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Abstract. Evolution of a potential in a physical system can be determine by a cocycle.
This essay contains the notion of cocycles on top spaces. We can associate a semigroup
with an identity to each element of a manifold via a cocycle over a top space. This
semigroup is a subsemigroup of a Lie group. We prove that these kind of semigroups
are invariant under diffeomorphisms of manifolds. We study the concept of forward
invariant set, global pullback absorbing set and global forward absorbing set for cocy-
cles. We show that global attractors are persistence by a kind of topological equivalent
relation on cocycles. We also define and study the concept of topological entropy for a
sequence of cocycles.
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1. Introduction

Many essential physical systems can be considered by a diffeomorphism f :M →
M and a smooth map φ :M → T where M is a smooth manifold and T is a Lie
group. Potential of physical systems are the best candidates for φ. For example
the map φ for a one dimensional harmonic oscillator is φ(x) = mω2

2 x2, where m
and ω are two constants. Lorenz gauge potential or Coulomb gauge potential
[10] are two other examples for φ. The cocycle φn(x) = φ(fn(x)) determines
the evolution of potential on the orbit of x, where x ∈ M . For example the
Schrodinger operator H [11] on the set of bi-sequences of real numbers of the
form p = {..., p−1, p0, p1, ...} with Σi∈Z |pi|2 < ∞ is defined by H(p) = q where
qn = pn+1 + pn−1 + φn(pn) and φn(x) = φ(fn(x)) for a fixed x ∈ M and a
diffeomorphism f :M →M .
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In this paper we replace T with a top space, and this means that we have
possibility to choose new products. Top spaces are a kind of generalized lie
groups which have been introduced in 2004 [5, 7, 6], generalized vector fields
on top spaces create new kind of dynamics on them which are called complete
semidynamical systems [8]. Top spaces are smooth manifolds which are also
semigroups and each element of it has a special identity and a special inverse.
Moreover identity and inverse mappings are smooth maps. In the next section
we introduce cocycles [2] over top spaces and by using of them we associate a
semigroup with an identity to each element of a manifold. When we work with
a top space, then we have this possibility to consider generalized vector fields
instead of vector fields. The image of a generalized vector field is a member of a
one dimensional vector bundle on a manifold. Hence they may not be tangent to
the ambient manifold. Physically when we restrict a vector field to a subset of a
manifold then we deduce a generalized vector field [8]. The definition of a cocycle
over a top space creates this ability to consider non-autonomous motions which
their skew-products are generalized vector fields. Each top space can divide
to a disjoint union of Lie groups and we deduce a class of semigroups with an
identity via cocycles which each member of it, is a subset of a Lie group. One
can use of the method presented in [8] to crate a non-autonomous motion on M
via this class of semigroups. Moreover, we show that diffeomorphic manifolds
create isomorphic classes of such semigroups. In section 3, we introduce a
new concept of forward invariant set, global pullback absorbing set and global
forward absorbing set for cocycles. Also we introduce a new concept of global
pullback attractors and global forward attractors for cocycles. We prove that
global pullback attractors and global forward attractors are invariant objects
under topological equivalent relation. In section 4, we study and define the
notion of topological entropy for a sequence of cocycles.

2. Cocycles created by a top space

Top spaces are a kind of generalized Lie groups [7]. We recall that a smooth
manifold T with a binary smooth operation

m : T × T −→ T
(a, b) 7→ ab

is called a top space if it satisfies the following conditions.

(i) (T,m) is a semigroup;

(ii) For given a ∈ T , there exists a unique e(a) ∈ T so that ae(a) = e(a)a = a;

(iii) For given a ∈ T there exists a−1 ∈ T such that aa−1 = a−1a = e(a),
and the inverse mapping

in : T −→ T
a 7→ a−1 .

is a smooth map.
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One of the most important class of top spaces is the class of top spaces
created by Rees matrix semigroups [12]. Let’s explain it. We assume G is a Lie
group, A and B are two smooth manifolds, and p : A × B → G is a smooth
mapping. It is well known that B × G × A with the product (n, a, s)(k, b, l) =
(n, ap(s, k)b, l) is a semigroup, which is called Rees matrix semigroup. One can
easily prove that it is also a top space [7].

We assume that M is a smooth manifold and f : M → M is a smooth
diffeomorphism. We also assume that φ : M → T is a smooth map and the
following diagram commutes.

M

φ

��

f
//M

φ

��

T

e
  

T

e
~~

T

where e is the identity map of T .

Definition 2.1. A cocycle created by (φ, f) is the sequence of mappings {φn :
M → T | n ∈ Z} , where φn is defined by

φn(x) =


φ(fn−1(x))...φ(f(x))φ(x), if n > 0

(φ(f−n(x)))−1...(φ(f−1(x)))−1, if n < 0

e(φ(x)), if n = 0

.

We present an equivalent definition for a cocycle in the following. A smooth
mapping α : Z ×M −→ T is a cocycle if α(0, x) = e(α(1, x)) = e(α(1, f(x)) =
... = e(α(1, fn(x))), α(m + n, x) = α(m, fn(x)).α(n, x), for all n,m ∈ Z, and
x ∈M . To prove the equivalency of these two definitions it is enough to define
φn(x) = α(n, x).

Since the tuple (φ, f) creates a cocycle, then we also use of the name cocycle
for (φ, f). (φ, f) is abelian if T is an abelian group. An abelian cocycle (φ, f)
is equivalent to the notion of cocycle which is defined by Avila A., Santamaria
A., Viana M., and Wilkinson A. in [2].

For given x ∈ M we take Cφ(x) = {
∏M
i=1 φni(x)φmi(x) | M ∈ N} , and we

define the following product on it.

(

K∏
j=1

φkjφsj )(

D∏
v=1

φluφru) =

K+D∏
t=1

φwtφvt ,

where

wt =

{
kj , for 1 ≤ t = j ≤ K

lu, for 1 ≤ t = K + u ≤ K +D
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and

vt =

{
sj , for 1 ≤ t = j ≤ K

ru, for 1 ≤ t = K + u ≤ K +D
.

Cφ(x) with the above product is a semigroup.
Since for given n ∈ N

e(φ(x)) = e(φ(f(x))) = e(φ(f2(x))) = ... = e(φ(fn(x))),

then

φn(x)e(φ(x)) = φ(fn−1(x))...φ(f(x))φ(x)e(φ(x)) = φ(fn−1(x))...φ(f(x))φ(x)

= φn(x)

e(φ(x))φn(x) = e(φ(fn−1(x)))φn(x) = e(φ(fn−1(x)))φ(fn−1(x))...φ(f(x))φ(x)

= φ(fn−1(x))...φ(f(x))φ(x) = φn(x).

Moreover, for given−n ∈ N we have e(φ(x)) = e(φ(x))−1 = e(φ(f(f−1(x))))−1 =
e(φ(f(f−1(x)))) = e(φ(f−1(x))) = e(φ(f−1(x)))−1 = .... = e(φ(fn(x)))−1.
Thus

φn(x)e(φ(x)) = (φ(fn(x)))−1...(φ(f−1(x)))−1e(φ(x))

= (φ(fn(x)))−1...(φ(f−1(x)))−1e(φ(f−1)(x)))−1

= (φ(f−n(x)))−1...(φ(f−1(x)))−1 = φn(x)e(φ(x))φn(x)

= e(φ(fn(x)))−1φn(x)

= e(φ(fn(x)))−1(φ(fn(x)))−1...(φ(f−1(x)))−1

= (φ(fn(x)))−1...(φ(f−1(x)))−1 = φn(x).

In the case n = 0 we have

φ0(x)e(φ(x)) = e(φ(x))e(φ(x)) = e(φ(x)) = φ0(x),

e(φ(x))φ0(x) = e(φ(x))e(φ(x)) = e(φ(x)) = φ0(x).

Hence, Cφ(x) is a semigroup with the identity e(φ(x)). This implies Cφ(x) is a
subsemigroup of the Lie group Te(φ(x)) = e−1({e(φ(x))}). In the next example
we show that Cφ(x) may not be equal to Te(φ(x)).

Example 2.1. Take M = R − {0} , and T = R − {0}. T with the product
a.b = a|b| as an open subset of the real manifold R is a top space. We only
explain the associative property of this product. If a, b, c ∈ T then

(a.b).c = (a|b|)|c| = a|bc| = a|b|c|| = a|b.c| = a.(b.c).

If f(x) = 2x and φ = id then

φ1(x) = φ(x) = x,

φ2(x) = φ(f(x))φ(x) = 2x.x = 2x | x |,
φ3(x) = φ(f2(x))φ2(x) = 4x.2x | x |= 8x | x2 |,

...
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Figure 1: Stars denote the points of Cφ(2).

φ0(x) =

{
1, if x > 0

−1, if x < 0
.

φ−1(x) = (φ(f−1(x)))−1 = (
1

2
x)−1 =

2

x
,

φ−2(x) = (φ(f−2(x)))−1(φ(f−1(x)))−1 =
4

x
.
2

x
=

8

x
. | 1
x
|,

φ−3(x) = (φ(f−3(x)))−1(φ−2(x))
−1 =

8

x
.
8

x
| 1
x
|= 64

x
| 1

x2
|,

...

For x = 2, we have Cφ(2) = {2m| m ∈ Z}, and Cφ(2) is not equal to Te(φ(2)) =
T1 = e−1{1} = {x > 0 | x ∈ R} (see figure 1).

In the next example we show that Cφ(x) can be sometimes equal to Te(φ(x).

Example 2.2. Let M be a manifold , and T =

{[
a b
c d

]
| a, b, c, d ∈ R

}
.

Then T with the product

[
a b
c d

] [
e r
g h

]
=

[
a r
g d

]
and the Euclidean

topology is a top space. For a given smooth map φ : M −→ T , and for each
diffeomorphism f :M −→M with e(φ(f(x)) = e(φ(x)) we have

Cφ(x) = {e(φ(x))} = {φ(x)} = Te(φ(x)).

To prove this, we see that (φ(f−1(x)))−1 = e(φ(f−1(x)))−1 = e(φ(f−1(x))) =
eφ(f(f−1(x))) = e(φ(x)) = φ(x) , and φ(f(x)) = e(φ(f(x))) = e(φ(x)) = φ(x).
So, φn(x) = φ(x), for all n ∈ Z.
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Theorem 2.3. Suppose (φ, f) is a cocycle on T, and the mapping ψ : M ′ −→
M is a diffeomorphism. Then the following diagram commutes and Cφ(x) =
Cφ◦ψ(ψ

−1(x)).

M ′

φ◦ψ
��

ψ−1◦ψ
//M ′

φ◦ψ
��

T

e
  

T

e
~~

T

Proof. If x ∈ M ′ then e ◦ (φ ◦ ψ) ◦ (ψ−1 ◦ f ◦ ψ)(x) = e ◦ φ ◦ f ◦ ψ(x) =
e◦φ◦ψ(x) = e(φ◦ψ)(x). So, the above diagram is a commutative one. Now we
prove the equality of Cφ(x) with Cφ◦ψ(ψ

−1(x)), where x ∈M . For given x ∈M
and n ∈ Z we have

(φ ◦ ψ)n(ψ−1(x))

=



φ◦ψ(ψ−1 ◦ f ◦ ψ)n−1(ψ−1(x))...φ◦ψ(ψ−1◦f◦ψ)(ψ−1(x))φ ◦ ψ(ψ−1(x)),

if n > 0

(φ ◦ ψ(ψ−1 ◦ f ◦ ψ)n(ψ−1(x)))−1...(φ ◦ ψ(ψ−1 ◦ f ◦ ψ)−1(ψ−1(x)))−1,

if n < 0

e(φ ◦ ψ)(ψ−1(x)), if n = 0

=


φ(fn−1(x))...φ(f(x))φ(x), if n > 0

(φ(fn(x)))−1...(φ(f−1(x)))−1, if n < 0

e(φ(x)), if n = 0

= φn(x).

3. Attractors

In this section Z : M −→ 2T is a mapping such that Z(x) is a bounded set in
the top space T . For all x ∈M , Z is called a non-autonomous set for a cocycle
(φ, f) if f−1(Z−1(Z(x))) = Z−1(Z(f−1(x))). We say that Z is a compact non-
autonomous set if for all x ∈ M,Z(x) is a compact set. Z is called a forward
invariant set if φn(Z

−1(Z(x))) ⊆ Z(fn(x)), for all x ∈M and n ≥ 0.
A forward invariant set Z for a cocycle (φ, f) is called a global pullback ab-

sorbing set if for all x ∈M , there exist N ∈ N such that φn(f
−n(Z−1(Z(x)))) ⊆

Z(x), for all n ≥ N .
A forward invariant set Z for a cocycle (φ, f) is called a global forward

absorbing set if for all x ∈ M , there is N ∈ N such that φ−n(f
n(Z−1(Z(x))) ⊆

Z(x), for all n ≥ N .

Definition 3.1. Let Z be a compact global pullback absorbong set. Then A :
M −→ 2T defined by A(x) =

⋂∞
n=0(

⋃
m≥n φm(f

−m(Z−1(Z(x))) is called a global
pullback attractor for a cocycle (φ, f).
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In the next theorem we prove that a global pullback attractor is an invariant
object under forward motion.

Theorem 3.1. If A is a global pullback attractor for a cocycle (φ, f), then A is
a forward invariant set .

Proof. Assume that φk(A
−1(A(x)))⊈A(fk(x)), then there is y∈φk(A−1(A(x)))

such that y /∈ A(fk(x)). So, there exists n such that for each m ≥ n

y /∈ (
⋃
m≥n

φm(f−m(Z−1(Z(fk(x)))))).

Thus, y /∈
⋃
m≥n φm(f

−m(Z−1(Z(fk(x))))). Hence, there is m so that y /∈
φm(f

−m(Z−1(Z(fk(x))))).
Therefore, there exist m such that y /∈ φm(Z

−1(Z(fk−m(x)))) ⊆ Z(fk(x))
and it is a contradiction because Z is a forward invariant set.

Definition 3.2. Let Z be a compact global forward absorbing set. Then A :
M −→ 2T defined by A(x) =

⋂∞
n=0(

⋃
m≥n φ−m(fm(Z−1(Z(x))))) is called a

global forward attractor for a cocycle (φ, f).

By the same method of the proof of Theorem 3.2 one can prove the following
theorem.

Theorem 3.2. If A is a global forward attractor for a cocycle (φ, f), then A is
a forward absorbing set .

Note that A(x) is a compact set because it is a closed subset of the compact
set Z(x).

Assume (φ1, f1) and (φ2, f2) are two cocycles on T . These cocycles are
equivalent if there exist a homeomorphism h : M −→ M , a homeomorphism
L : T −→ T , and an increasing homeomprphism S : Z −→ Z with S(0) = 0

such that h(fn1 (x)) = f
S(n)
2 (h(x)), and L(φ1n(x)) = φ2S(n)(h(x)). We have a

natural extension map L̃ : 2T −→ 2T that defined by L̃(A) = {L(a) : a ∈ A}.
Lemma 3.1. If (φ1, f1) and (φ2, f2) are two equivalent cocycles on T , and
if Z : M −→ T is a global pullback absorbing set for (φ1, f1), then a map
L̃ ◦Z ◦ h−1 :M −→ L̃(2T ) is also a global pullback absorbing set for the cocycle
(φ2, f2).

Proof. Since Z is a forward invariant set for a cocycle (φ1, f1), then

φ1n(Z
−1(Z(x))) ⊆ Z(fn1 (x))

for all x ∈M and n ≥ 0. For given h(x) ∈M and S(n) > 0 we have

φ2S(n)((L̃ ◦ Z ◦ h−1)−1(L̃ ◦ Z ◦ h−1)(h(x))) = φ2S(n)(h(Z
−1(Z(x))))

= Lφ1n(Z
−1(Z(x)) ⊆ L(Z(fn1 (x)) = L̃(Z(fn1 (x)))

= (L̃ ◦ Z ◦ h−1 ◦ h ◦ fn1 )(x) = (L̃ ◦ Z ◦ h−1)(h ◦ fn1 (x))

= (L̃ ◦ Z ◦ h−1)(f
S(n)
2 (h(x))).
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Thus, L̃ ◦ Z ◦ h−1 is a forward invariant set for a cocycle (φ2, f2). If h(x) ∈M ,
then there is N ∈ N such that φ1n(f

−n
1 (Z−1(Z(x)))) ⊆ Z(x) for all n ≥ N . For

S(n) ≥ S(N) we have

φ2S(n)(f2
−S(n)(L̃ ◦ Z ◦ h−1)−1(L̃ ◦ Z ◦ h−1)(h(x))

= φ2S(n)(f2
−S(n)(h ◦ Z−1 ◦ L̃−1) ◦ L̃ ◦ Z ◦ h−1 ◦ h(x))

= φ2S(n)(f2
−S(n)(h(Z−1(Z(x)))) = φ2S(n)(h(f1

−n(Z−1(Z(x))))

= L(φ1n(f1
−n(Z−1(Z(x)))) = L(φ1n(f1

−n(Z−1(Z(x))) ⊆ L(Z(x)) = L̃Z(x)

= (L̃ ◦ Z ◦ h−1 ◦ h)(x) = (L̃ ◦ Z ◦ h−1)(h(x)).

Theorem 3.3. If we have two equivalence cocycles (φ1, f1) and (φ2, f2), and if
A(φ1,f1) is a global pullback attractor for the cocycle (φ1, f1), then L̃ ◦A(φ1,f1) is
also a global pullback attractor for the cocycle (φ2, f2).

Proof. Let Z : M −→ 2T be a compact global pullback absorbing set for
(φ1, f1) , and A(φ1,f1)(x) =

⋂∞
n=0(

⋃
m≥n φ1m(f1

−m(Z−1(Z(x))). Then Lemma

3.5 implies L̃◦Z ◦h−1 is a compact global pullback absorbing set for the cocycle
(φ2, f2). So,

(L̃ ◦A(φ1,f1))(x) =
∞⋂
n=0

(
⋃
m≥n

L̃ ◦ φ1m(f1
−m(Z−1(Z(x)))))

=

∞⋂
n=0

(
⋃
m≥n

L ◦ φ1m(f1
−m(Z−1(Z(x)))))

=

∞⋂
n=0

(
⋃
m≥n

φ2S(m)(hf1
−m(Z−1(Z(x)))))

=

∞⋂
n=0

(
⋃
m≥n

φ2S(m)(f2
−S(m)(h(Z−1(Z(x)))))

=

∞⋂
n=0

(
⋃
m≥n

φ2S(m)(f2
−S(m)(L̃ ◦ Z ◦ h−1)−1(L̃ ◦ Z ◦ h−1)(h(x)))))

= A(φ2,f2)(h(x)).

One can prove the following lemma and theorem similarly

Lemma 3.2. If (φ1, f1) and (φ2, f2) are two equivalent cocycles, and if Z :
M −→ T is a global forward absorbing set for (φ1, f1), then a map L̃ ◦Z ◦ h−1 :
M −→ L̃(2T ) is also a global forward absorbing set for the cocycle (φ2, f2).

Theorem 3.4. If we have two equivalent cocycles (φ1, f1) and (φ2, f2), and if
A(φ1,f1) is a global forward attractor for the cocycle (φ1, f1), then L̃ ◦A(φ1,f1) is
a global forward attractor for the cocycle (φ2, f2).
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4. Topological entropy of a cocycle

The notion of topological entropy was introduced by Konheim, Adler and McAn-
drew [1]. This notion has been considered by Kolmogorov [3] and then by Sinai
[13] from measure theoretical point of view. Rudolf Clausius was the first scien-
tist who introduced entropy to describe the use of dissipative energy of a ther-
modynamic system during a change of the state [9]. In this section we study the
notion of topological entropy for a cocycle on a compact top space [4]. Assume
T is a compact top space, f : T −→ T is a smooth diffeomorphism, φ : T −→ T
is a smooth map and e(φ(f(x))) = e(φ(x)). We would like to define topological
entropy for a cocycle created by φ and f . Let {φi : i ∈ Z} be the cocycle
created by(φ, f). We define φ1,∞ = {φ1, φ2, ...} = {φi}∞i=1. φi

0 = φi
−0 is the

identity function and for any m ∈ N, we define φi
m := φi+m−1, φi

−1 := φ−i,
φi

−m := (φi
m)−1. Finally, we denote {φnin+1}∞i=0 by φn1,∞ and {φ−1

i }∞i=1 by

φ−1
1,∞. The reader must pay attention to this point that, φ−1

i is only a symbol
and it is not the inverse of φi. Consider an open cover U of T . For two open
covers U ,V, a new open cover U ∨ V is defined by {U ∩ V | U ∈ U , V ∈ V}. So,
for open covers Ui,

∨n
i=1 Ui = U1 ∨ U2 ∨ ... ∨ Un = {U1 ∩ U2 ∩ ... ∩ Un | U1 ∈

U1, U2 ∈ U2, ..., Un ∈ Un} is an open cover of T . For an open cover U we denote
φi

−m(U) = {(φim)−1(U) | U ∈ U} and Uim(φ1,∞) = Uim =
∨m−1
j=0 φi

−j(U).
We denote by N (U) the minimal cardinality of the subcovers of U . The

topological entropy of an open cover U of T is denoted by H(U) and it is defined
by logN (U). We define the entropy of a cocycle with respect to an open cover

U by h(φ1,∞,U1,∞) := lim supm→∞
1

m
logN (U1

m), and the topological entropy

of the cocycle by

h(φ1,∞) := {sup(h(φ1,∞,U) | U is an open cover of T}.

h(φ1,∞) denotes the value of the complexity of φ1,∞. In fact it denotes the value
of the chaotic behavior of φ1,∞.

We have the following inequalities:
(1) N (U ∨ V) ≤ N (U).N (V);
(2) N (φi

−m(U)) ≤ N (U).
Let U be finer than V i.e. each element of U is contained in some element of

V. Then
(3) N (U) ≥ N (V).
If U is finer than V then we use of the symbol U ≥ V.
Clearly if U ≥ V then h(φ1,∞,U) ≥ h(φ1,∞,V).
If U is an open finite cover of T then the cardinality of Uim is at most

(cardinal U)m. Therefore h(φ1,∞,U) ≤ log card U and so 0 ≤ h(φ1,∞,U) <∞.

Theorem 4.1. Let φ1,∞ be a cocycle on T . Then

h(φn1,∞) ≤ n.h(φ1,∞)

for every n ≥ 1.
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Proof. Fix n. For any open cover U of T we have

h(φ1,∞,U) = lim sup
k→∞

1

k
logN (U1

k) ≥ lim sup
m→∞

1

mn
logN (U1

mn)

= lim sup
m→∞

1

mn
logN (

∨
j=0

mn−1
φ1

−j(U))

= lim sup
m→∞

1

mn
logN (U ∨ φ1

−1(U) ∨ φ1
−2(U) ∨ ... ∨ φ1

−(mn−1)(U))

≥ lim sup
m→∞

1

mn
logN (U ∨ φ−n

1 (U) ∨ φ−2n
1 (U) ∨ ... ∨ φ−(m−1)n

1 (U))

=
1

n
lim sup
m→∞

1

m
logN (U ∨ (φn)

−1(U) ∨ (φ2n)
−1(U) ∨ ... ∨ (φmn)

−1(U)

=
1

n
h(φn1,∞,U).

Hence h(φn1,∞) ≤ n.h(φ1,∞).

Theorem 4.2. Let φ1,∞ be a cocycle over T . Then, for every 1 ≤ i ≤ j < ∞
and every open cover U of T , h(φi,∞,U) ≤ h(φj,∞,U) and h(φi,∞) ≤ h(φj,∞).

Proof. For any open cover U of T and i ≥ 1 we have

Uin = U ∨ φi−1(U) ∨ φi−2(U) ∨ ... ∨ φi−(n−1)(U)
= U ∨ φi−1(U) ∨ φi+1

−1(U) ∨ φi+2
−1(U) ∨ ... ∨ φi+n−2

−1(U)
= φi

−1(U) ∨ U ∨ φi+1
−1(U) ∨ φi+1

−2(U) ∨ ... ∨ φi+1
−(n−2)(U)

= φi
−1(U) ∨ Ui+1

n−1(U).

So, by monotonicity we have

h(φi,∞,U) = lim sup
n→∞

1

n
logN (Uin)

≤ lim sup
n→∞

1

n
log(N (U).N (Ui+1

n−1))

= lim sup
n→∞

1

n− 1
logN (Ui+1

n−1) = h(φi+1,∞,U).

5. Conclusion

We consider the concept of cocycles via top spaces and we can associate an
algebraic object to each element of a manifold. We also study the concept of
forward invariant set, global forward absorbing set and global pullback absorbing
set for cocycles. In this direction we have the following two questions.

1. What kind of invariant sets can be a candidate for being a global forward
or pullback attractor?
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2. If f : M −→ M is a diffeomorphism is the equality Cφ(x) = Cφ(f(x))
true?

In section four we extend the concept of entropy for cocycles, and we prove
the essential properties of it.
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