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1. Introduction

In this paper, we study the Fredholm property of regular hypoelliptic operators
in multianisotropic weighted Sobolev spaces. The class of regular hypoelliptic
operators is an important subclass of Hyormander’s hypoelliptic operators (see
[1]). They were introduced in late 60s-70s and studied by many authors: V. P.
Mikhailov [2], J. Friberg [3], L. R. Volevich, S. G. Gindikin. [4]. Corresponding
characteristic polynomials of regular hypoelliptic operators are ”multi-quasi-
elliptic”, so they are natural generalization of elliptic and quasielliptic polyno-
mials.

The analysis of the Fredholm property of regular hypoelliptic operators in
Sobolev spaces in R™ has certain difficulties - characteristic polynomials of such
operators are not homogeneous as in elliptic case and Fredholm theorems for
compact manifolds cannot always be used in this case.

The Fredholm property of elliptic operators in special weighted spaces is
studied in the works of L. A. Bagirov [5], R. B. Lockhart, R. C. McOwen [6, 7],
E. Schrohe [8] and others.

L. A. Bagirov [9], G. A. Karapetyan, A. A. Darbinyan [10], A. G. Tumanyan
[11, 12] studied the Fredholm property of quiasielliptic operators in weighted
anisotropic spaces. For quasielliptic operators with constant coefficients isomor-
phism properties in some special scales of weighted Sobolev spaces are studied
in G. V. Demidenko’s works (see [13, 14]). In the works of L. Rodino, P. Bog-
giatto, E. Buzano (see [15]) the Fredholm property is studied for the special
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classes of pseudodifferential operators acting in multianisotropic spaces with
special polynomial weights.

In this work, necessary conditions are obtained for fulfillment of special a pri-
ori estimates for differential operators acting in multianisotropic Sobolev spaces
in R™ (Theorem 3.1 and Theorem 3.4). Necessary and sufficient conditions are
obtained for the Fredholm property of regular hypoelliptic operators with vari-
able coeflicients acting in multianisotropic Sobolev spaces in R™ with certain
weight functions (Theorem 3.6).

2. Basic notions and definitions

Definition 2.1. A bounded linear operator A, acting from a Banach space X
to a Banach space Y, is called an n—normal operator, if the following conditions

hold:

1. the image of operator A is closed (Im(A) = Im(A));

2. the kernel of operator A is finite dimensional (dim Ker(A) < o0).
An operator A is called a Fredholm operator if conditions 1-2 hold and

3. the cokernel of operator A is finite dimensional
(dim coker(A) = dimY/Im(A) < o0).

The difference between the dimension of the kernel and the cokernel of op-
erator A is called index of the operator:

ind(A) = dim Ker(A) — dim coker(A).

Definition 2.2. For a bounded linear operator A, acting from a Banach space
X to a Banach space Y, bounded linear operator Ry : Y — X and Ry : Y — X
are called respectively left and right regqularizers if the following holds: R1A =
Ix +T1,ARy = Iy + 15, where Ix, Iy — identity operators, Ty : X — X and
T :Y — Y are compact operators.

Definition 2.3. For a bounded linear operator A, acting from a whole Banach
space X to a Banach space Y, bounded linear operator R :Y — X is called a
reqularizer for operator A, if it is left and right regularizer.

Let n € N and R" be Euclidean n-dimensional space, Z', N be the sets of
n-dimensional multi-indices and multi-indices with natural components respec-
tively.

Let NV C Z7 be a finite set of multi-indices, R = R(N') be a minimum
convex polyhedron containing all the points V.

Definition 2.4. A polyhedron R is called a completely reqular if the following
holds: a) R is a complete polyhedron: R has a vertex at the origin and further
vertices on each coordinate azes in R™; b) all components of the outer normals
of (n — 1)—dimensional non-coordinate faces of R are positive.
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Let R be a completely regular polyhedron. Denote by R;l_l (J=1,...,1h-1)

(n —1)-dimensional non-coordinate faces of R with corresponding outer normal

w’ such that all multi-indices o € 7?,?_1 satisfy (o : p!) = % +...+ Z—y =1,
1

IR = U;’;‘ll R;-‘_l. For k > 0 denote by kR := {ka = (kaq, kas ..., kay) : a €
Consider the differential form

(1) P(z,D) = > aq(x)D?,

aER
where D* = D ... D&, D; = rl%,x = (z1,...,2n) € R an(x) € C(R™).
Denote by

(2) P(,6) = ) aa(a)E™.

aER

For each (n — 1)-dimensional non-coordinate face R;“l( j=1,...,1,_1) denote
by

Rj(x>ID)): Z aa(l')Da,Pj(:L‘,é): Z aa(‘r)ga'
aeR}“l ae'R}Lil

For ¢ € R™ denote by

Elr =D 1€ Elor = D 1€%]:

aER a€d'R

Definition 2.5. A differential form P(x,D) is called regular at a point xg € R",
if there exists a constant § > 0 such that:

L+ [P(z0,8)| = d|¢|r, V€ € R™.

Definition 2.6. A differential form P(x,D) is called regular in R™, if P(x,D)
s reqular at each point x € R™.

Definition 2.7. A differential form P(z,D) is called uniformly regular in R™,
if there exists a constant 6 > 0 such that:

1+ |P(z,8)] > d[¢|r, ¥ € R™, Yz € R™.
Let’s consider some examples of regular differential forms.

1. Let m € Nand R be a Newton polyhedron for the set of points (0,0, ..., 0),
(m,0,...,0),...,(0,0,...,m). In this case conditions from definitions 2.5
2.7 coincide with ellipticity conditions and differential form P(z,D) is
elliptical.
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2. Let v € N" and R be a Newton polyhedron for the set of points (0,0, ... ,0),
(v1,0,...,0),...,(0,0,...,v,). In this case conditions from definitions
2.5-2.7 coincide with quasiellipticity of differential form P(x,D).

3. Let n = 2 and R be a Newton polyhedron for the points (0, 0), (8,0), (0,8)
and (6,4). Then,

P(z,D) = a1 D} + as DY D + a3 D5 + ¢(x)
is a regular differential form in R? with some ay, as, a3 > 0 and g € C(R?).

4. Let n =3 and R be a Newton polyhedron for the points (0, 0,0), (8,0,0),
(0,8,0), (6,4,0), (6,0,6), (0,6,6) and (0,0,12). Then,

P(z,D) = D} + DYD3 + D§ + D$D§ + DSD§ + D3? + q(x)
is a regular differential form in R? with ¢ € C(R3).

For k € R and completely regular polyhedron R denote
~ 1
HER(R™) = {u € 8" |lullir = ( / [@(&)P (1 + [€]orr)* d€)z < oo},

where S’ is the set of tempered distributions, @ is a Fourier transform of function
U.
Denote

Q :={g € C(R") : 3¢ > 0 such that g(x) > ¢ > 0,Vx € R"}.

For m € Z, and completely regular polyhedron R denote

MR . fo(p . DBl ny 1 e 19(@) — 9(y)]
Q™" :={g(x) € Q: D’g(z) € C(R ),g(x) =0, s M on =0,
|DPg(x)|

W:&Oas \x!—>oo,VB€m7€,ﬁ7é0,]:1,...,In_1}.

The examples of weight functions from Q™ include polynomial functions
as well as special exponential functions, for example:

1
(1+ |z|r)! 1 > 0,exp (1 + |z|R)",0 <7 < ,

Nmax

where fimer = maxi<i<y, , maxj<s<p{pt}. For k € Zy, ¢ € Q, completely
regular polyhedron R and 2 C R™ denote

kR /mny .__
HFR(R?) =

k— i (apt
sl g oy 1= Il == 3 D% g | ) < o),
a€kR
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Hy™(Q) = {u: [lull grr ) = D D - gF el gy < oo}
ackR

Let k € Z4,q € @ and the coefficients of differential expression P(z,D) of
the form (1) satisfy the following conditions:

(3) IDPag(2)| < Cu g qz)t @54 o e R, 8 € kR.
Then, it is easy to check that P(z,D) generates a bounded linear operator,

acting from HgH’R(R”) to Hg’R(R").

3. Main results
For N > 0 and xy € R" denote
KN(J}()) = {(E e R": ‘l’—x0| < N},KN = KN(O)

Theorem 3.1. Let k € Z4,q € Q and the differential form P(z,D) with some
constant k > 0 satisfies the following estimate:

(4) luller1,rq < K Puller.q + el Ly@n)), Yu € Hy FHRR™).
Then, P(x,D) is uniformly regular in R™.

Proof. Let zp,{ € R", [{| # 0, N > 0 and ¢ € C{°(R") such that supp¢ C
1
Kn(wo) and |¢|[p,mny = 1. For A >0 and j € {1,..., 1,1} denote by Aw § =
1 1

()\Efl, ., A&y, where g is outer normal of R;L_l. Denote by wy j(z) =
1
exp(i(Ar’ &, z))p(z). For f € (k+ 1)R, we have
; 1
DPuy j(x) = APl exp(i(Aw €, 2))p(x)
- a1
+ 30 O exp(i(A €, 2) DP V().

0<y<p
From last equality, for 5 € (k+ 1)R, we get
| Dun g - @ 1 gy = AED|EP g - gt e
+ o(AF#)),

)||L2(]R")

when A — oo. Then, we get

k+1,R.q = Z ABE B || - gtrmmaxi(Bat) ||y + 0(AFFY),
Be(k+1)R

(5)  urgl

when A — oo.
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Notice that, for o € R the following holds: (o : /) < 1 and (a : i) = 1
if only if a € R}l_l. Taking it into account along with the fact that ¢ €
C3°(R™),supp ¢ C Kn(zo) for f € kR we get

HDﬁ (P(x, ]D))U)\,j)qk_maxiw:#l) ||L2(R")
< XN max [Pyl O gy + oA,
zeK N (xo)

From the last estimate, we get

1Puxjllerg < Y AP#IHEL] max | Py, &)
SeRR z€K N (xo)

(6) Xl - " EE gy + (N,

when A\ — co. Then, from (4) and (5)—(6) we get
Yo Nl Ly ey + oA
6e(k+1)7z;?*1
<k Yo M max [P, E)ll|ell gy + oA,

rzeK N (.ZQ)
n—1
,Bek’Rj

when A — oo.
In last inequality we take into account that [|¢||r,gn) = 1, divide by pLas
and tend A — oo. Then the following is obtained:

S 1Pk DD 18 max [Pz, €.

xGKN(Io)
ﬁe(kﬂ)R;H ﬁekR;.H

Since R is completely regular polyhedron for k € Zy and j € {1,..., 1,1},
there exist such constants §; > 0, do > 0 such tat

D =T S Lans

Be(k+1)R™ 1 BeR™ 1
(7) ’ 5 ’ Sk
STl <an Y €
ﬂekR;?—l ﬁeR;—l

From (7), we get

o1 Y €] < Kby maic)\Pj(x,f)L

ze K n(xo
BER?_I

Since the coefficients of P(x, D) are continuous, tending N — 0, we obtain

(8) |Pi(z0,8)[ > 05 Y [¢°],9¢ e R™,

BeR?‘l
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where 03 = 13—512 > 0.
Since constant d3 does not depend on the choice of zg € R", we get

9) |Pi(w,6)| =85 Y |67, Ve e R", V¢ e R™
,8672?*1
Similarly analogous inequalities can be obtained for all j € {1,...,1,_1}.
Then applying Theorem 6.1 from [2] we obtain that P(z,D) is uniformly regular
in R". [

Theorem 3.2. (Theorem 7.1 [19]) Let E, F and Ey be Banach spaces such that
E is compactly embedded in Ey. Let A be a bounded linear operator acting from
E to F. An operator A : E — F is an n—normal operator if and only if there
exists a constant C' > 0 such that

lzlle < C(|Az||F + 2| 5), Yz € E.

Applying the last theorem for operator P(x,D), acting from H5+1’R(Rn) to
ER om
Hy ™ (R™), we get

Theorem 3.3. Let k € Z4,q € Q and P(z,D) be differential form (1). Then
operator P(z,D), acting from H(?H’R(R”) to HZ;’R(R"), 18 an n—normal oper-
ator if and only if there exist constants k > 0 and N > 0 such that the following
holds

ullk+1,R.0 < &(1Pullkrg + Ul Logry)) s Yu € HgTHR(R™).

Corollary 3.1. Let k € Zy, q € Q and operator P(x,D), acting from
HgH’R(R”) to HZf’R(R”), be a Fredholm operator. Then P(x,D) is uniformly
regular in R™.

Proof. Since operator P(z, D), acting from Hy ™' (R") to Hi'®(R") is a Fred-
holm operator, then it is an n—normal operator. From Theorem 3.3, we get
that there exist such constants x > 0 and N > 0 that the following estimate
holds

[uller1rg < K(IPullkrg + 10l Lyrn)) < KPullkR g + ([0l L)),

for all u € Hclf Jrl’R(]R”). From last estimate using Theorem 3.1 we obtain that
P(z,D) is uniformly regular in R". O

Remark 3.1. It is easy to check that in the case ¢ = 1 inverse statement is
true with some smoothness conditions on the coefficients of P(x,D). In next
theorem 3.4 it is proved that under the special conditions on the weight function
q and coefficients of the differential form P(z,D) uniform regularity in R™ (in
the sense of definition (2.7)) does not imply the fulfillment of a priori estimate
of the form (4) and stronger conditions are necessary for it.
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Let k € Z, and ¢ € Q%®. Consider the differential form P(z,D) (see (1)),
which is expressed in the following way:

(1) P@D) =Y as(@)D* = > (a(z)g(x)' ™) 4 o} (z)) D",
a€R a€ER

where a, () = a%@)q(x)l_ma"i(‘_}““i) —|—aé(1:), Dﬁ(ag(m)) = O(q(x)mini(ﬁ:“i)) and
DP(al(x)) = o(q(x)' ~™axi(@=B1Y)) when |z| — oo for all a € R, § € kR.

Theorem 3.4. Let k € Zy,q € Q¥R and P(x,D) be the differential form (10)
with the coefficients that satisfy lim,|_,o max, < a2 (z) — al(y)| = 0 for all
o €R.

Let there exists a constant k > 0 such that:

(11) lullesir.g < £1PullkRq + lull @), Yo € Hy TR

Then, P(x,D) is reqular in R™ and there ezist constants 6 > 0 and M > 0
such that

(12) | Y aQ(@)Armasesen] > §(A + [¢lar), VE € R, A > 0, ]| > M.
aER

Proof. Regularity of P(z,D) in R™ follows from Theorem 3.1. It remains to
prove that inequality (12) holds.

Let M € Ry, zy € R"\Kyr, ¢ € C5°(R"),supp ¢ C Ki(zm), ol ,@n) = 1
and £ € R". Let j € {1,...,I,_1}.

Consider the function @;(x) = exp(i(q(a:M)ﬁﬁ, z))o(z) where p/ is an outer
normal of non-coordinate face R?_l such that all multi-indices o € R?_l satisfy
(a:pd)=1.

Denote by R; = {a € R : (a: pi¥) = maxj<i<y, ,(a: u?)}.
la()

% =0, then for any r € R, the following

Since lim;| o0 MaX|;_y|<1 )

inequality is fulfilled
(13) lq(2)" — q(ean)"| < er(M)g(enr)”, Vo € Ki(zu),
where &,(M) — 0 when M — oc.
Using inequality (13) and the fact that suppu; C Ki(xp) it is easy to see

that there exists a function (M) such that e(M) — 0 when M — oo and the
following inequalities hold:

(14) [@jllk+1,7, = (1= (M)l kt1,R, 90>

(15) | Ptjllrr,q < (1 +e(M))|Pi|lp R g
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Taking into consideration the definition of function @; one can check that for
any 8 € (k+1)R; with some constants C; > 0 and o = ¢(R) > 0 the following
holds

1D 45 Ly mya(@an)* =) > 168 g(@an)* T o] L)

—a Y (& glaan)

0<y<B

For 8 € (k+1)(R \ R;) with some constants Cy > 0 and 0 = o(R) > 0 the
following holds

| D% 1 (e yq (g )T (Be0)

> 1P lq(@rr) @l pyny — Co S 1€ ]alaar) 0
0<y<p

From last two inequalities, taking into account that |||z, ®n) = 1, with some
constants C3 > 0 and o > 0 we get

N k
%1 kt1,R q(znr) = E &P |q(zpr) T
Be(ht1)R,

(16) ~ 4 > |7 g(apr)F 0.

YE(k+1)(R\R] ™)

Taking into account, conditions (3) on the coefficients of P(z,D) and inequality
(13) we get that for 8 € kR and o € R with some Cy 5, Cy, 5 > 0 holds

1D () D5 () g g 0

<Ca5 Z D’g1 )DaJﬁBQ ( )’q(xM)kfmaxi(,B:,ui)
B1+B2=

<Cis !Da% () g g ) o (0B g o Y (Bl)
B1+B2=

Let 8 € E(R\R;) and o € R. Then, for g1, B2 € kR, 51 + 2 = 8 with some
o > 0 the following holds

mzax(a ) +mzax(/8 cut) — (o + Ba s pd)
> (max(a — By : i) = (= Br : ) + (max(B: ) = (B: 7)) > 0 > 0.

So, for B € k(R \R;) and a € R with some constants C7, 5,C73 >0 and o > 0
we get,

D% (aa(2) D%t () (a5 ()
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SClhy D DT ) ()Tl

B1+B2=p
IDP (o () D5 ) || 1y (reyq (@ ag) F i (Fet)
ST SRS N L

YE(RFD)(R\R] ™)

From the last estimate we obtain that for 5 € k(R \R;) with some constants
Cy>0and o >0

ID? (P (2, D)iiy) || Ly g () B~ 50

(17) < Caglem) 77 Y 1€
vE(k+1)(R\R} ™)

For 8 € kR;, we have

1D? (P, DYity) || 1y g (war) =+

18  <IDA(Y ab@a@) D D) pamealean)
OéERj
+IDP(C Y al(@)g(a) T ) DY) |y ey g (war) O
QER\RJ'
+ D> al(@) D) | ey q(aar) =),
aERj

Similarly, to (17) with some constants C5 > 0 and ¢ > 0 holds

IDPC S ab(@)q(w)t ™) Do) || oy g (ag )P4
OéER\Rj
(19) <Cs > €7 q(zar)* 0
ek +) (R\RD )

Using conditions D?(al(z)) = o(g(x)t™axi(@=54")) when |z| — oo for all
a € R, € kR it is easy to check that for 8 € kR; there exists such a function
71(M) that 71(M) — 0 when M — oo and the following holds

1D ah (@) D) | ey g~ )
acR

(20) <n(M) Y [&g(@m)*

ye(k+1)R
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For the first term in (18) the following estimate holds

107 Z ag(w)q(l’)l*(a:“j)Daﬂ‘)HLz(Rn)Q(CcM)k*(ﬁtuj)

QGR]'

<1 a(@an)q(@an) = DA | nyq(aar) )
QERJ'

+11Y° D ((ad(@)g(x) =) — al (zar)q(zar) '~ @) D) || 1, ooy
QERJ'

x ()=,

It is easy to check that with some constants Cg > 0 and ¢ > 0 the following
holds

1> ad(@ar)a(ear)' =) DBy 1 ny ) F)

QGRJ'
(21) <Y ad(@an)€|€8 |a(an)
QER]'
+C Y €l

ve(k+1)(R\R} ™)

Taking into account, conditions in (10), limj,_, max), <1 |ad(z)—a(y)| =
0 for a € R, ¢ € Q®" and inequality (13) we get that for o« € R and 8 € kR
there exists 7, 3(M) such that 7, (M) — 0 when M — oo and the following
holds

D (a3 (@)a(a)' ") — ad (@ar)a(an) )] < 1o s(M)gaar)! RO,
From last inequality we get that there exist a function 79 (M) such that (M) —

0 when M — o0, constants Cv > 0 and o > 0 that the following estimate is
satisfied

1> DP(ad(@)a(x) ") = al (@ar)a(@ar)' =) Dig) | ey

aER‘j
(22) X q(aa)E P < 1y(M) D (€2 |g(an) !
a€R;
+ Cr Z 17| ar) "0

Ye(k+1)(R\RD ™)

So, using last estimate and estimates (17)—(22) we obtain that there exist
such a function m3(M), m3(M) — 0 when M — oo and constants Cg > 0 and
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o > 0 that the following holds

1P|l R,gwny < 1Y an(@an)€® D 1€%1q(an)*
OCERJ' ,BEkRj

(23)  +Cs > Mg(@a) T+ (M) D [ g(zan)F

YE(R+1)(R\R] ™) ye(k+1)R

Then, from (11) using (16) and (23) we get

Z 168 q(zpr) T = Cs Z 1€ gz ar)F 10

BE(k+1R; YE(R+1)(R\R] ™)

<kl Y al(ean)E D 1€ lglan)
a€R; BEKR

+ Cy > g(@a) T+ (M) D |9 g(zan)F).
YE(k+1)(R\R} ™) ye(k+1)R

Since {ad(x) : « € R;} are bounded functions and xp; — oo when M — oo,
there exist convergent subsequences of sequences {al(zyr) : @ € R;}. Without
loss of generality assume that sequences {al(zy) : @ € R;} are convergent,
so for each o € R; there exists a constant ad such that al(zy) = a2 when
M — oo.

Dividing by q(za7)**!

and tending M to infinity we get

e <kl D ane > 1€P).

er(k-l—l)Rj OLERJ' BEk‘R]‘

From last inequality similarly to (7) from Theorem 3.1 we obtain that for each
j€1,...,1,_1 there exists a constant J; > 0 such that

| D0 a8 2 65(1+ [€lgn).

aER]’

where |§|R?71 = EﬁeR;kl €8], For A\ > 0 substituting & = (&1,...,&,) with
1 1

_1 - -1
AWE=(N ME, ., A #hE,) we get

| D e N 2 650+ felgn).

OAERJ'

Similarly, analogous inequalities can be obtained for all j € {1,...,I,_1}.
Using Theorem 6.1, from [2], we get

| Z dafa)\l—mam(a:,ui)‘ > 0\ + |€or), YA > 0,VE € R™.
a€R
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Since the last inequality holds for all subsequential limit values of sequences
{al(zpr) : @« € R} where 2); — 00, we obtain that there exist such constants
0 > 0 and M > 0 that the following holds

1Y ab (@)oo > (X + [€lorg), YA > 0,V€ € R", |z] > M.
aER

O

Further, we use the following criteria for the Fredholm property (equivalent
formulation and proof can be found for example in work [16], Theorem 3.14):

Theorem 3.5. Let A be a bounded linear operator acting from a Banach space
X to a Banach space Y. Then the following holds:

1. if operator A has left reqularizer, then kernel of operator A in X is finite
dimensional;

2. if operator A has right reqularizer, then the image of operator A is closed
'Y and cokernel is finite dimensional;

3. operator A has left and right regularizers if and only if A is a Fredholm
operator.

It is easy to check that the following proposition holds:

Proposition 3.1. Let k € Zy,q € Q¥%, p € C(R") and P(z,D) be the dif-
ferential form (1) with the coefficients that satisfy conditions (3). Then operator

Tu := P(up) — pPu,u € H;H’R(R")

is a compact operator acting from H§+1’R(R") to Hf’R(R").

Lemma 3.1. Let k € Z4,q = 1,29 € R and P(z,D) be regular in R™ dif-
ferential form (1) with the coefficients that satisfy conditions (3). Then, there
exists nog > 0, such that when maxyecg R SUPgern |Ga(T) — an(xo)| < Mo, for op-
erator P(x,D) : HFIR(R™) — HER(R™) exists an operator R : HPR(R™) —
HFLR(R™) such that

RP(2,D) =+ Ty, P(x,D)R = I + Ty,

where Ty : HFUR(R?) — HEFIHOR(RR) Ty« HFR(RY) — HFFOR(R™) are
bounded linear operators with some o = o(R) > 0.

Proof. For differential form P(z,D) (see (1)) denote

P'(z,D)= > aa(z)D*, QD)= >  aa(x)D*

a€I'R aER\O'R
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Consider

RO — —1 |§‘8/R
(1 + [€lor) PO (w0, €)
Since P(x,D) is regular in R™, it is easy to check that |¢|gz/P°(x,£) is
a Fourier multiplier (see [17]) and for operator R : H¥R(R") — HFTLR(R?)
holds

(24) RP%(zo,D) =T+ T,

where 7" : H*1LR(R?) — HF2R(R") is a bounded linear operator.

Using (24) and estimates similar to the ones used in the proof of Lemma
4.2 from [18], it can be checked that there exists 79 > 0 such that when
MaXaed'R SUPgern |Ga(T) — aa(xo)| < nmo the following holds

(25) R°P(z,D) = R°P%(x0,D) + R%(P°(z,D) — P°(z0,D)) + R°Q(z, D)
=1+T]+Ty,
where T} : HF1R(R") — HFH1+9R(R™) with some o = o(R) > 0 and operator
Ty HFHLR(R?) — HEHLR(R™) satisfies || 15| < 1.
Consider
R:=(I+Ty) 'R

From (25), we get
RP(@',D) =1+1T,
where T} : HFFULR(R") — HF1H9R(R™) is a bounded linear operator with
some 0 = d(R) > 0.
Similarly, we get
P(z,D)R =1+ 15,
where Ty : HFR(R") — HF+oR(R") is a bounded linear operator with some
oc=0(R)>0. O

Theorem 3.6. Let k € Zy,q € Q¥® and P(x,D) be the differential form (10)
with the coefficients that satisfy lim)g oo max), _y < |al(z) — al(y)| = 0 for
all « € R. Then, operator P(x,D) : HC]fH’R(]Rn) — Hg’R(R”) is a Fredholm
operator if and only if P(x,D) is reqular in R™ and there exist constants § > 0
and M > 0 such that

(26) | Y aQ(@)AmRsesen] > 5N+ [¢lar), VE € R, A > 0,z > M.
aER

Proof. Let’s first prove sufficient part.
Let 69 > 0,p(x) € C§°(R™) be such that 0 < p(z) < 1 for all z € R" and
p(x) =1 for x € Ks, p(x) = 0 for x| > dp and ¢ € C§°(R") such that
2
supp ) C Ky, and ¢(z) = 1 for z € Ks5,. Let w > 0 be such that wy/n < dy.
Let’s denote {z,, }7°_, points on the lattice in R™ with a side equals to w.
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Denote
[o@)
@m(x) .Q?—Zm Z‘P .Q?—Zl ,¢m($) = w(x_zm)7 m € Ly.
=0

Then, {@m}o0_g and {¢n }o5_ satisfy the following conditions:

(i) MmMaXgy yesupp pm |z — y| < do,

(ii) there exists r € N such that for any number ¢ there are no more than r
functions ¢;(z) such that supp ¢; Nsupp ¢; # 0;

(iii) ‘Pm(l‘)?ﬁm(l’) = SOm(l‘) for all m € Z+;

(iv) for any o € Z7} there exists some constant C, > 0 such that |[D%p, (x)| <
Cuy DY (2)] < Cu, ¥z € R, Ym € Ly

(V) 2om—oPm(z) =1.

Denote W,,, = supp pom,m € Zy. Let x,,, € W, and mg € N. For m < myg
denote

P™(z,D) = Z(wm(x)(aa(‘”) — a(Tm)) + aa(zm)) D"

a€ER

For m > mg, denote

P™ (@, D) = Y [m(@)(ad (2)q(w) 7™ ) — af (@), ) ()

aER
+ ad (2m)q(zm) e @ DO,

Since ¢ € Q% and lim, o0 max,_,, <1 |ag(z) — ad(zm)| = 0, according
to Theorem 2.2, from [10], we can choose mg big enough such that for m >
mgo operator P™ : HgH’R(R”) — Hg’R(R”) has the inverse operator R™ :
Hy ®(R™) — Hy TR (R),

Since P(z,D) is regular in R™, according to Lemma 3.1, we get that for a
small enough &y from the condition (i) and any m < mg there exists operator
R™ : HHR(R™) — HFTLR(R™) such that

(27) R™P™ =] +T™,

where T™ : HFR(R") — HFToR(R™) with some number o = o(R) > 0.
Denote

Rf =Y R (pif), f € HPRR™).
=0

Since (26) holds one can check that the norms of operators R, acting from
H kR(]R") to H FLR(R"), are uniformly bounded. From this fact, taking into
account that ( ;7 = 0 when |z| — oo and properties (i)—(v) of the functions
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{em o0 _ o, {tm}0_g, it is easy to check that R is a bounded linear operator,
acting from Hg’R(R”) to H(?H’R(]R").
In (10) denote
L(z,D) = ) a}(x)D*.
a€R
For P(x,D) and RP(z,D), using properties (i)—(v) of the functions {¢n}20_,
and {¢m }oo_, we get

P(z,D)u = Z omP(z,D)(Ypu) = Z OmP™(z,D)(¢Ymu)

m=0
+ Z OmP™ (2, D)(Ymu) + Z emL(z,D)(Ymu),
m=mo+1 m=mo+1
RP(z,D)u = Z Z G R (@rom P™ (Ymr))
=0 m=0
+3° Y wR @enP W)+ > Y GiR (prpm P (mu)
=0 m=mo+1 l=mo+1m=0

28) + Y. Y. UR(apmP"($nuw)

l=mg+1m=mo+1

+Y° > hiR @emL(mu)),

=0 m=mo+1

where u € HZfH’R(R”).
Based on definitions of P™(x,D) and properties of functions {¢m}ro_g,
{m }5°_, the following equalities hold

a) for 0 <1 <mgpand 0 <m < my,
O1om P (2, D) (Yu) = @1om P(x, D) (Ymu) = SOlSOmPl($aD)(¢mu);

b) for 0 <1 < mgy and m > my,
o1emP" (2, D) (Ymu) = @rom(P(x, D) — L(z, D)) (¢Ynu)
= 1pm P! (2, D) (¥mu) = o1om Lz, D) (¢mu);
c¢) for I > mgp and 0 < m < my,
CremP™ (2, D) (Ymu) = @rom P (2, D) (Ymu) + @romL(z, D) (Ynu);
d) for I > mg and m > my,

P1pm P™ (2, D) (Y1) = ©rom P (z, D) (Ymu),

where u € Hk+1 R(Rm).
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Consider the first three sums in (28). They contain finite number of terms
such that ¢;p, # 0. Using equalities a)-c), (27) and Proposition 3.1 similarly
to the proof of Theorem 2.6 from work [12] it can be checked that the following
holds:

mo mo mgo mo
(29) Z Z wlRl(SOlQOm wmu Z Z wrpmu + Thu,
=0 m=0 =0 m=0
mo 00
> D uR(apm P ($mu)) Z Z iR (@1om P (Pmu))
=0 m—mo+1 =0 m= m0+1
(30) —Z Z DR (1om L(z, D) (V) Z Z eromu + Thu
=0 m=mop+1 =0 m=mo+1
mo 00
_Z Z wZRl(WlQOmL(f)D)(wmu))a
=0 m=mo+1
o0 mo
> > bR (@pn P ($mu)) Z szRl (1om P ($mu))
l*mo—‘rlm_o I=mo+1m=0
(31) + Z Zz/le (promL(z, D) (Ymu)) Z Zgalcpmu—i-Tgu
l=mo+1m= 0 I=mo+1m= 0
mi mo
+ Y Y iR (pipm L@, D) (Pmu)),
l=mop+1m=0

where u € Hy™"R(R™), my := maxymsmo{m : supp om N (UT, supp ps) # 0}
and operators 11,75 and T3 are compact operators acting from H, k1, R(R”)
HIFUR (.
From equality d), and the fact that, for m > mg operators R™ : Hf’R(R”) —
HgH’R(R”) are the inverse operators of P™ : H(?H’R(R”) — Hf’R(R") we get

> > hiR(ppm P (mu))

l—m0+1 m—mo+1

Z Z DR (prpm P (1hmu)) Z Z P1PmuU

l=mo+1 m=mo+1 l=mo+1m=mo+1

+ Y > RN eem P (mu) — P (prpmtbmu)),

l=mo+1m=mo+1

where u € Hk+1 R(Rm).
Taking into account (26), definitions of P!(x, D) and properties of functions
{om}o_g and {0, for I > my and m > mg with some constant C; > 0



1026 ANI TUMANYAN

we get

H@l@m l(@bmu)* Z(SOZSOm?/)mU)Hqu

<Cill Y Y ab@)DP () DY (prpm)a(e) T | g
a€R f+vy=q,
[v1>0
1 max.
<G Z Z z)D7( @l@m)ml)ﬁ(wm“) ()i () kR.q
a€R f+vy=q, ( ) o
[v1>0

From the last inequliaty, taking into account that ﬁ = 0 when |z| — oo,
properties (i)—(v) of the functions {¢om}_o, {tm}oe_, and the conditions on
the coefficients {a2(x)} (see (10)) we get

(32) H‘plgpmpl(d}mu) - Pl(@l‘ﬂmwmu)

a < wlmo)lfull greim gy s

where w(myg) is such a function that w(my) — 0 when mo — oo. Since (26)
holds, the norms of operators R', acting from Hf’R(R”) to H§+1’R(Rn), are
uniformly bounded. Using this fact, inequality (32) and properties (i)—(v) of
the functions {¢pm, }oo_o, {¥m }50_, it is easy to check that for a big enough mg
the operator

o0

Toi= Y > UR[oemP (m) — P(@romtm:));

l=mo+1 m=mo+1

acting from HgH’R(R") to HgH’R(R”), satisfies ||Ty|| < 1.

Similarly, for remained terms from (28), (30) and (31), taking into account
that D?(al(z)) = o(q(z)'—™a%i (@=B:4)) when |z| — o0, & € R, 3 € kR, for a
big enough mg we get that the operator

Tsi=Y_ Z UR (Prpm L) = Z DR (P1om L (1))
=0 m=mo+1 1=0 m=mop+1
+ >0 > bR (erpm L(me)),
I=mo+1m=0

acting from H(?H’R(R") to HgH’R(R”) , has a norm that satisfies ||T5|| < 1.
Denote
T =Ty + Ty + T3, T" := Ty + Ts.

From the representation (28), we get

o0 o0
RPu = Z Z wremu + Thiu+ Tou + Tzu + Tyu + Tsu = u+Tu+T"u,
=0 m=0
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where u € HyPHR(R™), T/ - HYTPR(R?) — HETEYR(R™) is a compact operator
and for operator T : Hy TV™(R™) — HYTR(R") we have ||T”|| < 1. Therefore,

I+T"Y'RP=T+ T +T1T")'T,

where T := (I+T")1T" : HF VPR (R™) — HFTR(R™) is a compact operator. So
we get that operator (I+T") 'R : HE ®(R™) — HiTHR(R™) is a left regularizer.

Analogously we can construct a right regularizer.

Since right and left regularizers exist, applying Theorem 3.5, we obtain the
Fredholm property for operator P(z,D) acting from Hg FLR(RR) to Hg R(Rm).
For necessary part regularity of P(x,D) follows from Corollary 3.1. Necessity
of condition (26) for the Fredholm property of operator P(z,D), acting from
H5+1’R(R”) to Hg’R(Rn), follows from Theorem 3.3 and Theorem 3.4. O
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