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Abstract. In this paper, all rings are commutative with identity, all modules are
unitary, S denotes a ring and W denotes an S-module. A submodule U of an S-module
W is said to be closed in W , if U has no proper essential extensions in W . In this
paper we introduce the notion of multiplication module concerning closed submodule
as a new generalization of multiplication module namely closed multiplication module.
Some basic properties of this notion are given. Some related modules with this concept
are investigated and studied too
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1. Introduction and preliminaries

Throughout, all rings are commutative with identity, all modules are unitary. A
moduleW in which each submodule U ofW has the form IW for some an ideal I
in S is called a multiplication module. A submodule U of an S-module W is said
to be closed in W , if U has no proper essential extensions in W . Some authors
studied various types of generalizations of the multiplication module as small
multiplication module in [1] and pure multiplication module in [4], and fully
invariant multiplication module [18]. In this paper, we shall introduce a new
generalization of the multiplication module concerning closed submodule, where
an S-module W is called closed multiplication if each closed submodule U of
W is equal to IW for some ideal I of S, and hence every multiplication module
is c-multiplication. The converse is true under the class semisimple module.
We studied some basic properties of this notion. Also, we investigate some
connections between it and other related concepts where we proved that every
simple closed module is closed multiplication but not conversely such as the Z6 as
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Z-module. Then we proved that under the class semisimple module both of the
concepts closed multiplication and simple closed are coincided. Recall that ”a
submodule U of W is called stable (fully invariant), if U contains f(U) for each
S-homomorphism f : U → W (f : W → W ), and an S-module M is called fully
stable (duo) if each submodule of W is stable (fully invariant)” [12]. It is clear
that every fully stable module is duo but the converse may not be true. Recall
that ”a module W is called CL-duo if for each closed submodule U of W is fully
invariant”[2]. Also we proved every closed multiplication is CL-duo module.
After that, we proved that any closed submodule U of closed multiplication
module W is stable. Finally, recall that ”a submodule U of an S-module W
is called dual stable, if U ⊆ kerf for each S-homomorphism f : W → W/U
[1]. We proved that every closed submodule of c-multiplication module is dual
stable. We used U ≤c W to denote a closed submodule U of W and End(W )
to denote for the set all endomorphisms of W .

2. Closed multiplication module

We introduced the notion of a closed multiplication module as a new general-
ization of the multiplication module.

Definition 2.1. An S-module W is called closed multiplication (shortly, c-
multiplication) if each closed submodule U of W is equal to IW for some ideal
I of S. A ring S is called c-multiplication if S is an c-multiplication S-module.

Eamples and Remarks 2.1.

(1) Every multiplication S-module is c-multiplication. The converse may be
not true in general, for example: each of the Z-modules ZP∞ and Q are
c-multiplication since the only closed submodules are (0) and ZP∞ of ZP∞

and (0) and Q are the only closed submodules of Q but it is well-known
that each of them is not multiplication module.

(2) Every cyclic module over a commutative ring S is c-multiplication S-
module.

(3) Let W = Z8 ⊕Z2 as Z-module, M is not c-multiplication Z-module since
the submodule U =< (2̄, 1̄) >= {(2̄, 1̄), (4̄, 0̄), (6̄, 1̄), (0̄, 0̄)} is closed sub-
module of W , but U ⊆ IW for each ideal I of Z.

(4) It is clear that every simple module is c-multiplication, but not conversely,
see examples in part(1).

(5) Let S be a ring and W be a module. Then W is c-multiplication S-module
if and only if W is c-multiplication S̄-module, where S̄ = S/annW .
Proof. It easy since each submodule is closed of S-module W if and only
if it is closed of S̄-module.
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(6) One can easy to see if U is a proper closed submodule of c-multiplication
module then U = (U : W )W . Where (U : W )= { r ∈ S : W ⊆ U} which
is called residual ideal.

(7) It is known every commutative ring with identity is multiplication ring
and hence c-multiplication.

(8) Every simple closed S-module is c-multiplication where a module W is
called simple closed if W has the only two closed submodules are 0 and
W [12]. But the converse may be not true in general, for example: Z6 as
Z-module is c-multiplication but it is not simple closed.

Proposition 2.1. Let f : W → W ′ be a monomorphism and W is c-multiplication
module. Then f(W ) is c-multiplication.

Proof. Let U ≤c f(W ). Then we can show that f−1(U) ≤c W . Assume
f−1(U) = F . Since f is monomorphism, f(f−1(U)) = f(F ) is closed submodule
of f(W ). But one sees easily that U = f(f−1(U)), so U ≤c f(W ), and hence
f(F ) = U . It follows that f−1(U) = f−1(f(F )) = F . Therefore f−1(U) ≤c W ,
so that f−1(U) = IW for some I ≤ S and hence f(f−1(U)) = f(IW ) =
If(W ) = IW . Thus U = If(W ) and so f(W ) is c-multiplication module.

Proposition 2.2. For c-multiplication module W over a ring S, the following
assertions hold:

(i) Every closed submodule U of W is a fully invariant submodule of W ,

(ii) If U is a submodule of W such that U ∩ IW = IU for every ideal I in S,
then U is a c-multiplication module.

Proof. (i) Let L ≤c W , f : W → W there exists an ideal I in S such that
L = IW , consider f(L) = f(IW ) ⊆ If(W ) = IW = L and hence L is fully
invariant submodule of W .

(ii) Let V ≤c U . Since W is a c-multiplication module, there exists an ideal
I of S such that V = IW . By assumption, U ∩W = IU . Therefore, U ∩V = IU
and so V = IU hence U is c-multiplication.

Proposition 2.3. Every direct summand of a c-multiplication module is c-
multiplication.

Proof. Let U be a direct summand of W and L ≤c U . Then W = U ⊕ V for
some submodule V of W , L ⊕ V ≤ U ⊕ V = W . But L ≤c U and V ≤c V , so
L⊕ V ≤c W . Then L⊕ V = IW = I(U ⊕ V ) = IU ⊕ V for some ideal I of S.
Hence L = IU , so U is c-multiplication module.

Proposition 2.4. Let W be a divisible module over integral domain S. Then
W is c-multiplication if and only if W is simple closed.
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Proof. Let U ≤c W and U ̸= 0. Since W is c-multiplication, so there exists an
ideal I of S such that U = IW . But W is divisible module over integral domain
hence IW = W and hence U = W . Thus W is simple closed. Conversely, It is
clear by Remark 2.1(8).

Recall that, an S-module W is called essentially second if for all an ideal I
in S, either IW ≤e W or IW = (0)[13].

Proposition 2.5. Every second c-multiplication S-module is simple closed.

Proof. Let U ≤c W . Since W is c-multiplication, then U = IW for some
I ≤ S. As W is an essentially second module, so either IW ≤e W or IW = (0);
that is either U ≤e W or U = (0). Since U ≤e W , then U = W or U = 0.
Therefore W is simple closed.

In the following, we have both concepts c-multiplication and multiplication
modules are equivalent under the class semisimple module.

Proposition 2.6. Let W be a semisimple S-module. Then W is c-multiplication
if and only if W is multiplication module.

Proof. Since every submodule of W is a direct summand, hence it is closed.
Thus the result holds.

Since each module over a semisimple ring S is semisimple S-module, then
we have the following:

Corollary 2.1. Let W be a module over semisimple ring S. Then W is c-
multiplication iff W is multiplication.

Recall that ”an S-module W is called extending (or CS-module), if every
submodule of W is essential in a direct summand” [3]. ”An S-module W is
called quasi-injective if for each monomorphism f : U → W , where U is a
submodule of W , and for each S-homomorphism g : U → W there exists an
S-homomorphism h : W → W such that h ◦ f = g [11].

Proposition 2.7. Let W be a quasi-injective (or extending) module. If W is
c-multiplication S-module, then every closed submodule of W is stable.

Proof. Let U ≤c W . Since W is quasi-injective (or extending) module, then U
is direct summand of W . Let f : U → W be a homomorphism. There exists
g : W → W defined by g(x) = f(x) for all x ∈ U and g(x) = 0 otherwise, W
is c-multiplication so U = IW for some ideal I in S, hence f(U) = g(U) =
g(IW ) = Ig(W ) ⊆ IW = U , and so f(U) ⊆ U . Thus U is stable.

Recall that, an S-module W is called CL-duo if for each closed submodule
U of W is fully invariant[2].

Proposition 2.8. Every c-multiplication S-module is CL-duo.
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Proof. Let U ≤c W and W be a c-multiplication module, so U = IW for
some I ≤ S, f : W → W . f(U) = f(IW ) = If(W ) ⊆ IW = U . Thus W is
CL-duo.

Recall that ”an S-module W is called a projective module if for each epi-
morphism f : A → B and a homomorphism g : W → B, there exists a homo-
morphism h : W → A satisfies f ◦ h = g, where A and B are any S-modules”
[7]. The converse of Proposition 2.8 is true under the class projective module.

Proposition 2.9. Let W be a projective S-module. Then W is CL-duo if and
only if W is c-multiplication.

Proof. To prove this we can do analogous the same proof way in [18, Theorem
3.12].

Since S is projective S-module, then we obtain the following:

Corollary 2.2. Let S be a ring. Then S is CL-duo if and only if it is c-
multiplication.

Remarks 2.1. The direct sum of two c-multiplication modules may be not c-
multiplication module. For example: Consider W = Z ⊕ Z as Z-module. It is
clear that Z is multiplication and hence it is c-multiplication but W = Z ⊕Z is
not c-multiplication because let U = Z ⊕ (0) ≤c W , but there is no ideal I in S
holds IW = U .

Recall that ”an S-module W is said to be fully invariant multiplication if
each fully invariant submodule U of W there exists an ideal I of S such that
U = IW [18].

Proposition 2.10. Let W be a CL-duo module. If W is fully invariant multi-
plication S-module, then W is c-multiplication.

Proof. Let U ≤c W . Since W is CL-duo, U is fully invariant in W . But W
is fully invariant multiplication, then U = IW for some I ≤ S. Thus W is
c-multiplication.

Proposition 2.11. Let T = W ⊕W and W is a c-multiplication S-module. If
T is a distributive module, then T is c-multiplication.

Proof. Let U ≤c T . Since T is distributive, then U = (U ∩ W ) ⊕ (U ∩ W ).
But U ≤c T , so U∩ ≤c W and hence U ∩W = IW for some ideal I in S. Thus
U = IW ⊕ IW = I(W ⊕W ) = IT . Therefore T is c-multiplication module.

Proposition 2.12. Let T = W ⊕ W be a CL-duo module. If W is a c-
multiplication S-module, then T is c-multiplication.
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Proof. Let U ≤c T . Since T is CL-duo, so U is a fully invariant submodule of
T , and so U = (U ∩ W ) ⊕ (U ∩ W ) by [16]. But U ∩ W is closed submodule
of W , so U ∩W = IW . Hence U = IW ⊕ IW = I(W ⊕W ) = IT , then T is
c-multiplication.

Proposition 2.13. Let W be a c-multiplication S-module such that W = W1⊕
W2. Then the following assertions hold:

(i) f(W1) ⊆ W1 for any homomorphism f : W1 → W .

(ii) Hom(W1,W2) = Hom(W2,W1) = 0.

Proof. (i) There exists an endomorphism g of the module M such that g(x +
y) = f(x) for all elements x ∈ W1 and y ∈ W2. By proposition 2.3, all sub-
modules of the c-multiplication module W are fully invariant submodules of W .
Therefore, f(W1) = g(W1) ⊆ W1.

(ii) Let f ∈ Hom(W1,W2), then by (i), f(W1) ⊆ W1 ∩W2 = 0.

Proposition 2.14. Let W1 be a c-multiplication S1-module and W2 be a c-
multiplication S2-module where S1 and S2 are commutative rings with identi-
ties). Let W = W1 ⊕W2 be a distributive S-module where S = S1 ⊕ S2. Then
W is c-multiplication iff W1 and W2 are c-multiplication modules.

Proof. Let U ≤c W , then U = (U ∩ W1) ⊕ (U ∩ W2). U ∩ W1 ≤c W1 and
U ∩W2 ≤c W2, so U ∩W1 = IW1 and U ∩W2 = JW2 where I ≤ S1 and J ≤ S2.
As (I ⊕ J).(W1 ⊕ W2) = IW1 ⊕ JW2 = (U ∩ W1) ⊕ (U ∩ W2) = U ; that is
U = (I ⊕ J)(W ).

Conversely, Let U ≤c W1, so U ⊕ W2 ≤c W1 ⊕ W2. Then there exists an
ideal I ⊕ J in S1 ⊕ S2 such that U ⊕W2 = IW1 ⊕ JW2. Thus U = IW1, then
W1 is c-multiplication. Similarly, W2 is c- multiplication.

Remarks 2.2. Let W be an S-module and U ≤ W . If W/U is c-multiplication,
then W is not necessary c-multiplication module. For example, consider W =
Z ⊕Z and U = 2Z ⊕ 3Z clear that W/U = (Z ⊕Z)/(2Z ⊕ 3Z) ∼= Z2 ⊕Z3

∼= Z6

which is c-multiplication but W = Z⊕Z is not c-multiplication by Remark 2.1.

Recall that ”an S-module W is called antihopfian if W/U ∼= W for all a
proper submodule U of W [8]”. The following proposition state that the endo-
morphism of any antihopfian module is c-multiplication ring.

Proposition 2.15. Let W be an antihopfian S-module. Then the endomor-
phism ring of W is c-multiplication.

Proof. Let End(W ) is the endomorphism ring of c-multiplication module W .
Since W is antihopfian so End(W ) is an integral domain by [14] and hence
it is a commutative ring with identity so by Remark 2.1(7). End(W ) is a c-
multiplication ring.
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Recall that ”a module W is called a prime if ann(x) = ann(y) for each
nonzero element x and y in W . Equivalently, a module W is prime if for all
nonzero submodule K of W , ann(K) = ann(W ) ”[5]. Recall that ”a module W
of commutative ring S is called a scalar module if for all f ∈ End(W ), f ̸= 0,
there exists 0 ̸= r ∈ S such that f(m) = mr for each m ∈ W” [17]. Now we
ready to prove the following:

Proposition 2.16. Let W be a scalar S-module with ann(W ) is prime ideal in
S. Then End(W ) is c-multiplication ring.

Proof. By [15, Lemma 6.2], we have End(W ) ∼= S/(ann(W )). But W is
scalar module and ann(W ) is prime, then S/(ann(W )) is integral domain hence
End(W ) is commutative ring with identity so by Remark 2.1(7), it is c-multi-
plication ring.

Since ann(W ) is prime for each prime module. Thus we can get the following
corollary:

Corollary 2.3. Let W be a prime scalar S-module. Then End(W ) is a c-
multiplication ring.

Recall that ”a module W is called faithful if ann(W ) = 0”.

Proposition 2.17. Let W be a faithful scalar S-module. Then S is c-multiplication
ring if and only if W is c-multiplication module.

Proof. Since W is scalar S-module, then End(W ) ∼= S/(ann(W )). But M is
faithful so ann(W ) = 0, hence End(W ) ∼= S and hence S is c-multiplication
ring if and only if W is c-multiplication module.

Recall that ”a submodule U of an S-module W is called characteristic if,
for all automorphism β of W , β(U) = U”[9]. Under c-multiplication module we
shall see every closed submodule is characteristic as the next proposition:

Proposition 2.18. Let W be a c-multiplication S-module. Then every closed
submodule of W is characteristic.

Proof. Let U be a closed submodule of a c-multiplication module W , so there
exists an ideal I of S such that U = IW . Let β be an automorphism that is
β is epimorphism and so β(U) = β(IW ) = Iβ(W ) = IW = U . Thus U is
characteristic submodule.

Inaam in [10] introduced purely duo modules (briefly P -duo module), which
is ”a module in which every pure submodule is fully invariant”. Atani in [4]
introduced the concept pure multiplication where ”an S-module W is called a
pure multiplication provided for each proper pure submodule U of W , U = IW
for some ideal I of S”. Also Th. Ghawi in [9] studied pure multiplication
modules.
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Proposition 2.19. Let W be a semisimple S-module. Then The following
statements are equivalent:

(i) W is c-multiplication;

(ii) W is multiplication;

(iii) W is CL-duo;

(iv) W is duo;

(v) W is p-duo;

(vi) W is fully stable;

(vii) W is pure multiplication;

Proof. (i)⇔(ii) It is clear by Proposition 2.6.
(ii) ⇔(iii) ⇔(iv) ⇔(v) ⇔ (vi) follows by [2, Theorem(5.1)].
(i)⇔ (vii) SinceW is semisimple S-module by hypothesis so every submodule

of W is direct summand and so every submodule of W is closed and pure. Thus
W is c-multiplication if and only if W is pure multiplication module.

Recall that ”a submodule U of an S-module W is called dual stable, if
U ⊆ kerf for each S-homomorphism f : W → W/U [1]”.

Proposition 2.20. Every closed submodule c-multiplication S-module is dual
stable.

Proof. Let U ≤c W , since W is c-multiplication, hence U = IW for some ideal
I in S. Let f : W → W/U be an homomorphism, so f(U) = f(IW ) = If(W ) ⊆
I(W/U) = IW/U = U/U = 0W/U , and so U ⊆ kerf . Thus U is dual stable

Proposition 2.21. Let S be a commutative ring and W be a c-multiplication
S-module such that W = IW for some ideal I in S, then U = IU for each
closed submodule U of W .

Proof. Let U ≤c W . Since W is c-multiplication, hence U=JW for some ideal
J in S. By assumption, W = IW . Hence U = JW = JIW . But JI = IJ ,
since S is a commutative ring. Therefore U = IJW = IU .
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