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Abstract. In this paper, we introduce the algebraic structure hyperproduct MV-
algebras which is a generalization of product MV-algebras. In addition, we study the
logical entropy and the logical conditional entropy of partitions in a hyperproduct MV-
algebra and provide their properties.
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1. Introduction

The Shannon entropy is created by Claude Elwood Shannon, an American math-
ematician, who is well known as the founder of the information theory. This
theory is found in many applications in other areas, including statistical in-
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ference, cryptography, quantum computing and so on. The basic concept of
this theory is a measurable partition of a probability space which is a mea-
surable partition A = {A1, A2, . . . , An} with probabilities pi = P (Ai) where
i = 1, 2, . . . , n. The Shannon entropy of a measurable partition A is the number
hS(A) =

∑n
i=1 S(pi) where S : [0, 1] → [0,∞) is the Shannon entropy function

defined by

S(X) =

{
−x log x, if x > 0,

0, otherwise.

The idea of Shannon entropy was generalized in many way, e.g. Ellerman [7]
introduced the logical entropy of a measeurable partition A which is the number
hl(A) =

∑n
i=1 l(pi), where l : [0, 1] → [0, 1] is the logical entropy function defined

by l(x) = x(1 − x). Furthermore, he investigated the relations between logical
entropy and the Shannon entropy. The logical entropy plays an important role
as a mathematical device in many problem areas, including quantum theory,
information theory, computer science, statistics and many other fields. For in-
stant, Ebrahimzadeh introduced the notion of logical entropy of partitions and
logical conditional entropy of dynamical systems in quantum logics and proved
some of its properties in [4] and [5]. A year later, Ebrahimzadeh, Giski and
Markechová [6] defined the logical entropy and logical mutual information of
finite partitions and provided its properties. Moreover, they defined the logical
entropy of a dynamical system by using the concept of entropy of partitions
and proved that logical entropy of dynamical systems is invariant under iso-
morphisms. Markechová and Riečan defined logical entropy, logical conditional
entropy, logical mutual information and logical conditional mutual information
of fuzzy partitions of a fuzzy probability space, and studied logical entropy of
fuzzy dynamical systems in [8] and [9].

It is well known that the classical two-valued logic, there are only two possible
values (TRUE and FALSE), and it can be extended to n-valued logic where n
is a natural number greater than two. One of those is the  Luksiewicz many-
valued logic (cf. [15]). The notion of an MV-algebra (MV := many valued) was
originally presented by Chang [3]. The structure of this algebra was explored by
using an algebraic counterpart of the  Luksiewicz many-valued logic. MV-algebra
is mentioned by Montagna [13] and Riečan [21] that it is a generalization of the
fuzzy logic and the probability logic. Consequently, the study of MV-algebras
was created, for example, derivations of MV-Algebras was studied in [1] and
roughness in MV-algebras was studied in [18].

Definition 1.1 ([19]). An MV-algebra is an algebraic structure A = (A,⊕,
⊗,⊥, 0, 1) where ⊕ is a commutative and associative binary operation on a
nonempty set A, ⊗ is a binary operation on A, ⊥ is a unary operation on
A, 0 and 1 belong to A and for any a, b ∈ A satisfying the following conditions:

(1) a⊕ 0 = a,
(2) a⊕ 1 = 1,
(3) (a⊥)⊥ = a,
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(4) 0⊥ = 1,
(5) a⊕ a⊥ = 1,
(6) (a⊥ ⊕ b)⊥ ⊕ b = (a⊕ b⊥)⊥ ⊕ a,
(7) a⊗ b = (a⊥ ⊕ b⊥)⊥.

Example 1.1. Let A be the unit real interval [0, 1] and a, b ∈ A. Define
a ⊕ b = min{a + b, 1}, a ⊗ b = max{a + b − 1, 0} and a⊥ = 1 − a. Then the
system (A,⊕,⊗,⊥, 0, 1) is an MV-algebra.

Remind that an alelian group (G,+) which is also a partially ordered set such
that for all x, y, z ∈ G, x + z ≤ y + z whenever x ≤ y, is called a commutative
lattice order or simply called an abelian l-group if the partial order is a lattice,
i.e., for all a, b ∈ G, there exist a least upper bound and a greatest lower bound
of a and b which are denoted by a ∨ b and a ∧ b, respectively. An element u in
G is a strong unit of G if for all elements a of G, there is a natural number n
satisfying the condition a ≤ nu (cf. [2]).

In [14], Mundici generalized Chang’s results [3]. He proved that for every
MV-algebra A = (A,⊕,⊗,⊥, 0, u), there exists an abelian l-group L with a
strong unit u such that A ∼= A0(L, u) where A0(L, u) := ([0, u],⊕,⊗,⊥, 0, u)
and [0, u] denote the set of elements in L satisfying 0 ≤ a ≤ u. We say that
L is an abelian l-group corresponding to A. Hence, any MV-algebras can be
represented by an abelian l-group with a strong unit u.

Example 1.2. Let (L,+,≤) be an abelian l-group, u ∈ L be a strong unit of
L such that u > 0 where 0 is a neutral element of L, and [0, u] denote the set of
elements in L satisfying 0 ≤ a ≤ u. Define a⊥ = u−a, a⊕b = (a+b)∧u, a⊗b =
(a + b − u) ∨ 0 and 1 = u. Then the system A0(L, 1) := ([0, 1],⊕,⊗,⊥, 0, 1) is
an MV-algebra.

Obviously, a + b ≤ u implies a ⊕ b = a + b. In addition, the conditions
a ⊗ b = 0 and a + b ≤ u are equivalent. From now on, the operation ⊕ in
the definition is substituted by the group operation + in the abelian l-group L
corresponding to an MV-algebra A = (A,⊕,⊗,⊥, 0, 1) and u is a strong unit of
L.

Definition 1.2 ([17]). Let A = (A,⊕,⊗,⊥, 0, 1) be an MV-algebra. A partition
in A is an n-tuple a = (a1, a2, . . . , an) of elements of A with the property a1 +
a2 + . . . + an = u.

Consequently, the study of product MV-algebras was created and many re-
searchers have been working on it ever since.

Definition 1.3 ([20]). A product MV-algebra is an algebraic structure (A, ·) =
(A,⊕,⊗, ·,⊥, 0, 1) where A = (A,⊕,⊗,⊥, 0, 1) is an MV-algebra and · is a com-
mutative and associative binary operation on a nonempty set A satisfying the
following conditions:

(1) for every x ∈ A, u · x = x,
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(2) if x, y, z ∈ A such that x + y ≤ u, then (i) z · (x + y) = z · x + z · y and
(ii) z · x + z · y ≤ u.

A state defined on (A, ·) plays the role of a probability measure on A. It is
investigated in [21] by Riečan.

Definition 1.4 ([23]). A state on a product MV-algebra (A, ·) is a mapping
µ : A → [0, 1] satisfying the following properties:

(1) µ(u) = 1,

(2) if x, y ∈ A such that x + y ≤ u, then µ(x + y) = µ(x) + µ(y).

In 2018, Markechová, Mosapour and Ebrahimzadeh [11] studied the logical
entropy, the logical divergence, and the logical mutual information in a product
MV-algebra. In 2019, Markechová and Riečan [10] extended the study of logical
entropy of partitions in a product MV-algebra by introducing a general type of
entropy of a dynamical system in product MV-algebras. Besides, the entropy
of a partition and dynamical system in product MV-algebra was studied in [16]
and [22].

The concept of algebraic hyperstructures was first introduced by Marty [12]
in 1934 and it has been further studied in various aspects by many authors. Let
H be a nonempty set. A hyperoperation ◦ on H is a mapping ◦ : H×H → P ∗(H)
where P ∗(H) is the set of all nonempty subsets of H. The order pair (H, ◦) is
called a hypergroupoid. If A and B are two nonempty subsets of H and x ∈ H,
then we denote

A ◦B =
∪

a∈A,b∈B
a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

In this paper, we introduce the hyperproduct MV-algebras and generalize
some results in [11] by using the notion of the hyperproduct MV-algebra. The
study of the logical entropy and the logical conditional entropy of partitions in a
hyperproduct MV-algebra and their properties are provided in the next section.

2. Main results

Firstly, we define hyperproduct MV-algebras as follows:

Definition 2.1. A hyperproduct MV-algebra is an algebraic structure (A,⊕,
⊗, ◦,⊥, 0, 1) where A = (A,⊕,⊗,⊥, 0, 1) is an MV-algebra and ◦ is an asso-
ciative and commutative binary hyperoperation on A satisfying the following
properties:

(1) for every x, y ∈ A, x ◦ y is a finite set,

(2) for every x ∈ A, u ◦ x = {x},

(3) if x, y, z ∈ A such that x + y ≤ u, then

(i) z ◦ (x + y) = z ◦ x + z ◦ y and (ii) a ∈ z ◦ x + z ◦ y implies a ≤ u.
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Example 2.1. Let A = (A,⊕,⊗, ·,⊥, 0, 1) be a product MV-algebra. Define the
hyperoperation ◦ on A by x◦y = {x·y} for all x, y ∈ A. Then (A,⊕,⊗, ◦,⊥, 0, 1)
is a hyperproduct MV-algebra.

It can be seen that every product MV-algebra can be considered as a hy-
perproduct MV-algebra. This implies that hyperproduct MV-algebra is one of
generalizations of product MV-algebras. Thoughout the rest of this paper, let
(A, ◦) denote a hyperproduct MV-algebra (A,⊕,⊗, ◦,⊥, 0, 1).

2.1 Logical entropy of hyperproduct MV-algebras

Definition 2.2. Let α = (a1, a2, . . . , an) be a partition of a hyperproduct MV-
algebra (A, ◦) and µ : A → [0, 1] be a state on (A, ◦). The logical entropy of α
with respect to a state µ is defined by

hlµ(α) =
n∑

i=1

µ(ai)(1 − µ(ai)).

Example 2.2. Let µ : A → [0, 1] be a state on a hyperproduct MV-algebra
(A, ◦). The following statements hold true.

(1) If we put α1 = (u), then α1 is a partition of (A, ◦) and hlµ(α1) = 0.

(2) Let a ∈ A be such that µ(a) ∈ (0, 1). It is obvious that the order pair
α2 = (a, u− a) is a partition of (A, ◦) and hlµ(α2) = 2µ(a)(1 − µ(a)).

Proposition 2.1. Let α = (a1, a2, . . . , an) be a partition of a hyperproduct MV-
algebra (A, ◦). If µ : A → [0, 1] is a state on (A, ◦), then

hlµ(α) = 1 −
n∑

i=1

(µ(ai))
2.

Proof. Since
∑n

i=1 µ(ai) = µ(
∑n

i=1(ai)) = µ(u) = 1, we have

hlµ(α) =
n∑

i=1

µ(ai)(1 − µ(ai)) =
n∑

i=1

µ(ai) − (µ(ai))
2

=
n∑

i=1

µ(ai) −
n∑

i=1

(µ(ai))
2 = 1 −

n∑
i=1

(µ(ai))
2.

Proposition 2.2. Let α = (a1, a2, . . . , an) be a partition of a hyperproduct MV-
algebra (A, ◦). If µ : A → [0, 1] is a state on (A, ◦) and b ∈ A, then

µ(b) =

n∑
i=1

∑
x∈ai◦b

µ(x).
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Proof. Let b ∈ A. Then {b} = u◦b. Hence, µ(b) =
∑

y∈{b} µ(y) =
∑

y∈u◦b µ(y) =∑
y∈(

∑n
i ai)◦b µ(y) =

∑
y∈

∑n
i (ai◦b)

µ(y) =
∑n

i=1

∑
x∈ai◦b µ(x).

Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . bm) be partitions of (A, ◦). We
define the partition α ∨ β of (A, ◦) as follows:

α ∨ β = (x | x ∈ ai ◦ bj∃i ∈ {1, 2, . . . , n} and ∃j ∈ {1, 2, . . . ,m}).

Proposition 2.3. Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . bm) be partitions
of a hyperproduct MV-algebra (A, ◦). Then α ∨ β is a partition of (A, ◦).

Proof. Since {
∑n

i=1

∑m
j=1

∑
x∈ai◦bj x} =

∑n
i=1

∑m
j=1 ai ◦ bj = (

∑n
i=1 ai)◦

(
∑m

j=1 bj) = u◦u = {u}, we have
∑n

i=1

∑m
j=1

∑
x∈ai◦bj x = u which implies that

α ∨ β is a partition of (A, ◦).

In the system of all partitions of a hyperproduct MV-algebra (A, ◦), we
define the refinement partial order ≻ as follows:

Definition 2.3. Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bm) be partitions
of a hyperproduct MV-algebra (A, ◦). We say that β is a refinement of α which
is denoted by β ≻ α, if for each i = 1, 2, . . . , n, there exists a subset I(i) of a set
{1, 2, . . . ,m} such that ai =

∑
j∈I(i) bj.

Proposition 2.4. Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . bm) be partitions
of a hyperproduct MV-algebra (A, ◦). Then α ∨ β ≻ α.

Proof. By the definition of hyperproducts, {ai} = ai ◦ u = ai ◦ (
∑m

j=1 bj) =∑m
j=1 ai ◦ bj , for i = 1, 2, . . . , n. Hence, ai =

∑m
j=1

∑
x∈ai◦bj x, so α∨ β ≻ α.

2.2 Logical conditional entropy of partitions in hyperproduct
MV-algebras

Definition 2.4. Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bm) be partitions
of a hyperproduct MV-algebra (A, ◦) and µ : A → [0, 1] be a state on (A, ◦). The
logical conditional entropy of α given β is defined by

hlµ(α/β) =

n∑
i=1

m∑
j=1

∑
x∈ai◦bj

µ(x)(µ(bj) − µ(x)).

Proposition 2.5. If α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bm) are partitions
of a hyperproduct MV-algebra (A, ◦) and µ : A → [0, 1] is a state on (A, ◦), then

hlµ(α/β) =
m∑
j=1

(µ(bj))
2 −

n∑
i=1

m∑
j=1

∑
x∈ai◦bj

(µ(x))2.
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Proof. By Proposition 2.2, µ(bj) =
∑n

i=1

∑
x∈ai◦bj µ(x). Then

hlµ(α/β) =

n∑
i=1

m∑
j=1

∑
x∈ai◦bj

µ(x)(µ(bj) − µ(x))

=

n∑
i=1

m∑
j=1

∑
x∈ai◦bj

µ(x)µ(bj) − (µ(x))2

=

n∑
i=1

m∑
j=1

∑
x∈ai◦bj

µ(x)µ(bj) −
n∑

i=1

m∑
j=1

∑
x∈ai◦bj

(µ(x))2

=

m∑
j=1

(µ(bj))
2 −

n∑
i=1

m∑
j=1

∑
x∈ai◦bj

(µ(x))2.

Note that the logical conditional entropy hlµ(α/β) is always nonnegative. It

can be easily verified that hlµ(α/β) = hlµ(α) if the partition β = (u).

Theorem 2.1. Let α, β be two arbitrary partitions of a hyperproduct MV-algebra
(A, ◦) and µ : A → [0, 1] be a state on (A, ◦). Then

hlµ(α ∨ β) = hlµ(α) + hlµ(β/α).

Proof. Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bm) be partitions of (A, ◦).
By Proposition 2.1 and Proposition 2.5,

hlµ(α) + hlµ(β/α) = [1 −
n∑

i=1

(µ(ai))
2] + [

n∑
i=1

(µ(ai))
2 −

m∑
j=1

n∑
i=1

∑
x∈bj◦ai

(µ(x))2]

= 1 −
n∑

i=1

m∑
j=1

∑
x∈ai◦bj

(µ(x))2 = hlµ(α ∨ β).

Corollary 2.1. Let α1, α2, . . . , αn be partitions of a hyperproduct MV-algebra
(A, ◦). Then

hlµ(α1 ∨ α2 ∨ . . . ∨ αn) = hlµ(α1) +

n∑
i=2

hlµ(αi/(α1 ∨ α2 ∨ . . . ∨ αi−1)).
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Proof. By Theorem 2.1,

hlµ(α1 ∨ α2 ∨ . . . ∨ αn)

= hlµ(α1 ∨ α2 ∨ . . . ∨ αn−1) + hlµ(αn/(α1 ∨ α2 ∨ . . . ∨ αn−1))

= [hlµ(α1 ∨ α2 ∨ . . . ∨ αn−2) + hlµ(αn−1/(α1 ∨ α2 ∨ . . . ∨ αn−2))]

+ hlµ(αn/(α1 ∨ α2 ∨ . . . ∨ αn−1))

= hlµ(α1 ∨ α2 ∨ . . . ∨ αn−2) +
n∑

i=n−1

hlµ(αi/(α1 ∨ α2 ∨ . . . ∨ αi−1))

...

= hlµ(α1) +

n∑
i=2

hlµ(αi/(α1 ∨ α2 ∨ . . . ∨ αi−1)).

Theorem 2.2. For arbitrary partitions α, β, γ of a hyperproduct MV-algebra
(A, ◦) and a state µ : A → [0, 1] on (A, ◦),

hlµ((α ∨ β)/γ) = hlµ(α/γ) + hlµ(β/(α ∨ γ)).

Proof. Let α = (a1, a2, . . . , an), β = (b1, b2, . . . , bm) and γ = (c1, c2, . . . , cr) be
partitions of (A, ◦). By Proposition 2.5,

hlµ(α/γ) + hlµ(β/α ∨ γ) = [

r∑
k=1

(µ(ck))2 −
n∑

i=1

r∑
k=1

∑
x∈ai◦ck

(µ(x))2]

+ [

n∑
i=1

r∑
k=1

∑
x∈ai◦ck

(µ(x))2 −
m∑
j=1

n∑
i=1

r∑
k=1

∑
x∈bj◦ai◦ck

(µ(x))2]

=
r∑

k=1

(µ(ck))2 −
n∑

i=1

m∑
j=1

r∑
k=1

∑
x∈ai◦bj◦ck

(µ(x))2 = hlµ((α ∨ β)/γ).

Corollary 2.2. Let α1, α2, . . . , αn, γ be partitions of a hyperproduct MV-algebra
(A, ◦) and µ : A → [0, 1] be a state on (A, ◦). Then

hlµ((α1 ∨ α2 ∨ . . . ∨ αn)/γ) = hlµ(α1/γ) +

n∑
i=2

hlµ(αi/(α1 ∨ α2 ∨ . . . ∨ αi−1 ∨ γ)).

Theorem 2.3. For arbitrary partitions α, β of a hyperproduct MV-algebra (A, ◦)
and µ : A → [0, 1] is a state on (A, ◦), each of the following statements hold
true:

(i) hlµ(α/β) ≤ hlµ(α),
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(ii) hlµ(α ∨ β) ≤ hlµ(α) + hlµ(β).

Proof. Let α = (a1, a2, . . . an) and β = (b1, b2, . . . , bm) be partitions of (A, ◦).

(i) By Proposition 2.2, µ(ai) =
∑m

j=1

∑
x∈ai◦bj µ(x) for i = 1, 2, . . . , n. Then

we obtain that

m∑
j=1

∑
x∈ai◦bj

µ(x)(µ(bj) − µ(x)) ≤ [
m∑
j=1

∑
x∈ai◦bj

µ(x)][

m∑
j=1

∑
x∈ai◦bj

(µ(bj) − µ(x))]

= µ(ai)[
m∑
j=1

µ(bj) −
m∑
j=1

∑
x∈ai◦bj

µ(x)] = µ(ai)(1 − µ(ai)).

Hence, hlµ(α/β) =
∑n

i=1

∑m
j=1

∑
x∈ai◦bj µ(x)(µ(bj) − µ(x)) ≤

∑n
i=1 µ(ai)(1 −

µ(ai)) = hlµ(α).

(ii) By using Theorem 2.1 and (i).

Theorem 2.4. For arbitrary partitions α, β of a hyperproduct MV-algebra (A, ◦)
and a state µ : A → [0, 1] on (A, ◦), each of the following statements hold true:

(i) β ≻ α implies hlµ(β) ≥ hlµ(α),

(ii) hlµ(α ∨ β) ≥ max{hlµ(α), hlµ(β)}.

Proof. (i) Let α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bm) be partitions of
(A, ◦). By assumption, for each i = 1, 2, . . . , n, there exists a subset I(i) of a
set {1, 2, . . . ,m} such that ai =

∑
j∈I(i) bj for each i = 1, 2, . . . , n. Therefore,

hlµ(α) = 1−
∑n

i=1(µ(ai))
2 = 1−

∑n
i=1(µ(

∑
j∈I(i) bj))

2 = 1−
∑n

i=1(
∑

j∈I(i) µ(bj))
2

≤ 1 −
∑n

i=1

∑
j∈I(i)(µ(bj))

2 = 1 −
∑m

j=1(µ(bj))
2 = hlµ(β).

(ii) According to Proposition 2.4, it holds α ∨ β ≻ α, and α ∨ β ≻ β. Then
the property (ii) is a direct consequence of the property (i).
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[10] D. Markechová, B. Riečan, Logical entropy of dynamical systems in product
MV-algebras and general scheme, Advances in Difference Equations, (2019),
Article number 9.
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