Adjoints of some weighted composition operators on the Fock space

Asma Negahdari

Department of Mathematics Shiraz Branch Islamic Azad University Shiraz Iran asma.negahdari9219@gmail.com

Mahsa Fatehi^{*}

Department of Mathematics Shiraz Branch Islamic Azad University Shiraz Iran fatehimahsa@yahoo.com

Abstract. In this paper, we find the adjoints of weighted composition operators $C_{\psi,\varphi}$ on the Fock space, when $\psi = K_c$ for $c \in \mathbb{C}$. Then, we show that $C^*_{\psi,\varphi}C_{\psi,\varphi}$ and $C^*_{\psi,\varphi} + C_{\psi,\varphi}$ commute, when $\varphi(z) = az + b$, $a, b \in \mathbb{C}$ and |a| = 1. **Keywords:** Fock space, weighted composition operator, adjoint.

1. Introduction

For f an entire function on \mathbb{C} , the Fock space \mathcal{F}^2 is the set

$$\left\{f: \|f\|^2 = \frac{1}{\pi} \int_{\mathbb{C}} |f(z)|^2 e^{-|z|^2} dA(z) < \infty\right\},$$

where dA is the Lebesgue measure on \mathbb{C} . The Fock space is a reproducing kernel Hilbert space with inner product

$$\langle f,g\rangle = \frac{1}{\pi}\int_{\mathbb{C}} f(z)\overline{g(z)}e^{-|z|^2}dA(z)$$

and reproducing kernel function $K_w(z) = e^{\overline{w}z}$, for any $w \in \mathbb{C}$. Not that for any $w \in \mathbb{C}$, $||K_w|| = e^{|w|^2/2}$. It is well known that the set $\{e_m : m \ge 0\}$ is an orthonormal basis for \mathcal{F}^2 . For entire functions ψ and φ and $f \in \mathcal{F}^2$, composition operator C_{φ} and weighted composition operator $C_{\psi,\varphi}$ on \mathcal{F}^2 are given by $C_{\varphi}(f) = f \circ \varphi$ and $C_{\psi,\varphi}(f) = \psi f \circ \varphi$, respectively. Moreover, we define a multiplication operator $M_{\psi} : \mathcal{F}^2 \to \mathcal{F}^2$ by $M_{\psi}(f) = \psi f$, for all $f \in \mathcal{F}^2$.

^{*.} Corresponding author

Recently many authors have worked on the weighted composition operators on the Fock space (see [1], [2], [3], [5], [6], [7] and [4]). Carswell et al. in [1] showed that C_{φ} is bounded on the Fock space if and only if $\varphi(z) = az + b$, where $|a| \leq 1$ and if |a| = 1, then b = 0. Ueki in [4] characterized boundedness and compactness of $C_{\psi,\varphi}$ on the Fock space. Next in [3], Le found the easier criteria for boundedness and compactness of weighted composition operators. Note that there are some interesting papers like [1] which were written on another Fock space (see [8]), but their results hold for \mathcal{F}^2 by the same idea. Then we use them frequently in this paper.

Suppose that H is a Hilbert space. For bounded operators A and B on H, we use the notation [A, B] = AB - BA for the commutator of A and B.

Finding adjoint of an operator is one of an important tool to investigate their properties. In the second section, we obtain the adjoints of weighted composition operators $C_{\psi,\varphi}$, when $\psi = K_c$ for $c \in \mathbb{C}$. Next in Section 3, we show that $[C^*_{\psi,\varphi}C_{\psi,\varphi}, C^*_{\psi,\varphi} + C_{\psi,\varphi}] = 0$, where $\varphi(z) = az + b$ and |a| = 1.

2. Adjoints of some weighted composition operators

In this section, we find the adjoint of weighted composition operator $C_{\psi,\varphi}$, where $\psi = K_c$ for $c \in \mathbb{C}$. Let in [3, Theorem 2.2] showed that if $C_{\psi,\varphi}$ is bounded on \mathcal{F}^2 , then $\varphi(z) = \varphi(0) + \lambda z$ with $|\lambda| \leq 1$. First, we assume that $|\lambda| < 1$ and find the adjoint of $C_{\psi,\varphi}$ in Theorem 2.3. Then, we suppose that $|\lambda| = 1$ and obtain the adjoint of $C_{\psi,\varphi}$ in Theorem 2.5.

Lemma 2.1. Suppose that $\varphi(z) = a_1 z + b_1$ and $\psi(z) = a_2 z + b_2$, where $|a_1| \leq 1$, $|a_2| \leq 1$ and $b_1, b_2 \in \mathbb{C}$. Let C_{φ} and C_{ψ} be bounded on \mathcal{F}^2 . Then

(1)
$$C_{\varphi}^* C_{\psi} = M_{e^{\overline{b_1}z}} C_{a_2 \overline{a_1} z + b_2}.$$

Proof. By [1, Lemma 2], we see that

$$C^*_{\varphi}C_{\psi} = M_{K_{b_1}}C_{\overline{a_1}z}C_{a_2z+b_2} = M_{K_{b_1}}C_{(a_2z+b_2)\circ(\overline{a_1}z)}$$
$$= M_{K_{b_1}}C_{a_2\overline{a_1}z+b_2}.$$

In the following proposition, we show that if $\varphi(z) = az + b$, where |a| < 1and ψ is a kernel function K_c , then $C_{\psi,\varphi}$ can be written by the product of the adjoint of a composition operator and another composition operator.

Proposition 2.2. Let $\varphi(z) = az + b$ and $\psi(z) = K_c(z)$, when |a| < 1 and $b, c \in \mathbb{C}$. Then there is a positive integer n such that

$$C_{\psi,\varphi} = C^*_{\frac{\overline{a}(n+1)}{n}z+c} C_{\frac{n}{n+1}z+b}.$$

Proof. Since |a| < 1, there is a positive integer n such that $|a + \frac{a}{n}| < 1$. Let $a_1 = \frac{\overline{a}(n+1)}{n}$ and $a_2 = \frac{n}{n+1}$, $b_1 = c$ and $b_2 = b$. Then by Lemma 2.1, $C_{\psi,\varphi} = C^*_{a_1z+b_1}C_{a_2z+b_2}$.

In the next theorem, we find the adjoint of weighted composition operator $C_{k_c,az+b}$, where |a| < 1 and $b, c \in \mathbb{C}$.

Theorem 2.3. Let $\psi(z) = K_c(z)$ and $\varphi(z) = az + b$, when |a| < 1 and $b, c \in \mathbb{C}$. Then $C^*_{\psi,\varphi} = C_{e^{\overline{b}z},\overline{a}z+c}$

Proof. By Proposition 2.2, there is a positive integer n such that

$$C_{\psi,\varphi} = C^*_{\frac{\overline{a}(n+1)}{n}z+c} C_{\frac{n}{n+1}z+b}$$

Then

$$C^*_{\psi,\varphi} = C^*_{\frac{n}{n+1}z+b}C_{\frac{\overline{a}(n+1)}{n}z+c}$$

From Equation (1), we have $C^*_{\psi,\varphi} = M_{e^{\overline{b}z}}C_{\overline{a}z+c}$ and so the result follows. \Box

Lemma 2.4. Suppose that $C_{\psi,\varphi}$ is a bounded weighted composition operator on \mathcal{F}^2 . Then

$$C^*_{\psi,\varphi}K_w = \overline{\psi(w)}K_{\varphi(w)}.$$

Proof. Let f be an arbitrary function in \mathcal{F}^2 . We see that

Hence $C^*_{\psi,\varphi}K_w = \overline{\psi(w)}K_{\varphi(w)}$. \Box We know that for $\varphi(z) = az + b$ such that |a| = 1, if $C_{\psi,\varphi}$ is a bounded operator on \mathcal{F}^2 , then $\psi(z) = \psi(0)e^{-a\overline{b}z}$ (see [3, Proposition 2.1]). In the following theorem, we find the adjoints of this case of weighted composition operators.

Theorem 2.5. Let $\varphi(z) = az + b$ and $\psi(z) = \psi(0)e^{-a\overline{b}z}$, where |a| = 1 and $b \in \mathbb{C}$. Then $C^*_{\psi,\varphi} = C_{\overline{\psi(0)}e^{\overline{b}z}, \underline{1}z-\underline{b}}$.

Proof. By Lemma 2.4, we can see that

$$C^*_{\psi,\varphi}K_w = \overline{\psi(w)}K_{\varphi(w)} = \overline{\psi(0)}e^{-\overline{a}b\overline{w}}K_{aw+b} = \overline{\psi(0)}e^{-\overline{a}b\overline{w}}e^{\overline{(aw+b)}z}$$

and

$$C_{\overline{\psi(0)}e^{\overline{b}z},\frac{1}{a}z-\frac{b}{a}}K_w = \overline{\psi(0)}e^{\overline{b}z}e^{\overline{w}(\frac{1}{a}z-\frac{b}{a})} = \overline{\psi(0)}e^{\overline{b}z}e^{\overline{w}\overline{a}z-\frac{b}{a}\overline{w}} = \overline{\psi(0)}e^{-\overline{a}b\overline{w}}e^{\overline{(aw+b)}z}.$$

Since the span of the kernel functions is dense in \mathcal{F}^2 , the result follows.

Example 2.6. (a) Let $\varphi(z) = \frac{z}{2} + i$ and $\psi(z) = e^{iz}$. Then, Theorem 2.3 implies that $C^*_{\psi,\varphi} = C_{e^{-iz},\frac{z}{2}+i}$.

(b) Let $\varphi(z) = iz - \frac{\sqrt{2}}{2}i$ and $\psi(z) = e^{\frac{\sqrt{2}}{2}z}$. We infer from Theorem 2.5 that $C^*_{\psi,\varphi} = C_{e^{\frac{\sqrt{2}}{2}iz},\overline{i}z + \frac{\sqrt{2}}{2}}.$

3. Weighted composition operators for which $C^*_{\psi,\varphi}C_{\psi,\varphi}$ and $C^*_{\psi,\varphi} + C_{\psi,\varphi}$ commute

In this section, we show that $[C^*_{\psi,\varphi}C_{\psi,\varphi}, C^*_{\psi,\varphi} + C_{\psi,\varphi}] = 0$, where $\varphi(z) = az + b$ and |a| = 1 and $C_{\psi,\varphi}$ is bounded on \mathcal{F}^2 .

Theorem 3.1. Let $\varphi(z) = az + b$ and |a| = 1. Suppose that $C_{\psi,\varphi}$ is bounded on \mathcal{F}^2 . Then $[C^*_{\psi,\varphi}C_{\psi,\varphi}, C^*_{\psi,\varphi} + C_{\psi,\varphi}] = 0$.

Proof. From [3, Proposition 2.1], $\psi(z) = \psi(0)e^{-a\overline{b}z}$. By Theorem 2.5, we see that

$$\begin{split} & [C^*_{\psi,\varphi}C_{\psi,\varphi}, C^*_{\psi,\varphi} + C_{\psi,\varphi}] \\ &= C^*_{\psi,\varphi}C_{\psi,\varphi}C^*_{\psi,\varphi} + C^*_{\psi,\varphi}C_{\psi,\varphi}C_{\psi,\varphi} - C^*_{\psi,\varphi}C^*_{\psi,\varphi}C_{\psi,\varphi} - C_{\psi,\varphi}C^*_{\psi,\varphi}C_{\psi,\varphi}C_{\psi,\varphi} \\ &= C_{\overline{\psi(0)}e^{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}}C_{\psi(0)e^{-a\overline{b}z}, az+b}C_{\overline{\psi(0)}e^{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}} \\ &+ C_{\overline{\psi(0)}e^{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}}C_{\psi(0)e^{-a\overline{b}z}, az+b}C_{\psi(0)e^{-a\overline{b}z}, az+b} \\ &- C_{\overline{\psi(0)}e^{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}}C_{\overline{\psi(0)}e^{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}}C_{\psi(0)e^{-a\overline{b}z}, az+b} \\ &- C_{\psi(0)e^{-a\overline{b}z}, az+b}C_{\overline{\psi(0)}e^{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}}C_{\psi(0)e^{-a\overline{b}z}, az+b} \\ &= \overline{\psi(0)}\psi(0)M_{e^{\overline{b}z}}M_{e^{-a\overline{b}(\frac{1}{a}z - \frac{b}{a})}C_{a(\frac{1}{a}z - \frac{b}{a})+b}C_{\overline{\psi(0)}e^{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}} \\ &+ \overline{\psi(0)}\psi(0)M_{e^{\overline{b}z}}M_{e^{-a\overline{b}(\frac{1}{a}z - \frac{b}{a})}C_{a(\frac{1}{a}z - \frac{b}{a})+b}C_{\psi(0)e^{-a\overline{b}z}, az+b} \\ &- \overline{\psi(0)}\psi(0)C_{\overline{\psi(0)}e^{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}}M_{e^{\overline{b}z}}M_{e^{-a\overline{b}(\frac{1}{a}z - \frac{b}{a})}C_{a(\frac{1}{a}z - \frac{b}{a})+b} \\ &- \overline{\psi(0)}\psi(0)C_{\psi(0)e^{-a\overline{b}z}, az+b}M_{e^{\overline{b}z}}M_{e^{-a\overline{b}(\frac{1}{a}z - \frac{b}{a})}C_{a(\frac{1}{a}z - \frac{b}{a})+b} \\ &- \overline{\psi(0)}\psi(0)C_{\psi(0)e^{-a\overline{b}z}, az+b}M_{e^{\overline{b}z}}M_{e^{-a\overline{b}(\frac{1}{a}z - \frac{b}{a})}C_{a(\frac{1}{a}z - \frac{b}{a})+b} \\ &= |\psi(0)|^2e^{|b|^2}C_zC_{\overline{\psi(0)}e^{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}} \\ &+ |\psi(0)|^2e^{|b|^2}C_zC_{\psi(0)e^{-a\overline{b}z}, az+b} \\ &- |\psi(0)|^2e^{|b|^2}C_{\overline{b}z}C_{\psi(0)e^{-a\overline{b}z}, az+b} \\ &- |\psi(0)|^2e^{|b|^2}C_{\overline{b}z}C_{\overline{b}z}, \frac{1}{a}z - \frac{b}{a}}C_z \\ &- |\psi(0)|^2e^{|b|^2}C_{\psi(0)e^{-a\overline{b}z}, az+b}C_z \end{split}$$

and so obviously $[C^*_{\psi,\varphi}C_{\psi,\varphi}, C^*_{\psi,\varphi} + C_{\psi,\varphi}] = 0.$

References

- B. J. Carswell, B. D. MacCluer, A. Schuster, Composition operators on the Fock space, Acta Sci. Math. (Szeged), 69 (2003), 871-887.
- [2] M. Fatehi, Weighted composition operators on the Fock space, Operators and Matrices, 13 (2019), 461-469.
- [3] T. Le, Normal and isometric weighted composition operators on the Fock space, Bull. London Math. Soc., 46 (2014), 847-856.

- [4] S. Ueki, Weighted composition operator on the Fock space, Proc. Amer. Math. Soc., 135 (2007), 1405-1410.
- [5] L. Zhao, Unitary weighted composition operators on the Fock space of Cⁿ, Complex Anal. Oper. Theory, 8 (2014), 581-590.
- [6] L. Zhao, Invertible weighted composition operators on the Fock space of Cⁿ,
 J. Funct Spaces, 2015. Art. ID 250358.
- [7] L. Zhao, C. Pang, A class of weighted composition operators on the Fock space, Journal of Mathematical Research with Applications, 35 (2015), 303-310.
- [8] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

Accepted: 25.11.2019