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Towards the supercharacter theory of the dicyclic group
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Abstract. The dicyclic group of order 4n has a presentation

T4n = ⟨a, b | a4n = 1, a2n = b2, b−1ab = a−1⟩

and is a non-split extension of a cyclic group of order 2n by a cyclic group of order 2.
In this paper we investigate a few supercharacter theory for T4n.
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1. Introduction

Supercharacter theory was first defined in [1] and [2] to study the irreducible
comlex characters of the group Un(q) of n by n unipotent upper triangular
matrices with entries in the Galois field GF (q). But in [4] the authors for-
mally defined the notion of supercharacter theory for an arbitrary finite group
and studied supercharacter theory of a famly of finite groups known as algebra
groups.

Let G be a finite group and Irr(G) be the set of all its complex irreducible
characters, and let Con(G) denote the set of all the conjugacy classes of G. The
trivial character of G is denoted by 1G and its identity element is denoted by 1.
In [4] a supercharacter theory for G is defined to be a pair (X ,K) where:

1. X is a partition of Irr(G),

2. K is a partition of G and {1} ∈ K,

3. |X | = |K|,

4. For each X ∈ X there is a character
∑

X of G such that
∑

X(x) =
∑

X(y)
for all x, y ∈ K, K ∈ K.

In the above situation
∑

X is called a supercharacter and each member of K
is called a superclass. Sup(G) is the set of all the supercharacter theories for G.

Supercharacter theory of a finite group G may be regarded as a general case
of the ordinary character theory. In fact, in a supercharacter theory, superchar-
acters play the role of irreducible ordinary characters and union of conjugacy
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classes play the role of the conjugacy classes. In [4] it is shown that {1G} ∈ X
and if X ∈ X , then

∑
X is a constant multiple of

∑
χ∈X χ(1)χ, and that we may

assume that
∑

X =
∑

χ∈X χ(1)χ.

Any finite group G has two extreme supercharacter theories which are de-
noted by m(G) and M(G) and are called trivial supercharacter theory for G:

m(G) = (Con(G), {{χ} : χ ∈ Irr(G)})
M(G) = ({{1}, G− {1}}, {{1G}, Irr(G)− {1G}})

These supercharacter theories are distinct for all groups of order greater than
2. In [3] it is shown that the only finite groups with exactly two supercharacter
theories are Z3, S3 and SP6(2).

It is proved in [5] that the set of all supercharacter theories of a group forms a
lattice in the following natural way. Sup(G) can be made to a poset by defining
(X ,K) ⪯ (Y,L) if X ≤ Y in the sense that every part of X is a subset of some
part of Y. By [5] this definition is equivalent to (X ,K) ⪯ (Y,L) if K ≤ L. By
this definition m(G) is the least and M(G) is the largest element of Sup(G).

The first author to attempt to classify the supercharacter theories of a given
finite group was Hendrickson. In [5] the author classified the supercharacter
theories of arbitrary cyclic groups. In [10] the authors study the supercharacter
theories for extra special p-groups and also Frobenius groups. In [11] the author
attempts to find the supercharacter theories for parabolic subgroups. For other
families of finite groups, as extensions of the cyclic groups, the supercharacter
theories of the dihedral groups were found in [9]. The dihedral group of order
2n has presentation:

D2n = ⟨a, b | an = b2 = 1, b−1ab = a−1⟩ = ⟨a⟩⋊ ⟨b⟩ ∼= Zn ⋊ Z2.

The dicyclic group of order 4n has presentation

T4n = ⟨a, b | a2n = 1, an = b2, b−1ab = a−1⟩ ∼= Z2n · Z2

which is a non-split extension of the cyclic group of order Z2n by the cyclic group
of order 2. Our aim in this paper is to provide some supercharacter theories of
T4n.

2. Preliminaries

For a non-trivial supercharacter theory of a group the following is described in
[4]. Let G be a finite group and A ≤ Aut(G). Let

Irr(G) = {χ1 = 1G, χ2, · · · , χh} and Con(G) = {C1 = {1}, C2, · · · , Ch}.

Suppose that for each α ∈ A, Cα
i = Cj , 1 ≤ i ≤ h, and χα

i (g) = χi(g
α),

for all g ∈ G, and α ∈ A. In this case we have an action of A on both Irr(G)
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and Con(G) and by a Lemma of Brauer mentioned in [7] the number of conju-
gacy classes of G fixed by α equals the number of irreducible characters fixed
by α, moreover the number of orbits of A on Con(G) equals the number of
orbits of A on Irr(G). It is easy to see that the orbits of A on Irr(G) and
Con(G) yield a supercharacter theory for G. This supercharacter theory for G
is called automorphic. There are groups that all of its supercharacter theories
are automorphic.

Theorem 2.1. Every supercharacter theory of Zp, p prime, is automorphic.
Moreover, for each divisor d of p − 1, there is a unique supercharacter theory
for Zp whose non-trivial superclasses all have size d. Therefore the number of
supercharacter theories is equal to φ(p − 1), where φ denotes the Euler totient
function.

According to [4] there is a method of constructing supercharacter theories
for a group G of order n which uses the action of a group A of automorphisms
of the cyclotomic field Q[ξ], where ξ is a primitive nth root of unity. It is known
that the values of the irreducible characters of G are all lie in the cyclotomic
field Q(ξ). Let A ≤ Aut(Q(ξ)), then for σ ∈ Aut(Q(ξ)) we have σ(ξ) = ξm,
where (m,n) = 1. This defines an automorphism of Q(ξ) and all automorphisms
of Q(ξ) are obtained in this way. Then σ carries the class of g ∈ G to the class
containing gm. The Brauer Lemma shows that the number of A-orbits on Irr(G)
is equal to the number of A-orbits on Con(G). In this case similarly if X is the
set of A-orbits on Irr(G) and K is the set of unions of A-orbits on Con(G),
then (X ,K) is a supercharacter theory for G. We shall call this supercharacter
theory Galois.

At this point we define the supercharacter table. Let (X ,K) be a super-
character theory for a finite group G. Suppose X = {X1, X2, · · · , Xk} is a
partition of Irr(G) with corresponding supercharacter

∑
i =

∑
χ∈Xi

χ(1)χ.
Let K = {K1,K2, · · · ,Kk} be the partition of G into superclasses. In fact,
X1 = {1G}, K1 = {1} and Ki’s are union of conjugacy classes of G. The
supercharacter table of G corresponding to (X ,K) is the following k × k array.

Table 1

K1 K2 · · · Kj · · · Kk∑
1

∑
1(K1)

∑
1(K2) · · ·

∑
1(Kj) · · ·

∑
1(Kk)∑

2

∑
2(K1)

∑
2(K2) · · ·

∑
2(Kj) · · ·

∑
2(Kk)

...
...

...
...

...∑
i

∑
i(K1)

∑
i(K2) · · ·

∑
i(Kj) · · ·

∑
i(Kk)

...
...

...
...

...∑
h

∑
h(K1)

∑
h(K2) · · ·

∑
h(Kj) · · ·

∑
h(Kk)
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3. The dicyclic group

In terms of the generators and relations the dicyclic group is defined by

T4n = ⟨a, b | a2n = 1, an = b2, b−1ab = a−1⟩, n ≥ 1.

This is a group of order 4n and T4 ∼= Z4, T8 ∼= Q8 the quaternion group of
order 8. Since T4n has only one element of order 2, and ⟨a⟩ ⊴ T4n, therefore
T4n ∼= Z2n · Z2 is a non-split extension of Z2n by Z2.

The conjugacy classes and the complex character table of T4n can be found
in [8] and are listed below:

G = T4n has n+ 3 conjugacy classes as follows:

K1 = {1}
K2 = {an}
Kr = {ar, a−r}, 1 ≤ r ≤ n− 1

K ′
3 = {a2jb | 0 ≤ j ≤ n− 1}

K ′
4 = {a2j+1b | 0 ≤ j ≤ n− 1}.

If n is odd, then G
G′

∼= Z4 and the character table of G is as follows:

Table 2

|CG(x)| 4n 4n 2n 4 4
x 1 an ar(1 ≤ r ≤ n− 1) b ab

χ1 1 1 1 1 1
χ2 1 −1 (−1)r i −i
χ3 1 1 1 −1 −1
χ4 1 −1 (−1)r −i i
ψj

1≤j≤n−1

2 2(−1)j ωrj + ω−rj 0 0

If n is even, then G
G′

∼= Z2 × Z2.

Table 3

|CG(x)| 4n 4n 2n 4 4
x 1 an ar(1 ≤ r ≤ n− 1) b ab

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 (−1)r 1 −1
χ4 1 1 (−1)r −1 1
ψj

1≤j≤n−1

2 2(−1)j ωrj + ω−rj 0 0

Where ω = e
2πi
n in both tables.
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Lemma 3.1. The automorphism group of T4n has order 2nφ(2n) and its ele-
ments are

Aut(T4n) = {fk,l | fk,l(a) = ak, fk,l(b) = alb, (k, 2n) = 1, 0 ≤ l < 2n}.

Proof. It is enough to define each automorphism of T4n on a and b. The only
elements of order 2n in T4n are ak, where (k, 2n) = 1. Therefore if f is an
automorphism of T4n we should have f(a) = ak, (k, 2n) = 1. But then f(b)
cannot be a power of a, and as an element of order 4 we should have f(b) = alb,
0 ≤ l < 2n. Then it is routine to check that f with above definition is infact
an automorphism of T4n. Therefore we set f = fk,l and verify that fk,lfk′,l′ =
fkk′,kl′+l. If Φ2n denotes the groups of units of Z2n we have Aut(T4n) ∼= Z2n ⋊
Φ2n.

Keeping fixed the previous notation we see that orbits of Aut(T4n) on Con(T4n)
are:

K1,K2,K
′
3 ∪K ′

4,
⋃
k

Krk

(k,2n)=1

.

Orbits of Aut(T4n) on Irr(T4n) are:

χ1, χ2 + χ4, χ3,
∑
j

(j,2n)=1

ψj if n is odd and,

χ1, χ2, χ3 + χ4,
∑
j

(j,2n)=1

ψj if n is even.

Therefore, the above is an automorphic supercharacter theory for T4n. To
be precise in the following we give a supercharacter table in case of T4p, where
p is an odd prime number. In this case the orbits of Aut(T4p) on Con(T4p) are:

K1 = {1},
K2 = {ap},
K ′

3 ∪K ′
4,

K5 = {a±1, a±3, · · · , a±(2p−1)},
K6 = {a±2, a±4, · · · , a±(2p−2)}.

Using tables 2 we find the following partition of Irr(T4n):

{χ1}, {χ2, χ4}, {χ3}, {ψj | j = 1, 3, · · · , p− 2}, {ψj | j = 2, 4, · · · , p− 1}

Therefore (X ,K) is a supercharacter theory for T4p with the following super-
character table:
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Table 4

K1 K2 K ′
3 ∪K ′

4 K5 K6∑
1 1 1 1 1 1∑
2 2 −2 0 −2 2∑
3 1 1 −1 1 1∑
4 p− 1 −(p− 1) 0 2 cos π

p −2 cos π
p∑

5 p− 1 p− 1 0 −2 cos π
p 2 cos π

p

If p = 2, then T8 ∼= Q8 is the quaternion group of order 8 and this case we
have:

K = {K1 = {1},K2 = {a2},K3 = {a},K4 = {class(b), class(ab)}}
X = {{χ1}, {χ2}, {χ3, χ4}, {ψ1}}

Table 5

K1 K2 K3 K4∑
1 1 1 1 1∑
2 1 1 1 −1∑
3 2 2 −2 0∑
4 2 −2 0 0

Lemma 3.2. If n is even, then T4n and D4n have the same number of super-
character theory.

Proof. If n is even it is easy to see that T4n and D4n have the sane character
table. But then groups with the same character tables have the same super-
character theory.

Next, we will consider a certain subgroup of Aut(Tn). Let

H = {f1,l | 0 ≤ l < 2n} ∼= Z2n,

where f1,l(a) = a, f1,l(b) = alb, 0 ≤ l < 2n. Orbits of H on Con(T4n) are:

K1 = {1},
K2 = {an},
Kr = {ar}, 1 ≤ r ≤ n− 1,

K ′
3 ∪K ′

4.

Therefore, there are n+ 2 superclasses, the supercharacter are:
∑
1

= χ1,
∑
2

= χ2 + χ4,
∑
3

= χ3,
∑
j

= ψj , 1 ≤ j ≤ n− 1, if n is odd,∑
1

= χ1,
∑
2

= χ2,
∑
3

= χ3 + χ4,
∑
j

= ψj , 1 ≤ j ≤ n− 1, if n is even.
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Now, let p be an odd prime and consider the subgroup

K = {fk,0 | (k, 2p) = 1} ∼= Zp−1,

where fk,0(a) = ak, k ̸= p, k = 1, 3, · · · , 2p− 1;fk,0 = b.
In this case, regarding the action of K, the superclasses are K1 = {1},

K2 = {ap}, K3 = class(a), K4 = class(a2), K5 = class(b), K6 = class(b3).
The supercharacters are:

{χ1}, {χ2}, {χ3}, {χ4},
∑
j odd

1≤j≤p−1

2ψj ,
∑

j even
1≤j≤p−1

2ψj .

Acknowledgements

The author would like to thank the referee for his useful comments.

References

[1] C. Andre, Basic characters of the unitriangular group (for arbitrary
primes), Proc. Amer. Math. Soc., 130 (2002), 1943-1954.

[2] C. Andre, A. Margarida Neto, Supercharacters of finite unipotent groups of
types bn, cn and dn, J. Alg., 305 (2009), 394-429.

[3] S. Burket, J. Lamer, M.L. Lewis, C. Wynn, Groups with exactly two super-
character theories, Comm. Alg., 45 (2017), 977-982.

[4] P. Diaconis and I. M. Isaacs, Supercharacters and superclasses for algebra
groups, Trans. Amer. Math. Soc., 360 (2008), 2359-2392.

[5] A.O.F. Hendrickson, Supercharacter theory constructions corresponding to
Schur ring products, Comm. Alg., 40 (2012), 4420-4438.

[6] A.O.F. Hendrickson, Supercharacter theories of finite cyclic groups, Ph.D
dissertation, University of Wiscosin-Madison, 2008.

[7] I.M. Isaacs, Character theory of finite groups, Dover, New-York, 1994.

[8] G. James, M. Liebeck, Representations and characters of groups, Cam-
bridge University Press, 1993.

[9] J. Lamar, Supercharacter theories of dihedral groups, acxiv: 1612.06913v1.

[10] M.L. Lewis, C. Wynn, Supercharacter theories of extra special p-group and
Frobenius groups, J. Alg., 503 (2018), 372-388.

[11] A.N. Panov, Towads a supercharacter theory of parabolic subgroups, Algebr.
Rep. Theor., 21 (2018), 1133-1149.

Accepted: July 06, 2020


