On K α c-spaces

Alaa Malik Soady

Department of Mathematics College of Science Mustansiriyah University Baghdad Iraq alaamalik2006@gmail.com

Laheeb Muhsen Noman

Department of Mathematics College of Science Mustansiriyah University Iraq laheeb_muhsen@uomustansiriyah.edu.iq

Haider Jebur Ali*

Department of Mathematics
College of Science
Mustansiriyah University
Baghdad
Iraq
drhaiderjebur@uomustansiriyah.edu.iq

Abstract. That research is submitted to introduce new type of supra Kc-spaces, it is supra α K (α c)-space, supra L (α c)-space, supra (α L)c-space and supra α L(α c)-space. We showed the relation between these types, also we provided some theorems, propositions and examples about the subjects.

Keywords: supra αK (αc)-space, supra $L(\alpha c)$ -space, supra (αL)c –space, supra $\alpha L(\alpha c)$ -space, supra α -Lindelöf space.

1. Introduction

Wilansky was the first author presented the notion of Kc-spaces [1], after that many authors treated with this space such as in [2]. Mashhour in [3] provided the notion of supra spaces. In [3], [4] the researchers presented the definition of the supra closure and the supra interior to any set in the supra space. In [5] the researcher defined the supra continuous function as (whenever $g^{(-1)}(V)$ is supra open subset of the supra space (X, μ_X) to any supra open subset V of the supra space (Y, μ_Y) , then $g: (X, \mu_X) \to (Y, \mu_Y)$ is supra continuous function). The researcher in [6] introduced the definition of supra open function

^{*.} Corresponding author

On Kac-spaces 985

as $(g:(X,\mu_X) \to (Y,\mu_Y))$ is supra open function, whenever for any supra open subset S of X, g(S) is supra open subset of Y). As well as he introduced the definition of the supra homeomorphism functions. In [7] Mukherji and Sarkar presented the concept of Lc-space (when any Lindelöf subset of a space X is closed, thus X is Lc-space). After that [8] the researchers introduced a kind of Lc-space which is stronger than the Kc-space. In this our work we connect between $K(\alpha c)$ -space and the supra space. Also we connect $\alpha K(\alpha c)$ -space and the supra space. By the same way we defined the rest Kind of spaces that we provided in this paper.

2. On K (α c)-spaces

In the next section of the research we will introduce a new types of supra Kcspaces, we will begin with some definitions that are benefit us in our next topics.

Definition 2.1 ([9]). Consider (X, μ) is a supra space and $S \subseteq X$, when $S \subseteq Int^{\mu}(cl^{\mu}(int^{\mu})(S))$, so S is supra α -open set. S^{c} is called supra α -closed.

Definition 2.2 ([9]). A supra α -open cover $\{S_{\alpha}\}_{{\alpha}\in\Lambda}$ to (X,μ) is a family of supra α -open subsets of X, where $X\subseteq\bigcup_{{\alpha}\in\Lambda}S_{\alpha}$

Definition 2.3 ([9]). Whenever each supra α -open cover for a supra space (X, μ) owns a finite (countable) subcover, then X is supra α -compact (supra α -Lindelöf).

Definition 2.4. When each compact subset of (X, μ) is supra α -closed, so X is supra K (αc)-space.

Example 2.1. The discrete supra space, is supra K (α c)-space.

Remark 2.1. The supra α -compact space is supra α -Lindelöf.

Example 2.2. The supra co-countable space (R, μ_{coc}) is supra α -Lindelöf, while it is not supra α -compact.

Definition 2.5 ([10]). If $X \subseteq \bigcup_{\alpha \in \Lambda} U_{\alpha\alpha}$, where $\{U_{\alpha}\}_{\alpha \in \Lambda}$ is a family of supra open subsets from (X, μ) , then $\{U_{\alpha}\}_{\alpha \in \Lambda}$ is a supra open cover for X.

Definition 2.6 ([10]). When each supra open cover to a supra space X owns a finite (or able to be counted) sub cover, then X is supra compact (supra Lindelöf) space.

Remark 2.2 ([10]). Suppose X is Supra α -compact (supra α -Lindelöf) space, so it will be supra compact (supra Lindelöf).

Example 2.3. The discrete supra topology on infinite countable set is a supra Lindelöf space as well as a supra α -Lindelöf space but neither supra compact nor supra α -compact.

Proposition 2.1 ([9]). Each supra α -closed subset from a supra α -compact space will be supra α -compact set.

Proposition 2.2 ([9]). Suppose X is supra α -Lindelöf space, and T is supra α -closed subset of X, hence T is supra α -Lindelöf.

Definition 2.7. Consider the supra space (X, μ) and x, y is non-equal points in X, when we can find supra α -open sets V_1 in the supra space X, in which $x \in V_1$, $y \notin V_1$, so X is supra αT_1 space.

Example 2.4. The supra co-finite topology on R is supra αT_1 -space.

Definition 2.8 ([11]). Suppose (X, μ) is a supra space, x, y are non-equal points in X, we can find are supra α -open sets G_1, G_2 in the supra space X, where $x \in G_1, y \in G_2$ and $G_1 \cap G_2 = \emptyset$ so X is supra αT_2 -space.

Example 2.5. The discrete supra topology on R is supra αT_2 -space.

Theorem 2.1. Consider (X, μ) is a supra αT_2 -space, and T is supra α -compact subset of it, then T is a supra α -closed.

Proof. Take $d \in T^c$ then for any point $b \in T$, $d \neq b$. There exist disjoint supra α -open sets G, L in the supra space X containing b,d respectively. We get $H = \{G_b\}_{b \in T}$ is supra α -open cover to T, since T is supra α -compact set, hence H owns a finite sub cover in which $T \subseteq \bigcup_{i=1}^n G_{b_i}$. Suppose $\tilde{L} = \bigcap_{i=1}^n L_{b_i}$ which is supra α -open set having d in it, implies $\tilde{G} = \bigcup_{i=1}^n G_{b_i}$, then $\tilde{G} \cap \tilde{L} = \emptyset$, so that $T \cap \tilde{L} = \emptyset$, $\tilde{L} \subseteq T^c$, therefore T^c is supra α -open. Hence T will be supra α -closed set.

Definition 2.9. Suppose T is a supra α -compact subset of the supra space X, whenever T supra α -closed, hence the space X is called supra αK (αc)-space.

Example 2.6.

1-The co-countable supra space (R, μ_{coc}) is supra αK (αc)-space, also it is Kc-space.

2- (R, μ_D) is supra αK (αc) -space.

Proposition 2.3. Consider the supra spade (X, μ) and $T \subseteq X$. T is supra α -closed set iff there is a supra closed set L with $cl^{\mu}(int(L)) \subseteq T \subseteq L$.

Proof. From $cl^{\mu}(int^{\mu}(T)) \subseteq T$ $(cl^{\mu}(T)) \subseteq T$ and $\subseteq cl^{\mu}(T)$, we have $cl^{\mu}(int^{\mu}(cl^{\mu}(T))) \subseteq T \subseteq cl^{\mu}(T)$, pick $cl^{\mu}(T) = L$, hence $cl^{\mu}(int^{\mu}(L)) \subseteq T \subseteq L$. Conversely, since $cl^{\mu}(int^{\mu}(L)) \subseteq T \subseteq L$, so $cl^{\mu}(cl^{\mu}(int^{\mu}(L))) \subseteq cl^{\mu}(T) \subseteq cl^{\mu}(L) = L$, then $cl^{\mu}(int^{\mu}(T))(L) \subseteq cl^{\mu}(T) \subseteq L$, that implies, $int^{\mu}(cl^{\mu}(int^{\mu}(L))) \subseteq int^{\mu}(cl^{\mu}(T)) \subseteq int^{\mu}(L)$, then $cl^{\mu}(int^{\mu}(cl^{\mu}(int^{\mu}(L))) \subseteq cl^{\mu}(int^{\mu}(cl^{\mu}(T))) \subseteq cl^{\mu}(int^{\mu}(L))$ (because $cl^{\mu}(int^{\mu}(L)) \subseteq T \subseteq L$), therefore $cl^{\mu}(int^{\mu}(cl^{\mu}(T))) \subseteq T$, therefore T is supra α -closed.

On K α C-SPACES 987

Lemma 2.1. Let T be supra α -closed set in the supra space X which is a domain of a supra homeomorphism function h and the supra space Y its co-domain, then h(T) is a supra α -closed set in Y.

Proof. Because of T is a supra α -closed subset of X, so $cl^{\mu}(int^{\mu}(L)) \subseteq T \subseteq L$, where L is a supra closed subset of X, so $cl^{\mu}h(int^{\mu}(L)) = h(cl^{\mu}(int^{\mu}(L))) \subseteq h(T) \subseteq h(L)$, but h(L) is supra closed subset of Y, which implies h(T) is supra α -closed.

Definition 2.10. If g(L) is supra α -open (or supra α -closed) set in (Y, μ_Y) for each supra open (supra closed) set L in the supra space (X, μ_X) , hence $g:(X, \mu_X) \to (Y, \mu_Y)$ is supra α -open (supra α -closed) function.

Definition 2.11. In Definition 2.10 if L is supra α -open (or supra α -closed) subset of (X, μ_X) and its image is supra open (supra closed) subset of (Y, μ_Y) , then g is supra α^* -open (supra α^* -closed) function.

Definition 2.12. In Definition 2.10 whenever L and g(L) are supra α -open (or supra α -closed) subsets of the supra spaces (X, μ_X) and (Y, μ_Y) respectively, hence g is called supra α^{**} -open (supra α^{**} -closed) function.

Definition 2.13 ([12]). The function $h:(X,\mu_X)\to (Y,\mu_Y)$ is supra α -continuous, whenever $h^{-1}(S)$ is supra α -open subset of X for any supra open subset S of Y.

Definition 2.14. In Definition 2.13 if S is supra α -open subset and its inverse image is supra open (supra α -open), then g is supra α^* -continuous (supra α^{**} -continuous).

Definition 2.15. If any supra compact subset in (X, μ_X) is supra closed set, so X is supra $(\alpha K)c$ -space.

Example 2.7. (R, mu_D) is supra (αK) c-space.

Theorem 2.2. Let the supra space (X, μ_X) be supra $(\alpha K)c$ -space and h from (X, μ_X) onto the supra space (Y, μ_Y) is injective, supra α^* -open and supra closed function, hence the space Y is supra $(\alpha K)c$ -space.

Proof. Consider B is a supra α -compact set in Y. Also $\{H_i, i \in I\}$ be a supra α -open cover for $h^{-1}(B) \Longrightarrow h^{-1}(B) \subseteq \cup_{i \in I} H_i \Longrightarrow h(h^{-1}(B) \subseteq h(\cup_{i \in I} H_i) \Longrightarrow B \subseteq \cup_{i \in I} h(H_i)$ where all $h(H_i), i \in I$ are supra α -open subsets of Y, so there is a finite collection from the sets $h(H_i)$ in which $B \subseteq \cup_{i=1}^n h(H_i) \Longrightarrow h^{-1}(B) \subseteq h^{-1}(\cup_{i=1}^n h(H_i) \Longrightarrow h^{-1}(B) \subseteq \cup_{i=1}^n h^{-1}(h(H_i) \Longrightarrow h^{-1}(B)) \subseteq \bigcup_{i=1}^n H_i \Longrightarrow h^{-1}(B)$ is supra α -compact subset of X, therefore $h^{-1}(B)$ is a supra α -closed (because X is supra α -closed. So $h(h^{-1}(B)) = B$ is supra closed subset of Y, there upon B is a supra α -closed, so (Y, μ) will be a supra (αK) c-space.

Corollary 2.1. Let the supra space (X, μ_X) be supra $(\alpha K)c$ -space and g from (X, μ_X) onto the supra space (Y, μ_Y) is injective, supra open (supra open) and supra α^* -closed (supra α^{**} -closed) function, hence the space Y is supra $(\alpha K)c$ -space.

Proposition 2.4. Let the supra space (X, μ_X) be supra $\alpha K(\alpha c)$ -space and h from (X, μ_X) onto the supra space (Y, μ_Y) is injective, supra α -open and supra α^{**} -closed function, hence the space Y is supra $\alpha K(\alpha c)$ -space.

Proof. Consider $\{H_{<}i > | i \in I\}$ is a supra α -open covering for the inverse image of $B \Longrightarrow h^{-1}(B) \subseteq \cup_{i \in I} H_i \Longrightarrow h(h^{-1}(B)) \subseteq h(\cup_{i \in I} H_i) \Longrightarrow B \subseteq \cup_{i \in I} h(H_i)$, in which each $h(H_i)$ is supra α -open set in Y, but B is supra α -compact, so there is a finite subfamily of the sets $h(H_i)$ in which $B \subseteq \bigcup_{i=1}^n h(H_i) \Longrightarrow h^{-1}(B) \subseteq \bigcup_{i=1}^n H_i \Longrightarrow h^{-1}(B)$ is supra α -compact subset from the supra space X, therefore it is a supra α -closed (since X is a supra α K(α c)-space). Hence $h(h^{-1}(B)) = B$ is supra α -closed subset from the supra space Y, so Y is a supra α K (α c)-space.

Proposition 2.5. When $h: (X, \mu_X) \to (Y, \mu_Y)$ is onto supra α^* -continuous function, where X is supra α -compact (or supra α -Lindelöf) space, hence Y is also supra α -compact (supra α -Lindelöf).

Proof. Consider the supra α -open cover $\{C_i|i \in I\}$ to the supra space Y, so $Y \subseteq \bigcup_{i \in I} C_i \Longrightarrow h^{-1}(Y) \subseteq h^{-1}(\bigcup_{i \in I} C_i) \Longrightarrow X \subseteq \bigcup_{i \in I} h^{-1}(C_i)$ (since h is onto), where each of $h^{-1}(C_i)$, $i \in I$ is supra α -open subset from the supra space X, hence the collection of $h^{-1}(C_i)$, $i \in I$ is supra α -open cover to the supra space X which is supra α -compact, so there is a finite sub collection from $h^{-1}(C_i)|i \in I$ in which $X \subseteq \bigcup_{i=1}^n h^{-1}(C_i) \Longrightarrow h(X) \subseteq h(\bigcup_{i=1}^n h^{-1}(C_i)) \to Y \subseteq \bigcup_{i=1}^n h(h^{-1}(C_i)) \Longrightarrow Y \subseteq \bigcup_{i=1}^n C_i$, which means Y is supra α -compact space. The other possibility can be proved by the same way.

Proposition 2.6 ([9]). A finite supra space, is supra α -compact space.

Proposition 2.7. Suppose (X, μ_X) is supra $K(\alpha c)$ -space and $h: (X, \mu_X) \to (Y, \mu_Y)$ is supra homeomorphism function, hence (Y, μ_Y) is also supra $K(\alpha c)$ -space.

Proof. Suppose S is a supra compact subset from the supra space (Y, μ_Y) , $h^{-1}(S)$ is supra compact sub of (X, μ_X) , but X is supra $K(\alpha c)$ -space, thus $h^{-1}(S)$ is supra α -closed. Now $h(h^{-1}(S)) = S$ is supra α -closed subset from Y (h is surjective function), and this lead us to the required.

Definition 2.16. Whenever any supra Lindelöf subset from the supra space (X, μ_X) is supra α -closed, thus X is supra $L(\alpha c)$ -space.

Example 2.8. (Z, μ_{ind}) is supra L (αc) -space.

ON K α C-SPACES 989

Remark 2.3. Any supra Lc-space is supra $L(\alpha c)$ -space. (Z, μ_{ind}) is an example about the converse,

- Remark 2.4. Suppose the supra space X is supra $L(\alpha c)$ -space, hence it will be supra $K(\alpha c)$ -space, because when B is supra compact subset from the space X, it will be supra Lindelöf, Since X is supra $L(\alpha c)$ -space, B will be supra α -closed set, then X is supra $K(\alpha c)$ -space.
- **Remark 2.5.** Suppose X is supra Lindelöf space and Y is a subspace of X, so Y is not necessary supra Lindelöf. But if any sub space of supra Lindelöf (supra α -Lindelöf) is supra Lindelöf (supra α -Lindelöf) sub space we called it a supra hereditary Lindelöf (α -Lindelöf).

Example 2.9. The excluded point supra space (R, μ_{EX}) is supra Lindelöf space but $(R - \{x_0\}, \mu_{EX})$ is not supra Lindelöf.

Acknowledgments

We wish to express our sincere thanks to the Mustansiriyah University, College of Science, Department of Mathematics for supporting this research.

References

- [1] A. Wilansky, Between T_1 and T_2 , American Mathematical Monthly, 74 (1967), 261-266.
- [2] Ali, Haider Jebur, Marwa Makki Dahham, When compact sets are α -closed, Al-Nahrain Journal of Science, 1 (2018), 166-170.
- [3] A. S. Mashhour, A. A. Allam, F. S. Mahmoud, F. H. Khedr, On supra topological spaces, Indian Journal of Pure and Applied Mathematics, 14 (1983), 502-510.
- [4] O.R. Sayed, Supra β -connectedness on topological spaces, Proceedings of the Pakistan Academy of Sciences, 49 (2012), 19-23.
- [5] C. Janaki, V. Jeyanthi, $\Pi g^{\mu}R$ -locally closed sets in supra topological spaces, Procedia Computer Science, 47 (2015), 326-336
- [6] H. Jassim Taha, Rana B. Yasseen, Nabeel E. Arif, On some separation axioms of supra topological spaces, Tikrit Journal of Pure Science, 13 (2008), 59-62.
- [7] T.K. Mukherji, M. Sarkar, On a class of almost discrete spaces, Mat. Vesnik, 1979, 459-473.
- [8] Ali Haider Jebur, Marwa Makki Dahham, When m-Lindelöf sets are mx-semi closed, Journal of Physics, 1003 (2018), 1-7.

- [9] Al-shami, Tareq Mohammed, Utilizing supra α-open sets to generate new types of supra compact and supra Lindelof spaces, Facta Universitatis, 32 (2017), 151-162.
- [10] Samer Al Ghour, Wafa Zareer, Omega open sets in generalized topological spaces, Journal of Nonlinear Science and Applications, 2016, 3010-3017.
- [11] B. K. Mahmoud, On supra-separation axioms for supra topological spaces, Tikrit Journal of Pure Science, 22 (2017), 117-120.
- [12] I. Arockiarani, M. Trinita Pricilla, On generalized b-regular closed sets in supra topological spaces, Asian J. of Current Engineering and Maths, 1 (2012), 1-4.

Accepted: April 18, 2020