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Abstract. We show that the maximal quotient hyperring Qmr(R) of a semiprime
hyperring R can be obtained in a similar way to a maximal quotient ring. In this regard
we introduce and study some basic notions of hyperrings such as dense hyperideal,
essential hyperideal, singular hyperideal and prove some results satisfying them. Finally,
we show that if R is a semiprime hyperring and Q = Qmr(R), then Q is regular (in the
sense of von Neumann) if and only if R has a zero right singular hyperideal.
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1. Introduction

Algebraic hyperstructures are a generalization of classical algebraic structures.
In a classical algebraic structure, the composition of two elements of a set is
again an element of the same set, while in an algebraic hyperstructure, the com-
position of two elements is a non-empty subset of the same set. The theory
of hyperstructures was introduced by Marty in 1934 at the 8th Congress of the
Scandinavian Mathematicians [8]. Marty defined hypergroups, began to analyze
their properties and applied them to groups. Hyperstructures have many appli-
cations to several sectors of both pure and applied mathematics [2]. The notion
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of hyperrings is investigated and studied by Krasner [7], Nakasis [13], Vougiouk-
lis [17], Davvaz [3], Davvaz and his research group [5, 6, 9, 10, 11, 12, 14, 15],
and many others. Also, see Davvaz and Leoreanu-Fotea book [4]. A well-known
type of a hyperring is called the Krasner hyperring [7]. Krasner hyperring is
essentially ring with approximately modified axioms in which addition is hyper-
operation, while the multiplication is an operation. This type of hyperrings has
been studied by a variety of authors.

The notion of left quotient ring for a ring without right zero divisors was
introduced by Utumi [16]. In his paper, Utumi proved that every ring without
total right zero divisors has a unique maximal quotient ring. This ring, denoted
by Ql

max(R), is called the maximal left quotient ring of R. The many properties
of this ring were investigated in [1].

In this paper, the maximal quotient hyperring Q = Qmr is structured. We
define and study dense hyperideal, essential hyperideal and we give the rela-
tionship between essential and dense right hyperideals. Furthermore, we study
singular hyperideal and some properties of its. Finally, we show that R has
zero right singular hyperideal if and only if Q = Qmr is a von Neumann regular
hyperring.

2. Preliminaries

In this section we give some definitions and results of hyperstructures which we
need to develop our paper.

A mapping ◦ : H × H → P ∗(H) is called a hyperoperation, where P ∗(H)
is the set of all non-empty subsets of H. An algebraic system (H, ◦) is called a
hypergroupoid.

For any two non-empty subsets A and B of H and x ∈ H , we define

A ◦B =
∪
a∈A
b∈B

a ◦ b , A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A hyperoperation “◦” is called associative if a◦(b◦c) = (a◦b)◦c for all a, b, c ∈ H,
which means that ∪

u∈b◦c
a ◦ u =

∪
v∈a◦b

v ◦ c.

A hypergroupoid with the associative hyperoperation is called a semihyper-
group.

A hypergroupoid (H, ◦) is a quasihypergroup, whenever a ◦H = H = H ◦ a
for all a ∈ H. If (H, ◦) is semihypergroup and quasihypergroup, then (H, ◦) is
called a hypergroup.

Definition 2.1 ([4]). A Krasner hyperring is an algebraic structure (R,+, ·)
which satisfies the following axioms:

(1) (R,+) is a canonical hypergroup, i.e.,
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(i) for every x, y, z ∈ R , (x+ y) + z = x+ (y + z),

(ii) for every x, y ∈ R , x+ y = y + x,

(iii) there exists 0 ∈ R such that 0 + x = {x} for all x ∈ R,

(iv) for every x ∈ R there exists a unique element denoted by −x ∈ R such
that 0 ∈ x+ (−x),

(v) for every x, y, z ∈ R , z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y;

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e.,

(i) for every x, y, z ∈ R , (x · y) · z = x · (y · z),
(ii) x · 0 = 0 · x = 0 for all x ∈ R;

(3) The multiplication is distributive with respect to the hyperoperation + ,
i.e., for every x, y, z ∈ R , x · (y+ z) = x · y+ x · z and (x+ y) · z = x · z+ y · z.

The following elementary facts follow easily from the axioms: −(−x) = x
and −(x+ y) = −x− y, where −A = {−a | a ∈ A}. In definition, for simplicity
of notations we write sometimes xy instead of x ·y and in (iii), 0+x = x instead
of 0 + x = {x}.

In a hyperring R, if there exists an element 1 ∈ R such that 1a = a1 = a for
every a ∈ A, then the element 1 is called the identity element of the hyperring
R. If ab = ba for every a, b ∈ R then the hyperring R is called a commutative
hyperring.

A hyperring R is called a hyperdomain if R does not have zero divisors. In
other words, for x, y ∈ R if xy = 0 then either x = 0 or y = 0.

A Krasner hyperring is called a Krasner hyperfield, if (R\ {0} , ·) is a group.

Throughout this paper, by a hyperring we mean that Krasner hyperring.

Let R be a hyperring. A non-empty subset S of R is called a subhyperring
of R, if x− y ⊆ S and xy ∈ S for all x, y ∈ S.

A subhyperring I of a hyperring R is a left (resp. right) hyperideal of R if
ra ∈ I (resp. ar ∈ I) for all r ∈ R, a ∈ I. A hyperideal of R is both a left and
a right hyperideal.

Lemma 2.1 ([4]). A non-empty subset A of a hyperrring R is a left (right)
hyperideal if and only if¿

(1) a , b ∈ A implies a− b ⊆ A,

(2) a ∈ A , r ∈ R imply ra ∈ A (ar ∈ A).

Let A and B be non-empty subsets of a hyperring R

A+B = {x | x ∈ a+ b for some a ∈ A , b ∈ B}

and

AB =

{
x | x ∈

n∑
i=1

aibi , ai ∈ A , bi ∈ B , n ∈ Z+

}
.

If A and B are hyperideals of R, then A+B and AB are also hyperideals of R.
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Definition 2.2 ([18]). The hyperideal I said to be the direct sum of its hyper-
ideals J and K, denoted by I = J ⊕ K if for every element x ∈ I there exist
unique elements a, b such that a ∈ J , b ∈ K and x ∈ a+ b.

A hyperideal P of a hyperring R is called a prime hyperideal, if for hyper-
ideals I and J of R, satisfying IJ ⊆ P implies I ⊆ P or J ⊆ P . A hyperideal
I of a hyperring R is called semiprime hyperideal if for any hyperideal H of R,
satisfying H2 ⊆ R implies H ⊆ I. Prime hyperideals are surely semiprime hy-
perideals. A hyperring R is called a prime hyperring if aRb = 0 for all a, b ∈ R
implies a = 0 or b = 0. Also, R is called semiprime if aRa = 0 implies that
a = 0. Clearly, every prime hyperring is a semiprime hyperring but the converse
is not always true.

Definition 2.3 ([4]). Let R1 and R2 be hyperrings. A mapping φ from R1 into
R2 is said to be a good (strong) homomorphism if for all a, b ∈ R1,

φ(a+ b) = φ(a) + φ(b) , φ(ab) = φ(a)φ(b) and φ(0) = 0.

A good homomorphism φ is an isomorphism if φ is one to one and onto. If
there exists isomorphism between hyperrings R1 and R2, we write R1

∼= R2.
Since R1 is a hyperring, 0 ∈ a − a for all a ∈ R1, then we have φ(0) ∈

φ(a) + φ(−a) or 0 ∈ φ(a) + φ(−a) which implies that φ(−a) ∈ −φ(a) + 0,
therefore φ(−a) = −φ(a) for all a ∈ R1. Moreover, if φ is a good homomorphism
from R1 into R2, then the kernel of φ is the set {x ∈ R1 | φ(x) = 0}. It is trivial
that kerφ is a hyperideal of R1 and ℑ(φ) = {φ(r) | r ∈ R} is a subhyperring of
R2.

Corollary 2.1. Let φ be a good homomorphism from R1 into R2. Then φ is
one to one if and only if kerφ = {0}.

Let R be a hyperring. A canonical hypergroup (M,+) together with the
map · : R ×M → M is called a left hypermodule over R if for all r1, r2 ∈ R ,
m1,m2 ∈ M the following axioms hold:

(1) r1(m1 +m2) = r1m1 + r1m2,
(2) (r1 + r2)m1 = r1m1 + r2m1,
(3) (r1r2)m1 = r1(r2m1),
(4) 0Rm1 = 0M .
A subhypermodule N of M is a subhypergroup of M which is closed under

multiplication by elements of R.

Definition 2.4. Let M and N be two R-hypermodules. A function f : M → N
that satisfies the conditions:

(1) f(x+ y) ⊆ f(x) + f(y),
(2) f(xr) = f(x)r , for all r ∈ R and all x, y ∈ M

is called to be a right R-homomorphism from M into N .

In Definition 2.4, if the equality holds, then f is called a good (strong) right
R-homomorphism.
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3. Result

Definition 3.1. A right hyperideal I of R is dense if given any 0 ̸= r1 ∈ R ,
r2 ∈ R there exists r ∈ R such that r1r ̸= 0 and r2r ∈ I. One defines a dense
left hyperideal in an analogous fashion. The set of all dense right hyperideal of
R will be denoted by D = D(R).

Example 3.1. The set R = {e, a, b, c} with

+ e a b c

e e a b c

a a {e, a} c {b, c}
b b c {e, b} {a, c}
c c {b, c} {a, c} R

· e a b c

e e e e e

a e a a a

b e a b a

c e a b b

is a semiprime hyperring. It ıs easy to see that I = {e, a} is a dense right
hyperideal of R. But J = {e, b} is not dense right hyperideal of R.

For any subhypermodule J of a right R -hypermodule M and any subset
S ⊆ M we set

(S : J)R = {x ∈ R | Sx ⊆ J} .

When the context is clear we will simply write (S : J). In particular, (M :
0) = {x ∈ R | mx = 0 , for all m ∈ M} is called the right annihilator of M and
is denoted by r(M). The left annihilator l(M) is similarly defined.

Remark 3.1. (S : J)R is a right hyperideal of R.

Proposition 3.1. Let R be a semiprime hyperring. If I , J , S ∈ D(R) and
f : I → R is a good homomorphism of right R-hypermodules, then:

(i) f−1(J) = {a ∈ I | f(a) ∈ J} ∈ D(R);
(ii) (a : J) ∈ D(R) for all a ∈ R;
(iii) I ∩ J ∈ D(R);
(iv) If K is a right hyperideal of R and I ⊆ K , then K ∈ D(R);
(v) l(I) = 0 = r(I);
(vi) If K is a right hyperideal of R and (a : K) ∈ D(R) for all a ∈ I , then

K ∈ D(R);
(vii) If L is a right hyperideal of R and g : L → R is a good homomorphism of

right S -hypermodules, then g is a good homomorphism of right R -hypermodules;
(viii) IJ ∈ D(R).

Proof. (i) f−1(J) is a right hyperideal of R. The proof is similar to ordinary
algebra. Now, we show that f−1(J) is a dense hyperideal of Rhyperideal of
R, r1r

′ ̸= 0 and r2r
′ ∈ I for some r

′ ∈ R. Similarly, since J is a dense right
hyperideal of R, (r1r

′
)r

′′ ̸= 0 and f(r2r
′
)r

′′ ∈ J for some r
′′ ∈ R. Setting

r = r
′
r
′′
we conclude that r1r ̸= 0 and r2r ∈ f−1(J). Thus f−1(J) is a dense

right hyperideal of R.
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(ii) Let la : R → R , x 7→ ax. Then

(a : J) = {x ∈ R | ax ∈ J} = {x ∈ R | la(x) ∈ J} = l−1
a (J).

Let x, y ∈ (a : J), hence ax, ay ∈ J . For some z ∈ x−y we have az ∈ a(x−y) =
ax− ay. Thus az ∈ J and so z ∈ (a : J). Therefore, x− y ⊆ (a : J). Let r ∈ R
and x ∈ (a : J), hence ax ∈ J . Then a(xr) = (ax)r ∈ J . Since a(xr) ∈ J ,
xr ∈ (a : J). Let r1 ̸= 0 , r2 ∈ R. Hence r1 ̸= 0 , ar2 ∈ R. Since J is a dense
right hyperideal of R, r1r ̸= 0 and (ar2)r ∈ J for some r ∈ R. Then r1r ̸= 0
and r2r ∈ (a : J), i.e.; (a : J) ∈ D(R) for all a ∈ R.

(iii) If i : I → R is the inclusion map, then i−1(J) = I ∩ J . If the option (i)
is applied, the proof ends.

(iv) Let K is a right hyperideal of R, I ⊆ K and r1 ̸= 0 , r2 ∈ R. Since I is
a dense right hyperideal of R, we have r1r ̸= 0 , r2r ∈ I for some r ∈ R. Since
I ⊆ K , we obtain r1r ̸= 0, r2r ∈ K. That is, K ∈ D(R).

(v) We suppose that Ia = 0 for some 0 ̸= a ∈ R. Setting r1 = a = r2,
we have there exists r ∈ R such that 0 ̸= ar ∈ I. Hence arRar ⊆ Iar = 0.
By semiprimeness of R, we have ar = 0. Then we have a contradiction and
so r(I) = 0. Now we suppose l(I) ̸= 0. Since R is semiprime hyperring, there
exists a, b ∈ l(I) such that ab ̸= 0. Since I is a dense hyperideal, we can find
r ∈ R such that abr ̸= 0 and br ∈ I. Then abr ∈ aI = 0 and again we have a
contradiction.

(vi) Let r1 ̸= 0 , r2 ∈ R. Since I ∈ D(R), there exists an element r
′ ∈ R

such that r1r
′ ̸= 0 and r2r

′ ∈ I. Hence by hypothesis, (r2r
′
: K) ∈ D(R). From

(v) , we have l((r2r
′
: K)) = 0 and so r1r

′
r
′′ ̸= 0 and r2r

′
r
′′ ∈ K for some

r
′′ ∈ (r2r

′
: K). Therefore K ∈ D(R).

(vii) Let x ∈ L and r ∈ R. By (ii), (r : S)R ∈ D(R) and so by (iii),
M = (r : S)S ∩ S ∈ D(R). For all y ∈ M ⊆ S we get ry ∈ S and

0 ∈ g(xry)− g(xry) = g(xr)y − g(x)ry = (g(xr)− g(x)r)y.

Hence ay = 0 for some a ∈ g(xr) − g(x)r. Since y ∈ M and M ∈ D(R), it
follows from (v) that 0 ∈ g(xr)−g(x)r, which implies that −g(x)r is the inverse
of g(xr) in the canonical hypergroup (R,+). Hence −g(x)r = −g(xr) and so
g(xr) = g(x)r.

(viii) Let r1 ̸= 0 , r2 ∈ R. By (ii) , L = (r2 : I) ∈ D(R) and by (v) there
exists r

′ ∈ L such that r1r
′ ̸= 0 and there exists r

′′ ∈ J such that r1r
′
r
′′ ̸= 0.

Getting r = r
′
r
′′
we have r1r ̸= 0 and r2r = r2(r

′
r
′′
) = (r2r

′
)r

′′ ∈ IJ .
Now, we give an alternative definition of dense right hyperideals:

Corollary 3.1. Let J be a right hyperideal of R. Then J ∈ D(R) if and only
if lR((a : J)) = 0 for all a ∈ R.

Proof. Let J ∈ D(R). According to Proposition 3.1 (ii) and (v), (a : J) ∈ D(R)
and lR((a : J)) = 0. Conversely, let r1 ̸= 0, r2 ∈ R. By hypothesis, we have
r1(r2 : J) ̸= 0. Then we may choose r ∈ (r2 : J) such that r1r ̸= 0. Since
r ∈ (r2 : J), we also have r2r ∈ J . This completes the proof.
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Definition 3.2. A right hyperideal I of R is essential if for every nonzero right
hyperideal K of R we have I ∩K ̸= 0.

Example 3.2. Define the hyperoperation ⊕ on the R = [0, 1] by

x⊕ y =

{
{max {x, y}} , if x ̸= y

[0, x], if x = y
.

Then ([0, 1],⊕, ·) is a Krasner hyperring where · is the usual multiplication on
real numbers. Let I = [0, 0.3]. Hence I is an essential hyperideal of R.

The following remark give the relationship between essential and dense right
hyperideals:

Remark 3.2. Let J be a dense right hyperideal of R.Then J is an essential
right hyperideal of R.

Proof. For 0 ̸= a ∈ R, pick r ∈ R such that 0 ̸= ar ∈ J . Then 0 ̸= ar ∈ J ∩aR.

Remark 3.3. Let I be a 2-sided hyperideal of R. Then the following conditions
are equivalent:

(i) l(I) = 0;
(ii) I is a dense right hyperideal;
(iii) I is an essential right hyperideal;
(iv) I is essential as a 2-sided hyperideal(i.e., for any hyperideal J ̸= 0 ,

I ∩ J ̸= 0).

Remark 3.4. Let I be a 2-sided hyperideal of R. Then:
(i) l(I) = r(I);
(ii) l(I) ∩ I = 0;
(iii) I + l(I) is dense right hyperideal of R.

Remark 3.5. Let J be a right hyperideal of R and f : J → R be a good right
R -hypermodule homomorphism. Then:

(i) If a ∈ R and r(a) ∈ D(R) , then a = 0;
(ii) If ker f ∈ D(R) , then f = 0.

Proof. (i) It is follows from Proposition 3.1 (v).
(ii) We assume that ker f ∈ D(R). Then we have f(b)(b : ker f) = 0 for

all b ∈ J . By Proposition 1 (ii), (b : ker f) ∈ D(R). According to the first
statement we obtain f(b) = 0. Thus f = 0.

Let R is a semiprime hyperring Ψ = {fU | f : U → R is a good right R
-homomorphism and U ∈ D}.

Define a relation ”≈” on Ψ by fU ≈ gV :⇔ there existsK ∈ D andK ⊆ U∩V
such that f = g on K.

One readily checks that ”≈” is an equivalence relation. This gives a chance

for us to get a partition of Ψ. We denote the equivalence class by
−
fU , where
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−
fU := {g : V → R| fU ≈ gV } and denote by Qmr set of all equivalence classes.
We define a hyperaddition ”+” on Qmr as follows:

−
fU +

−
gV := f + gU∩V

where f + g : U ∩ V → R is a good right R homomorphism. Assume that
f1U1 ≈ f2U2 and g1V1 ≈ g2V2 . Then ∃K1(∈ D) ⊆ U1 ∩ U2 such that f1 = f2 on
K1 and ∃K2(∈ D) ⊆ V1 ∩ V2 such that g1 = g2 on K2. Taking K = K1 ∩K2

and so K ∈ D. For any x ∈ K, we have (f1 + g1) (x) = f1 (x) + g1 (x) =∪
{t(x) | t(x) ∈ f1 (x) + g1 (x)} =

∪
{t(x) ∈ f2 (x) + g2 (x)} = f2 (x) + g2 (x) =

(f2 + g2) (x), and so f1+g1 = f2+g2 onK. Therefore f1+g1U1∩V1
≈ f2+g2U2∩V2

,
which means that the addition in Qmr is well-defined.

Now we will prove that Qmr is a canonical hypergroup. Let
−
fU ,

−
gV ,

−
hH be

elements of Qmr. Since U ∩ (V ∩H) = (U ∩ V ) ∩H, for all x ∈ U ∩ (V ∩H)

[(f + g) + h] (x) = (f + g)(x) + h(x) =
∪

t(x)∈(f+g)(x)

t(x) + h(x)

=
∪

t(x)∈(f+g)(x)

{k(x) | k(x) ∈ t(x) + h(x)}

=
∪

{k(x) | k(x) ∈ (f(x) + g(x)) + h(x)}

=
∪

{k(x) | k(x) ∈ f(x) + (g(x) + h(x))}

=
∪

p(x)∈g(x)+h(x)

{k(x) | k(x) ∈ f(x) + p(x)}

=
∪

p(x)∈(g+h)(x)

f(x)+p(x)=f(x)+(g + h)(x)=[f + (g + h)](x) .

Hence (f + g) + h = f + (g + h) on U ∩ (V ∩H). That is (
−
fU +

−
gV ) +

−
hH =

−
fU +(

−
gV +

−
hH). One can easily check that

−
fU +

−
gV =

−
gV +

−
fU . Taking

−
θR ∈ Qmr

where θ : R → R, x 7→ 0 for all x ∈ R. Since U ⊆ U ∩ R, (θ + f)(x) =

θ(x) + f(x) = 0 + f(x) = f(x) for all x ∈ U . Then we have
−
θR +

−
fU =

−
fU and

similarly
−
fU +

−
θR =

−
fU for all

−
fU ∈ Qmr. Hence

−
θR is the additive identity

in Qmr. Let −
−
fU ∈ Qmr, where −f : U → R, x 7→ −f(x) = (−f)(x) for

all x ∈ U . Since −f(x) is the unique inverse of f(x) in R, we have θ(x) ∈

f(x) − f(x) = f(x) + (−f)(x) for all x ∈ U . So
−
θR ∈

−
fU + (−

−
fU ). Finally,

let
−
fU ,

−
gV ,

−
hH be elements of Qmr and

−
hH ∈

−
fU +

−
gV . So there exists a f1 ∈

−
fU

and a g1 ∈ −
gV such that h = f1 + g1. For any x ∈ K(∈ D) ⊆ U ∩ V , we get

h(x) = (f1 + g1)(x) = f1(x) + g1(x) ⊆ f(x) + g(x). Since R is a hyperring,
h(x) ∈ f(x) + g(x) implies g(x) ∈ −f(x) + h(x) and f(x) ∈ h(x)− g(x). Thus
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we have g(x) ∈ (−f + h)(x) and f(x) ∈ (h − g)(x). That is,
−
gV ∈ −

−
fU +

−
hH

and
−
fU ∈

−
hH − −

gV . Therefore (Qmr,+) a canonical hypergroup.

Now we define a multiplication ”.” on Qmr as follows: for all
−
fU ,

−
gV ∈ Qmr

−
fU

−
gV := fgg−1(U)

where fg : g−1(U) → R is a good right R homomorphism. Assume that f1U1 ≈
f2U2 and g1V1 ≈ g2V2 . Then ∃K1(∈ D) ⊆ U1 ∩ U2 such that f1 = f2 on K1 and
∃K2(∈ D) ⊆ V1 ∩ V2 such that g1 = g2 on K2. Taking K := g−1

1 (K1) ∩K2 and
so K ∈ D. For any x ∈ K,

(f1g1) (x) = f1 (g1 (x)) = f1 (g2 (x)) = f2 (g2 (x)) = (f2g2) (x) .

Thus f1g1 = f2g2 on K. Hence ”.” is well-defined. Now we will prove that

(Qmr, .) is a semigroup having zero as a bilaterally element . Let
−
fU ,

−
gV ,

−
hH ∈

Qmr. Since h−1(g−1(U)) = (gh)−1(U), we get for all x ∈ h−1(g−1(U)),

[(fg)h] (x) = (fg) (h (x)) = f (g (h (x))) = f ((gh) (x)) = (f (gh)) (x) .

Hence (fg)h = f (gh) on h−1(g−1(U)). That is, (
−
fU

−
gV )

−
hH =

−
fU (

−
gV

−
hH).

Now we prove that
−
fU

−
θR =

−
θR =

−
θR

−
fU for all

−
fU ∈ Qmr. Since θ−1(U) ⊆

θ−1(U) ∩R and fθ = θ on θ−1(U), we get
−
fU

−
θR =

−
θR. Similarly

−
θR

−
fU =

−
θR.

Let
−
fU ,

−
gV ,

−
hH be elements of Qmr. Since h−1(U ∩ V ) = h−1(U)∩ h−1(V ),

we get for all x ∈ h−1(U ∩ V ),

[(f + g)h](x) = (f + g)(h(x)) = f(h(x)) + g(h(x))

= (fh)(x) + (gh)(x) = (fh+ gh)(x).

Then (f+g)h = fh+gh on h−1(U ∩V ). That is, (
−
fU +

−
gV )

−
hH =

−
fU

−
hH+

−
gV

−
hH .

Also since (g + h)−1(U) = g−1(U) ∩ h−1(U), for all x ∈ (g + h)−1(U)

[f (g + h)] (x) = f ((g + h) (x)) = f (g (x) + h (x))

= f (g (x)) + f (h (x)) = (fg + fh) (x) .

Hence f (g + h) = fg + fh on (g + h)−1(U). That is,
−
fU (

−
gV +

−
hH) =

−
fU

−
gV +

−
fU

−
hH .

Therefore, (Qmr,+, .) is a hyperring.

Taking
−
1R ∈ Qmr where 1 : R → R, x 7→ x for all x ∈ R. Let

−
fU ∈ Qmr.

Since 1−1(U) ⊆ U, we get for all x ∈ 1−1(U), (f1) (x) = f (1 (x)) = f (x) and
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(1f) (x) = 1 (f (x)) = f (x). Thus,
−
fU

−
1R =

−
1R

−
fU =

−
fU . Hence

−
1R is the

multiplicative identity in Qmr.

We denote the hyperring constructed by Qmr = Qmr(R) and we call it the
maximal right quotient hyperring of R. One can of course, characterize Qml,
the left quotient hyperring of R in similar manner. For purpose of convenience,
we use q instead of qV ∈ Qmr.

Proposition 3.2. The maximal right quotient hyperring Qmr of R satisfies:

(i) R is a subhyperring of Qmr;

(ii) For all q ∈ Qmr there exists U ∈ D such that qU ⊆ R;

(iii) If q ∈ Qmr and U ∈ D , then qU = 0 if and only if q = θ;

(iv) If U ∈ D and f : U → R is a good right R -hypermodule homomorphism,
then there exists q ∈ Qmr such that f(x) = qx for all x ∈ U .

Furthermore, if Q
′
is any hyperring satisfying (i)− (iv) , then Q

′
is isomor-

phic to Qmr.

Proof. (i) For a fixed element a in R, consider a mapping λa : R → R by
λa (r) = ar for all r ∈ R. It is easy to prove that the mapping λa is a good right
R homomorphism. Define a mapping φ : R → Qmr by φ (a) = λa for a ∈ R.
Clearly the mapping φ is injective homomorphism and so R is a subring of Qmr.

(ii) Let q = fU ∈ Qmr. One sees that fUλaR = λf(a)R for all a ∈ U , i.e.,
qφ(U) ⊆ φ(R). Since R ∼= φ(R), we can write qU ⊆ R.

(iii) Let q = fU ∈ Qmr and U ∈ D such that qφ(U) = 0. Then q = θ.
Indeed, we have θ = fUλaR = λf(a)R for all a ∈ U . Then f(a) = 0 and so
f(U) = 0. By Remark 3.5, q = θ.

(iv) Let U ∈ D and f : U → R is a good right R -hypermodule homomor-
phism. Hence fUλaR = λf(a)R for all a ∈ U . That is, qφ(a) = φ(f(a)) for all
a ∈ U , where q = fU . Thus we write qx = f(x) for all x ∈ U .

Now suppose Q
′ ⊇ R is a hyperring having properties (i) − (iv). Define

the mapping α : Q
′ → Qmr, q 7−→ λq(q:R)R

. One can easily check that α is an
isomorphism of hyperrings.

Lemma 3.1. Let q1, q2, ..., qn ∈ Qmr and I, J ∈ D(R). Then there exists L ∈
D(R) such that L ⊆ J and qiL ⊆ I for all i = 1, 2, ..., n.

Proof. Let Ji = (qi : R)R. Then Ji ∈ D for all i = 1, 2, ..., n. Consider
the mapping fi : Ji → R , fi = λqi . By Proposition 3.1, Ki = f−1

i (I) =
{x ∈ Ji | qix ∈ I} ∈ D. Then L = (

∩n
i=1Ki)∩J we have the desired dense right

hyperideal.

Lemma 3.2. Let K be a dense right hyperideal of a semiprime hyperring R and
S a subhyperring of Qmr(R) such that K ⊆ S. Then:

(i) S is a semiprime hyperring;

(ii) A right hyperideal J of S is dense if and only if (J ∩ R)K ∈ D(R) (in
particular, if I ∈ D(R) then IS ∈ D(S));
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(iii) A right hyperideal J of S is essential if and only if (J ∩ R)K is an
essential right hyperideal of R.

Since the proof is similar to the proof of the corresponding lemma in ring
theory, we omitted it.

Proposition 3.3. Let K be a dense right hyperideal of R and S a subhyperring
of Qmr(R) such that K ⊆ S. Then Qmr(S) = Qmr(R).

The following result is an immediate corollary of Proposition 3.3.

Theorem 3.1. Let R be a semiprime hyperring and Q = Qmr(R). Then
Qmr(Q) = Q.

Corollary 3.2. Let R be a semiprime hyperring, I be an hyperideal of R and
J = lR(I). Then Qmr(R) = Qmr(I)⊕Qmr(J).

Proof. According to Remark 3.4, I ⊕ J ∈ D(R) and by Proposition 3.3,
Qmr(R) = Qmr(I ⊕ J). From equality Qmr(I ⊕ J) = Qmr(I) ⊕ Qmr(J), the
proof is obtained.

Definition 3.3. Let R be a hyperring. The set

Zr(R) = {x ∈ R | rR(x) is an essential right hyperideal}

is called the right singular hyperideal of R.

Example 3.3. Let R be a hyperring and H(R) =

{(
0 a
0 b

)
| a, b ∈ R

}
be a

collection of 2× 2 matrices over R. A hyperoperation “+” and a multiplication
“·” are defined on H(R) as follows:(

0 a
0 b

)
+

(
0 c
0 d

)
=

{(
0 x
0 y

)
| x ∈ a+ c , y ∈ b+ d

}
(

0 a
0 b

)
·
(

0 c
0 d

)
=

(
0 ad
0 bd

)
for all

(
0 a
0 b

)
,

(
0 c
0 d

)
∈

H(R).
Clearly, (H(R),+, ·) is a Krasner hyperring. We will show that Zr(H(R)) =

0. Indeed, for each 0 ̸= A ∈ H(R), rH(R)(A) =

{(
0 x
0 0

)
∈ H(R) | AB = 0

}
but I =

{(
0 0
0 y

)
∈ H(R) | y ∈ R

}
is a nonzero right hyperideal of H(R)

and rH(R)(A) ∩ I = 0. Thus rH(R)(A) is not an essential right hyperideal of
H(R).

Lemma 3.3. Let R be a semiprime hyperring, K an essential right hyperideal
of R and r ∈ R. Then:

(i) (r : K)R is an essential right hyperideal of R;
(ii) Zr(R) is a hyperideal of R;
(iii) Zr(R) = 0 if and only if every essential right hyperideal is dense;
(iv) For any subhyperring R ⊆ S ⊆ Qmr(R) , Zr(R) = R ∩ Zr(S).
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Proof. (i) Clearly, (r : K)R = {x ∈ R | rx ∈ K} is a right hyperideal of R.
Let L ̸= 0 be a right hyperideal of R. If rL = 0 , then L ⊆ (r : K)R. Hence
0 ̸= L = L ∩ (r : K)R. Now, suppose that rL ̸= 0. Since rL is a right
hyperideal of R and K an essential right hyperideal of R , rL ∩ K ̸= 0. But
rL ∩K = r[L ∩ (r : K)R]. Thus L ∩ (r : K)R ̸= 0 and so (r : K)R is essential.

(ii) Let x, y ∈ Zr(R) and r ∈ R. We first verify that x − y ⊆ Zr(R). Let
a ∈ x−y. We shall show that rR(a) is essential. Since rR(x)∩rR(y) ⊆ rR(x−y)
and rR(x)∩ rR(y) is an essential right hyperideal, rR(x− y) is essential as well.
Further rR(x − y) ⊆ rR(a). Indeed, for any b ∈ rR(x − y), (x − y)b = 0. Since
a ∈ x − y , ab ∈ (x − y)b = 0. Thus ab = 0 and so b ∈ rR(a). Hence rR(a) is
an essential right hyperideal of R. As rR(x) ⊆ rR(rx) and rR(x) is essential,
rx ∈ Zr(R). By the above result, the right hyperideal (r : rR(x)) is essential.
From (r : rR(x)) ⊆ rR(xr) it follows that xr ∈ Zr(R). Therefore Zr(R) is a
hyperideal of R.

(iii) Suppose that Zr(R) = 0. Let J be an essential right hyperideal of R.
Taking into account (i), we have lR((a : J)) = 0 for all a ∈ R. By Corollary 3.1,
we obtain J ∈ D(R). The converse statement follows from Proposition 3.1 (v).

(iv) Note that rR(x) = rS(x)∩R for all x ∈ R. Thus, by Lemma 3.2, rR(x)
is an essential right hyperideal of S. Hence Zr(R) = R ∩ Zr(S).

Lemma 3.4. Let R be a semiprime hyperring, Q = Qmr(R) and K a subhy-
permodule of the right R -hypermodule Q. Suppose that α : K → Q is a good
homomorphism of right R -hypermodules. Then:

(i) The rule α̂ : KQ → Q, α̂ (
∑n

i=1 kiqi) =
∑n

i=1 α(ki)qi, where ki ∈ K,
qi ∈ Q defines a good homomorphism of right Q -hypermodules.

(ii) If K is a right hyperideal of the hyperring Q, then α is a good homo-
morphism of right Q -hypermodules.

Proof. (i) It is enough to check that α̂ is well-defined. Indeed, let
∑n

i=1 kiqi = 0,
where ki ∈ K, qi ∈ Q. By Lemma 3.1, there exists a dense right hyperideal L
of R such that qiL ⊆ R for all i. For any x ∈ L we have(

n∑
i=1

α(ki)qi

)
x =

n∑
i=1

α(ki)(qix) = α

(
n∑

i=1

kiqix

)
= 0.

That is,
∑n

i=1 α(ki)qi = 0 and α̂ is well-defined.
(ii) If K is a right hyperideal of the hyperring Q, then α = α̂ which means

that α is a good homomorphism of right Q -hypermodules.

Definition 3.4. An element a ∈ R is said to be regular if a ∈ aRa. That is,
there exists an element b ∈ R such that a = aba. A hyperring R is said to be
regular (in the sense of von Neumann) if every element of R is regular.

Theorem 3.2. Let R be a semiprime hyperring and Q = Qmr(R). Then the
following conditions are equivalent:

(i) Q is a von Neumann regular hyperring;
(ii) Zr(R) = 0.
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Proof. (i)⇒ (ii). We suppose that Q is a von Neumann regular hyperring.
Let 0 ̸= q ∈ Q. Hence qpq = q for some p ∈ Q. Clearly, rQ(pq) = rQ(q) and
(pq)2 = pq. Then rQ(pq) = (1 − pq)Q. Indeed, for any x ∈ rQ(pq), we write
pqx = 0. Since Q is a hyperring, 0 = pqx ∈ pqq

′ − pqq
′
= pqq

′ − pqpqq
′
=

pq(1 − pq)q
′
where q

′ ∈ Q. Thus, x ∈ (1 − pq)Q, i.e.; rQ(pq) ⊆ (1 − pq)Q.
Similarly, (1 − pq)Q ⊆ rQ(pq). Since (1 − pq)Q ∩ pqQ = 0, (1 − pq)Q is not
essential. Therefore Zr(Q) = 0.

By Lemma 3.3, Zr(R) = 0.

(ii)⇒ (i). Suppose that Zr(R) = 0. Then, according to Lemma 3.3 (iii),
the set D(R) coincides with the set of all essential right hyperideals of R. Let
q = fU ∈ Q = Qmr and K = ker f . Choosing L to be a right hyperideal of
R maximal with the properties L ⊆ U and L ∩ K = 0, we note that L ∼= qL.
Then K + L is an essential right hyperideal of R and so K + L ∈ D(R). We
choose M to be a right hyperideal of R maximal with the property M ∩ qL = 0.
Obviously, M ⊕ qL is an essential right hyperideal of R. Thus M ⊕ qL ∈ D(R).
The mapping g : M ⊕ qL → L, g(x) = l where x ∈ m + ql, m ∈ M and l ∈ L.
Hence p = gM⊕qL ∈ Q and (fgf)(k + l) = f(k + l) for all k ∈ K, l ∈ L. Thus
pqp = p and so Q is von Neumann regular hyperring.
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