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Prime-valent one-regular graphs of order 12p
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Abstract. A graph is one-regular and arc-transitive if its full automorphism group acts
on its arcs regularly and transitively, respectively. In this paper, we classify connected
one-regular graphs of prime valency and order 12p for each prime p. By analyzing the
structure of the full automorphism group of such graphs and using the classification of
arc-transitive graphs of order 2p, we prove that there is only one such graph, that is,
the cycle C12p with valency two and order 12p.
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1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and
undirected. For group-theoretic concepts or graph-theoretic terms not defined
here we refer the reader to [16, 19] or [1, 2], respectively. Let G be a permutation
group on a set Ω and v ∈ Ω. Denote by Gv the stabilizer of v in G, that is, the
subgroup of G fixing the point v. We say that G is semiregular on Ω if Gv = 1
for every v ∈ Ω and regular if G is transitive and semiregular.

For a graph X, denote by V (X), E(X) and Aut(X) its vertex set, its edge
set and its full automorphism group, respectively. A graph X is said to be G-
vertex-transitive if G ≤ Aut(X) acts transitively on V (X). X is simply called
vertex-transitive if it is Aut(X)-vertex-transitive. An s-arc in a graph is an
ordered (s + 1)-tuple (v0, v1, · · · , vs−1, vs) of vertices of the graph X such that
vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1.
In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup
G ≤ Aut(X), a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if
G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-
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transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive.
In particular, a (G, 1)-arc-transitive graph is called G-symmetric. A graph X
is simply called s-arc-transitive, s-regular or s-transitive if it is (Aut(X), s)-arc-
transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive, respectively.

We denote by Cn and Kn the cycle and the complete graph of order n,
respectively. Denote by D2n the dihedral group of order 2n. As we all known
that there is only one connected 2-valent graph of order n, that is, the cycle
Cn, which is 1-regular with full automorphism group D2n. Let p be a prime.
Classifying s-transitive and s-regular graphs has received considerable attention.
The classification of s-transitive graphs of order p and 2p was given in [4] and
[5], respectively. Wang [18] characterized the prime-valent s-transitive graphs
of order 4p. Feng and Kwak [10] classified cubic symmetric graphs of order 4p
or 6p. The classification of pentavalent and heptavalent s-transitive graphs of
order 12p was given in [14] and [11], respectively.

For 2-valent case, s-transitivity always means 1-regularity, and for cubic
case, s-transitivity always means s-regularity by Miller [9]. However, for the
other prime-valent case, this is not true, see for example [12] for pentavalent
case and [13] for heptavalent case. Thus, characterization and classification of
prime-valent s-regular graphs is very interesting and also reveals the s-regular
global and local actions of the permutation groups on s-arcs of such graphs.
In particular, 1-regular action is the most simple and typical situation. In this
paper, we classify prime-valent one-regular graph of order 12p for each prime p.

2. Preliminary results

Let X be a connected G-symmetric-transitive graph with G ≤ Aut(X), and
let N be a normal subgroup of G. The quotient graph XN of X relative to N
is defined as the graph with vertices the orbits of N on V (X) and with two
orbits adjacent if there is an edge in X between those two orbits. In view of [15,
Theorem 9], we have the following:

Proposition 2.1. Let X be a connected G-symmetric graph with G ≤ Aut(X)
and prime valency q ≥ 3, and let N be a normal subgroup of G. Then one of
the following holds:

(1) N is transitive on V (X);

(2) X is bipartite and N is transitive on each part of the bipartition;

(3) N has r ≥ 3 orbits on V (X), N acts semiregularly on V (X), the quotient
graph XN is a connected q-valent G/N -symmetric graph.

To extract a classification of connected prime-valent symmetric graphs of
order 2p for a prime p from Cheng and Oxley [5], we introduce the graphs
G(2p, q). Let V and V ′ be two disjoint copies of Zp, say V = {0, 1, · · · , p − 1}
and V ′ = {0′, 1′, · · · , (p − 1)′}. Let q be a positive integer dividing p − 1 and
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H(p, q) the unique subgroup of Z∗
p of order q. Define the graph G(2p, q) to have

vertex set V ∪ V ′ and edge set {xy′ | x− y ∈ H(p, q)}.

Proposition 2.2. Let X be a connected q-valent symmetric graph of order
2p with p, q primes. Then X is isomorphic to K2p with q = 2p − 1, Kp,p or
G(2p, q) with q

∣∣ (p − 1). Furthermore, if (p, q) ̸= (11, 5) then Aut(G(2p, q)) =
(Zp o Zq)o Z2; if (p, q) = (11, 5) then Aut(G(2p, q)) = PGL(2, 11).

From [8, pp.12-14] and [17, Theorem 2], we can deduce the non-abelian
simple groups whose orders have at most four different prime divisors.

Proposition 2.3. Let p and q be two odd primes, and let G be a non-abelian
simple group. If the order |G| divides 22·3·p·q, then G is isomorphic to A5,
PSL(2, 11) or PSL(2, 13). If the order |G| has at most three different prime
divisors, then G is called K3 simple group and isomorphic to one of the following
groups.

Table 1: Non-abelian simple {2, 3, p}-groups

Group Order Group Order

A5 22 · 3 · 5 PSL(2, 17) 24 · 32 · 17
A6 23 · 32 · 5 PSL(3, 3) 24 · 33 · 13
PSL(2, 7) 23 · 3 · 7 PSU(3, 3) 25 · 33 · 7
PSL(2, 8) 23 · 32 · 7 PSU(4, 2) 26 · 34 · 5

3. Classification

This section is devoted to classifying prime-valent one-regular graphs of order
12p for each prime p. Let q be a prime. In what follows, we always denote
by X the connected q-valent one-regular graph of order 12p. Set A = Aut(X),
v ∈ V (X). Then the vertex stabilizer Av

∼= Zq and hence |A| = 12pq. Clearly,
if q = 2, then X ∼= C12p with A ∼= D24p. Now we deal with the case q = 3.

Lemma 3.1. Suppose that q = 3. Then there is no cubic one-regular graph of
order 12p.

Proof. Since q = 3 and X has order 12p, by Checking the information in [7]
we have that there is no such graph for p ≤ 17. Thus, in what follows, we
may assume that p > 17. Since |A| = 22·32·p, we have that A is solvable by
Proposition 2.3. Let N be a minimal normal subgroup of A. Then N is solvable
and hence N ∼= Z2, Z2

2, Z3, Z2
3 or Zp. By Proposition 2.1, the quotient graph

XN is also a cubic symmetric graph. Note that there is no regular graph of odd
order and odd valency. Thus, N ̸∼= Z2

2.
Let N ∼= Z3. Then |XN | = 4p. Recall that p > 17. By [10, Theorem 6.2],

there is no cubic symmetric graph of order 4p for p > 17, a contradiction.
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Let N ∼= Z2
3. Then XN is a cubic symmetric graph of order 4p. By Propo-

sition 2.1, N is semiregular on V (X). This is impossible because Nv
∼= Z3.

Let N ∼= Zp. Then XN is a cubic symmetric graph of order 12. By [7] or
[6], there is no cubic symmetric graph of order 12, a contradiction.

Let N ∼= Z2. Then XN has order 6p and |A/N | = 2·32·p. Recall that p > 17.
By Proposition 2.3, A/N is also solvable and has a normal Sylow p-subgroup
M/N ∼= Zp. Let P be a Sylow p-subgroup of M . Then P ∼= Zp. Since p > 17,
by Sylow Theorem P is characteristic in M and hence normal in A. This implies
that A has a normal subgroup P ∼= Zp. By the above argument, we also have a
contradiction.

For q = 5 or 7, by [14, Theorem 4.1] and [11, Theorem 3.1], it is easy to see
that there is no new graph. By [6], there is no prime-valent one-regular graph of
order 24. Thus, we treat with the case p ≥ 3 and q > 7 by proving the following
lemma.

Lemma 3.2. Let p ≥ 3 and q > 7. Then there is no new graph.

Proof. Recall that |A| = 12pq, Av
∼= Zq, q > 7 and p ≥ 3. Let N be a minimal

normal subgroup of A. We divide the proof into the following two cases: p = q
and p ̸= q.

Case 1: Suppose that p = q. Then |A| = 12p2 and Av
∼= Zp with p > 7.

Since p > 7, we have that A is solvable by Proposition 2.3. Let P be a
Sylow p-subgroup of A. Then |P | = p2. Note that p = q > 7. Thus, by Sylow
Theorem, the number of Sylow p-subgroups of A is kp + 1 = |A : NA(P )| for
some integer k. Since |A| = 12p2, we have that (kp + 1)

∣∣ 12. Suppose that P
is not normal in A. Then kp + 1 > 1 and hence k ≥ 1. It is easy to see that
the only possible is p = 11 and k = 1. Since P is not normal in A, we have
that N ∼= Z2, Z2

2, Z3 or Zp. By Proposition 2.1, XN is a p-valent symmetric
graph. Note that there is no regular graph of odd order and odd valency. Thus,
N ̸∼= Z2

2. If N ∼= Z2 or Z3, then XN has order 6p or 4p and |A/N | = 6p2 or
4p2. However, p = 11 forces that A/N has a normal Sylow p-subgroup by Sylow
Theorem. It then follows that P is normal in A, contrary to our hypothesis. If
N ∼= Zp, then XN has order 12. Since p = 11, we have that XN

∼= K12 and
A/N . S12 with |A/N | = 12·11. However, by Magma [3], S12 has no transitive
subgroup of order 12·11, a contradiction.

Thus, P is normal in A. This means that P is the only Sylow p-subgroup
of A. Since Av

∼= Zp, we have that Av ≤ P , that is, Av = Pv ̸= 1. By
Proposition 2.1, P is transitive or has two orbits on V (X). Clearly, both are
impossible because |P | = p2 and |V (X)| = 12p.

Case 2: Suppose that p ̸= q. Then |A| = 12pq and Av
∼= Zq with q > 7.

Since |A| = 12pq and Av
∼= Zq, we have that Av is a Sylow q-subgroup of

A. It forces that the Sylow q-subgroups of A cannot be normal in A. If A is
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non-solvable, then A must contain a non-solvable composition factor H, which
is isomorphic to a non-abelian simple group. It forces that |H|

∣∣ 12pq and H is a
K3 or K4 simple group. By Proposition 2.3, H ∼= A5, PSL(2, 11) or PSL(2, 13).

Let H ∼= A5. Then p = 5 and A = HAv. Since |V (X)| = 12·5, we have
H is normal in A and regular on V (X). Thus, X is a normal Cayley graph on
the group H. If forces that Av . Aut(H) ∼= Aut(A5) ∼= S5. However, this is
impossible because |Av| = q ̸

∣∣ |S5|.
Let H ∼= PSL(2, 11) or PSL(2, 13). By the order of H, we can deduce that

A = H. An easy calculation implies that p = 5 and q = 11 for A ∼= PSL(2, 11),
p = 7 and q = 13 for A ∼= PSL(2, 13). By Magma [3], there is only one symmetric
graph admitting PSL(2, 11) and PSL(2, 13) as an arc-transitive automorphism
group, respectively. However, its full automorphism group is PGL(2, 11) for the
former, and PSL(2, 13) × Z2 for the latter. Both cases are not one-regular, a
contradiction.

Thus, we may assume A is solvable and hence N is also solvable. It follows
that N ∼= Z2, Z2

2, Z3 or Zp. Clearly, N ̸∼= Z2
2 because there is no regular graph

of odd order and odd valency.

Suppose that N ∼= Zp. Then XN is a q-valent symmetric graph of order
12 and |A/N | = 12·q. Recall that q > 7. By [6], XN

∼= K12, q = 11 and
A/N . S12. However, by Magma [3], S12 has no transitive subgroup of order
12·11, a contradiction.

Suppose that N ∼= Z3. Then XN is a q-valent symmetric graph of order 4p
and |A/N | = 4pq. Let M/N be a minimal normal subgroup of A/N . Then the
solvability of A implies that M/N is also solvable. Clearly, M/N ̸∼= Z2

2. Thus,
M/N ∼= Z2 or Zp.

Let M/N ∼= Zp. Then XM is a q-valent symmetric graph of order 4 with
q > 7, a contradiction.

Let M/N ∼= Z2. Then XM is a q-valent symmetric graph of order 2p. by
Proposition 2.2, XM

∼= K2p with q = (2p−1) or G(2p, q) with q
∣∣ (p−1). For the

former, A/M . S2p and |A/M | = 2pq. By Burnside’s Theorem, any 2-transitive
permutation group is almost simple or affine. Since A/M is solvable, we have
that A/M is affine. It forces that A/M must have a normal subgroup isomorphic
to Zp. A similar argument as above, we also have a contradiction. For the later,
A/M ∼= (ZpoZq)oZ2. It is easy to see that A/M has a normal Sylow p-subgroup
K/M . Note that q > 7 and q

∣∣ (p−1). It follows that p > 11. By Sylow Theorem,
K has a normal Sylow p-subgroup P and hence P is characteristic in K. This
forces that P is normal in A. With the similar argument as above, we deduce a
contradiction.

Suppose that N ∼= Z2. Then XN is a q-valent symmetric graph of order
6p and |A/N | = 6pq. Let M/N be a minimal normal subgroup of A/N . Then
solvability of A implies that M/N is also solvable. Similarly, M/N ̸∼= Z2 and
M/N ∼= Z3 or Zp.
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Let M/N ∼= Z3. Then M ∼= Z2 × Z3 and XM is a q-valent symmetric graph
of order 2p. By Proposition 2.2, XM

∼= K2p with q = (2p− 1) or G(2p, q) with
q
∣∣ (p− 1). The same argument as above, these two cases are impossible.

Let M/N ∼= Zp. Then M ∼= Z2 × Zp. Since p ≥ 5, we have that M has a
normal Sylow p-subgroup P . It then forces that P is normal in A and XP is a q-
valent symmetric graph of order 12. Again by [6], XP

∼= K12 and |A/P | = 12·11
with q = 11. However, by Magma [3], S12 has no transitive subgroup of order
12·11, a contradiction.

Combining the above arguments with the cases q = 2, 3, 5, 7, and by Lem-
mas 3.1-3.2, we have the following result.

Theorem 3.1. Let p, q be two primes and X a connected q-valent one-regular
graph of order 12p. Then X ∼= C12p with valency 2 and Aut(X) ∼= D24p.
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