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Abstract. The present paper tries to elaborate on the application of operational ma-
trix of derivative of modified generalized Laguerre polynomials for solving Lane–Emden
type equations in astrophysics. Moreover, these equations were numerically solved by
the help of this operational matrix. Furthermore, some representative instances were
presented to indicate the capability, acceptability and logicality of the suggested meth-
ods.
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1. Introduction

Some of phenomena in mathematical physics and astrophysics are shaped by
equations of type Lane-Emden as one of the most important equations in the
category of second-order nonlinear ordinary differential equations (ODEs) [1, 2,
3, 4, 5].

Generalizing the idea of n-fold integration and integer-order differentiation
leads to “fractional calculus” that has significant applications in diverse areas
of engineering sciences and mathematical physics. In fact, fractional calculus as
the theory of derivatives and integrals of a given principle or multiplex order can
be fascinating and engaging for many researchers, as one of the most effective
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tools in fractional differential equations, to illustrate common characteristics of
a variety of processes and materials, whereas such effects are ignored in the clas-
sical integer-order models. As the most important effective factor of fractional
derivatives, one can consider the fractional derivatives more advantageous than
its classical models in modeling electrical and mechanical characteristics of real
materials in many fields [11].

As things are, for mathematical modeling of some physical phenomena, one
may face the issue of solving varied kinds of fractional differential equations.
Then, these equations play main roles in physics and several fields of engineer-
ing, as well as, mathematics. Since three decades ago, diverse operators have
been investigated in some of papers on fractional calculus such as Erdlyi-Kober
operators [13], Riemann-Liouville operators [12], Caputo operators [15], Weyl-
Riesz operators [14] and Grnwald-Letnikov operators [16]. Moreover, the present
researchers refer the reader to [17] in which the existence of definite solution and
multi-positive solutions for nonlinear fractional differential equations are estab-
lished [18, 19]. Also, in [6], the authors applied Legendre wavelet method for
solving differential equations of Lane-Emden type.
It is noteworthy that the present paper is assigned to generalizing the explana-
tion of Lane-Emden equations up to fractional order in the way as provided in
the following equation:

Dτω(ξ) + θ
ξτ−ρD

ρω(ξ) + f(ξ, ω) = g(ξ),

0 < ξ≤1, 0 ≤ θ, 1 < τ ≤ 2, 0 < ρ ≤ 1,

with the initial conditions (IC)

ω (0) = A , ω′ (0) = B,

where A,B are constants, f(ξ, ω) is a real-valued function and g ∈ C [0, 1] . As
previously mentioned, the present researchers applied operational matrix of frac-
tional derivative of modified generalized Laguerre polynomials (OMFDMGLPs)
for solving Lane–Emden type equations. As it is shown, the simplicity of im-
plementation of this method is very simple and the precision of answers is high.
To this end, this paper is organized as: Section 2 represents definitions; in this
section, the modified generalized Laguerre polynomials (MGLPs) and some at-
tributes of fractional derivative are introduced. The OMDMGLPs of fractional
derivative is presented in Section 3. In Section 4, the researchers implemented
them on Lane–Emden equation. In Section 5, some models are discussed to
illustrate the efficiency and precision of the method. Finally, Section 6 includes
a conclusions of the obtained results and findings.

2. Mathematical preliminaries

2.1 Fractional derivative

To recall the requirements of the fractional calculus, the present researchers
started with a definition. In the theory of integrals and derivatives of any order,
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generalization and incorporation of two concepts (i.e., integer-order differenti-
ation and n-fold integration) is called the fractional calculus [20, 21]. Some of
mathematicians such as Grunwald-Letnikove and Riemann-Liouville’s diversely
introduced definitions for fractional integration and differentiation. They are not
fruitful in our purpose since, for example, Riemann-Liouville has certain disad-
vantages in modeling real-world phenomena with fractional differential equa-
tions. In fact, the researchers used a changed fractional differential operator Dv

proposed in Caputo’s work on the theory of viscoelasticity [22].

Definition 2.1. The Caputo fractional derivative is marked out as:

Dvf (ξ) =
1

Γ (n− v)

∫ ξ

0

f (n)(ω)

(ξ − ω)v+1−ndω, n− 1 < v ≤ n, n ∈ N, ξ > 0

In that v is a positive real number as the order of the derivative and n is the
smallest integer greater than v.

Note that [23]:

(1) Dvξβ =

{
0, for β ∈ N0 and β < ⌈v⌉ ,
Γ (β+1)

Γ (β+1−v)ξ
β−v, for β ∈ N0, β ≥ ⌈v⌉ or β /∈ N, β > ⌊v⌋ .

In this paper, the symbols ⌈v⌉ and ⌊v⌋(the ceiling and the floor functions) stand
for the smallest integer greater than or equal to v and the largest integer less
than or equal to v, respectively. In addition, the researchers utilized notations
N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }. It is noteworthy that the differential
operator in the sense of Caputo for v ∈ N agrees with differential operator of
an integer-order in the usual sense. The fractional differentiation in the sense
of Caputo is a linear operation, as in the integer-order differentiation:

(2) Dv (λf (ξ) + µg (ξ)) = λDvf (ξ) + µDvg (ξ) ,

where λ and µ are constants.

2.2 MGLPs and properties ([19])

Let Λ = (0,∞) and w(α,β) (ξ) = ξαe−βξ be a weight function on Λ in the usual
sense. Now, define:

L2
w(α,β) (Λ) = {v | v is measurable on Λ and ∥v∥w(α,β) < ∞} ,

with the below inner product and norm:

(u, v)w(α,β) =

∫
Λ
u (ξ) v (ξ)w(α,β) (ξ) dξ, ∥v∥w(α,β) = (v, v)

1
2

w(α,β) .

Next, let L
(α,β)
i (ξ) be the MGLPs of degree i for α > −1 and β > 0. Clearly,

L
(α,β)
i (ξ) is explained by:

L
(α,β)
i (ξ) =

1

i!
ξ−αeβξ∂i

ξ

(
ξi+αe−βξ

)
, i = 1, 2, . . .
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For α > −1 and β > 0, it is clear that

∂ξL
(α,β)
i (ξ) = −βL

(α+1,β)
i−1 (ξ) ,

L
(α,β)
i+1 (ξ) =

1

i+ 1

[
(2i+ α+ 1− βξ)L

(α,β)
i (ξ)− (i+ α)L

(α,β)
i−1 (ξ)

]
, i = 1, 2, . . . ,

where L
(α,β)
0 (ξ) = 1 and L

(α,β)
1 (ξ) = −β ξ+Γ (α+2)

Γ (α+1) .

The set of MGLPs is the L2
w(α,β) (Λ) -orthogonal system, i.e.∫ ∞

0
L
(α,β)
j (ξ)L

(α,β)
k (ξ)w(α,β) (ξ) dξ = hkδjk,

where δjk is the Kronecker function and hk = Γ (k+α+1)
βα+1k!

. The MGLPs of degree
i on the interval Λ is presented by:

(3) L
(α,β)
i (ξ) =

i∑
k=0

(−1)k
Γ (i+ α+ 1)βk

Γ (k + α+ 1) (i− k)!k!
ξk, i = 0, 1, . . . ,

where L
(α,β)
i (0) = Γ (i+α+1)

Γ (α+1)Γ (i+1) .

The special value:

DqL
(α,β)
i (0) =

(−1)qβqΓ (i+ α+ 1)

(i− q)!Γ (q + α+ 1)
, i ≥ q

can be of significant application later.

2.3 Operational matrix of fractional derivative of MGLPs in Caputo
sense ([24])

Let u∈L2
w(α,β) (Λ), then u(ξ) may be defined based on MGLP as:

u (ξ)=

∞∑
j=0

ajL
(ξ,β)
j (ξ) ,

aj=
1

hk

∫ ∞

0
u(ξ)L

(α,β)
j (ξ)w(α,β) (ξ) dξ, j = 0, 1, . . . .

In specific uses, the MGLPs up to degree N + 1 are noticed. Then, the present
researchers have:

uN (ξ) = ajL
(α,β)
j (ξ)=CTΦ(ξ),

where the MGLPs coefficient vector C and the MGLPs vectorΦ(ξ) are presented
by:

CT = [c0, c1, , cN ] , Φ(ξ) = [L
(α,β)
0 (ξ) ,L

(α,β)
1 (ξ) , . . . , L

(α,β)
N (ξ)]

T
,
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Then, the derivative of the vector Φ(ξ) can be uttered by the follows:

(4)
dΦ(ξ)

dξ
=D(1)Φ(ξ),

where D(1) is the (N + 1)× (N + 1) operational matrix of derivative given by:

(5) D(1) = −β



0 0 0 0 0 · · · 0 0
1 0 0 0 0 · · · 0 0
1 1 0 0 0 · · · 0 0
1 1 1 0 0 · · · 0 0
1 1 1 1 0 · · · 0 0
...

...
...

...
... · · ·

...
...

1 1 1 1 1 · · · 1 0


.

By using Eq. (4), it is clear that:

(6)
dnΦ(ξ)

dξn
= (D(1))

n
Φ(ξ),

where n ∈ N and the superscript in D(1) give the meaning to matrix powers.
Therefore,

D(n) = (D(1))
n
, n = 1, 2, . . . .

Lemma 2.1. Let L
(ξ,β)
i (ξ) be a MGLPs. Then

DvL
(α,β)
j (ξ) = 0, i = 0, 1, . . . , ⌈v⌉ − 1, v > 0.

Proof. By utilizing Eqs. (1) and (2) in Eq. (3), the lemma can be proved
[24].

Theorem 2.1 ([24]). Let ∅ (ξ) be the MGLPs vector explained in Eq. (3.3) and
notice v > 0, then

(7) DvΦ(ξ) ≃ D(v)Φ(ξ),

where D(v) is the (N + 1) × (N + 1) OMDMGLPs of fractional derivatives of
order v in Caputo sense, expressed as follows:

(8) D(v) =



0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

Ωv (⌈v⌉ , 0) Ωv (⌈v⌉ , 1) Ωv (⌈v⌉ , 2) · · · Ωv (⌈v⌉ , N)
...

...
... · · ·

...
Ωv (i, 0) Ωv (i, 1) Ωv (i, 2) · · · Ωv (i,N)

...
...

... · · ·
...

Ωv (N, 0) Ωv (N, 1) Ωv (N, 2) · · · Ωv (N,N)


,
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where

Ωv (i, j) =

i∑
k=⌈v⌉

j∑
l=0

(−1)k+lβvj!Γ (i+ α+ 1)Γ(k − v + α+ l + 1)

(i− k)! (j − l)!Γ (k − v + 1)Γ (k + α+ 1)Γ(α+ l + 1)
.

Notice that in D(v), the first ⌈v⌉ rows are all zero.

Remark 2.1. In the case of v = n ∈ N, Theorem 2.1 presents the same result
as Eq. (6).

3. Applications of the OMFDMGLPs in Caputo sense

3.1 Solution of Lane-Emden type equations

Consider the Lane–Emden equation of the following form [25, 26]:

(9) ω′′(ξ) +
θ

ξ
ω′(ξ) + f(ξ, ω) = g(ξ), θ, ξ ≥ 0,

with IC:
ω (0) = a, ω′ (0) = 0.

By approximating ω(ξ), f(ξ, ω) and g(ξ) using MGLPs, we have:

(10) ω(ξ) ≈
N∑
i=0

cipi (ξ) =CTΦ (ξ) .

f (ξ, ω) ≈ f
(
ξ, CTΦ (ξ)

)
= HTΦ (ξ) , g (ξ) ≈

N∑
i=0

cipi (ξ) =GTΦ (ξ) ,

where the unknowns are C = [c0, . . . , cN ]T and H = [h0, . . . , hN ]T . By applying
(5), Eq. (9) can be as

(11) CTD(2)Φ (ξ) +
θ

ξ
CTD(1)Φ (ξ) +HTΦ (ξ) ≈ GTΦ (ξ) ,

(12) ω (0) = CTΦ (0) = d0, ω′ (0) = CTD(1)Φ (0) = d1.

Eqs. (11) and (12) present two linear equations. Since the total unknowns for
vector C in Eq. (10) is (N + 1), the present researchers collocate Eq. (11) in
(N − 2) points ξp in the interval [0, 1] as

ξp =
2p− 1

2(n+ 1)
, p = 1, 2, . . . , n− 2 .

Then, we will have:

(13) CTD(2)Φ (ξi) +
θ

ξi
CTD(1)Φ (ξi) +HTΦ (ξi) ≈ GTΦ (ξi) .

For i = 1, 2, . . . , N−2, now, the Eqs. (12) and (13) generate a system of (N+1)
nonlinear system of equations that can be solved by using known methods.
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3.2 Solution of fractional differential equations of Lane–Emden type

Consider the fractional differential equations of Lane–Emden type

(14) Dτω(ξ) +
θ

ξτ−ρ
Dρω(ξ) + f(ξ, ω) = g(ξ), 0<ξ≤1,θ≥0, 1<τ≤2, 0<ρ≤1,

with the IC:

(15) ω (0) = A , ω′ (0) = B,

where A, B are constants, f(ξ, ω) is a continuous real-valued function and
g (ξ) ∈ C [0, 1] .

Approximating ω(ξ), f(ξ, ω) and g(ξ) by MGLP, we have:

ω(ξ) ≈
N∑
i=0

cipi (ξ) =CTΦ (ξ) ,

(16) f (ξ, ω) ≈ f
(
ξ, CTΦ (ξ)

)
= HTΦ (ξ) , g (ξ) ≈

N∑
i=0

cipi (ξ) =GTΦ (ξ) ,

where the unknowns are C = [c0, . . . , cN ]T and H = [h0, . . . , hN ]T . By using (7),
Eq. (14) can be as

(17) CTD(τ)Φ (ξ) +
θ

ξ
CTD(ρ)Φ (ξ) +HTΦ (ξ) ≈ GTΦ (ξ) .

The IC (15) is given by:

(18) ω (0) = CTΦ (0) = d2, ω′ (0) = CTD(1)Φ (0) = d3.

Eqs. (17) and (18) present two linear system of equations. Since the total
unknowns for vector C in Eq. (16) is (N +1), the researchers collocate Eq. (17)
in (N − 2) points ξi in the interval [0, 1] as,

ξp =
2p− 1

2(n+ 1)
, p = 1, 2, . . . , n− 2 .

Then, the present researchers will have:

(19) CTD(τ)Φ (ξi) +
θ

ξi
CTD(ρ)Φ (ξi) +HTΦ (ξi) ≈ GTΦ (ξi) .

For i = 1, 2, . . . , N − 2; now, Eqs. (18) and (19) generate a system of (N + 1)
nonlinear equations that can be sove by known methods.
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4. Illustrative examples

To illustrate the acceptability, logicality, and effectiveness of the suggested
method, we solve some Lane–Emden type equations presented in Eqs. (9) and
(14) numerically. It is noteworthy that all of the computations have been per-
formed using Mathematica 9.

Example 4.1. Notice the following nonlinear Lane-Emden equation [8]:

ω′′(ξ) +
2

ξ
ω′(ξ) + ωm = 0, 0 < ξ < 1,

The IC are ω (0) = 1, ω′ (0) = 0. For m = 5, this example has the exact

solution ω (ξ) = (1 + ξ2

3 )
− 1

2 . The results of this example are tabulated in Table
1 and Fig. 1 for N= 8. In addition, the absolute errors diagram is shown in Fig.
2.

For m = 3, this example has the following form:

ω′′(ξ) +
2

ξ
ω′(ξ) + ω3 = 0, 0 < ξ < 1,

with the IC
ω (0) = 1, ω

′
(0) = 0.

Table 2 shows the approximation of ω(ξ) for the present method and exact
values given by Horedt [29].

Table 1. Numerical results and exact solution for Example 4.1
ξi N = 8, α = β = 1/2 N = 8, α = β = 1 Exact solution

0.0 1. 1. 1.

0.2 0.9933992680853407 0.9933992678561196 0.9933992677987828

0.4 0.9743547050475172 0.9743547050142785 0.9743547036924463

0.6 0.9449111844072604 0.9449111843377054 0.944911182523068

0.8 0.9078413117090349 0.9078413116788155 0.9078412990032037

1.0 0.8660300001529322 0.8660299995409204 0.8660254037844386

Table 2. Comparison between the numerical solutions and error obtained by
the proposed methods and its numerical values [7].

ξi Method of
[8]

Present
method

Exact
value
[29]

Error of
[8]

Error at
N=10

0.0 1.0000000 1.0000000 1.0000000 0.00 0.00

0.1 0.99833720 0.99833582 0.9983358 1.40e− 06 2.00e− 08

0.5 0.95984209 0.95983906 0.9598391 2.99e− 06 4.00e− 08

1.0 0.85505959 0.85505754 0.8550576 1.99e− 06 6.00e− 08
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0.0 0.2 0.4 0.6 0.8 1.0

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 1: — Exact solution, . . Approximate solution.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

2.×10-9

4.×10-9

6.×10-9

8.×10-9

1.×10-8

N=7

N=8

Figure 2: Graph of absolute errors for N = 7 and N = 8.

Example 4.2. The isothermal gas spheres are modeled by Davis (see [31]) as
follows:

ω′′(ξ) +
2

ξ
ω′(ξ) + eω(ξ) = 0, ξ ≥ 0,

with the IC:
ω (0) = 0, ω′ (0) = 0.

The researchers clarified this instance byN = 10, which the results are tabulated
in Table 3.
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Table 3. Comparison of ω(ξ), with the present method and series of
solutions offered by Wazwaz [27] and numerical values in [7] and [28], for

isothermal gas sphere equation (α = β = 1).

ξi Method of
[7]

Method of
[27]

Method of
[28]

Present
method

Error
of
[7]

Error

0.0 0.
000000000

0.
000000000

0.
000000000

0.
000000000

0.00 0.00

0.1 −0.
0016664188

-0.
0016658339

-0.
0016655333

-0.
00166583385

5.85e
-07

1.00e
-10

0.2 -0.
0066539713

-0.
0066533671

−0.
0066533333

-0.
00665336709

6.04e
-07

1.00e
-11

0.5 -0.
0411545150

-0.
0411539568

-0.
04114583333

-0.
0411539572

5.58e
-07

4.00e
-10

1.0 -0.
1588281737

-0.
1588273537

-0.
1583333333

-0.
15882767809

8.20e
-07

3.24e
-07

Example 4.3. Consider the following equation [30]:

Dτω (ξ) +
θ

ξτ−ρ
Dρω (ξ) +

1

ξτ−2
ω (ξ) =

(
2

(
Γ(3− ρ) + θ (Γ(3− τ))

Γ(3− ρ)Γ(3− τ)
+

ξ2

2

)
− 6ξ

(
Γ(4− ρ) + θ (Γ(4− τ))

Γ(4− ρ)Γ(4− τ)
+

ξ2

6

))
ξ2−τ ,

where the exact solution is ω (ξ) = ξ2 − ξ3 for τ = 3
2 , ρ = 1, θ = 2, and the IC

are as follows:

ω (0) = 0, ω′ (0) = 0.

To compare the numerical results obtained by the proposed method with the
exact solution, see Table 4.

Table 4: Comparing the numerical results and the exact solution for
Example 4.3.

ξi N = 15, α = 0, β = 1 N = 15, α = 1/2, β = 1/2 Exact solution

0.0 1.033413307865862×10−24 3.7065625075664017×10−24 0.

0.2 1.487269876187146×10−22 6.110365821755565×10−23 0.032

0.4 3.435493502332913×10−22 1.6510946972972456×10−22 0.096

0.6 4.147499545115917×10−22 2.274652005311722×10−22 0.144

0.8 3.197835497234143×10−22 1.8155964929517072×10−22 0.128

Example 4.4. Deem the equation [30]:

Dτω (ξ) +
θ

ξτ−ρ
Dρω (ξ) +

1

ξτ−2
ω (ξ) =
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(
6ξ

(
Γ (4− ρ) + θ (Γ (4− τ))

Γ (4− ρ) Γ (4− τ)
+

ξ2

6

)
−2

(
Γ (3− ρ) + θ (Γ (3− τ))

Γ (3− ρ) Γ (3− τ)
+

ξ2

2

))
ξ2−τ ,

with the IC

ω (0) = 0 , ω′ (0) = 0,

and the exact solution ω (ξ) = ξ3 − ξ2, where τ = 3
2 , ρ = 1

2 , θ = 2. To see
absolute error for N = 10, one can refer to Table 5.

Table 5: Absolute error for Example 4.4.
ξi Error for N = 10, α = 0

and β = 1

0.0 1.93271× 10−27

0.2 0.032

0.4 0.096

0.6 0.144

0.8 0.128

1 6.01587× 10−18

Example 4.5. Consider the following equation

Dτω(ξ) +
2

ξ
ω′(ξ) + ω(ξ)5 = 0.

The exact solution of this example for τ = 2 is ω (ξ) = (1 + ξ2

3 )
− 1

2 . Fig. 3
illustrates approximation of ω(ξ) with τ = 1.3, τ = 1.6, τ = 1.8, and τ = 2,
where the IC are ω (0) = 1, ω′ (0) = 0. According to Fig. 3, it is clear that the
proposed method can be suitable method for solving these equations.

Numerical solution of τ=1.3

Numerical solution of τ=1.6

0.2 0.4 0.6 0.8 1.00.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 3: Numerical solutions for different values of τ for Example 4.5 with
N = 15.
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5. Conclusions

In this paper, we have presented numerical methods for solving nonlinear singu-
lar differential equations of Lane-Emden type. Using the modified generalized
Laguerre polynomials and the operational matrix of derivative of these polyno-
mials, we converted these equations to a nonlinear system of equations that can
be solved by the known methods. The numerical results show that the proposed
method can be suitable method for solving these equations.
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