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Abstract. Several properties of the Hausdorff fuzzy metric, as completeness, pre-
compactness and completion were discussed by Rodŕıguez-López and Romaguera [The
Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147 (2004) 273–283].
It is necessary to seek other more properties of the Hausdorff fuzzy metric. In the
paper, we show that a fuzzy metric space is connected if and only if the corresponding
Hausdorff fuzzy metric space on compact (finite) sets is connected.
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1. Introduction

The notion of fuzzy metric space has been defined by many authors in different
ways [4, 6, 17, 18]. In particular, by extending the notion of Menger space
to the fuzzy setting, Kramosil and Michalek [18] obtained the notion of fuzzy
metric space with the help of continuous t-norms. In order to make the topology
generated by a fuzzy metric to be Hausdorff, George and Veeramani [6] modified
in a slight but appealing way the notion given by Kramosil and Michalek. In
[15], Gregori and Romaguera proved that the topological space generated by a
modified fuzzy metric is metrizable and then, some classical theorems on metric
properties are adapted to the realm of the modified version of fuzzy metric.
In view of them, some authors became interested in the new version of fuzzy
metric. Dinarvand [2] gave Some fixed point results for admissible Geraghty
contraction type mappings in fuzzy metric spaces. Romaguera and Sanchis
[25] introduced a notion of fuzzy metric group and investigated properties of
the quotient subgroups of a fuzzy metric group. In [1], an arclength notion
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of continuous curves in fuzzy metric spaces was proposed, and some arclength
properties , including invariance, additive, continuity and boundedness were
studied by Chen et al. In recent years, Gregori et al [9, 10, 11, 12, 13, 14, 15, 16]
gave much progress to the study of fuzzy metric spaces. We can also find other
more studies of fuzzy metric spaces in [7, 8, 19, 20, 21, 23, 26, 27, 28].

To explore hyperspaces in given fuzzy metric spaces, Rodŕıguez-López and
Romaguera [24] introduced the Hausdorff fuzzy metric on the collection of
nonempty compact sets and studied completeness, precompactness and com-
pactness of the Hausdorff fuzzy metric spaces. In [5], an identification theorem
for the completion of the Hausdorff fuzzy metric was explored. Recently, we
gave several equivalent conditions for the Hausdorff fuzzy metric spaces on the
family of nonempty compact sets to be complete in [22]. It is nature to seek
other more properties of the Hausdorff fuzzy metric. In the paper we do it. Here,
we obtain that connectedness of a fuzzy metric space and connectedness of the
corresponding Hausdorff fuzzy metric space on compact (finite) sets coincide.

2. Preliminaries

Throughout the paper the letter N shall denote the set of all positive integer
numbers. Our basic reference for general topology is [3].

Definition 2.1 ([6]). A binary operation ∗ : [0, 1]×[0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(i) ∗ is associative and commutative;

(ii) ∗ is continuous;

(iii) a ∗ 1 = a for all a ∈ [0, 1];

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Observe that a ∗ b = min{a, b}, a ∗ b = a · b and a ∗ b = max{a+ b− 1, 0} are
three common examples of continuous t-norms.

Clearly, Definition 2.1 shows that, if 1 ≥ r > s ≥ 0, then there exists a
δ ∈ (s, 1) such that r ∗ δ ≥ s.

Definition 2.2 ([6]). An ordered triple (X,M, ∗) is said to be a fuzzy metric
space if X is a nonempty set, ∗ is a continuous t-norm and M is a fuzzy set
on X × X × (0,∞) satisfying the following conditions for all x, y, z ∈ X and
s, t ∈ (0,∞):

(i) M(x, y, t) > 0;

(ii) M(x, y, t) = 1 if and only if x = y;

(iii) M(x, y, t) = M(y, x, t);
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(iv) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);

(v) the function M(x, y, ·) : (0,∞) → [0, 1] is continuous.

If (X,M, ∗) is a fuzzy metric space, then we shall call (M, ∗) a fuzzy metric
on X.

It is well known that M(x, y, ·) is a non-decreasing function on (0,∞) for
all x, y ∈ X.

Definition 2.3 ([6]). Let (X,M, ∗) be a fuzzy metric space and let r ∈ (0, 1), t >
0 and x ∈ X. The set

BM (x, r, t) = {y ∈ X|M(x, y, t) > 1− r}

is called the open ball with center x and radius r with respect to t.

In [6], George and Veeramani proved that {BM (x, r, t)|x ∈ X, t > 0, r ∈
(0, 1)} forms a base of a topology τM in X and {BM (x, 1

n ,
1
n)|n ∈ N} is a

neighborhood base at x for the topology τM for every x ∈ X.

Definition 2.4 ([15]). A fuzzy metric space (X,M, ∗) is said to be compact if
(X, τM ) is compact.

3. Connectedness of the Hausdorff fuzzy metric spaces

Given a fuzzy metric space (X,M, ∗), we shall denote by P0(X), K0(X) and
F0(X), the collection of nonempty subsets, the collection of nonempty com-
pact subsets and the collection of nonempty finite subsets of (X, τM ), respec-
tively. Put M(x,A, t) := supa∈AM(x, a, t), M(A, x, t) := supa∈AM(a, x, t) for
all x ∈ X, A ∈ P0(X) and t > 0 (see Definition 2.4 of [28]). It is obvious that
M(x,A, t) = M(A, x, t). In the following, for any B ∈ P0(X), the cardinality of
B will be denote by |B|.

Definition 3.1 ([24]). Let (X,M, ∗) be a fuzzy metric space. For every A,B ∈
K0(X) and t > 0, define HM : K0(X)×K0(X)× (0,∞) → [0, 1] by

HM (A,B, t) = min{ inf
a∈A

M(a,B, t), inf
b∈B

M(A, b, t)}.

Then (K0(X),HM , ∗) is a fuzzy metric space. We call (HM , ∗) the Hausdorff
fuzzy metric on K0(X).

Lemma 3.1 ([19]). Let (X,M, ∗) be a fuzzy metric space. Then HM (A,B, t) =
1 − inf{r|A ⊆ BM (B, r, t), B ⊆ BM (A, r, t)} for all A,B ∈ K0(X) and t > 0,
where BM (A, r, t) =

∪
a∈ABM (a, r, t).

Lemma 3.2 ([24]). Let (X,M, ∗) be a fuzzy metric space. Then M is a contin-
uous function on X ×X × (0,∞).
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Definition 3.2. Let (X,M, ∗) be a fuzzy metric space. For every A ∈ K0(X)
and t > 0, define diamt(A) by

diamt(A) = inf{M(a, b, t)|a, b ∈ A}

and call it the fuzzy diameter of A with t.

Proposition 3.1. Let (X,M, ∗) be a fuzzy metric space, A ∈ K0(X) and t > 0.
Then diamt(A) > 0.

Proof. By Lemma 3.2, we conclude that {M(a, b, t)|a, b ∈ A} is a closed subset
of [0,1]. Hence

inf{M(a, b, t)|a, b ∈ A} ∈ {M(a, b, t)|a, b ∈ A}.

Thus, there exist a0, b0 ∈ A such that

inf{M(a, b, t)|a, b ∈ A} = M(a0, b0, t) > 0.

We complete the proof. �

Lemma 3.3. Let (Y,M, ∗) be a compact subspace of a fuzzy metric space (X,M, ∗),
and let U be a family of open subsets of X which covers Y . Then there exist r ∈
(0, 1) and t > 0 with the property that every A ∈ K0(X) with diamt(A) > 1− r
and A ∩ Y ̸= Ø is contained in an element U ∈ U .

Proof. Assume that such r and t do not exist. Then, for every n ∈ N, we can
choose an An ∈ K0(X) such that

(1) diam 1
n
(An) > 1− 1

n ,

(2) An ∩ Y ̸= Ø,
(3) An is not contained in any element of U .

Take yn ∈ An ∩ Y for every n ∈ N. Since Y is compact, there is a subsequence
of {yn}n∈N such that the subsequence converges to a point y ∈ Y . Without loss
of generality, we can assume that

y = lim
n→∞

yn.

Since U covers Y , we can find a U ∈ U such that y ∈ U . Note that U is open,
there exists l ∈ N such that BM (y, 1l ,

1
l ) ⊆ U . In addition, there exists N ∈ N

such that ym ∈ BM (y, 1
l+1 ,

1
l+1) for all m ≥ N . Now choose m ≥ N so large

that 1
m ≤ 1

l(l+1) and (1− 1
m) ∗ (1− 1

l+1) ≥ [1− 1
2(

1
l +

1
l+1)] > 1− 1

l . Since

diam 1
m
(Am) = inf{M(a, b,

1

m
)|a, b ∈ Am} > 1− 1

m
,

we get that M(a, b, 1
m) > 1− 1

m whenever a, b ∈ Am. Let m ≥ N so large. Then,
for every x ∈ Am, we have that M(x, y, 1l ) ≥ M(x, y, 1

m + 1
l+1) ≥ M(x, ym, 1

m) ∗
M(ym, y, 1

l+1) ≥ (1− 1
m) ∗ (1− 1

l+1) > 1− 1
l . Hence x ∈ BM (y, 1l ,

1
l ). It follows

that Am ⊆ BM (y, 1l ,
1
l ) ⊆ U , which contradicts (3). This concludes the proof.�
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Lemma 3.4. Let (Y,M, ∗) be a compact subspace of a fuzzy metric space (X,M, ∗),
and let U be an open neighborhood of Y in X. Then there exist r ∈ (0, 1) and
t > 0 such that BM (Y, r, t) ⊆ U .

Proof. Observe that {U} covers Y . According to Lemma 3.3, we can find r ∈
(0, 1) and t > 0 with the property that every A ∈ K0(X) with diamt(A) > 1− r
and A∩Y ̸= Ø is contained in U ∈ {U}. Let x ∈ BM (Y, r, t) =

∪
y∈Y BM (y, r, t).

Then there exists a y0 ∈ Y such that x ∈ BM (y0, r, t), which means that
M(x, y0, t) > 1 − r. It follows that diamt({x, y0}) = M(x, y0, t) > 1 − r. Note
that {x, y0} ∈ K0(X) and {x, y0} ∩ Y ̸= Ø. Hence {x, y0} ⊆ U , which implies
that x ∈ U . Thus BM (Y, r, t) ⊆ U . �

The proof of the next lemma is straightforward.

Lemma 3.5. Let (X,M, ∗) be a fuzzy metric space and A ∈ P0(X). If 0 < r1 <
r2 < 1 and 0 < t1 < t2, then BM (A, r1, t1) ⊆ BM (A, r2, t2).

Let (X,M, ∗) be a fuzzy metric space. For every finite family V of subsets
of X, put

⟨V⟩ = {A ∈ K0(X)|A ⊆
∪

V and for each V ∈ V , V ∩A ̸= Ø}.

Lemma 3.6. Let (X,M, ∗) be a fuzzy metric space, and let V be a finite family
of open subsets of X. Then ⟨V⟩ is an open subset of K0(X).

Proof. Let A ∈ ⟨V⟩. For each V ∈ V we choose a point xV ∈ V ∩ A. Notice
that ⟨V⟩ is finite, V is open and A ∈ K0(X) with A ⊆

∪
V. Then, according to

Lemma 3.4 and Lemma 3.5, we can find r ∈ (0, 1) and t > 0 such that
(1) BM (xV , r, t) ⊂ V for every V ∈ V,
(2) BM (A, r, t) ⊆

∪
V.

Let B ∈ BHM
(A, r, t). Then, due to Lemma 3.1, we obtain that B ⊆ BM (A, r, t).

It follows from (2) that B ⊆
∪

V. Since A ⊆ BM (B, r, t), we can find a yV ∈ B
such that M(xV , yV , t) > 1− r for every V ∈ V. According to (1), we conclude
that yV ∈ V for every V ∈ V. Thus, for each V ∈ V , yV ∈ V ∩B, i.e., V ∩B ̸= Ø.
Hence B ∈ ⟨V⟩. We immediately deduce that BHM

(A, r, t) ⊆ ⟨V⟩. The proof is
finished. �

Definition 3.3. A fuzzy metric space (X,M, ∗) is said to be connected if (X, τM )
is connected.

Theorem 3.1. Let (X,M, ∗) be a fuzzy metric space. If (K0(X),HM , ∗) is
connected, then so is (X,M, ∗).

Proof. Let (K0(X),HM , ∗) be a connected fuzzy metric space. Suppose that
(X,M, ∗) is not connected. Then we can find two disjoint nonempty open subsets
U and V of X such that X = U ∪ V . Notice that

K0(X) = ⟨{U}⟩ ∪ ⟨{V }⟩ ∪ ⟨{U, V }⟩.
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Obviously, by Lemma 3.6, ⟨{U}⟩, ⟨{V }⟩ and ⟨{U, V }⟩ are pairwise disjoint,
nonempty and open in K0(X). It follows that (K0(X), HM , ∗) is not connected,
which is a contradiction. We are done. �

Lemma 3.7 ([24]). Let Y be a dense subset of a fuzzy metric space (X,M, ∗).
Then F0(Y ) is dense in (K0(X),HM , ∗).

Lemma 3.8 ([3]). Let A be a connected subspace of a topological space (X, τX).
Then the closure A of A is also connected.

Theorem 3.2. Let (X,M, ∗) be a fuzzy metric space. If (F0(X),HM , ∗) is
connected, then so is (X,M, ∗).

Proof. Suppose that (F0(X),HM , ∗) is connected. According to Lemma 3.7 and
Lemma 3.8, we get that (K0(X), HM , ∗) is connected. It follows from Theorem
3.1 that (X,M, ∗) is connected. �

Lemma 3.9 ([3]). A finite cartesian product of connected spaces is connected.

Lemma 3.10 ([3]). The image of a connected space under a continuous mapping
is connected.

Lemma 3.11 ([3]). The union of collection of connected subspaces of a topo-
logical space (X, τX) that have a point in common is connected.

Let (X,M, ∗) be a fuzzy metric space. For each n ∈ N, put Fn
0 (X) = {A ⊆

X|1 ≤ |A| ≤ n}, which we regard as a subspace of K0(X).

Lemma 3.12. Let (X,M, ∗) be a fuzzy metric space. For each n ∈ N, define
the function gn : Xn → Fn

0 (X) by

gn(x1, x2, · · · , xn) = {x1, x2, · · · , xn}.

Then gn is a continuous surjection for every n ∈ N.

Proof. Obviously, gn is a surjection for every n ∈ N. We will now prove that
gn is continuous for every n ∈ N. Fix n ∈ N. Let (a1, a2, · · · , an) ∈ Xn. Then
A = gn(a1, a2, · · · , an) = {a1, a2, · · · , an} ∈ Fn

0 (X). To complete our proof, it
suffices to show that, for r ∈ (0, 1) and t > 0,

gn(BM (a1, r, t)×BM (a2, r, t)× · · · ×BM (a1, r, t)) ⊆ BHM
(A, r, t) ∩ Fn

0 (X).

Let (b1, b2, · · · , bn) ∈ BM (a1, r, t)× BM (a2, r, t)× · · · × BM (an, r, t). Then bi ∈
BM (ai, r, t) (1 ≤ i ≤ n), which means that M(ai, bi, t) > 1 − r (1 ≤ i ≤ n). It
follows that A ⊆ BM (B, r, t) and B ⊆ BM (A, r, t), where B = {b1, b2, · · · , bn}.
Due to Lemma 3.1, we obtain that

B ∈ BHM
(A, r, t) ∩ Fn

0 (X),

i.e., gn(b1, b2, · · · , bn) ∈ BHM
(A, r, t) ∩ Fn

0 (X). This concludes the proof. �
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Theorem 3.3. Let (X,M, ∗) be a connected fuzzy metric space. Then (F0(X),
HM , ∗), and hence (K0(X), HM , ∗), is connected.

Proof. Assume that (X, τM ) is connected. According to Lemma 3.9, we get
that Xn is connected. For each n ∈ N, define the function gn : Xn → Fn

0 (X) by

gn(x1, x2, · · · , xn) = {x1, x2, · · · , xn}.

Then, by Lemma 3.10 and Lemma 3.12, we obtain that (Fn
0 (X),HM , ∗) is con-

nected for all n ∈ N. Observe that
∪∞

n=1Fn
0 (X) = F0(X) and

∩∞
n=1Fn

0 (X) =
F1
0 (X) ̸= Ø. It follows from Lemma 3.11 that F0(X) is connected. This con-

cludes the proof. �
As a consequence of Theorem 3.1, Theorem 3.2 and Theorem 3.3, we imme-

diately deduce the next corollary.

Corollary 3.1. Let (X,M, ∗) be a fuzzy metric space. Then the following are
equivalent.

(i) (X,M, ∗) is connected.

(ii) (F0(X),HM , ∗) is connected.

(iii) (K0(X),HM , ∗) is connected.

4. Conclusion

In this work, we have proven that a fuzzy metric space is connected if and only
if the corresponding Hausdorff fuzzy metric space on compact (finite) sets is
connected.
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