Some results on uniqueness of homogeneous differential polynomials of meromorphic functions

Dilip Chandra Pramanik*

Department of Mathematics University of North Bengal Raja Rammohunpur, Darjeeling-734013 West Bengal, India dcpramanik.nbu2012@gmail.com

Jayanta Roy

Department of Mathematics, DDE University of North Bengal Raja Rammohunpur, Darjeeling-734013 West Bengal, India jayantaroy983269@yahoo.com

Abstract. In this paper, we deal with the uniqueness problem of homogeneous differential polynomials of meromorphic functions sharing one small function a(z) with weight l, where l is a non negative integer, with certain essential conditions and prove some results which generalize some results due to Lahiri and Pal [9].

Keywords: meromorphic function, differential polynomial, weighted sharing, small function, uniqueness.

1. Introduction and main results

Let f be a non-constant meromorphic function defined on the open complex plane \mathbb{C} . We assume that the reader is familiar with the standard definitions and notations used in the Nevanlinna value distribution theory, such as T(r, f), m(r, f), N(r, f) (see, [2, 16, 21]). By S(r, f) we denote any quantity satisfying the condition $S(r, f) = \circ(T(r, f))$ as $r \to \infty$ possibly outside an exceptional set of finite linear measure. A meromorphic function a is called a small function with respect to f if either $a \equiv \infty$ or T(r, a) = S(r, f). We denote by S(f) the collection of all small functions with respect to f. Clearly $\mathbb{C} \cup \{\infty\} \subset S(f)$ and S(f) is a field over the set of complex numbers. For $a \in \mathbb{C} \cup \{\infty\}$ the quantities

$$\delta(a, f) = 1 - \limsup_{r \to \infty} \frac{N(r, a; f)}{T(r, f)}$$

and

$$\Theta(a, f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, a; f)}{T(r, f)}.$$

^{*.} Corresponding author

are respectively called the deficiency and ramification index of a for the function f.

For any two nonconstant meromorphic functions f and g, and $a \in S(f) \cap S(g)$ we say that f and g share a IM (CM) provided that f - a and g - a have the same zeros ignoring (counting) multiplicities. If $\frac{1}{f}$ and $\frac{1}{g}$ share 0 IM (CM), we say that f and g share ∞ IM (CM). Let f and g share 1 IM and let z_0 be a zero of f - 1 of multiplicity p and a zero of g - 1 of multiplicity q. By $\overline{N}_L(r, 1; f)$ we denote the reduced counting function of those 1-points of f and g where $p > q \ge 1$; $\overline{N}_L(r, 1; g)$ is defined similarly.

In this paper, we use *n* to denote any nonnegative integer. Also $\rho(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}$ is the order of *f*.

In 1976, M. Ozawa [12] proved the following theorem.

Theorem 1.1. Let f and g be two non-constant entire functions such that f, g share the value 1 CM. If $\delta(0, f) > 0$ and 0 is a Picard exceptional value of g, then either $f \equiv g$ or $f.g \equiv 1$.

Now, a days the problem on sharing values between two nonconstant meromorphic functions f and g and their relationship is an interesting area of research of uniqueness theory of functions.

In 1976, C. C. Yang [15] posted the following question:

Question 1.1. Suppose that f and g are two transcendental entire functions such that f and g share the value 0 CM and $f^{(1)}$, $g^{(1)}$ share the value 1 CM. What can be said about the relationship between f and g?

Many authors, including Shibazaki [13], Yi [17, 18], Yang and Yi [19], Hua [3], Mues and Reinders [11], Lahiri [5, 6] studied the question.

In [18] H. X. Yi gave an answer to the above question of C. C. Yang [15] and proved the following result:

Theorem 1.2 ([18]). Let f and g be two nonconstant meromorphic functions. If f, g share the value 0 CM, $f^{(n)}$, $g^{(n)}$ share the value 1 CM and $2\delta(0, f) + (n+2)\Theta(\infty, f) > n+3$, then either $f \equiv g$ or $f^{(n)}.g^{(n)} \equiv 1$.

Later Yi [20] proved the following improvement of Theorem 1.2:

Theorem 1.3 ([20]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$, $g^{(n)}$ share the value 1 CM and f, g share the value ∞ CM. If

 $N(r, 0; f) + N(r, 0; g) + (n+2)\overline{N}(r, f) < (\lambda + o(1))T(r),$

for $r \in I$, a set of infinite linear measure and λ is a positive constant < 1, then $f^{(n)}.g^{(n)} \equiv 1$ unless $f \equiv g$.

In 1997, Yi [22] proved some results which improved Theorems 1.2-1.3.

Theorem 1.4 ([22]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$, $g^{(n)}$ share the value 1 CM. If

$$2\delta(0, f) + (n+4)\Theta(\infty, f) > n+5$$
 and

$$2\delta(0,;g) + (n+4)\Theta(\infty,g) > n+5,$$

then either $f \equiv g$ or $f^{(n)}.g^{(n)} \equiv 1$.

Theorem 1.5 ([22]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$, $g^{(n)}$ share the value 1 IM. If

$$5\delta(0, f) + (4n+7)\Theta(\infty, f) > 4n+11$$
 and

$$5\delta(0,g) + (4n+7)\Theta(\infty,g) > 4n+11,$$

then either $f \equiv g$ or $f^{(n)}.g^{(n)} \equiv 1$.

In [10] Li and Li considered the problem of replacing the derivatives by linear differential polynomials. Let f be a nonconstant meromorphic function. An expression of the form

$$L(f) = f^{(n)} + a_{k-1}f^{(n-1)} + \dots + a_0f,$$

where $a_0, a_1, ..., a_{n-1}$ are complex constants, is called a linear differential polynomial generated by f.

Li and Li [10] proved that following theorems:

Theorem 1.6 ([10]). Let f and g be two nonconstant entire functions. Suppose that f, g share the value 0 CM and L(f), L(g) share the value 1 CM and $\delta(0, f) > \frac{1}{2}$. If $\rho(f) \neq 1$, then either $f \equiv g$ or $L(f).L(g) \equiv 1$.

Theorem 1.7 ([10]). Let f and g be two nonconstant entire functions. Suppose that f, g share the value 0 CM and L(f), L(g) share the value 1 IM and $\delta(0, f) > \frac{4}{5}$. If $\rho(f) \neq 1$, then either $f \equiv g$ or $L(f).L(g) \equiv 1$.

Definition 1.1. Let $m (\geq 1)$ be a positive integer, $t (\geq 0)$ be an integer and let f be a nonconstant meromorphic function. An expression of the form

(1)
$$P[f] = \sum_{k=1}^{m} a_k \prod_{j=0}^{t} \left(f^{(j)} \right)^{l_{kj}},$$

where $a_k \in S(f)$ for k = 1, 2, ..., m and l_{kj} $(1 \le k \le m; 0 \le j \le t)$ are nonnegative integers and $d = \sum_{j=0}^{t} l_{kj}$ for k = 1, 2, ..., m, is called a homogeneous differential polynomial of degree d generated by f. Also we denote by Qthe quantity $Q = \max_{1 \le k \le m} \sum_{j=0}^{t} j l_{kj}$. Let f and g be two nonconstant meromorphic functions. When we consider P[f] and P[g] are nonconstant homogeneous differential polynomials of f and g respectively, then we understand that the coefficients $a_i \in S(f) \cap S(g)$.

Recently in 2017 Lahiri and Pal [9] extended the results of Li and Li [10] to homogeneous differential polynomial and obtained the following theorem.

Theorem 1.8. Let f and g be two nonconstant meromorphic functions, $a \ (\not\equiv 0, \infty) \in S(f) \cap S(g)$. Suppose P[f] and P[g], as defined by (1) are nonconstant. If P[f] and P[g] share a IM and

(2)
$$\min\left\{5\delta(0,f) + \frac{4Q+7}{d}\Theta(\infty,f), 5\delta(0,g) + \frac{4Q+7}{d}\Theta(\infty,g)\right\}$$
$$> \frac{4Q+4d+7}{d},$$

then either $P[f] \equiv P[g]$ or $P[f].P[g] \equiv a^2$.

Remark 1.1. If P[f] and P[g] share a CM, then the condition (2) of Theorem 1.8 can be replaced by the following

$$\min\left\{2\delta(0,f) + \frac{Q+4}{d}\Theta(\infty,f), 2\delta(0,g) + \frac{Q+4}{d}\Theta(\infty,g)\right\} > \frac{Q+d+4}{d}$$

So, one may ask the following question which is the motivation of this paper.

Question 1.2. Keeping the conclusion of the above theorem intact is it possible to relax the nature of sharing the function a between CM and IM ?

To investigate this problem we use a new notion of scaling between CM and IM known as weighted sharing, which is introduced in [7, 8]. In the following definition we explain this notion.

Definition 1.2 ([7, 8]). Let l be a nonnegative integer or infinity and $a \in S(f)$. We denote by $E_l(a, f)$ the set of all zeros of f - a, where a zero of multiplicity mis counted m times if $m \leq l$ and l + 1 times if m > l. If $E_l(a, f) = E_l(a, g)$, we say that f, g share the function a with weight l. We write f and g share (a, l) to mean that f and g share the function a with weight l. Since $E_l(a, f) = E_l(a, g)$ implies that $E_s(a, f) = E_s(a, g)$ for any integer s ($0 \leq s < l$), if f, g share (a, l), then f, g share (a, s), ($0 \leq s < l$). Moreover, we note that f and g share the function a IM or CM if and only if f and g share (a, 0) or (a, ∞) respectively.

In this paper, we try to give a positive answer to question 1.2 and obtain the following results.

Theorem 1.9. Let f and g be two nonconstant meromorphic functions, $a \ (\not\equiv 0, \infty) \in S(f) \cap S(g)$. Suppose P[f] and P[g], as defined by (1) are nonconstant. If P[f] and P[g] share (a, l) with one of the following conditions:

$$\begin{array}{l} (i) \ l = \infty \ and \\ (3) \ \min\left\{2\delta(0,f) + \frac{Q+4}{d}\Theta(\infty,f), 2\delta(0,g) + \frac{Q+4}{d}\Theta(\infty,g)\right\} > \frac{Q+d+4}{d}, \\ (ii) \ 0 < l < \infty \ and \\ \min\left\{\frac{(2l+1)d}{l}\delta(0,f) + \left(\frac{Q+1+2l}{l}+Q+2\right)\Theta(\infty,f), \\ \frac{(2l+1)d}{l}\delta(0,g) + \left(\frac{Q+1+2l}{l}+Q+2\right)\Theta(\infty,g)\right\} \\ (4) \qquad \qquad > \frac{(l+1)d+Q+1}{l} + 4 + Q, \end{array}$$

(*iii*) l = 0 and

(5)
$$\min\left\{5\delta(0,f) + \frac{4Q+7}{d}\Theta(\infty,f), 5\delta(0,g) + \frac{4Q+7}{d}\Theta(\infty,g)\right\} > \frac{4Q+4d+7}{d},$$

then either $P[f] \equiv P[g]$ or $P[f].P[g] \equiv a^2$.

Theorem 1.10. Let f and g be two nonconstant meromorphic functions, $a \ (\not\equiv 0, \infty) \in S(f) \cap S(g)$. Suppose P[f] and P[g], as defined by (1) are nonconstant. If f and g share the value 0 CM and ∞ IM and P[f], P[g] share (a, l) with one of the following conditions:

(i) $l = \infty$ and

$$2\delta(0,f) + \frac{Q+4}{d}\Theta(\infty,f) > \frac{Q+d+4}{d},$$

(ii) $0 < l < \infty$ and

$$\frac{(2l+1)d}{l}\delta(0,f) + \left(\frac{Q+1+2l}{l} + Q+2\right)\Theta(\infty,f) > \frac{(l+1)d+Q+1}{l} + 4 + Q,$$

(iii) l = 0 and

$$5\delta(0,f) + \frac{4Q+7}{d}\Theta(\infty,f) > \frac{4Q+4d+7}{d},$$

then either $P[f] \equiv P[g]$ or $P[f].P[g] \equiv a^2$.

Theorem 1.11. Let f and g be two nonconstant entire functions, $a \ (\not\equiv 0, \infty) \in S(f) \cap S(g)$. Suppose P[f] and P[g] are nonconstant homogeneous differential polynomials of degree d as defined by (1). If f and g share the value 0 CM, P[f] and P[g] share (a, l) with one of the following conditions:

(i) $l = \infty$ and

$$\delta(0,f) > \frac{1}{2},$$

(*ii*) $0 < l < \infty$ and

$$\delta(0, f) > \frac{l+1}{2l+1},$$

(iii) l = 0 and

$$\delta(0,f) > \frac{4}{5},$$

then either $P[f] \equiv P[g]$ or $P[f].P[g] \equiv a^2$.

Corollary 1.1. Let f and g be two nonconstant entire functions such that L(f) and L(g) are nonconstant linear differential polynomials. If f and g share the value 0 CM, L(f) and L(g) share (1, l) with one of following conditions:

(i) $l = \infty$ and

$$\delta(0,f) > \frac{1}{2},$$

(*ii*) $0 < l < \infty$ and

$$\delta(0,f) > \frac{l+1}{2l+1},$$

(iii) l = 0 and

$$\delta(0,f) > \frac{4}{5},$$

then either f = g or $L(f).L(g) \equiv 1$ under any one of the following conditions: (i) $\rho(f) \neq 1$,

(ii) $\rho(f) = 1$ and (a) f has at most a finite number of zeros, or

(b) f has infinitely many zeros and f is of minimal type.

Suppose F and G share (1, l) and let z_0 be a zero of F - 1 of multiplicity pand a zero of G - 1 of multiplicity q. We define by $\overline{N}_{(l+1)}^L(r, 1; F)$ the reduced counting function of those 1-points of F and G where $p > q \ge l+1$; $\overline{N}_{(l+1)}^L(r, 1; G)$ is defined similarly. Note that for l = 0, we have $\overline{N}_{(l+1)}^L(r, 1; F) = \overline{N}_L(r, 1; F)$. Also denote by $N_E^{(1)}(r, 1; F)$ the counting function of those 1-points of F and Gwhere p = q = 1 and by $\overline{N}_E^{(2)}(r, 1; F)$ the counting function of those 1-points of F and G where $p = q \ge 2$, where each such zero is counted only once.

2. Lemmas

Let F and G be two nonconstant meromorphic functions. We shall define by H the following function

$$H = \left(\frac{F^{(2)}}{F^{(1)}} - 2\frac{F^{(1)}}{F-1}\right) - \left(\frac{G^{(2)}}{G^{(1)}} - 2\frac{G^{(1)}}{G-1}\right).$$

Lemma 2.1 ([9]). Let f be a nonconstant meromorphic function and P[f] be defined as (1). Then

$$\begin{array}{rcl} (i)T(r,P) &\leq & dT(r,f) + Q\overline{N}(r,\infty;f) + S(r,f). \\ (ii)N(r,0;P) &\leq & T(r,P) - dT(r,f) + dN(r,0;f) + S(r,f) \\ &\leq & Q\overline{N}(r,\infty;f) + dN(r,0;f) + S(r,f). \end{array}$$

Lemma 2.2 ([1]). Let F and G be two nonconstant meromorphic functions sharing (1, l) and $H \neq 0$. Then

$$\begin{split} N(r,\infty,H) &\leq \overline{N}(r,\infty;F) + \overline{N}(r,\infty;G) + \overline{N}_{(2}(r,0;G) \\ &+ \overline{N}_{(2}(r,0;F) + \overline{N}_{L}(r,1;F) \\ &+ \overline{N}_{L}(r,1;G) + \overline{N}_{0}(r,0;F^{(1)}) + \overline{N}_{0}(r,0;G^{(1)}) + S(r,F) + S(r,G). \end{split}$$

Lemma 2.3 ([4]). Let f be a transcendental meromorphic function and P[f] be a homogeneous differential polynomial generated by f of degree $d \ge 1$. Then

$$dT(r,f) \le \overline{N}(r,\infty;f) + \overline{N}(r,1;F) + N(r,0;f^d) - N_0(r,0;(P(f))^{(1)}) + S(r,f),$$

where $N_0(r, 0; (P[f])^{(1)})$ denotes the counting function corresponding to the zeros of $(P[f])^{(1)}$ which are not the zeros of P[f] and P[f] - 1.

Lemma 2.4 ([14]). Let f be a nonconstant meromorphic function and let

$$p(f) = a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f + a_0,$$

where $a_i \in S(f)$ for $i = 0, 1, ..., n, a_n \ (\neq 0)$ be a polynomial of degree n. Then T(r, p(f)) = nT(r, f) + S(r, f).

Lemma 2.5. If F and G be two nonconstant meromorphic functions sharing (1, l) where l is positive integer and $H \neq 0$. Then

$$\begin{split} T(r,F) &\leq (1+\frac{1}{l})N(r,0;F) + (2+\frac{1}{l})\overline{N}(r,\infty;F) + N(r,0;G) + 2\overline{N}(r,\infty;G) \\ &+ S(r,F) + S(r,G). \end{split}$$

Proof. Suppose $H \neq 0$. Then by a simple calculation we see that

(6)
$$N_E^{(1)}(r,1;F) \leq N(r,0;H) \leq T(r,H) + O(1) \\ \leq N(r,\infty;H) + S(r,F) + S(r,G).$$

Since F and G share (1, l), we have from Lemma 2.2

$$N(r, \infty; H) \leq \overline{N}(r, \infty; F) + \overline{N}(r, \infty; G) + \overline{N}_{(l+1}^{L}(r, 1; F) (7) + \overline{N}_{(l+1}^{L}(r, 1; G) + \overline{N}_{(2}(r, 0; F) + \overline{N}_{(2}(r, 0; G) + \overline{N}_{0}(r, 0; F^{(1)}) + \overline{N}_{0}(r, 0; G^{(1)}) + S(r, F) + S(r, G).$$

By Nevanlinna's Second Fundamental Theorem we have

$$T(r,F) + T(r,G) \leq \overline{N}(r,0;F) + \overline{N}(r,\infty;F) + \overline{N}(r,1;F) + \overline{N}(r,0;G) + \overline{N}(r,\infty;G) + \overline{N}(r,1;G) - N_0(r,0;F^{(1)}) - N_0(r,0;G^{(1)}) + S(r,F) + S(r,G),$$

where $N_0(r, 0; F^{(1)})$ denotes the counting function corresponding to the zeros of $F^{(1)}$ which are not the zeros of F and F - 1. Similarly we define $N_0(r, 0; G^{(1)})$.

Since F and G share (1, l), using (6) and (7) we have

$$\begin{split} \overline{N}(r,1;F) + \overline{N}(r,1;G) \\ &= N_E^{1)}(r,1;F) + \overline{N}_{(l+1}^L(r,1;F) + \overline{N}_{(l+1}^L(r,1;G)) \\ &+ N_E^{(2)}(r,1;F) + \overline{N}(r,1;G) \\ &\leq \overline{N}(r,\infty;F) + \overline{N}(r,\infty;G) + \overline{N}_{(2}(r,0;F) + \overline{N}_{(2}(r,0;G)) \\ &+ 2\overline{N}_{(l+1}^L(r,1;F) + 2\overline{N}_{(l+1}^L(r,1;G) + N_E^{(2)}(r,1;F) + \overline{N}(r,1;G)) \\ &+ \overline{N}_0(r,0;F^{(1)}) + \overline{N}_0(r,0;G^{(1)}) + S(r,F) + S(r,G) \\ &\leq \overline{N}(r,\infty;F) + \overline{N}(r,\infty;G) + \overline{N}_{(2}(r,0;F) + \overline{N}_{(2}(r,0;G)) \\ &+ \overline{N}_{(l+1}^L(r,1;F) + \overline{N}_{(l+1}^L(r,1;G) + N(r,1;G) + \overline{N}_0(r,0;F^{(1)})) \\ &+ \overline{N}_0(r,0;G^{(1)}) + S(r,F) + S(r,G) \\ &\leq \overline{N}(r,\infty;F) + \overline{N}(r,\infty;G) + \overline{N}_{(2}(r,0;F) + \overline{N}_{(2}(r,0;G)) \\ &+ \overline{N}_{(l+1}^L(r,1;F) + \overline{N}_{(l+1}^L(r,1;G) + T(r,G) + \overline{N}_0(r,0;F^{(1)})) \\ &+ \overline{N}_0(r,0;G^{(1)}) + S(r,F) + S(r,G). \end{split}$$

Also, we have

$$\overline{N}_{(l+1)}^{L}(r,1;F) + \overline{N}_{(l+1)}^{L}(r,1;G) \leq \frac{1}{l}N(r,0;F^{(1)}) + S(r,F)$$
(10)
$$\leq \frac{1}{l}N(r,0;F) + \frac{1}{l}\overline{N}(r,\infty;F) + S(r,F).$$

Now, using (9), (10) in (8) we get

$$\begin{split} T(r,F) + T(r,G) &\leq 2\overline{N}(r,\infty;F) + 2\overline{N}(r,\infty;G) + \overline{N}(r,0;F) + \overline{N}_{(2}(r,0;F) \\ &+ \overline{N}(r,0;G) + \overline{N}_{(2}(r,0;G) + \frac{1}{l}N(r,0;F) + \frac{1}{l}\overline{N}(r,\infty;F) \\ &+ T(r,G) + S(r,F) + S(r,G). \end{split}$$

Since $\overline{N}(r,0;F)+\overline{N}_{(2}(r,0;F)\leq N(r,0;F),$ we have

$$\begin{aligned} T(r,F) &\leq (1+\frac{1}{l})N(r,0;F) + (2+\frac{1}{l})\overline{N}(r,\infty;F) + N(r,0;G) + 2\overline{N}(r,\infty;G) \\ &+ S(r,F) + S(r,G). \end{aligned}$$

3. Proof of main theorems

Proof of Theorem 1.9:

Proof. Let

$$F = \frac{P[f]}{a}, \ G = \frac{P[g]}{a}.$$

Since P[f] and P[g] share (a, l), it follows that F, G share (1, l) except at the zeros and poles of a.

Now, we consider the following cases:

Case 1: $l = \infty$. This case follows from Remark 1.1. Case 2: $0 < l < \infty$.

Suppose $H \neq 0$. From Lemma 2.5 and Lemma 2.1, we get

$$\begin{split} T(r,F) &\leq (1+\frac{1}{l})N(r,0;F) + (2+\frac{1}{l})\overline{N}(r,\infty;F) + N(r,0;G) \\ &\quad + 2\overline{N}(r,\infty;G) + S(r,F) + S(r,G). \\ &\Rightarrow dT(r,f) \leq \frac{Q+1+2l}{l}\overline{N}(r,\infty;f) + (2+Q)\overline{N}(r,\infty;g) \\ &\quad + \frac{(l+1)d}{l}N(r,0;f) + dN(r,0;g) + S(r,f) + S(r,g). \end{split}$$

Similarly,

$$\begin{aligned} dT(r,g) &\leq \frac{Q+1+2l}{l}\overline{N}(r,\infty;g) + (2+Q)\overline{N}(r,\infty;f) + \frac{(l+1)d}{l}N(r,0;g) \\ (12) &+ dN(r,0;f) + S(r,f) + S(r,g). \end{aligned}$$

Combining (11) and (12), we get

$$\begin{split} dT(r,f) + dT(r,g) &\leq (\frac{Q+1+2l}{l} + Q+2)\overline{N}(r,\infty;f) + \frac{(2l+1)d}{l}N(r,0;f) \\ &+ (\frac{Q+1+2l}{l} + Q+2)\overline{N}(r,\infty;g) + \frac{(2l+1)d}{l}N(r,0;g) \\ &+ S(r,f) + S(r,g). \end{split}$$

$$\begin{split} &\left\{\frac{(2l+1)d}{l}\delta(0,f) + (\frac{Q+1+2l}{l} + Q+2)\Theta(\infty,f) \\ &-\frac{(l+1)d+Q+1}{l} - 4 - Q\right\}T(r,f) \\ &+ \left\{\frac{(2l+1)d}{l}\delta(0,g) + (\frac{Q+1+2l}{l} + Q+2)\Theta(\infty,g) \\ &-\frac{(l+1)d+Q+1}{l} - 4 - Q\right\}T(r,g) \\ &\leq S(r,f) + S(r,g), \end{split}$$

which contradict (4). Therefore $H \equiv 0$ and so integrating twice we get

$$\frac{1}{G-1} = \frac{A}{F-1} + B,$$

where $A \ (\neq 0)$ and B are constants.

Thus,

(13)
$$G = \frac{(B+1)F + (A-B-1)}{BF + (A-B)}$$

and

(14)
$$F = \frac{(B-A)G + (A-B-1)}{BG - (B+1)}.$$

Next, we consider following three subcases: Subcase 2.1: $B \neq 0, -1$. Then, from (14) we have

$$\overline{N}(r, \frac{B+1}{B}; G) = \overline{N}(r, \infty; F).$$

By Nevanlinna Second Fundamental Theorem and (ii) of Lemma 2.1 we get

$$\begin{aligned} T(r,G) &\leq \overline{N}(r,\infty;G) + \overline{N}(r,0;G) + \overline{N}(r,\frac{B+1}{B};G) + S(r,G) \\ &\leq \overline{N}(r,\infty;G) + \overline{N}(r,0;G) + \overline{N}(r,\infty;F) + S(r,G) \\ &\leq \overline{N}(r,\infty;G) + T(r,G) - dT(r,g) + dN(r,0;g) + \overline{N}(r,\infty;F) + S(r,G), \end{aligned}$$

(15)
$$\Rightarrow dT(r,g) \le \overline{N}(r,\infty;f) + dN(r,0;g) + \overline{N}(r,\infty;g) + S(r,f) + S(r,g).$$

If $A - B - 1 \neq 0$, then it follows from (13) that

$$\overline{N}(r, \frac{-A+B+1}{B+1}; F) = \overline{N}(r, 0; G).$$

Using Nevanlinna Second Fundamental Theorem and Lemma 2.1

$$T(r,F) \le \overline{N}(r,\infty;F) + \overline{N}(r,0;F) + \overline{N}(r,\frac{-A+B+1}{B+1};F) + S(r,F),$$

$$\Rightarrow dT(r, f) \le N(r, \infty; f) + dN(r, 0; f) + Q\overline{N}(r, \infty; g) + dN(r, 0; g) + S(r, f) + S(r, g).$$
(16)

Adding (15) and (16), we obtain

$$T(r,f) + T(r,g) \leq N(r,0;f) + \frac{2}{d}\overline{N}(r,\infty;f) + 2N(r,0;g) + \frac{Q+1}{d}\overline{N}(r,\infty;g) + S(r,f) + S(r,g),$$

which contradicts (4).

Therefore A - B - 1 = 0. Then from (13), it follows that

$$\overline{N}(r, -\frac{1}{B}; F) = \overline{N}(r, \infty; G).$$

Again by Nevanlinna Second Fundamental Theorem, we have

$$\begin{array}{ll} T(r,F) & \leq & \overline{N}(r,\infty;F) + \overline{N}(r,0;F) + \overline{N}(r,-\frac{1}{B};F) + S(r,F) \\ \\ & \leq & \overline{N}(r,\infty;f) + T(r,F) - dT(r,f) + dN(r,0;f) \\ \\ & + \overline{N}(r,\infty;g) + S(r,f) + S(r,g) \end{array}$$

(17)
$$\Rightarrow dT(r,f) \le \overline{N}(r,\infty;f) + dN(r,0;f) + \overline{N}(r,\infty;g) + S(r,f) + S(r,g).$$

Combining (15) and (17), we get

$$\begin{split} T(r,f) + T(r,g) &\leq N(r,0;f) + \frac{2}{d}\overline{N}(r,\infty;f) + N(r,0;g) \\ &+ \frac{2}{d}\overline{N}(r,\infty;g) + S(r,f) + S(r,g), \end{split}$$

which violates (4).

Subcase 2.2: B = -1. Then from (13) and (14), we get

$$G = \frac{A}{A+1-F}$$

and

$$F = \frac{(1+A)G - A}{G}$$

If $A + 1 \neq 0$, then

$$N(r, A+1; F) = N(r, \infty; G),$$

$$\overline{N}(r, \frac{A}{A+1}; G) = \overline{N}(r, 0; F).$$

By similar argument as in Subcase 2.1 we arrive at a contradiction.

Therefore, A + 1 = 0, then

$$FG = 1$$

$$\Rightarrow P[f].P[g] \equiv a^2.$$

Subcase 2.3: B = 0. Then (13) and (14) gives $G = \frac{F+A-1}{A}$ and F = AG + 1 - A. If $A - 1 \neq 0$, $\overline{N}(r, 1 - A; F) = \overline{N}(r, 0; G)$ and $\overline{N}(r, \frac{A-1}{A}; G) = \overline{N}(r, 0; F)$. Proceeding similarly as in Subcase 2.1 we get a contradiction.

Therefore A - 1 = 0 then $F \equiv G$ i.e.,

$$P[f] \equiv P[g].$$

Case 3: l = 0. The conclusion follows from Theorem 1.1 of [9]. This complete the proof.

Proof of Theorem 1.10:

Proof. Let

$$F = \frac{P[f]}{a}, \ G = \frac{P[g]}{a}.$$

Since P[f] and P[g] share (a, l), it follows that F, G share (1, l) except at the zeros and poles of a. By Lemma 2.1 and Lemma 2.3, we get

$$dT(r,f) \leq \overline{N}(r,\infty;f) + \overline{N}(r,1;F) + N(r,0;f^d) + S(r,f)$$

$$= \overline{N}(r,\infty;g) + \overline{N}(r,1;G) + N(r,0;g^d) + S(r,f)$$

(18)
$$\leq (1+Q+2d)T(r,g) + S(r,f) + S(r,g).$$

Similarly,

(19)
$$dT(r,g) \le (1+Q+2d)T(r,f) + S(r,f) + S(r,g).$$

From (18) and (19) we get S(r, f) = S(r, g). The rest of the proof is similar to that of Theorem 1.9.

Proof of the Corollary 1.1:

Proof. By Theorem 1.11 we get either $L(f) \equiv L(g)$ or $L(f).L(g) \equiv 1$. Let $L(f) \equiv L(g)$ so that $L(f-g) \equiv 0$. Proceeding similarly as in the proof of Corollary 1.2 of [9], we obtain f = g.

References

- A. Banerjee, B. Chakraborty, Further investigations on a questions of Zhang and Lu, Ann. Univ. Paedagog. Crac. Stud. Math, 14 (2015), 105-119.
- [2] W. K. Hayman, *Meromorphic functions*, Clarendon Press, Oxford, 1964.
- [3] X. H. Hua, A unicity theorem for entire functions, Bull. London Math. Soc., 22 (1990), 457-462.
- [4] J. D. Hinchliffe, On a result of chuang related to Hayman's alternative, Comput. Mathods Funct. Theory, 2 (2002), 293-297.
- [5] I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J., 44 (1997), 147-156.
- [6] I. Lahiri, Differential polynomials and uniqueness of meromorphic functions, Yokohama Math. J., 45 (1998), 31-38.
- [7] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001), 241-253.
- [8] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001), 193-206.

- [9] I. Lahiri, B. Pal, Uniqueness of meromorphic functions with their homogeneous and linear differential polynomials sharing a small function, Bull. Korean Math. Soc., 54 (2017), 825-838.
- [10] J. T. Li, P. Li, Uniqueness of entire functions concerning differential polynomials, Commun. Korean Math. Soc., 30 (2015), 93-101.
- [11] E. Mues, M. Reinders, On a question of C. C. Yang, Complex Var. Theory Appl., 34 (1997), 171-179.
- [12] M. Ozawa, Unicity theorems for entire functions, J. D'Anal. Math., 30 (1976), 411-420.
- [13] K. Shibazaki, Unicity theorems for entire functions of finite order, Mem. Nat. Defence Acad., (Japan) 21 (1981), 67-71.
- [14] C. C. Yang, On deficiencies of differential polynomials II, Math. Z., 125 (1972), 107-112.
- [15] C.C Yang, On two entire functions which together with their first derivaties have the same zeros, J. Math. Anal. Appl., 56 (1976), 1-6.
- [16] L. Yang, Value distributions theory, Springer-Verlag, Berlin, 1993.
- [17] H. X. Yi, Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Var. Theory Appl., 14 (1990), 169-176.
- [18] H. X. Yi, A question of C. C. Yang on the uniqueness of entire functions, Kodai Math. J., 13 (1990), 39-46.
- [19] H. X. Yi, C. C. Yang, A uniqueness theorem for meromorphic functions whose nth derivatives share the same 1-points, J. Anal. Math., 62 (1994), 261-270.
- [20] H. X. Yi, Unicity theorems for entire or meromorphic functions, Acta Math. Sin.(N.S), 10 (1994), 121-131.
- [21] H. X. Yi, C. C. Yang, Uniqueness theory of meromorphic functions (in Chinese), Science Press, Beijing, 1995.
- [22] H. X. Yi, Uniqueness theorems for meromorphic functions whose nth derivatives share the same 1-points, Complex Var. Theory Appl., 34 (1997), 421-436.

Accepted: 9.12.2019