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Abstract. In this article, we discuss the asymptotic behavior of conformable fractional
impulsive partial differential equations. Some new sufficient conditions possessing a
prescribed asymptotic behavior at infinity are derived by using riccati transform and
impulsive differential inequalities. Our results extend a number of results reported in
the literature. An example is also given to illustrate the validity of our results.
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1. Introduction

In recent years, fractional calculus has received increasing attention due to its
applications in a variety of disciplines such as mechanics, physics, chemistry,
biology, electrical engineering, control theory, material science, mathematical
psychology. For more details, we refer the reader to the monographs. The
field of fractional calculus is concerned with the generalization of the integer
order differentiation and integration to an arbitrary real (or complex) order
[1, 4, 5, 6, 8, 13, 17, 21]. Many events in diverse fields of engineering can be
portrayed better and more accurately by differential equations of non-integer
order.

Recently, a new definition of fractional derivative [12] that prominently com-
patible with the classical derivative was made by Khalil et al. Unlike other def-
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initions, this new definition satisfies formulas of the derivative of product and
quotient of two functions and have a simpler chain rule.

In order to describe dynamics of populations subject to abrupt changes as
well as other phenomena such as harvesting, diseases, and so forth, some au-
thors have used impulsive differential systems to describe the model since the
last century. For the basic theory on impulsive differential equations, the reader
can refer to the monographs and references [2, 14, 18, 22, 25, 26]. In particular,
the problem of asymptotic behavior of impulsive differential equations has been
investigated by few authors, the references [3, 7, 9, 10, 11, 15, 19, 20, 23] cited
therein. However, to the best of authors knowledge, no work has been reported
on the asymptotic behavior of conformable fractional impulsive partial differen-
tial equations. Motivated by the above considerations we consider the following
model of the form

(1)

∂α

∂tα

[
p(t)

∂α

∂tα
(u(x, t) + c(t)u(x, σ(t)))

]
+ q(x, t)f (u(x, δ(t)))

= a(t)∆u(x, t) +

n∑
i=1

bi(t)∆u(x, ρi(t)) + F (x, t),

t ̸= tk, (x, t) ∈ Ω× R+ ≡ G,
u(x, t+k ) = ck(x, tk, u(x, tk)),
∂α

∂tα
(
u(x, t+k )

)
= dk(x, tk,

∂α

∂tα
(u(x, tk))), k = 1, 2, · · · ,


where Ω is a bounded domain in RN with a piecewise smooth boundary ∂Ω, ∆
is the Laplacian in the Euclidean space RN and R+ = [0,+∞).

Equation (1) is enhancement with the boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω× R+.(2)

This work is planed as follows: In Section 2, we recall some basic definitions
and preliminary results which will be used throughout this paper. In Section
3, we discussed the asymptotic behavior of the all solutions of the problem (1)
and (2). In Section 4, we present an example is to illustrate our main results.

2. Preliminaries

In this paper, we assume that the following assumptions hold:

(C1) p(t) ∈ Cα(R+, (0,+∞)) with Tα(p(t)) > 0 and
∫ +∞
t0

sα−1 1

p(s)
ds = +∞,

q(t) ∈ C(R+,R), q(t) = minx∈Ω̄ q(x, t), c(t) ∈ C2α(R+,R+), σ(t), δ(t), ρi(t)
∈ Cα(R+,R) and limt→+∞ σ(t) = limt→+∞ δ(t) = limt→+∞ ρi(t) = +∞,
i = 1, 2, · · · , n.

(C2) f ∈ C(R,R) is convex in R+ with uf(u) > 0 and
f(u)

u
≥ ϵ > 0 for u ̸= 0,

F ∈ C(Ḡ,R) with
∫
Ω F (x, t)dx < 0.
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(C3) a(t), bi(t) ∈ PC (R+,R+), where PC represents the class of functions
which are piecewise continuous in t with discontinuities of first kind only
at t = tk, and left continuous at t = tk, k = 1, 2, · · · .

(C4) u(x, t) and its derivative
∂α

∂tα
u(x, t) are piecewise continuous in t with

discontinuities of first kind only at t = tk, k = 1, 2, · · · , and left continuous

at t = tk, u(x, tk) = u(x, t−k ),
∂α

∂tα
u(x, tk) =

∂α

∂tα
u(x, t−k ), k = 1, 2, · · · .

(C5) ck, dk ∈ PC(Ω̄ × R+ × R,R+) for k = 1, 2, · · · , and there exist positive
constants gk, g

∗
k, hk, h

∗
k such that g∗k ≤ gk ≤ h∗k ≤ hk for k = 1, 2, · · · ,

g∗k ≤ ck (x, tk, u(x, tk))

u(x, tk)
≤ gk, h∗k ≤

dk

(
x, tk,

∂α

∂tα
(u(x, tk))

)
∂α

∂tα
(u(x, tk))

≤ hk.

Definition 2.1 ([26]). A solution u of the problem (1) and (2) is a function
u ∈ C2α(Ω̄× [t−1,+∞),R) ∩ C(Ω̄× [t̂−1,+∞),R) that satisfies (1), where

t−1 := min

{
0,

{
inf
t≥0

σ(t)

}
, min
1≤i≤n

{
inf
t≥0

ρi(t)

}}
, t̂−1 := min

{
0, inf

t≥0
δ(t)

}
.

Definition 2.2. The solution u of the problem (1)− (2) is said to be oscillatory
in the domain G, if it has arbitrary large zeros. Otherwise it is non-oscillatory.

Definition 2.3 ([12]). Let f : [0,∞) → R. Then the conformable fractional
derivative of f of order α is defined by

Tα(f)(t) = lim
ϵ→0

f(t+ ϵt1−α)− f(t)

ϵ

for all t > 0, α ∈ (0, 1].

If f is α-differentiable in some (0, a), a > 0 and limt→0+ f
(α)(t) exists, then

define

f (α)(0) = lim
t→0+

f (α)(t)

Definition 2.4. Iaα(f)(t) = Ia1 (t
α−1f) =

∫ t
a

f(x)

x1−α
dx, where the integral is the

usual Riemann improper integral, and α ∈ (0, 1).

Definition 2.5 (Atangana et al. [1]). f be a function with n variables x1, x2, · · · , xn.
Then the conformable partial derivative of f of order 0 < α ≤ 1 in xi is defined
as follows

∂α

∂xαi
f(x1, x2, · · · , xn)

= lim
ϵ→0

f(x1, x2, · · · , xi−1, xi + ϵx1−α
i , · · · , xn)− f(x1, x2, · · · , xn)
ϵ

.
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Conformable fractional derivatives have the following properties :

Theorem 2.1. Let α ∈ (0, 1] and f, g be α- differentiable at some point t > 0.
Then

(i) Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.

(ii) Tα(t
p) = ptp−α for all p ∈ R.

(iii) Tα(λ) = 0 for all constant functions f(t) = λ.

(iv) Tα(fg) = fTα(g) + gTα(f).

(v) Tα

(
f
g

)
=
gTα(f)− fTα(g)

g2
.

(vi) If f is differentiable, then Tα(f)(t) = t1−αdf

dt
(t).

It is identified that [24] the smallest eigenvalue λ0 > 0 of the eigenvalue
problem

∆ω(x) + λω(x) = 0, in Ω

ω(x) = 0, on ∂Ω,

and the consequent eigenfunction Φ(x) > 0 in Ω.

For convenience, we introduce the following notations:

Y (t) = KΦ

∫
Ω
u(x, t)Φ(x)dx, where KΦ =

(∫
Ω
Φ(x)dx

)−1

.

We begin with some lemmas that will be used to prove our main results.

Lemma 2.1. If X and Y are non negative, then

Xλ − λXY λ−1 + (λ− 1)Y λ ≥ 0, λ > 1

Xλ − λXY λ−1 − (1− λ)Y λ ≤ 0, 0 < λ < 1

where the equality holds if and only if X = Y .

Lemma 2.2. If the impulsive conformable fractional differential inequality

Tα(p(t)Tα(z(t))) + c0q(t)z(δ(t)) ≤ 0, t ̸= tk

g∗k ≤
Y (t+k )

Y (tk)
≤ gk, h∗k ≤

Tα(Y (t+k ))

Tα(Y (tk))
≤ hk, k = 1, 2, · · · .

(3)

has no eventually positive solution, then every solution of the problem (1)-(2) is
oscillatory in G.
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Proof. Assume that there exists a non oscillatory solution u(x, t) of the problem
(1)− (2) and u(x, t) > 0, (x, t) ∈ Ω× [t0,+∞), t0 ≥ 0. By assumption that there
exists a t1 > t0 such that

u(x, σ(t)) > 0, (x, t) ∈ Ω× [t1,∞)

u(x, δ(t)) > 0, (x, t) ∈ Ω× [t1,∞)

u(x, ρi(t)) > 0, (x, t) ∈ Ω× [t1,∞), i = 1, 2, · · · , n.

For t ≥ t0, t ̸= tk, k = 1, 2, · · · , multiplying both sides of equation (1) by
KΦΦ(x) and integrating with respect to x over the domain Ω, we obtain

t1−α d

dt

[
p(t)t1−α d

dt

(
KΦ

∫
Ω
u(x, t)Φ(x)dx+c(t)KΦ

∫
Ω
u(x, σ(t))Φ(x)dx

)]
+KΦ

∫
Ω
q(x, t)f(u(x, δ(t)))Φ(x)dx = a(t)KΦ

∫
Ω
∆u(x, t)Φ(x)dx

+

n∑
i=1

bi(t)KΦ

∫
Ω
∆u(x, ρi(t))Φ(x)dx+KΦ

∫
Ω
F (x, t)Φ(x)dx.


(4)

Using Green’s formula and boundary condition (2), we see that

KΦ

∫
Ω
∆u(x, t)Φ(x)dx = KΦ

∫
∂Ω

[
Φ(x)

∂u

∂γ
− u

∂Φ(x)

∂γ

]
dS

+KΦ

∫
Ω
u(x, t)∆Φ(x)dx = − λ0Y (t) ≤ 0(5)

and for i = 1, 2, · · · , n, we have

KΦ

∫
Ω
∆u(x, ρi(t))Φ(x)dx = KΦ

∫
∂Ω

[
Φ(x)

∂u(x, ρi(t))

∂γ
− u(x, ρi(t))

∂Φ(x)

∂γ

]
dS

+KΦ

∫
Ω
u(x, ρi(t))∆Φ(x)dx

= − λ0Y (ρi(t)) ≤ 0,(6)

where dS is surface element on ∂Ω. Applying Jensen’s inequality and from (C2),
it follows that

KΦ

∫
Ω
q(x, t)f(u(x, δ(t)))Φ(x)dx ≥ ϵq(t)KΦ

∫
Ω
u(x, δ(t))Φ(x)dx.(7)

Also, we have

F (t) = KΦ

∫
Ω
F (x, t)Φ(x)dx ≤ 0.(8)

In view of (4)-(8), we obtain

Tα (p(t)Tα(z(t))) + ϵq(t)Y (δ(t)) ≤ 0,(9)
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where z(t) = Y (t) + c(t)Y (σ(t)). It is easy to obtain that z(t) > 0 for t ≥ t1.
Next we prove that Tα(z(t)) > 0 for t ≥ t2. Assume the contrary that there
exists K ≥ t2 such that Tα(z(t)) ≤ 0, so we get

Tα(p(t)Tα(z(t))) ≤ 0, t ≥ K.(10)

From (10), we have

p(t)Tα(z(t)) ≤ p(K)Tα(z(K)), t ≥ K.

Then we get

z(t) ≤ z(K) + p(K)Tα(z(K))

∫ t

K

ds

s1−αp(s)
, t ≥ K.(11)

From the hypothesis (C1), we get limt→+∞ z(t) = −∞. This contradicts that
z(t) > 0 for t ≥ 0. Thus Tα(z(t)) > 0 and σ(t) ≤ t for t ≥ t1, we have

Y (t) =z(t)− c(t)Y (σ(t)) ≥ z(t)− c(t)z(t),

Y (t) ≥z(t)(1− c(t)) ≥ c0z(t),

where c0 = 1− c(t) is a positive constant. Therefore from (9), we have

Tα (p(t)Tα(z(t))) + k0q(t)z(δ(t)) ≤ 0,

where k0 = ϵc0. For t ≥ t0, t = tk, k = 1, 2, · · · , multiplying both sides of the
equation (1) by KΦΦ(x), integrating with respect to x over the domain Ω, and
from (C5), we obtain

g∗k ≤
Y (t+k )

Y (tk)
≤ gk, h∗k ≤

Tα(Y (t+k ))

Tα(Y (tk))
≤ hk

and

g∗k ≤
z(t+k )

z(tk)
≤ gk, h∗k ≤

Tα(z(t
+
k ))

Tα(z(tk))
≤ hk.

Hence we obtain that z(t) is a positive solution of impulsive conformable frac-
tional inequality (3). This completes the proof.

Lemma 2.3. Assume that conditions (C1)− (C5) hold and let u(x, t) be a pos-
itive solution of (1) and (2). Then for sufficiently large t, either

(I) z(t) > 0, Tα(z(t)) > 0, Tα (p(t)Tα(z(t))) < 0 or

(II) z(t) > 0, Tα(z(t)) < 0, Tα (p(t)Tα(z(t))) < 0.
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Lemma 2.4. Assume that conditions (C1)−(C5) hold and let u(x, t) be an even-
tually positive solution of (1) and (2) with z(t) satisfying case (II) of Lemma
2.3. If ∫ ∞

t1

1

p(y)y1−α

∫ ∞

y

q(s)

s1−α
z(δ(s))dsdy = ∞,(12)

then limt→∞ z(t) = 0.

Proof. Let u(x,t) be an eventually positive solution of (1) and (2). Then z(t)
satisfies the inequality (3) and

Tα (p(t)Tα(z(t))) ≤ −k0q(t)z(δ(t)) ≤ 0, t ≥ t2.

By Lemma 2.3, there exists a constant m such that

lim
t→∞

z(t) = m <∞.(13)

Integrating the above inequality from t to ∞, we get

p(t)Tα(z(t)) ≥
∫ ∞

t
k0
q(s)

s1−α
z(δ(s))ds

Tα(z(t)) ≥
k0
p(t)

∫ ∞

t

q(s)

s1−α
z(δ(s))ds.

Again integrating from t1 to ∞, we get

z(t) ≥ k0

∫ ∞

t1

1

p(y)y1−α

∫ ∞

y

q(s)

s1−α
z(δ(s))dsdy,

which contradicts (13), and so we have m = 0. Therefore limt→∞ z(t) = 0. This
complete the proof.

3. Main results

In this section, by using Riccati transformation and impulsive differential in-
equality, we investigate the asymptotic behavior of all solutions of nonlinear
partial differential equations with impulse effects and obtained the following
two theorems.

Theorem 3.1. Assume that (C1)-(C5) holds and there exists η(t)∈Cα([t0,∞),R)
such that for all sufficiently large K and for t1 ≥ K,

lim sup
t→∞

∫ t

t1

∏
t0≤tk≤s

(
hk
g∗k

)−1{
k0s

α−1η(s)q(s)− s1−αTα(η(s))
2p(s)

4η(s)

}
ds=∞,(14)

then any solution u(x, t) of (1) and (2) is either oscillatory or converges to zero
as t→ ∞.
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Proof. Let u(x, t) be a non oscillatory solution of (1) and (2). Without loss
of generality, we may assume that there exists t1 ≥ t0 such that u(x, t) > 0,
u(x, σ(t)) > 0 and u(x, δ(t)) > 0 for t ≥ t1. Also z(t) satisfies either case (I) or
case (II) for t ≥ t1.

Assume that case (I) and define

w(t) = η(t)
p(t)Tα(z(t))

z(δ(t))
for t ≥ t1,

Tα(w(t)) ≤ −k0η(t)q(t)−
w2(t)

η(t)p(t)
+
Tα(η(t))

η(t)
w(t).(15)

Also

w(t+k ) ≤
hk
g∗k
w(tk).(16)

Define

V (t) =
∏

t0≤tk<t

(
hk
g∗k

)−1

w(t).

In fact, w(t) is continuous on each interval (tk, tk+1] and it follows that for t ≥ t0,

V (t+k ) =
∏

t0≤tj≤tk

(
hk
g∗k

)−1

w(t+k ) ≤
∏

t0≤tj<t

(
hk
g∗k

)−1

w(tk) = V (tk),

and for all t ≥ t0

V (t−k ) =
∏

t0≤tj≤tk−1

(
hk
g∗k

)−1

w(t−k ) ≤
∏

t0≤tk<t

(
hk
g∗k

)−1

w(tk) = V (tk),

which implies that V (t) is continuous on [t0,+∞), from (15), we get∏
t0≤tk<t

(
hk
g∗k

)
Tα(V (t)) ≤ −k0η(t)q(t)

−
∏

t0≤tk<t

(
hk
g∗k

)2 V 2(t)

η(t)p(t)
+
Tα(η(t))

η(t)

∏
t0≤tk<t

(
hk
g∗k

)
V (t),

Tα(V (t)) ≤ −
∏

t0≤tk<t

(
hk
g∗k

)
V 2(t)

η(t)p(t)
+
Tα(η(t))

η(t)
V (t)

−
∏

t0≤tk<t

(
hk
g∗k

)−1

k0η(t)q(t).(17)

Applying Lemma 2.1, we have

X =

√√√√ ∏
t0≤tk<t

(
hk
g∗k

)
1

η(t)p(t)
V (t) and Y =

Tα(η(t))

2

√√√√ ∏
t0≤tk<t

(
hk
g∗k

)−1 p(t)

η(t)
.
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We have∏
t0≤tk<t

(
hk
g∗k

)
V 2(t)

η(t)p(t)
+
Tα(η(t))

η(t)
V (t) ≤

∏
t0≤tk<t

(
hk
g∗k

)−1 T 2
α(η(t))p(t)

4η(t)
.

Thus

Tα(V (t)) ≤ −
∏

t0≤tk<t

(
hk
g∗k

)−1 [
k0η(t)q(t)−

T 2
α(η(t))p(t)

4η(t)

]
.

Integrating both sides from t1 to t, we have

V (t) ≤ V (t1)−
∫ t

t1

∏
t0≤tk<t

(
hk
g∗k

)−1 [
k0s

α−1η(s)q(s)− sα−1Tα(η(s))
2p(s)

4η(s)

]
ds.

Letting t→ ∞, from (14), we have limt→∞ V (t) = −∞, which is a contradiction.
If case (II) holds, then using Lemma 2.4, we have limt→∞ z(t) = 0. Since
0 < Y (t) < z(t) on (t1,∞), we get limt→∞ u(x, t) = 0. The proof of the theorem
is complete.

Next we obtain some new asymptotic results for (1) and (2), by using integral
average condition of Philos type [16]. Let D = {(t, s) : t0 ≤ s ≤ t},H ∈
Cα(D,R). If H ∈ H, then H(t, t) = 0 and H(t, s) > 0 for t > s and h ∈
Lloc(D,R) such that

∂H(t, s)

∂t
= h(t, s)

√
H(t, s),

∂H(t, s)

∂s
= −h(t, s)

√
H(t, s).

Theorem 3.2. Assume that conditions (C1)-(C5) hold and there exist ϕ(t), ψ(t)∈
Cα([0,∞), (0,+∞)), if

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
hk
g∗k

)−1

k0η(s)q(s)ψ(s)
[
(1− α)s−α

√
H(t, s)

−s1−αh(t, s) + s1−α
√
H(t, s)

ψ
′
(s)

ψ(s)

]2

ds = +∞,(18)

then every solution of the boundary value problem (1) and (2) is oscillatory or
converges to zero as t→ ∞.

Proof. Assume that the boundary value problem (1) and (2) has a non oscilla-
tory solution u(x, t). Without loss of generality, assume that u(x, t) > 0, (x, t) ∈
Ω× [0,+∞). As in the proof of the Theorem 3.1, we obtain

Tα(V (t)) ≤ −
∏

t0≤tk<t

(
hk
g∗k

)
V 2(t)

η(t)p(t)
+
Tα(η(t))

η(t)
V (t)−

∏
t0≤tk<t

(
hk
g∗k

)−1

k0η(t)q(t).
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Multiplying the above inequality by H(t, s)ψ(s) for t ≥ s ≥ K, and integrating
from K to t, we have∫ t

K
Tα(V (t))H(t, s)ψ(s)ds ≤ −

∫ t

K

∏
t0≤tk<s

(
hk
g∗k

)
V 2(s)

η(s)p(s)
H(t, s)ψ(s)ds

+

∫ t

K

Tα(η(s))

η(s)
V (t)H(t, s)ψ(s)ds

−
∫ t

K

∏
t0≤tk<s

(
hk
g∗k

)−1

k0η(s)q(s)H(t, s)ψ(s)ds,

Consider∫ t

K

∏
t0≤tk<t

(
hk
g∗k

)−1

k0η(s)q(s)H(t, s)ψ(s)ds

≤ H(t,K)ψ(K)T 1−αV (K) +

∫ t

K

[
(1− α)s−αH(t, s)ψ(s)

−s1−αh(t, s)
√
H(t, s)ψ(s)+s1−αH(t, s)ψ′(s)−Tα(η(s))

η(s)
H(t, s)ψ(s)

]
V (s)ds

(19)

−
∫ t

K

∏
t0≤tk<s

(
hk
g∗k

)
V 2(s)

η(s)p(s)
H(t, s)ψ(s)ds.

From this, ∫ t

t0

∏
t0≤tk<s

(
hk
g∗k

)−1(
k0η(s)q(s)H(t, s)ψ(s)

− η(s)p(s)ψ(s)

4

[
(1− α)s−α

√
H(t, s)− s1−αh(t, s)(20)

+ s1−α
√
H(t, s)

ψ′(s)

ψ(s)

]2)
ds ≤ V (t)H(t,K)ψ(K)K1−α.

Letting t→ ∞, we have

lim sup
t→+∞

1

H(t, t0)

∫ t

t0

∏
t0≤tk<s

(
hk
g∗k

)−1{
k0η(s)q(s)H(t, s)ψ(s)

− η(s)p(s)ψ(s)

4

[
(1− α)s−α

√
H(t, s)− s1−αh(t, s)(21)

+ s1−α
√
H(t, s)

ψ′(s)

ψ(s)

]2}
ds < +∞

which is a contradiction with (18).
Let z(t) satisfies case (II) of Lemma 2.3, then using Lemma 2.4, we have

limt→∞ z(t) = 0. Since 0 < Y (t) < z(t) on (t1,∞), we get limt→∞ u(x, t) = 0.
The proof of the theorem is complete.
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4. Example

In this section, we present an example to illustrate our main results established
in Section 3.

Example 4.1. Consider the following impulsive neutral partial differential equa-
tion is of the form

(22)

∂
1
2

∂t
1
2

[
√
t
∂

1
2

∂t
1
2

(
u(x, t) +

1

3
u

(
x,
t

2

))]
+

2

15
u

(
x,
t

3

)
=

2

3
∆u(x, t) +

1

5
∆u

(
x,
t

3

)
+ F (x, t), t ̸= 2k, (x, t) ∈ Ω× R+ ≡ G,

u(x, t+k ) =
k

k + 1
u(x, 2k),

∂
1
2

∂t
1
2

u(x, t+k ) =
∂

1
2

∂t
1
2

u(x, 2k), k = 1, 2, · · · ,


for (x, t) ∈ (0, π)× R+, with the boundary condition

u(0, t) = u(π, t) = 0, (x, t) ∈ ∂Ω× R+.(23)

Here p(t) =
√
t, α = 1/2, f(u) = 2u, q(t) = 1

15 , a(t) =
2
3 , b1(t) =

1
5 , c(t) = 1/3,

σ(t) = t
2 , δ(t) = ρ1(t) = t

3 , F (x, t) = 5
3(1 + 1√

t
) sinx

t . Let gk = g∗k = k
k+1 ,

hk = h∗k = 1, t0 = 1, tk = 2k, η(t) = t
2 , ϵ =

1
2 . Then hypotheses (C1) − (C5)

hold, and moreover

lim
t→+∞

∫ t

t0

∏
t06tk<s

(
hk
g∗k

)−1

ds =

∫ +∞

1

∏
1<tk<s

k

k + 1
ds

=

∫ t1

1

∏
1<tk<s

k

k + 1
ds+

∫ t2

t+1

∏
1<tk<s

k

k + 1
ds+ · · ·

= 1 +
1

2
× 2 +

1

2
× 2

3
× 22 + · · ·

=
∞∑
n=0

2n

n+ 1
= +∞.

Thus, ∫ +∞

1

∏
1<tk<s

k

k + 1

[
s

90
− s1/2

4

]
ds = +∞.

Here all the conditions of Theorem 3.1 are satisfied. Hence every solution u(x, t)
of the problem (22) and (23) is either oscillatory or converges to zero as t→ ∞.
In fact u(x, t) = sinx

t is such a solution.
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