
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 42–2019 (403–412) 403

Some separation axioms using hereditary classes in generalized
topological spaces

Rajni Bala
Department of Mathematics

Punjabi University

Patiala- 147002, Punjab

India

rajni.maths@gmail.com

Abstract. we introduce a new class of generalized topological spaces namely T2

modulo H and discuss its various properties and characterizations. Also we define
H-regular generalized topological spaces and study some properties of the same.

Keywords: generalized topologies, hereditary classes, T2 moduloH, H-regular spaces,
∗- generalized topology.

1. Introduction and preliminaries

Ideals in topological spaces play an important role in the study of general topol-
ogy. Many authors like Kurakowski, Hamlett, Jankovic, Noiri, Jha [10, 7, 8,
9, 16] studied various concepts like compactness, separation axioms, continuity
in topological spaces via ideals. A topological space (X, τ), together with an
ideal I is called an ideal space and denoted by (X, τ, I). Kuratowski [10], in his
classic text, defined a local function for each subset of X with respect to I and
τ . Vaidyanathaswamy [17, 18] extended the study of ideals and local functions
to define the star topology τ∗ generated by the ideal I and the topology τ∗,
which is finer than τ . Also the modern research in general topology and real
analysis concerns the different variations of compactness, separation axioms and
connectedness etc in the various setting of topological spaces. Newcomb [12] in
his Ph. D. thesis introduced the concept of compactness modulo an ideal, which
is further investigated by Hamlett and Jankovic [7]. Shanthi and Rajesh [15]
investigated the separation axioms in topological ordered spaces. In 1994, Ham-
lett and Jankovic [8] introduced and studied the concept of I- regular spaces. V.
Renuka Devi [13], in her Ph. D. thesis, introduced a new class of spaces, called
Hausdorff modulo I (T2 modulo I) and investigated properties and characteri-
zations for the same. She also studied some properties of I- regular spaces.

On the other hand, generalized open sets are very important tools in topo-
logical spaces which is discussed by many authors from time to time. Cśasźar [4]
introduced the concept of generalized open sets in generalized topological spaces
in 2002. Further in 2008, he [6] defined the concept of hereditary classes instead
of ideals in generalized topological spaces and extended the study of heredi-
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tary classes to define star generalized topology finer than the given generalized
topology. Later many authors studied the various concepts like compactness,
connectedness, continuity and separation axioms in the settings of generalized
topological spaces. Asaad [2] defined a γ operation on generalized open sets in
X and studied its applications. In 2017-2018, Ahmad and Asaad [3, 1] intro-
duced an operation γ on semi generalized open subsets of X and discussed some
types of separation axioms, functions and closed spaces with respect to γ.

In this paper we introduce a new class of generalized topological spaces
namely Hausdorff modulo H and discuss its properties and characterizations.
Also we define H-regular spaces and investigate them to find their properties.
The purpose of this paper is to check whether the properties of Hausdorff mod-
ulo I spaces in ideal topological spaces are satisfied by Hausdorff modulo H
spaces in the settings of generalized topological spaces or not. Some counter
examples are also given for the properties which are not satisfied.

We refer to the following concepts:

Definition 1.1 ([4]). Let X be a non empty set and expX be the power set
of X. A collection µ ⊂ expX is called a generalized topology on X if ∅ ∈ µ
and µ is closed for arbitrary unions. (X,µ) is called a generalized topological
space and the members of µ are called µ-open sets and their complements are
called µ-closed sets and clµ(A) is defined as the intersection of all µ-closed sets
containing A for each A ⊂ X.

Definition 1.2 ([6]). An ideal I on X is a non empty family of subsets of X
satisfying (i) A ⊂ B, B ∈ I implies A ∈ I; (ii) A,B ∈ I implies A∪B ∈ I. If τ
is a topology on X and I is an ideal on X, then (X, τ, I) is called an ideal space.

Definition 1.3 ([6]). A non empty family H of subsets of X is called a hered-
itary class if it satisfies only condition (i) of ideals, that is A ⊂ B, B ∈ H
implies A ∈ H. We will call (X,µ,H) a hereditary space. H is called codense if
µ ∩H = {∅}.

Definition 1.4. [6] The operator ()∗ : expX → expX, with respect to heredi-
tary class H and generalized topology µ is defined by A∗ = {x ∈ X : U ∩A /∈ H
for every U ∈ µ, x ∈ U} for A ⊂ X. This operator defines another operator
c∗ : expX → expX, by c∗(A) = A ∪ A∗ for A ⊂ X, which is monotonic, en-
larging and idempotent. This operator c∗ induces another generalized topology
µ∗, called ∗-generalized topology, which is finer than µ. The members of µ∗ are
called ∗-open sets and their complements are called ∗-closed sets.

Definition 1.5. Let f : (X,µ) → (Y, ν) be a mapping between two generalized
topological spaces. Then f is called (µ, ν)-continuous [4] if f−1(V ) is µ-open set
in X for each ν-open set V in Y . f is called (µ, ν)-open mapping [11] if f(U) is
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ν-open set in Y for each µ-open set U in X. f is called (µ, ν)-homeomorphism
if it is (µ, ν)-continuous, (µ, ν)-open bijection.

Definition 1.6 ([14]). A generalized topological space (X,µ) is called µ-
Hausdorff if for each pair of distinct points x and y in X, there exist two disjoint
µ-open sets U and V such that x ∈ U and y ∈ V .

2. Results

Definition 2.1. A hereditary space (X,µ,H) is said to be Hausdorff mod H or
T2 mod H if for each pair of distinct points x and y in X, there exists µ-open
sets U and V such that x ∈ U , y ∈ V and U ∩ V ∈ H.

Theorem 2.2. Every µ-Hausdorff space is T2 mod H.

Proof. Proof is obvious, since ∅ ∈ H.

The converse of Theorem 2.2 need not be true in general, shown as in Ex-
ample 2.3. Even if H is codense, then also the converse need not be true, shown
in Example 2.5. Although the converse is true in case of ideal topological spaces
for codense ideal, that is, if (X, τ, I) is ideal topological space, which is T2 mod
I, where I is codense, then (X, τ, I) is Hausdorff. In particular, if we take
H = {∅}, then µ-Hausdorffness and Hausdorffness mod H are equivalent.

Example 2.3. Let X = {a, b, c}, µ = {∅, {a}, {b}, {a, b}, {b, c}, X} and H =
{∅, {b}}. Then X is T2 mod H, but not µ-Hausdorff.

Theorem 2.4. A space (X,µ) is µ-Hausdorff if and only if (X,µ) is Hausdorff
mod H, where H = {∅}.

Example 2.5. Let X = {a, b, c}, µ = {∅, {b}, {a, b}, {a, c}, X} and H =
{∅, {a}}. Then H is codense and X is T2 mod H, but not µ-Hausdorff.

Theorem 2.6. If a hereditary space (X,µ,H) is Hausdorff mod H and H ⊂ K,
then (X,µ,K) is Hausdorff mod K.

The following theorem gives characterizations of T2 mod H spaces.

Theorem 2.7. Let (X,µ,H) be a hereditary space. Then the following are
equivalent:

1. (X,µ,H) is T2 mod H.

2. For each x, y ∈ X such that y ̸= x, there exists a µ-open set U containing
x such that y /∈ U∗.
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3. For each x ∈ X, ∩{U∗
x : Ux ∈ µ, x ∈ Ux} is either ∅ or {x}.

Proof. 1 ⇒ 2. Let x, y ∈ X such that y ̸= x, then by hypothesis, there exist
µ-open sets U and V such that x ∈ U , y ∈ V and U ∩ V ∈ H. Therefore
(U ∩ V )∗ = ∅ and so U∗ ∩ V = ∅. Therefore y /∈ U∗, which proves 2.

2 ⇒ 3. For each x ∈ X, and each y ̸= x, there exists a µ-open set U
containing x such that y /∈ U∗. Therefore y /∈ ∩{U∗

x : Ux ∈ µ, x ∈ Ux} and so
∩{U∗

x : Ux ∈ µ, x ∈ Ux} is either ∅ or {x}, which proves 3.

3 ⇒ 1. Let x and y be any two distinct points in X. Then by hypothesis,
y /∈ ∩{U∗

x : Ux ∈ µ, x ∈ Ux}, which implies that y /∈ U∗
x for some Ux ∈ µ, x ∈ Ux.

Therefore there exists a µ-open neighbourhood Vy of y such that Ux ∩ Vy ∈ H
and therefore (X,µ,H) is T2 mod H, which proves 1.

It is proved that for an ideal space (X, τ, I), (X, τ) is T2 mod I if and only
if (X, τ∗) is T2 mod I. But if we take hereditary space (X,µ,H) instead of ideal
space, where (X,µ∗) is T2 mod H then (X,µ) need not be T2 mod H as shown
in the following example:

Example 2.8. Let X = {a, b}, µ = {∅, X} and H = {∅, {a}, {b}}. Then the
corresponding star generalized topology is µ∗ = {∅, X, {a}, {b}}, which is T2

mod H, but µ is not T2 mod H.

Theorem 2.9. Let X be any set. A ⊂ X and H be a hereditary class on X.
Then HA = {A ∩H : H ∈ H} = {H ∈ H : H ⊂ A} is a hereditary class on A.

Theorem 2.10. Let (X,µ,H) be T2 mod H space and A ⊂ X. Then (A,µA,HA)
is T2 mod HA, where µA is subspace generalized topology on A.

Proof. Let x and y be two distinct points in A, then there exists µ-open sets
U and V such that x ∈ U , y ∈ V and U ∩ V ∈ H. Then x ∈ U ∩ A ∈ µA,
y ∈ V ∩ A ∈ µA and (U ∩ A) ∩ (V ∩ A) = (U ∩ V ) ∩ A ∈ HA. Therefore
(A,µA,HA) is T2 mod HA.

Theorem 2.11. Let f : (X,µ,H) → (Y, ν) be a mapping, where (X,µ,H) is
a hereditary space and (Y, ν) is a generalized topological space. Then f(H) =
{f(H) : H ∈ H} is a hereditary class on Y . If f is an injection mapping and
K is a hereditary class on Y , then f−1(K) = {f−1(K) : K ∈ K} is a hereditary
class on X.

The following theorem shows that the property of being T2 mod H is pre-
served under open bijection mapping in generalized topological space:

Theorem 2.12. Let f : (X,µ,H) → (Y, ν) be an (µ, ν)-open bijection and
(X,µ,H) be T2 mod H. Then (Y, ν) is T2 mod f(H).
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Proof. Let y1 and y2 be two distinct points in Y . Since f is bijection, there
exists distinct points x1 and x2 in X such that f(x1) = y1 and f(x2) = y2. Then
there exists µ-open sets U and V such that x1 ∈ U , x2 ∈ V and U ∩ V ∈ H.
Then f(U)∩f(V ) = f(U∩V ) ∈ f(H). Since f is (µ, ν)-open mapping, f(U) and
f(V ) are ν-open sets in Y such that y1 = f(x1) ∈ f(U) and y2 = f(x2) ∈ f(V ).
Therefore (Y, ν) is T2 mod f(H).

Theorem 2.13. Let f : (X,µ) → (Y, ν,K) be a (µ, ν)-continuous injection
mapping and (Y, ν,K) be T2 mod K. Then (X,µ) is T2 mod f−1(K).

Proof. Let x1 and x2 be two distinct points in X. Since (Y, ν,K) is T2 mod
K, there exist ν-open sets U and V such that f(x1) ∈ U , f(x2) ∈ V and
U ∩ V ∈ K. Since f is injection, f−1(U) ∩ f−1(V ) = f−1(U ∩ V ) ∈ f−1(K).
Since f is (µ, ν)-continuous mapping, f−1(U) and f−1(V ) are µ-open sets in X
such that x1 ∈ f−1(U) and x2 ∈ f−1(V ). Therefore (X,µ) is T2 mod f−1(K).

Definition 2.14. Let (X,µ) be a generalized topological space and A be a
collection of subsets of X. Then the smallest hereditary class on X containing
A, denoted by H(A), is called the hereditary class generated by A.

It can be easily seen that H(A) = {H : H ⊂ A ∈ A}.

Theorem 2.15. Let (Xα, µα,Hα) be a collection of T2 mod Hα hereditary spaces
for each α ∈ Λ, where Λ is indexing set. If Pα : ΠXα → Xα is the projection
mapping for each α, A = {P−1

α (Hα) : Hα ∈ Hα, α ∈ Λ}, H(A) is hereditary
class generated by A and H is hereditary class finer than H(A) on ΠXα, then
ΠXα with product generalized topology is T2 mod H.

Proof. Let x and y be two distinct points in ΠXα, then there exists some
α ∈ Λ such that xα ̸= yα. Since each (Xα, µα,Hα) is T2 mod Hα, there exist
µα-open sets Uα and Vα such that xα ∈ Uα, yα ∈ Vα and Uα ∩ Vα ∈ Hα. Then
P−1
α (Uα)∩ P−1

α (Vα) = P−1
α (Uα ∩ Vα) ∈ H(A) ⊂ H. Since Pα is projection map-

ping, P−1
α (Uα) and P−1

α (Vα) are generalized open sets in ΠXα containing x and
y respectively. Therefore ΠXα with product generalized topology is T2 mod H.

Theorem 2.16. Let (Xα, µα) be a collection of generalized topological spaces
for each α ∈ Λ, where Λ is indexing set. Let H be hereditary class on ΠXα. If
ΠXα is T2 mod H, then (Xα, µα) is T2 mod Pα(H) for each α ∈ Λ, where Pα is
the projection mapping for each α.

Proof. Each Xα is (µ, ν)-homeomorphic to a subspace Y of the space ΠXα,
so each Pα|Y : Y → Xα is a (µ, ν)-homeomorphism. Since ΠXα is T2 mod
H, Y is T2 mod HY and so Xα is T2 mod (Pα|Y )(HY ). Since (Pα|Y )(HY ) ⊂
(Pα)(HY ) ⊂ Pα(H), therefore each (Xα, µα) is T2 mod Pα(H).
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Hamlett and Jankovic introduced and studied I-regular topological spaces.
Here we introduce H-regularity for generalized topological spaces.

Definition 2.17. A hereditary space (X,µ,H) is said to be H-regular if for
each µ-closed set F and x /∈ F , there exists disjoint µ-open sets U and V such
that x ∈ U and F − V ∈ H.

Theorem 2.18. Let (X,µ,H) be a hereditary space. Then the following are
equivalent:

1. X is H-regular.

2. For each x ∈ X and µ-open set U containing x, there exists a µ-open set
V containing x such that clµ(V )− U ∈ H.

3. For each x ∈ X and µ-open set U containing x, there exists a µ-closed
set F containing x such that F − U ∈ H.

4. For each x ∈ X and µ-closed set A not containing x, there exists a µ-open
set V containing x such that clµ(V ) ∩A ∈ H.

Proof. 1 ⇒ 2. Let x ∈ X and U be a µ-open set containing x. Then X−U is a
µ-closed set not containing x. Since X is H-regular, there exist disjoint µ-open
sets V and W such that x ∈ V and (X−U)−W ∈ H. If (X−U)−W = H ∈ H,
then (X − U) ⊂ W ∪ H. Since V and W are disjoint, V ⊂ X − W implies
clµ(V ) ⊂ X − W and so clµ(V ) − U ⊂ (X − W ) − U = H ∈ H. Therefore
clµ(V )− U ∈ H, this proves 2.

2 ⇒ 4. Let A be a µ-closed set in X such that x /∈ A. Then by hypothe-
sis, there exists a µ-open set V containing x such that clµ(V ) − (X − A) ∈ H.
Therefore clµ(V ) ∩A ∈ H, which proves 4.
4 ⇒ 1. Let A be a µ-closed set in X such that x /∈ A. Then by hypoth-
esis, there is a µ-open set V containing x such that clµ(V ) ∩ A ∈ H. Then
A − (X − clµ(V )) ∈ H. V and X − clµ(V ) are disjoint µ-open sets such that
x ∈ V and so A− (X − clµ(V )) ∈ H. Hence X is H-regular, which proves 1.
The equivalence of 2 and 3 is obvious.

Corollary 2.19. Let (X,µ,H) be a hereditary space, where H be codense. Then
the following are equivalent:

1. X is H-regular.

2. For each x ∈ X and µ-open set U containing x, there exists a µ-open set
V containing x such that V ∗ − U ∈ H.

3. For each x ∈ X and µ-closed set A not containing x, there exists a µ-open
set V containing x such that V ∗ ∩A ∈ H.

Proof. H is codense if and only if cl(V ) = V ∗ for every µ-open set V .
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The following theorems show that H-regularity is hereditary property as well
as it is preserved under (µ, ν)-homeomorphism:

Theorem 2.20. Let (X,µ,H) be a H-regular hereditary space and A ⊂ X.
Then (A,µA,HA) is HA-regular.

Proof. Let F ⊂ A be µA-closed in A and x ∈ A such that x /∈ F . Then
F = A ∩ K where K is µ-closed in X and x /∈ K. Since (X,µ,H) is H-
regular, there exists disjoint µ-open sets U and V such that x ∈ U and K−V ∈
H. So A ∩ U and A ∩ V are µA-open sets in A such that x ∈ A ∩ U and
(A∩U)∩ (A∩V ) = (U ∩V )∩A = ∅. If K −V = H ∈ H, then K ⊂ H ∪V and
so F = A∩K ⊂ A∩(H∪V ) = (A∩H)∪(A∩V ) implies F−(A∩V ) ⊂ A∩H ∈ HA.
Therefore F − (A ∩ V ) ∈ HA. Hence (A,µA,HA) is HA-regular.

Theorem 2.21. Let (X,µ,H) be a H-regular hereditary space and let f :
(X,µ,H) → (Y, ν, f(H)) be a (µ, ν)-homeomorphism. Then (Y, ν, f(H)) is f(H)-
regular.

Proof. Let F be ν-closed in Y and y ∈ Y such that y /∈ F . Let x = f−1(y).
Since f is (µ, ν)-continuous, f−1(F ) is µ-closed in X not containing x. Since
(X,µ,H) is H-regular, there exist disjoint µ-open sets U and V in X such
that x ∈ U and f−1(F ) − V ∈ H. Let f−1(F ) − V = H ∈ H, so f−1(F ) ⊂
H ∪ V ⇒ f(f−1(F )) ⊂ f(H ∪ V ) ⇒ F ⊂ f(H) ∪ f(V ) ⇒ F − f(V ) ⊂ f(H) ∈
f(H) ⇒ F − f(V ) ∈ f(H). Therefore f(U) and f(V ) are disjoint ν-open sets in
Y such that y ∈ f(U) and F−f(V ) ∈ f(H). Hence (Y, ν, f(H)) is f(H)-regular.

Theorem 2.22. Let (Xα, µα) be a collection of generalized topological spaces
for each α ∈ Λ, where Λ is indexing set. Let H be hereditary class on ΠXα. If
ΠXα is H-regular, then (Xα, µα) is Pα(H)-regular for each α ∈ Λ, where Pα is
the projection mapping for each α.

Theorem 2.23. Let (X,µ,H) be a H-regular hereditary space and let x and
y be two distinct points in X. Then either clµ({x}) = clµ({y}) or clµ({x}) ∩
clµ({y}) ∈ H.

Proof. If x ∈ clµ({y}) and y ∈ clµ({x}). Then clµ({x}) ⊂ clµ(clµ({y})) =
clµ({y}) ⊂ clµ(clµ({x})) = clµ({x}) and so clµ({x}) = clµ({y}). If y /∈ clµ({x}).
Since (X,µ,H) is H-regular, there exists a µ-open set V containing y such that
clµ(V ) ∩ clµ({x}) ∈ H, therefore clµ({x}) ∩ clµ({y}) ⊂ clµ({x}) ∩ clµ(V ) ∈ H.
Hence clµ({x}) ∩ clµ({y}) ∈ H. This completes the proof.

Theorem 2.24. Let (X,µ,H) be a hereditary space. If each point of X has a
µ-closed neighbourhood A which is HA-regular, then (X,µ,H) is H-regular.



410 RAJNI BALA

Proof. Let x ∈ X and U be a µ-open set containing x. Then there exists a
µ-closed neighbourhood A of x, which is HA-regular. A ∩ U is µA-open set in
A containing x. Therefore there is a µA-closed set F containing x in A such
that F − (A∩U) ∈ HA. Since F is µA-closed in A and A is µ-closed in X, F is
µ-closed in X containing x and F −U ⊂ F − (A ∩U) ∈ HA ⊂ H. Thus F is µ-
closed set containing x in X such that F −U ∈ H. Hence (X,µ,H) is H-regular.

Theorem 2.25. Let (X,µ,H) be a hereditary space, which is H-regular. Then
for every nonempty set A and a µ-closed set F in X such that F ∩A = ∅, there
exist disjoint µ-open sets U and V such that A ∩ U ̸= ∅ and F − V ∈ H.

Proof. Let (X,µ,H) be H-regular. Let A be a nonempty set and F be a µ-
closed set in X such that F ∩ A = ∅. Then for each x ∈ A, there exist disjoint
µ-open sets U and V such that x ∈ U and F − V ∈ H. Also A ∩ U ̸= ∅.

It is proved that the star topology with respect to a given ideal space (X, τ, I)
is I-regular if the given ideal space (X, τ, I) is I-regular. That is if (X, τ, I)
is I-regular then (X, τ∗, I) is I-regular. But in case of generalized topological
spaces, this result need not be true. That is if the hereditary space (X,µ,H)
is H-regular then (X,µ∗,H) need not be H-regular as shown in the following
example:

Example 2.26. Let X = {a, b, c}, µ = {∅, X} and H = {∅, {a}, {b}}. Then
the corresponding star generalized topology is µ∗ = {∅, {a, c}, {b, c}, X}. Then
(X,µ,H) is H-regular, but (X,µ∗,H) is not H-regular, since {a} is a µ∗-closed
set not containing c and there do not exist disjoint µ∗-open sets U and V such
that c ∈ U and {a} − V ∈ H.

Although there exist spaces where this result is true, shown in the following
example:

Example 2.27. Let X = {a, b}, µ = {∅, X} and H = {∅, {a}, {b}}. Then the
corresponding star generalized topology is µ∗ = {∅, {a}, {b}, X}. Then (X,µ,H)
is H-regular, as well as (X,µ∗,H) is H-regular.

The following example shows that if the star generalized topology is H-
regular, then the given generalized topology need not be H-regular. But if the
hereditary class is codense, then this will hold. Therefore it can be concluded
that H-regularity of generalized topology and H-regularity of star generalized
topology do not depend on each other.

Example 2.28. Let X = {a, b, c}, µ = {∅, {a}, {b}, {a, b}, {b, c}, X} and
H = {∅, {b}}. Then the corresponding star generalized topology is µ∗ =
{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}. Then {a, c} is a µ-closed not contain-
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ing b and there do not exist disjoint µ-open sets U and V such that b ∈ U and
{a, c}−V ∈ H. Therefore (X,µ,H) is notH-regular, but (X,µ∗,H) isH-regular.

Theorem 2.29. Let (X,µ,H) be a hereditary space such that (X,µ∗,H) is
H-regular and H is codense. Then (X,µ,H) is H-regular.

Proof. Let A be µ-closed set inX such that x /∈ A. Since µ ⊂ µ∗, A is µ∗-closed,
therefore by Corollary 2.19, there exists a µ∗-open set V containing x such that
V ∗ ∩A ∈ H. Since V is µ∗-open set containing x, there exist U ∈ µ and H ∈ H
such that x ∈ U −H ⊂ V . Therefore U∗ ⊂ V ∗ implies U∗ ∩ A ⊂ V ∗ ∩ A ∈ H
and so U∗ ∩A ∈ H. Hence (X,µ,H) is H-regular.

The hereditary space in Example 2.28 is a T2 mod H space which is not
H-regular. The following example shows that the H-regular space need not be
T2 mod H. Hence T2 mod H and H-regular are independent concepts:

Example 2.30. Let X = {a, b, c, d}, µ = {∅, {c}, {a, b}, {a, b, c}, X} and H =
{∅, {a}, {d}, {a, d}}. Then (X,µ,H) is H-regular, which is not T2 mod H.
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