

On hyper Q -fuzzy normal HX subgroup, conjugate and its normal level

Mourad Oqla Massa'deh*

Department of Applied Science

Ajloun College

Al-Balqa Applied University

Jordan

mourad.oqla@bau.edu.jo

and

Department of Mathematics

College of Science

Taibah University

Madinah

Saudi Arabia

mmassadeh@taibahu.edu.sa

Ahlan Fellatah

Department of Mathematics

Taibah University

College of Science

Madinah

Saudi Arabia

Afallatah@taibahu.edu.sa

Abstract. In this research, we introduce a hyper Q -fuzzy HX subgroup of a HX group ν notion also we discuss a few of its properties. Also we define a hyper Q -fuzzy normal HX subgroup, normal level subgroup HX of hyper Q -fuzzy normal HX subgroup of a HX group also self conjugate and we discussed some of their important properties.

Keywords: HX group, hyper fuzzy set, fuzzy HX –Subgroup, Q -fuzzy set, Q -fuzzy HX –subgroup, hyper Q -fuzzy HX –subgroup, normal level sub HX group.

1. Introduction

In 1965, Zadeh [20] introduced the notion of fuzzy sets and opened a new path of thinking to engineers, computer science, mathematicians, physicists and many others due to its diverse applications in various fields. In 1975, Zadeh [19] discussed the concepts of interval valued fuzzy sets. Where the values of membership functions are intervals of real numbers instead of the real points. The concept of fuzzy subgroups was introduced by Rosenfield [17] in 1971, which was the first fuzzification of any algebraic structure, after that Biswas [1] in 1994

*. Corresponding author

define interval valued fuzzy subgroups. Piergiulio Corsini and Li Honyxing [2, 3, 5] studied HX group concept and there after Chengzhong., Mitlonghai., and Hongxing [6] discussed fuzzy HX group concept. Manikandan et al [14] introduce anti Q -fuzzy normal HX group and its lower level sub HX groups concept. A new algebraic structure of Q -fuzzy group are introduced and defined by Solairaju et al [18]. Hereafter, several results about the HX group with respect to Q -fuzzy and anti Q -fuzzy, bipolar fuzzy, intuitionistic fuzzy have been obtained see [7, 9, 10, 11, 12, 13, 15]. In 2012, Jayanta et al [4] introduced the concepts of hyper fuzzy sets, where the values of the membership functions are assumed to be a subsets of $[0, 1]$, which is a generalization of fuzzy sets and interval valued fuzzy sets. In this research we give a new algebraic structure of hyper Q -fuzzy HX subgroups also we study some of its properties. Also we define hyper Q -fuzzy normal HX subgroup and some of its properties are discussed.

2. Preliminaries

Definition 2.1 ([5]). An HX group on G is non empty set $v \subset 2^G - \{\phi\}$ such that v is a group with respect to the algebraic operation defined by $WV = \{wv, w \in W \text{ and } v \in V\}$, which its unit element is denoted by U .

Definition 2.2 ([20]). If A is any non empty set. A fuzzy subset λ of A is a function $\lambda : A \rightarrow [0, 1]$.

Definition 2.3 ([16]). A fuzzy set μ is said to be fuzzy HX subgroup of v if for $W, V \in v$, that is,

1. $\mu(WV) \geq \min\{\mu(W), \mu(V)\}$
2. $\mu(W^{-1}) = \mu(W)$.

Definition 2.4 ([16, 18]). Let Q and v be any two sets. A mapping $\mu : v \times Q \rightarrow [0, 1]$ is called Q -fuzzy set in v .

Definition 2.5 ([16, 18]). A Q -fuzzy set μ is called Q -fuzzy HX subgroup of v if for all $W, V \in v$ and $q \in Q$:

1. $\mu(WV, q) \geq \min\{\mu(W, q), \mu(V, q)\}$
2. $\mu(W^{-1}, q) = \mu(W, q)$.

Definition 2.6 ([8]). A Q -fuzzy HX subgroup μ of v is said to be normal if for all $W, V \in v$ and $q \in Q$. That is, $\mu(WV, q) = \mu(VW, q)$ or $\mu(WVW^{-1}, q) = \mu(V, q)$.

Definition 2.7 ([4]). Let v, Q be any two sets. An interval valued Q -fuzzy set μ defined in v is given by $\mu = \{(V, q), \bar{\lambda}_\mu \in (V, q); V \in v \text{ and } q \in Q\}$ where $\bar{\lambda}_\mu : v \times Q \rightarrow F[0, 1]$ and $F[0, 1]$ denoted the family of all closed subinterval of $[0, 1]$ and $\bar{\lambda}_\mu(V, q) = [\lambda_\mu^L(V, q), \lambda_\mu^R(V, q)]$ such that $\lambda_\mu^L, \lambda_\mu^R$ are two Q -fuzzy subsets of v such that $\lambda_\mu^L(V, q) \leq \lambda_\mu^R(V, q)$ for all $V \in v$ and $q \in Q$.

Definition 2.8 ([4]). Let $F_1, F_2 \in F[0, 1]$. If $F_1 = [\alpha_1, \beta_1]$ and $F_2 = [\alpha_2, \beta_2]$, then $\max(F_1, F_2) = [\max(\alpha_1, \alpha_2), \max(\beta_1, \beta_2)]$ and $\min(F_1, F_2) = [\min(\alpha_1, \alpha_2), \min(\beta_1, \beta_2)]$. Thus if $F_i = [\alpha_i, \beta_i] \in F[0, 1]$ for $i = 1, 2, 3, \dots$, then we define $r \sup_i F_i = [\sup_i \alpha_i, \sup_i \beta_i]$ and $r \inf_i F_i = [\inf_i \alpha_i, \inf_i \beta_i]$. Now we call $F_1 \geq F_2$ iff $\alpha_1 \geq \alpha_2$ and $\beta_1 \geq \beta_2$. Similarly we may have $F_1 \leq F_2$ and $F_1 = F_2$.

Definition 2.9 ([4]). An interval valued Q -fuzzy subset $\bar{\lambda}_\mu$ of a HX group v is called an interval valued Q -fuzzy subgroup if :

1. $\bar{\lambda}_\mu(WV, q) \geq r \min\{\bar{\lambda}_\mu(W, q), \bar{\lambda}_\mu(V, q)\}$
2. $\bar{\lambda}_\mu(W^{-1}, q) = \bar{\lambda}_\mu(W, q)\}$,

Where $W, V \in v$ and $q \in Q$.

3. Hyper Q -fuzzy HX subgroups

Definition 3.1. Let v and Q be two sets. A mapping $\mu^* : v \times Q \rightarrow \wp([0, 1])$ is said to be a hyper Q -fuzzy of v , where $\wp([0, 1])$ denotes the set of all non empty subset of $[0, 1]$.

Definition 3.2. Let v and Q be two sets and μ^*, λ^* be two hyper Q -fuzzy subset of v . Then the intersection of μ^* and λ^* is denoted by $\mu^* \cap \lambda^*$ and defined by: $\mu^* \cap \lambda^*(V, q) = \{\min\{v_1, v_2\}; v_1 \in \mu^*(V, q), v_2 \in \lambda^*(V, q)\}$ for all $V \in v$ and $q \in Q$. The union of μ^* and λ^* is denoted by $\mu^* \cup \lambda^*$ and defined by: $(\mu^* \cup \lambda^*)(V, q) = \{\max\{v_1, v_2\}; v_1 \in \mu^*(V, q), v_2 \in \lambda^*(V, q)\}$ for all $V \in v$ and $q \in Q$.

Definition 3.3. Let v be a HX group. A mapping $\mu^* : v \times Q \rightarrow \wp([0, 1])$ is called a hyper Q -fuzzy HX subgroup of v if $\forall W, V \in v$ and $q \in Q$ the following axioms hold:

1. $\inf \mu^*(WV, q) \geq \min\{\inf \mu^*(W, q), \inf \mu^*(V, q)\}$
2. $\sup \mu^*(WV, q) \geq \min\{\sup \mu^*(W, q), \sup \mu^*(V, q)\}$
3. $\inf \mu^*(W^{-1}, q) \geq \inf \mu^*(W, q)$
4. $\sup \mu^*(W^{-1}, q) \geq \sup \mu^*(W, q)$.

Lemma 3.4. If μ^* is a hyper Q -fuzzy HX subgroup of v having the identity U , then for all $W \in v$:

1. $\inf \mu^*(W^{-1}, q) = \inf \mu^*(W, q)$ and $\sup \mu^*(W^{-1}, q) = \sup \mu^*(W, q)$.
2. $\inf \mu^*(U, q) \geq \inf \mu^*(W, q)$ and $\sup \mu^*(U, q) \geq \sup \mu^*(W, q)$.

Proof. 1. As μ^* is a hyper Q -fuzzy HX subgroup of v , then $\inf \mu^*(W^{-1}, q) \geq \inf \mu^*(W, q) \forall W \in v$ and $q \in Q$, also $\inf \mu^*(W, q) = \inf \mu^*((W^{-1})^{-1}, q) \geq \inf \mu^*(W^{-1}, q)$. Then $\inf \mu^*(W, q) \geq \inf \mu^*(W^{-1}, q)$, thus $\inf \mu^*(W, q) = \inf \mu^*(W^{-1}, q)$. Similarly, we can prove that $\sup \mu^*(W^{-1}, q) = \sup \mu^*(W, q)$.

2. $\inf \mu^*(U, q) = \inf \mu^*(WW^{-1}, q) \geq \min\{\inf \mu^*(W, q), \inf \mu^*(W^{-1}, q)\} = \inf \mu^*(W, q)$. Then $\inf \mu^*(U, q) \geq \inf \mu^*(W, q)$, also $\sup \mu^*(U, q) = \sup \mu^*(WW^{-1}, q) \geq \min\{\sup \mu^*(W, q), \sup \mu^*(W^{-1}, q)\} = \sup \mu^*(W, q)$, then $\sup \mu^*(U, q) \geq \sup \mu^*(W, q)$. \square

Proposition 3.5. A hyper Q -fuzzy subset μ^* of a HX group v is a hyper Q -fuzzy HX subgroup iff for all $W, V \in v, q \in Q$ followings are hold:

1. $\inf \mu^*(WV^{-1}, q) \geq \min\{\inf \mu^*(W, q), \inf \mu^*(V, q)\}$.
2. $\sup \mu^*(WV^{-1}, q) \geq \min\{\sup \mu^*(W, q), \sup \mu^*(V, q)\}$.

Proof. \Rightarrow Let μ^* be a hyper Q -fuzzy HX subgroup of v and $W, V \in v, q \in Q$. Then

$$\begin{aligned} \inf \mu^*(WV^{-1}, q) &\geq \min\{\inf \mu^*(W, q), \inf \mu^*(V^{-1}, q)\} \\ &= \min\{\inf \mu^*(W, q), \inf \mu^*(V, q)\}. \end{aligned}$$

And

$$\begin{aligned} \sup \mu^*(WV^{-1}, q) &\geq \min\{\sup \mu^*(W, q), \sup \mu^*(V^{-1}, q)\} \\ &= \min\{\sup \mu^*(W, q), \sup \mu^*(V, q)\}. \end{aligned}$$

\Leftarrow Let μ^* be a hyper Q -fuzzy subset of v and given conditions hold. Then for all $W, V \in v, q \in Q$, we have $\inf \mu^*(U, q) = \inf \mu^*(VV^{-1}, q) \geq \min\{\inf \mu^*(V, q), \inf \mu^*(V^{-1}, q)\} = \inf \mu^*(V, q)$, $\sup \mu^*(U, q) = \sup \mu^*(U, q) = \sup \mu^*(VV^{-1}, q) \geq \min\{\sup \mu^*(V, q), \sup \mu^*(V^{-1}, q)\} = \sup \mu^*(V, q)$.

So, $\inf \mu^*(V^{-1}, q) = \inf \mu^*(UV^{-1}, q) \geq \min\{\inf \mu^*(U, q), \inf \mu^*(V, q)\} = \inf \mu^*(V, q)$. And $\sup \mu^*(V^{-1}, q) = \sup \mu^*(UV^{-1}, q) \geq \min\{\sup \mu^*(U, q), \sup \mu^*(V, q)\} = \sup \mu^*(V, q)$.

Again, $\inf \mu^*(WV, q) \geq \min\{\inf \mu^*(W, q), \inf \mu^*(V^{-1}, q)\} \geq \min\{\inf \mu^*(W, q), \inf \mu^*(V, q)\}$. Therefore μ^* be a hyper Q -fuzzy HX subgroup of v . \square

Theorem 3.6. If λ^*, μ^* are two hyper Q -fuzzy HX -subgroups of v , then $\lambda^* \cap \mu^*$ is hyper Q -fuzzy HX -subgroup of v .

Proof. Since λ^*, μ^* are two hyper Q -fuzzy HX -subgroups of v , and $W, V \in v, q \in Q$. Thus

$$\begin{aligned} \inf(\lambda^* \cap \mu^*)(WV^{-1}, q) &= \min\{\inf \lambda^*(WV^{-1}, q), \inf \mu^*(WV^{-1}, q)\} \\ &\geq \min\{\min\{\inf \lambda^*(W, q), \inf \lambda^*(V, q)\}, \min\{\inf \mu^*(W, q), \inf \mu^*(V, q)\}\} \\ (1) \quad &= \min\{\min\{\inf \lambda^*(W, q), \inf \mu^*(W, q)\}, \min\{\inf \lambda^*(V, q), \inf \mu^*(V, q)\}\} \\ &= \min\{\inf(\lambda^* \cap \mu^*)(W, q), \inf(\lambda^* \cap \mu^*)(V, q)\}. \end{aligned}$$

Also

$$\begin{aligned}
 \sup(\lambda^* \cap \mu^*)(WV^{-1}, q) &= \min\{\sup \lambda^*(WV^{-1}, q), \sup \mu^*(WV^{-1}, q)\} \\
 &\geq \min\{\min\{\sup \lambda^*(W, q), \sup \lambda^*(V, q)\}, \min\{\sup \mu^*(W, q), \sup \mu^*(V, q)\}\} \\
 (2) \quad &= \min\{\min\{\sup \lambda^*(W, q), \sup \mu^*(W, q)\}, \min\{\sup \lambda^*(V, q), \sup \mu^*(V, q)\}\} \\
 &= \min\{\sup(\lambda^* \cap \mu^*)(W, q), \sup(\lambda^* \cap \mu^*)(V, q)\}.
 \end{aligned}$$

Therefore by (1), (2) and Proposition 3.5, we say that $\lambda^* \cap \mu^*$ is a hyper Q -fuzzy HX subgroup of v . \square

Corollary 3.7. The intersection of any collection hyper Q -fuzzy normal HX subgroup is a hyper Q -fuzzy normal HX subgroup of v .

Proof. Straightforward. \square

Definition 3.8. Let μ^* be a hyper Q -fuzzy HX subgroup of v . Then μ^* is called hyper Q -fuzzy normal HX subgroup of v if $\inf \mu^*(WV, q) = \inf \mu^*(VW, q)$ and $\sup \lambda^*(WV, q) = \sup \lambda^*(VW, q)$ for all $W, V \in v, q \in Q$.

Theorem 3.9. Let μ^* be a hyper Q -fuzzy HX subgroup of v , then the following are equivalent.

1. μ^* be a hyper Q -fuzzy HX normal subgroup of v .
2. $\inf \mu^*(WVW^{-1}, q) = \inf \mu^*(V, q), \sup \mu^*(WVW^{-1}, q) = \sup \mu^*(V, q)$.
3. $\inf \mu^*(WV, q) = \inf \mu^*(VW, q)$ and $\sup \mu^*(WV, q) = \sup \mu^*(VW, q)$, for all $W, V \in v, q \in Q$.

Proof. Straightforward. \square

Theorem 3.10. If λ^*, μ^* are two hyper Q -fuzzy normal HX -subgroups of v , then $\lambda^* \cap \mu^*$ is hyper Q -fuzzy normal HX -subgroup of v .

Proof. Since λ^*, μ^* are two hyper Q -fuzzy HX subgroup of v , by Theorem 3.6 $\lambda^* \cap \mu^*$ is a hyper Q -fuzzy HX subgroup of v . Let $W, V \in v, q \in Q$, then

$$\begin{aligned}
 \inf(\lambda^* \cap \mu^*)(WV, q) &= \min\{\inf \lambda^*(WV, q), \inf \mu^*(WV, q)\} \\
 &= \min\{\inf \lambda^*(VW, q), \inf \mu^*(VW, q)\} \\
 &= \inf(\lambda^* \cap \mu^*)(VW, q).
 \end{aligned}$$

And

$$\begin{aligned}
 \sup(\lambda^* \cap \mu^*)(WV, q) &= \min\{\sup \lambda^*(WV, q), \sup \mu^*(WV, q)\} \\
 &= \min\{\sup \lambda^*(VW, q), \sup \mu^*(VW, q)\} \\
 &= \sup(\lambda^* \cap \mu^*)(VW, q).
 \end{aligned}$$

Therefore $(\lambda^* \cap \mu^*)$ is a hyper Q -fuzzy normal HX subgroup of v . \square

Corollary 3.11. The intersection of any collection hyper Q -fuzzy normal HX subgroup is a hyper Q -fuzzy normal HX subgroup of v .

Proof. Straightforward. \square

4. Level subset of hyper Q -fuzzy normal HX subgroup and self conjecture hyper Q -fuzzy HX subgroup

Definition 4.1. Let μ^* be a hyper Q -fuzzy normal HX subgroup of v . Such that for any $\alpha \in [0, 1]$ we define the set $L(\mu^*, \alpha) = \{V \in v, q \in Q; \inf \mu^*(V, q) \geq \alpha \text{ and } \sup \lambda^*(V, q) \geq \alpha\}$ is called the level subset of μ^* .

Theorem 4.2. Let μ^* be a hyper Q -fuzzy normal HX subgroup of v . Then for $\alpha \in [0, 1]$ such that $\inf \mu^*(U, q) \geq \alpha$ and $\sup \mu^*(U, q) \geq \alpha$, $L(\mu^*, \alpha)$ is normal sub HX group of v .

Proof. For all $W, V \in L(\mu^*, \alpha)$ we have $\inf \mu^*(W, q) \geq \alpha$ and $\inf \lambda^*(V, q) \geq \alpha$. Now $\inf \mu^*(WV^{-1}, q) \geq \min\{\inf \mu^*(W, q), \inf \mu^*(V, q)\} \geq \min\{\alpha, \alpha\} = \alpha$. Thus $\inf \mu^*(WV^{-1}, q) \geq \alpha$ and $\sup \mu^*(W, q) \geq \alpha$ and $\sup \lambda^*(V, q) \geq \alpha$. Now $\sup \mu^*(WV^{-1}, q) \geq \min\{\sup \mu^*(W, q), \sup \mu^*(V, q)\} \geq \min\{\alpha, \alpha\} = \alpha$. Thus $\sup \mu^*(WV^{-1}, q) \geq \alpha$ and we get $WV^{-1} \in L(\mu^*, \alpha)$. Hence $L(\mu^*, \alpha)$ is a sub HX group of v .

For all $V \in L(\mu^*, \alpha), W \in v, q \in Q$ and $\alpha \in [0, 1]$ such that $\inf \mu^*(U, q) \geq \alpha$ and $\sup \mu^*(U, q) \geq \alpha$ we have $\inf \mu^*(V, q) \geq \alpha$ and $\sup \mu^*(V, q) \geq \alpha$. Since μ^* be a hyper Q -fuzzy normal HX subgroup of v , then $\inf \mu^*(WVW^{-1}, q) = \inf \mu^*(V, q) \geq \alpha$ and $\sup \lambda^*(WVW^{-1}, q) = \sup \lambda^*(V, q) \geq \alpha$ for all $W, V \in v, q \in Q$, therefore $WVW^{-1} \in L(\mu^*, \alpha)$. Hence $L(\mu^*, \alpha)$ is a normal sub HX group of v . \square

Theorem 4.3. Let v be a HX group and μ^* be a hyper Q -fuzzy subset of v such that $L(\mu^*, \alpha)$ is a normal sub HX group of v . For $\alpha \in [0, 1]$ $\inf \mu^*(U, q) \geq \alpha$ and $\sup \mu^*(U, q) \geq \alpha$, then μ^* is a hyper Q -fuzzy normal HX subgroup of v .

Proof. Let $W, V \in v$ and $\mu^*(W, q) = \alpha_1$ this means that $\inf \mu^*(W, q) = \sup \mu^*(W, q) = \alpha_1$, $\mu^*(V, q) = \alpha_2$ this means that $\inf \mu^*(V, q) = \sup \mu^*(V, q) = \alpha_2$.

Suppose that $\alpha_1 > \alpha_2$, then $W, V \in L(\mu^*, \alpha)$ as $L(\mu^*, \alpha)$ is a subgroup of v , $WV^{-1} \in L(\mu^*, \alpha)$ hence $\inf \mu^*(WV^{-1}, q) \geq \alpha_2 = \min\{\alpha_1, \alpha_2\} \geq \min\{\inf \mu^*(W, q), \inf \mu^*(V, q)\}$. Thus $\inf \mu^*(WV^{-1}, q) \geq \min\{\inf \mu^*(W, q), \inf \mu^*(V, q)\}$ and $\sup \mu^*(WV^{-1}, q) \geq \alpha_2 = \min\{\alpha_1, \alpha_2\} \geq \min\{\sup \mu^*(W, q), \sup \mu^*(V, q)\}$ then $\sup \mu^*(WV^{-1}, q) \geq \min\{\sup \mu^*(W, q), \sup \mu^*(V, q)\}$. Therefore μ^* is a hyper Q -fuzzy HX subgroup of v . Now for any $\alpha \in [0, 1]$ $L(\mu^*, \alpha) \neq \emptyset$ and $L(\mu^*, \alpha)$ is normal sub HX group. Then, we have $\inf \mu^*(WVW^{-1}, q) = \inf \mu^*(V, q), \sup \mu^*(WVW^{-1}, q) = \sup \mu^*(V, q)$ for all $W, V \in v, q \in Q$. Otherwise, if there exists W_0 or $V_0 \in v$ and $q \in Q$ such that $\inf \mu^*(W_0V_0W_0^{-1}, q) = \inf \mu^*(V_0, q), \sup \lambda^*(W_0V_0W_0^{-1}, q) = \sup \lambda^*(V_0, q)$, take $\alpha_0 = 0.5[\inf \mu^*(V_0, q) + \inf \mu^*(W_0V_0W_0^{-1}, q)] = 0.5[\sup \mu^*(V_0, q) + \sup \mu^*(W_0V_0W_0^{-1}, q)]$. Evidently $\alpha_0 \in [0, 1]$, we can infer that $\inf \mu^*(V_0, q) > \alpha_0, \sup \mu^*(V_0, q) > \alpha_0$ and $\inf \mu^*(W_0V_0W_0^{-1}, q) < \alpha_0$ and $\sup \mu^*(W_0V_0W_0^{-1}, q) < \alpha_0$. Consequently, we have $V_0 \in L(\mu^*, \alpha_0)$ and $W_0V_0W_0^{-1} \notin L(\mu^*, \alpha)$, this contradicts that $L(\mu^*, \alpha_0)$ is normal sub HX group. Hence, we get $\inf \mu^*(V_0, q) = \inf \mu^*(W_0V_0W_0^{-1}, q), \sup \mu^*(V_0, q) = \sup \mu^*(W_0V_0W_0^{-1}, q)$ for all $W, V \in v, q \in Q$. Thus, μ^* is a hyper Q -fuzzy normal HX subgroup of v . \square

Theorem 4.4. If μ^* is a hyper Q -fuzzy normal HX subgroup of v . If two level normal sub HX groups $L(\mu^*, \alpha_1), L(\mu^*, \alpha_2)$ for $\alpha_1, \alpha_2 \in [0, 1]$ and that $\inf \mu^*(U, q) \geq \alpha_1, \alpha_2, \sup \mu^*(U, q) \geq \alpha_1, \alpha_2$ with $\alpha_1 > \alpha_2$ of μ^* are equal if and only if there is no $A \in v$ such that $\alpha_2 < \mu^*(W, q) \leq \alpha_1$.

Proof. (\Rightarrow) Let $L(\mu^*, \alpha_1) = L(\mu^*, \alpha_2)$, suppose there exists $W \in v$ such that $\alpha_2 < \mu^*(W, q) \leq \alpha_1$ then $L(\mu^*, \alpha_1) \subseteq L(\mu^*, \alpha_2)$. Thus $W \in L(\mu^*, \alpha_1)$ but $W \notin L(\mu^*, \alpha_2)$, which is contradicts the assumption that $L(\mu^*, \alpha_1) = L(\mu^*, \alpha_2)$. Hence there is no μ^* in v such that $\alpha_2 < \mu^*(W, q) \leq \alpha_1$.

(\Leftarrow) Suppose that there is no $W \in v$ such that $\alpha_2 < \mu^*(W, q) \leq \alpha_1$. Thus $L(\mu^*, \alpha_2) \subseteq L(\mu^*, \alpha_1)$. Let $W \in L(\mu^*, \alpha_2)$ and there is no W in v such that $\alpha_2 < \mu^*(W, q) \leq \alpha_1$. Hence $W \in L(\mu^*, \alpha_2)$ and $L(\mu^*, \alpha_1) \subseteq L(\mu^*, \alpha_2)$ thus $L(\mu^*, \alpha_1) = L(\mu^*, \alpha_2)$. \square

Corollary 4.5. A level subset $L(\mu^*, \alpha); \alpha \in [0, 1]$ is normal sub HX group of v , if μ^* be a hyper Q -fuzzy normal HX subgroup of v .

Proof. Since μ^* is a hyper Q -fuzzy normal HX subgroup of v and the Level subsets $L(\mu^*, \alpha); \alpha \in [0, 1]$ is normal sub HX group of v , let $W \in v$ and $B \in L(\mu^*, \alpha)$, then $\inf \mu^*(WVW^{-1}, q) = \inf \mu^*(V, q) \geq \alpha$ and $\sup \mu^*(WVW^{-1}, q) = \sup \mu^*(V, q) \geq \alpha$ since μ^* is a hyper Q -fuzzy normal HX subgroup of v . That is, $\inf \mu^*(WVW^{-1}, q) \geq \alpha, \sup \mu^*(WVW^{-1}, q) \geq \alpha$ therefore $WVW^{-1} \in L(\mu^*, \alpha)$, hence $L(\mu^*, \alpha)$ is normal HX subgroup of v . \square

Definition 4.6. Let v be a HX group and μ^* is a hyper Q -fuzzy normal HX subgroup of v , let $N(\mu^*) = \{W \in v, \inf \mu^*(WVW^{-1}, q) = \inf \mu^*(V, q) \text{ and } \sup \mu^*(WVW^{-1}, q) = \sup \mu^*(V, q) \text{ for all } V \in v\}$. Then $N(\mu^*)$ is called the hyper Q -fuzzy normalizer of μ^* .

Proposition 4.7. Let μ^* be a hyper Q -fuzzy normal HX subgroup of v . Then

1. $N(\mu^*)$ is a sub HX group of v .
2. μ^* is a hyper Q -fuzzy normal HX subgroup of v iff $N(\mu^*) = v$.
3. μ^* is a hyper Q -fuzzy normal HX subgroup of $N(\mu^*)$.

Proof. 1. Let $W, V \in N(\mu^*)$ then $\inf \mu^*(WZW^{-1}, q) = \inf \mu^*(Z, q)$ and $\sup \mu^*(WZW^{-1}, q) = \sup \mu^*(Z, q)$ for all $Z \in v$.

Now $\inf \mu^*((WV)Z(WV)^{-1}, q) = \inf \mu^*(WVZV^{-1}W^{-1}, q) = \inf \mu^*(VZV^{-1}, q) = \inf \mu^*(Z, q)$ and $\sup \mu^*((WV)Z(WV)^{-1}, q) = \sup \mu^*(WVZV^{-1}W^{-1}, q) = \sup \mu^*(VZV^{-1}, q) = \sup \mu^*(Z, q)$ therefore, we get $\mu^*((WV)Z(WV)^{-1}, q) = \mu^*(Z, q)$ and thus $WVN(\mu^*)$. Hence $N(\mu^*)$ is a sub HX group of v .

2. (\Rightarrow) Let μ^* is a hyper Q -fuzzy normal HX subgroup of v , clearly $N(\mu^*) \subseteq v$. Let $W \in v$, then $\inf \mu^*(WVW^{-1}, q) = \inf \mu^*(V, q)$ and $\sup \mu^*(WVW^{-1}, q) = \sup \mu^*(V, q)$ then $W \in N(\mu^*)$ and we get $v \subseteq N(\mu^*)$, hence $N(\mu^*) = v$.

(\Leftarrow) Let $N(\mu^*) = v$. Clearly, $\inf \mu^*(WVW^{-1}, q) = \inf \mu^*(V, q)$ and $\sup \mu^*(WVW^{-1}, q) = \sup \mu^*(V, q)$ for all $W, V \in v$ and hence μ^* is a hyper Q -fuzzy normal HX subgroup of v .

3. Clear from 2. □

Theorem 4.8. Let μ^* is a hyper Q -fuzzy HX subgroup of v and $W \in v$. Then the hyper Q -fuzzy subset $\lambda^* : v \times Q \rightarrow \wp([0, 1])$ defined by $\lambda^*(V, q) = \lambda^*(W^{-1}VW, q)$ for all $V \in v$ is a hyper Q -fuzzy HX -subgroup of v .

Proof. Let $W, Z \in v$, then for all $V \in v$

$$\begin{aligned} \inf \lambda^*(VZ^{-1}, q) &= \inf \mu^*(W^{-1}VZ^{-1}W, q) \\ &= \inf \mu^*(W^{-1}VWW^{-1}Z^{-1}W, q) \\ &= \inf \mu^*((W^{-1}VW)(W^{-1}ZW)^{-1}, q) \\ &\geq \min\{\inf \mu^*(W^{-1}VW, q), \inf \mu^*(W^{-1}ZW, q)\} \\ &= \min\{\inf \lambda^*(V, q), \inf \lambda^*(Z, q)\}. \end{aligned}$$

Also

$$\begin{aligned} \sup \lambda^*(VZ^{-1}, q) &= \sup \mu^*(W^{-1}VZ^{-1}W, q) \\ &= \sup \mu^*(W^{-1}VWW^{-1}Z^{-1}W, q) \\ &= \sup \mu^*((W^{-1}VW)(W^{-1}ZW)^{-1}, q) \\ &\geq \min\{\sup \mu^*(W^{-1}VW, q), \sup \mu^*(W^{-1}ZW, q)\} \\ &= \min\{\sup \lambda^*(V, q), \inf \lambda^*(Z, q)\}. \end{aligned}$$

Therefore μ^* is a hyper Q -fuzzy HX -subgroup of v . □

Definition 4.9. Let μ^* and δ^* be two hyper Q -fuzzy HX subgroup of v . We say that δ^* is conjugate to μ^* if for some $W \in v$ we have that $\inf \delta^*(V, q) = \inf \mu^*(W^{-1}VW, q)$ and $\sup \delta^*(V, q) = \sup \mu^*(W^{-1}VW, q)$ for all $V \in v, q \in Q$.

Definition 4.10. A hyper Q -fuzzy HX subgroup μ^* of v is said to be self conjugate hyper Q -fuzzy HX subgroup if for all $W, Z \in v$, we have $\inf \mu^*(Z, q) = \inf \mu^*(W^{-1}ZW, q)$ and $\sup \mu^*(Z, q) = \sup \mu^*(W^{-1}ZW, q)$.

Theorem 4.11. A hyper Q -fuzzy HX subgroup μ^* of v is normal if and only if μ^* is self conjugate hyper Q -fuzzy HX subgroup.

Proof. (\Rightarrow) Let μ^* be a hyper Q -fuzzy normal HX subgroup of v , then $\inf \mu^*(WV, q) = \inf \mu^*(VW, q)$ and $\sup \mu^*(WV, q) = \sup \mu^*(VW, q)$, thus by Theorem 3.9 we have $\inf \mu^*(WVW^{-1}, q) = \inf \mu^*(V, q)$, $\sup \mu^*(WVW^{-1}, q) = \sup \mu^*(V, q)$ for all $W, V \in v, q \in Q$. So, μ^* is a self conjugate hyper Q -fuzzy HX subgroup.

(\Leftarrow) Let μ^* be a self conjugate hyper Q -fuzzy HX subgroup.

Then $\inf \mu^*(WVW^{-1}, q) = \inf \mu^*(V, q)$, $\sup \mu^*(WVW^{-1}, q) = \sup \mu^*(V, q)$ for all $W, V \in v, q \in Q$. So, μ^* is a hyper Q -fuzzy HX subgroup of v . □

Theorem 4.12. Let μ^* be a hyper Q -fuzzy normal HX subgroup of v and $\lambda^* : N(\mu^*) \rightarrow \wp([0, 1])$ is defined by $\lambda^*(W, q) = \mu^*(W, q)$ for all $W \in N(\mu^*)$ and $q \in Q$. Then λ^* is a hyper Q -fuzzy normal HX subgroup of $N(\mu^*)$.

Proof. Since μ^* be a hyper Q -fuzzy normal HX subgroup of v and we have proved that $N(\mu^*)$ is a HX subgroup of v . Then μ^* be a hyper Q -fuzzy HX subgroup of $N(\mu^*)$. Hence λ^* is a hyper Q -fuzzy HX subgroup of $N(\mu^*)$. We have to prove λ^* is normal, since $N(\mu^*)$ is a HX subgroup of v , then $W, V \in N(\mu^*)$ thus $W^{-1}VW \in N(\mu^*)$ also,

$$\begin{aligned}\inf \lambda^*(W^{-1}VW, q) &= \inf \mu^*(W^{-1}VW, q) \quad (\text{since } W^{-1}VW \in N(\mu^*)) \\ &= \inf \mu^*(V, q) \quad (\text{since } V \in N(\mu^*)) \\ &= \inf \lambda^*(V, q) \quad (\text{since } V \in N(\mu^*)).\end{aligned}$$

Also

$$\begin{aligned}\sup \lambda^*(W^{-1}VW, q) &= \sup \mu^*(W^{-1}VW, q) \quad (\text{since } W^{-1}VW \in N(\mu^*)) \\ &= \sup \mu^*(V, q) \quad (\text{since } V \in N(\mu^*)) \\ &= \sup \lambda^*(V, q) \quad (\text{since } V \in N(\mu^*)).\end{aligned}$$

□

Conclusion

In this research, the authors presented hyper Q -fuzzy HX subgroup of a HX group, hyper Q -fuzzy normal HX subgroup of a HX group, level sub HX group and conjugate are well defined and the authors discussed some of their concepts. In the future, we can extend this concept to cosets and its types, homomorphism and in more areas of HX . On the other side, we will use the topics in [21, 22, 23, 24] to generalize on the hyper Q -fuzzy set concept.

Acknowledgments

Author thankful to one and all for their valuable suggestion to improve the quality of the paper and that is the reason to make this research paper as successful. This research has taken place while the author has a sabbatical leave from Al Balqa Applied University, Ajloun College, Department of Applied Science, Ajloun, Jordan.

References

- [1] Biswas, and Rosenfelds, *Fuzzy subgroups with interval-valued membership functions*, Fuzzy Sets and System, 63 (1994), 87-90.
- [2] P. Corsini, *HX-groups and hypergroups*, Analele Univ. "Ovidius", Math Series., 24 (2016), 101-121.
- [3] P. Corsini, *Hypergroups associated with HX-groups*, An. St. Univ. Ovidius Constanta, 25 (2017), 49-64.
- [4] Ghosh Jayanta, T.K. Samanta, *Hyper fuzzy set and hyper fuzzy group*, International Journal of Advanced Science and Technology, 41 (2012), 27-38.
- [5] Li Hongxing, *HX group*, Busefal, 33 (1987), 31-37.

- [6] Chengzhong Mitlonghai Luo, Hongxing Li, *Fuzzy HX group*, Busefal, 39 (1991), 323-328.
- [7] K.H. Manikandan, *Pseudo fuzzy cosets of a HX group*, Applied Mathematical Sciences, 7 (2013), 4259-4271.
- [8] M.O. Massa'deh, *Some properties for M -homomorphism and M -anti homomorphism over Q -fuzzy M - HX Subgroup and its level*, Journal of Informatics and Mathematical Sciences, 9 (2017), 73-78.
- [9] M.O. Massa'deh, *On Q -fuzzy M - HX groups*, International Journal of Fuzzy Mathematics and Systems, 6 (2016), 7-12.
- [10] M.O. Massa'deh, A.A. Fora, *Bipolar-valued Q -fuzzy HX subgroup on an HX group*, Journal of Applied Computer Science and Mathematics, 11 (2017), 20-24.
- [11] R. Muthuraj, M. Sridharan, K.H. Manikandan, *Some properties of bipolar fuzzy normal HX Subgroup and its normal level sub HX groups*, Global Research and Development Journal for Engineering, 2 (2016), pp. 57-65.
- [12] R. Muthuraj, M. Sridharan, *Some properties of bipolar fuzzy cosets of a bipolar fuzzy and bipolar anti fuzzy HX subgroup*, IOSR Journal of Mathematics, 9 (2014), pp. 128-137.
- [13] R. Muthuraj, M. Sridharan, *Homomorphism and anti homomorphism on bipolar fuzzy sub HX groups*, Gen. Math. Notes, 17 (2013), 53-65.
- [14] R. Muthuraj, K.H. Manikandan, Selvam P.M. Sithar, *On anti Q -fuzzy normal HX groups*, Elixir Discrete Mathematics, 44 (2012), 7477-7479.
- [15] R. Muthuraj, K.H. Manikandan, Selvam P.M. Sithar, *Intuitionistic Q -fuzzy normal HX groups*, Journal of Physical Sciences, 15 (2011), 95-102.
- [16] R. Muthuraj, K.H. Manikandan, M.S. Muthuraman, Selvam P.M. Sithar, *Anti Q -fuzzy HX group and its Lower Level Sub HX groups*, International Journal of Computer Applications, 6 (2010), 16-20.
- [17] A. Rosenfeld, *Fuzzy groups*, Journal of Mathematical Analysis and Applications, 35 (1971), 512-517.
- [18] A. Solairju, R. Nagarajan, *Q -fuzzy left R -subgroups of near rings w.r.t T -norms*, Antarctic Journal of Mathematics, 5 (2008), 59-63.
- [19] L.A. Zadeh, *The concepts of a linguistic variable and its applications to approximate reasoning*, Information and Control, 8 (1975), 199-249.
- [20] L.A. Zadeh, *Fuzzy sets*, Information and Control, 8 (1965), 338-353.

- [21] P. Corsini, *Partial semigroups and fuzzy sets*, Journal of discrete mathematical sciences and cryptography, 21 (2016), 1479-1494.
- [22] P. Corsini, *Some remarks on hyper structures their connections with fuzzy sets and extensions to weak structures*, Ratio mathemathica, 33 (2017), 61-76.
- [23] P. Corsini, *Hyper structures and some of the most recent applications*, Journal of Hyper Structures, 6 (2017), 1-13.
- [24] P. Corsini, *HX-hypergroups associated with the direct products of some $\frac{Z}{nZ}$* , Algebraic Structures and their Applications, 3 (2016), 1-15.

Accepted: 28.02.2019