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Abstract. Object of this paper is to study Ricci soliton on concircularly flat, W2-
flat, W3-flat, W4-flat Sasakian manifolds with respect to Zamkovoy connection. Besides
these, we discuss Ricci soliton on a Sasakian manifold satisfying W ∗

2 (ξ, Y ) .R∗ = 0,
where R∗ denotes Riemannian curvature tensor with respect to Zamkovoy connection
and W ∗

2 -denotes the W2-curvature tensor with respect to Zamkovoy connection.

Keywords: Sasakian manifold, Zamkovoy connection, Ricci soliton, concircular cur-
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1. Introduction

The notion of Sasakian structure [16] was introduced by Japanese mathemati-
cian S. Sasaki in the year 1960. If a contact metric structure is normal then
the structure is said to have a normal contact metric structure or a Sasakian
structure. Thus a manifold with Sasakian structure is a normal contact metric
manifold. In some respect Sasakian manifold may be viewed as an odd dimen-
sional analogous of Kâhler manifold. Sasakian manifold was further studied by
many authors. For details, we refer ([4], [9], [11], [5]) and the references therein.
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The concircular curvature tensor on Riemannian manifold was introduced
and defined by K. Yano [20]. The concircular curvature tensor of rank 3 is given
by

(1) W (X,Y )Z = R (X,Y )Z − r

n (n− 1)
[g (Y,Z)X − g (X,Z)Y ] .

The W2-curvature tensor [12], W3-curvature tensor [13] and W4-curvature
tensor [13] are, respectively, given by

W2 (X,Y )Z = R (X,Y )Z − 1

n− 1
[g (Y,Z)QX − g (X,Z)QY ] ,(2)

W3 (X,Y )Z = R (X,Y )Z − 1

n− 1
[S (X,Z)Y − g (Y, Z)QX] ,(3)

W4 (X,Y )Z = R (X,Y )Z +
1

n− 1
[g (X,Z)QY − g (X,Y )QZ] ,(4)

for all X,Y, Z ∈ χ(M), where χ(M) is set of all vector fields of the manifold
M and R (X,Y )Z is Riemannian curvature tensor and r, S, Q are the scalar
curvature, Ricci tensor, Ricci operator, respectively.

The notion of Ricci flow was first introduced by R. S. Hamilton in the early
1980s. R. S. Hamilton [6] observed that the Ricci flow is an excellent tool for
simplifying the structure of a manifold. It is the process which deforms the
metric of a Riemannian manifold by smoothing out the irregularities. The Ricci
flow equation is given by

(5)
∂g

∂t
= −2S,

where g is Riemannian metric, S is Ricci tensor and t is time. Solitons for the
Ricci flow is the solutions of the above equation, where the metrices at different
times differ by a diffeomorphism of the manifold. A Ricci soliton is represented
by a triple (g, V, λ), where g is Riemannian metric, V is a vector field and λ is
a scalar, which satisfies the equation:

(6) LV g + 2S + 2λg = 0,

where S is Ricci curvature tensor, LV g denotes the Lie derivative of g along
the vector field V. A Ricci soliton is said to be shrinking, steady, expanding
according as λ < 0, λ = 0, λ > 0 respectively. If the vector field V is gradient
of a smooth function, then the Ricci soliton (g, V, λ) is called a gradient Ricci
soliton and the associated function is called the potential function. Ricci soliton,
was further studied by many researcher. For instance, we see ([10], [14], [17],
[18]) and their references.

In 2008, S. Zamkovoy [21] introduced the notion of a new canonical connec-
tion named as Zamkovoy connection for para-contact manifolds. And this con-
nection was defined as a canonical paracontact connection whose torsion is the
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obstruction of paracontact manifold to be a para Sasakian manifold. Zamkovoy
connection was further studied by many authors et al. ([7], [8], [1], [2], [3]). The
Zamkovoy connection ∇∗ for an n-dimensional almost contact metric manifold
M equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a
(1, 1) tensor field ϕ, a vector field ξ, a 1-form η and a Riemannian metric g, is
defined as

(7) ∇∗
XY = ∇XY + (∇Xη) (Y ) ξ − η (Y )∇Xξ + η (X)ϕY,

for all X,Y ∈ χ (M) .

Definition 1.1. An n-dimensional Sasakian manifold M is said to be concir-
cularly flat with respect to Zamkovoy connection if W ∗ (X,Y )Z = 0, for all X,
Y, Z ∈ χ (M).

Definition 1.2. An n-dimensional Sasakian manifold M is said to be W2- flat
with respect to Zamkovoy connection if W ∗

2 (X,Y )Z = 0, for all X, Y, Z ∈
χ (M).

Definition 1.3. An n-dimensional Sasakian manifold M is said to be W3- flat
with respect to Zamkovoy connection if W ∗

3 (X,Y )Z = 0, for all X, Y, Z ∈
χ (M).

Definition 1.4. An n-dimensional Sasakian manifold M is said to be W4- flat
with respect to Zamkovoy connection if W ∗

4 (X,Y )Z = 0, for all X, Y, Z ∈
χ (M).

Definition 1.5. An n-dimensional Sasakian manifold M is said to be η-Einstein
manifold if its Ricci tensor is of the form

S (X,Y ) = k1g (X,Y ) + k2η (X) η (Y ) ,

for all X, Y ∈ χ (M) , where k1 and k2 are scalars.
This paper is organized as follows:
After introduction a short description of Sasakian manifold is given in section

(2). In section (3), we have discussed some properties of Sasakian manifold with
respect to Zamkovoy connection ∇∗ and obtained Riemannian curvature tensor
R∗, Ricci tensor S∗, scalar curvature tensor r∗, Ricci operator Q∗ with respect to
∇∗. Section (4), section (5), section (6) and section (7) contain Ricci soliton on
concircularly flat, W2-flat, W3-flat andW4- flat Sasakian manifolds, respectively,
with respect to the Zamkovoy connection. In section (8), we have discussed Ricci
soliton on Sasakian manifold satisfying W ∗

2 (ξ, Y ) .R∗ = 0.

2. Preliminaries

Let M be an n-dimensional almost contact metric manifold equipped with an
almost contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1) tensor field ϕ, a
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vector field ξ , a 1-form η and a Riemannian metric g satisfying

ϕ2Y = −Y + η (Y ) ξ, η(ξ) = 1, η (ϕX) = 0, ϕξ = 0,(8)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),(9)

g(X,ϕY ) = −g(ϕX, Y ), η(Y ) = g(Y, ξ),(10)

for all X, Y ∈ χ (M) .
An almost contact metric manifold M is said to be Sasakian manifold if the

following relations hold in M

g(X,ϕY ) = ∇η(X,Y ),(11)

∇Xξ = −ϕX,(12)

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X,(13)

R (X,Y ) ξ = η (Y )X − η (X)Y,(14)

for all X, Y ∈ χ (M) , where ∇X denotes the covariant differentiation with
respect to X.

In a Sasakian manifold equipped with the structure (ϕ, ξ, η, g) the following
relations also hold ([19], [15]):

(∇Xη)Y = g (X,ϕY ) ,(15)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X,(16)

S (X, ξ) = (n− 1) η (X) ,(17)

R (X, ξ)Y = η (Y )X − g (X,Y ) ξ,(18)

Qξ = (n− 1) ξ,(19)

S (X,Y ) = g (QX,Y ) , S2 (X,Y ) = S (QX,Y ) .(20)

In Sasakian manifold, using (12) and (15) equation (7) reduces to

(21) ∇∗
XY = ∇XY + g (X,ϕY ) ξ + η (Y )ϕX + η (X)ϕY,

with torsion tensor T ∗ (X,Y ) = 2g (X,ϕY ) ξ.

3. Some properties of Sasakian manifold with respect to Zamkovoy
connection

By the the help of (21), (12) and (13) we get the following results:

∇∗
Xη (Y ) = η (∇XY ) + g (X,ϕY ) ,(22)

∇∗
X (ϕY ) = ∇X (ϕY )− g (ϕX, ϕY ) ξ

−η (X)Y + η (X) η (Y ) ξ,(23)

∇∗
Xg (Y, ϕZ) = g (∇XY, ϕZ) + η (X) g (ϕY, ϕZ) + g (Y,∇X (ϕZ))

−η (X) g (Y,Z) + η (X) η (Y ) η (Z)(24)



RICCI SOLITON ON SASAKIAN MANIFOLDS ADMITTING ZAMKOVOY CONNECTION 773

Let R∗ be the Riemannian curvature tensor with respect to Zamkovoy connec-
tion which is defined as

(25) R∗ (X,Y )Z = ∇∗
X∇∗

Y Z −∇∗
Y ∇∗

XZ −∇∗
[X,Y ]Z.

By the help of (21), (22), (23) and (24) we obtain the expressions for ∇∗
X∇∗

Y Z,
∇∗

Y ∇∗
XZ and ∇∗

[X,Y ]Z to get the Riemannian curvature tensor with respect to
Zamkovoy connection as

R∗ (X,Y )Z = R (X,Y )Z − g (Z, ϕX)ϕY − g (Y, ϕZ)ϕX

−2g (Y, ϕX)ϕZ + g (X,Z) η (Y ) ξ − η (X) g (Y,Z) ξ

+η (X) η (Z)Y − η (Y ) η (Z)X,(26)

Consequently one can easily bring out the followings:

S∗ (Y, Z) = S (Y,Z) + 2g (Y, Z)− (1 + n) η (Y ) η (Z) ,(27)

S∗ (Y, ξ) = 0 = S∗ (ξ, Z) ,(28)

Q∗Y = QY + 2Y − (1 + n) η (Y ) ξ,(29)

Q∗ξ = 0(30)

r∗ = r + n− 1,(31)

R∗ (X,Y ) ξ = 0,(32)

R∗ (ξ, Y )Z = 0,(33)

R∗ (X, ξ)Z = 0.(34)

Let M be an n-dimensional Sasakian manifold admitting Zamkovoy connec-
tion ∇∗, then (i) The curvature tensor R∗ of ∇∗ is given by (26), (ii) The Ricci
tensor S∗ of ∇∗ is given by (27), (iii) The scalar curvature r∗ of ∇∗ is given by
(31), (iv) The Ricci tensor S∗ of ∇∗ is symmetric.

Consider a Ricci soliton (g, ξ, λ) on M, then from (6) we have

0 =
(
L

ξ
g
)
(Y,Z) + 2S (Y,Z) + 2λg (Y,Z)

= −g (ϕY,Z) + g (ϕY,Z) + 2S (Y, Z) + 2λg (Y, Z)

= S (Y,Z) + λg (Y, Z) .(35)

Setting Z = ξ in (35), we get

(36) S (Y, ξ) = −λη (Y ) .

Replacing Y by QY in (36), we get

(37) S2 (Y, ξ) = λ2η (Y ) .
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4. Ricci soliton on concircularly flat Sasakian manifold with respect
to Zamkovoy connection

Theorem 4.1. If a concircularly flat Sasakian manifold M admits a Ricci soli-
ton (g, ξ, λ) with respect to Zamkovoy connection, then the Ricci soliton is steady,
shrinking or expanding according as r = (n2 + 1), r > (n2 + 1), or < (n2 + 1).

Proof 4.1. Let M be a concircularly flat Sasakian manifold with respect to
Zamkovoy connection, i.e., W ∗ (X,Y )Z = 0, where W ∗ is the concircular cur-
vature tensor with respect to Zamkovoy connection and X, Y, Z ∈ χ (M) .

For a concircularly flat Sasakian manifold, it follows from (1) that

(38) R∗ (X,Y )Z =
r∗

n (n− 1)
[g (Y,Z)X − g (X,Z)Y ]

where R∗ is the Riemannian curvature tensor with respect to Zamkovoy
connection.

Taking inner product of (38) with a vector field V we get

(39) g (R∗ (X,Y )Z, V ) =
r + n− 1

n (n− 1)
[g (Y, Z) g (X,V )− g (X,Z) g (Y, V )] .

Taking an orthonormal frame field and contracting (39) over X and V we
get

(40) S∗ (Y,Z) =
r + n− 1

n
g (Y,Z) .

Using (27) in (40) and setting Z = ξ, we get

(41) S (Y, ξ) =
r − n− 1

n
η (Y ) + (1 + n) η (Y ) .

By the help of (36) and (41), we obtain λ = − r−(n2+1)
n .

Therefore, the Ricci soliton (g, ξ, λ) with respect to Zamkovoy connection
is steady, shrinking or expanding according as r = (n2+1 ), r > (n2+1 ), or
r < (n2+1 ).

5. Ricci soliton on W2-flat Sasakian manifold with respect to
Zamkovoy connection

Theorem 5.1. If a W2-flat Sasakian manifold M admits a Ricci soliton (g, ξ, λ)
with respect to Zamkovoy connection, then the Ricci soliton is steady, shrinking
or expanding according as r = (n2 + 1), r > (n2 + 1), or r < (n2 + 1).

Proof 5.1. Let M be a W2-flat Sasakian manifold with respect to Zamkovoy
connection, i.e., W ∗

2 (X,Y )Z = 0, where W ∗
2 is the W2-curvature tensor with

respect to Zamkovoy connection and X,Y, Z ∈ χ (M) .
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For a W ∗
2 -flat Sasakian manifold, it follows from (2) that

(42) R∗ (X,Y )Z =
1

n− 1
[g (Y,Z)Q∗X − g (X,Z)Q∗Y ] ,

where R∗ is the Riemannian curvature tensor with respect to Zamkovoy
connection.

Taking inner product of (42) with a vector field V we get

(43) g (R∗ (X,Y )Z, V ) =
1

n− 1
[g (Y,Z) g (Q∗X,V )− g (X,Z) g (Q∗Y, V )] .

Taking a frame field and contracting (43) over X and V we get

(44) S∗ (Y,Z) =
1

n− 1
[r∗g (Y, Z)− S∗ (Y, Z)] .

Using (27), (31) in (44), we get

(45) nS (Y,Z) = (r − n− 1) g (Y,Z) + n (n+ 1) η (Y ) η (Z) .

Setting Z = ξ in (45), we have

(46) nS (Y, ξ) = (r − n− 1) η (Y ) + n (n+ 1) η (Y )

By the help of (36) and (46), we obtain

λ = −r − (n2 + 1)

n
.

This gives the theorem.

6. Ricci soliton on W3-flat Sasakian manifold with respect to
Zamkovoy connection

Theorem 6.1. If a W3-flat Sasakian manifold M of dimension n (> 3) ad-
mits a Ricci soliton (g, ξ, λ) with respect to Zamkovoy connection, then the
Ricci soliton is steady, shrinking or expanding according as r= −(n− 1) (n− 3),
r < (n− 1) (n− 3) or r > (n− 1) (n− 3) .

Proof 6.1. Let M be a W3-flat Sasakian manifold with respect to Zamkovoy
connection, i.e., W ∗

3 (X,Y )Z = 0, where W ∗
3 is the W3-curvature tensor with

respect to Zamkovoy connection and X,Y, Z ∈ χ (M) .
For a W ∗

3 -flat Sasakian manifold, it follows from (3) that

(47) R∗ (X,Y )Z =
1

n− 1
[S∗ (X,Z)Y − g (Y, Z)Q∗X] ,

where R∗ is the Riemannian curvature tensor with respect to Zamkovoy
connection.
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Taking inner product of (47) with a vector field V we get

(48) g (R∗ (X,Y )Z, V ) =
1

n− 1
[S∗ (X,Z) g (Y, V )− g (Y,Z) g (Q∗X,V )] .

Taking an orthonormal frame field and contracting (48) over X and V we
get

(49) S∗ (Y,Z) =
1

n− 1
[S∗ (Y,Z)− r∗g (Y, Z)] .

Using (27), (31) in (49), we get

(50) S (Y,Z) =
(−r − 3n+ 5)

(n− 2)
g (Y,Z) + (n+ 1) η (Y ) η (Z) .

Setting Z = ξ in (50), we have

(51) S (Y, ξ) =
(−r − 3n+ 5)

(n− 2)
η (Y ) + (n+ 1) η (Y ) .

By the help of (36) and (51), we obtain

λ =
r − (n− 1) (n− 3)

n− 2
.

Therefore, the Ricci soliton (g, ξ, λ) with respect to Zamkovoy connection is
steady, shrinking or expanding according as r= −(n− 1)(n−3), r < (n− 1)(n−
3) or r > (n− 1)(n− 3).

Corollary 6.1. If (g, ξ, λ) be a Ricci soliton withrespect to Zamkovoy connection
on a 3-dimensional Sasakian manifold, then the Ricci soliton is steady, shrinking
or expanding according as r= 0, r < 0 or r > 0.

7. Ricci soliton on W4-flat Sasakian manifold with respect to the
Zamkovoy connection

Theorem 7.1. If a W4-flat Sasakian manifold M admits a Ricci soliton (g, ξ, λ)
with respect to Zamkovoy connection, then the Ricci soliton is always shrinking.

Proof 7.1. Let M be a W4-flat Sasakian manifold with respect to Zamkovoy
connection, i.e., W ∗

4 (X,Y )Z = 0, where W ∗
4 is the W4-curvature tensor with

respect to Zamkovoy connection and X,Y, Z ∈ χ (M) . For a W ∗
4 -flat Sasakian

manifold, it follows from equation (4) that

(52) R∗ (X,Y )Z = − 1

n− 1
[g (X,Z)Q∗Y − g (X,Y )Q∗Z] ,

where R∗ is the Riemannian curvature tensor with respect to Zamkovoy con-
nection.
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Taking inner product with a vector field V in (52), we get

(53) g (R∗ (X,Y )Z, V ) = − 1

n− 1
[g (X,Z) g (Q∗Y, V )− g (X,Y ) g (Q∗Z, V )] .

Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at any
point of the manifold M . Setting X = V = ei in the equation (53) and taking
summation over i (1 ≤ i ≤ n) and using (27), we get

(54) S (Y,Z) = −2g (Y,Z) + (1 + n) η (Y ) η (Z) .

Setting Y = ξ in (54), we get

(55) S (ξ, Z) = −2η (Z) + (1 + n) η (Z) .

Using (36) in (55), we get

λ = − (n− 1) < 0.

Therefore, the Ricci soliton (g, ξ, λ) with respect to Zamkovoy connection is
always shrinking.

8. Ricci soliton on Sasakian manifold satisfying W ∗
2 (ξ, Y ) .R∗ = 0

Theorem 8.1. If a Sasakian manifold M satisfying W ∗
2 (ξ, Y ) .R∗ = 0 admits a

Ricci soliton (g, ξ, λ) with respect to Zamkovoy connection, then the Ricci soliton
cannot be steady.

Proof 8.1. Let us consider a Sasakian manifold admitting Zamkovoy connection
and satisfying

(W ∗
2 (ξ, Y ) .R∗) (X,U)Z = 0,

where X,Y, Z, U ∈ χ (M) .
Then we have

(W ∗
2 (ξ, Y )R∗) (X,U)Z

= R∗ (W ∗
2 (ξ, Y )X,U)Z +R∗ (X,W ∗

2 (ξ, Y )U)Z

+R∗ (X,U)W ∗
2 (ξ, Y )Z.(56)

Setting U = ξ in (56), we have

(W ∗
2 (ξ, Y )R∗) (X, ξ)Z

= R∗ (W ∗
2 (ξ, Y )X, ξ)Z +R∗ (X,W ∗

2 (ξ, Y ) ξ)Z

+R∗ (X, ξ)W ∗
2 (ξ, Y )Z.(57)

By the help of (34) and (57), we get

(58) 0 = R∗ (X,Q∗Y )Z.
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Taking inner product of (58) with a vector field V, we get

(59) g (R∗ (X,Q∗Y )Z, V ) = 0.

Taking a frame field and contracting (59) over X and V and using (20), we
get

(60) 0 = S2 (Y, Z) + 4S (Y, Z) + 4g (Y,Z)− n (1 + n) η (Y ) η (Z)

Setting Z = ξ in (60), we have

(61) 0 = S2 (Y, ξ) + 4S (Y, ξ) + 4η (Y )− n (1 + n) η (Y )

By the help of (37) and (61), we obtain

λ = 2±
√

n (n+ 1) ̸= 0.

Therefore, the Ricci soliton (g, ξ, λ) with respect to Zamkovoy connection
cannot be steady.
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