Properties of weakly 2-absorbing primal ideals

Ameer Jaber
Department of Mathematics
The Hashemite University
Zarqa 13115
Jordan
ameerj@hu.edu.jo

Abstract. Let R be a commutative ring with unity ($1 \neq 0$). In this paper we introduce the concept of weakly 2-absorbing primal ideal which is a generalization of weakly primal ideal. Let I be a proper ideal of R. An element $a \in R$ is defined to be a weakly 2-absorbing prime to I if for any $r, s, t \in R$ with $0 \neq rsta \in I$, then $rs \in I$ or $rt \in I$ or $st \in I$. An element $a \in R$ is not a weakly 2-absorbing prime to I if there exist $r, s, t \in R$, with $0 \neq rsta \in I$, such that $rs, rt, st \in R \setminus I$. We denote by $\nu_0(I)$ the set of all elements in R that are not weakly 2-absorbing prime to I. We define a proper ideal I of R to be a weakly 2-absorbing primal if the set $\nu_0(I) \cup \{0\}$ forms an ideal of R. Many results concerning weakly 2-absorbing primal ideals and examples of weakly 2-absorbing primal ideals are given.

Keywords: weakly 2-absorbing ideal, weakly 2-absorbing primal ideal.

1. Introduction

We study in this paper weakly 2-absorbing primal ideals in commutative rings with unity, which are generalization of weakly primal ideals. Ebrahimi Atani and Ahmad Darani gave a generalization of weakly primal ideals (see [3]). Recall from [3] that if R is a commutative ring with unity and I is a proper ideal of R, then $a \in R$ is a weakly prime to I if $0 \neq ra \in I$, for some $r \in R$, then $r \in I$. Also recall from [3] that $a \in R$ is not a weakly prime to I if there exists $r \in R \setminus I$ such that $0 \neq ra \in I$. In [3] Ebrahimi Atani defined $S_0(I)$ by the set of all elements a in R that are not weakly prime to I. In [3] Ebrahimi Atani defined I to be a weakly primal ideal in R if $S_0(I) \cup \{0\}$ forms an ideal in R.

The idea of a weakly 2-absorbing primal ideal of a given ring R which is a generalization of a weakly primal ideal of R is come from the concept of a weakly 2-absorbing ideal of R which is a generalization of a weakly prime ideal of R. Recall that weakly 2-absorbing ideals, which are generalizations of weakly prime ideals, were introduced in [5]. Let I be a proper ideal of R, in [5] A. Badawi and A. Y. Darani defined I to be a weakly 2-absorbing ideal of R if whenever $a, b, c \in R$ and $0 \neq abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$.

In this paper, we define $a \in R$ to be a weakly 2-absorbing prime to a proper ideal I of R, if $0 \neq rsta \in I$, where $r, s, t \in R$, then $rs \in I$ or $rt \in I$ or $st \in I$. Also we define $a \in R$ to be not a weakly 2-absorbing prime to a proper ideal I of
Let R be a commutative ring with unity and let I be a proper ideal of R. An element $a \in R$ is a weakly 2-absorbing prime to I if for any $r, s, t \in R$ with $0 \neq rsta \in I$, then rs or rt or st is in I. An element $a \in R$ is not a weakly 2-absorbing prime to I if there exist $r, s, t \in R$, with $0 \neq rsta \in I$, such that rs, rt and st are in $R \setminus I$. We denote by $\nu_0(I)$ the set of all elements in R that are not weakly 2-absorbing prime to I.

It is clear that every weakly primal ideal of a ring R is weakly 2-absorbing primal ideal of R. If $R = \mathbb{Z}_{16}$ and $I = \{0, 8\}$, then one can easily see that $\nu_0(I) \cup \{0\} = \mathbb{Z}_{16}$ since $0 \neq 2.2.2 \in I$ and $4 \notin I$, so I is a weakly 2-absorbing primal ideal of \mathbb{Z}_{16} with $\nu_0(I) \cup \{0\} = \mathbb{Z}_{16}$. Also one can easily see that $S_0(I) \cup \{0\} = 2\mathbb{Z}_{16} \neq \nu_0(I) \cup \{0\}$. Therefore, $I = \{0, 8\}$ is a weakly primal and weakly 2-absorbing primal ideal of \mathbb{Z}_{16} with $S_0(I) \neq \nu_0(I)$. Also if $I = \{0\}$ is an ideal in \mathbb{Z}_6, then, from the definition of weakly 2-absorbing primal ideals, I is a weakly 2-absorbing primal ideal of \mathbb{Z}_6 with $\nu_0(I) \cup \{0\} = \{0\}$, but easy computations implies that I is not a 2-absorbing primal ideal of \mathbb{Z}_6. The following are two examples of nonzero weakly 2-absorbing primal ideals that are not weakly primal ideals.

Example 2.1. (1) Let $R = \mathbb{Z}$ and let $I = 30\mathbb{Z}$. Then I is a weakly 2-absorbing primal ideal of \mathbb{Z} with $\nu_0(I) \cup \{0\} = \mathbb{Z}$, since $(2)(3)(5) = 30 \in I$ and $(2)(3) = 6 \notin I$, $(2)(5) = 10 \notin I$ and $(3)(5) = 15 \notin I$. On the other hand I is not a weakly primal ideal in \mathbb{Z}, because $2,3 \in S_0(I)$ but $1 \notin S_0(I)$. Note that if $1 \in S_0(I)$, then there exists $r \notin I$ with $1.r = r \in I$, a contradiction.

(2) Let $R = \mathbb{Z}[x,y,z]$ and let $I = xyzR$. Then I is a proper ideal of R and since $0 \neq xyz \in I$ with xy, xz, and yz are in $R \setminus I$ we get that $\nu_0(I) \cup \{0\} = R$. Therefore, I is a weakly 2-absorbing primal ideal of R.

On the other hand, since $0 \neq xyz \in I$ and $yz \in R \setminus I$ we get that $x \in S_0(I)$. Similarly, $y \in S_0(I)$. Now we show that $x + y$ can’t be in $S_0(I)$. If there exists $f(x,y,z) \in \mathbb{Z}[x,y,z]$ with $0 \neq (x+y)f(x,y,z) \in I$, then xyz divides $(x+y)f(x,y,z)$ and since x divides xyz we get that x divides $(x+y)f(x,y,z)$ but x does not divide $x+y$, so x must divide $f(x,y,z)$. Similarly, y divides...
Let $f(x, y, z)$ and z divides $f(x, y, z)$. Therefore, xyz divides $f(x, y, z)$ which implies that $f(x, y, z) \in I$, so $x + y \not\in S_0(I)$ and hence I is not a weakly primal ideal of R.

Now, we have the following easy result.

Lemma 2.1. Every weakly primal ideal of R is a weakly 2-absorbing primal.

Theorem 2.1. Let I be a proper ideal of R such that I is a weakly 2-absorbing primal ideal of R with $v_0(I) \cup \{0\} \neq R$. Then $v_0(I) \cup \{0\}$ is a weakly prime ideal of R.

Proof of Theorem 2.1. Let $a, b \in R$ such that $0 \neq ab \in v_0(I)$. Then there exist $r, s, t \in R$ with $0 \neq rst(ab) \in I$ such that $rs, rt, st \in R \setminus I$. Assume that $a \not\in v_0(I)$. We must show that $b \in v_0(I)$. Since $0 \neq r(sb)ta \in I$ and $a \not\in v_0(I)$, $0 \neq rsb \in I$ or $0 \neq rt \in I$ or $0 \neq sbl \in I$. But $rt \in R \setminus I$ implies $rsb \in I$ or $sbt \in I$. If $rsb \in I$, then $b \in v_0(I)$ since $r, s, rs \in R \setminus I$. Similarly, if $sbt \in I$, then $b \in v_0(I)$. Therefore, $v_0(I) \cup \{0\}$ is a weakly prime ideal of R.

For example $I = 4\mathbb{Z}$ is a proper ideal of \mathbb{Z} with $v_0(I) \cup \{0\} = 2\mathbb{Z}$. So I is a weakly 2-absorbing primal ideal of \mathbb{Z} with $v_0(I) \cup \{0\} = 2\mathbb{Z}$ is a weakly prime ideal of \mathbb{Z}. But if $I = 6\mathbb{Z}$, then I is not a weakly 2-absorbing primal ideal of \mathbb{Z}, since $0 \neq (2)(3) \in I$ and $2, 3 \not\in I$ so $2, 3 \in v_0(I)$, therefore, if $v_0(I) \cup \{0\}$ is an ideal of \mathbb{Z}, then $1 \in v_0(I)$ which implies that there exist $r, s, t \in \mathbb{Z} \setminus 6\mathbb{Z}$ such that $0 \neq rst \in 6\mathbb{Z}$ with $rs, rt, st \not\in 6\mathbb{Z}$, but since 6 divides rst we have that 2 must divide r or s or t and 3 must divide r or s or t so 6 must divide rs or st or rt, a contradiction.

Definition 2.1. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R such that I is a weakly 2-absorbing primal ideal of R. Let $r, s, t \in R$, then (r, s, t) is called a triple zero of I if $rst = 0$ with $rs, rt, st \in R \setminus I$.

The following five results on weakly 2-absorbing primal ideals over R and the results on weakly 2-absorbing ideals of R are the same and proved in [5] with another approach.

Theorem 2.2. Let R be a commutative ring with unity $(1 \neq 0)$ and let I be a proper ideal of R. Suppose that I is a weakly 2-absorbing primal ideal of R with $1 \not\in v_0(I)$. If (r, s, t) is a triple zero of I, then:

1. $rsI = rtI = stI = 0$;
2. $rI^2 = sI^2 = tI^2 = 0$.

Proof of Theorem 2.2. (1) If $rsI \neq 0$, then there exists $a \in I$ such that $0 \neq rsa \in I$. So, $0 \neq rs(t + a) = rsa \in I$ with $rs, r(t + a), s(t + a) \in R \setminus I$ implies that $1 \not\in v_0(I)$, a contradiction. Therefore, $rsI = 0$. Similarly, $rtI = 0$ and $stI = 0$.

(2) Suppose $rtI \neq 0$, then there exist $a, b \in I$ such that $rab \neq 0$. So, $0 \neq (s + a)(t + b) = ab \in I$ with $r(s + a), r(t + b), (s + a)(t + b) \in R \setminus I$ implies...
that \(1 \in \nu_0(I)\), a contradiction. Therefore, \(rI^2 = 0\). Similarly, \(sI^2 = 0\) and \(tI^2 = 0\).

Let \(I\) be a proper ideal of \(R\) such that \(I\) is a weakly 2-absorbing primal ideal of \(R\) with \(1 \notin \nu_0(I)\). If \(I\) is a 2-absorbing primal ideal of \(R\) with \(\nu(I) = R\) then, by using Theorem 2.2, we have the following result.

Theorem 2.3. Let \(R\) be a commutative ring with unity \((1 \neq 0)\) and let \(I\) be a proper ideal of \(R\). Suppose that \(I\) is a weakly 2-absorbing primal ideal of \(R\) with \(1 \notin \nu_0(I)\) such that \(\nu(I) = R\), then \(I^3 = 0\).

Proof of Theorem 2.3. Since \(\nu(I) = R\) we have that \(1 \in \nu(I)\), and hence there exist \(r, s, t \in R\) with \(rst = 0\) such that \(rs, rt, st \in R \setminus I\). Thus, \((r, s, t)\) is a triple zero of \(I\), since if \(0 \neq rst \in I\), then \(1 \in \nu_0(I)\), a contradiction. Suppose that \(I^3 \neq 0\), then there exist \(a, b, c \in I\) such that \(0 \neq abc \in I\). So by Theorem 2.2 we have \(0 \neq (r+a)(s+b)(t+c) = abc \in I\) and since \(1 \notin \nu_0(I)\) we must have that \((r+a)(s+b) \in I\) or \((r+a)(t+c) \in I\) or \((s+b)(t+c) \in I\) and hence we have either \(rs \in I\) or \(rt \in I\) or \(st \in I\), a contradiction. Hence \(I^3 = 0\).

Let \(R\) be a commutative ring with unity \((1 \neq 0)\). Then \(\text{Nil}(R)\) denotes the ideal of nilpotent elements of \(R\).

Corollary 2.1. Let \(R\) be a commutative ring with unity \((1 \neq 0)\) and let \(I\) be a proper ideal of \(R\). Suppose that \(I\) is a weakly 2-absorbing primal ideal of \(R\) with \(1 \notin \nu_0(I)\). If \(\nu(I) = R\), then \(I \subseteq \text{Nil}(R)\).

Theorem 2.4. Let \(I\) be a proper ideal of \(R\). Suppose that \(I\) is a weakly 2-absorbing primal ideal of \(R\) with \(1 \notin \nu_0(I)\) such that \(\nu(I) = R\). Then:

1. If \(a \in \text{Nil}(R)\), then either \(a^2 \in I\) or \(a^2I = aI^2 = 0\);
2. \((\text{Nil}(R))^2I^2 = 0\).

Proof of Theorem 2.4. (1) Let \(a \in \text{Nil}(R)\). First, we show that if \(a^2I \neq 0\), then \(a^2 \in I\). Now assume that \(a^2I \neq 0\). Let \(i \in I\) such that \(0 \neq a^2i \in I\) and suppose that \(n\) is the smallest positive integer such that \(a^n = 0\). Then \(n \geq 3\) and we have \(0 \neq a^2(i + a^{n-2}) \in I\), since \(1 \notin \nu_0(I)\) we must have \(a^2 \in I\) or \(a^{n-1} \in I\). If \(a^2 \in I\), then we are done. If \(a^{n-1} \in I\), then \(0 \neq a^2a^{n-3} \in I\) again since \(1 \notin \nu_0(I)\) we have \(a^{n-2} \in I\). Continuing this procedure, then we arrive at \(a^2 \in I\). Therefore for each \(a \in \text{Nil}(R)\) we have either \(a^2 \in I\) or \(a^2I = 0\). Now, assume that \(b^2 \notin I\) for some \(b \in \text{Nil}(R)\), then \(b^2I = 0\). We show that \(bI^2 = 0\). If \(bI^2 \neq 0\), then there exist \(i_1, i_2 \in I\) such that \(bi_1i_2 \neq 0\). Let \(m\) be the smallest positive integer such that \(b^m = 0\), then \(m \geq 3\) since \(b^2 \notin I\). Hence \(0 \neq b(b+ i_1)(b^{m-2} + i_2) = bi_1i_2 \in I\) and since \(1 \notin \nu_0(I)\) we have \(b(b+ i_1) \in I\) which implies that \(b^2 \in I\) (a contradiction) or \(b(b^{m-2} + i_2) \in I\) which implies that \(b^{m-1} \in I\) (a contradiction). Therefore, \(bI^2 = 0\).

(2) Let \(r, s \in \text{Nil}(R)\). If \(r^2 \notin I\) or \(s^2 \notin I\), then, by (1), \((rs)^2 = 0\). Therefore we may assume that \(r^2 \in I\) and \(s^2 \in I\). So, \((rs)(r + s) \in I\). If \((r, s, r + s)\) is a triple zero of \(I\), then, by Theorem 2.2(1), \((rs)I = 0\) and hence \((rs)^2 = 0\).
If \(0 \neq rs(r + s) \in I \), then \(rs \in I \) since \(1 \notin \nu_0(I) \). So, by Theorem 2.3,
\((rs)I^2 \subseteq I^2 = 0\).

\[\text{Corollary 2.2.} \] Let \(R \) be a commutative ring with unity \((1 \neq 0)\) and let \(A, B, C \) be proper ideals of \(R \). Suppose that \(A, B, C \) are weakly 2-absorbing primal ideals of \(R \) with \(1 \notin \nu_0(A) \cup \nu_0(B) \cup \nu_0(C) \) such that \(\nu(A) = \nu(B) = \nu(C) = R \). Then,
\(A^2BC = AB^2C = ABC^2 = A^2B^2 = A^2C^2 = B^2C^2 = 0. \)

\[\text{Proof of Corollary 2.2.} \] By Corollary 2.1, \(B \subseteq \text{Nil}(R) \) and \(C \subseteq \text{Nil}(R) \), so \(A^2BC \subseteq A^2(\text{Nil}(R))^2 \) and by Theorem 2.4(2), \(A^2(\text{Nil}(R))^2 = 0 \). Similarly, \(AB^2C = ABC^2 = 0 \). Also, by Corollary 2.1, \(A^2B^2 \subseteq (\text{Nil}(R))^2B^2 = 0 \). Similarly, \(A^2C^2 = B^2C^2 = 0. \)

In the next result we give a condition on a weakly 2-absorbing primal ideal of \(R \) to be a 2-absorbing primal ideal of \(R \).

Theorem 2.5. Let \(R \) be a commutative ring with unity \((1 \neq 0)\) and let \(I \) be a proper ideal of \(R \). If \(I \) is a weakly 2-absorbing primal ideal of \(R \) with \(I^2 \neq 0 \), then \(I \) is a 2-absorbing primal ideal of \(R \).

Proof of Theorem 2.5. If \(1 \in \nu(I) \), then \(\nu(I) = R \) which implies that \(I \) is a 2-absorbing primal ideal of \(R \). Therefore we may assume that \(1 \notin \nu(I) \). To prove that \(I \) is a 2-absorbing primal ideal of \(R \) we must show that \(\nu(I) = \nu_0(I) \cup \{0\} \). It is clear that \(\nu_0(I) \cup \{0\} \subseteq \nu(I) \). Conversely, let \(a \in \nu(I) \), then there exist \(r, s, t \in R \) with \(rs, rt, st \in R \setminus I \) such that \((rst)a \in I \). If \((rst)a \neq 0\), then \(a \in \nu_0(I) \). So we may assume that \(rsta = 0 \). If \((rst)I \neq 0 \), then there exists \(c \in I \) such that \((rst)c \neq 0 \). Therefore, \(0 \neq (rst)(a + c) \in I \) which implies that \(a + c \in \nu_0(I) \) and hence \(a \in \nu_0(I) \), since \(c \in \nu_0(I) \). Therefore we may assume that \((rst)I = 0 \). If \((rst)I \in I \), then \(1 \in \nu(I) \) which is a contradiction. Therefore we may assume that \((rst)I \notin I \). Since \(I^2 \neq 0 \), there exist \(x, y \in I \) such that \(xy \neq 0 \). Hence, \((a + y)(trs + x) = 0 + ax + 0 + xy \in I \). If \(0 \neq ax + xy \in I \) and since \(trs + x \notin I \), then \(a + y \in \nu_0(I) \) which implies that \(a \in \nu_0(I) \), since \(y \in \nu_0(I) \). But, if \(ax + xy = 0 \), then \(0 \neq ax \in I \) which implies that \(0 \neq a(x + trs) = ax \in I \), so \(a \in \nu_0(I) \). Thus, \(\nu(I) = \nu_0(I) \cup \{0\} \).

We have to remark that if a proper ideal \(I \) of \(R \) is a weakly 2-absorbing
primal ideal of \(R \) with \(I^2 \neq 0 \), and \(1 \notin \nu(I) \), then \(\nu_0(I) \cup \{0\} \) is a prime ideal of \(R \) since by Theorem 2.5, \(\nu(I) = \nu_0(I) \cup \{0\} \).

We recall that if \(R \), and \(S \) are commutative rings with unity and \(P, Q \) are weakly prime ideals in \(R \), \(S \) (respectively), then \(P \times S \) and \(R \times Q \) are weakly prime ideals of \(R \times S \).

Theorem 2.6. Let \(R \times S \) be a commutative ring with unity, where \(R, S \) are commutative rings with units, let \(I \) be a proper ideal of \(R \) with \(I \times S \notin \text{Nil}(R \times S) \). Then, the following statements are equivalent.

1. \(I \times S \) is a weakly 2-absorbing primal ideal of \(R \times S \);
2. \(I \times S \) is a 2-absorbing primal ideal of \(R \times S \);
3. \(I \) is a 2-absorbing primal ideal of \(R \).
Proof of Theorem 2.6. (1 → 2). Since \(I \times S \not\subseteq \text{Nil}(R \times S) \), by Corollary 2.1 we have that \(\nu(I \times S) \neq R \times S \). To prove that \(I \times S \) is a 2-absorbing primal ideal of \(R \times S \) we must show that \(\nu(I) = \nu_0(I) \cup I \). Let \(a \in \nu(I) \) and let \((rst)a = 0 \) for some \(r, s, t \in R \) with \(rs, rt, st \in R \setminus I \). Since \(1 \notin \nu(I) \) and \(rs \notin I \) we must have \(rta \in I \) or \(sta \in I \). If \(rta \in I \), then \(ra \in I \) or \(ta \in I \) since \(1 \notin \nu(I) \) and \(rt \notin I \). If \(ra \in I \), then \(a \in I \) since \(r \notin I \) and \(1 \notin \nu(I) \), similarly, if \(ta \in I \), then \(a \in I \). Similarly, if \(sta \in I \), then \(a \in I \). Therefore, \(\nu(I) = \nu_0(I) \cup I \) and hence \(\nu(I \times S) = \nu(I) \times S \) is an ideal of \(R \times S \) which implies that \(I \times S \) is a 2-absorbing primal ideal of \(R \times S \).

(2 → 3). Since \(\nu(I \times S) = \nu(I) \times S \) is a prime ideal of \(R \times S \) we have that \(\nu(I) \) is a prime ideal of \(R \), so \(I \) is a 2-absorbing primal ideal of \(R \).

(3 → 1). Since \(I \) is a 2-absorbing primal ideal of \(R \) we have that \(I \times S \) is a 2-absorbing primal ideal of \(R \times S \), hence \(I \times S \) is a weakly 2-absorbing primal ideal of \(R \times S \).

□

Theorem 2.7. Let \(R \times S \) be a commutative ring with unity, where \(R, S \) are commutative rings with unities, let \(I \) be a nonzero proper ideal of \(R \) and \(J \) a nonzero ideal of \(S \) with \(I \times J \not\subseteq \text{Nil}(R \times S) \). Then, the following statements are equivalent.

1. \(I \times J \) is a weakly 2-absorbing primal ideal of \(R \times S \);
2. \(J = S \) and \(I \) is a 2-absorbing primal ideal of \(R \);
3. \(I \times J \) is a 2-absorbing primal ideal of \(R \times S \).

Proof of Theorem 2.7. (1 → 2). Suppose \(I \times J \) is a weakly 2-absorbing primal ideal of \(R \times S \). Since \(I \times J \not\subseteq \text{Nil}(R \times S) \) and if \(J = S \), then \(I \) is a 2-absorbing primal ideal of \(R \) by Theorem 2.6. We show that the case \(J \neq S \) cannot be happened. Suppose \(J \neq S \), we show that \(J \) is a prime ideal in \(S \) and \(I \) is a prime ideal of \(R \). Since \(I \times J \not\subseteq \text{Nil}(R \times S) \), by Corollary 2.1 we have that \(\nu(I \times J) \neq R \times S \). Let \(a, b \in S \) such that \(ab \in J \) and let \(0 \neq i \in I \). Then, \((i, 1)(1, a)(b, 1) = (i, ab) \neq (0, 0) \) in \(I \times J \) since \((1, ab) \notin I \times J \) and since \((1, 1) \notin \nu_0(I \times J) \) we must have \((i, a) \in I \times J \) or \((i, b) \in I \times J \) so \(a \in J \) or \(b \in J \). Thus \(J \) is a prime ideal of \(S \). Similarly, let \(c, d \in R \) such that \(cd \in I \), and let \(0 \neq j \in J \). Then, \((c, 1)(d, 1)(1, j) = (cd, j) \neq (0, 0) \) in \(I \times J \), since \((cd, 1) \notin I \times J \) and since \((1, 1) \notin \nu_0(I \times J) \) we must have \((c, j) \in I \times J \) or \((d, j) \in I \times J \) so \(c \in I \) or \(d \in I \). Hence \(I \) is a prime ideal of \(R \). In this case we show that \((1, 1) \in \nu(I \times J) \). Now, \((1, 0)(0, 1) \in I \times J \) and \((1, 0) \notin I \times J \), \((0, 1) \notin I \times J \), so \((1, 0), (0, 1) \in \nu(I \times J) \). Therefore, if \(\nu(I \times J) \) is an ideal in \(R \times S \), then \((1, 1) = (1, 0) + (0, 1) \in \nu(I \times J) \), a contradiction to Corollary 2.1. Therefore the only case of part \(2 \) is that \(J = S \) and \(I \) is a 2-absorbing primal ideal of \(R \).

(2 → 3). If \(J = S \) and \(I \) is a 2-absorbing primal ideal of \(R \), then \(I \times J \) is a 2-absorbing primal ideal of \(R \times S \) by Theorem 2.6(2).

(3 → 1). Clearly from Theorem 2.6

□

Theorem 2.8. Let \(R \times S \) be a commutative ring with unity, where each \(R \) and \(S \) are commutative rings with unities, let \(I = I_1 \times I_2 \) be a proper ideal of \(R \times S \).
If I is a weakly 2-absorbing primal ideal of $R \times S$ with $\nu_0(I) \neq \emptyset$. Then, either $I = (0,0)$ or I is a 2-absorbing primal ideal of $R \times S$.

Proof of Theorem 2.8. Suppose $I \neq (0,0)$. Since $\nu_0(I) \neq \emptyset$, by Theorem 2.1, $\nu_0(I) \cup \{(0,0)\}$ is a weakly prime ideal of $R \times S$. Therefore, $\nu_0(I) \cup \{(0,0)\}$ has one of the following cases:

1. $\nu_0(I) \cup \{(0,0)\} = P_1 \times P_2$, where each $P_i = \{0\}$. In this case $\nu_0(I) \cup \{(0,0)\} = (0,0)$, a contradiction.

2. $\nu_0(I) \cup \{(0,0)\} = P_1 \times S$, where P_1 is a weakly 2-absorbing prime ideal of R and $S \neq 0$. P_1 is a 2-absorbing prime ideal of $R \times S$ in $\nu_0(I)$ or $\nu_0(I)$ is a prime ideal of $R \times S$. Now, we show that $I_2 = S$. Since $S \neq 0$, there exists $(a,b) \neq (0,0) \in I$ and $(0,0) \neq (a,b) = (1,1)(a,1)$. If $(a,1) \notin I$, then $(1,b) \in \nu_0(I)$ and hence $1 \in P_1$, a contradiction. Therefore, $(a,1) \in I$ which implies that $1 \in I_2$, hence $I_2 = S$. Now, we show that I_1 is a 2-absorbing primal ideal of R with $\nu(I_1) = P_1$. Let $a_1 \in P_1$, then $(a_1,0) \in \nu_0(I)$. If $a_1 = 0$, then $a_1 \in I_1 \subseteq \nu_0(I_1)$, so we may assume that $a_1 \neq 0$. Thus, there exist $(r_1, r_2), (s_1, s_2), (t_1, t_2) \in R \times S$ with $(r_1 s_1, r_2 s_2)(t_1 t_2) \in R \times S \setminus I = (R \setminus I_1) \times S$ such that $(0,0) \neq (r_1 s_1 t_1, r_2 s_2 t_2)(a_1,0) \in I$, so $0 \neq r_1 s_1 t_1 a_1 \in I_1$ with $r_1 s_1, r_2 s_2, t_1 t_2 \notin I_1$ which implies that a_1 is not a weakly 2-absorbing prime to I_1, hence a_1 is not a 2-absorbing prime to I_1 and so $a_1 \in \nu(I_1)$. Conversely, let $a_1 \in \nu(I_1)$. Then, there exist $r,s,t \in R$ with $rs, rt, st \in R \setminus I_1$ such that $rs t a_1 \in I_1$. Since $S \neq 0$, we have $(0,0) \neq (rs t a_1,1) = (r,1)(s,1)(t,1)(a_1,1) \in I_1 \times S$ with $(rs,1), (rt,1), (st,1) \in (R \setminus I_1) \times S = (R \times S) \setminus I$ which implies that $(a_1,1)$ is not a weakly 2-absorbing prime to I, hence $(a_1,1) \in \nu_0(I) \cup \{(0,0)\} = P_1 \times S$, so $a_1 \in P_1$. Therefore, $\nu(I_1) = P_1$. Thus, $\nu(I) = P_1 \times S$. Hence $I = I_1 \times S$ is a 2-absorbing primal ideal of $R \times S$.

3. $\nu_0(I) \cup \{(0,0)\} = R \times P_2$, where P_2 is a weakly 2-absorbing primal ideal in S. By using the same approach in part 2 we conclude that $I = R \times I_2$ and $\nu(I_2) = P_2$, and so $\nu(I) = R \times P_2$. Hence $I = R \times I_2$ is a 2-absorbing primal ideal of $R \times S$. □

3. More properties of weakly 2-absorbing primal ideals

For a commutative ring R, let $J(R)$ denotes the intersection of all maximal ideals of R.

Lemma 3.1. Let R be a commutative ring and $a, b \in J(R)$. Then the ideal $I = abR$, where $1 \notin \nu_0(I)$, is a weakly 2-absorbing primal ideal of R if and only if $ab = 0$.

Proof of Lemma 3.1. If $ab = 0$, then $I = 0$ is a weakly 2-absorbing primal ideal of R by definition. If $0 \neq ab \in I$ with $a, b \notin I$, then $1 \in \nu_0(I)$, contradiction. Therefore, a or b is in $I = abR$. If $a \in I$, then $a = abk$ for some $k \in R$. So, $a(1 - bk) = 0$ and since $bk \in J(R)$ we have that $1 - bk$ is a unit in R. Thus, $a(1 - bk) = 0$ implies that $a = 0$ and hence $ab = 0$, a contradiction. Therefore, $I = 0$. □
We recall that \(R \) is defined to be quasi-local ring if \(R \) has a unique maximal ideal. If \((R, M)\) is a quasi-local ring, where \(M \) is the unique maximal ideal of \(R \), then we have the following two results about a weakly 2-absorbing primal ideal \(I \) of \(R \) with \(1 \not\in \nu_0(I) \).

Theorem 3.1. Let \((R, M)\) be a quasi-local ring with \(\nu_0(I) \neq R \), for all proper ideals \(I \) of \(R \). Then every proper ideal of \(R \) is a weakly 2-absorbing primal if and only if \(M^2 = 0 \).

Proof of Theorem 3.1. Let \(a, b \in M \), then \(I = abR \) is a weakly 2-absorbing primal ideal of \(R \) with \(1 \not\in \nu_0(I) \), hence, by Lemma 3.1, \(M^2 = 0 \). Conversely, suppose \(M^2 = 0 \). Let \(I \) be a proper ideal of \(R \) and let \(a \in \nu_0(I) \). If \(a \) is a unit in \(R \), then \(1 \in \nu_0(I) \), a contradiction. So we may assume that \(a \) is not a unit in \(R \). Let \(r, s, t, \in R \) with \(0 \neq rst \in I \) such that \(rs, rt, st \not\in I \). If \(0 \neq rst \in I \), then \(M^2 = 0 \) and \(a \in M \) implies \(rst \not\in M \). So \(rst \) is a unit in \(R \) which implies that \(a \in I \). So \(\nu_0(I) \cup \{0\} = I \) which implies that \(I \) is weakly 2-absorbing primal ideal of \(R \).

Corollary 3.1. Let \((R, M)\) be a quasi-local ring with \(M^2 = 0 \) and with \(\nu_0(I) \neq R \), for all proper ideals \(I \) of \(R \). Then every proper ideal of \(R \) is a 2-absorbing primal ideal of \(R \).

Proof of Corollary 3.1. Let \(I \) be a proper ideal of \(R \), then, by Theorem 3.1, \(I \) is a weakly 2-absorbing primal ideal of \(R \) since \(M^2 = 0 \). We show that \(\nu(I) \) is an ideal in \(R \). Let \(a, b \) be nonzero elements in \(\nu(I) \). Then, there exist \(r, s, t, \in R \) with \(rs, rt, st \in R \setminus I \) such that \(rsta \in I \). If \(0 \neq rsta \in I \), then, by Theorem 3.1, \(a \in I \subseteq M \). Since \(rs \not\in I \) we have \(r \) or \(s \) is a unit in \(R \). Therefore, if \(rsta = 0 \), then \((st)a = 0 \) or \((rt)a = 0 \). Say \((st)a = 0 \) again since \(st \not\in I \) we have \(s \) or \(t \) is a unit in \(R \) which implies that \(sa = 0 \) or \(ta = 0 \). Say \(ta = 0 \), hence \(t \) is not a unit in \(R \), since \(0 \neq a \in I \). Therefore if \(ta = 0 \in I \subseteq M \) and \(a \) is not a unit in \(R \) (if \(a \) is a unit in \(R \), then \(t = 0 \) a contradiction), then \(a \) must be in \(M \) since \(M \) is a prime ideal. Similarly, \(b \in M \), so \(a + b \in M \). If \(t(a + b) \neq 0 \), then \(t \) is a unit in \(R \) since \(a + b \in M \), a contradiction. Therefore, \(t(a + b) = 0 \in I \) which implies that \(a + b \in \nu(I) \) since \(t \not\in I \). Hence \(\nu(I) \) is an ideal of \(R \).

In the next result we give the condition on a proper ideal \(I \) of \(R \) such that \(I/J \) is a weakly 2-absorbing primal ideal of \(R/J \) where \(J \) is a proper ideal of \(R \) contained in \(I \).

Theorem 3.2. Let \(I, J \) be proper ideals of \(R \) with \(J \subseteq I \). If \(I \) is a weakly 2-absorbing primal ideal of \(R \) with \(\nu_0(J) \subseteq I \). Then \(I/J \) is a weakly 2-absorbing primal ideal of \(R/J \).

Proof of Theorem 3.2. To prove that \(I/J \) is a weakly 2-absorbing primal ideal of \(R/J \), we must show that \(\nu_0(I/J) \cup \{0\} = [\nu_0(I) \cup J]/J \). Let \(a + J \in \nu_0(I/J) \), then there exist \(r + J, s + J, t + J \in R/J \) with \(0 \neq rsta + J \in I/J \) such that \(rs + J, rt + J, st + J \not\in I/J \). So \(0 \neq rsta \in I \), since \(rsta \not\in J \), with
Theorem 3.3. \(rs, rt, st \notin I \) hence \(a \in \nu_0(I) \), therefore, \(a + J \in [\nu_0(I) \cup J]/J \). Conversely, let \(0 \neq a + J \in [\nu_0(I) \cup J]/J \), then \(a \in \nu_0(I) - J \). If \(a \in I \), then \(a + J \in \nu_0(I)/J \).

So we may assume that \(a \notin I \). Then, there exist \(r, s, t \in R \) with \(0 \neq rsta \in I \) such that \(rs, rt, st \notin I \). If \(0 \neq rsta \in J \), then \(a \in \nu_0(J) \), a contradiction, since \(\nu_0(J) \subseteq I \) and \(a \notin I \). Therefore, \(r + J, s + J, t + J \in R/J \) with \(0 \neq rsta + J = (rsta + J)(a + J) \in I/J \) such that \(rsta + J, rt + J, st + J \notin I/J \), so \(a + J \in \nu_0(I)/J \). Hence \(\nu_0(I)/J \cup \{0\} = [\nu_0(I) \cup J]/J \) which implies that \(I/J \) is a weakly 2-absorbing primal ideal of \(R/J \).

Corollary 3.2. Let \(R_0 \) be a subring of \(R \) with unity. If \(I \) is a weakly 2-absorbing primal ideal of \(R \), then \(I \cap R_0 \) is a weakly 2-absorbing primal ideal of \(R_0 \).

Proof of Corollary 3.2. The easy proof is left to the reader.

Let \(R \) be a commutative ring with unity \((1 \neq 0) \) and let \(S \) be a multiplicatively closed proper subset of \(R \) with \(1 \in S \). We recall that if \(R \) is a commutative ring with unity, then \(R_S = \left\{ \frac{a}{s} : a \in R, s \in S \right\} \) is a commutative ring with unity. Also if \(I \) is an ideal in \(R \), then \(I_S \) is an ideal of \(R_S \), where \(I_S = \left\{ \frac{a}{s} : a \in I, s \in S \right\} \). Moreover, if \(J \) is an ideal of \(R_S \), then \(J \cap R \) is an ideal of \(R \).

Consider the canonical homomorphism \(\rho : R \rightarrow R_S \) which is defined by \(r \mapsto \frac{r}{1} \), for all \(r \in R \). Then \(\rho \) is a homogenous homomorphism of degree 0. Note that if \(P \) is a prime ideal of \(R \) with \(P \cap S = \emptyset \), then \(\rho^{-1}(P_S) = P \).

Theorem 3.3. Let \(I \) be a weakly 2-absorbing-primal ideal of \(R \) with \(\nu_0(I) \cap S = \emptyset \). If \(0 \neq \frac{a}{s} \in I_S \), then \(a \in I \).

Proof of Theorem 3.3. Let \(0 \neq \frac{a}{s} \in I_S \), then \(\frac{a}{s} = \frac{b}{t} \) for some \(b \in I \). So there exists \(u \in S \) such that \(uta = usb \in I \), since \(b \in I \). If \(uta = 0 \), then \(\frac{a}{s} = 0 \), a contradiction, so \(0 \neq uta \in I \). If \(a \notin I \), then \(ut \) is not a weakly 2-absorbing prime to \(I \) which implies that \(ut \in \nu_0(I) \), a contradiction. Therefore, \(a \in I \).

We recall that \(a \in R \) is a regular element in \(R \), if \((0 : a) = 0 \). In the rest of this section we assume that \(S \) is multiplicatively closed subset of \(R \) with \(1 \in S \) such that all elements of \(S \) are regular.

Suppose that \(J \) is a 2-absorbing-primal ideal of \(R_S \), we define the set of all elements in \(R_S \) that are not weakly 2-absorbing prime to \(J \) by \(\nu_0(J) \). Let \(I \) be a proper ideal of \(R \), under the condition \(\nu_0(I) \cap S = \emptyset \) we have the following two results.

Lemma 3.2. let \(I \) be a weakly 2-absorbing-primal ideal of \(R \) with \(\nu_0(I) \cap S = \emptyset \). Then:

(1) \(I_S \) is a 2-absorbing-primal ideal of \(R_S \);
(2) \(I = I_S \cap R \).

Proof of Lemma 3.2. (1) It is enough to show that \(\nu_0(I_S) = (\nu_0(I))_S \). Let \(\frac{a}{u} \in \nu_0(I_S) \), then there exist \(\frac{r}{t_1}, \frac{s}{t_2}, \frac{t}{t_3} \in R_S \) with \(0 \neq (\frac{r}{t_1} \frac{s}{t_2} \frac{t}{t_3}) (\frac{a}{u}) \in I_S \) such that...
Theorem 3.4. There is a one-to-one correspondence between weakly 2-absorbing primal ideals of R with $\nu_0(I) \cap S = \phi$ and weakly 2-absorbing primal ideals of R_S.

Proof of Theorem 3.4. This follows directly from Lemma 3.2 and Proposition 3.1 and the fact that there is a one-to-one correspondence between weakly prime ideals P of R with $P \cap S = \phi$ and weakly prime ideals of R_S.

References

Accepted: October 26, 2020