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Bach tensor on N(κ)-paracontact metric 3-manifolds
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Abstract. In this paper, we characterize the Bach tensor on N(κ)-paracontact met-
ric 3-manifold. It is proved that a N(κ)-paracontact metric 3-manifold with purely
transversal Bach tensor is of constant scalar curvature 6κ.
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1. Introduction

The notion of Bach tensor was introduced by Rudolf Bach in [1] when studying
so-called conformal relativity. That is, instead of using the Hilbert-Einstein
functional, one considers the functional

(1) W(g) =

∫
M4

|W (g)|2dvg,
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for a 4-dimensional compact Riemannian manifolds M , where W denotes the
Weyl tensor of type (1, 3) defined by

W (X,Y )Z = R(X,Y )Z − 1

2n− 1
{S(Y,Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY }

+
r

2n(2n− 1)
{g(Y, Z)X − g(X,Z)Y },(2)

where R denotes the Riemannian curvature tensor, S is a Ricci tensor and
Ricci operator Q is defined by g(QX,Y ) = S(X,Y ). The Critical points of the
functional (1) are characterized by the vanishing of a symmetric trace free (0, 2)
type tensor B is usually referred as Bach tensor and the metric is called Bach
flat if B vanishes. On any Riemannian manifold (M, g) of dimension (2n + 1),
the Bach tensor B is defined by

B(X,Y ) =
1

2n− 2

2n+1∑
i,j=1

((∇ei∇ejW )(X, ei, ej , Y )

+
1

2n− 1

2n+1∑
i,j=1

S(ei, ej)W (X, ei, ej , Y ),(3)

where {ei}2n+1
i=1 is a local orthonormal frame on (M, g). A Riemannian manifold

M is said to be Einstein if the Ricci tensor S is a constant multiple of the
metric tensor g. Now, from (2) and the contraction of Bianchi second identity
it follows that divW = 2n−2

2n−1C, where C is the (0, 3)-type Cotton tensor tensor
defined by[2]

C(X,Y )Z = (∇XS)(Y,Z)− (∇Y S)(X,Z)

− 1

4n
{dr(X)g(Y, Z)− dr(Y )g(X,Z)}.(4)

Now, making use of Weyl tensor (2) and Cotton tensor (4), the Bach tensor (3)
can be expressed as [3]

(5) B(X,Y ) =
1

2n− 1

2n+1∑
i=1

(∇eiC)(ei, X)Y +
2n+1∑
i,j=1

S(ei, ej)W (X, ei, ej , Y )

 .

In dimension 3, the Weyl tensor W vanishes, and hence the expression of
Bach tensor transforms into

B(X,Y ) =

3∑
i=1

(∇eiC)(ei, X)Y.(6)

A Riemannian metric g is called Bach flat if the Bach tensor B of g vanishes.
By (3), it is easy to see that Bach flatness is natural generalization of Einstein
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and conformal flatness. For more details about Bach tensor, we refer to reader
[4, 5, 7, 8] and references therein.

On the other hand, study of nullity distribution on paracontact geometry
is one among the most interesting topics in modern paracontact geometry. In
1985, Kaneyuki and Kozai [10] initiated the study of paracontact geometry.
The importance of paracontact geometry interplays with the theory of para-
Kahler manifolds and its role in pseudo-Riemannian geometry and mathematical
physics. A systematics study of paracontact metric manifolds was carried out by
Zamkovoy [19]. Further, the study was taken up by many authors, for readers
we refer the papers [9, 11, 12, 13, 14, 15, 16, 17, 18, 20] and others.

Recently, Ghosh and Sharma in [6] studied Sasakian manifold with purely
transversal Bach tensor. In particular, they proved that if a Sasakian manifold
admits a purely transversal Bach tensor, then g has constant scalar curvature
≥ 2n(2n+1), with equality holds if and only if g is Einstein, and the Ricci tensor
of g has a constant norm. Also, they studied (κ, µ)−contact manifolds with van-
ishing Bach tensor in [7]. This works turns our attention to study Bach tensor in
the framework of certain class of paracontact metric manifolds, particularly, on
3-dimensional N(κ)−paracontact metric manifolds (briefy, N(κ)−paracontact
metric 3-manifolds).

The paper is organized as follows: Section 2 is concerned with the basic
formulas and properties of N(κ)−paracontact metric manifolds. Section 2 is
concerned with the study of N(κ)−paracontact metric 3-manifolds with purely
transversal Bach tensor. It is proved that a N(κ)-paracontact metric 3-manifold
with purely transversal Bach tensor is of constant scalar curvature.

2. Preliminaries

An almost paracontact structure on a (2n+1)-dimensional smooth manifold
M2n+1 is a triplet (ϕ, ξ, η), where φ is a (1, 1)-type tensor field , ξ is a vec-
tor field called the Reeb vector field and η is a 1-form such that:

(i) φ2X = X − η(X)ξ,
(ii) φ(ξ) = 0, η · φ = 0, η(ξ) = 1,
(iii) the tensor field φ induces an almost paracomplex structure on each fibre

of D = ker(η), that is, the eigendistributions D+
φ and D−

φ of φ corresponding to
the eigenvalues 1 and -1, respectively, have same dimension n.

An almost paracontact manifold equipped with a pseudo-Riemannian metric
g such that

(7) g(φX,φY ) = −g(X,Y ) + η(X)η(Y ),

for all X,Y ∈ χ(M), is called almost paracontact metric manifold and (φ, ξ, η, g)
is said to be an almost paracontact metric structure. An almost paracon-
tact structure is normal [30] if and only if the (1, 2)-type torsion tensor Nφ =
[φ,φ] − 2dη ⊗ ξ = 0, where [φ,φ](X,Y ) = φ2[X,Y ][φ,φ]. An almost para-
contact structure is called a paracontact structure if g(X,φY ) = dη(X,Y )
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[20]. Any almost paracontact metric manifold (M2n+1, φ, ξ, η, g) admits a φ
basis [20], that is, a pseudo-orthonormal basis of vector fields of the form
ξ, E1, E2, ..., En, φE1, φE2, ..., φEn, where ξ, E1, E2, ..., En are space-like vector
fields and then, by (2.1) the vector fields φE1, φE2, ..., φEn are time-like. For
a three-dimensional almost paracontact metric manifold, any (local) pseudo-
orthonormal basis of ker(η) determines a φ-basis, up to sign. If e2, e3 is a
(local) pseudo-orthonormal basis of ker(η), with e3, time-like, so by (7) vector
field φe2 ∈ ker(η) is time-like and orthogonal to e2. Therefore, φe2 = ±e3 and
ξ, e2,±e3 is a φ-basis [13]. In a paracontact metric manifold, one can introduce a
symmetric, trace-free (1, 1)-tensor h = 1

2Lξφ such that φh+hφ = 0 and hξ = 0
satisfying [12, 16, 19, 20]

∇Xξ = −φX + φhX,(8)

(∇Xη)Y = g(X − hX,φY ),(9)

(∇Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX),(10)

for any X,Y ∈ χ(M). Note that, the condition h = 0 is equivalent to ξ being
Killing vector field and then (φ, ξ, η, g) is said to be K-paracontact structure. A
paracontact metric manifold is said to be a (κ, µ)-paracontact metric manifold
if the curvature tensor R satisfies

(11) R(X,Y )ξ = κ(η(Y )X − n(X)Y ) + µ(η(Y )hX − n(X)hY ),

for all vector fields X,Y ∈ χ(M) and κ, µ are real constants. In particular,
if µ = 0, then the (κ, µ)-paracontact metric manifold reduces to an N(κ)-
paracontact metric manifold. Thus, for an N(κ)-paracontact metric manifold
the Riemannian curvature tensor R satisfies

(12) R(X,Y )ξ = κ(η(Y )X − n(X)Y ).

In a 3-dimensional N(κ)-paracontact metric manifold (M3, φ, ξ, η, g), the
following relations hold [14]:

QX =
(r
2
− κ

)
X +

(
3κ− r

2

)
η(X)ξ,(13)

S(X,Y ) =
(r
2
− κ

)
g(X,Y ) +

(
3κ− r

2

)
η(X)η(Y ),(14)

S(X, ξ) = 2κη(X),(15)

Qξ = 2κξ,(16)

for all vector fields X,Y ∈ χ(M), where Q and S are the Ricci operator and the
Ricci tensor, respectively.

The covariant differentiation of (14) along any arbitrary vector field Z gives

(∇ZS)(X,Y ) =
dr(Z)

2
[g(X,Y )− η(X)η(Y )]

+
(
3κ− r

2

)
[(∇Zη)(Y )η(X) + (∇Zη)(X)η(Y )].
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Making use of (9) and replacing X by φX in above relation, we obtain

(∇ZS)(φX, Y ) =
dr(Z)

2
[g(φX, Y )− η(X)η(Y )]

+
(
3κ− r

2

)
[g(Z − hZ,X)η(Y )− η(X)η(Y )η(Z)].(17)

In an orthogonal frame field {ei}3i=1 of tangent space M , setting X = Z = ei in
(17) and taking summation over i and then using a fact that Tr(h) = 0, we get

3∑
i=1

(∇eiS)(φei, Y ) =
3∑

i=1

g((∇eiQ)φei, Y )

= (6κ− r)η(Y )− 1

2
dr(φY ).(18)

Again, setting X = Y = ei in (17) and taking summation over i and then using
the fact that Tr(φ) = 0, hξ = 0, we get

3∑
i=1

(∇ZS)(φei, ei) =
3∑

i=1

g((∇ZQ)φei, ei) = 0.(19)

Next, replacing X by hX in the relation (17), we obtain

(20) (∇ZS)(φhX, Y ) =
dr(Z)

2
g(φhX, Y ) +

(
3κ− r

2

)
g(Z − hZ, hX)η(Y ).

Taking X = Z = ei in (20) and taking summation over i and then using a fact
that Tr(h) = Tr(h2) = 0, we get

(21)
3∑

i=1

(∇eiS)(φhei, Y ) =
3∑

i=1

g((∇eiQ)φhei, Y ) =
1

2
dr(φhY ).

Also, by setting X = Y = ei and taking summation over i and then using the
fact that Tr(φh) = 0, hξ = 0, we obtain

(22)

3∑
i=1

(∇ZS)(φhei, ei) =
3∑

i=1

g((∇ZQ)φhei, ei) = 0.

Now, we recall some results on 3-dimensionalN(κ)-paracontact metric manifolds
which will be useful for the next section:

Lemma 2.1 ([14]). An N(κ)-paracontact metric 3-manifold (M3, φ, ξ, η, g) is
locally φ-symmetric if and only if the scalar curvature r of g is constant.

Lemma 2.2 ([18]). On any N(κ)-paracontact metric 3-manifold ξr = 0.
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3. Bach tensor on N(κ)-paracontact metric 3-manifolds

In this section, we aim to study N(κ)-paracontact metric 3-manifold with purely
transversal Bach tensor, i.e., B(X, ξ) = 0. First, we present the following result:

Lemma 3.1. For a N(κ)-paracontact metric 3-manifold M3, the following re-
lation hold:

3∑
i=1

(∇eiC)(ei, Y )ξ = 3(6κ− r)η(Y )− 3

2
dr(φY )− 1

2
dr(φhY )

+
3∑

i=1

g((∇eiφh)Y,Qei)−
3∑

i=1

g((∇eiφh)ei, QY )

− 1

4
g(∇ξDr, Y ).(23)

Proof. In a 3-dimensional manifold (M3, g), for X,Y, Z ∈ χ(M) the Cotton
tensor is given by

C(X,Y )Z = (∇XS)(Y,Z)− (∇Y S)(X,Z)

− 1

4
{dr(X)g(Y, Z)− dr(Y )g(X,Z)}.(24)

Replacing Z by ξ in (24), we get

C(X,Y )ξ = (∇XS)(Y, ξ)− (∇Y S)(X, ξ)

− 1

4
{dr(X)η(Y )− dr(Y )η(X)}.(25)

Differentiating covariantly (16) along an arbitrary vector field X, we obtain

(∇XQ)ξ = 2κ∇Xξ −Q∇Xξ.(26)

Using (8) in the above equation, we get

(∇XQ)ξ = −2κ(φX − φhX) +Q(φX − φhX).(27)

Take an inner product of (27) with respect to vector field Y , we obtain

g((∇XQ)ξ, Y ) = (∇XS)(Y, ξ) = −2κg(φX − φhX, Y )

+ g(φX − φhX,QY ).(28)

Making use of (28) in (25) shows that

C(X,Y )ξ = −4κg(φX, Y ) + 2g(QφX,Y )− g(QφhX, Y ) + g(QφhY,X)

− 1

4
[dr(X)η(Y )− dr(Y )η(X)].(29)
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Taking covariant differentiation of C(X,Y )ξ along an arbitrary vector field W ,
we get

(∇WC)(X,Y )ξ = ∇WC(X,Y )ξ − C(∇WX,Y )ξ

− C(X,∇WY )ξ − C(X,Y )∇W ξ.(30)

Using (27) and (29) in (30), we deduce

(∇WC)(X,Y )ξ = C(X,Y )φW − C(X,Y )φhW − 4κg((∇Wφ)X,Y )

+ 2[g((∇WQ)φX, Y ) + g(Q(∇Wφ)X,Y )]

− g((∇WQ)φhX, Y )− g(Q(∇Wφh)X,Y )

+ g((∇WQ)φhY,X) + g(Q(∇Wφh)Y,X)

− 1

4
[dr(X)(∇W η)(Y )− dr(Y )(∇W η)(X)

− g(∇WDr,X)η(Y ) + g(∇WDr, Y )η(X)].

From the relation (9), (10) and (24) above equation becomes

(∇WC)(X,Y )ξ = (∇XS)(Y, φW )− (∇Y S)(X,φW )− (∇XS)(Y, φhW )

+ (∇Y S)(X,φhW )− 4kg(W − hW, Y )η(X)

+ 2g(W − hW,QY )η(X) + 2g((∇WQ)φX, Y )

− g((∇WQ)φhX, Y )− g(Q(∇Wφh)X,Y )

+ g((∇WQ)φhY,X) + g(Q(∇Wφh)Y,X)

+
1

4
[g(∇WDr,X)η(Y )− g(∇WDr, Y )η(X)].(31)

Setting X = W = ei in (31) and summing over i and then use of the relations
(18), (19), (21) and (22) proves our lemma.

Now, we state and prove the main result of this paper:

Theorem 3.1. If an N(κ)-paracontact metric 3-manifold M3 with κ > −1 has
purely transversal Bach tensor, then the scalar curvature r is constant.

Proof. In an N(κ)-paracontact metric 3-manifold with κ > −1, we have

(∇Xφh)Y = (1 + κ)[g(X,Y )ξ − η(X)η(Y )ξ]− g(hX, Y )ξ

+ (1 + κ)η(Y )[X − η(X)ξ]− η(Y )hX.(32)

Taking an inner product of (32) with respect to QZ, we get

g((∇Xφh)Y,QZ) = 2κ(1 + κ)[g(X,Y )η(Z)− 2η(X)η(Y )η(Z)]

− 2κg(hX, Y )η(Z) + (1 + κ)g(X,QZ)η(Y )

− g(hX,QZ)η(Y ).(33)
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Take an orthogonal frame field {ei}, i = 1, 2, 3 of tangent space M3, setting
X = Y = ei in (33) and then summing over i, we obtain

3∑
i=1

g((∇eiφh)ei, QZ) = 4κ(1 + κ)η(Z).(34)

Again, take an orthogonal frame field {ei}, i = 1, 2, 3 of tangent space M3,
setting X = Z = ei in (33) and then summing over i gives

3∑
i=1

g((∇eiφh)Y,Qei) = (1 + κ)(r − 2κ)η(Y ).(35)

Replacing Z by Y , in (34) and subtracting it in (35), gives

(36)
3∑

i=1

g((∇eiφh)Y,Qei)−
3∑

i=1

g((∇eiφh)ei, QY ) = (1 + κ)(r − 6κ)η(Y ).

Making use of (36) in (23) yields

3∑
i=1

(∇eiC)(ei, Y )ξ = (6κ− r)(2− κ)η(Y )− 3

2
dr(φY )

− 1

2
dr(φhY )− 1

4
g(∇ξDr, Y ).(37)

By employing (37) in (6), we obtain

g(∇ξDr, Y ) = 4(6κ− r)(2− κ)η(Y )− 6dr(φY )− 2dr(φhX).(38)

Replacing Y by φY in the above equation and simplification leads the following

∇ξDr = (6 + 2h)φDr.(39)

From Lemma 2.2, we get dr(ξ) = 0 implies that ∇ξDr = 0. Therefore from
above relation we get

(6 + 2h)φDr = 0,(40)

which implies that φDr = 0. If φDr = 0, then Dr = 0, which shows that r is
constant. This proves the theorem.

From the Lemma 2.1 and Theorem 3.1, we have the following:

Corollary 3.1. A 3-dimensional N(κ ̸= −1)-paracontact metric manifold M3

with purely transversal Bach tensor is locally φ-symmetric.

Following the proof of the above theorem 3.1, we are in a position to prove
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Corollary 3.2. If an N(κ)-paracontact metric 3-manifold M3 with κ > −1 has
purely transversal Bach tensor, then the scalar curvature r is equal to 6κ.

Proof. Since M3 is a N(κ)-paracontact metric 3-manifold with κ > −1 and
has a purely transversal Bach tensor. we have from Theorem 3.1 and (38) that

4(6κ− r)(2− κ)η(Y ) = 0.(41)

This gives r = 6κ.

Theorem 3.2. An N(κ)-paracontact metric 3-manifold M3 with κ > −1 has
purely transversal Bach tensor if and only if the manifold M3 is of constant
scalar curvature r = 6κ.

Proof. Let M3 be an N(κ)-paracontact metric 3-manifold with κ > −1 has
constant scalar curvature r = 6κ. Then from (37) we get

3∑
i=1

(∇eiC)(ei, Y )ξ = 0

which intern gives from (6) that B(Y, ξ) = 0. That is, the manifold M3 has
purely transversal Bach tensor. The converse is obvious from Theorem 3.1 and
Corollary 3.2.
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