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Abstract. In this paper, we deal with the uniqueness problem of homogeneous dif-
ferential polynomials of meromorphic functions sharing one small function a(z) with
weight l, where l is a non negative integer, with certain essential conditions and prove
some results which generalize some results due to Lahiri and Pal [9].

Keywords: meromorphic function, differential polynomial, weighted sharing, small
function, uniqueness.

1. Introduction and main results

Let f be a non-constant meromorphic function defined on the open complex
plane C. We assume that the reader is familiar with the standard defini-
tions and notations used in the Nevanlinna value distribution theory, such as
T (r, f),m(r, f), N(r, f) (see, [2, 16, 21]). By S(r, f) we denote any quantity
satisfying the condition S(r, f) = ◦(T (r, f)) as r → ∞ possibly outside an ex-
ceptional set of finite linear measure. A meromorphic function a is called a
small function with respect to f if either a ≡ ∞ or T (r, a) = S(r, f). We de-
note by S(f) the collection of all small functions with respect to f . Clearly
C ∪ {∞} ⊂ S(f) and S(f) is a field over the set of complex numbers. For
a ∈ C ∪ {∞} the quantities

δ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)

and

Θ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
.
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are respectively called the deficiency and ramification index of a for the function
f .

For any two nonconstant meromorphic functions f and g, and a ∈ S(f)∩S(g)
we say that f and g share a IM (CM) provided that f − a and g − a have the
same zeros ignoring (counting) multiplicities. If 1

f and 1
g share 0 IM (CM), we

say that f and g share ∞ IM (CM). Let f and g share 1 IM and let z0 be a zero
of f − 1 of multiplicity p and a zero of g − 1 of multiplicity q. By NL(r, 1; f)
we denote the reduced counting function of those 1-points of f and g where
p > q ≥ 1; NL(r, 1; g) is defined similarly.

In this paper, we use n to denote any nonnegative integer. Also ρ(f) =

lim supr→∞
log T (r,f)

log r is the order of f .

In 1976, M. Ozawa [12] proved the following theorem.

Theorem 1.1. Let f and g be two non-constant entire functions such that f ,
g share the value 1 CM. If δ(0, f) > 0 and 0 is a Picard exceptional value of g,
then either f ≡ g or f.g ≡ 1.

Now, a days the problem on sharing values between two nonconstant mero-
morphic functions f and g and their relationship is an interesting area of research
of uniqueness theory of functions.

In 1976, C. C. Yang [15] posted the following question:

Question 1.1. Suppose that f and g are two transcendental entire functions
such that f and g share the value 0 CM and f (1), g(1) share the value 1 CM.
What can be said about the relationship between f and g ?

Many authors, including Shibazaki [13], Yi [17, 18], Yang and Yi [19], Hua
[3], Mues and Reinders [11], Lahiri [5, 6] studied the question.

In [18] H. X. Yi gave an answer to the above question of C. C. Yang [15] and
proved the following result:

Theorem 1.2 ([18]). Let f and g be two nonconstant meromorphic functions.
If f , g share the value 0 CM, f (n), g(n) share the value 1 CM and 2δ(0, f) +
(n+ 2)Θ(∞, f) > n+ 3, then either f ≡ g or f (n).g(n) ≡ 1.

Later Yi [20] proved the following improvement of Theorem 1.2:

Theorem 1.3 ([20]). Let f and g be two nonconstant meromorphic functions
such that f (n), g(n) share the value 1 CM and f , g share the value ∞ CM. If

N(r, 0; f) +N(r, 0; g) + (n+ 2)N(r, f) < (λ+ o(1))T (r),

for r ∈ I, a set of infinite linear measure and λ is a positive constant < 1, then
f (n).g(n) ≡ 1 unless f ≡ g.

In 1997, Yi [22] proved some results which improved Theorems 1.2-1.3.
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Theorem 1.4 ([22]). Let f and g be two nonconstant meromorphic functions
such that f (n), g(n) share the value 1 CM. If

2δ(0, f) + (n+ 4)Θ(∞, f) > n+ 5 and

2δ(0, ; g) + (n+ 4)Θ(∞, g) > n+ 5,

then either f ≡ g or f (n).g(n) ≡ 1.

Theorem 1.5 ([22]). Let f and g be two nonconstant meromorphic functions
such that f (n), g(n) share the value 1 IM. If

5δ(0, f) + (4n+ 7)Θ(∞, f) > 4n+ 11 and

5δ(0, g) + (4n+ 7)Θ(∞, g) > 4n+ 11,

then either f ≡ g or f (n).g(n) ≡ 1.

In [10] Li and Li considered the problem of replacing the derivatives by
linear differential polynomials. Let f be a nonconstant meromorphic function.
An expression of the form

L(f) = f (n) + ak−1f
(n−1) + ....+ a0f,

where a0, a1, ..., an−1 are complex constants, is called a linear differential poly-
nomial generated by f .

Li and Li [10] proved that following theorems:

Theorem 1.6 ([10]). Let f and g be two nonconstant entire functions. Suppose
that f , g share the value 0 CM and L(f), L(g) share the value 1 CM and
δ(0, f) > 1

2 . If ρ(f) ̸= 1, then either f ≡ g or L(f).L(g) ≡ 1.

Theorem 1.7 ([10]). Let f and g be two nonconstant entire functions. Suppose
that f , g share the value 0 CM and L(f), L(g) share the value 1 IM and δ(0, f) >
4
5 . If ρ(f) ̸= 1, then either f ≡ g or L(f).L(g) ≡ 1.

Definition 1.1. Let m (≥ 1) be a positive integer, t (≥ 0) be an integer and let
f be a nonconstant meromorphic function. An expression of the form

(1) P [f ] =
m∑
k=1

ak

t∏
j=0

(
f (j)

)lkj
,

where ak ∈ S(f) for k = 1, 2, ......,m and lkj (1 ≤ k ≤ m; 0 ≤ j ≤ t) are
nonnegative integers and d =

∑t
j=0 lkj for k = 1, 2, ......,m, is called a homoge-

neous differential polynomial of degree d generated by f . Also we denote by Q
the quantity Q = max1≤k≤m

∑t
j=0 jlkj.
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Let f and g be two nonconstant meromorphic functions. When we consider
P [f ] and P [g] are nonconstant homogeneous differential polynomials of f and g
respectively, then we understand that the coefficients aj ∈ S(f) ∩ S(g).

Recently in 2017 Lahiri and Pal [9] extended the results of Li and Li [10] to
homogeneous differential polynomial and obtained the following theorem.

Theorem 1.8. Let f and g be two nonconstant meromorphic functions, a ( ̸≡
0,∞) ∈ S(f)∩S(g). Suppose P [f ] and P [g], as defined by (1) are nonconstant.
If P [f ] and P [g] share a IM and

min

{
5δ(0, f) +

4Q+ 7

d
Θ(∞, f), 5δ(0, g) +

4Q+ 7

d
Θ(∞, g)

}
>

4Q+ 4d+ 7

d
,(2)

then either P [f ] ≡ P [g] or P [f ].P [g] ≡ a2.

Remark 1.1. If P [f ] and P [g] share a CM, then the condition (2) of Theorem
1.8 can be replaced by the following

min

{
2δ(0, f) +

Q+ 4

d
Θ(∞, f), 2δ(0, g) +

Q+ 4

d
Θ(∞, g)

}
>

Q+ d+ 4

d
.

So, one may ask the following question which is the motivation of this paper.

Question 1.2. Keeping the conclusion of the above theorem intact is it possible
to relax the nature of sharing the function a between CM and IM ?

To investigate this problem we use a new notion of scaling between CM and
IM known as weighted sharing, which is introduced in [7, 8]. In the following
definition we explain this notion.

Definition 1.2 ([7, 8]). Let l be a nonnegative integer or infinity and a ∈ S(f).
We denote by El(a, f) the set of all zeros of f−a, where a zero of multiplicity m
is counted m times if m ≤ l and l + 1 times if m > l. If El(a, f) = El(a, g), we
say that f, g share the function a with weight l. We write f and g share (a, l) to
mean that f and g share the function a with weight l. Since El(a, f) = El(a, g)
implies that Es(a, f) = Es(a, g) for any integer s (0 ≤ s < l), if f, g share (a, l),
then f, g share (a, s), (0 ≤ s < l). Moreover, we note that f and g share the
function a IM or CM if and only if f and g share (a, 0) or (a,∞) respectively.

In this paper, we try to give a positive answer to question 1.2 and obtain
the following results.

Theorem 1.9. Let f and g be two nonconstant meromorphic functions, a ( ̸≡
0,∞) ∈ S(f)∩S(g). Suppose P [f ] and P [g], as defined by (1) are nonconstant.
If P [f ] and P [g] share (a, l) with one of the following conditions:
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(i) l = ∞ and

(3) min

{
2δ(0, f) +

Q+ 4

d
Θ(∞, f), 2δ(0, g) +

Q+ 4

d
Θ(∞, g)

}
>

Q+ d+ 4

d
,

(ii) 0 < l < ∞ and

min
{(2l + 1)d

l
δ(0, f) +

(
Q+ 1 + 2l

l
+Q+ 2

)
Θ(∞, f),

(2l + 1)d

l
δ(0, g) +

(
Q+ 1 + 2l

l
+Q+ 2

)
Θ(∞, g)

}
>

(l + 1)d+Q+ 1

l
+ 4 +Q,(4)

(iii) l = 0 and

(5) min

{
5δ(0, f)+

4Q+7

d
Θ(∞, f), 5δ(0, g)+

4Q+7

d
Θ(∞, g)

}
>
4Q+4d+7

d
,

then either P [f ] ≡ P [g] or P [f ].P [g] ≡ a2.

Theorem 1.10. Let f and g be two nonconstant meromorphic functions, a ( ̸≡
0,∞) ∈ S(f)∩S(g). Suppose P [f ] and P [g], as defined by (1) are nonconstant.
If f and g share the value 0 CM and ∞ IM and P [f ], P [g] share (a, l) with one
of the following conditions:

(i) l = ∞ and

2δ(0, f) +
Q+ 4

d
Θ(∞, f) >

Q+ d+ 4

d
,

(ii) 0 < l < ∞ and

(2l + 1)d

l
δ(0, f) +

(
Q+ 1 + 2l

l
+Q+ 2

)
Θ(∞, f) >

(l + 1)d+Q+ 1

l
+ 4 +Q,

(iii) l = 0 and

5δ(0, f) +
4Q+ 7

d
Θ(∞, f) >

4Q+ 4d+ 7

d
,

then either P [f ] ≡ P [g] or P [f ].P [g] ≡ a2.

Theorem 1.11. Let f and g be two nonconstant entire functions, a ( ̸≡ 0,∞) ∈
S(f) ∩ S(g). Suppose P [f ] and P [g] are nonconstant homogeneous differential
polynomials of degree d as defined by (1). If f and g share the value 0 CM, P [f ]
and P [g] share (a, l) with one of the following conditions:

(i) l = ∞ and

δ(0, f) >
1

2
,
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(ii) 0 < l < ∞ and

δ(0, f) >
l + 1

2l + 1
,

(iii) l = 0 and

δ(0, f) >
4

5
,

then either P [f ] ≡ P [g] or P [f ].P [g] ≡ a2.

Corollary 1.1. Let f and g be two nonconstant entire functions such that L(f)
and L(g) are nonconstant linear differential polynomials. If f and g share the
value 0 CM, L(f) and L(g) share (1, l) with one of following conditions:

(i) l = ∞ and

δ(0, f) >
1

2
,

(ii) 0 < l < ∞ and

δ(0, f) >
l + 1

2l + 1
,

(iii) l = 0 and

δ(0, f) >
4

5
,

then either f = g or L(f).L(g) ≡ 1 under any one of the following conditions:

(i) ρ(f) ̸= 1,

(ii) ρ(f) = 1 and (a) f has at most a finite number of zeros, or

(b) f has infinitely many zeros and f is of minimal type.

Suppose F and G share (1, l) and let z0 be a zero of F − 1 of multiplicity p

and a zero of G − 1 of multiplicity q. We define by N
L
(l+1(r, 1;F ) the reduced

counting function of those 1-points of F and G where p > q ≥ l+1; N
L
(l+1(r, 1;G)

is defined similarly. Note that for l = 0, we have N
L
(l+1(r, 1;F ) = NL(r, 1;F ).

Also denote by N
1)
E (r, 1;F ) the counting function of those 1-points of F and G

where p = q = 1 and by N
(2
E (r, 1;F ) the counting function of those 1-points of

F and G where p = q ≥ 2, where each such zero is counted only once.

2. Lemmas

Let F and G be two nonconstant meromorphic functions. We shall define by H
the following function

H =

(
F (2)

F (1)
− 2

F (1)

F − 1

)
−

(
G(2)

G(1)
− 2

G(1)

G− 1

)
.
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Lemma 2.1 ([9]). Let f be a nonconstant meromorphic function and P [f ] be
defined as (1). Then

(i)T (r, P ) ≤ dT (r, f) +QN(r,∞; f) + S(r, f).

(ii)N(r, 0;P ) ≤ T (r, P )− dT (r, f) + dN(r, 0; f) + S(r, f)

≤ QN(r,∞; f) + dN(r, 0; f) + S(r, f).

Lemma 2.2 ([1]). Let F and G be two nonconstant meromorphic functions
sharing (1, l) and H ̸≡ 0. Then

N(r,∞,H) ≤ N(r,∞;F ) +N(r,∞;G) +N (2(r, 0;G)

+ N (2(r, 0;F ) +NL(r, 1;F )

+ NL(r, 1;G)+N0(r, 0;F
(1))+N0(r, 0;G

(1)) + S(r, F ) + S(r,G).

Lemma 2.3 ([4]). Let f be a transcendental meromorphic function and P [f ] be
a homogeneous differential polynomial generated by f of degree d ≥ 1. Then

dT (r, f) ≤ N(r,∞; f) +N(r, 1;F ) +N(r, 0; fd)−N0(r, 0; (P (f))(1)) + S(r, f),

where N0(r, 0; (P [f ])(1)) denotes the counting function corresponding to the zeros
of (P [f ])(1) which are not the zeros of P [f ] and P [f ]− 1.

Lemma 2.4 ([14]). Let f be a nonconstant meromorphic function and let

p(f) = anf
n + an−1f

n−1 + ...+ a1f + a0,

where ai ∈ S(f) for i = 0, 1, ... n, an ( ̸= 0) be a polynomial of degree n. Then
T (r, p(f)) = nT (r, f) + S(r, f).

Lemma 2.5. If F and G be two nonconstant meromorphic functions sharing
(1, l) where l is positive integer and H ̸≡ 0. Then

T (r, F ) ≤ (1 +
1

l
)N(r, 0;F ) + (2 +

1

l
)N(r,∞;F ) +N(r, 0;G) + 2N(r,∞;G)

+ S(r, F ) + S(r,G).

Proof. Suppose H ̸≡ 0. Then by a simple calculation we see that

N
1)
E (r, 1;F ) ≤ N(r, 0;H) ≤ T (r,H) +O(1)

≤ N(r,∞;H) + S(r, F ) + S(r,G).(6)

Since F and G share (1, l), we have from Lemma 2.2

N(r,∞;H) ≤ N(r,∞;F ) +N(r,∞;G) +N
L
(l+1(r, 1;F )

+N
L
(l+1(r, 1;G) +N (2(r, 0;F )(7)

+N (2(r, 0;G) +N0(r, 0;F
(1)) +N0(r, 0;G

(1)) + S(r, F ) + S(r,G).
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By Nevanlinna’s Second Fundamental Theorem we have

T (r, F ) + T (r,G) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +N(r, 0;G)

+ N(r,∞;G) +N(r, 1;G)−N0(r, 0;F
(1))

− N0(r, 0;G
(1)) + S(r, F ) + S(r,G),(8)

where N0(r, 0;F
(1)) denotes the counting function corresponding to the zeros of

F (1) which are not the zeros of F and F − 1. Similarly we define N0(r, 0;G
(1)).

Since F and G share (1, l), using (6) and (7) we have

N(r, 1;F ) +N(r, 1;G)

= N
1)
E (r, 1;F ) +N

L
(l+1(r, 1;F ) +N

L
(l+1(r, 1;G)

+N
(2
E (r, 1;F ) +N(r, 1;G)

≤ N(r,∞;F ) +N(r,∞;G) +N (2(r, 0;F ) +N (2(r, 0;G)

+ 2N
L
(l+1(r, 1;F ) + 2N

L
(l+1(r, 1;G) +N

(2
E (r, 1;F ) +N(r, 1;G)

+N0(r, 0;F
(1)) +N0(r, 0;G

(1)) + S(r, F ) + S(r,G)(9)

≤ N(r,∞;F ) +N(r,∞;G) +N (2(r, 0;F ) +N (2(r, 0;G)

+N
L
(l+1(r, 1;F ) +N

L
(l+1(r, 1;G) +N(r, 1;G) +N0(r, 0;F

(1))

+N0(r, 0;G
(1)) + S(r, F ) + S(r,G)

≤ N(r,∞;F ) +N(r,∞;G) +N (2(r, 0;F ) +N (2(r, 0;G)

+N
L
(l+1(r, 1;F ) +N

L
(l+1(r, 1;G) + T (r,G) +N0(r, 0;F

(1))

+N0(r, 0;G
(1)) + S(r, F ) + S(r,G).

Also, we have

N
L
(l+1(r, 1;F ) +N

L
(l+1(r, 1;G) ≤ 1

l
N(r, 0;F (1)) + S(r, F )

≤ 1

l
N(r, 0;F ) +

1

l
N(r,∞;F ) + S(r, F ).(10)

Now, using (9), (10) in (8) we get

T (r, F ) + T (r,G) ≤ 2N(r,∞;F ) + 2N(r,∞;G) +N(r, 0;F ) +N (2(r, 0;F )

+ N(r, 0;G) +N (2(r, 0;G) +
1

l
N(r, 0;F ) +

1

l
N(r,∞;F )

+ T (r,G) + S(r, F ) + S(r,G).

Since N(r, 0;F ) +N (2(r, 0;F ) ≤ N(r, 0;F ), we have

T (r, F ) ≤ (1 +
1

l
)N(r, 0;F ) + (2 +

1

l
)N(r,∞;F ) +N(r, 0;G) + 2N(r,∞;G)

+ S(r, F ) + S(r,G).



SOME RESULTS ON UNIQUENESS OF HOMOGENEOUS DIFFERENTIAL ... 267

3. Proof of main theorems

Proof of Theorem 1.9:

Proof. Let

F =
P [f ]

a
, G =

P [g]

a
.

Since P [f ] and P [g] share (a, l), it follows that F , G share (1, l) except at the
zeros and poles of a.

Now, we consider the following cases:
Case 1: l = ∞. This case follows from Remark 1.1.
Case 2: 0 < l < ∞.

Suppose H ̸≡ 0. From Lemma 2.5 and Lemma 2.1, we get

T (r, F ) ≤ (1 +
1

l
)N(r, 0;F ) + (2 +

1

l
)N(r,∞;F ) +N(r, 0;G)

+ 2N(r,∞;G) + S(r, F ) + S(r,G).

⇒ dT (r, f) ≤ Q+ 1 + 2l

l
N(r,∞; f) + (2 +Q)N(r,∞; g)

+
(l + 1)d

l
N(r, 0; f) + dN(r, 0; g) + S(r, f) + S(r, g).(11)

Similarly,

dT (r, g) ≤ Q+ 1 + 2l

l
N(r,∞; g) + (2 +Q)N(r,∞; f) +

(l + 1)d

l
N(r, 0; g)

+ dN(r, 0; f) + S(r, f) + S(r, g).(12)

Combining (11) and (12), we get

dT (r, f) + dT (r, g) ≤ (
Q+ 1 + 2l

l
+Q+ 2)N(r,∞; f) +

(2l + 1)d

l
N(r, 0; f)

+ (
Q+ 1 + 2l

l
+Q+ 2)N(r,∞; g) +

(2l + 1)d

l
N(r, 0; g)

+ S(r, f) + S(r, g).

{
(2l + 1)d

l
δ(0, f) + (

Q+ 1 + 2l

l
+Q+ 2)Θ(∞, f)

−(l + 1)d+Q+ 1

l
− 4−Q

}
T (r, f)

+

{
(2l + 1)d

l
δ(0, g) + (

Q+ 1 + 2l

l
+Q+ 2)Θ(∞, g)

−(l + 1)d+Q+ 1

l
− 4−Q

}
T (r, g)

≤ S(r, f) + S(r, g),
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which contradict (4). Therefore H ≡ 0 and so integrating twice we get

1

G− 1
=

A

F − 1
+B,

where A ( ̸= 0) and B are constants.
Thus,

(13) G =
(B + 1)F + (A−B − 1)

BF + (A−B)

and

(14) F =
(B −A)G+ (A−B − 1)

BG− (B + 1)
.

Next, we consider following three subcases:
Subcase 2.1: B ̸= 0,−1. Then, from (14) we have

N(r,
B + 1

B
;G) = N(r,∞;F ).

By Nevanlinna Second Fundamental Theorem and (ii) of Lemma 2.1 we get

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N(r,
B + 1

B
;G) + S(r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r,∞;F ) + S(r,G)

≤ N(r,∞;G) + T (r,G)− dT (r, g)+dN(r, 0; g)+N(r,∞;F )+S(r,G),

(15) ⇒ dT (r, g) ≤ N(r,∞; f) + dN(r, 0; g) +N(r,∞; g) + S(r, f) + S(r, g).

If A−B − 1 ̸= 0, then it follows from (13) that

N(r,
−A+B + 1

B + 1
;F ) = N(r, 0;G).

Using Nevanlinna Second Fundamental Theorem and Lemma 2.1

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r,
−A+B + 1

B + 1
;F ) + S(r, F ),

⇒ dT (r, f) ≤ N(r,∞; f) + dN(r, 0; f)

+QN(r,∞; g) + dN(r, 0; g) + S(r, f) + S(r, g).(16)

Adding (15) and (16), we obtain

T (r, f) + T (r, g) ≤ N(r, 0; f) +
2

d
N(r,∞; f) + 2N(r, 0; g)

+
Q+ 1

d
N(r,∞; g) + S(r, f) + S(r, g),
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which contradicts (4).
Therefore A−B − 1 = 0. Then from (13), it follows that

N(r,− 1

B
;F ) = N(r,∞;G).

Again by Nevanlinna Second Fundamental Theorem, we have

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r,− 1

B
;F ) + S(r, F )

≤ N(r,∞; f) + T (r, F )− dT (r, f) + dN(r, 0; f)

+N(r,∞; g) + S(r, f) + S(r, g)

(17) ⇒ dT (r, f) ≤ N(r,∞; f) + dN(r, 0; f) +N(r,∞; g) + S(r, f) + S(r, g).

Combining (15) and (17), we get

T (r, f) + T (r, g) ≤ N(r, 0; f) +
2

d
N(r,∞; f) +N(r, 0; g)

+
2

d
N(r,∞; g) + S(r, f) + S(r, g),

which violates (4).
Subcase 2.2: B = −1. Then from (13) and (14), we get

G =
A

A+ 1− F

and

F =
(1 +A)G−A

G
.

If A+ 1 ̸= 0, then
N(r,A+ 1;F ) = N(r,∞;G),

N(r,
A

A+ 1
;G) = N(r, 0;F ).

By similar argument as in Subcase 2.1 we arrive at a contradiction.
Therefore, A+ 1 = 0, then

FG = 1

⇒ P [f ].P [g] ≡ a2.

Subcase 2.3: B = 0. Then (13) and (14) gives G = F+A−1
A and F = AG + 1 −

A. If A − 1 ̸= 0, N(r, 1 − A;F ) = N(r, 0;G) and N(r, A−1
A ;G) = N(r, 0;F ).

Proceeding similarly as in Subcase 2.1 we get a contradiction.
Therefore A− 1 = 0 then F ≡ G i.e.,

P [f ] ≡ P [g].

Case 3: l = 0. The conclusion follows from Theorem 1.1 of [9].
This complete the proof.
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Proof of Theorem 1.10:

Proof. Let

F =
P [f ]

a
, G =

P [g]

a
.

Since P [f ] and P [g] share (a, l), it follows that F , G share (1, l) except at the
zeros and poles of a. By Lemma 2.1 and Lemma 2.3, we get

dT (r, f) ≤ N(r,∞; f) +N(r, 1;F ) +N(r, 0; fd) + S(r, f)

= N(r,∞; g) +N(r, 1;G) +N(r, 0; gd) + S(r, f)

≤ (1 +Q+ 2d)T (r, g) + S(r, f) + S(r, g).(18)

Similarly,

(19) dT (r, g) ≤ (1 +Q+ 2d)T (r, f) + S(r, f) + S(r, g).

From (18) and (19) we get S(r, f) = S(r, g). The rest of the proof is similar to
that of Theorem 1.9.

Proof of the Corollary 1.1:

Proof. By Theorem 1.11 we get either L(f) ≡ L(g) or L(f).L(g) ≡ 1. Let
L(f) ≡ L(g) so that L(f − g) ≡ 0. Proceeding similarly as in the proof of
Corollary 1.2 of [9], we obtain f = g.
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