Certain notions of single-valued neutrosophic K-algebras

Muhammad Akram*

Department of Mathematics University of the Punjab New Campus, Lahore- 54590 Pakistan m.akram@pucit.edu.pk

Hina Gulzar

Department of Mathematics University of the Punjab New Campus, Lahore- 54590 Pakistan

K. P. Shum

Institute of Mathematics Yunnan University China kpshum@ynu.edu.cn

Abstract. We apply the notion of single-valued neutrosophic sets to K-algebras. We develop the concept of single-valued neutrosophic K-subalgebras, and present some of their properties. Moreover, we study the behavior of single-valued neutrosophic K-subalgebras under homomorphism. Finally, we discuss $(\in, \in \lor q)$ -single-valued neutrosophic K-algebras.

Keywords: Single-valued neutrosophic sets, K-algebras, homomorphism, $(\in, \in \lor q)$ -single-valued neutrosophic K-algebras.

1. Introduction

A new kind of logical algebra, known as K-algebra, was introduced by Dar and Akram [9]. A K-algebra was built on a group G by adjoining the induced binary operation on G. The group G is particularly of the type in which each non-identity element is not of order 2. This algebraic structure is, in general, non-commutative and non-associative with right identity element [5, 10, 11]. Akram et.al [2, 3, 4] introduced fuzzy K-algebras. They then developed fuzzy K-algebras with other researchers worldwide. The concepts and results of K-algebras have been broadened to the fuzzy setting frames by applying Zadeh's fuzzy set theory and its generalizations, namely, interval- valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, bipolar fuzzy sets and vague sets.

^{*.} Corresponding author

In handling information regarding various aspects of uncertainty, non-classical logic (a great extension and development of classical logic) is considered to be a more powerful technique than the classical logic. The non-classical logic has nowadays become a useful tool in computer science. Moreover, non-classical logic deals with fuzzy information and uncertainty. In 1998, Smarandache [15] introduced neutrosophic sets as a generalization of fuzzy sets [19] and intuitionistic fuzzy sets [6]. A neutrosophic set is identified by three functions called truth-membership (T), indeterminacy-membership (I) and falsity-membership (F) whose values are real standard or non-standard subset of unit interval $]^{-0}, 1^{+}[$, where $^{-0} = 0 - \epsilon$, $1^{+} = 1 + \epsilon$, ϵ is an infinitesimal number. To apply neutrosophic set in real-life problems more conveniently. Smarandache [15] and Wang et al. [16] defined single-valued neutrosophic sets which takes the value from the subset of [0, 1]. Thus, a single-valued neutrosophic set is an instance of neutrosophic set, and can be used expediently to deal with realworld problems, especially in decision support. Algebraic structures have a vital place with vast applications in various disciplines. Neutrosophic set theory has been applied to algebraic structures [1, 8, 13]. In this research article, we introduce the notion of single-valued neutrosophic K-subalgebra and investigate some of their properties. We discuss K-subalgebra in terms of level sets using neutrosophic environment. We study the homomorphisms between the singlevalued neutrosophic K-subalgebras. We discuss characteristic K-subalgebras and fully invariant K-subalgebras. Finally, we discuss $(\in, \in \lor q)$ -single-valued neutrosophic K-algebras.

2. Single-valued neutrosophic K-algebras

The concept of K-algebra was first developed by Dar and Akram in [14].

Definition 2.1. Let (G, \cdot, e) be a group in which each non-identity element is not of order 2. Then a K- algebra is a structure $\mathcal{K} = (G, \cdot, \odot, e)$ on a group G in which induced binary operation $\odot : G \times G \to G$ is defined by $\odot(x, y) = x \odot y = x.y^{-1}$ and satisfies the following axioms:

(i)
$$(x \odot y) \odot (x \odot z) = (x \odot ((e \odot z) \odot (e \odot y))) \odot x$$
,

(ii)
$$x \odot (x \odot y) = (x \odot (e \odot y)) \odot x$$
,

- (iii) $x \odot x = e$,
- (iv) $x \odot e = x$,
- (v) $e \odot x = x^{-1}$,

for all $x, y, z \in G$.

Definition 2.2. [16] Let Z be a space of objects with a general element $z \in Z$. A single-valued neutrosophic set A in Z is characterized by three membership

functions, $\mathcal{T}_{\mathcal{A}}$ -truth membership function, $\mathcal{I}_{\mathcal{A}}$ -indeterminacy membership function and $\mathcal{F}_{\mathcal{A}}$ -falsity membership function, where $\mathcal{T}_{\mathcal{A}}(z), \mathcal{I}_{\mathcal{A}}(z), \mathcal{F}_{\mathcal{A}}(z) \in [0, 1]$, for all $z \in \mathbb{Z}$.

 \mathcal{A} can also be written as $\mathcal{A} = \{ \langle z, \mathcal{T}_{\mathcal{A}}(z), \mathcal{I}_{\mathcal{A}}(z), \mathcal{F}_{\mathcal{A}}(z) \rangle \mid z \in Z \}.$

Definition 2.3. A single-valued neutrosophic set $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ in a K-algebra \mathcal{K} is called a single-valued neutrosophic K-subalgebra of \mathcal{K} if it satisfies the following conditions:

- (a) $\mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min{\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\}},$
- (b) $\mathcal{I}_{\mathcal{A}}(s \odot t) \geq \min{\{\mathcal{I}_{\mathcal{A}}(s), \mathcal{I}_{\mathcal{A}}(t)\}},$
- (c) $\mathcal{F}_{\mathcal{A}}(s \odot t) \leq \max{\{\mathcal{F}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(t)\}}$, for all $s, t \in G$.

Note that $\mathcal{T}_{\mathcal{A}}(e) \geq \mathcal{T}_{\mathcal{A}}(s)$, $\mathcal{I}_{\mathcal{A}}(e) \geq \mathcal{I}_{\mathcal{A}}(s)$, $\mathcal{F}_{\mathcal{A}}(e) \leq \mathcal{F}_{\mathcal{A}}(s)$, for all $s \in G$.

Example 2.1. Let $\mathcal{K} = (G, \cdot, \odot, e)$ be a K-algebra, where $G = \{e, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8\}$ is the cyclic group of order 9 and Cayley's table for \odot is given as:

We define a single-valued neutrosophic set $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ in K-algebra as follows:

$$\mathcal{T}_{A}(e) = 0.8, \mathcal{I}_{A}(e) = 0.7, \mathcal{F}_{A}(e) = 0.4,$$

$$\mathcal{T}_{\mathcal{A}}(s) = 0.2, \mathcal{I}_{\mathcal{A}}(s) = 0.3, \mathcal{F}_{\mathcal{A}}(s) = 0.6, \text{ for all } s \neq e \in G.$$

Clearly, $\mathcal{A}=(\mathcal{T}_{\mathcal{A}},\mathcal{I}_{\mathcal{A}},\mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of K.

Example 2.2. Let $K = (G, \cdot, \odot, e)$ be a K-algebra on dihedral group D4 given as $G = \{e, a, b, c, x, y, u, v\}$, where $c = ab, x = a^2, y = a^3, u = a^2b, v = a^3b$ and

Cayley's table for \odot is given as:

\odot	e	a	b	c	x	y	u	v
e	e	y	b	c	x	a	u	v
a	a	e	c	u	y	\boldsymbol{x}	v	b
b	b	c	e	y	u	v	\boldsymbol{x}	a
c	c	u	a	e	v	b	y	\boldsymbol{x}
x	x	a	u	v	e	y	b	c
y	y	\boldsymbol{x}	v	b	a	e	c	u
u	u	v	\boldsymbol{x}	a	b	c	e	y
v	v	b	y	\boldsymbol{x}	c	u	$ \begin{array}{c} u \\ v \\ x \\ b \\ c \\ e \\ a \end{array} $	e

We define a single-valued neutrosophic set $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ in K-algebra as follows: $\mathcal{T}_{\mathcal{A}}(e) = 0.9, \mathcal{I}_{\mathcal{A}}(e) = 0.3, \mathcal{F}_{\mathcal{A}}(e) = 0.3, \mathcal{T}_{\mathcal{A}}(s) = 0.6, \mathcal{I}_{\mathcal{A}}(s) = 0.2, \mathcal{F}_{\mathcal{A}}(s) = 0.4$, for all $s \neq e \in G$. By routine calculations, it can be verified that \mathcal{A} is a single-valued neutrosophic K-subalgebra ok \mathcal{K} .

Proposition 2.1. If $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K} , then

1.
$$(\forall s, t \in G), (\mathcal{T}_{\mathcal{A}}(s \odot t) = \mathcal{T}_{\mathcal{A}}(t) \Rightarrow \mathcal{T}_{\mathcal{A}}(s) = \mathcal{T}_{\mathcal{A}}(e)).$$

 $(\forall s, t \in G)(\mathcal{T}_{\mathcal{A}}(s) = \mathcal{T}_{\mathcal{A}}(e) \Rightarrow \mathcal{T}_{\mathcal{A}}(s \odot t) \geq \mathcal{T}_{\mathcal{A}}(t)).$

2.
$$(\forall s, t \in G), (\mathcal{I}_{\mathcal{A}}(s \odot t) = \mathcal{I}_{\mathcal{A}}(t) \Rightarrow \mathcal{I}_{\mathcal{A}}(s) = \mathcal{I}_{\mathcal{A}}(e)).$$

 $(\forall s, t \in G)(\mathcal{I}_{\mathcal{A}}(s) = \mathcal{I}_{\mathcal{A}}(e) \Rightarrow \mathcal{I}_{\mathcal{A}}(s \odot t) \geq \mathcal{I}_{\mathcal{A}}(t)).$

3.
$$(\forall s, t \in G), (\mathcal{F}_{\mathcal{A}}(s \odot t) = \mathcal{F}_{\mathcal{A}}(t) \Rightarrow \mathcal{F}_{\mathcal{A}}(s) = \mathcal{F}_{\mathcal{A}}(e)).$$

 $(\forall s, t \in G)(\mathcal{F}_{\mathcal{A}}(s) = \mathcal{F}_{\mathcal{A}}(e) \Rightarrow \mathcal{F}_{\mathcal{A}}(s \odot t) \leq \mathcal{F}_{\mathcal{A}}(t)).$

- **Proof.** 1. Assume that $\mathcal{T}_{\mathcal{A}}(s \odot t) = \mathcal{T}_{\mathcal{A}}(t)$, for all $s, t \in G$. Taking t = e and using (iii) of Definition 2.1, we have $\mathcal{T}_{\mathcal{A}}(s) = \mathcal{T}_{\mathcal{A}}(s \odot e) = \mathcal{T}_{\mathcal{A}}(e)$. Let for $s, t \in G$ be such that $\mathcal{T}_{\mathcal{A}}(s) = \mathcal{T}_{\mathcal{A}}(e)$. Then $\mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min{\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\}} = \min{\{\mathcal{T}_{\mathcal{A}}(e), \mathcal{T}_{\mathcal{A}}(t)\}} = \mathcal{T}_{\mathcal{A}}(t)$.
 - 2. Assume that $\mathcal{I}_{\mathcal{A}}(s \odot t) = \mathcal{I}_{\mathcal{A}}(t)$, for all $s, t \in G$. Taking t = e and by (iii) of Definition 2.1, we have $\mathcal{I}_{\mathcal{A}}(s) = \mathcal{I}_{\mathcal{A}}(s \odot e) = \mathcal{I}_{\mathcal{A}}(e)$. Also let $s, t \in G$ be such that $\mathcal{I}_{\mathcal{A}}(s) = \mathcal{I}_{\mathcal{A}}(e)$. Then $\mathcal{I}_{\mathcal{A}}(s \odot t) \geq \min{\{\mathcal{I}_{\mathcal{A}}(s), I_{(t)}\}} = \min{\{\mathcal{I}_{\mathcal{A}}(e), \mathcal{I}_{\mathcal{A}}(t)\}} = \mathcal{I}_{\mathcal{A}}(t)$.
 - 3. Consider that $\mathcal{F}_{\mathcal{A}}(s \odot t) = \mathcal{F}_{\mathcal{A}}(t)$, for all $s, t \in G$. Taking t = e and again by (iii) of Definition 2.1, we have $\mathcal{F}_{\mathcal{A}}(s) = \mathcal{F}_{\mathcal{A}}(s \odot e) = \mathcal{F}_{\mathcal{A}}(e)$. Let $s, t \in G$ be such that $\mathcal{F}_{\mathcal{A}}(s) = F_{(e)}$. Then $\mathcal{F}_{\mathcal{A}}(s \odot t) \leq \max\{\mathcal{F}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(t)\} = \max\{\mathcal{F}_{\mathcal{A}}(e), \mathcal{F}_{\mathcal{A}}(t)\} = \mathcal{F}_{\mathcal{A}}(t)$.

This completes the proof.

Definition 2.4. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set in a K-algebra \mathcal{K} and let $(\alpha, \beta, \gamma) \in [0, 1] \times [0, 1] \times [0, 1]$ with $\alpha + \beta + \gamma \leq 3$. Then level subsets of \mathcal{A} are defined as:

$$\mathcal{A}_{(\alpha,\beta,\gamma)} = \{ s \in G \mid \mathcal{T}_{\mathcal{A}}(s) \geq \alpha, \mathcal{I}_{\mathcal{A}}(s) \geq \beta, \mathcal{F}_{\mathcal{A}}(s) \leq \gamma \},$$

$$\mathcal{A}_{(\alpha,\beta,\gamma)} = \{ s \in G \mid \mathcal{T}_{\mathcal{A}}(s) \geq \alpha \} \cap \{ s \in G \mid \mathcal{I}_{\mathcal{A}}(s) \geq \beta \} \cap \{ s \in G \mid \mathcal{F}_{\mathcal{A}}(s) \leq \gamma \},$$

$$\mathcal{A}_{(\alpha,\beta,\gamma)} = \cup (\mathcal{T}_{\mathcal{A}},\alpha) \cap \cup' (\mathcal{I}_{\mathcal{A}},\beta) \cap L(\mathcal{F}_{\mathcal{A}},\gamma)$$

are called (α, β, γ) -level subsets of single-valued neutrosophic set A.

The set of all $(\alpha, \beta, \gamma) \in \text{Im}(\mathcal{T}_{\mathcal{A}}) \times \text{Im}(\mathcal{I}_{\mathcal{A}}) \times \text{Im}(\mathcal{I}_{\mathcal{A}})$ is known as image of $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$. The set $\mathcal{A}_{(\alpha, \beta, \gamma)} = \{s \in G \mid \mathcal{T}_{\mathcal{A}}(s) > \alpha, \mathcal{I}_{\mathcal{A}}(s) > \beta, \mathcal{F}_{\mathcal{A}}(s) < \gamma\}$ is known as strong (α, β, γ) - level subset of \mathcal{A} .

Proposition 2.2. If $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K} , then the level subsets $\cup (\mathcal{T}_{\mathcal{A}}, \alpha) = \{s \in G \mid \mathcal{T}_{\mathcal{A}}(s) \geq \alpha\}$, $\cup'(\mathcal{I}_{\mathcal{A}}, \beta) = \{s \in G \mid \mathcal{I}_{\mathcal{A}}(s) \geq \beta\}$ and $L(\mathcal{F}_{\mathcal{A}}, \gamma) = \{s \in G \mid \mathcal{F}_{\mathcal{A}}(s) \leq \gamma\}$ are k-subalgebras of \mathcal{K} , for every $(\alpha, \beta, \gamma) \in \operatorname{Im}(\mathcal{T}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{I}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{F}_{\mathcal{A}}) \subseteq [0, 1]$, where $\operatorname{Im}(\mathcal{T}_{\mathcal{A}})$, $\operatorname{Im}(\mathcal{I}_{\mathcal{A}})$ and $\operatorname{Im}(\mathcal{F}_{\mathcal{A}})$ are sets of values of $T_{(\mathcal{A})}$, $\mathcal{I}_{(\mathcal{A})}$ and $F_{(\mathcal{A})}$, respectively.

Proof. Assume that $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K} and let $(\alpha, \beta, \gamma) \in \operatorname{Im}(\mathcal{T}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{I}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{F}_{\mathcal{A}})$ be such that $\cup (\mathcal{T}_{\mathcal{A}}, \alpha) \neq \emptyset$, $\cup'(\mathcal{I}_{\mathcal{A}}, \beta) \neq \emptyset$ and $L(\mathcal{F}_{\mathcal{A}}, \gamma) \neq \emptyset$. Now to prove that \cup, \cup' and L are level K-subalgebras. Let for $s, t \in \cup(\mathcal{T}_{\mathcal{A}}, \alpha)$, $\mathcal{T}_{\mathcal{A}}(s) \geq \alpha$ and $\mathcal{T}_{\mathcal{A}}(t) \geq \alpha$. It follows from Definition 2.3 that $\mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\} \geq \alpha$. It implies that $s \odot t \in \cup(\mathcal{T}_{\mathcal{A}}, \alpha)$. Hence $\cup(\mathcal{T}_{\mathcal{A}}, \alpha)$ is a level K-subalgebra of \mathcal{K} . Similar result can be proved for $\cup'(\mathcal{I}_{\mathcal{A}}, \beta)$ and $L(\mathcal{F}_{\mathcal{A}}, \gamma)$.

Theorem 2.1. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set in K-algebra \mathcal{K} . Then $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K} if and only if $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-sublagebra of \mathcal{K} , for every $(\alpha,\beta,\gamma) \in \text{Im}(\mathcal{T}_{\mathcal{A}}) \times \text{Im}(\mathcal{F}_{\mathcal{A}})$ with $\alpha + \beta + \gamma \leq 3$.

Proof. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set in a K-algebra \mathcal{K} . Assume that $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic K-subalgebra of \mathcal{K} .

Let for $(\alpha, \beta, \gamma) \in \text{Im}(\mathcal{T}_{\mathcal{A}}) \times \text{Im}(\mathcal{T}_{\mathcal{A}}) \times \text{Im}(\mathcal{F}_{\mathcal{A}})$ with $\alpha + \beta + \gamma \leq 3$ be such that $\mathcal{A}_{(\alpha,\beta,\gamma)} \neq \emptyset$. Let $s, t \in \mathcal{A}_{(\alpha,\beta,\gamma)}$ be such that

$$\mathcal{T}_{\mathcal{A}}(s) \geq \alpha, \mathcal{T}_{\mathcal{A}}(t) \geq \alpha',$$

 $\mathcal{T}_{\mathcal{A}}(s) \geq \beta, \mathcal{T}_{\mathcal{A}}(t) \geq \beta',$
 $\mathcal{F}_{\mathcal{A}}(s) \leq \gamma, \mathcal{F}_{\mathcal{A}}(t) \leq \gamma'.$

Without loss of generality we can assume that $\alpha \leq \alpha'$, $\beta \leq \beta'$ and $\gamma \geq \gamma'$. It follows from Definition 2.3 that

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \ge \alpha = \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\},$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \ge \beta = \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\},$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) \le \gamma = \max\{\mathcal{F}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(t)\}.$$

It implies that $s \odot t \in \mathcal{A}_{(\alpha,\beta,\gamma)}$. So, $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-subalgebra of K.

Conversely, we suppose that $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-subalgebra of \mathcal{K} . If the condition of the Definition 2.3 is not true, then there exist $u, v \in G$ such that

$$\mathcal{T}_{\mathcal{A}}(u \odot v) < \min \{\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v)\},\$$

 $\mathcal{T}_{\mathcal{A}}(u \odot v) < \min \{\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v)\},\$
 $\mathcal{F}_{\mathcal{A}}(u \odot v) > \max\{\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v)\}.$

Taking $\alpha_1 = \frac{1}{2}(\mathcal{T}_{\mathcal{A}}(u \odot v) + \min\{\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v)\}), \ \beta_1 = \frac{1}{2}(\mathcal{I}_{\mathcal{A}}(u \odot v) + \min\{\mathcal{I}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v)\}), \ \gamma_1 = \frac{1}{2}(\mathcal{F}_{\mathcal{A}}(u \odot v) + \min\{\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v)\}).$

We have $\mathcal{T}_{\mathcal{A}}(u \odot v) < \alpha_1 < \min\{\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v)\}, \mathcal{I}_{\mathcal{A}}(u \odot v) < \beta_1 < \min\{\mathcal{I}_{\mathcal{A}}(u), \mathcal{I}_{\mathcal{A}}(v)\}$ and $\mathcal{F}_{\mathcal{A}}(u \odot v) > \gamma_1 > \max\{\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v)\}$. It implies that $u, v \in \mathcal{A}_{(\alpha, \beta, \gamma)}$ and $u \odot v \notin \mathcal{A}_{(\alpha, \beta, \gamma)}$, a contradiction. Therefore, the condition of Definition 2.3 is true. Hence $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic k-subalgebra of \mathcal{K} .

Theorem 2.2. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic k-subalgebra and $(\alpha_1, \beta_1, \gamma_1), (\alpha_2, \beta_2, \gamma_2) \in \operatorname{Im}(\mathcal{T}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{I}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{F}_{\mathcal{A}})$ with $\alpha_j + \beta_j + \gamma_j \leq 3$ for j = 1, 2. Then $\mathcal{A}_{(\alpha_1, \beta_1, \gamma_1)} = \mathcal{A}_{(\alpha_2, \beta_2, \gamma_2)}$ if $(\alpha_1, \beta_1, \gamma_1) = (\alpha_2, \beta_2, \gamma_2)$.

Proof. If $(\alpha_1, \beta_1, \gamma_1) = (\alpha_2, \beta_2, \gamma_2)$, then clearly $\mathcal{A}_{(\alpha_1, \beta_1, \gamma_1)} = \mathcal{A}_{(\alpha_2, \beta_2, \gamma_2)}$. Assume that $\mathcal{A}_{(\alpha_1, \beta_1, \gamma_1)} = \mathcal{A}_{(\alpha_2, \beta_2, \gamma_2)}$. Since $(\alpha_1, \beta_1, \gamma_1) \in \operatorname{Im}(\mathcal{T}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{I}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{F}_{\mathcal{A}})$, there exists $s \in G$ such that $\mathcal{T}_{\mathcal{A}}(s) = \alpha_1, \mathcal{I}_{\mathcal{A}}(s) = \beta_1$ and $\mathcal{F}_{\mathcal{A}}(s) = \gamma_1$. It follows that $s \in \mathcal{A}_{(\alpha_1, \beta_1, \gamma_1)} = \mathcal{A}_{(\alpha_2, \beta_2, \gamma_2)}$. So that $\alpha_1 = \mathcal{T}_{\mathcal{A}}(s) \geq \alpha_2, \beta_1 = \mathcal{I}_{\mathcal{A}}(s) \geq \beta_2$ and $\gamma_1 = \mathcal{F}_{\mathcal{A}}(s) \leq \gamma_2$. Also $(\alpha_2, \beta_2, \gamma_2) \in \operatorname{Im}(\mathcal{T}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{I}_{\mathcal{A}}) \times \operatorname{Im}(\mathcal{F}_{\mathcal{A}})$, there exists $t \in G$ such that $\mathcal{T}_{\mathcal{A}}(t) = \alpha_2, \mathcal{I}_{\mathcal{A}}(t) = \beta_2$ and $\mathcal{F}_{\mathcal{A}}(t) = \gamma_2$. It follows that $t \in \mathcal{A}_{(\alpha_2, \beta_2, \gamma_2)} = \mathcal{A}_{(\alpha_1, \beta_1, \gamma_1)}$. So that $\alpha_2 = \mathcal{T}_{\mathcal{A}}(t) \geq \alpha_1, \beta_2 = \mathcal{I}_{\mathcal{A}}(t) \geq \beta_1$ and $\gamma_2 = \mathcal{F}_{\mathcal{A}}(t) \leq \gamma_1$. Hence $(\alpha_1, \beta_1, \gamma_1) = (\alpha_2, \beta_2, \gamma_2)$.

Theorem 2.3. Let H be a K-subalgebra of K-algebra K. Then there exists a single-valued neutrosophic K-subalgebra $A = (\mathcal{T}_A, \mathcal{I}_A, \mathcal{F}_A)$ of K-algebra K such that $A = (\mathcal{T}_A, \mathcal{I}_A, \mathcal{F}_A) = H$, for some $\alpha, \beta \in (0, 1], \gamma \in [0, 1)$.

Proof. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set in K-algebra \mathcal{K} given by

$$\mathcal{T}_{\mathcal{A}}(s) = \begin{cases} \alpha \in (0,1], & \text{if } s \in H, \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathcal{I}_{\mathcal{A}}(s) = \begin{cases} \beta \in (0,1], & \text{if } s \in H, \\ 0, & \text{otherwise,} \end{cases}, \quad \mathcal{F}_{\mathcal{A}}(s) = \begin{cases} \gamma \in [0,1), & \text{if } s \in H, \\ 0, & \text{otherwise.} \end{cases}$$

Let $s, t \in G$. If $s, t \in H$, then $s \odot t \in H$ and so

 $\mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\}, \ \mathcal{I}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{I}_{\mathcal{A}}(s), \mathcal{I}_{\mathcal{A}}(t)\}, \ \mathcal{F}_{\mathcal{A}}(s \odot t) \leq \max\{\mathcal{F}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(t)\}.$ But if $s \notin H$ or $t \notin H$, then $\mathcal{T}_{\mathcal{A}}(s) = 0$ or $\mathcal{T}_{\mathcal{A}}(t), \mathcal{I}_{\mathcal{A}}(s) = 0$ or $\mathcal{T}_{\mathcal{A}}(t)$ and $\mathcal{F}_{\mathcal{A}}(s) = 0$ or $\mathcal{F}_{\mathcal{A}}(t)$. It follows that $\mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\}, \ \mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\}, \ \mathcal{F}_{\mathcal{A}}(s \odot t) \leq \max\{\mathcal{F}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(t)\}.$ Hence $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a SVN K-subalgebra of K. Consequently $\mathcal{A}_{(\alpha, \beta, \gamma)} = H$.

The following Theorem shows that any K-subalgebra of K can be perceived as a level K-subalgebra of some single-valued neutrosophic K-subalgebras of K.

Theorem 2.4. Let K be a K-algebra. Given a chain of K-subalgebras: $A_0 \subset A_1 \subset A_2 \subset ... \subset A_n = G$. Then there exists a single-valued neutrosophic K-subalgebra whose level K-subalgebras are exactly the K-subalgebras in this chain.

Proof. Let $\{\alpha_k \mid k=0,1,...,n\}$, $\{\beta_k \mid k=0,1,...,n\}$ be finite decreasing sequences and $\{\gamma_k \mid k=0,1,...,n\}$ be finite increasing sequence in [0,1] such that $\alpha_i + \beta_i + \gamma_i \leq 3$, for i=0,1,2,...,n. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}},\mathcal{I}_{\mathcal{A}},\mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set in \mathcal{K} defined by $\mathcal{T}_{\mathcal{A}}(\mathcal{A}_0) = \alpha_0, \mathcal{I}_{\mathcal{A}}(\mathcal{A}_0) = \beta_0, \mathcal{F}_{\mathcal{A}}(\mathcal{A}_0) = \gamma_0, \mathcal{T}_{\mathcal{A}}(\mathcal{A}_k \setminus \mathcal{A}_{k-1}) = \alpha_k, \mathcal{T}_{\mathcal{A}}(\mathcal{A}_k \setminus \mathcal{A}_{k-1}) = \beta_k$ and $\mathcal{F}_{\mathcal{A}}(\mathcal{A}_k \setminus \mathcal{A}_{k-1}) = \gamma_k$, for $0 < k \leq n$. We claim that $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K} . Let $s,t \in G$. If $s,t \in \mathcal{A}_k \setminus \mathcal{A}_{k-1}$, then it implies that $\mathcal{T}_{\mathcal{A}}(s) = \alpha_k = \mathcal{T}_{\mathcal{A}}(t), \mathcal{I}_{\mathcal{A}}(s) = \beta_k = \mathcal{I}_{\mathcal{A}}(t)$ and $\mathcal{F}_{\mathcal{A}}(s) = \gamma_k = \mathcal{F}_{\mathcal{A}}(t)$. Since each \mathcal{A}_k is a K-subalgebra, it follows that $s \odot t \in \mathcal{A}_k$. So that either $s \odot t \in \mathcal{A}_k \setminus \mathcal{A}_{k-1}$ or $s \odot t \in \mathcal{A}_{k-1}$. In any case, we conclude that

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \ge \alpha_k = \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\},$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \ge \beta_k = \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\},$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) \le \gamma_k = \max\{\mathcal{F}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(t)\}.$$

For i > j, if $s \in \mathcal{A}_i \setminus \mathcal{A}_{i-1}$ and $t \in \mathcal{A}_j \setminus \mathcal{A}_{j-1}$, then $\mathcal{T}_{\mathcal{A}}(s) = \alpha_i$, $\mathcal{T}_{\mathcal{A}}(t) = \alpha_j$, $\mathcal{T}_{\mathcal{A}}(s) = \beta_i$, $\mathcal{T}_{\mathcal{A}}(t) = \beta_j$ and $\mathcal{F}_{\mathcal{A}}(s) = \gamma_i$, $\mathcal{F}_{\mathcal{A}}(t) = \gamma_j$ and $s \odot t \in \mathcal{A}_i$ because \mathcal{A}_i is a K-subalgebra and $\mathcal{A}_j \subset \mathcal{A}_i$. It follows that

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \ge \alpha_i = \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\},\$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \ge \beta_i = \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\},\$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) \le \gamma_i = \max\{\mathcal{F}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(t)\}.$$

Thus, $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K} and all its non empty level subsets are level K-subalgebras of \mathcal{K} . Since $\text{Im}(\mathcal{T}_{\mathcal{A}}) = \{\alpha_0, \alpha_1, ..., \alpha_n\}, \text{Im}(\mathcal{I}_{\mathcal{A}}) = \{\beta_0, \beta_1, ..., \beta_n\}, \text{Im}(\mathcal{F}_{\mathcal{A}}) = \{\gamma_0, \gamma_1, ..., \gamma_n\}.$ Therefore,

the level K-subalgebras of $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ are given by the chain of K-subalgebras:

$$\bigcup (\mathcal{T}_{\mathcal{A}}, \alpha_0) \subset \bigcup (\mathcal{T}_{\mathcal{A}}, \alpha_1) \subset \dots \subset \bigcup (\mathcal{T}_{\mathcal{A}}, \alpha_n) = G,
\bigcup' (\mathcal{I}_{\mathcal{A}}, \beta_0) \subset \bigcup' (\mathcal{I}_{\mathcal{A}}, \beta_1) \subset \dots \subset \bigcup' (\mathcal{I}_{\mathcal{A}}, \beta_n) = G,
L(\mathcal{F}_{\mathcal{A}}, \gamma_0) \subset L(\mathcal{F}_{\mathcal{A}}, \gamma_1) \subset \dots \subset L(\mathcal{F}_{\mathcal{A}}, \gamma_n) = G,$$

respectively. Indeed,

$$\bigcup (\mathcal{T}_{\mathcal{A}}, \alpha_0) = \{ s \in G \mid \mathcal{T}_{\mathcal{A}}(s) \ge \alpha_0 \} = \mathcal{A}_0,
\bigcup' (\mathcal{I}_{\mathcal{A}}, \beta_0) = \{ s \in G \mid \mathcal{I}_{\mathcal{A}}(s) \ge \beta_0 \} = \mathcal{A}_0,
L(\mathcal{F}_{\mathcal{A}}, \gamma_0) = \{ s \in G \mid \mathcal{F}_{\mathcal{A}}(s) \le \gamma_0 \} = \mathcal{A}_0.$$

Now we prove that $\cup(\mathcal{T}_{\mathcal{A}}, \alpha_k) = \mathcal{A}_k, \cup'(\mathcal{I}_{\mathcal{A}}, \beta_k) = \mathcal{A}_k$ and $L(\mathcal{F}_{\mathcal{A}}, \gamma_k) = \mathcal{A}_k$, for $0 < k \le n$. Clearly, $\mathcal{A}_k \subseteq \cup(\mathcal{T}_{\mathcal{A}}, \alpha_k), \mathcal{A}_k \subseteq \cup'(\mathcal{I}_{\mathcal{A}}, \beta_k)$ and $\mathcal{A}_k \subseteq L(\mathcal{F}_{\mathcal{A}}, \gamma_k)$. If $s \in \cup(\mathcal{T}_{\mathcal{A}}, \alpha_k)$, then $\mathcal{T}_{\mathcal{A}}(s) \ge \alpha_k$ and so $s \notin \mathcal{A}_i$, for i > k.

Hence $\mathcal{T}_{\mathcal{A}}(s) \in \{\alpha_0, \alpha_1, ..., \alpha_k\}$ which implies that $s \in \mathcal{A}_i$, for some $i \leq k$ since $\mathcal{A}_i \subseteq \mathcal{A}_k$. It follows that $s \in \mathcal{A}_k$. Consequently, $\cup (\mathcal{T}_{\mathcal{A}}, \alpha_k) = \mathcal{A}_k$ for some $0 < k \leq n$. Similar case can be proved for $\cup'(\mathcal{I}_{\mathcal{A}}, \beta_k) = \mathcal{A}_k$. Now if $t \in L(\mathcal{F}_{\mathcal{A}}, \gamma_k)$, then $\mathcal{F}_{\mathcal{A}}(s) \leq \gamma_k$ and so $t \notin \mathcal{A}_i$, for some $j \leq k$. Thus, $\mathcal{F}_{\mathcal{A}}(s) \in \{\gamma_0, \gamma_1, ..., \gamma_k\}$ which implies that $s \in \mathcal{A}_j$, for some $j \leq k$. Since $\mathcal{A}_j \subseteq \mathcal{A}_k$. It follows that $t \in \mathcal{A}_k$. Consequently, $L(\mathcal{F}_{\mathcal{A}}, \gamma_k) = \mathcal{A}_k$, for some $0 < k \leq n$. Hence the proof.

2.1 Homomorphism of single-valued neutrosophic K-algebras

Definition 2.5. Let $\mathcal{K}_1 = (G_1, \cdot, \odot, e_1)$ and $\mathcal{K}_2 = (G_2, \cdot, \odot, e_2)$ be two K-algebras and let ϕ be a function from \mathcal{K}_1 into \mathcal{K}_2 . If $\mathcal{B} = (\mathcal{T}_{\mathcal{B}}, \mathcal{I}_{\mathcal{B}}, \mathcal{F}_{\mathcal{B}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_2 , then the *preimage* of $\mathcal{B} = (\mathcal{T}_{\mathcal{B}}, \mathcal{I}_{\mathcal{B}}, \mathcal{F}_{\mathcal{B}})$ under ϕ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_1 defined by $\phi^{-1}(\mathcal{T}_{\mathcal{B}})(s) = \mathcal{T}_{\mathcal{B}}(\phi(s)), \ \phi^{-1}(\mathcal{I}_{\mathcal{B}})(s) = \mathcal{I}_{\mathcal{B}}(\phi(s))$ and $\phi^{-1}(\mathcal{F}_{\mathcal{B}})(s) = \mathcal{F}_{\mathcal{B}}(\phi(s)),$ for all $s \in G_1$.

Theorem 2.5. Let $\phi : \mathcal{K}_1 \to \mathcal{K}_2$ be an epimorphism of K-algebras. If $\mathcal{B} = (\mathcal{T}_{\mathcal{B}}, \mathcal{I}_{\mathcal{B}}, \mathcal{F}_{\mathcal{B}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_2 , then $\phi^{-1}(\mathcal{B})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_1 .

Proof. It is easy to see that $\phi^{-1}(\mathcal{T}_{\mathcal{B}})(e) \geq \phi^{-1}(\mathcal{T}_{\mathcal{B}})(s)$, $\phi^{-1}(\mathcal{I}_{\mathcal{B}})(e) \geq \phi^{-1}(\mathcal{I}_{\mathcal{B}})(s)$ and $\phi^{-1}(\mathcal{F}_{\mathcal{B}})(e) \leq \phi^{-1}(\mathcal{F}_{\mathcal{B}})(s)$ for all $s \in G_1$. Let $s, t \in G_1$, then

$$\phi^{-1}(\mathcal{T}_{\mathcal{B}})(s \odot t) = \mathcal{T}_{\mathcal{B}}(\phi(s \odot t))$$

$$\phi^{-1}(\mathcal{T}_{\mathcal{B}})(s \odot t) = \mathcal{T}_{\mathcal{B}}(\phi(s) \odot \phi(t))$$

$$\phi^{-1}(\mathcal{T}_{\mathcal{B}})(s \odot t) \ge \min\{\mathcal{T}_{\mathcal{B}}(\phi(s)), \mathcal{T}_{\mathcal{B}}(\phi(t))\}$$

$$\phi^{-1}(\mathcal{T}_{\mathcal{B}})(s \odot t) \ge \min\{\phi^{-1}(\mathcal{T}_{\mathcal{B}})(s), \phi^{-1}(\mathcal{T}_{\mathcal{B}})(t)\},$$

$$\phi^{-1}(\mathcal{I}_{\mathcal{B}})(s \odot t) = \mathcal{I}_{\mathcal{B}}(\phi(s \odot t))$$

$$\phi^{-1}(\mathcal{I}_{\mathcal{B}})(s \odot t) = \mathcal{I}_{\mathcal{B}}(\phi(s) \odot \phi(t))$$

$$\phi^{-1}(\mathcal{I}_{\mathcal{B}})(s \odot t) \ge \min\{\mathcal{I}_{\mathcal{B}}(\phi(s)), \mathcal{I}_{\mathcal{B}}(\phi(t))\}$$

$$\phi^{-1}(\mathcal{I}_{\mathcal{B}})(s \odot t) \ge \min\{\phi^{-1}(\mathcal{I}_{\mathcal{B}})(s), \phi^{-1}(\mathcal{I}_{\mathcal{B}})(t)\},$$

$$\phi^{-1}(\mathcal{F}_{\mathcal{B}})(s \odot t) = \mathcal{F}_{\mathcal{B}}(\phi(s \odot t))$$

$$\phi^{-1}(\mathcal{F}_{\mathcal{B}})(s \odot t) = \mathcal{F}_{\mathcal{B}}(\phi(s) \odot \phi(t))$$

$$\phi^{-1}(\mathcal{F}_{\mathcal{B}})(s \odot t) \le \max\{\mathcal{F}_{\mathcal{B}}(\phi(s)), \mathcal{F}_{\mathcal{B}}(\phi(t))\}$$

$$\phi^{-1}(\mathcal{F}_{\mathcal{B}})(s \odot t) \le \max\{\phi^{-1}(\mathcal{F}_{\mathcal{B}})(s), \phi^{-1}(\mathcal{F}_{\mathcal{B}})(t)\}.$$

Hence $\phi^{-1}(\mathcal{B})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_1 .

Theorem 2.6. Let $\phi : \mathcal{K}_1 \to \mathcal{K}_2$ be an epimorphism of K-algebras. If $\mathcal{B} = (\mathcal{T}_{\mathcal{B}}, \mathcal{I}_{\mathcal{B}}, \mathcal{F}_{\mathcal{B}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_2 and $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is the *preimage* of \mathcal{B} under ϕ . Then \mathcal{A} is a single-valued neutrosophic K-subalgebra of \mathcal{K}_1 .

Proof. It is easy to see that $\mathcal{T}_{\mathcal{A}}(e) \geq \mathcal{T}_{\mathcal{A}}(s)$, $\mathcal{I}_{\mathcal{A}}(e) \geq \mathcal{I}_{\mathcal{A}}(s)$ and $\mathcal{F}_{\mathcal{A}}(e) \leq \mathcal{F}_{\mathcal{A}}(s)$, for all $s \in G_1$. Now for any $s, t \in G_1$,

$$\mathcal{T}_{\mathcal{A}}(s \odot t) = \mathcal{T}_{\mathcal{B}}(\phi(s \odot t))$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) = \mathcal{T}_{\mathcal{B}}(\phi(s) \odot \phi(t))$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \ge \min\{\mathcal{T}_{\mathcal{B}}(\phi(s)), \mathcal{T}_{\mathcal{B}}(\phi(t))\}$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \ge \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\},$$

$$\mathcal{I}_{\mathcal{A}}(s \odot t) = \mathcal{I}_{\mathcal{B}}(\phi(s \odot t))$$

$$\mathcal{I}_{\mathcal{A}}(s \odot t) = \mathcal{I}_{\mathcal{B}}(\phi(s) \odot \phi(t))$$

$$\mathcal{I}_{\mathcal{A}}(s \odot t) \ge \min\{\mathcal{I}_{\mathcal{B}}(\phi(s)), \mathcal{I}_{\mathcal{B}}(\phi(t))\}$$

$$\mathcal{I}_{\mathcal{A}}(s \odot t) \ge \min\{\mathcal{I}_{\mathcal{A}}(s), \mathcal{I}_{\mathcal{A}}(t)\},$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) = \mathcal{F}_{\mathcal{B}}(\phi(s \odot t))$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) = \mathcal{F}_{\mathcal{B}}(\phi(s) \odot \phi(t))$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) \le \max\{\mathcal{F}_{\mathcal{B}}(\phi(s)), \mathcal{F}_{\mathcal{B}}(\phi(t))\}$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) \le \max\{\mathcal{F}_{\mathcal{B}}(\phi(s)), \mathcal{F}_{\mathcal{A}}(\phi(t))\}.$$

Hence \mathcal{A} is a single-valued neutrosophic K-subalgebra of \mathcal{K}_1 .

Definition 2.6. Let a mapping $\phi: \mathcal{K}_1 \to \mathcal{K}_2$ from \mathcal{K}_1 into \mathcal{K}_2 of K-algebras and let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set of \mathcal{K}_2 . The map $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is called the *preimage* of \mathcal{A} under ϕ , if $\mathcal{T}_{\mathcal{A}}^{\phi}(s) = \mathcal{T}_{\mathcal{A}}(\phi(s))$, $\mathcal{T}_{\mathcal{A}}^{\phi}(s) = \mathcal{T}_{\mathcal{A}}(\phi(s))$ and $\mathcal{F}_{\mathcal{A}}^{\phi}(s) = \mathcal{F}_{\mathcal{A}}(\phi(s))$ for all $s \in G_1$.

Proposition 2.3. Let $\phi: \mathcal{K}_1 \to \mathcal{K}_2$ be an epimorphism of K-algebras. If $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_2 , then $\mathcal{A}^{\phi} = (\mathcal{T}_{\mathcal{A}}^{\phi}, \mathcal{I}_{\mathcal{A}}^{\phi}, \mathcal{F}_{\mathcal{A}}^{\phi})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_1 .

Proof. For any $s \in G_1$, we have

$$\mathcal{T}_{\mathcal{A}}^{\phi}(e_1) = \mathcal{T}_{\mathcal{A}}(\phi(e_1)) = \mathcal{T}_{\mathcal{A}}(e_2) \ge \mathcal{T}_{\mathcal{A}}(\phi(s)) = \mathcal{T}_{\mathcal{A}}^{\phi}(s),$$

$$\mathcal{T}_{\mathcal{A}}^{\phi}(e_1) = \mathcal{T}_{\mathcal{A}}(\phi(e_1)) = \mathcal{T}_{\mathcal{A}}(e_2) \ge \mathcal{T}_{\mathcal{A}}(\phi(s)) = \mathcal{T}_{\mathcal{A}}^{\phi}(s),$$

$$\mathcal{F}_{\mathcal{A}}^{\phi}(e_1) = \mathcal{F}_{\mathcal{A}}(\phi(e_1)) = \mathcal{F}_{\mathcal{A}}(e_2) \le \mathcal{F}_{\mathcal{A}}(\phi(s)) = \mathcal{F}_{\mathcal{A}}^{\phi}(s).$$

For any $s, t \in G_1$, since A is a single-valued neutrosophic K-subalgebra of K_2

$$\mathcal{T}_{\mathcal{A}}^{\phi}(s \odot t) = \mathcal{T}_{\mathcal{A}}(\phi(s \odot t))$$

$$\mathcal{T}_{\mathcal{A}}^{\phi}(s \odot t) = \mathcal{T}_{\mathcal{A}}(\phi(s) \odot \phi(t))$$

$$\mathcal{T}_{\mathcal{A}}^{\phi}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(\phi(s)), \mathcal{T}_{\mathcal{A}}(\phi(t))\}$$

$$\mathcal{T}_{\mathcal{A}}^{\phi}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}^{\phi}(s), \mathcal{T}_{\mathcal{A}}^{\phi}(s)\},$$

$$\mathcal{T}_{\mathcal{A}}^{\phi}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}^{\phi}(s \odot t))$$

$$\mathcal{T}_{\mathcal{A}}^{\phi}(s \odot t) = \mathcal{T}_{\mathcal{A}}(\phi(s) \odot \phi(t))$$

$$\mathcal{T}_{\mathcal{A}}^{\phi}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(\phi(s)), \mathcal{T}_{\mathcal{A}}(\phi(t))\}$$

$$\mathcal{T}_{\mathcal{A}}^{\phi}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}^{\phi}(s), \mathcal{T}_{\mathcal{A}}^{\phi}(s)\},$$

$$\mathcal{F}_{\mathcal{A}}^{\phi}(s \odot t) = \mathcal{F}_{\mathcal{A}}(\phi(s \odot t))$$

$$\mathcal{F}_{\mathcal{A}}^{\phi}(s \odot t) = \mathcal{F}_{\mathcal{A}}(\phi(s) \odot \phi(t))$$

Hence $\mathcal{A}^{\phi} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_1 .

 $\mathcal{F}^{\phi}_{\mathtt{A}}(s\odot t) \leq \max\{\mathcal{F}_{\mathtt{A}}(\phi(s)), \mathcal{F}_{\mathtt{A}}(\phi(t))\}$

 $\mathcal{F}_{\Lambda}^{\phi}(s \odot t) \leq \max\{\mathcal{F}_{\Lambda}^{\phi}(s), \mathcal{F}_{\Lambda}^{\phi}(s)\}.$

Proposition 2.4. Let $\phi: \mathcal{K}_1 \to \mathcal{K}_2$ be an epimorphism of K-algebras. If $\mathcal{A}^{\phi} = (\mathcal{T}_{\mathcal{A}}^{\phi}, \mathcal{T}_{\mathcal{A}}^{\phi}, \mathcal{F}_{\mathcal{A}}^{\phi})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_2 , then $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_1 .

Proof. Since there exists $s \in G_1$ such that $t = \phi(s)$, for any $t \in G_2$

$$\begin{split} \mathcal{T}_{\mathcal{A}}(t) &= \mathcal{T}_{\mathcal{A}}(\phi(s)) = \mathcal{T}_{\mathcal{A}}^{\phi(s)} \leq \mathcal{T}_{\mathcal{A}}^{\phi(e_1)} = \mathcal{T}_{\mathcal{A}}(\phi(e_1)) = \mathcal{T}_{\mathcal{A}}(e_2), \\ \mathcal{I}_{\mathcal{A}}(t) &= \mathcal{I}_{\mathcal{A}}(\phi(s)) = \mathcal{I}_{\mathcal{A}}^{\phi(s)} \leq \mathcal{I}_{\mathcal{A}}^{\phi(e_1)} = \mathcal{I}_{\mathcal{A}}(\phi(e_1)) = \mathcal{I}_{\mathcal{A}}(e_2), \\ \mathcal{F}_{\mathcal{A}}(t) &= \mathcal{F}_{\mathcal{A}}(\phi(s)) = \mathcal{F}_{\mathcal{A}}^{\phi(s)} \geq \mathcal{F}_{\mathcal{A}}^{\phi(e_1)} = \mathcal{F}_{\mathcal{A}}(\phi(e_1)) = \mathcal{F}_{\mathcal{A}}(e_2). \end{split}$$

for any $s, t \in G_2$, $u, v \in G_1$ such that $s = \phi(u)$ and $t = \phi(v)$. It follows that

$$\mathcal{T}_{\mathcal{A}}(s \odot t) = \mathcal{T}_{\mathcal{A}}(\phi(u \odot v))$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) = \mathcal{T}_{\mathcal{A}}^{\phi}(u \odot v)$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}^{\phi}(u), \mathcal{T}_{\mathcal{A}}^{\phi}(v)\}$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(\phi(u)), \mathcal{T}_{\mathcal{A}}(\phi(v))\}$$

$$\mathcal{T}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\},$$

$$\mathcal{I}_{\mathcal{A}}(s \odot t) = \mathcal{I}_{\mathcal{A}}(\phi(u \odot v))$$

$$\mathcal{I}_{\mathcal{A}}(s \odot t) = \mathcal{I}_{\mathcal{A}}^{\phi}(u \odot v)$$

$$\mathcal{I}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}^{\phi}(u), \mathcal{T}_{\mathcal{A}}^{\phi}(v)\}$$

$$\mathcal{I}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{T}_{\mathcal{A}}(\phi(u)), \mathcal{T}_{\mathcal{A}}(\phi(v))\}$$

$$\mathcal{I}_{\mathcal{A}}(s \odot t) \geq \min\{\mathcal{I}_{\mathcal{A}}(s), \mathcal{T}_{\mathcal{A}}(t)\},$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) = \mathcal{F}_{\mathcal{A}}^{\phi}(u \odot v)$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) = \mathcal{F}_{\mathcal{A}}^{\phi}(u \odot v)$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) \leq \max\{\mathcal{F}_{\mathcal{A}}^{\phi}(u), \mathcal{F}_{\mathcal{A}}^{\phi}(v)\}$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) \leq \max\{\mathcal{F}_{\mathcal{A}}(\phi(u)), \mathcal{F}_{\mathcal{A}}(\phi(v))\}$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) \leq \max\{\mathcal{F}_{\mathcal{A}}(\phi(u)), \mathcal{F}_{\mathcal{A}}(\phi(v))\}$$

$$\mathcal{F}_{\mathcal{A}}(s \odot t) \leq \max\{\mathcal{F}_{\mathcal{A}}(s), \mathcal{F}_{\mathcal{A}}(t)\}.$$

Hence $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_2 . \square

From above two propositions, we obtain the following theorem.

Theorem 2.7. Let $\phi: \mathcal{K}_1 \to \mathcal{K}_2$ be an epimorphism of K-algebras. Then $\mathcal{A}^{\phi} = (\mathcal{T}_{\mathcal{A}}^{\phi}, \mathcal{T}_{\mathcal{A}}^{\phi}, \mathcal{F}_{\mathcal{A}}^{\phi})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_1 if and only if $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra of \mathcal{K}_2 .

Definition 2.7. A single-valued neutrosophic K-subalgebra $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ of a K-algebra \mathcal{K} is called *characteristic* if $\mathcal{T}_{\mathcal{A}}(\phi(s)) = \mathcal{T}_{\mathcal{A}}(s), \mathcal{I}_{\mathcal{A}}(\phi(s)) = \mathcal{I}_{\mathcal{A}}(s)$ and $\mathcal{F}_{\mathcal{A}}(\phi(s)) = \mathcal{F}_{\mathcal{A}}(s)$, for all $s \in G$ and $\phi \in Aut(\mathcal{K})$.

Definition 2.8. A K-subalgebra S of a K-algebra K is said to be fully invariant if $\phi(S) \subseteq S$, for all $\phi \in End(K)$, where End(K) is the set of all endomorphisms of a K-algebra K. A single-valued neutrosophic K-subalgebra $A = (\mathcal{T}_{A}, \mathcal{T}_{A}, \mathcal{F}_{A})$ of a K-algebra K is called fully invariant if $\mathcal{T}_{A}(\phi(s)) \leq \mathcal{T}_{A}(s)$, $\mathcal{T}_{A}(\phi(s)) \leq \mathcal{T}_{A}(s)$ and $\mathcal{F}_{A}(\phi(s)) \leq \mathcal{F}_{A}(s)$, for all $s \in G$ and $\phi \in End(K)$.

Definition 2.9. Let $\mathcal{A}_1 = (\mathcal{T}_{\mathcal{A}_1}, \mathcal{T}_{\mathcal{A}_1}, \mathcal{F}_{\mathcal{A}_1})$ and $\mathcal{A}_2 = (\mathcal{T}_{\mathcal{A}_2}, \mathcal{T}_{\mathcal{A}_2}, \mathcal{F}_{\mathcal{A}_2})$ be single-valued neutrosophic K-subalgebras of K. Then $\mathcal{A}_1 = (\mathcal{T}_{\mathcal{A}_1}, \mathcal{I}_{\mathcal{A}_1}, \mathcal{A}_1)$ is said to be the same type of $\mathcal{A}_2 = (\mathcal{T}_{\mathcal{A}_2}, \mathcal{T}_{\mathcal{A}_2}, \mathcal{F}_{\mathcal{A}_2})$ if there exists $\phi \in Aut(K)$ such that $\mathcal{A}_1 = \mathcal{A}_2 \circ \phi$, i.e., $\mathcal{T}_{\mathcal{A}_1}(s) = \mathcal{T}_{\mathcal{A}_2}(\phi(s))$, $\mathcal{I}_{\mathcal{A}_1}(s) = \mathcal{I}_{\mathcal{A}_2}(\phi(s))$ and $\mathcal{F}_{\mathcal{A}_1}(s) = \mathcal{F}_{\mathcal{A}_2}(\phi(s))$, for all $s \in G$.

Theorem 2.8. Let $\mathcal{A}_1 = (\mathcal{T}_{\mathcal{A}_1}, \mathcal{I}_{\mathcal{A}_1}, \mathcal{F}_{\mathcal{A}_1})$ and $\mathcal{A}_2 = (\mathcal{T}_{\mathcal{A}_2}, \mathcal{T}_{\mathcal{A}_2}, \mathcal{F}_{\mathcal{A}_2})$ be single-valued neutrosophic K-subalgebras of K. Then $\mathcal{A}_1 = (\mathcal{T}_{\mathcal{A}_1}, \mathcal{T}_{\mathcal{A}_1}, \mathcal{F}_{\mathcal{A}_1})$ is a single-valued neutrosophic K-subalgebra is of the same type of $\mathcal{A}_2 = (\mathcal{T}_{\mathcal{A}_2}, \mathcal{T}_{\mathcal{A}_2}, \mathcal{F}_{\mathcal{A}_2})$ if and only if \mathcal{A}_1 is isomorphic to \mathcal{A}_2 .

Proof. Sufficient condition holds trivially so we only need to prove the necessary condition. Let $\mathcal{A}_1 = (\mathcal{T}_{\mathcal{A}_1}, \mathcal{T}_{\mathcal{A}_1}, \mathcal{F}_{\mathcal{A}_1})$ be a single-valued neutrosophic K-subalgebra having same type of $\mathcal{A}_2 = (\mathcal{T}_{\mathcal{A}_2}, \mathcal{T}_{\mathcal{A}_2}, \mathcal{F}_{\mathcal{A}_2})$. Then there exists $\phi \in Aut(\mathcal{K})$ such that $\mathcal{T}_{\mathcal{A}_1}(s) = \mathcal{T}_{\mathcal{A}_2}(\phi(s))$, $\mathcal{T}_{\mathcal{A}_1}(s) = \mathcal{T}_{\mathcal{A}_2}(\phi(s))$ and $\mathcal{F}_{\mathcal{A}_1} = \mathcal{F}_{\mathcal{A}_2}(\phi(s))$, for all $s \in G$.

Let $f: \mathcal{A}_1(K) \to \mathcal{A}_2(K)$ be a mapping defined by $f(\mathcal{A}_1(s)) = \mathcal{A}_2(\phi(s))$, for all $s \in G$, that is, $f(\mathcal{T}_{\mathcal{A}_1}(s)) = \mathcal{T}_{\mathcal{A}_2}(\phi(s))$, $f(\mathcal{I}_{\mathcal{A}_1}(s)) = \mathcal{I}_{\mathcal{A}_2}(\phi(s))$ and $f(\mathcal{F}_{\mathcal{A}_1}(s)) = \mathcal{F}_{\mathcal{A}_2}(\phi(s))$, for all $s \in G$. Clearly, f is surjective. Also, f is injective because if $f(\mathcal{T}_{\mathcal{A}_1}(s)) = f(\mathcal{T}_{\mathcal{A}_1}(t))$, for all $s, t \in G$, then $\mathcal{T}_{\mathcal{A}_2}(\phi(s)) = \mathcal{T}_{\mathcal{A}_2}(\phi(t))$ and we have $\mathcal{T}_{\mathcal{A}_1}(s) = \mathcal{T}_{\mathcal{A}_1}(t)$. Similarly, $\mathcal{T}_{\mathcal{A}_1}(s) = \mathcal{T}_{\mathcal{A}_1}(t)$, $\mathcal{F}_{\mathcal{A}_1}(s) = \mathcal{F}_{\mathcal{A}_1}(t)$.

Therefore, f is a homomorphism, such that for $s, t \in G$, we have

$$f(\mathcal{T}_{\mathcal{A}_{1}}(s \odot t)) = \mathcal{T}_{\mathcal{A}_{2}}(\phi(s \odot t)) = \mathcal{T}_{\mathcal{A}_{2}}(\phi(s) \odot \phi(t)),$$

$$f(\mathcal{T}_{\mathcal{A}_{1}}(s \odot t)) = \mathcal{T}_{\mathcal{A}_{2}}(\phi(s \odot t)) = \mathcal{T}_{\mathcal{A}_{2}}(\phi(s) \odot \phi(t)),$$

$$f(\mathcal{F}_{\mathcal{A}_{1}}(s \odot t)) = \mathcal{F}_{\mathcal{A}_{2}}(\phi(s \odot t)) = \mathcal{F}_{\mathcal{A}_{2}}(\phi(s) \odot \phi(t)).$$

Hence $\mathcal{A}_1 = (\mathcal{T}_{\mathcal{A}_1}, \mathcal{T}_{\mathcal{A}_1}, \mathcal{F}_{\mathcal{A}_1})$ is isomorphic to $\mathcal{A}_2 = \mathcal{T}_{\mathcal{A}_2}, \mathcal{T}_{\mathcal{A}_2}, \mathcal{F}_{\mathcal{A}_2})$. Hence the proof.

3. (\tilde{a}, \tilde{b}) -single-valued neutrosophic K-algebras

Definition 3.1. A single-valued neutrosophic set $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ in a set G is called an (\tilde{a}, \tilde{b}) -single-valued neutrosophic K-subalgebra of \mathcal{K} if it satisfies the following conditions:

• $u_{(\alpha_1,\beta_1,\gamma_1)}$ \tilde{a} \mathcal{A} , $v_{(\alpha_2,\beta_2,\gamma_2)}$ \tilde{a} $\mathcal{A} \Rightarrow (u \odot v)_{(\min(\alpha_1,\alpha_2),\min(\beta_1,\beta_2),\max(\gamma_1,\gamma_2))}$ \tilde{b} \mathcal{A} , for all $u,v \in G$, $\alpha_1,\alpha_2 \in (0,1]$, $\beta_1,\beta_2 \in (0,1]$, $\gamma_1,\gamma_2 \in [0,1)$.

Twelve different types of single-valued neutrosophic K-subalgebras can be obtained by replacing the values of $\tilde{a}(\neq \in \land q)$ and \tilde{b} by any two values in the set $\{\in, q, \in \lor q, \in \land q\}$ in Definition 3.1.

Remark 3.1. Every (\in, \in) -single-valued neutrosophic K-subalgebra is in fact, a single-valued neutrosophic K-subalgebra.

Proposition 3.1. Every (\in, \in) -single-valued neutrosophic K-subalgebra is an $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra.

Proof. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic K-subalgebra of \mathcal{K} . Let $u, v \in G$ and $\alpha_1, \alpha_2 \in (0, 1], \beta_1, \beta_2 \in (0, 1], \gamma_1, \gamma_2 \in [0, 1)$ be such that $u_{(\alpha_1, \beta_1, \gamma_1)} \in \mathcal{A}$, $v_{(\alpha_2, \beta_2, \gamma_2)} \in \mathcal{A}$. Then $u_{(\alpha_1, \beta_1, \gamma_1)} \in \mathcal{A}$, $v_{(\alpha_2, \beta_2, \gamma_2)} \in \mathcal{A} \Rightarrow (u \odot v)_{(\min(\alpha_1, \alpha_2), \min(\beta_1, \beta_2), \max(\gamma_1, \gamma_2))} \in \forall q \ \mathcal{A}$. Hence \mathcal{A} is an $(\in, \in \forall q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} .

Proposition 3.2. Every $(\in \lor q, \in \lor q)$ -single-valued neutrosophic K-subalgebra is an $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} .

Definition 3.2. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic set in G. The set $\underline{\mathcal{A}} = \{u \in G \mid \mathcal{T}_{\mathcal{A}}(u) \neq 0, \ \mathcal{I}_{\mathcal{A}}(u) \neq 0, \ \mathcal{F}_{\mathcal{A}}(u) \neq 0\}$ is called the *support* of \mathcal{A} .

Lemma 3.1. If $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a non-zero (\in, \in) -single-valued neutrosophic K-subalgebra of \mathcal{K} , then $\underline{\mathcal{A}}$ is a K-subalgebra of \mathcal{K} .

Proof. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a non-zero (\in, \in) -single-valued neutrosophic K-subalgebra of \mathcal{K} and let $u, v \in \underline{\mathcal{A}}$. Then $\mathcal{T}_{\mathcal{A}}(u) \neq 0$ and $\mathcal{T}_{\mathcal{A}}(v) \neq 0$, $\mathcal{I}_{\mathcal{A}}(u) \neq 0$ and $\mathcal{T}_{\mathcal{A}}(v) \neq 0$ and $\mathcal{F}_{\mathcal{A}}(u) \neq 0$, $\mathcal{F}_{\mathcal{A}}(v) \neq 0$. Let $\mathcal{T}_{\mathcal{A}}(u \odot v) = 0$, $\mathcal{I}_{\mathcal{A}}(u \odot v) = 0$ and $\mathcal{F}_{\mathcal{A}}(u \odot v) = 0$. Since $u_{\mathcal{T}_{\mathcal{A}}}(u) \in \mathcal{A}$ and $v_{\mathcal{T}_{\mathcal{A}}}(v) \in \mathcal{A}$, $u_{\mathcal{I}_{\mathcal{A}}}(u) \in \mathcal{A}$ and $v_{\mathcal{I}_{\mathcal{A}}}(v) \in \mathcal{A}$, $u_{\mathcal{F}_{\mathcal{A}}}(u) \in \mathcal{A}$ and $v_{\mathcal{F}_{\mathcal{A}}}(v) \in \mathcal{A}$ but $(u \odot v)_{(\min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v)), \min(\mathcal{I}_{\mathcal{A}}(u), \mathcal{I}_{\mathcal{A}}(v)), \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v)))} \notin \mathcal{A}$.

Since $\mathcal{T}_{\mathcal{A}}(u \odot v) = 0$, $\mathcal{I}_{\mathcal{A}}(u \odot v) = 0$ and $\mathcal{F}_{\mathcal{A}}(u \odot v) = 0$. A contradiction. Hence $\mathcal{T}_{\mathcal{A}}(u \odot v) \neq 0$, $\mathcal{I}_{\mathcal{A}}(u \odot v) \neq 0$ and $\mathcal{F}_{\mathcal{A}}(u \odot v) \neq 0$ which shows that $(u \odot v) \in \underline{\mathcal{A}}$, consequently $\underline{\mathcal{A}}$ is a K-subalgebra of \mathcal{A} .

Lemma 3.2. If $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a non-zero (\in, q) -single-valued neutrosophic K-subalgebra of \mathcal{K} , then $\underline{\mathcal{A}}$ is a K-subalgebra of \mathcal{K} .

Lemma 3.3. If $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a non-zero (q, \in) -single-valued neutrosophic K-subalgebra of \mathcal{K} , then $\underline{\mathcal{A}}$ is a K-subalgebra of \mathcal{K} .

Lemma 3.4. If $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a non-zero (q, q)-single-valued neutrosophic K-subalgebra of \mathcal{K} , then $\underline{\mathcal{A}}$ is a K-subalgebra of \mathcal{K} .

Theorem 3.1. If $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a non-zero (\tilde{a}, \tilde{b}) -single-valued neutrosophic K-subalgebra of \mathcal{K} , then \mathcal{A} is a K-subalgebra of \mathcal{K} .

Definition 3.3. A neutrosophic set $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ in a K-algebra \mathcal{K} is called an $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} if it satisfies the following conditions:

- (a) $e_{(\alpha,\beta,\gamma)} \in \mathcal{A} \Rightarrow (u)_{(\alpha,\beta,\gamma)} \in \forall q \ \mathcal{A}$,
- (b) $u_{(\alpha_1,\beta_1,\gamma_1)} \in \mathcal{A}, v_{(\alpha_2,\beta_2,\gamma_2)} \in \mathcal{A} \Rightarrow (u \odot v)_{(\min(\alpha_1,\alpha_2),\min(\beta_1,\beta_2),\max(\gamma_1,\gamma_2)} \in \forall q \ \mathcal{A},$

For all $u, v \in G, \alpha, \alpha_1, \alpha_2 \in (0, 1], \beta, \beta_1, \beta_2 \in (0, 1], \gamma, \gamma_1, \gamma_2 \in [0, 1).$

Example 3.1. Consider a K-algebra $\mathcal{K} = (G, \cdot, \odot, e)$, where $G = \{e, x, x^2, x^3, x^4, x^5, x^6\}$ is the cyclic group of order 7 and Cayley's table for \odot is given as:

We define a single-valued neutrosophic set $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ in \mathcal{K} as follows:

$$\mathcal{T}_{\mathcal{A}}(u) = \begin{cases} 1, & \text{if } u = e, \\ 0.7, & \text{otherwise} \end{cases}$$

$$\mathcal{I}_{\mathcal{A}}(u) = \begin{cases} 1, & \text{if } u = e, \\ 0.6, & \text{otherwise} \end{cases}$$

$$\mathcal{F}_{\mathcal{A}}(u) = \begin{cases} 0, & \text{if } u = e, \\ 0.5, & \text{otherwise} \end{cases}$$

Now take $\alpha = 0.4$, $\alpha_1 = 0.5$, $\alpha_2 = 0.3$, $\beta = 0.5$, $\beta_1 = 0.6$, $\beta_2 = 0.3$, $\gamma = 0.6$, $\gamma_1 = 0.6$, $\gamma_2 = 0.5$, where α , α_1 , $\alpha_2 \in (0, 1]$, β , β_1 , $\beta_2 \in (0, 1]$, γ , γ_1 , $\gamma_2 \in [0, 1)$.

By direct calculations, it is easy to see that \mathcal{A} is an $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} .

Theorem 3.2. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set in \mathcal{K} . Then \mathcal{A} is an $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} if and only if

(i)
$$\mathcal{T}_{\mathcal{A}}(u) \ge \min(\mathcal{T}_{\mathcal{A}}(e), 0.5),$$

 $\mathcal{I}_{\mathcal{A}}(u) \ge \min(\mathcal{I}_{\mathcal{A}}(e), 0.5),$
 $\mathcal{F}_{\mathcal{A}}(u) \le \max(\mathcal{F}_{\mathcal{A}}(e), 0.5).$

(ii)
$$\mathcal{T}_{\mathcal{A}}(u \odot v) \ge \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5),$$

 $\mathcal{T}_{\mathcal{A}}(u \odot v) \ge \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5),$
 $\mathcal{F}_{\mathcal{A}}(u \odot v) \le \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v), 0.5),$ for all $u, v \in G$.

Proof. Assume that \mathcal{A} is an $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra. Let for $u, v \in G$. Assume that $\mathcal{T}_{\mathcal{A}}(u \odot v) < \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5), \mathcal{I}_{\mathcal{A}}(u \odot v) < \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5)$. Then $\mathcal{T}_{\mathcal{A}}(u \odot v) < \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5)$. Take $\mathcal{T}_{\mathcal{A}}(u \odot v) < \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v))$ and $\mathcal{F}_{\mathcal{A}}(u \odot v) < \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v))$. Take α, β, γ such that $\mathcal{T}_{\mathcal{A}}(u \odot v) < \alpha < \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), \mathcal{T}_{\mathcal{A}}(v))$

 $\mathcal{I}_{\mathcal{A}}(u \odot v) < \beta < \min(\mathcal{I}_{\mathcal{A}}(u), \mathcal{I}_{\mathcal{A}}(v), \mathcal{F}_{\mathcal{A}}(u \odot v) > \gamma > \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v). \text{ Then } u_{\alpha}, v_{\alpha} \in \mathcal{T}_{\mathcal{A}}, u_{\beta}, v_{\beta} \in \mathcal{I}_{\mathcal{A}} \text{ and } u_{\gamma}, v_{\gamma} \in \mathcal{F}_{\mathcal{A}} \text{ but } (u \odot v)_{(\min(\alpha_{1}, \alpha_{2}), \min(\beta_{1}, \beta_{2}), \max(\gamma_{1}, \gamma_{2}))} \in \overline{\vee q} \mathcal{A}, \text{ a contradiction.}$

Now if $\mathcal{T}_{\mathcal{A}}(u \odot v) < 0.5$, $\mathcal{T}_{\mathcal{A}}(u \odot v) < 0.5$, $\mathcal{F}_{\mathcal{A}}(u \odot v) > 0.5$. Then $u_{(0.5,0.5,0.5)}, v_{(0.5,0.5,0.5)} \in \mathcal{A}$, but $(u \odot v)_{(0.5,0.5,0.5)} \overline{\in \vee q} \mathcal{A}$ which is also a contradiction. Hence (i) holds.

Let $u_{(\alpha_1,\beta_1,\gamma_1)}, v_{(\alpha_2,\beta_2,\gamma_2)} \in \mathcal{A}$ which means that $\mathcal{T}_{\mathcal{A}}(u) \geq \alpha_1, \mathcal{T}_{\mathcal{A}}(v) \geq \alpha_2, \mathcal{T}_{\mathcal{A}}(u) \geq \beta_1, \mathcal{T}_{\mathcal{A}}(v) \geq \beta_2, \ \mathcal{F}_{\mathcal{A}}(u) \leq \gamma_1, \mathcal{F}_{\mathcal{A}}(v) \leq \gamma_2.$ We have $\mathcal{T}_{\mathcal{A}}(u \odot v) \geq \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5) \geq \min(\alpha_1, \alpha_2, 0.5), \ \mathcal{T}_{\mathcal{A}}(u \odot v) \geq \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5) \geq \min(\beta_1, \beta_2, 0.5), \ \mathcal{F}_{\mathcal{A}}(u \odot v) \leq \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v), 0.5) \leq \max(\gamma_1, \gamma_2, 0.5).$ If $\min(\alpha_1, \alpha_2) > 0.5, \min(\beta_1, \beta_2) > 0.5, \max(\gamma_1, \gamma_2) < 0.5, \text{ then } \mathcal{T}_{\mathcal{A}}(u \odot v) \geq 0.5 \Rightarrow \mathcal{T}_{\mathcal{A}}(u \odot v) + \min(\alpha_1, \alpha_2) > 1, \ \mathcal{T}_{\mathcal{A}}(u \odot v) \geq 0.5 \Rightarrow \mathcal{T}_{\mathcal{A}}(u \odot v) + \min(\beta_1, \beta_2) > 1, \ \mathcal{F}_{\mathcal{A}}(u \odot v) \leq 0.5 \Rightarrow \mathcal{F}_{\mathcal{A}}(u \odot v) + \max(\gamma_1, \gamma_2) < 1.$

But if $\min(\alpha_1, \alpha_2) \leq 0.5$, $\min(\beta_1, \beta_2) \leq 0.5$, $\max(\gamma_1, \gamma_2) \geq 0.5$, then $\mathcal{T}_{\mathcal{A}}(u \odot v) \geq \min(\alpha_1, \alpha_2)$, $\mathcal{I}_{\mathcal{A}}(u \odot v) \geq \min(\beta_1, \beta_2)$, $\mathcal{F}_{\mathcal{A}}(u \odot v) \leq \max(\gamma_1, \gamma_2)$. Hence $(u \odot v)_{(\min(\alpha_1, \alpha_2), \min(\beta_1, \beta_2), \max(\gamma_1, \gamma_2))} \in \forall q \mathcal{A}$. Which completes the proof. \square

Theorem 3.3. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set in \mathcal{K} . Then \mathcal{A} is an $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} if and only if each non-empty $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-subalgebra of \mathcal{K} , for $\alpha,\beta \in (0.5,1], \gamma \in [0.5,1)$.

Proof. Assume that $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is an $(\in, \in \vee q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} and let $\alpha, \beta \in (0.5, 1], \gamma \in [0.5, 1)$. To prove that $\mathcal{A}_{(\alpha,\beta,\gamma)} = \{u \in G \mid \mathcal{T}_{\mathcal{A}}(u) \geq \alpha, \mathcal{I}_{\mathcal{A}}(u) \geq \beta, \mathcal{F}_{\mathcal{A}}(u) \leq \gamma\}$ is a K-subalgebra of \mathcal{K} . If $u, v \in \mathcal{A}_{(\alpha,\beta,\gamma)}$, then $\mathcal{T}_{\mathcal{A}}(u) \geq \alpha, \mathcal{T}_{\mathcal{A}}(v) \geq \alpha, \mathcal{T}_{\mathcal{A}}(u) \geq \beta, \mathcal{T}_{\mathcal{A}}(v) \geq \beta, \mathcal{F}_{\mathcal{A}}(u) \leq \gamma, \mathcal{F}_{\mathcal{A}}(v) \leq \gamma$. Thus, $\mathcal{T}_{\mathcal{A}}(e) \geq \min(\mathcal{T}_{\mathcal{A}}(u), 0.5) \geq \min(\alpha, 0.5) = \alpha, \mathcal{T}_{\mathcal{A}}(e) \geq \min(\mathcal{T}_{\mathcal{A}}(u), 0.5) \geq \min(\beta, 0.5) = \beta, \mathcal{F}_{\mathcal{A}}(e) \leq \max(\mathcal{F}_{\mathcal{A}}(u), 0.5) \geq \min(\gamma, 0.5) = \gamma$ and $\mathcal{T}_{\mathcal{A}}(u \odot v) \geq \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5) \geq \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5) \geq \min(\beta, 0.5) = \beta, \mathcal{F}_{\mathcal{A}}(u \odot v) \leq \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v), 0.5) \leq \max(\gamma, 0.5) = \gamma$. Thus, $u \odot v \in \mathcal{A}_{(\alpha,\beta,\gamma)}$. Hence $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-subalgebra of \mathcal{K} . Converse part is obvious.

Theorem 3.4. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic set in \mathcal{K} . Then $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-subalgebra of \mathcal{K} if and only if

(a)
$$\max(\mathcal{T}_{\mathcal{A}}(u \odot v), 0.5) \ge \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v)),$$

 $\max(\mathcal{I}_{\mathcal{A}}(u \odot v), 0.5) \ge \min(\mathcal{I}_{\mathcal{A}}(u), \mathcal{I}_{\mathcal{A}}(v)),$
 $\min(\mathcal{F}_{\mathcal{A}}(u \odot v), 0.5) \le \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v)),$

(b)
$$\max(\mathcal{T}_{\mathcal{A}}(e), 0.5) \ge (\mathcal{T}_{\mathcal{A}}(u), \\ \max(\mathcal{I}_{\mathcal{A}}(e), 0.5) \ge (\mathcal{I}_{\mathcal{A}}(u), \\ \min(\mathcal{F}_{\mathcal{A}}(e), 0.5) \le (\mathcal{F}_{\mathcal{A}}(u), \text{ for all } u, v \in G.$$

Proof. Suppose that $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-subalgebra of \mathcal{K} and let $\max(\mathcal{T}_{\mathcal{A}}(u\odot v),0.5)<\min(\mathcal{T}_{\mathcal{A}}(u),\mathcal{T}_{\mathcal{A}}(v))=\alpha, \max(\mathcal{I}_{\mathcal{A}}(u\odot v),0.5)<\min(\mathcal{I}_{\mathcal{A}}(u),\mathcal{I}_{\mathcal{A}}(v))=\beta, \min(\mathcal{F}_{\mathcal{A}}(u\odot v),0.5)>\max(\mathcal{F}_{\mathcal{A}}(u),\mathcal{F}_{\mathcal{A}}(v))=\gamma.$ Then for $\alpha,\beta\in(0.5,1]$ and $\gamma\in[0.5,1)$ and $u,v\in\mathcal{A}_{(\alpha,\beta,\gamma)},\mathcal{T}_{\mathcal{A}}(u\odot v)<\alpha,\mathcal{I}_{\mathcal{A}}(u\odot v)<\beta,\mathcal{F}_{\mathcal{A}}(u\odot v)>\gamma.$ Since $u,v\in\mathcal{A}_{(\alpha,\beta,\gamma)}$ and $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-subalgebra of \mathcal{K} , so $u,v\in\mathcal{A}_{(\alpha,\beta,\gamma)}$ or $\mathcal{T}_{\mathcal{A}}(u\odot v)\geq\alpha,\mathcal{I}_{\mathcal{A}}(u\odot v)\geq\beta,\mathcal{F}_{\mathcal{A}}(u\odot v)\leq\gamma,$ a contradiction.

Conversely, suppose that conditions (a) and (b) holds. Let for $u, v \in \mathcal{A}_{(\alpha,\beta,\gamma)}$, we have $0.5 < \alpha \le \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v)) \le \max(\mathcal{T}_{\mathcal{A}}(u \odot v), 0.5) \Rightarrow \mathcal{T}_{\mathcal{A}}(u \odot v) \ge \alpha$, $0.5 < \beta \le \min(\mathcal{I}_{\mathcal{A}}(u), \mathcal{I}_{\mathcal{A}}(v)) \le \max(\mathcal{I}_{\mathcal{A}}(u \odot v), 0.5) \Rightarrow \mathcal{I}_{\mathcal{A}}(u \odot v) \ge \beta$, $0.5 > \gamma \ge \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v)) \ge \min(\mathcal{F}_{\mathcal{A}}(u \odot v), 0.5) \Rightarrow \mathcal{F}_{\mathcal{A}}(u \odot v) \le \gamma$. $0.5 < \alpha \le \mathcal{T}_{\mathcal{A}}(u) \le \max(\mathcal{T}_{\mathcal{A}}(e), 0.5) \Rightarrow \mathcal{T}_{\mathcal{A}}(mu) \ge \alpha$, $0.5 < \beta \le \mathcal{I}_{\mathcal{A}}(u) \le \max(\mathcal{I}_{\mathcal{A}}(e), 0.5) \Rightarrow \mathcal{T}_{\mathcal{A}}(mu) \ge \beta$, $0.5 > \gamma \ge \mathcal{F}_{\mathcal{A}}(u) \ge \min(\mathcal{F}_{\mathcal{A}}(e), 0.5) \Rightarrow \mathcal{F}_{\mathcal{A}}(mu) \le \gamma$, for some $m \in G \cup v \in \mathcal{A}_{(\alpha,\beta,\gamma)}$. Hence $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-subalgebra of \mathcal{K} .

Theorem 3.5. The intersection of any family of $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} is an $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} .

Proof. Let $\{A_j : j \in I\}$ be a family of $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebras of K.

Let $\mathcal{A} = \bigcap_{j \in I} \mathcal{A}_j = (\sup_{j \in I} \mathcal{T}_{\mathcal{A}_i}, \sup_{j \in I} \mathcal{T}_{\mathcal{A}_i}, \inf_{j \in I} \mathcal{F}_{\mathcal{A}_i})$, for $u, v \in G$, we have

$$\begin{split} & \mathcal{T}_{\mathcal{A}}(u \odot v) \geq \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5), \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) \geq \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), 0.5), \\ & \mathcal{F}_{\mathcal{A}}(u \odot v) \leq \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v), 0.5). \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) = \sup_{j \in I} \mathcal{T}_{\mathcal{A}_i}(u \odot v), \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) \geq \sup_{j \in I} \min(\mathcal{T}_{\mathcal{A}_i}(u), \mathcal{T}_{\mathcal{A}_i}(v), 0.5), \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) = \min(\sup_{j \in I} \mathcal{T}_{\mathcal{A}_i}(u), \sup_{j \in I} \mathcal{T}_{\mathcal{A}_i}(v), 0.5), \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) = \min(\bigcap_{j \in I} \mathcal{T}_{\mathcal{A}_i}(u), \bigcap_{j \in I} \mathcal{T}_{\mathcal{A}_i}(v), 0.5), \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) = \sup_{j \in I} \mathcal{T}_{\mathcal{A}_i}(u \odot v), \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) \geq \sup_{j \in I} \min(\mathcal{T}_{\mathcal{A}_i}(u), \mathcal{T}_{\mathcal{A}_i}(v), 0.5), \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) = \min(\sup_{j \in I} \mathcal{T}_{\mathcal{A}_i}(u), \sup_{j \in I} \mathcal{T}_{\mathcal{A}_i}(v), 0.5), \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) = \min(\bigcap_{j \in I} \mathcal{T}_{\mathcal{A}_i}(u), \bigcap_{j \in I} \mathcal{T}_{\mathcal{A}_i}(v), 0.5), \\ & \mathcal{T}_{\mathcal{A}}(u \odot v) = \min(\bigcap_{j \in I} \mathcal{T}_{\mathcal{A}_i}(u), \bigcap_{j \in I} \mathcal{T}_{\mathcal{A}_i}(v), 0.5), \end{split}$$

$$\begin{split} & \mathcal{I}_{\mathcal{A}}(u \odot v) = \min(\mathcal{I}_{\mathcal{A}}(u), \mathcal{I}_{\mathcal{A}}(v), 0.5), \\ & \mathcal{F}_{\mathcal{A}}(u \odot v) = \inf_{j \in I} \mathcal{F}_{\mathcal{A}_{i}}(u \odot v), \\ & \mathcal{F}_{\mathcal{A}}(u \odot v) \leq \inf_{j \in I} \max(\mathcal{F}_{\mathcal{A}_{i}}(u), \mathcal{F}_{\mathcal{A}_{i}}(v), 0.5), \\ & \mathcal{F}_{\mathcal{A}}(u \odot v) = \max(\inf_{j \in I} \mathcal{F}_{\mathcal{A}_{i}}(u), \inf_{j \in I} \mathcal{F}_{\mathcal{A}_{i}}(v), 0.5), \\ & \mathcal{F}_{\mathcal{A}}(u \odot v) = \max(\bigcap_{j \in I} \mathcal{F}_{\mathcal{A}_{i}}(u), \bigcap_{j \in I} \mathcal{F}_{\mathcal{A}_{i}}(v), 0.5), \\ & \mathcal{F}_{\mathcal{A}}(u \odot v) = \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v), 0.5). \end{split}$$

It follows that \mathcal{A} is an $(\in, \in \lor q)$ -single-valued neutrosophic K-subalgebra of \mathcal{K} .

Definition 3.4. Let $\epsilon_1, \epsilon_2 \in [0, 1]$ and $\epsilon_1 < \epsilon_2$. Let $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ be a single-valued neutrosophic K-subalgebra of \mathcal{K} . Then \mathcal{A} is called a single-valued neutrosophic K-subalgebra with thresholds (ϵ_1, ϵ_2) of \mathcal{K} if

$$\max(\mathcal{T}_{\mathcal{A}}(u \odot v), \epsilon_{1}) \geq \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), \epsilon_{2}),$$

$$\max(\mathcal{I}_{\mathcal{A}}(u \odot v), \epsilon_{1}) \geq \min(\mathcal{I}_{\mathcal{A}}(u), \mathcal{I}_{\mathcal{A}}(v), \epsilon_{2}),$$

$$\min(\mathcal{F}_{\mathcal{A}}(u \odot v), \epsilon_{1}) \leq \max(\mathcal{F}_{\mathcal{A}}(u), \mathcal{F}_{\mathcal{A}}(v), \epsilon_{2}), \text{ for all } u, v \in G.$$

Example 3.2. Consider a K-algebra on a cyclic group of order 9 and ... table for \odot is given in example 2.1. It is easy to see that $\mathcal{A} = (\mathcal{T}_{\mathcal{A}}, \mathcal{T}_{\mathcal{A}}, \mathcal{F}_{\mathcal{A}})$ is a single-valued neutrosophic K-subalgebra with thresholds ($\epsilon_1 = 0.3, \epsilon_2 = 0.56$) and for ($\epsilon_1 = 0.55, \epsilon_2 = 0.78$).

Remark 3.2. Let for $\epsilon_1, \epsilon_2 \in [0, 1]$ and $\epsilon_1 < \epsilon_2$ unless otherwise specified.

- (i) When $\epsilon_1 = 0$ and $\epsilon_2 = 1$ in single-valued neutrosophic K-subalgebra with thresholds (ϵ_1, ϵ_2) , \mathcal{A} is an ordinary single-valued neutrosophic K-subalgebra.
- (ii) When $\epsilon_1 = 0$ and $\epsilon_2 = 0.5$ in single-valued neutrosophic K-subalgebra with thresholds (ϵ_1, ϵ_2) , \mathcal{A} is an $(\in, \in \lor q)$ single-valued neutrosophic K-subalgebra.

Theorem 3.6. A single-valued neutrosophic set \mathcal{A} in \mathcal{K} is a single-valued neutrosophic K-subalgebra with thresholds (ϵ_1, ϵ_2) if and only if $\cup (\mathcal{T}_{\mathcal{A}}, \alpha), \cup'(\mathcal{T}_{\mathcal{A}}, \beta), L(\mathcal{F}_{\mathcal{A}}, \gamma) (\neq \phi), \alpha, \beta, \gamma \in (\epsilon_1, \epsilon_2]$ is a K-subalgebra of \mathcal{K} .

Proof. Assume that \mathcal{A} is a single-valued neutrosophic K-subalgebra with thresholds (ϵ_1, ϵ_2) . Let for $u, v \in \cup(\mathcal{T}_{\mathcal{A}}, \alpha)$ and $\alpha \in (\epsilon_1, \epsilon_2)$, $\mathcal{T}_{\mathcal{A}}(u) \geq \alpha$ and $\mathcal{T}_{\mathcal{A}}(v) \geq \alpha$. Since \mathcal{A} is a single-valued neutrosophic K-subalgebra, it follows that $\max(\mathcal{T}_{\mathcal{A}}(u \odot v), \epsilon_1) \geq \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), \epsilon_2) = \alpha$, so that $u \odot v \in \cup(\mathcal{T}_{\mathcal{A}}, \alpha)$. Hence $\cup(\mathcal{T}_{\mathcal{A}}, \alpha)$ is a K-subalgebra of \mathcal{K} . Similarly, we can proof for $\cup'(\mathcal{T}_{\mathcal{A}}, \beta)$ and $L(\mathcal{F}_{\mathcal{A}}, \gamma)$. Hence $\mathcal{A}_{(\alpha,\beta,\gamma)}$ is a K-subalgebra of \mathcal{K} .

Conversely, suppose that for $(\epsilon_1, \epsilon_2) \in [0, 1]$ and $\epsilon_1 < \epsilon_2$, \mathcal{A} be a Ksubalgebra of K such that $\max(\mathcal{T}_{\mathcal{A}}(u \odot v), \epsilon_1) < \min(\mathcal{T}_{\mathcal{A}}(u), \mathcal{T}_{\mathcal{A}}(v), \epsilon_2) = \alpha$,
then $\mathcal{T}_{\mathcal{A}}(u \odot v) < \alpha$, where $u \in \cup(\mathcal{T}_{\mathcal{A}}, \alpha), v \in \cup(\mathcal{T}_{\mathcal{A}}, \alpha), \alpha \in (\epsilon_1, \epsilon_2]$. Since $u, v \in \cup(\mathcal{T}_{\mathcal{A}}, \alpha)$ and $\cup(\mathcal{T}_{\mathcal{A}}, \alpha)$ is a K-subalgebra, $u \odot v \in \cup(\mathcal{T}_{\mathcal{A}}, \alpha)$, i.e., $\mathcal{T}_{\mathcal{A}}(u \odot v) \geq \alpha$,
a contradiction. Similar results can be obtained for $\cup'(\mathcal{T}_{\mathcal{A}}, \beta)$ and $L(\mathcal{F}_{\mathcal{A}}, \gamma)$. \square

References

- [1] A. A. A. Agboola, B. Davvaz, *Introduction to neutrosophic BCI/BCK-algebras*, International Journal of Mathematics and Mathematical Sciences, Article ID 370267, (2015) 1-6.
- [2] M. Akram, K. H. Dar, P. K. Shum, Interval-valued (α, β) -fuzzy K-algebras, Applied Soft Computing, 11 (2011), 1213-1222.
- [3] M. Akram, B. Davvaz, F. Feng, *Intutionistic fuzzy soft K-algebras*, Mathematics in Computer Science, 7 (2013), 353-365.
- [4] M. Akram, K. H. Dar, Y. B. Jun, E. H. Roh, Fuzzy structures of K(G)-algebra, Southeast Asian Bulletin of Mathematics, 31 (2007), 625-637.
- [5] M. Akram, K. H. Dar, Generalized fuzzy K-algebras, VDM Verlag Dr. Miller, 2010, ISBN-13: 978-363927095.
- [6] K. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [7] S.K. Bakhat, P. Das, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems, 80 (1996), 359-368.
- [8] R.A. Borzooei, H. Farahani, M. Moniri, Neutrosophic deductive filters on BL-algebras, Journal of Intelligent & Fuzzy Systems, 26(2014), 2993-3004.
- [9] K.H. Dar, M. Akram, On a K-algebra built on a group, Southeast Asian Bulletin of Mathematics, 29 (2005), 41-49.
- [10] K.H. Dar, M. Akram, Characterization of a K(G)-algebra by self maps, Southeast Asian Bulletin of Mathematics, 28 (2004), 601-610.
- [11] K.H. Dar, M. Akram, On K-homomorphisms of K-algebras, International Mathematical Forum, 46 (2007), 2283-2293.
- [12] D. Coker, M. Demirci, On intuitionistic fuzzy points, Notes on intuitionistic fuzzy sets, 1 (1995), 79-84.
- [13] Y. B. Jun, S.-Z. Song, F. Smarandache, H. Bordbar, Neutrosophic quadruple BCK/BCI-algebras, Axioms, 7 (2018), 41.
- [14] P. M. Pu, Y. M. Liu, Fuzzy topology, I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence, Journal of Mathematical Analysis and Applications, 76 (1980), 571-599.
- [15] F. Smarandache, Neutrosophy neutrosophic probability, set, and logic, American Research Press, Rehoboth, USA, 1998.

- [16] H. Wang, F. Smarandache, Y.Q. Zhang, R. Sunderraman, *Single valued neutrosophic sets*, Multispace and Multistruct, 4 (2010), 410-413.
- [17] C. K. Wong, Fuzzy points and local properties of fuzzy topology, Journal of Mathematical Analysis and Applications, 46 (1974), 316-328.
- [18] X. Yuan, C. Zhang, Y. Ren, Generalized fuzzy groups and many-valued implications, Fuzzy sets and Systems, 138 (2003), 205-211.
- [19] L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

Accepted: 10.08.2018