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Solving oscillation problems using optimized integrator method

Kasim Abbas Hussain
Department of Mathematics

College of Science

Mustansiriyah University

Baghdad

Iraq

kasimabbas@uomustansiriyah.edu.iq

kasimmath2011@yahoo.com

Abstract. In this paper, an explicit optimized integrator method of order four is
developed for solving second order ordinary differential equations with oscillatory so-
lutions. The new optimized integrator method (NOIM) depend on the existing hybrid
methods with dissipative of order infinity. The constant coefficients of new method is
found after using the phase-lag, the amplification error (dissipative error) and the first
derivative of the phase-lag. Numerical results are presented to illustrate the robustness
and competency of the proposed integrator method compared with the existing methods
in the scientific literature for solving oscillatory problems.
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1. Introduction

This paper devotes to the initial value problems (IVPs) of the form

(1) z′′(t) = g(t, z), z(t0) = z0, z′(t0) = z′0.

Where the solution of (1) shows an obvious oscillatory behaviour. This problems
arise in a several of sciences fields like theoretical physics, quantum mechanics,
electronics, celestial mechanics (see [1, 2]). Many numerical methods are de-
rived to approximate the solutions for (1) such as Runge-Kutta method [3] after
reducing the problem to an equivalent system of the first order (ODEs) and
then solved it. But several authors are proposed direct integration method, for
instance Runge-Kutta Nyström method and multistep methods for second order
ODEs to obtain the best approximation for the solution of second order ODEs
(1), we can find such work in Simos ([4, 5, 6]), Ming et al. [7], and Tsitouras
[8]. Franco [10] proposed a class up to six order hybrid methods using the order
conditions constructed by Coleman [9]. Searching for the dispersion and dissipa-
tion errors of numerical methods for solving oscillatory or periodic problems is
extremely significant. Several authors have proposed hybrid methods with the
objective to make the dispersion of the method smaller (see [11, 12, 13, 14]) In
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this paper, we construct a new optimized integrator method based on existing
fourth order hybrid method which is dispersive of order six and zero dissipative
proposed by Franco [10] and using the technique suggested by Kosti et al. [15].
The paper is organized as follows: In section 2, we present the dispersion and
dissipation analysis of the integrator method. In section 3 we describe the
derivation of the method. In section 4, we give numerical results that prove the
efficiency of our new optimized integrator method by the well known oscillating
problems. In Section 5 we observe some conclusions.

2. Phase-Lag analysis of NOIM method

The hybrid method for solving second order ODEs (1) can be written in following
form

zn+1 = 2zn − zn−1 + h2
s∑

i=1

big(tn + cih),(2)

zi = (1 + ci)zn − cizn−1 ++h2
s∑

j=1

aijg(tn + cjh). i = 1, · · · , s.(3)

where the parameters bi, aij , and ci of the hybrid methods are expressed using
Butcher notation as follows we can defined the methods of the form (2)–(3) as

c A

bT
=

c1 a11 . . . a1s
...

...
. . .

...
cs as1 . . . ass

b1 . . . bs

follows

Z1 = zn−1, Z2 = zn,(4)

zn+1 = 2zn − zn−1 + h2

[
b1gn−1 + b2gn +

s∑
i=3

big(tn + cih, Zi)

]
,(5)

Zi = (1 + ci)zn − ci zn−1 + h2
i−1∑
j=3

aijg(tn + cjh, Zj). i = 3, · · · , s.(6)

where gn = g(tn, zn) and gn−1 = g(tn−1, zn−1) and the two first nodes are
c1 = −1 and c2 = 0.

The method need only the evaluation of g(tn, zn), g(tn+ c3h, Z3), . . . , g(tn+
csh, Zs) for every step after the proceeding start. Thus, hybrid method is con-
sidered with s−1 stages for each step which can express in the following Butcher
notation The construction of NOIM method is based on the using simple test
equation

(7) z′′ = −ω2z, ω > 0
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c A

bT
=

-1 0 0 0 . . . 0
0 0 0 0 . . . 0
c3 a31 a32 0 . . . 0
...

...
...

. . .
. . .

...
cs as1 as2 . . . as,s−1 0

b1 b2 . . . bs−1 bs

Applying the two step hybrid method (2)–(3) to the test equation (7) we obtain

zn+1 = 2zn − zn−1 − h2
s∑

i=1

biω
2zi,(8)

zi = (1 + ci)zn − cizn−1 − h2
s∑

j=1

aijω
2zj . i = 1, · · · , s.(9)

The hybrid method (8)–(9) can be expressed in the following vector form

zn+1 = 2zn − zn−1 − v2bTZ, v = hω,(10)

Z = (c+ e)zn − c zn−1 + v2AZ,(11)

where e = (1, . . . , 1)T , c = (c1, . . . , cs)
T , Z = (Z1, . . . , Zs)

T , b = (b1, . . . , bs) and

A =

a11 · · · a1s
...

. . .
...

as1 · · · ass

 .

Solving equation (11) we get

Z =
(
1 + v2A

)−1
(c+ e)zn −

(
1 + v2A

)−1
c zn−1.(12)

Substituting equation (12) into equation (10) we get the following difference
equation

zn+1 − P
(
v2
)
zn +D

(
v2
)
zn−1 = 0,(13)

where

P
(
v2
)
= 2− v2bT

(
1 + v2A

)−1
(c+ e), D

(
v2
)
= 1− v2bT

(
1 + v2A

)−1
c.(14)

Definition. The dispersion (or phase-lag error) and the dissipation (or ampli-
fication error ) are defined respectively as follows (see [10, 15])

α(v) = 1−
√

D(v2), Ψ(v) = v − cos−1

(
P (v2)

2
√

D(v2)

)
,(15)

If α(v) = O(vr+1) and Ψ(v) = O(vp+1) therefore the hybrid method is said to
have dispersion of order p and dissipative of order r respectively.



SOLVING OSCILLATION PROBLEMS USING OPTIMIZED INTEGRATOR METHOD 581

3. Derivation of the NOIM method

New optimized integrator method (NOIM) of order four with four stage will be
derived based on existing hybrid method proposed by Franco [10] (see Table 1).
Alternatively (14) can be written in polynomial form as follows:

P
(
v2
)
= 2− β1v

2 + β2v
4 − β3v

6 + β4v
8 + . . .+ βnv

2i,(16)

D
(
v2
)
= 1− γ1v

2 + γ2v
4 − γ3v

6 + γ4v
8 + . . .+ γnv

2i.(17)

To construct the (NOIM) method of order four with four stage, the equations
(16)-(17) should be satisfied the order conditions given in [9] up to fourth order.
Consequently, we obtain

P
(
v2
)
= 2 +

(
− b1 − b2 − b3 − b4 − b1c1 − b2c2 − b3c3 − b4c4

)
v2 +

(
b3a31+

b3a32 + b4a41 + b4a42 + b4a43 + b3a31c1 + b3a32c2+

b4a41c1 + b4a42c2 + b4a3c3

)
v4+(

− b4a43a31 − b4a43a32 − b4a43a31c1 − b4a43a32c2

)
v6,(18)

D
(
v2
)
= 1 +

(
− b1c1 − b2c2 − b3c3 − b4c4

)
v2 +

(
b3a31c1 + b3a32c2+

b4a41c1 + b4a42c2 + b4a43c3

)
v4 +

(
− b4a43a31c1 − b4a43a32c2

)
v6.(19)

Table 1: Franco’s hybrid method
-1 0 0 0 0

0 0 0 0 0

33
50 0 2739

5000 0 0

−13
17

314860
20796729 −1058746

8268579
15743000
686292057 0

− 89
1992

545
858

625000
3316929

83521
377832

To achieve our goal which is to optimize the Franco’s hybrid method given
in Table 1, The following conditions should be met

1− η(v) = v − cos−1

(
P (v2)

2
√
D(v2)

)
= 0,(20)

2− α(v) = 1−
√

D(v2) = 0,(21)

3− η(v)′ = 0.(22)
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Substituting the parameters of Franco’s hybrid method in Table 1 into equations
(20)-(22) and the coefficients a41, a42 and a43 are chosen as free parameters.
Solving the system simultaneously we get the new optimized integrator method
(NOIM) with the parameters a41, a42 and a43 which give by

a41 =
800

1199278039 v6

(√
47229 v

√
1413516741− 1413516741 (cos(v))2+

32682468 cos(v)− 32682468 + 8170617 v2
)
,

a42 =
8

476821389 v6

(
1617782166 cos(v)v2 − 2434843866 v2 + 539260722 v4−

27831375 v6 − 100
√
47229 v

√
1413516741− 1413516741 (cos(v))2−

3268246800 cos(v) + 3268246800+

33
√
47229v3

√
1413516741− 1413516741 (cos(v))2

)
,

a43 =
40000

39576175287 v6

(√
47229 v

√
1413516741− 1413516741 (cos(v))2+

32682468 cos(v)− 32682468 + 8170617 v2
)
.

Consequently, the new optimized integrator method (NOIM) of four-order with
four stage as follows Taylor series expansion of the free parameters a41, a42 and

-1 0 0 0 0

0 0 0 0 0

33
50 0 2739

5000 0 0

−13
17 a41 a42 a43 0

− 89
1992

545
858

625000
3316929

83521
377832

a43 is practical and is given as follows

a41 =
314860

20796729
− 11245

20796729
v2 +

2249

249560748
v4 − 2249

24706514052
v6

+
865

1383564786912
v8 − 173

55342591476480
v10 +O

(
v12
)
,

a42 = −1058746

8268579
+

11245

8268579
v2 − 245141

992229480
v4 +

150683

28891387800
v6

− 1601807

27504601185600
v8 +

46537

110018404742400
v10 +O

(
v12
)
,
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a43 =
15743000

686292057
− 562250

686292057
v2 +

56225

4117752342
v4 − 56225

407657481858
v6

+
21625

22828818984048
v8 − 865

182630551872384
v10 +O

(
v12
)
.

4. Problems tested

Some oscillatory problems are solved to show the accuracy of NOIM method in
this section. We are compared the numerical results with the effective methods
in the interval from 0 to 1000. In the comparison we have chosen the following
acronyms:

� NOIM4: New optimized integrator method of four order developed in this
paper.

� PFRKN4: Existing Phase fitted Runge-Kutta Nyström of four order method
presented in [16].

� RKN5: Existing five order Runge-Kutta Nyström method in [2].

The measurement of the eficiency is tested by using the following absolute
error

Absolute error = max {|z(tn)− zn|}

where zn is the numerical solution and z(tn) is the analytic solution. It can be
observed from the figures (1)-(3) that the curve of the NOIM method locates
below every other curve. Consequently, we conclude that optimized integrator
method is more efficiency and effectiveness than the existing methods.

Problem 1 ([17]). z′′(t) = −100z(t), z(0) = 1, z′(0) = −2. The fitted frequency,
v = 10, and the analytic solution is: z(t) = −(1/5) sin(10t) + cos(10t).

Problem 2 ([16]). z′′(t) = −v2z(t) + (v2 − 1) sin(t), z(0) = 1, z′(0) = v+1, v =
10. the analytic solution is: z(t) = cos(vt) + sin(vt) + sin(t).

Problem 3 ([18]).

z′′1 (t) + z1(t) = 0.001 cos(t), z1(0) = 1, z′1(0) = 0,

z′′2 (t) + z2(t) = 0.001 sin(t), z2(0) = 0, z′2(0) = 009995,

The fitted frequency, v = 1, and the analytic solution is:

z1 = cos(t) + 0.0005t sin(t),

z2 = sin(t)− 0.0005t cos(t),
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Figure 1: Efficiency Results for Problem 1
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Figure 2: Efficiency Results for Problem 2
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Figure 3: Efficiency Results for Problem 3

5. Conclusion

In this study, optimized integrator method of order four is derived based on the
existing hybrid methods. The new method has dissipative of order infinity and
dispersive of order six. Numerical results detect that the NOIM method is more
competence than the existing methods.
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