On condition (P'_E)

Mahdiyeh Abbasi*

Department of Mathematics University of Sistan and Baluchestan Zahedan Iran abbasi.m@iauzah.ac.ir

Akbar Golchin

Department of Mathematics University of Sistan and Baluchestan Zahedan Iran agdm@math.usb.ac.ir

Hossein Mohammadzadeh Saany

Department of Mathematics
University of Sistan and Baluchestan
Zahedan
Iran
saany582@qmail.com

Abstract. In (Semigroup and Applications: Proceedings of Conference, world scientific, (1998) 72-77) Golchin and Renshaw introduced Condition (P_E) and showed that this condition implies weak flatness, but not the converse. In this paper, we introduce a generalization of Conditions (P_E), called Condition (P_E'), and will show that this condition implies principal weak flatness. Also we give a characterization of monoids by this condition over their right acts.

Keywords: condition (P'_E) , condition $(W_{(WF)'})$, P'_E -left annihilating, weakly right reversible.

1. Introduction

Laan [12] introduced Condition (E'), a generalization of Condition (E). Golchin and Renshaw [3] introduced a generalization of Condition (P) called Condition (P_E) . After that Golchin and Mohammadzadeh [7] provided a characterization of monoids by this Condition of their right acts. They also introduced another generalization of Condition (P) called Condition (P'), and gave a characterization of monoids by this property of their right acts [9]. In this paper, we introduce a generalization of Conditions (P_E) and (P'), called Condition (P'_E) and will give a characterization of monoids by this condition of their right acts.

^{*.} Corresponding author

Throughout this paper S will denote a monoid. We refer the reader to [11] for basic definitions and terminologies relating to semigroups and acts over monoids, one can see and [2] for definitions and results on flatness properties which are used here.

A nonempty set A is called a right S-act, usually denoted A_S , if S acts on A unitarily from the right, that is, there exists a mapping $A \times S \to A$, $(a, s) \mapsto as$, satisfying the conditions (as)t = a(st) and a1 = a, for all $a \in A$, and all $s,t \in S$. A right S-act A_S satisfies Condition (E) if for all $a \in A_S$, $s,t \in S$, as = at implies that there exist $a' \in A_S$, $u \in S$ such that a = a'u and us = ut. A_S satisfies Condition (E') if for all $a \in A_S$, $s,t,z \in S$, as = at and sz = tzimply that there exist $a' \in A_S$, $u \in S$ such that a = a'u and us = ut. A right S-act A_S satisfies Condition (PWP) if for all $a, a' \in A_S$, $s \in S$, as = a's implies that there exist $a'' \in A_S$, $u, v \in S$ such that a = a''u, a' = a''v and us = vs. A right S-act A_S satisfies Condition (P) if for all $a, a' \in A_S$, $s, t \in S$, as = a'timplies that there exist $a'' \in A_S$ and $u, v \in S$ such that a = a''u, a' = a''v and us = vt. A_S satisfies Condition (P') if for all $a, a' \in A_S$, $s, t, z \in S$, as = a't and sz = tz imply that there exist $a'' \in A_S$ and $u, v \in S$ such that a = a''u, a' = a''vand us = vt. A right S-act A_S satisfies Condition (P_E) if for all $a, a' \in A_S$, $s,t\in S, as=a't$, implies that there exist $a''\in A_S, u,v\in S,e,f\in E(S)$ such that ae = a''ue, a'f = a''vf, es = s, ft = t and us = vt. It is clear that Condition (P) implies Condition (P_E) .

2. General properties

Definition 2.1. A right S-act A_S satisfies Condition (P_E') if for all $a, a' \in A_S$, $s, t, z \in S$, as = a't and sz = tz, imply that there exist $a'' \in A_S$, $u, v \in S$, $e, f \in E(S)$ such that ae = a''ue, a'f = a''vf, es = s, ft = t and us = vt.

It is obvious that Conditions (P_E) and (P') imply Condition (P'_E) . Examples 2.3 and 3.9 show that these implications are strict.

Definition 2.2 ([1]). A right S-act A_S satisfies Condition $(W_{(WF)'})$, if as = a't and sz = tz, for $a, a' \in A_S, s, t, z \in S$, imply that there exist $a'' \in A_S, w \in Ss \cap St$, such that as = a't = a''w.

Theorem 2.1. For any right S-act A_S we have the following strict implications:

- (1) Condition $(P'_E) \Rightarrow principal weak flatness;$
- (2) Condition $(P'_E) \Rightarrow Condition (W_{(WF)'}).$

Proof. (1) Suppose that A_S satisfies Condition (P'_E) and let as = a's, for $a, a' \in A_S, s \in S$. By assumption there exist $a'' \in A_S, u, v \in S, e, f \in E(S)$ such that ae = a''ue, a'f = a''vf, es = fs = s and us = vs. Then we have

$$a \otimes s = a \otimes es = ae \otimes s = a''ue \otimes s = a'' \otimes ues = a'' \otimes us$$

= $a'' \otimes vs = a'' \otimes vfs = a''vf \otimes s = a'f \otimes s = a' \otimes fs = a' \otimes s$

in $A_S \otimes_S Ss$. That is, A_S is principally weakly flat as required.

(2) Suppose that A_S satisfies Condition (P'_E) , and let as = a't, sz = tz for $a, a' \in A_S, s, t, z \in S$. By assumption there exist $a'' \in A_S, u, v \in S, e, f \in E(S)$ such that ae = a''ue, a'f = a''vf, es = s, ft = t and us = vt. If w = us = vt then $w \in Ss \cap St$, and as = aes = a''ues = a''us = a''w. Similarly, a't = a''w and so A_S satisfies Condition $(W_{(WF)'})$ as required.

Example 3.1 shows that these implications are strict.

Lemma 2.1. Let S be a monoid. Then:

- (1) if $\{A_i \mid i \in I\}$ is a chain of subacts of an act A_S and every $A_i, i \in I$ satisfies Condition (P'_E) , then $\bigcup_{i \in I} A_i$ satisfies Condition (P'_E) ;
- (2) $A_S = \coprod_{i \in I} A_i$ satisfies Condition (P'_E) if and only if every $A_i, i \in I$ satisfies Condition (P'_E) ;
- (3) the right S-act S_S satisfies Condition (P'_E) .

Proof. It is clear from definition.

Theorem 2.2. Any retract of a right S-act satisfying Condition (P'_E) satisfies Condition (P'_E) .

Proof. Let A_S be a retract of B_S and suppose B_S satisfies Condition (P'_E) . Let as = a't, sz = tz, for $a, a' \in A_S, s, t, z \in S$. Since A_S is a retract of B_S , there are homomorphisms $\varphi : A_S \to B_S$ and $\varphi' : B_S \longrightarrow A_S$, such that $\varphi'\varphi = 1_A$. Then we have $\varphi(as) = \varphi(a't)$ or $\varphi(a)s = \varphi(a')t$. Since $\varphi(a), \varphi(a') \in B_S$, by assumption there exist $b \in B_S, u, v \in S$, $e, f \in E(S)$ such that $\varphi(a)e = bue$, $\varphi(a')f = bvf$, es = s, ft = t and us = vt. Then $\varphi'(\varphi(a)e) = \varphi'(bue) = \varphi'(b)ue$, and $\varphi'(\varphi(a')f) = \varphi'(bvf) = \varphi'(b)vf$. If $\varphi'(b) = a''$, then ae = a''ue, a'f = a''vf. It is obvious that $a'' \in A_S$ and so A_S satisfies Condition (P'_E) as required. \square

Definition 2.3 ([9]). Let S be a monoid and let $P \subseteq S$ be a submonoid of S. P is called weakly right reversible if

$$(\forall s, t \in P)(\forall z \in S)(sz = tz \Rightarrow (\exists u, v \in P)(us = vt)).$$

Proposition 2.1. For any monoid S the following statements are equivalent:

- (1) if $A_S = \prod_{i \in I} A_i$ satisfies Condition (P'_E) , then every A_i , $i \in I$ satisfies Condition (P'_E) ;
- (2) the one-element right S-act Θ_S satisfies Condition (P'_E) ;
- (3) the one-element right S-act Θ_S satisfies Condition $(W_{(WF)'})$;
- (4) S is weakly right reversible;

(5) there exists a right S-act which contains a zero and satisfies Condition (P'_E) .

Proof. Since Θ_S is a retract of any right S-act containing a zero, (2) and (5) are equivalent by Theorem 2.2.

- $(1) \Rightarrow (2)$. Since $S_S \cong S_S \times \Theta_S$, it follows from Lemma 2.1(3).
- $(2) \Rightarrow (3)$. It follows From Theorem 2.1(2).
- $(3) \Rightarrow (4)$. Let sz = tz for $s, t, z \in S$. Since $\theta s = \theta t$, and the right S-act Θ_S satisfies Condition $(W_{(WF)'})$, there exist $u, v \in S$ such that us = vt, that is, S is weakly right reversible.
- $(4) \Rightarrow (1)$. Suppose that $A_S = \prod_{i \in I} A_i$ satisfies Condition (P'_E) , and let $a_i s = a'_i t, sz = tz$, for $a_i, a'_i \in A_i, s, t, z \in S$. Since S is weakly right reversible, there exist $u_1, v_1 \in S$ such that $u_1 s = v_1 t$. For every $j \in I \setminus \{i\}$, let a_j be a fix element of A_j . Define

$$c_j = \begin{cases} a_j u_1, & j \neq i \\ a_i, & j = i \end{cases}, \quad d_j = \begin{cases} a_j v_1, & j \neq i \\ a'_i, & j = i \end{cases}.$$

Thus $(c_j)_I s = (d_j)_I t$, and so by assumption there exist $(a_j'')_I \in \prod_{i \in I} A_i$, $u, v \in S, e, f \in E(S)$ such that $(c_j)_I e = (a_j'')_I u e$, $(d_j)_I f = (a_j'')_I v f$, e = s, f t = t, and u = v t. Hence $a_i e = a_i'' u e$, $a_i' f = a_i'' v f$, and so A_i satisfies Condition (P_E') . \square

Corollary 2.1. Let S be a commutative monoid and $\{A_i | i \in I\}$ be a family of right S-acts. If $A_S = \prod_{i \in I} A_i$ satisfies Condition (P'_E) , then every A_i , $i \in I$ satisfies Condition (P'_E) .

Example 2.3. Let $S = \left\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} \middle| a, b \in \mathbb{Z}, a \neq 0 \right\}$ with matrix product as operation, then S is a right cancellative monoid, and so it is weakly right reversible, but S is not right reversible, since for every $a, b, c, d \in Z$ with $a, c \neq 0$,

$$\left(\begin{array}{cc} a & 0 \\ b & 1 \end{array}\right) \left(\begin{array}{cc} 3 & 0 \\ 3 & 1 \end{array}\right) \neq \left(\begin{array}{cc} c & 0 \\ d & 1 \end{array}\right) \left(\begin{array}{cc} 3 & 0 \\ 4 & 1 \end{array}\right).$$

Now the one-element right S-act Θ_S satisfies Condition (P'_E) by Theorem 2.1, but it does not satisfy Condition (P_E) , since otherwise it is weakly flat which is not the case.

3. Homological classifications

In this section we will classify monoids by Condition (P'_E) of their (cyclic, Rees factor) acts.

Let K be a proper right ideal of a monoid S. If x, y and z denote elements not belonging to S, define

$$A(K) = (\{x, y\} \times (S \setminus K)) \cup (\{z\} \times K)$$

and define a right S-action on A(K) by

$$(x,u)s = \begin{cases} (x,us), & us \notin K \\ (z,us), & us \in K \end{cases}$$
$$(y,u)s = \begin{cases} (y,us), & us \notin K \\ (z,us), & us \in K \end{cases}$$
$$(z,u)s = (z,us).$$

A(K) is a right S-act, which called the amalgamated coproduct of S_S and S_S by the core K_S , and usually denoted by $S_S \coprod^{K_S} S_S$.

Recall from [11] that a right ideal K_S of a monoid S is called *left stabilizing* if for every $k \in K_S$, there exists $l \in K_S$ such that lk = k. The following example shows that implications in Theorem 2.1 are strict.

Example 3.1. Let $S = \{0, 1, e, a\}$ be a monoid with the identity element 1 and zero element 0, and $e^2 = e$, ae = a, $a^2 = ea = 0$. Let $K = \{0, e\}$. Now the right S-act $A(K) = S_S \coprod^{K_S} S_S$ does not satisfy Condition (P'_E) , since the equality (x, a)a = (y, a)a implies x = y which is a contradiction. It is a routine matter to verify that A_S satisfies Condition $(W_{(WF)'})$. Since K_S is a left stabilizing right ideal, A_S is principally weakly flat by ([11], III, 12.19).

Lemma 3.1. Let K_S be a proper right ideal of a monoid S. If the right S-act $S_S \coprod^{K_S} S_S$ satisfies Condition (P'_E) , then K_S is left stabilizing.

Proof. Suppose that the right S-act $S_S \coprod^{K_S} S_S$ satisfies Condition (P'_E) and let $k \in K_S$. Since (x,1)k = (y,1)k, there exist $w \in \{x,y,z\}, r, u, v \in S$, and $e, f \in E(S)$ such that (x,1)e = (w,r)ue, (y,1)f = (w,r)vf, ek = fk = k and uk = vk. If $e, f \notin K_S$, then (x,e) = (w,rue) and (y,f) = (w,rvf), which implies that w = x = y, a contradiction. Thus at least one of e or f belongs to K_S , and so the equality ek = fk = k shows that K_S is left stabilizing. \square

We recall from [11] that a monoid S is called *left PP* if every principal left ideal of S (as a left S-act) is projective, it is equivalent to say that for every $s \in S$ there exists an idempotent $e \in S$ such that es = s and for all $u, v \in S$, us = vs implies ue = ve.

Theorem 3.2 ([3]). Let S be a left PP monoid and A_S be a right S-act. Then A_S is weakly flat if and only if it satisfies Condition (P_E) .

Theorem 3.3. For any monoid S the following statements are equivalent:

- (1) all right S-acts of the form $S_S \coprod^{K_S} S_S$ satisfy Condition (P_E) ;
- (2) all right S-acts of the form $S_S \coprod^{K_S} S_S$ satisfy Condition (P'_E) ;
- (3) S is a regular monoid.

Proof. The implication $(1) \Rightarrow (2)$ is obvious.

- $(2) \Rightarrow (3)$. Let $s \in S$. If sS = S then s is obviously regular. Assume that $sS \neq S$, then by assumption the right S-act $S_S \coprod^{sS} S_S$ satisfies Condition (P'_E) and so by Lemma 3.1, sS is left stabilizing. Thus there exists $l \in sS$ such that ls = s, that is s is regular as required.
- $(3) \Rightarrow (1)$. Let K_S be a proper right ideal of S and $k \in K_S$. By assumption there exist $k' \in S$ such that k = kk'k and so K_S is left stabilizing. Thus $S_S \coprod^{K_S} S_S$ is weakly flat by ([11], III, 12.19). Since S is regular, it is left PP and so by Theorem 3.2, $S_S \coprod^{K_S} S_S$ satisfies Condition (P_E) .
- **Theorem 3.4.** Let S be a monoid and ρ be a right congruence on S. Then the right S-act S/ρ satisfies Condition (P'_E) if and only if, for all $x, y, z, s, t \in S$ with $(xs)\rho(yt)$ and sz = tz, there exist $u, v \in S, e, f \in E(S)$, such that $(xe)\rho(ue), (yf)\rho(vf), es = s, ft = t$ and us = vt.
- **Proof.** Necessity. Let $(xs)\rho(yt)$ and sz=tz, for $x,y,z,s,t\in S$. Then $[x]_{\rho}s=[y]_{\rho}t$, and so Condition (P'_E) of S/ρ implies that there exist $u',v',z'\in S,e,f\in E(S)$, such that $[x]_{\rho}e=[z']_{\rho}u'e=[z'u']_{\rho}e$, $[y]_{\rho}f=[z']_{\rho}v'f=[z'v']_{\rho}f$, es=s,ft=t and u's=v't. If u=z'u' and v=z'v', then $(xe)\rho(ue)$, $(yf)\rho(vf)$ and us=vt, as required.

Sufficiency. Let $[x]_{\rho}s = [y]_{\rho}t$ and sz = tz, for $x, y, z, s, t \in S$. Then $(xs)\rho(yt)$, and so by assumption there exist $u, v \in S, e, f \in E(S)$, such that $(xe)\rho(ue)$, $(yf)\rho(vf)$, es = s, ft = t and us = vt. $[x]_{\rho}e = [1]_{\rho}ue$ and $[y]_{\rho}f = [1]_{\rho}vf$, and so S/ρ satisfies Condition (P'_E) as required.

Corollary 3.1. Let S be a monoid and $u \in S$. Then the principal right ideal uS satisfies Condition (P'_E) if and only if, for all $x, y, z, s, t \in S$, uxs = uyt and sz = tz imply the existence of $v, r \in S, e, f \in E(S)$, such that uxe = uve, uyf = urf, es = s, ft = t, and vs = rt.

Proof. Since $uS \cong S/ker\lambda_u$, it suffices to take $\rho = ker\lambda_u$.

Theorem 3.5 ([9]). Let S be a monoid and ρ be a right congruence on S. Then the right S-act S/ρ satisfies Condition (P') if and only if, for all $x, y, z, s, t \in S$ with $(xs)\rho(yt)$ and sz = tz, there exist $u, v \in S$, such that $x\rho u, y\rho v$ and us = vt.

Theorem 3.6. Let S be a monoid such that every element of $E(S) \setminus \{1\}$ is a right zero and let ρ be a right congruence on S. Then S/ρ satisfies Condition (P') if and only if it satisfies Condition (P'_E) .

Proof. It is clear that Condition (P') implies Condition (P'_E) . Now suppose that S/ρ satisfies Condition (P'_E) and let $(xs)\rho(yt), sz = tz$, for $x, y, z, s, t \in S$. By assumption there exist $u, v \in S, e, f \in E(S)$ such that $(xe)\rho(ue), (yf)\rho(vf), es = s, ft = t$ and us = vt. If e = f = 1 then the result follows from Theorem 3.5. If $e = 1, f \neq 1$, then f and so t are right zeros, thus $x\rho u, y\rho y$ and us = yt.

If $e \neq 1, f = 1$, a similar argument as the previous case shows the result. If $e \neq 1, f \neq 1$ then e and f are both right zero and so are s and t. Then $x\rho x, y\rho y$ and xs = yt, thus S/ρ satisfies Condition (P') by Theorem 3.5.

Definition 3.1. Let S be a monoid. A right ideal K_S of S is called P'_E -left annihilating if for all $x, y, z, s, t \in S$,

$$[(xs \neq yt) \land (sz = tz)] \Rightarrow [(xs \notin K_S) \lor (yt \notin K_S) \lor, (\exists u, v \in S, e, f \in E(S) : es = s, ft = t, us = vt, (xe \neq ue \Rightarrow xe, ue \in K_S), (yf \neq vf \Rightarrow yf, vf \in K_S))]$$

Lemma 3.2. Let S be a monoid and K_S be a right ideal of S. If K_S is P'_E -left annihilating, then K_S is left stabilizing.

Proof. If $K_S = S$, then obviously K_S is left stabilizing. Thus we assume that K_S is a proper P'_E -left annihilating right ideal and let $k \in K_S$. For every $l \in K_S$ either lk = k, and so we are done, or $lk \neq k$. Since $k, lk \in K_S$ by assumption there exist $u, v \in S, e, f \in E(S)$ such that ek = fk = k, uk = vk, and $le \neq ue$ implies that $le, ue \in K_S$, and $f \neq vf$ implies that $f, vf \in K_S$. If $f \neq vf$ then $f \in K_S$ and fk = k implies that K_S is left stabilizing. If f = vf, then $le \neq ue$, otherwise

$$lk = lek = uek = uk = vk = vfk = fk = k,$$

a contradiction. So $ue \in K_S$ and

$$k = fk = vfk = vk = uk = uek,$$

thus K_S is left stabilizing as required.

Theorem 3.7. Let S be a monoid and K_S be a right ideal of S. Then S/K_S satisfies Condition (P'_E) , if and only if S is weakly right reversible and K_S is P'_E -left annihilating.

Proof. Necessity. Suppose that S/K_S satisfies Condition (P'_E) , for the right ideal K_S of S, and let sz = tz, for $s, t, z \in S$. Let $k \in K_S$, since $[k]_{\rho_K} s = [k]_{\rho_K} t$, Condition $(W_{(WF)'})$, implies that there exist $u, v \in S$ such that us = vt, thus S is weakly right reversible. To show that K_S is P'_E -left annihilating, suppose that $xs \neq yt, sz = tz$, for $x, y, z, s, t \in S$. If $xs \notin K_S$ or $yt \notin K_S$ then the result follows, otherwise $xs, yt \in K_S$ and so $(xs)\rho_K(yt)$. Thus by Theorem 3.4 there exist $u, v \in S, e, f \in E(S)$ such that $(xe)\rho_K(ue), (yf)\rho_K(vf), es = s, ft = t$ and us = vt. Since $(xe)\rho_K(ue)$, it follows that xe = ue or $xe, ue \in K_S$. A similar argument shows that yf = vf or $yf, vf \in K_S$.

Sufficiency. Suppose that S is a weakly right reversible monoid and K_S is a P'_E -left annihilating right ideal of S. Then there are two cases as follow:

Case 1. $K_S = S$. Since S is weakly right reversible, $S/K_S \cong \Theta_S$ satisfies Condition (P'_E) by Theorem 2.1.

Case 2. $K_S \neq S$. Suppose that $(xs)\rho_K(yt)$ and let sz = tz, for $x, y, z, s, t \in S$. Then there are two possibilities that can arise:

- (1) xs = yt. If u = x, v = y and e = f = 1, then by Theorem 3.4, S/K_S satisfies Condition (P'_E) .
- (2) $xs \neq yt$. Then $xs, yt \in K_S$. Since K_S is P'_E -left annihilating, there exist $u, v \in S, e, f \in E(S)$ such that es = s, ft = t, us = vt, if $xe \neq ue$ then $xe, ue \in K_S$, and if $yf \neq vf$ then $yf, vf \in K_S$. If $xe \neq ue$, then by assumption $(xe)\rho_K(ue)$, otherwise xe = ue, and again $(xe)\rho_K(ue)$. A similar argument shows that $(yf)\rho_K(vf)$, and so by Theorem 3.4, S/K_S satisfies Condition (P'_E) .

Definition 3.2 ([9]). Let S be a monoid and K_S be a right ideal of S. K_S is called completely left annihilating if for all $x, y, z, s, t \in S$,

$$[(xs \neq yt) \land (sz = tz)] \Rightarrow [(xs \notin K_S) \lor (yt \notin K_S) \lor (x \in K_S) \lor (y \in K_S)]$$

Theorem 3.8 ([9]). Let S be a monoid and K_S be a right ideal of S. Then S/K_S satisfies Condition (P'), if and only if $K_S = S$ and S is weakly right reversible or K_S is a completely left annihilating and left stabilizing proper right ideal.

The following example shows that Condition (P'_E) does not imply Condition (P').

Example 3.9. Let S and K_S be as in Example 3.1. Then $0 = aa \neq 1e = e$ and $0, e \in K_S, a, 1 \notin K_S$, and so K_S is not completely left annihilating, thus S/K_S does not satisfy Condition (P') by Theorem 3.8. It can be seen that K_S is P'_E -left annihilating and S is weakly right reversible, and so S/K_S satisfies Condition (P'_E) .

Definition 3.3 ([1]). A monoid S satisfies Condition $(R_{(WF)'})$, if for all $x, y, z, s, t \in S$, sz = tz implies the existence of $w \in Ss \cap St$ such that $w\rho(xs, yt)xs$.

Theorem 3.10. For any monoid S the following statements are equivalent:

- (1) all right S-acts satisfy Condition (P'_E) ;
- (2) all finitely generated right S-acts satisfy Condition (P'_E) ;
- (3) all cyclic right S-acts satisfy Condition (P'_E) ;
- (4) all monocyclic right S-acts satisfy Condition (P'_E) ;
- (5) S is regular and satisfies Condition $(R_{(WF)'})$.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$. Since by assumption all monocyclic right S-acts are principally weakly flat, S is regular by ([11], IV, 6.6). Now let sz = tz, and suppose that $\rho = \rho(xs, yt), x, y, z, s, t \in S$. By assumption S/ρ satisfies Condition (P'_E) . Since $(xs)\rho(yt)$, by Theorem 3.4, there exist $u, v \in S, e, f \in E(S)$, such that $(xe)\rho(ue), (yf) \rho(vf), es = s, ft = t$ and us = vt. Then $xs = (xes)\rho(ues) = us$. Now $w = us = vt \in Ss \cap St$, and $w\rho(xs)$ as required.

- $(5)\Rightarrow (3)$. Let ρ be a right congruence on S, and suppose that $(xs)\rho(yt), sz=tz, x, y, z, s, t\in S$. Since S satisfies Condition $(R_{(WF)'})$, there exist $u,v\in S$ such that $w=us=vt, \, xs\rho(xs,yt)us$ and $yt\rho(xs,yt)$ vt. Since S is regular there exist $s',t'\in S$ such that s=ss's,t=tt't and so $(xss')\rho(xs,yt)(uss'), \, (ytt')\rho(xs,yt)(vtt')$. If e=ss',f=tt', then $xe\rho(xs,yt)ue,\, yf\rho(xs,yt)vf,\, es=s$ and ft=t. But $\rho(xs,yt)\subseteq \rho$, and so S/ρ satisfies Condition (P_E') by Theorem 3.4.
- $(3) \Rightarrow (1)$. Let A_S be a right S-act and as = a't, sz = tz, for $a, a' \in A_S, s, t, z \in S$. Since $(3) \Leftrightarrow (5)$, S is regular and so there exist s', t' such that s = ss's and t = tt't. Then a(ss's) = a'(tt't), and so (bs')s = (bt')t, where b = as = a't. By assumption bS satisfies Condition (P'_E) , and so there exist $b'' \in bS \subseteq A_S, u, v \in S, e', f' \in E(S)$ such that

$$bs'e' = b''ue', bt'f' = b''vf', e's = s, f't = t, us = vt.$$

If e = ss', f = tt', then

$$ae = ass' = a(ss's)s' = (ass'e')ss' = (bs'e')ss' = (b''ue')ss' = b''uss' = b''ue.$$

Similarly, a'f = b''vf. It is clear that es = s and ft = t and so A_S satisfies Condition (P'_E) as required.

Definition 3.4 ([11]). Let L denotes the set of all left ideals of a monoid S. S is called right L-reductive if for all $gK \in L$ and for all $a, b \in gK$, $a \neq b$, there exists $x \in gK$ such that $ax \neq bx$.

Theorem 3.11. Let S be a monoid. If all right S-acts satisfy Condition (P'_E) , then S is right L-reductive.

Proof. Suppose that S is not L-reductive, thus there exist a left ideal ${}_{S}K$, and $a,b\in{}_{S}K$ such that $a\neq b$ and for all $x\in{}_{S}K$, ax=bx. By Theorem 3.10, S satisfies Condition $(R_{(WF)'})$, so there exists $w\in Sa\cap Sb$ such that $w\rho(a,b)a$. Thus by ([11], I, 4.37) either w=a or there exist $u_1,...,u_n,a_1,b_1,...,a_n,b_n\in S$, such that $\{a_i,b_i\}=\{a,b\}$ for i=1,...,n, and

$$a = a_1 u_1$$
 $b_2 u_2 = a_3 u_3$ $b_n u_n = w$.
 $b_1 u_1 = a_2 u_2$ $b_3 u_3 = a_4 u_4$...

Since S is regular by Theorem 3.10, there exist $a', b' \in S$ such that a = aa'a, b = bb'b. Now $a \in {}_SK$, implies that $u_1a'a \in {}_SK$. Then

$$a = aa'a = a_1u_1a'a = b_1u_1a'a = a_2u_2a'a = \dots = b_nu_na'a = wa'a = w.$$

Thus in both cases a = w, also $b \in {}_{S}K$ implies that $b'b \in {}_{S}K$, and so

$$b = bb'b = ab'b = wb'b = w$$
.

Hence a = b, which is a contradiction.

We recall from [11] that a band is an idempotent semigroup. Let A and B be nonempty sets and $S = A \times B$, define a multiplication on S by (a,b)(c,d) = (a,d) for $a,c \in A,b,d \in B$. This semigroup is called a rectangular band. An idempotent monoid S is called left regular if st = sts, for every $s,t \in S$.

Theorem 3.12 ([11]). A band is a semilattice of rectangular bands.

Theorem 3.13. Let S be an idempotent monoid. Then all right S-acts satisfy Condition (P'_E) , if and only if S is left regular.

Proof. Necessity. Since S is an idempotent monoid, it is a semilattice of rectangular bands by Theorem 3.12. Let $S = \bigcup_{\gamma \in \Gamma} S_{\gamma}$ be a semilattice such that each S_{γ} is a rectangular band. By dual of ([11], I, 3.46) we need to show that each S_{γ} is a left zero band, so let $x, y \in S_{\gamma}$, $(\gamma \in \Gamma)$. Let $z \in S_{\gamma}$ be an arbitrary element, and let $\lambda \in \Gamma$ be such that $1 \in S_{\lambda}$, thus $1xz, 1yz \in S_{\lambda\gamma}$, and since $S_{\lambda\gamma}$ is a rectangular band we have 1xz = 1yz = 1z = z. By assumption all right S-acts satisfy Condition (P'_E) , and so by Theorem 3.10, S satisfies Condition $(R_{(WF)'})$. Thus there exists $w = ux = vy \in Sx \cap Sy$ such that $w\rho(x,y)x$, and so by ([11], I, 4.37) either x = w = ux or there exist $u_1, ..., u_n, x_1, y_1, ..., x_n, y_n \in S$, such that $\{x_i, y_i\} = \{x, y\}$, for i = 1, ..., n and

$$x = x_1u_1$$
 $y_2u_2 = x_3u_3$... $y_nu_n = vy$.
 $y_1u_1 = x_2u_2$ $y_3u_3 = x_4u_4$...

In first case xy = xvy = xux = xx = x. In the second case it can be seen that w = vy belongs to S_{γ} . Thus xy = x(vy)y = xvy = xux = x as required.

Sufficiency. Since S is an idempotent monoid, obviously it is regular. Now let $x, y, z, s, t \in S$, and sz = tz, then $xs\rho(xs, yt)yt$ implies that $xst\rho(xs, yt)yt$. If w = xsts = xst then $w \in Ss \cap St$ and $w\rho(xs, yt)xs$. Thus S satisfies Condition $(R_{(WF)'})$, and so every right S-act satisfies Condition (P'_E) by Theorem 3.10. \square

Lemma 3.3. Let S be a weakly right reversible regular monoid. Then every right Rees factor S-act satisfies Condition $(W_{(WF)'})$.

Proof. Suppose that S is a weakly right reversible regular monoid and K_S is a right ideal of S. Then there are two cases as follow:

Case 1. $K_S = S$. Since S is weakly right reversible, $S/K_S \cong \Theta_S$ satisfies Condition $(W_{(WF)'})$ by Theorem 2.1.

Case 2. $K_S \neq S$. Since S is regular, S/K_S is principally weakly flat by ([11], IV, 6.6) and so K_S is left stabilizing. Let $[x]_{\rho_K}s = [y]_{\rho_K}t$ and sz = tz, for $x, y, z, s, t \in S$. Since $(xs)\rho_K(yt)$ then xs = yt or $xs, yt \in K_S$. If xs = yt, set u = x and v = y, then $x(\rho_K \vee ker\rho_s)u$ and $y(\rho_K \vee ker\rho_t)v$. If $xs, yt \in K_S$, then there exist $l_1, l_2 \in K_S$ such that $l_1xs = xs$ and $l_2yt = yt$. Thus, $(l_1x)ker\rho_s(x)$ and $(l_2y)ker\rho_t(y)$. Since S is weakly right reversible there exist $u', v' \in S$ such that u's = v't. If $u = l_1u', v = l_1v'$, then $(x)ker\rho_s(l_1x)\rho_K(u)$ and so $x(\rho_K \vee ker\rho_s)u$. Similarly, $y(\rho_K \vee ker\rho_t)v$, and $us = l_1u's = l_1v't = vt$. So by ([11], III, 10.6) in both cases $[x]_{\rho_K} \otimes s = [u]_{\rho_K} \otimes s$, and $[y]_{\rho_K} \otimes t = [v]_{\rho_K} \otimes t$ in $S/\rho_K \otimes_S Ss$, and $S/\rho_K \otimes_S St$, respectively. Hence

$$[x]_{\rho_K} \otimes s = [u]_{\rho_K} \otimes s = [1]_{\rho_K} \otimes us = [1]_{\rho_K} \otimes vt = [v]_{\rho_K} \otimes t = [y]_{\rho_K} \otimes t,$$

in $S/\rho_K \otimes_S (Ss \cup St)$. Thus, there exist $s_1, ..., s_k, t_1, ..., t_k, b_1, ..., b_{k-1} \in S, u_1, ..., u_k \in Ss \cup St$, such that

Let j be the first index such that $u_j \in St$. If j = 1, then $s = s_1u_1 \in St$, and so $s = v_1t$, for some $v_1 \in S$, thus Condition $(W_{(WF)'})$ holds for w = s and a'' = x. Suppose now that j > 1. Then $u_{j-1} \in Ss$, and since $s_ju_j = t_{j-1}u_{j-1}$, we have $w = s_ju_j \in Ss \cap St$ and so

$$[x]_{\rho_K}s = [x]_{\rho_K}s_1u_1 = [b_1]_{\rho_K}t_1u_1 = \dots = [b_{j-1}]_{\rho_K}s_ju_j = [b_{j-1}]_{\rho_K}w.$$

Thus Condition $(W_{(WF)'})$ holds for $a'' = b_{j-1}$.

Theorem 3.14 ([11]). Let S be a left PP monoid. A right S-act A_S is principally weakly flat if and only if for every $a, a' \in A_S, s \in S, as = a's$ implies that there exists $e \in E(S)$ such that es = s and ae = a'e.

Theorem 3.15. For any monoid S the following statements are equivalent:

- (1) all right Rees factor S-acts satisfy Condition (P'_E) ;
- (2) S is a weakly right reversible regular monoid.

Proof. (1) \Rightarrow (2). Suppose that all right Rees factor S-acts satisfy Condition (P'_E) , then by Theorem 2.1(1) all right Rees factor S-acts are principally weakly flat and so S is regular by ([11], IV, 6.6). Also by assumption the one-element

right S-act Θ_S satisfies Condition (P'_E) , and so S is weakly right reversible by Theorem 2.1.

 $(2) \Rightarrow (1)$. Suppose that S is a weakly right reversible regular monoid and let K_S be a right ideal of S. Then there are two cases that can arise:

Case 1. $K_S = S$. Then $S/K_S \cong \Theta_S$ satisfies Condition (P'_E) by Theorem 2.1.

Case 2. $K_S \neq S$. Then S/K_S is principally weakly flat by ([11], IV, 6.6). Let $[x]_{\rho_K}s = [y]_{\rho_K}t$, and sz = tz, for $x, y, z, s, t \in S$. By Lemma 3.3, S/K_S satisfies Condition $(W_{(WF)'})$, so there exist $w, u, v \in S$ such that $[x]_{\rho_K}s = [w]_{\rho_K}us, [y]_{\rho_K}t = [w]_{\rho_K}vt$ and us = vt. Since S is regular it is left PP and so there exist $e, f \in E(S)$ such that $es = s, ft = t, [x]_{\rho_K}e = [w]_{\rho_K}ue$, and $[y]_{\rho_K}f = [w]_{\rho_K}vf$ by Theorem 3.14. Thus S/K_S satisfies Condition (P'_E) as required.

In what follows we give a characterization of monoids over which all right acts satisfying Condition (P'_E) have some other flatness properties and vise versa.

Theorem 3.16. For any monoid S the following statements are equivalent:

- (1) all right S-acts satisfying Condition (P'_E) are free;
- (2) all finitely generated right S-acts satisfying Condition (P'_E) are free;
- (3) all (mono)cyclic right S-acts satisfying Condition (P'_E) are free;
- (4) all right S-acts satisfying Condition (P'_E) are projective generators;
- (5) all finitely generated right S-acts satisfying Condition (P'_E) are projective generators;
- (6) all (mono)cyclic right S-acts satisfying Condition (P'_E) are projective generators;
- (7) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (6)$, $(1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$, are obvious.

 $(6) \Rightarrow (7)$. Suppose that all (mono)cyclic right S-acts satisfying Condition (P'_E) are projective generators. Then all (mono)cyclic right S-acts satisfying Condition (P) are projective generators and so $S = \{1\}$ by ([11], IV, 12.8).

$$(7) \Rightarrow (1)$$
. It is obvious.

Theorem 3.17 ([3]). Let S be a left PP monoid and A_S be a right S-act. Then A_S is weakly flat if and only if it satisfies Condition (P_E) .

From Theorems 3.21, 3.17 and ([11], IV, 8.1) we have the following result:

Proposition 3.1. Let S be a left PP right collapsible monoid. If S satisfies Condition

$$(L'): \forall e, f \in E(S), \exists z \in eS \cap fS: z\lambda(e, f)e$$

then every right S-act satisfying Condition (P'_E) is flat.

We recall from [6] that a monoid S satisfies Condition (FP_2) if every left collapsible submonoid of $\langle E(S) \rangle$ contains a left zero.

Theorem 3.18 ([6]). Let S be a monoid with $E(S) \subseteq C(S)$ and let U be a property of S-acts implied by Condition (P). If all cyclic right S-acts with property U are regular then S is an idempotent monoid which satisfies Condition (FP_2) .

Theorem 3.19. For any monoid S with $E(S) \subseteq C(S)$, the following statements are equivalent:

- (1) all right S-acts satisfying Condition (P'_E) are regular;
- (2) all finitely generated right S-acts satisfying Condition (P'_E) are regular;
- (3) all cyclic right S-acts satisfying Condition (P'_E) are regular;
- (4) $S = \{0, 1\}$ or $S = \{1\}$.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$. By Theorem 3.18, S is an idempotent monoid, thus S is commutative and left PP, and so by Theorem 3.2 Condition (P_E) and weak flatness coincide. Thus by assumption all weakly flat cyclic right S-acts are regular, and so by [[6], Theorem 1.14] every element of $S \setminus \{1\}$ is a right zero. Since S is commutative every element of S different from 1 is a zero, and so $S = \{0,1\}$ or $S = \{1\}$.

$$(4) \Rightarrow (1)$$
. It follows from ([11], IV, 14.4).

Theorem 3.20. Let S be a simple monoid, then the following statements are equivalent:

- (1) all right S-acts satisfying Condition (P'_E) are regular;
- (2) all finitely generated right S-acts satisfying Condition (P'_E) are regular;

- (3) all cyclic right S-acts satisfying Condition (P'_E) are regular;
- $(4) S = \{1\}.$

Proof. It follows from [[6], Theorem 4.1].

Theorem 3.21. Let S be a monoid. If S is right collapsible, then every right S-act satisfying Condition (P'_E) satisfies Condition (P_E) .

Proof. Suppose that A_S satisfies Condition (P'_E) , and let as = a't, for $a, a' \in A_S$, and $s, t \in S$. Since S is right collapsible, there exists $z \in S$ such that sz = tz. Thus by assumption there exist $a'' \in A_S$, $u, v \in S$, $e, f \in E(S)$ such that ae = a''ue, a'f = a''vf, es = s, ft = t and us = vt, that is A_S satisfies Condition (P_E) as required.

We recall from [13] that an act A_S is called *strongly torsion free* if for every $a, a' \in A_S$ and every $s \in S$, the equality as = a's implies a = a'. By [[13], Proposition 2.1] S_S is strongly torsion free if and only if S is right cancellative, while for any monoid S, S_S satisfies Condition (P'_E) , so Condition (P'_E) does not imply strong torsion freeness in general.

Proposition 3.2. For any monoid S the following statements are equivalent:

- (1) all right S-acts satisfying Condition (P'_E) are strongly torsion free;
- (2) all finitely generated right S-acts satisfying Condition (P'_E) are strongly torsion free;
- (3) all cyclic right S-acts satisfying Condition (P'_E) are strongly torsion free;

(4) S is right cancellative.

Proof. It follows from [[13], Theorem 3.1].

Recall from [11] that a right S-act A_S is divisible if Ac = A for every left cancellable element $c \in S$. By Lemma 2.1, S_S satisfies Condition (P'_E) , while it is not divisible in general. Now it is natural to ask for which monoids Condition (P'_E) implies divisibility.

Proposition 3.3. For any monoid S the following statements are equivalent:

- (1) all right S-acts satisfying Condition (P'_E) are divisible;
- (2) all finitely generated right S-acts satisfying Condition (P'_E) are divisible;
- (3) all cyclic right S-acts satisfying Condition (P'_E) are divisible;
- (4) all left cancellable elements of S are left invertible.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$. By Lemma 2.1(3), S_S satisfies Condition (P'_E) , and so by assumption it is divisible. Thus Sc = S, for every left cancellable element $c \in S$. That is, there exists $x \in S$ such that xc = 1.

$$(4) \Rightarrow (1)$$
. It is clear from ([11], III, 2.2).

We recall from [5] that a right S-act A_S satisfies Condition (EP) if for all $a \in A_S, s, t \in S$, as = at implies that there exist $a' \in A_S, u, v \in S$ such that a = a'u = a'v and us = vt. Also we recall from [4] that a right S-act A_S satisfies Condition (E'P) if for all $a \in A_S, s, t, z \in S$, as = at and sz = tz imply that there exist $a' \in A_S$, and $u, v \in S$ such that a = a'u = a'v and us = vt. It is obvious that $(E) \Rightarrow (EP) \Rightarrow (E'P)$ and $(E) \Rightarrow (E'P)$.

Notice that Condition (E) does not imply Condition (P'_E) , otherwise Condition (E) implies principal weak flatness, which is not the case.

Theorem 3.22. For any monoid S, the following statements are equivalent:

- (1) S is regular;
- (2) all right S-acts satisfying Condition (E'P) satisfy Condition (P'_E) ;
- (3) all right S-acts satisfying Condition (EP) satisfy Condition (P'_E);
- (4) all right S-acts satisfying Condition (E') satisfy Condition (P'_E) ;
- (5) all right S-acts satisfying Condition (E) satisfy Condition (P'_E).

Proof. Implications $(2) \Rightarrow (3) \Rightarrow (5)$, $(2) \Rightarrow (4) \Rightarrow (5)$ are obvious.

- $(1) \Rightarrow (2)$. Suppose that the right S-act A_S satisfies Condition (E'P) and let as = a't, sz = tz, for $a, a' \in A_S$, $s, t, z \in S$. Since S is regular, there exists $s' \in S$ such that s = ss's and s' = s'ss', thus a't = ass's = a'ts's and ts' = ts'ss'. Since A_S satisfies Condition (E'P), there exist $a'' \in A_S$, $u, v \in S$, such that a' = a''u = a''v and ut = vts's. If w = vts', e = ss', f = 1, then ae = a(ss')e = (a'ts')e = (a''vts')e = a''we, a'f = a''uf, af = ss'f = t and af = ss'f = t and af = ss'f = t. Thus af = ss'f = t and af = ss'f = t are required.
- $(5) \Rightarrow (1)$. Let $s \in S$. If sS = S then obviously s is regular. Otherwise sS is a proper right ideal of S and the right S-act $A(sS) = S_S \coprod^{sS} S_S$ satisfies Condition (E) by ([11], III, 14.3(3)). Thus by assumption it satisfies Condition (P'_E) and so sS is left stabilizing by Lemma 3.1. That is, there exists $t \in sS$ such that s = ts which implies that s is regular.

Remark 3.23. By Theorem 2.1, the one-element right S-act Θ_S satisfies Condition (P'_E) , if and only if S is a weakly right reversible monoid, but as we know for any monoid S, Θ_S satisfies Condition (PWP).

Theorem 3.24. Let S be a right cancellative monoid. Then every right S-act satisfying Condition (PWP) satisfies Condition (P'_E) .

Proof. Suppose that the right S-act A_S satisfies Condition (PWP) and let as = a't, sz = tz, for $a, a' \in A_S, s, t, z \in S$. Since S is right cancellative s = t, and so as = a's. Thus by assumption there exist $a'' \in A_S$ and $u, v \in S$ such that a = a''u, a' = a''v and us = vs. We take e = f = 1 and then A_S satisfies Condition (P'_E) as required.

Recall from [8] that a right S-act A_S satisfies Condition (PWP_E) if for all $a, a' \in A_S$, $s \in S$, as = a's implies that there exist $a'' \in A_S$, and $u, v \in S, e, f \in E(S)$ such that ae = a''ue, a'f = a''vf, es = s = fs and us = vs.

It is obvious that Condition $(P'_E) \Rightarrow$ Condition (PWP_E) .

Theorem 3.25 ([8]). Let S be a monoid and A_S be a right S-act. If A_S satisfies Condition (PWP_E) , then it is principally weakly flat. If S is a left PP monoid, then A_S is principally weakly flat if and only if it satisfies Condition (PWP_E) .

Theorem 3.26. For any monoid S the following statements are equivalent:

- (1) all torsion free right S-acts satisfy Condition (P'_E) ;
- (2) all torsion free right S-acts are principally weakly flat and satisfy Condition $(W_{(WF)'})$;
- (3) all torsion free right S-acts satisfy Condition $(W_{(WF)'})$ and S is left almost regular;
- (4) all principally weakly flat right S-acts satisfy Condition (P'_E) and S is left almost regular;
- (5) all principally weakly flat right S-acts satisfy Condition $(W_{(WF)'})$ and S is left almost regular;
- (6) all right S-acts satisfying Condition (PWP_E) satisfy Condition (P'_E) and S is left almost regular;
- (7) all right S-acts satisfying Condition (PWP_E) satisfy Condition ($W_{(WF)'}$) and S is left almost regular.

Proof. Implications $(4) \Rightarrow (6)$, $(5) \Rightarrow (7)$ follow from Theorem 3.25. Implications $(1) \Rightarrow (2)$, $(4) \Rightarrow (5)$ and $(6) \Rightarrow (7)$ follow from Theorem 2.1.

- $(2) \Rightarrow (3)$. By assumption all torsion free right S-acts are principally weakly flat, and so by ([11], IV, 6.5) S is left almost regular.
- $(3) \Rightarrow (4)$. Suppose that A_S is a principally weakly flat right S-act and let as = a't, sz = tz for $a, a' \in A_S, s, t, z \in S$. Since by assumption A_S satisfies Condition $(W_{(WF)'})$, there exist $a'' \in A_S, u, v \in S$ such that as = a''us, a't = a''vt and us = vt. Since also S is left almost regular it is left PP and so by Theorem 3.14 there exist $e, f \in E(S)$ such that es = s, ft = t, ae = a''ue, and a'f = a''vf. Thus A_S satisfies Condition (P'_E) as required.
- $(7) \Rightarrow (1)$. Since S is left almost regular, all torsion free right S-acts are principally weakly flat by ([11], IV, 6.5). Also S is left PP and so by Theorem 3.25 all principally weakly flat right S-acts satisfy Condition (PWP_E) , thus by assumption all torsion free right S-acts satisfy Condition $(W_{(WF)'})$. The result follows similar to the proof of $(3) \Rightarrow (4)$.

By [[13], Proposition 2.1] Θ_S is strongly torsion free for any monoid S, while it satisfies Condition (P'_E) if and only if S is weakly right reversible. So strong torsion freeness does not imply Condition (P'_E) in general.

Theorem 3.27. Let S be an idempotent monoid. Then the following statements are equivalent:

- (1) all strongly torsion free right S-acts satisfy Condition (P'_E) ;
- (2) all strongly torsion free right S-acts satisfy Condition $(W_{(WF)'})$;
- (3) all finitely generated strongly torsion free right S-acts satisfy Condition (P'_E) ;
- (4) all finitely generated strongly torsion free right S-acts satisfy Condition $(W_{(WF)'});$
- (5) all cyclic strongly torsion free right S-acts satisfy Condition (P'_E) ;
- (6) all cyclic strongly torsion free right S-acts satisfy Condition $(W_{(WF)'})$;
- (7) S is weakly right reversible.

Proof. Implications $(1) \Rightarrow (3) \Rightarrow (5)$, $(2) \Rightarrow (4) \Rightarrow (6)$ are obvious. Implications $(1) \Rightarrow (2)$ and $(5) \Rightarrow (6)$ follow from Theorem 2.1.

- $(6) \Rightarrow (7)$. The one-element right S-act Θ_S is strongly torsion free by [[13], Proposition 2.1], and so by assumption it satisfies Condition $(W_{(WF)'})$. Thus S is weakly right reversible by Theorem 2.1.
- $(7) \Rightarrow (1)$. Suppose that the right S-act A_S is strongly torsion free. Then the equality ae = (ae)e, for $a \in A_S$ and $e^2 = e \in S$, implies that ae = a. Hence $aS = \{a\}$, for every $a \in A_S$. Now let as = a't, sz = tz, for $a, a' \in A_S$, and $s, t, z \in S$. Then a = a'. Since S is weakly right reversible, there exist $u, v \in S$ such that us = vt. Let a'' = a, then ae = a''ue, a'f = a''vf, es = s and ft = t for e = f = 1, and so A_S satisfies Condition (P'_E) as required.

References

- [1] M. Abbasi, A. Golchin, H. Mohammadzadeh, On a generalization of weak flatness property, Asian European Journal of Mathematics, 14 (2021), 2150002 (20 pages).
- [2] S. Bulman-Fleming, M. Kilp, V. Laan, *Pullbacks and flatness properties of acts II*, Commun. Algebra, 29 (2001), 851-878.
- [3] A. Golchin, J. Renshaw, A flatness property of acts over monoids, Semi-group and Applications: Proceedings of Conference, World Scientific, 1998, 72-77.

- [4] A. Golchin, H. Mohammadzadeh, On condition (E'P), Journal of Sciences, Islamic Republic of Iran, 17 (2006), 343-349.
- [5] A. Golchin, H. Mohammadzadeh, On condition (EP), International Mathematical Forum, 2 (2007), 911-918.
- [6] A. Golchin, H. Mohammadzadeh, On regularity of acts, Journal of Sciences, Islamic Republic of Iran, 19 (2008), 339-345.
- [7] A. Golchin, H. Mohammadzadeh, On homological classification of monoids by condition (P_E) of right acts, Italian Journal of Pure and Applied Mathematics, 25 (2009), 175-186.
- [8] A. Golchin, H. Mohammadzadeh, On condition (PWP_E) , Southeast Asian Bulletin of Mathematics, 33 (2009), 245-256.
- [9] A. Golchin, H. Mohammadzadeh, On condition (P'), Semigroup Forum, 86 (2013), 413-430.
- [10] Q. Husheng, Some new characterization of right cancellative monoids by condition (PWP), Semigroup Forum 71 (2005), 134-139.
- [11] M. Kilp, U. Knauer, A. Mikhalev, Monoids, acts and categories: with applications to wreath products and graphs: a handbook for students and researchers, Walter de Gruyter, Berlin, 2000.
- [12] V. Laan, Pullbacks and flatness properties of acts I, Commun. Algebra, 29 (2001), 829-850.
- [13] A. Zare, A. Golchin, H. Mohammadzadeh, Strongly torsion free acts over monoids, Asian-European J. Math., 6 (2013), 1350049.

Accepted: 28.05.2019