > 0 and σ = σ(R) > 0 the
following holds

∥Dβũj∥L2(Rn)q(xM )k+1−maxi(β:µ
i)

≥ |ξβ|q(xM )k+1−σ∥φ∥L2(Rn) − C2

∑
0≤γ<β

|ξγ |q(xM )k+1−σ.

From last two inequalities, taking into account that ∥φ∥L2(Rn) = 1, with some
constants C3 > 0 and σ > 0 we get

∥ũj∥k+1,R,q(xM ) ≥
∑

β∈(k+1)Rj

|ξβ|q(xM )k+1

− C3

∑
γ∈(k+1)(R\Rn−1

j )

|ξγ |q(xM )k+1−σ.(16)

Taking into account, conditions (3) on the coefficients of P (x,D) and inequality
(13) we get that for β ∈ kR and α ∈ R with some Cα,β, C

′
α,β > 0 holds

|Dβ(aα(x)D
αũj(x))|q(xM )k−maxi(β:µ

i)

≤ Cα,β

∑
β1+β2=β

|Dβ1(aα(x))D
α+β2 ũj(x)|q(xM )k−maxi(β:µ

i)

≤ C ′
α,β

∑
β1+β2=β

|Dα+β2 ũj(x)|q(xM )1−maxi(α−β1:µi)q(xM )k−maxi(β:µ
i).

Let β ∈ k(R\Rj) and α ∈ R. Then, for β1, β2 ∈ kR, β1+β2 = β with some
σ > 0 the following holds

max
i

(α− β1 : µ
i) + max

i
(β : µi)− (α+ β2 : µ

j)

≥ (max
i

(α− β1 : µ
i)− (α− β1 : µ

j)) + (max
i

(β : µi)− (β : µj)) ≥ σ > 0.

So, for β ∈ k(R\Rj) and α ∈ R with some constants C ′′
α,β, C

′′′
α,β > 0 and σ > 0

we get

|Dβ(aα(x)D
αũj(x))|q(xM )k−maxi(β:µ

i)
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≤ C ′′
α,β

∑
β1+β2=β

|Dα+β2 ũj(x)|q(xM )k+1−σ−maxi(α+β2:µi),

∥Dβ(aα(x)D
αũj)∥L2(Rn)q(xM )k−maxi(β:µ

i)

≤ C ′′′
α,β

∑
γ∈(k+1)(R\Rn−1

j )

|ξγ |q(xM )k+1−σ.

From the last estimate we obtain that for β ∈ k(R\Rj) with some constants
C4 > 0 and σ > 0

∥Dβ(P (x,D)ũj)∥L2(Rn)q(xM )k−maxi(β:µ
i)

≤ C4q(xM )k+1−σ
∑

γ∈(k+1)(R\Rn−1
j )

|ξγ |(17)

For β ∈ kRj , we have

∥Dβ(P (x,D)ũj)∥L2(Rn)q(xM )k−(β:µj)

≤ ∥Dβ(
∑
α∈Rj

a0α(x)q(x)
1−(α:µj)Dαũj)∥L2(Rn)q(xM )k−(β:µj)(18)

+ ∥Dβ(
∑

α∈R\Rj

a0α(x)q(x)
1−maxi(α:µ

i)Dαũj)∥L2(Rn)q(xM )k−(β:µj)

+ ∥Dβ(
∑
α∈Rj

a1α(x)D
αũj)∥L2(Rn)q(xM )k−(β:µj).

Similarly, to (17) with some constants C5 > 0 and σ > 0 holds

∥Dβ(
∑

α∈R\Rj

a0α(x)q(x)
1−maxi(α:µ

i)Dαũj)∥L2(Rn)q(xM )k−(β:µj)

≤ C5

∑
γ∈(k+1)(R\Rn−1

j )

|ξγ |q(xM )k+1−σ.(19)

Using conditions Dβ(a1α(x)) = o(q(x)1−maxi(α−β:µi)) when |x| → ∞ for all
α ∈ R, β ∈ kR it is easy to check that for β ∈ kRj there exists such a function
τ1(M) that τ1(M) → 0 when M → ∞ and the following holds

∥Dβ(
∑
α∈R

a1α(x)D
αũj)∥L2(Rn)q(xM )k−(β:µj)

≤ τ1(M)
∑

γ∈(k+1)R

|ξγ |q(xM )k+1.(20)
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For the first term in (18) the following estimate holds

∥Dβ(
∑
α∈Rj

a0α(x)q(x)
1−(α:µj)Dαũj)∥L2(Rn)q(xM )k−(β:µj)

≤ ∥
∑
α∈Rj

a0α(xM )q(xM )1−(α:µj)Dα+βũj∥L2(Rn)q(xM )k−(β:µj)

+ ∥
∑
α∈Rj

Dβ((a0α(x)q(x)
1−(α:µj) − a0α(xM )q(xM )1−(α:µj))Dαũj)∥L2(Rn)

× q(xM )k−(β:µj).

It is easy to check that with some constants C6 > 0 and σ > 0 the following
holds

∥
∑
α∈Rj

a0α(xM )q(xM )1−(α:µj)Dα+βũj∥L2(Rn)q(xM )k−(β:µj)

≤ |
∑
α∈Rj

a0α(xM )ξα||ξβ|q(xM )k+1(21)

+ C6

∑
γ∈(k+1)(R\Rn−1

j )

|ξγ |q(xM )k+1−σ.

Taking into account, conditions in (10), lim|x|→∞max|x−y|≤1 |a0α(x)−a0α(y)| =
0 for α ∈ R, q ∈ Qk,R and inequality (13) we get that for α ∈ R and β ∈ kR
there exists τα,β(M) such that τα,β(M) → 0 when M → ∞ and the following
holds

|Dβ(a0α(x)q(x)
1−(α:µj) − a0α(xM )q(xM )1−(α:µj))| ≤ τα,β(M)q(xM )1−(α:µj)+(β:µj).

From last inequality we get that there exist a function τ2(M) such that τ2(M) →
0 when M → ∞, constants C7 > 0 and σ > 0 that the following estimate is
satisfied

∥
∑
α∈Rj

Dβ(a0α(x)q(x)
1−(α:µj) − a0α(xM )q(xM )1−(α:µj)Dαũj)∥L2(Rn)

× q(xM )k−(β:µj) ≤ τ2(M)
∑
α∈Rj

|ξα+β|q(xM )k+1(22)

+ C7

∑
γ∈(k+1)(R\Rn−1

j )

|ξγ |q(xM )k+1−σ.

So, using last estimate and estimates (17)–(22) we obtain that there exist
such a function τ3(M), τ3(M) → 0 when M → ∞ and constants C8 > 0 and
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σ > 0 that the following holds

∥Pũj∥k,R,q(xM ) ≤ |
∑
α∈Rj

a0α(xM )ξα|
∑

β∈kRj

|ξβ|q(xM )k+1

+ C8

∑
γ∈(k+1)(R\Rn−1

j )

|ξγ |q(xM )k+1−σ + τ3(M)
∑

γ∈(k+1)R

|ξγ |q(xM )k+1.(23)

Then, from (11) using (16) and (23) we get∑
β∈(k+1)Rj

|ξβ|q(xM )k+1 − C3

∑
γ∈(k+1)(R\Rn−1

j )

|ξγ |q(xM )k+1−σ

≤ κ(|
∑
α∈Rj

a0α(xM )ξα|
∑

β∈kRj

|ξβ|q(xM )k+1

+ C8

∑
γ∈(k+1)(R\Rn−1

j )

|ξγ |q(xM )k+1−σ + τ3(M)
∑

γ∈(k+1)R

|ξγ |q(xM )k+1).

Since {a0α(x) : α ∈ Rj} are bounded functions and xM → ∞ when M → ∞,
there exist convergent subsequences of sequences {a0α(xM ) : α ∈ Rj}. Without
loss of generality assume that sequences {a0α(xM ) : α ∈ Rj} are convergent,
so for each α ∈ Rj there exists a constant ã0α such that a0α(xM ) ⇒ ã0α when
M → ∞.

Dividing by q(xM )k+1 and tending M to infinity we get∑
α∈(k+1)Rj

|ξα| ≤ κ|
∑
α∈Rj

ã0αξ
α|

∑
β∈kRj

|ξβ|.

From last inequality similarly to (7) from Theorem 3.1 we obtain that for each
j ∈ 1, . . . , In−1 there exists a constant δj > 0 such that

|
∑
α∈Rj

ã0αξ
α| ≥ δj(1 + |ξ|Rn−1

j
),

where |ξ|Rn−1
j

=
∑

β∈Rn−1
j

|ξβ|. For λ > 0 substituting ξ = (ξ1, . . . , ξn) with

λ
− 1

µj ξ = (λ
− 1

µ
j
1 ξ1, . . . , λ

− 1

µ
j
n ξn) we get

|
∑
α∈Rj

ã0αξ
αλ1−(α:µj)| ≥ δj(λ+ |ξ|Rn−1

j
).

Similarly, analogous inequalities can be obtained for all j ∈ {1, . . . , In−1}.
Using Theorem 6.1, from [2], we get

|
∑
α∈R

ã0αξ
αλ1−maxi(α:µ

i)| ≥ δ(λ+ |ξ|∂′R),∀λ > 0,∀ξ ∈ Rn.
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Since the last inequality holds for all subsequential limit values of sequences
{a0α(xM ) : α ∈ R} where xM → ∞, we obtain that there exist such constants
δ > 0 and M > 0 that the following holds

|
∑
α∈R

a0α(x)ξ
αλ1−maxi(α:µ

i)| ≥ δ(λ+ |ξ|∂′R),∀λ > 0,∀ξ ∈ Rn, |x| > M.

Further, we use the following criteria for the Fredholm property (equivalent
formulation and proof can be found for example in work [16], Theorem 3.14):

Theorem 3.5. Let A be a bounded linear operator acting from a Banach space
X to a Banach space Y . Then the following holds:

1. if operator A has left regularizer, then kernel of operator A in X is finite
dimensional;

2. if operator A has right regularizer, then the image of operator A is closed
in Y and cokernel is finite dimensional;

3. operator A has left and right regularizers if and only if A is a Fredholm
operator.

It is easy to check that the following proposition holds:

Proposition 3.1. Let k ∈ Z+, q ∈ Qk,R, φ ∈ C∞
0 (Rn) and P (x,D) be the dif-

ferential form (1) with the coefficients that satisfy conditions (3). Then operator

Tu := P (uφ)− φPu, u ∈ Hk+1,R
q (Rn)

is a compact operator acting from Hk+1,R
q (Rn) to Hk,R

q (Rn).

Lemma 3.1. Let k ∈ Z+, q ≡ 1, x0 ∈ Rn and P (x,D) be regular in Rn dif-
ferential form (1) with the coefficients that satisfy conditions (3). Then, there
exists η0 > 0, such that when maxα∈∂′R supx∈Rn |aα(x) − aα(x0)| < η0, for op-
erator P (x,D) : Hk+1,R(Rn) → Hk,R(Rn) exists an operator R : Hk,R(Rn) →
Hk+1,R(Rn) such that

RP (x,D) = I + T1, P (x,D)R = I + T2,

where T1 : Hk+1,R(Rn) → Hk+1+σ,R(Rn), T2 : Hk,R(Rn) → Hk+σ,R(Rn) are
bounded linear operators with some σ = σ(R) > 0.

Proof. For differential form P (x,D) (see (1)) denote

P 0(x,D) =
∑

α∈∂′R
aα(x)D

α, Q(x,D) =
∑

α∈R\∂′R

aα(x)D
α.
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Consider

R0 := F−1 |ξ|∂′R
(1 + |ξ|∂′R)P 0(x0, ξ)

F.

Since P (x,D) is regular in Rn, it is easy to check that |ξ|∂′R/P
0(x0, ξ) is

a Fourier multiplier (see [17]) and for operator R0 : Hk,R(Rn) → Hk+1,R(Rn)
holds

(24) R0P 0(x0,D) = I + T ′,

where T ′ : Hk+1,R(Rn) → Hk+2,R(Rn) is a bounded linear operator.
Using (24) and estimates similar to the ones used in the proof of Lemma

4.2 from [18], it can be checked that there exists η0 > 0 such that when
maxα∈∂′R supx∈Rn |aα(x)− aα(x0)| < η0 the following holds

(25)
R0P (x,D) = R0P 0(x0,D) +R0(P 0(x,D)− P 0(x0,D)) +R0Q(x,D)

= I + T ′
1 + T ′

2,

where T ′
1 : H

k+1,R(Rn) → Hk+1+σ,R(Rn) with some σ = σ(R) > 0 and operator
T ′
2 : H

k+1,R(Rn) → Hk+1,R(Rn) satisfies ∥T ′
2∥ < 1.

Consider
R := (I + T ′

2)
−1R0.

From (25), we get
RP (x,D) = I + T1,

where T1 : Hk+1,R(Rn) → Hk+1+σ,R(Rn) is a bounded linear operator with
some σ = σ(R) > 0.

Similarly, we get
P (x,D)R = I + T2,

where T2 : Hk,R(Rn) → Hk+σ,R(Rn) is a bounded linear operator with some
σ = σ(R) > 0.

Theorem 3.6. Let k ∈ Z+, q ∈ Qk,R and P (x,D) be the differential form (10)
with the coefficients that satisfy lim|x|→∞max|x−y|≤1 |a0α(x) − a0α(y)| = 0 for

all α ∈ R. Then, operator P (x,D) : Hk+1,R
q (Rn) → Hk,R

q (Rn) is a Fredholm
operator if and only if P (x,D) is regular in Rn and there exist constants δ > 0
and M > 0 such that

(26) |
∑
α∈R

a0α(x)λ
1−maxi(α:µ

i)ξα| ≥ δ(λ+ |ξ|∂′R), ∀ξ ∈ Rn, λ > 0, |x| > M.

Proof. Let’s first prove sufficient part.
Let δ0 > 0,φ(x) ∈ C∞

0 (Rn) be such that 0 ≤ φ(x) ≤ 1 for all x ∈ Rn and
φ(x) = 1 for x ∈ K δ0

2

, φ(x) = 0 for |x| ≥ δ0 and ψ ∈ C∞
0 (Rn) such that

suppψ ⊂ K2δ0 and ψ(x) = 1 for x ∈ Kδ0 . Let ω > 0 be such that ω
√
n < δ0.

Let’s denote {zm}∞m=0 points on the lattice in Rn with a side equals to ω.
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Denote

φm(x) := φ(x− zm)(
∞∑
l=0

φ(x− zl))
−1, ψm(x) := ψ(x− zm), m ∈ Z+.

Then, {φm}∞m=0 and {ψm}∞m=0 satisfy the following conditions:

(i) maxx,y∈suppφm |x− y| < δ0,

(ii) there exists r ∈ N such that for any number i there are no more than r
functions φj(x) such that suppφi ∩ suppφj ̸= ∅;

(iii) φm(x)ψm(x) ≡ φm(x) for all m ∈ Z+;

(iv) for any α ∈ Zn
+ there exists some constant Cα > 0 such that |Dαφm(x)| ≤

Cα, |Dαψm(x)| ≤ Cα, ∀x ∈ Rn, ∀m ∈ Z+;

(v)
∑∞

m=0 φm(x) ≡ 1.

Denote Wm = suppφm,m ∈ Z+. Let xm ∈ Wm and m0 ∈ N. For m ≤ m0

denote
Pm(x,D) :=

∑
α∈R

(ψm(x)(aα(x)− aα(xm)) + aα(xm))Dα.

For m > m0, denote

Pm(x,D) :=
∑
α∈R

[ψm(x)(a0α(x)q(x)
1−maxi(α:µ

i) − a0α(xm)q(xm)1−maxi(α:µ
i))

+ a0α(xm)q(xm)1−maxi(α:µ
i)]Dα.

Since q ∈ Qk,R and limm→∞max|x−xm|≤1 |a0α(x) − a0α(xm)| = 0, according
to Theorem 2.2, from [10], we can choose m0 big enough such that for m >

m0 operator Pm : Hk+1,R
q (Rn) → Hk,R

q (Rn) has the inverse operator Rm :

Hk,R
q (Rn) → Hk+1,R

q (Rn).
Since P (x,D) is regular in Rn, according to Lemma 3.1, we get that for a

small enough δ0 from the condition (i) and any m ≤ m0 there exists operator
Rm : Hk,R(Rn) → Hk+1,R(Rn) such that

(27) RmPm = I + Tm,

where Tm : Hk,R(Rn) → Hk+σ,R(Rn) with some number σ = σ(R) > 0.
Denote

Rf :=

∞∑
l=0

ψlR
l(φlf), f ∈ Hk,R

q (Rn).

Since (26) holds one can check that the norms of operators Rl, acting from

Hk,R
q (Rn) to Hk+1,R

q (Rn), are uniformly bounded. From this fact, taking into
account that 1

q(x) ⇒ 0 when |x| → ∞ and properties (i)–(v) of the functions
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{φm}∞m=0, {ψm}∞m=0, it is easy to check that R is a bounded linear operator,

acting from Hk,R
q (Rn) to Hk+1,R

q (Rn).

In (10) denote

L(x,D) =
∑
α∈R

a1α(x)D
α.

For P (x,D) and RP (x,D), using properties (i)–(v) of the functions {φm}∞m=0

and {ψm}∞m=0, we get

P (x,D)u =
∞∑

m=0

φmP (x,D)(ψmu) =

m0∑
m=0

φmP
m(x,D)(ψmu)

+

∞∑
m=m0+1

φmP
m(x,D)(ψmu) +

∞∑
m=m0+1

φmL(x,D)(ψmu),

RP (x,D)u =

m0∑
l=0

m0∑
m=0

ψlR
l(φlφmP

m(ψmu))

+

m0∑
l=0

∞∑
m=m0+1

ψlR
l(φlφmP

m(ψmu)) +
∞∑

l=m0+1

m0∑
m=0

ψlR
l(φlφmP

m(ψmu))

+

∞∑
l=m0+1

∞∑
m=m0+1

ψlR
l(φlφmP

m(ψmu))(28)

+

∞∑
l=0

∞∑
m=m0+1

ψlR
l(φlφmL(ψmu)),

where u ∈ Hk+1,R
q (Rn).

Based on definitions of Pm(x,D) and properties of functions {φm}∞m=0,
{ψm}∞m=0, the following equalities hold

a) for 0 ≤ l ≤ m0 and 0 ≤ m ≤ m0,
φlφmP

m(x,D)(ψmu) = φlφmP (x,D)(ψmu) = φlφmP
l(x,D)(ψmu);

b) for 0 ≤ l ≤ m0 and m > m0,
φlφmP

m(x,D)(ψmu) = φlφm(P (x,D)− L(x,D))(ψmu)

= φlφmP
l(x,D)(ψmu)− φlφmL(x,D)(ψmu);

c) for l > m0 and 0 ≤ m ≤ m0,
φlφmP

m(x,D)(ψmu) = φlφmP
l(x,D)(ψmu) + φlφmL(x,D)(ψmu);

d) for l > m0 and m > m0,
φlφmP

m(x,D)(ψmu) = φlφmP
l(x,D)(ψmu),

where u ∈ Hk+1,R
q (Rn).
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Consider the first three sums in (28). They contain finite number of terms
such that φlφm ̸= 0. Using equalities a)-c), (27) and Proposition 3.1 similarly
to the proof of Theorem 2.6 from work [12] it can be checked that the following
holds:

m0∑
l=0

m0∑
m=0

ψlR
l(φlφmP

m(ψmu)) =

m0∑
l=0

m0∑
m=0

φlφmu+ T1u,(29)

m0∑
l=0

∞∑
m=m0+1

ψlR
l(φlφmP

m(ψmu)) =

m0∑
l=0

m1∑
m=m0+1

ψlR
l(φlφmP

l(ψmu))

−
m0∑
l=0

m1∑
m=m0+1

ψlR
l(φlφmL(x,D)(ψmu)) =

m0∑
l=0

∞∑
m=m0+1

φlφmu+ T2u(30)

−
m0∑
l=0

∞∑
m=m0+1

ψlR
l(φlφmL(x,D)(ψmu)),

∞∑
l=m0+1

m0∑
m=0

ψlR
l(φlφmP

m(ψmu)) =

m1∑
l=m0+1

m0∑
m=0

ψlR
l(φlφmP

l(ψmu))

+

m1∑
l=m0+1

m0∑
m=0

ψlR
l(φlφmL(x,D)(ψmu)) =

∞∑
l=m0+1

m0∑
m=0

φlφmu+ T3u(31)

+

m1∑
l=m0+1

m0∑
m=0

ψlR
l(φlφmL(x,D)(ψmu)),

where u ∈ Hk+1,R
q (Rn),m1 := maxm>m0{m : suppφm ∩ (

⋃m0
s=0 suppφs) ̸= ∅}

and operators T1, T2 and T3 are compact operators acting from Hk+1,R
q (Rn) to

Hk+1,R
q (Rn).

From equality d), and the fact that, form > m0 operators R
m : Hk,R

q (Rn) →
Hk+1,R

q (Rn) are the inverse operators of Pm : Hk+1,R
q (Rn) → Hk,R

q (Rn) we get

∞∑
l=m0+1

∞∑
m=m0+1

ψlR
l(φlφmP

m(ψmu))

=
∞∑

l=m0+1

∞∑
m=m0+1

ψlR
l(φlφmP

l(ψmu)) =
∞∑

l=m0+1

∞∑
m=m0+1

φlφmu

+
∞∑

l=m0+1

∞∑
m=m0+1

ψlR
l(φlφmP

l(ψmu)− P l(φlφmψmu)),

where u ∈ Hk+1,R
q (Rn).

Taking into account (26), definitions of P l(x,D) and properties of functions
{φm}∞m=0 and {ψm}∞m=0, for l > m0 and m > m0 with some constant C1 > 0
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we get

∥φlφmP
l(ψmu)− P l(φlφmψmu)∥k,R,q

≤ C1∥
∑
α∈R

∑
β+γ=α,
|γ|>0

a0α(x)D
β(ψmu)D

γ(φlφm)q(x)1−maxi(α:µ
i)∥k,R,q

≤ C1∥
∑
α∈R

∑
β+γ=α,
|γ|>0

a0α(x)D
γ(φlφm)

1

q(x)mini(γ:µi)
Dβ(ψmu)q(x)

1−maxi(β:µ
i)∥k,R,q.

From the last inequliaty, taking into account that 1
q(x) ⇒ 0 when |x| → ∞,

properties (i)–(v) of the functions {φm}∞m=0, {ψm}∞m=0 and the conditions on
the coefficients {a0α(x)} (see (10)) we get

∥φlφmP
l(ψmu)− P l(φlφmψmu)∥k,R,q ≤ ω(m0)∥u∥Hk+1,R

q (Wl∩Wm)
,(32)

where ω(m0) is such a function that ω(m0) → 0 when m0 → ∞. Since (26)

holds, the norms of operators Rl, acting from Hk,R
q (Rn) to Hk+1,R

q (Rn), are
uniformly bounded. Using this fact, inequality (32) and properties (i)–(v) of
the functions {φm}∞m=0, {ψm}∞m=0, it is easy to check that for a big enough m0

the operator

T4 :=

∞∑
l=m0+1

∞∑
m=m0+1

ψlR
l[φlφmP

l(ψm·)− P l(φlφmψm·)],

acting from Hk+1,R
q (Rn) to Hk+1,R

q (Rn), satisfies ∥T4∥ < 1
2 .

Similarly, for remained terms from (28), (30) and (31), taking into account
that Dβ(a1α(x)) = o(q(x)1−maxi (α−β:µi)) when |x| → ∞, α ∈ R, β ∈ kR, for a
big enough m0 we get that the operator

T5 :=

∞∑
l=0

∞∑
m=m0+1

ψlR
l(φlφmL(ψm·))−

m0∑
l=0

∞∑
m=m0+1

ψlR
l(φlφmL(ψm·))

+
∞∑

l=m0+1

m0∑
m=0

ψlR
l(φlφmL(ψm·)),

acting from Hk+1,R
q (Rn) to Hk+1,R

q (Rn) , has a norm that satisfies ∥T5∥ < 1
2 .

Denote

T ′ := T1 + T2 + T3, T
′′ := T4 + T5.

From the representation (28), we get

RPu =
∞∑
l=0

∞∑
m=0

φlφmu+ T1u+ T2u+ T3u+ T4u+ T5u = u+ T ′u+ T ′′u,
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where u ∈ Hk+1,R
q (Rn), T ′ : Hk+1,R

q (Rn) → Hk+1,R
q (Rn) is a compact operator

and for operator T ′′ : Hk+1,R
q (Rn) → Hk+1,R

q (Rn) we have ∥T ′′∥ < 1. Therefore,

(I + T ′′)−1RP = I + (I + T ′′)−1T ′,

where T := (I+T ′′)−1T ′ : Hk+1,R
q (Rn) → Hk+1,R

q (Rn) is a compact operator. So

we get that operator (I+T ′′)−1R : Hk,R
q (Rn) → Hk+1,R

q (Rn) is a left regularizer.
Analogously we can construct a right regularizer.
Since right and left regularizers exist, applying Theorem 3.5, we obtain the

Fredholm property for operator P (x,D) acting from Hk+1,R
q (Rn) to Hk,R

q (Rn).
For necessary part regularity of P (x,D) follows from Corollary 3.1. Necessity
of condition (26) for the Fredholm property of operator P (x,D), acting from

Hk+1,R
q (Rn) to Hk,R

q (Rn), follows from Theorem 3.3 and Theorem 3.4.
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