A note on restriction semigroups

Haijun Liu

School of Mathematics and Statistics Jiangxi Normal University Nanchang Jiangxi, 330022 People's Republic of China haijunliu123@163.com

Xiaojiang Guo^{*}

School of Mathematics and Statistics Jiangxi Normal University Nanchang Jiangxi, 330022 People's Republic of China xjguo@jxnu.edu.cn

Abstract. It is proved that if S is a weakly reductive semigroup, then S is a (proper; Clifford; E-reflexive) restriction semigroup if and only if $\Omega(S)$ is a (proper; Clifford; E-reflexive) restriction semigroup and $\Pi(S)$ is a (2,1,1)-subsemigroup of $\Omega(S)$. **Keywords:** restriction semigroup, translational hull, weakly reductive semigroup

1. Introduction

Let S be a semigroup. A mapping $\lambda : S \to S$ is called a *left translation* of S if for any $a, b \in S$, $\lambda(ab) = (\lambda a)b$. Similarly, a mapping $\rho : S \to S$ is a *right translation* if for any $a, b \in S$, $(ab)\rho = a(b\rho)$. A left translation λ and a right translation ρ of S are said to be *linked* if for any $a, b \in S$, $a(\lambda b) = (a\rho)b$. In this case, we call the pair (λ, ρ) a *bitranslation* of S. The set $\Lambda(S)$ of all left translations and the set I(S) of all right translations of S form semigroups under the composition of mappings. The *translational hull* of S is the subsemigroup $\Omega(S)$ of $\Lambda(S) \times I(S)$ which consists of all bitranslations (λ, ρ) . It is well known that $\Omega(S)$ forms a submonoid of $\Lambda(S) \times I(S)$ under the multiplication:

$$(\lambda, \rho)(\lambda', \rho') = (\lambda\lambda', \rho\rho'),$$

where $\lambda\lambda'$ and $\rho\rho'$ respectively represent the composition operation of λ' , λ and of ρ , ρ' . For any $a \in S$, we denote by λ_a [resp. ρ_a] the *inner* left [resp. right] translation, which is defined as $\lambda_a(x) = ax$ [resp. $(x)\rho_a = xa$]. It is easy to check that the pair $\pi_a = (\lambda_a, \rho_a)$ is the *inner bitranslation* induced by a. It is easy to check that the set $\Pi(S) = \{\pi_a : a \in S\}$ is a subsemigroup of $\Omega(S)$. Indeed, $\Pi(S)$ is still an ideal of $\Omega(S)$ (for details, see [10, p.30]).

^{*.} Corresponding author

The translational hull of a semigroup, introduced by Petrich in 1970, plays an important role in the theory of semigroups. There are many authors having been researching translational hulls of semigroups. It was proved that if S is an inverse semigroup (an adequate semigroup; an ample semigroup, respectively), then so is $\Omega(S)$ (see [1, 2]). After then, there are several classes of semigroups whose translational hulls were researched; for example, strongly right (left) type-A semigroups (see [6]), E-reflexive type-A semigroups (see [7]), inverse wpp semigroups (see [8]), type B semigroups (see [9]), etc.

Restriction semigroups become a larger class of semigroups, including some important class of semigroups; such as, adequate semigroups, especially, inverse semigroups, as its proper subclasses. So, it is a natural topic to study characterizations of translational hulls of restriction semigroups. This is the main aim of this note.

2. Results

To begin with, we recall several concepts.

A left restriction semigroup is defined to be an algebra of type (2, 1), more precisely, an algebra $S = (S, \cdot, +)$ where (S, \cdot) is a semigroup and + is a unary operator such that the following identities are satisfied:

(2.1)
$$x^+x = x, \ x^+y^+ = y^+x^+, \ (x^+y)^+ = x^+y^+, \ xy^+ = (xy)^+x.$$

A right restriction semigroup is dually defined, that is, it is an algebra $(S, \cdot, *)$ satisfying the duals of the identities (2.1). If $S = (S, \cdot, +, *)$ is an algebra of type (2, 1, 1) where $S = (S, \cdot, +)$ is a left restriction semigroup and $S = (S, \cdot, *)$ is a right restriction semigroup and the identities

(2.2)
$$(x^+)^* = x^+, \ (x^*)^+ = x^*$$

hold, then it is called a *restriction semigroup*. By definition, the defining properties of a restriction semigroup are left-right dual. Therefore in the sequel dual definitions and statements will not be explicitly formulated. Gould [5] pointed out that in a restriction semigroup, the following identities are satisfied:

(2.3)
$$(xy)^* = (x^*y)^*, \ (xy)^+ = (xy^+)^+.$$

Let S be a restriction semigroup. By (2.2), we have $\{x^+ : x \in S\} = \{x^* : x \in S\}$. This set is called the *set of projections of* S and denoted by P(S). Again by (2.1) and its dual, P(S) is a (2,1,1)-subsemigroup of S which is indeed a semilattice.

- (i) If all projections of S are central, then S is called a *Clifford restriction* semigroup.
- (ii) If for all $e \in P(S)$ and $x, y \in S$, $exy \in P(S)$ implies $eyx \in P(S)$, then we call S an *E*-reflexive restriction semigroup.

On S, define: for any $a, b \in S$

$$a\sigma b \Leftrightarrow (\exists e \in P(S))ea = eb; \\ \Leftrightarrow (\exists f \in P(S))af = bf.$$

Evidently, σ is an equivalence on S. A restriction semigroup S is *proper* provided for any $a, b \in S$,

- (i) if $a^+ = b^+$ and $a\sigma b$, then a = b; and
- (ii) if $a^* = b^*$ and $a\sigma b$, then a = b.

Among restriction semigroups, the notion of subalgebra is understood in type (2, 1, 1), which is emphasised by using the expression (2, 1, 1)-subsemigroup.

Recall that a semigroup S is weakly reductive if for any $a, b \in S$, xa = xband ax = bx for all $x \in S$ implies that a = b. We have that any restriction semigroup is weakly reductive. Indeed, let $a, b \in S$ and assume that xa = xband ax = bx for all $x \in S$, we have $a = a^+b$, so that $a^+ = (a^+b)^+ = a^+b^+$; similarly, $b^+ = b^+a^+$, thus $a^+ = b^+$ since P(S) is a semilattice, it follows that $a = a^+b = b^+b = b$, as required.

We now describe our main result:

Theorem 2.1. If S is a weakly reductive semigroup, then S is a (proper; Clifford; E-reflexive) restriction semigroup if and only if $\Omega(S)$ is a (proper; Clifford; E-reflexive) restriction semigroup and $\Pi(S)$ is a (2, 1, 1)-subsemigroup of $\Omega(S)$.

3. Proofs

To begin with, we prove the following lemma.

Lemma 3.1. If S is a restriction semigroup, then $S \cong \Pi(S)$.

Proof. It is obvious that the mapping $\pi : S \to \Pi(S)$; $a \mapsto (\lambda_a, \rho_a)$ is a surjective homomorphism. In condition of weakly reductivity, π is still injective. Therefore π is an isomorphism, as required.

The following lemma is well known; for example, see [2, 7].

Lemma 3.2. Let S be a restriction semigroup. Then the following statements are equivalent:

- (i) $(\forall e \in P(S)) \ \lambda_1 e = \lambda_2 e \ (respectively, e\rho_1 = e\rho_2);$
- (ii) $\lambda_1 = \lambda_2$ (respectively, $\rho_1 = \rho_2$).

Lemma 3.3. Let S be a restriction semigroup. If $(\lambda_i, \rho_i) \in \Omega(S)$ with i = 1, 2, then the following statements are equivalent:

(i) $(\lambda_1, \rho_1) = (\lambda_2, \rho_2);$

- (ii) $\lambda_1 = \lambda_2;$
- (iii) $\rho_1 = \rho_2$.

Proof. We need only to verify (ii) \Rightarrow (i) because (i) \Rightarrow (ii) is obvious, and (i) \Leftrightarrow (ii) is dual to (i) \Leftrightarrow (iii). Suppose that $\lambda_1 = \lambda_2$, then $\lambda_1 e = \lambda_2 e$ for any $e \in P(S)$, and so $e\rho_1 = (e\rho_1)(e\rho_1)^* = e[\lambda_1(e\rho_1)^*] = e[\lambda_2(e\rho_1)^*] = (e\rho_2)(e\rho_1)^*$; similarly, $e\rho_2 = (e\rho_1)(e\rho_2)^*$. Further,

$$e\rho_1 = (e\rho_2)(e\rho_1)^* = (e\rho_1)(e\rho_2)^*(e\rho_1)^* = (e\rho_1)(e\rho_1)^*(e\rho_2)^* = (e\rho_1)(e\rho_2)^* = e\rho_2.$$

It follows that for any $a \in S$, $a\rho_1 = a(a^*\rho_1) = a(a^*\rho_2) = a\rho_2$; that is, $\rho_1 = \rho_2$.

Let S be a restriction semigroup. For $(\lambda, \rho) \in \Omega(S)$, we define $\lambda^+, \lambda^*, \rho^+$ and ρ^* as follows:

$$\begin{split} \lambda^{+} a &= (a^{+} \rho)^{+} a; \qquad \lambda^{*} a &= (\lambda a^{+})^{*} a; \\ a \rho^{+} &= a (a^{*} \rho)^{+}; \qquad a \rho^{*} &= a (\lambda a^{*})^{*}. \end{split}$$

Lemma 3.4. Let S be a restriction semigroup with the set of projections P(S). Then for all $e \in P(S)$ and $a \in S$,

- (i) $\lambda^* e = e\rho^* = (\lambda e)^*;$
- (ii) $\lambda^+ e = e\rho^+ = (e\rho)^+;$
- (iii) $\lambda^* e, e\rho^*, \lambda^+ e, e\rho^+ \in P(S);$

(iv)
$$(\lambda a)^* = (\lambda^* a)^*, \ (a\rho)^+ = (a\rho^+)^+$$

Proof. (i) By definition, $\lambda^* e = (\lambda e)^* e = e(\lambda e)^* = e\rho^*$, and notice that $(\lambda e)^* e = ((\lambda e)e)^* = (\lambda e)^*$, we have $\lambda^* e = e\rho^* = (\lambda e)^*$.

- (ii) Dual to (i).
- (iii) Obvious.

(iv) Clearly, $\lambda a = \lambda(a^+a) = (\lambda a^+)a$, then $(\lambda a)^* = [(\lambda a^+)a]^* = [(\lambda a^+)^*a]^* = (\lambda^*a)^*$. Thus, $(\lambda a)^* = (\lambda^*a)^*$, similarly, $(a\rho)^+ = (a\rho^+)^+$.

Define $(\lambda, \rho)^+ = (\lambda^+, \rho^+)$ and $(\lambda, \rho)^* = (\lambda^*, \rho^*)$. Similar to [2], we may verify the following lemma and we omit the detail.

Lemma 3.5. Let $(\lambda, \rho) \in \Omega(S)$. If S is a restriction semigroup, then $(\lambda, \rho)^+$, $(\lambda, \rho)^* \in \Omega(S)$.

Lemma 3.6. Let $(\lambda, \rho), (\lambda_1, \rho_1), (\lambda_2, \rho_2) \in \Omega(S)$. If S is a restriction semigroup, then:

(i) $(\lambda, \rho)^+(\lambda, \rho) = (\lambda, \rho);$

- (ii) $(\lambda_1, \rho_1)^+ (\lambda_2, \rho_2)^+ = (\lambda_2, \rho_2)^+ (\lambda_1, \rho_1)^+;$
- (iii) $[(\lambda_1, \rho_1)^+ (\lambda_2, \rho_2)]^+ = (\lambda_1, \rho_1)^+ (\lambda_2, \rho_2)^+;$
- (iv) $(\lambda_1, \rho_1)(\lambda_2, \rho_2)^+ = [(\lambda_1, \rho_1)(\lambda_2, \rho_2)]^+ (\lambda_1, \rho_1);$
- (v) $[(\lambda, \rho)^+]^* = (\lambda, \rho)^+.$

Proof. (i) Compute $(\lambda, \rho)^+(\lambda, \rho) = (\lambda^+, \rho^+)(\lambda, \rho) = (\lambda^+\lambda, \rho^+\rho)$. For any $e \in$ P(S), we have $e\rho^+\rho = (e \cdot e\rho^+)\rho = (e\rho^+) \cdot e\rho = (e\rho)^+e\rho = e\rho$, and so $\rho^+\rho = \rho$. Therefore, $(\lambda, \rho)^+(\lambda, \rho) = (\lambda, \rho)$.

(ii) Compute

$$\lambda_{1}^{+}\lambda_{2}^{+}e = \lambda_{1}^{+}(\lambda_{2}^{+}e \cdot e) = (\lambda_{1}^{+}e) \cdot (\lambda_{2}^{+}e) = (\lambda_{2}^{+}e) \cdot (\lambda_{1}^{+}e) = \lambda_{2}^{+}\lambda_{1}^{+}e.$$

Then, $\lambda_1^+\lambda_2^+ = \lambda_2^+\lambda_1^+$. Together with

$$(\lambda_1, \rho_1)^+ (\lambda_2, \rho_2)^+ = (\lambda_1^+ \lambda_2^+, \rho_1^+ \rho_2^+)$$

and

$$(\lambda_2, \rho_2)^+ (\lambda_1, \rho_1)^+ = (\lambda_2^+ \lambda_1^+, \rho_2^+ \rho_1^+),$$

we have $(\lambda_1^+ \lambda_2^+, \rho_1^+ \rho_2^+) = (\lambda_2^+ \lambda_1^+, \rho_2^+ \rho_1^+)$ and result (ii). (iii) Obviously, $[(\lambda_1, \rho_1)^+ (\lambda_2, \rho_2)]^+ = ((\lambda_1^+ \lambda_2)^+, (\rho_1^+ \rho_2)^+)$. By computing, we have

$$\begin{aligned} (\lambda_1^+\lambda_2)^+ e &= (e\rho_1^+\rho_2)^+ = [e(e\rho_1)^+\rho_2]^+ \\ &= [(e\rho_1)^+ \cdot e\rho_2]^+ = (e\rho_1)^+ \cdot (e\rho_2)^+ \\ &= (\lambda_1^+e) \cdot (\lambda_2^+e) = \lambda_1^+ (e \cdot \lambda_2^+e) \\ &= (\lambda_1^+\lambda_2^+)e. \end{aligned}$$

Thus $(\lambda_1^+\lambda_2)^+ = (\lambda_1^+\lambda_2^+)$. Moreover, $[(\lambda_1^+\lambda_2)^+, (\rho_1^+\rho_2)^+] = (\lambda_1^+\lambda_2^+, \rho_1^+\rho_2^+)$.

(iv) Because $(\lambda_1, \rho_1)(\lambda_2, \rho_2)^+ = (\lambda_1\lambda_2^+, \rho_1\rho_2^+)$ and $[(\lambda_1, \rho_1)(\lambda_2, \rho_2)]^+(\lambda_1, \rho_1) =$ $((\lambda_1\lambda_2)^+\lambda_1, (\rho_1\rho_2)^+\rho_1)$, we only need to show that $\rho_1\rho_2^+ = (\rho_1\rho_2)^+\rho_1$. For any $e \in P(S),$

$$e\rho_{1}\rho_{2}^{+} = (e\rho_{1})(e\rho_{1})^{*}\rho_{2}^{+}$$

$$= (e\rho_{1})[(e\rho_{1})^{*}\rho_{2}^{+}]$$

$$= [(e\rho_{1})(e\rho_{1})^{*}\rho_{2}^{+}]^{+}(e\rho_{1})$$

$$= [(e\rho_{1})\rho_{2}^{+}]^{+}(e\rho_{1}) \quad (by \ (a\rho)^{+} = (a\rho^{+})^{+})$$

$$= (e\rho_{1}\rho_{2})^{+}(e\rho_{1}) \quad (by \ (e\rho)^{+} = e\rho^{+})$$

$$= e \cdot e(\rho_{1}\rho_{2})^{+}\rho_{1}$$

$$= e(\rho_{1}\rho_{2})^{+}\rho_{1}.$$

Thus, $\rho_1 \rho_2^+ = (\rho_1 \rho_2)^+ \rho_1$ and results (iv).

(v) Note that $(\lambda^+)^* e = (\lambda^+ e)^* = [(e\rho)^+]^* = (e\rho)^+ = \lambda^+ e$. We obtain that $(\lambda^+)^* = \lambda^+$. Therefore $[(\lambda, \rho)^+]^* = (\lambda, \rho)^+$. Dual to Lemma 3.6, we have

Lemma 3.7. Let $(\lambda, \rho), (\lambda_1, \rho_1), (\lambda_2, \rho_2) \in \Omega(S)$. If S is a restriction semigroup, then:

(i) $(\lambda, \rho)(\lambda, \rho)^* = (\lambda, \rho);$

(ii)
$$(\lambda_1, \rho_1)^* (\lambda_2, \rho_2)^* = (\lambda_2, \rho_2)^* (\lambda_1, \rho_1)^*;$$

- (iii) $[(\lambda_1, \rho_1)(\lambda_2, \rho_2))^*]^* = (\lambda_1, \rho_1)^*(\lambda_2, \rho_2)^*;$
- (iv) $(\lambda_1, \rho_1)^*(\lambda_2, \rho_2) = (\lambda_2, \rho_2)[(\lambda_1, \rho_1)(\lambda_2, \rho_2)]^*;$
- (v) $[(\lambda, \rho)^*]^+ = (\lambda, \rho)^*.$

Lemmas 3.6 and 3.7 tell us that for a restriction semigroup S, $\Omega(S)$ is still a restriction semigroup. The following lemma gives a structure of the equivalence σ on $\Omega(S)$.

Lemma 3.8. Let $(\lambda_1, \rho_1), (\lambda_2, \rho_2) \in \Omega(S)$. If S is a proper restriction semigroup, then the following statements are equivalent:

- (i) $(\lambda_1, \rho_1)\sigma(\lambda_2, \rho_2);$
- (ii) For all $e \in P(S), (\lambda_1 e)\sigma(\lambda_2 e);$
- (iii) For all $e \in P(S)$, $(e\rho_1)\sigma(e\rho_1)$.

Proof. By symmetry, we need only to show (i) \Leftrightarrow (ii). If $(\lambda_1, \rho_1)\sigma(\lambda_2, \rho_2)$, then there exists $(\lambda^*, \rho^*) \in P(\Omega(S))$ such that $(\lambda_1, \rho_1)(\lambda^*, \rho^*) = (\lambda_2, \rho_2)(\lambda^*, \rho^*)$; that is, $(\lambda_1\lambda^*, \rho_1\rho^*) = (\lambda_2\lambda^*, \rho_2\rho^*)$. Then $\lambda_1\lambda^* = \lambda_2\lambda^*$ and for all $e \in P(S)$, $\lambda_1\lambda^*e = \lambda_2\lambda^*e$. Notice that $\lambda^*e \in P(S)$, we have $\lambda_1(\lambda^*e \cdot e) = \lambda_2(\lambda^*e \cdot e)$ and $\lambda_1e \cdot \lambda^*e = \lambda_2e \cdot \lambda^*e$. Therefore $(\lambda_1e)\sigma(\lambda_2e)$, as required.

Conversely, if for all $e \in P(S)$, $(\lambda_1 e)\sigma(\lambda_2 e)$, then there exists $f \in P(S)$ such that $f\lambda_1 e = f\lambda_2 e$, and so $\lambda_f \lambda_1 e = \lambda_f \lambda_2 e$. By Lemma 3.2, $\lambda_f \lambda_1 = \lambda_f \lambda_2$. Thus,

$$(\lambda_f \lambda_1, \rho_f \rho_1) = (\lambda_f \lambda_2, \rho_f \rho_2)$$

That is,

$$(\lambda_f, \rho_f)(\lambda_1, \rho_1) = (\lambda_f, \rho_f)(\lambda_2, \rho_2)$$

By the definition of σ , $(\lambda_1, \rho_1)\sigma(\lambda_2, \rho_2)$, as required.

Lemma 3.9. Let S be (proper; Clifford; E-reflexive) restriction semigroup. If T is a (2, 1, 1)-subsemigroup of S, then T is still a (proper; Clifford; E-reflexive) restriction semigroup.

Proof. Because T is a (2, 1, 1)-subsemigroup of S, we have that for all $x \in T$, $x^+, x^* \in P(T) \subseteq P(S)$. By definition, the cases for (proper; Clifford) restriction semigroups are obvious. It remains to verify the case for E-reflexive restriction semigroups. To the end, we let $e \in P(T)$, $x, y \in T$ and $exy \in P(T)$. Then $exy \in P(S)$ and as S is E-reflexive, we have $eyx \in P(S)$. So that $eyx = (eyx)^+ = e(yx)^+$ since $yx \in T$ giving $(yx)^+ \in T$. It results that T is an E-reflexive restriction semigroup.

Lemma 3.10. Let S be a restriction semigroup. If a is an element in S, then $(\lambda_a, \rho_a)^+ = (\lambda_{a^+}, \rho_{a^+})$ and $(\lambda_a, \rho_a)^* = (\lambda_{a^*}, \rho_{a^*})$. Moreover, $\Pi(S)$ is a (2, 1, 1)-subsemigroup of $\Omega(S)$.

Proof. For $a \in S$ and $e \in P(S)$, by Lemma 3.4, we have

$$\lambda_a^+ e = (e\rho_a)^+ = (ea)^+ = ea^+ = a^+ e = \lambda_{a^+} e,$$

so that by Lemma 3.2, $\lambda_a^+ = \lambda_{a^+}$. Further, by Lemma 3.3, $(\lambda_a, \rho_a)^+ = (\lambda_{a^+}, \rho_{a^+})$; similarly, $(\lambda_a, \rho_a)^* = (\lambda_{a^*}, \rho_{a^*})$. Now by definition, $\Pi(S)$ is a (2, 1, 1)-subsemigroup since $\Pi(S)$ is a subsemigroup of $\Omega(S)$. The proof is completed. \Box

Proof of Theorem 2.1: (2.1.1) The case for restriction semigroups. By Lemmas 3.6 and 3.10, and Corollary 3.7, we need only to verify the converse part. To the end, we assume that $\Omega(S)$ is a restriction semigroup and $\Pi(S)$ is a (2,1,1)-subsemigroup of $\Omega(S)$. By Lemma 3.1, it suffices to show that $\Pi(S)$ is a restriction semigroup. But $\Pi(S)$ is a (2,1,1)-subsemigroup of $\Omega(S)$, now by Lemma 3.9, $\Pi(S)$ is a restriction semigroup, as required.

(2.1.2) The case for proper restriction semigroups. Assume that S is a proper restriction semigroup. By Lemma 3.10, it suffices to verify that $\Omega(S)$ is a proper restriction semigroup. Let $(\lambda_1, \rho_1), (\lambda_2, \rho_2) \in \Omega(S)$ be such that $(\lambda_1, \rho_1)^* =$ $(\lambda_2, \rho_2)^*$ and $(\lambda_1, \rho_1)\sigma(\lambda_2, \rho_2)$. Then by Lemmas 3.4 and 3.8, $(\lambda_1 e)^* = (\lambda_2 e)^*$ and $(\lambda_1 e)\sigma(\lambda_2 e)$ for all $e \in P(S)$, thus $\lambda_1 e = \lambda_2 e$ since S is a proper restriction semigroup, so that by Lemma 3.2, $\lambda_1 = \lambda_2$. From Lemma 3.3, it follows that $(\lambda_1, \rho_1) = (\lambda_2, \rho_2)$. Obviously, $(\lambda_1, \rho_1)^+ = (\lambda_2, \rho_2)^+$. Together with $(\lambda_1, \rho_1)\sigma(\lambda_2, \rho_2)$, this shows that $(\lambda_1, \rho_1) = (\lambda_2, \rho_2)$. Therefore $\Omega(S)$ is a proper restriction semigroup.

For the converse, by Lemma 3.9, $\Pi(S)$ is a proper restriction semigroup, and by Lemma 3.1, S is a proper restriction semigroup. The proof is completed.

(2.1.3) The case for Clifford restriction semigroups. If $(\lambda_1, \rho_1) \in \Omega(S)$ and $(\lambda, \rho)^+ \in P(\Omega(S))$, then

$$\lambda_1 \lambda^+ e = \lambda_1 e \cdot \lambda^+ e = \lambda^+ (e \cdot \lambda_1 e) = \lambda^+ (\lambda_1 e \cdot e) = \lambda^+ \lambda_1 e$$

and so $\lambda_1 \lambda^+ = \lambda^+ \lambda_1$, it follows that $(\lambda, \rho)^+ (\lambda_1, \rho_1) = (\lambda_1, \rho_1)(\lambda, \rho)^+$. Therefore $\Omega(S)$ is a Clifford restriction semigroup. Together with Lemma 3.10, we have proved the direct part.

The converse part is immediate from Lemmas 3.1 and 3.9.

(2.1.4) The case for E-reflexive restriction semigroups. By Lemmas 3.1 and 3.9, it suffices to show the direct part. Now let S be an E-reflexive restriction semigroup. We notice that in [9, Theorem 4.6], the proof that $\Omega(S)$ is an E-reflexive type B semigroup used only the identities (2.1) and their duals. So, these arguments in [9, Theorem 4.6] have proved that $\Omega(S)$ is of the property that for all $e \in P(\Omega(S))$ and $x, y \in \Omega(S)$, $exy \in P(\Omega(S))$ implies that $eyx \in P(\Omega(S))$. So, $\Omega(S)$ is indeed an E-reflexive restriction semigroup.

Acknowledgements

The authors are thankful to the referees for their valuable comments. And this research is jointly supported by the National Natural Science Foundation of China (grant: 11761034; 11661042).

References

- J.E. Ault, The translational hull of an inverse semigroup, Glasgow Math. J., 14 (1973), 56-64.
- [2] J.B. Fountain and M.V. Lawson, The translational hull of an adequate semigroup, Semigroup Forum, 32 (1985), 79-86.
- [3] J.M. Howie, Fundamentals of semigroup theory, Oxford University Press, 1995.
- [4] M. Gould, An easy of Ponizovski's theorem, Semigroup Forum, 15 (1977), 181-182.
- [5] V. Gould, Notes on restriction semigroups and related structures, notes available at http: //www-users.york.ac.uk/ varg1.
- [6] X.J. Guo, Y.Q. Guo, The translational hull of a strongly right type-A semigroup, Sci. China (Ser. A), 43 (2000), 6-12.
- [7] X.J. Guo, K.P. Shum, On translational hulls of type-A semigroups, J. Algebra, 269 (2003), 240-249.
- [8] Z.B. Hu, X.J. Guo, The translational hulls of inverse wpp semigroups, Int. Math. Forum, 4 (2009), 1397-1404.
- [9] C.H. Li,L.M. Wang, On the translational hull of type B semigroup, Semigroup Forum, 82 (2011), 516-529.
- [10] M. Petrich, N.R. Reilly, Completely regular semigroups, John Wiley & Sons, INC., 1999.

Accepted: June 11, 2020