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Abstract. It is proved that if S is a weakly reductive semigroup, then S is a (proper;
Clifford; E-reflexive) restriction semigroup if and only if Ω(S) is a (proper; Clifford;
E-reflexive) restriction semigroup and Π(S) is a (2, 1, 1)-subsemigroup of Ω(S).
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1. Introduction

Let S be a semigroup. A mapping λ : S → S is called a left translation of S
if for any a, b ∈ S, λ(ab) = (λa)b. Similarly, a mapping ρ : S → S is a right
translation if for any a, b ∈ S, (ab)ρ = a(bρ). A left translation λ and a right
translation ρ of S are said to be linked if for any a, b ∈ S, a(λb) = (aρ)b. In
this case, we call the pair (λ, ρ) a bitranslation of S. The set Λ(S) of all left
translations and the set I(S) of all right translations of S form semigroups under
the composition of mappings. The translational hull of S is the subsemigroup
Ω(S) of Λ(S)× I(S) which consists of all bitranslations (λ, ρ). It is well known
that Ω(S) forms a submonoid of Λ(S)× I(S) under the multiplication:

(λ, ρ)(λ′, ρ′) = (λλ′, ρρ′),

where λλ′ and ρρ′ respectively represent the composition operation of λ′ , λ and
of ρ, ρ′. For any a ∈ S, we denote by λa [resp. ρa] the inner left [resp. right]
translation,which is defined as λa(x) = ax [resp. (x)ρa = xa]. It is easy to check
that the pair πa = (λa, ρa) is the inner bitranslation induced by a. It is easy
to check that the set Π(S) = {πa : a ∈ S} is a subsemigroup of Ω(S). Indeed,
Π(S) is still an ideal of Ω(S) (for details, see [10, p.30]).
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The translational hull of a semigroup, introduced by Petrich in 1970, plays
an important role in the theory of semigroups. There are many authors having
been researching translational hulls of semigroups. It was proved that if S is an
inverse semigroup (an adequate semigroup; an ample semigroup, respectively),
then so is Ω(S) (see [1, 2]). After then, there are several classes of semigroups
whose translational hulls were researched; for example, strongly right (left) type-
A semigroups (see [6]), E-reflexive type-A semigroups (see [7]), inverse wpp
semigroups (see [8]), type B semigroups (see [9]), etc.

Restriction semigroups become a larger class of semigroups, including some
important class of semigroups; such as, adequate semigroups, especially, inverse
semigroups, as its proper subclasses. So, it is a natural topic to study charac-
terizations of translational hulls of restriction semigroups. This is the main aim
of this note.

2. Results

To begin with, we recall several concepts.
A left restriction semigroup is defined to be an algebra of type (2, 1), more

precisely, an algebra S = (S, ·,+ ) where (S, ·) is a semigroup and + is a unary
operator such that the following identities are satisfied:

(2.1) x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

A right restriction semigroup is dually defined, that is, it is an algebra (S, ·, ∗)
satisfying the duals of the identities (2.1). If S = (S, ·,+, ∗) is an algebra of
type (2, 1, 1) where S = (S, ·,+) is a left restriction semigroup and S = (S, ·, ∗)
is a right restriction semigroup and the identities

(2.2) (x+)∗ = x+, (x∗)+ = x∗

hold, then it is called a restriction semigroup. By definition, the defining prop-
erties of a restriction semigroup are left-right dual. Therefore in the sequel dual
definitions and statements will not be explicitly formulated. Gould [5] pointed
out that in a restriction semigroup, the following identities are satisfied:

(2.3) (xy)∗ = (x∗y)∗, (xy)+ = (xy+)+.

Let S be a restriction semigroup. By (2.2), we have {x+ : x ∈ S} = {x∗ : x ∈
S}. This set is called the set of projections of S and denoted by P (S). Again
by (2.1) and its dual, P (S) is a (2, 1, 1)-subsemigroup of S which is indeed a
semilattice.

(i) If all projections of S are central, then S is called a Clifford restriction
semigroup.

(ii) If for all e ∈ P (S) and x, y ∈ S, exy ∈ P (S) implies eyx ∈ P (S), then we
call S an E-reflexive restriction semigroup.
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On S, define: for any a, b ∈ S

aσb ⇔ (∃e ∈ P (S))ea = eb;

⇔ (∃f ∈ P (S))af = bf.

Evidently, σ is an equivalence on S. A restriction semigroup S is proper provided
for any a, b ∈ S,

(i) if a+ = b+ and aσb, then a = b; and

(ii) if a∗ = b∗ and aσb, then a = b.

Among restriction semigroups, the notion of subalgebra is understood in type
(2, 1, 1), which is emphasised by using the expression (2, 1, 1)-subsemigroup.

Recall that a semigroup S is weakly reductive if for any a, b ∈ S, xa = xb
and ax = bx for all x ∈ S implies that a = b. We have that any restriction
semigroup is weakly reductive. Indeed, let a, b ∈ S and assume that xa = xb
and ax = bx for all x ∈ S, we have a = a+b, so that a+ = (a+b)+ = a+b+;
similarly, b+ = b+a+, thus a+ = b+ since P (S) is a semilattice, it follows that
a = a+b = b+b = b, as required.

We now describe our main result:

Theorem 2.1. If S is a weakly reductive semigroup, then S is a (proper; Clif-
ford; E-reflexive) restriction semigroup if and only if Ω(S) is a (proper; Clifford;
E-reflexive) restriction semigroup and Π(S) is a (2, 1, 1)-subsemigroup of Ω(S).

3. Proofs

To begin with, we prove the following lemma.

Lemma 3.1. If S is a restriction semigroup, then S ∼= Π(S).

Proof. It is obvious that the mapping π : S → Π(S); a 7→ (λa, ρa) is a surjective
homomorphism. In condition of weakly reductivity, π is still injective. Therefore
π is an isomorphism, as required.

The following lemma is well known; for example, see [2, 7].

Lemma 3.2. Let S be a restriction semigroup. Then the following statements
are equivalent:

(i) (∀e ∈ P (S)) λ1e = λ2e (respectively, eρ1 = eρ2);

(ii) λ1 = λ2 (respectively, ρ1 = ρ2).

Lemma 3.3. Let S be a restriction semigroup. If (λi, ρi) ∈ Ω(S) with i = 1, 2,
then the following statements are equivalent:

(i) (λ1, ρ1) = (λ2, ρ2);
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(ii) λ1 = λ2;

(iii) ρ1 = ρ2.

Proof. We need only to verify (ii)⇒(i) because (i)⇒(ii) is obvious, and (i)⇔
(ii) is dual to (i)⇔ (iii). Suppose that λ1 = λ2, then λ1e = λ2e for any e ∈ P (S),
and so eρ1 = (eρ1)(eρ1)

∗ = e[λ1(eρ1)
∗] = e[λ2(eρ1)

∗] = (eρ2)(eρ1)
∗; similarly,

eρ2 = (eρ1)(eρ2)
∗. Further,

eρ1 = (eρ2)(eρ1)
∗ = (eρ1)(eρ2)

∗(eρ1)
∗ = (eρ1)(eρ1)

∗(eρ2)
∗ = (eρ1)(eρ2)

∗ = eρ2.

It follows that for any a ∈ S, aρ1 = a(a∗ρ1) = a(a∗ρ2) = aρ2; that is, ρ1 =
ρ2.

Let S be a restriction semigroup. For (λ, ρ) ∈ Ω(S), we define λ+, λ∗, ρ+

and ρ∗ as follows:

λ+a = (a+ρ)+a; λ∗a = (λa+)∗a;

aρ+ = a(a∗ρ)+; aρ∗ = a(λa∗)∗.

Lemma 3.4. Let S be a restriction semigroup with the set of projections P (S).
Then for all e ∈ P (S) and a ∈ S,

(i) λ∗e = eρ∗ = (λe)∗;

(ii) λ+e = eρ+ = (eρ)+;

(iii) λ∗e, eρ∗, λ+e, eρ+ ∈ P (S);

(iv) (λa)∗ = (λ∗a)∗, (aρ)+ = (aρ+)+.

Proof. (i) By definition, λ∗e = (λe)∗e = e(λe)∗ = eρ∗, and notice that (λe)∗e =
((λe)e)∗ = (λe)∗, we have λ∗e = eρ∗ = (λe)∗.

(ii) Dual to (i).

(iii) Obvious.

(iv) Clearly, λa = λ(a+a) = (λa+)a, then (λa)∗ = [(λa+)a]∗ = [(λa+)∗a]∗ =
(λ∗a)∗. Thus, (λa)∗ = (λ∗a)∗, similarly, (aρ)+ = (aρ+)+.

Define (λ, ρ)+ = (λ+, ρ+) and (λ, ρ)∗ = (λ∗, ρ∗).

Similar to [2], we may verify the following lemma and we omit the detail.

Lemma 3.5. Let (λ, ρ) ∈ Ω(S). If S is a restriction semigroup, then (λ, ρ)+,
(λ, ρ)∗ ∈ Ω(S).

Lemma 3.6. Let (λ, ρ), (λ1, ρ1), (λ2, ρ2) ∈ Ω(S). If S is a restriction semi-
group, then:

(i) (λ, ρ)+(λ, ρ) = (λ, ρ);
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(ii) (λ1, ρ1)
+(λ2, ρ2)

+ = (λ2, ρ2)
+(λ1, ρ1)

+;

(iii) [(λ1, ρ1)
+(λ2, ρ2)]

+ = (λ1, ρ1)
+(λ2, ρ2)

+;

(iv) (λ1, ρ1)(λ2, ρ2)
+ = [(λ1, ρ1)(λ2, ρ2)]

+(λ1, ρ1);

(v) [(λ, ρ)+]∗ = (λ, ρ)+.

Proof. (i) Compute (λ, ρ)+(λ, ρ) = (λ+, ρ+)(λ, ρ) = (λ+λ, ρ+ρ). For any e ∈
P (S), we have eρ+ρ = (e · eρ+)ρ = (eρ+) · eρ = (eρ)+eρ = eρ, and so ρ+ρ = ρ.
Therefore, (λ, ρ)+(λ, ρ) = (λ, ρ).

(ii) Compute

λ+
1 λ

+
2 e = λ+

1 (λ
+
2 e · e) = (λ+

1 e) · (λ
+
2 e) = (λ+

2 e) · (λ
+
1 e) = λ+

2 λ
+
1 e.

Then, λ+
1 λ

+
2 = λ+

2 λ
+
1 . Together with

(λ1, ρ1)
+(λ2, ρ2)

+ = (λ+
1 λ

+
2 , ρ

+
1 ρ

+
2 )

and
(λ2, ρ2)

+(λ1, ρ1)
+ = (λ+

2 λ
+
1 , ρ

+
2 ρ

+
1 ),

we have (λ+
1 λ

+
2 , ρ

+
1 ρ

+
2 ) = (λ+

2 λ
+
1 , ρ

+
2 ρ

+
1 ) and result (ii).

(iii) Obviously, [(λ1, ρ1)
+(λ2, ρ2)]

+ = ((λ+
1 λ2)

+, (ρ+1 ρ2)
+). By computing,

we have

(λ+
1 λ2)

+e = (eρ+1 ρ2)
+ = [e(eρ1)

+ρ2]
+

= [(eρ1)
+ · eρ2]+ = (eρ1)

+ · (eρ2)+

= (λ+
1 e) · (λ

+
2 e) = λ+

1 (e · λ
+
2 e)

= (λ+
1 λ

+
2 )e.

Thus (λ+
1 λ2)

+ = (λ+
1 λ

+
2 ). Moreover,[(λ+

1 λ2)
+, (ρ+1 ρ2)

+] = (λ+
1 λ

+
2 , ρ

+
1 ρ

+
2 ).

(iv) Because (λ1, ρ1)(λ2, ρ2)
+ = (λ1λ

+
2 , ρ1ρ

+
2 ) and [(λ1, ρ1)(λ2, ρ2)]

+(λ1, ρ1) =
((λ1λ2)

+λ1, (ρ1ρ2)
+ρ1), we only need to show that ρ1ρ

+
2 = (ρ1ρ2)

+ρ1. For any
e ∈ P (S),

eρ1ρ
+
2 = (eρ1)(eρ1)

∗ρ+2
= (eρ1)[(eρ1)

∗ρ+2 ]

= [(eρ1)(eρ1)
∗ρ+2 ]

+(eρ1)

= [(eρ1)ρ
+
2 ]

+(eρ1) (by (aρ)+ = (aρ+)+)

= (eρ1ρ2)
+(eρ1) (by (eρ)+ = eρ+)

= e · e(ρ1ρ2)+ρ1
= e(ρ1ρ2)

+ρ1.

Thus, ρ1ρ
+
2 = (ρ1ρ2)

+ρ1 and results (iv).
(v) Note that (λ+)∗e = (λ+e)∗ = [(eρ)+]∗ = (eρ)+ = λ+e. We obtain that

(λ+)∗ = λ+. Therefore [(λ, ρ)+]∗ = (λ, ρ)+.
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Dual to Lemma 3.6, we have

Lemma 3.7. Let (λ, ρ), (λ1, ρ1), (λ2, ρ2) ∈ Ω(S). If S is a restriction semigroup,
then:

(i) (λ, ρ)(λ, ρ)∗ = (λ, ρ);

(ii) (λ1, ρ1)
∗(λ2, ρ2)

∗ = (λ2, ρ2)
∗(λ1, ρ1)

∗;

(iii) [(λ1, ρ1)(λ2, ρ2))
∗]∗ = (λ1, ρ1)

∗(λ2, ρ2)
∗;

(iv) (λ1, ρ1)
∗(λ2, ρ2) = (λ2, ρ2)[(λ1, ρ1)(λ2, ρ2)]

∗;

(v) [(λ, ρ)∗]+ = (λ, ρ)∗.

Lemmas 3.6 and 3.7 tell us that for a restriction semigroup S, Ω(S) is still a
restriction semigroup. The following lemma gives a structure of the equivalence
σ on Ω(S).

Lemma 3.8. Let (λ1, ρ1), (λ2, ρ2) ∈ Ω(S). If S is a proper restriction semi-
group, then the following statements are equivalent:

(i) (λ1, ρ1)σ(λ2, ρ2);

(ii) For all e ∈ P (S), (λ1e)σ(λ2e);

(iii) For all e ∈ P (S), (eρ1)σ(eρ1).

Proof. By symmetry, we need only to show (i)⇔(ii). If (λ1, ρ1)σ(λ2, ρ2), then
there exists (λ∗, ρ∗) ∈ P (Ω(S)) such that (λ1, ρ1)(λ

∗, ρ∗) = (λ2, ρ2)(λ
∗, ρ∗); that

is, (λ1λ
∗, ρ1ρ

∗) = (λ2λ
∗, ρ2ρ

∗). Then λ1λ
∗ = λ2λ

∗ and for all e ∈ P (S), λ1λ
∗e =

λ2λ
∗e. Notice that λ∗e ∈ P (S), we have λ1(λ

∗e · e) = λ2(λ
∗e · e) and λ1e ·λ∗e =

λ2e · λ∗e. Therefore (λ1e)σ(λ2e), as required.

Conversely, if for all e ∈ P (S), (λ1e)σ(λ2e), then there exists f ∈ P (S) such
that fλ1e = fλ2e, and so λfλ1e = λfλ2e. By Lemma 3.2, λfλ1 = λfλ2. Thus,

(λfλ1, ρfρ1) = (λfλ2, ρfρ2)

That is,

(λf , ρf )(λ1, ρ1) = (λf , ρf )(λ2, ρ2)

By the definition of σ, (λ1, ρ1)σ(λ2, ρ2), as required.

Lemma 3.9. Let S be (proper; Clifford; E-reflexive) restriction semigroup. If
T is a (2, 1, 1)-subsemigroup of S, then T is still a (proper; Clifford; E-reflexive)
restriction semigroup.
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Proof. Because T is a (2, 1, 1)-subsemigroup of S, we have that for all x ∈ T,
x+, x∗ ∈ P (T ) ⊆ P (S). By definition, the cases for (proper; Clifford) restriction
semigroups are obvious. It remains to verify the case for E-reflexive restriction
semigroups. To the end, we let e ∈ P (T ) , x, y ∈ T and exy ∈ P (T ). Then
exy ∈ P (S) and as S is E-reflexive, we have eyx ∈ P (S). So that eyx =
(eyx)+ = e(yx)+ since yx ∈ T giving (yx)+ ∈ T . It results that T is an
E-reflexive restriction semigroup.

Lemma 3.10. Let S be a restriction semigroup. If a is an element in S, then
(λa, ρa)

+ = (λa+ , ρa+) and (λa, ρa)
∗ = (λa∗ , ρa∗). Moreover, Π(S) is a (2, 1, 1)-

subsemigroup of Ω(S).

Proof. For a ∈ S and e ∈ P (S), by Lemma 3.4, we have

λ+
a e = (eρa)

+ = (ea)+ = ea+ = a+e = λa+e,

so that by Lemma 3.2, λ+
a = λa+ . Further, by Lemma 3.3, (λa, ρa)

+ =
(λa+ , ρa+); similarly, (λa, ρa)

∗ = (λa∗ , ρa∗). Now by definition, Π(S) is a (2, 1, 1)-
subsemigroup since Π(S) is a subsemigroup of Ω(S). The proof is completed.

Proof of Theorem 2.1: (2.1.1) The case for restriction semigroups. By Lem-
mas 3.6 and 3.10, and Corollary 3.7, we need only to verify the converse part.
To the end, we assume that Ω(S) is a restriction semigroup and Π(S) is a
(2, 1, 1)-subsemigroup of Ω(S). By Lemma 3.1, it suffices to show that Π(S) is
a restriction semigroup. But Π(S) is a (2, 1, 1)-subsemigroup of Ω(S), now by
Lemma 3.9, Π(S) is a restriction semigroup, as required.

(2.1.2) The case for proper restriction semigroups. Assume that S is a proper
restriction semigroup. By Lemma 3.10, it suffices to verify that Ω(S) is a proper
restriction semigroup. Let (λ1, ρ1), (λ2, ρ2) ∈ Ω(S) be such that (λ1, ρ1)

∗ =
(λ2, ρ2)

∗ and (λ1, ρ1)σ(λ2, ρ2). Then by Lemmas 3.4 and 3.8, (λ1e)
∗ = (λ2e)

∗

and (λ1e)σ(λ2e) for all e ∈ P (S), thus λ1e = λ2e since S is a proper restric-
tion semigroup, so that by Lemma 3.2, λ1 = λ2. From Lemma 3.3, it fol-
lows that (λ1, ρ1) = (λ2, ρ2). Obviously, (λ1, ρ1)

+ = (λ2, ρ2)
+. Together with

(λ1, ρ1)σ(λ2, ρ2), this shows that (λ1, ρ1) = (λ2, ρ2). Therefore Ω(S) is a proper
restriction semigroup.

For the converse, by Lemma 3.9, Π(S) is a proper restriction semigroup, and
by Lemma 3.1, S is a proper restriction semigroup. The proof is completed.

(2.1.3) The case for Clifford restriction semigroups. If (λ1, ρ1) ∈ Ω(S) and
(λ, ρ)+ ∈ P (Ω(S)), then

λ1λ
+e = λ1e · λ+e = λ+(e · λ1e) = λ+(λ1e · e) = λ+λ1e

and so λ1λ
+ = λ+λ1, it follows that (λ, ρ)

+(λ1, ρ1) = (λ1, ρ1)(λ, ρ)
+. Therefore

Ω(S) is a Clifford restriction semigroup. Together with Lemma 3.10, we have
proved the direct part.

The converse part is immediate from Lemmas 3.1 and 3.9.
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(2.1.4) The case for E-reflexive restriction semigroups. By Lemmas 3.1 and
3.9, it suffices to show the direct part. Now let S be an E-reflexive restriction
semigroup. We notice that in [9, Theorem 4.6], the proof that Ω(S) is an E-
reflexive type B semigroup used only the identities (2.1) and their duals. So,
these arguments in [9, Theorem 4.6] have proved that Ω(S) is of the property
that for all e ∈ P (Ω(S)) and x, y ∈ Ω(S), exy ∈ P (Ω(S)) implies that eyx ∈
P (Ω(S)). So, Ω(S) is indeed an E-reflexive restriction semigroup. �
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