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Coefficient estimates for a subclass of analytic functions using
Faber polynomials
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Abstract. In this paper, we introduce and investigate a new subclass Q∗∗
Σ (α, ϕ) of

normalized analytic functions defined using convolution in the open unit disk U whose
inverse has univalent analytic continuation to U . Estimates of the coefficients of bi-
univalent functions belonging to this class are determined by using Faber polynomial
techniques.
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1. Introduction

Let A be the class of all normalized functions of the form

f(z) = z +

∞∑
n=2

an zn,(1)

which are analytic in the unit disk U.
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A function that is regular (holomorphic) in U is said to be univalent in U if
it assumes no value more than once in U. Denote by S, the subclass of A, of all
univalent functions in U.

Convolution or Hadamard is a mathematical operation on two functions f
and g resulting in a third function that is typically viewed as a modified version
of one of the original functions, giving the area overlap between the two functions
as a function of the amount that one of the original functions is translated. For
f(z) defined by (1) and g(z) defined by g(z) = z +

∑∞
n=2 bnz

n the Hadamard
product is defined by

(f ∗ g)(z) = z +

∞∑
n=2

an bn zn.

Polya and Schoenberg [12] conjectured that the class of convex functions C [13]
is preserved under convolution with convex functions:f, g ∈ C ⇒ f ∗ g ∈ C. In
1973, Ruscheweyh and Sheil-Small [14] see also [12] proved the Polya-Schoenberg
conjecture. They also proved that the classes of starlike [13] functions and close-
to-convex [7] functions are closed under convolution with convex functions. Also
it is to be noted that the convolution of two univalent (or starlike) functions need
not be univalent.

If f(z) ∈ S and its inverse has an analytic continuation to |w| < 1, then the
function f(z) ∈ A is said to be bi-univalent in U. Let Σ represent the class of
all bi-univalent functions.

The concept of bi-univalent functions was introduced by Lewin [8] who
proved that if f(z) is bi-univalent, then |a2| < 1.51. Brannan and Clunie [4]
improved Lewin’s [8] result to |a2| ≤

√
2. There is a rich literature on the es-

timates of the initial coefficients of bi-univalence. However not much is known
about the estimates of higher coefficients.

The classes S∗
Σ(α) of bi-starlike functions and CΣ(α) of bi-convex functions

of order α, where 0 ≤ α < 1 were discussed by Brannan and Taha [5].

A function f(z) defined by (1) is in the class S∗
Σ(α), 0 ≤ α < 1 if

Re

(
zf ′(z)

f(z)

)
> α, |z| < 1

and

Re

(
wg′(w)

g(w)

)
> α, |w| < 1

The class CΣ(α), 0 ≤ α < 1 is the class of all functions of the form (1) satisfying
the following conditions:

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α, |z| < 1
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and

Re

(
1 +

wg′′(w)

g′(w)

)
> α, |w| < 1

where g(w) = (f−1)(w) = w − a2w
2 + (2a22 − a3)w

3 − . . .
Let C∗ (see [10], [11]) denote the class of Quasi-convex functions in U , that

is if f(z) ∈ C∗, then there exists a function g ∈ C so that Re{ (zf ′(z))′

g′(z) } > 0 in
U .

It is possible to approximate an analytic function h on K by polynomials
uniformly on K, where K is a simply connected compact set in the Complex
plane.

Faber polynomials can be viewed as a.r. (almost regular) formal Laurent
series over the Field L∞(u), the set of Formal Laurent series over F with an
indeterminate u. Faber polynomials introduced by Faber play an important
role in various areas of mathematical sciences, especially in geometric function
theory. The advantage of using Faber polynomials over the other methods is
that we find the nth coefficient that is the general term and use it for our
computations.

Using the Faber polynomial expansion for functions f ∈ S of the form (1),
the coefficients of its inverse map F = f−1may be expressed as (e.g. see [3],
Eq.(1.33), page 185)

F (w) = f−1(w) = w +

∞∑
n=2

1

n
K−n

n−1(a2, a3, . . .)w
n

= w +

∞∑
n=2

Anw
n,(2)

K−n
n−1 =

(−n)!

(−2n+ 1)!(n− 1)!
an−1
2 +

(−n)!

(2(−n+ 1))!(n− 3)!
an−3
2 a3

+
(−n)!

(−2n+ 3))!(n− 4)!
an−4
2 a4

+
(−n)!

(2(−n+ 2))!(n− 5)!
an−5
2 [a5 + (−n+ 2)a23]

+
(−n)!

(−2n+ 5)!(n− 6)!
an−6
2 [a6 + (−2n+ 5)a3a4] +

∑
j≥7

an−j
2 Vj ,

where Vj is a homogeneous polynomial in the variables a2, a3, . . . , an (see
[12] and [6]). In particular, the first few terms of K−n

n−1 are K−2
1 = −2a2,

K−3
2 = 3(2a22 − a3) and K−4

3 = −4(5a32 − 5a2a3 + a4). In general, an expansion
of Kp

n−1(a2, a3 . . . , an) is given by

Kp
n−1 = pan +

p(p− 1)

2
D2

n−1 +
p!

(p− 3)!3!
D3

n−1 + · · ·+ p!

(p− n+ 1)!(n− 1)!
Dn−1

n−1,
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where Dp
n−1 = Dp

n−1(a2, a3, . . . , an),

Dm
n−1(a2, . . . , an) =

∞∑
n=2

m!(a2)
µ1 . . . (an)

µn−1

µ1! . . . µn−1!
for m ≤ n,

and the sum is taken over all non-negetive integers µ1, . . . , µn−1 satisfying µ1+
µ2 + · · · + µn−1 = m and µ1 + 2µ2 + · · · + (n − 1)µn−1 = n − 1. Evidently:
Dn−1

n−1(a2, . . . , an) = an−1
2 (see [1], [2]).

An analytic function p of the form p(z) = 1 + p1z + p2z
2 + . . . is called a

function with positive real part in U if ℜ[p(z)] > 0 for all z ∈ U . The class of
all functions with positive real part is denoted by ℘.

Lemma 1.1 ([6]). The coefficient pn of a function p ∈ ℘ satisfies the sharp
inequality |pn| ≤ 2, n ≥ 1.

Motivated by the definition of the class C∗ of Quasi-convex functions inves-
tigated by Noor and Thomas ([10], [11]), In this paper we introduce the class
Q∗∗

Σ (α, ϕ), 0 ≤ α < 1 and obtain the coefficient bounds using Faber polynomial
techniques.

2. Main result

Coefficient bounds for functions in the class Q∗∗
Σ (α, ϕ), 0 ≤ α < 1.

Definition 2.1. Let f ∈ A. Then f ∈ Q∗∗
Σ (α, ϕ), 0 ≤ α < 1 if f ∈ Σ,

Re

(
(z(f ∗ ϕ)′(z))′

(h ∗ ϕ)′(z)

)
> α

and

Re

(
(w((f ∗ ϕ)−1)′(w))′

((h ∗ ϕ)−1)′(w)

)
> α,

where h(z) = z +
∑∞

n=2 bnz
n and ϕ(z) = z +

∑∞
n=2 ϕnz

n are convex.

Theorem 2.1. For 0 ≤ α < 1, let the function f ∈ Q∗∗
Σ (α, ϕ)in U . If ak = bk =

Bk = 0; 2 ≤ k ≤ n− 1 then

|an| ≤
1

n
+

2(1− α)

n2
.

Proof. The Faber polynomial expansions are

(z(f ∗ ϕ)′(z))′

(h ∗ ϕ)′(z)
= 1 +

∞∑
n=2

[(n2anϕn − nbnϕn)

+
n−2∑
r=1

k−1
r (2b2ϕ2, 3b3ϕ3, . . . , (r + 1)br+1ϕr+1)(3)

× ((n− r)2an−rϕn−r − (n− r)bn−rϕn−r)]z
n−1,
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(w((f ∗ ϕ)−1)′(w))′

((h ∗ ϕ)−1)′(w)
= 1 +

∞∑
n=2

[(n2AnΦn − nBnΦn)

+
n−2∑
r=1

K−1
r (2B2Φ2, ...(r + 1)Br+1Φn−r)(4)

× ((n− r)2An−rΦn−r − (n− r)Bn−rΦn−r)]w
n−1.

On the other hand, since

Re

(
(z(f ∗ ϕ)′(z))′

(h ∗ ϕ)′(z)

)
> α

in U , there exists p(z) = 1 +
∑∞

n=1 cn zn ∈ A so that

(z(f ∗ ϕ)′(z))′

(h ∗ ϕ)′(z)
= α+ (1− α)p(z) = 1 + (1− α)

∞∑
n=1

cnz
n.(5)

Also as

Re

(
(w((f ∗ ϕ)−1)′(w))′

((h ∗ ϕ)−1)′(w)

)
> α

in U , there exists q(w) = 1 +
∑∞

n=1 dnw
n ∈ A such that

(w((f ∗ ϕ)−1)′(w))′

((h ∗ ϕ)−1)′(w)
= α+ (1− α)q(w) = 1 + (1− α)

∞∑
n=1

dnw
n.(6)

By the Caratheodory lemma, |cn| ≤ 2 and |dn| ≤ 2. Comparing the coefficients
from (3) and (5), we obtain for n ≥ 2,

∞∑
n=2

[(n2anϕn − nbnϕn) +

n−2∑
r=1

K−1
r (2b2ϕ2, 3b3ϕ3, . . . , (r + 1)br+1ϕr+1)

× ((n− r)2an−rϕn−r − (n− r)bn−rϕn−r)] = (1− α)cn−1.(7)

Similarly, from (4) and (6), we obtain:

∞∑
n=2

[(n2AnΦn − nBnΦn) +

n−2∑
r=1

K−1
r (2B2Φ2, ...(r + 1)Br+1Φn−r)

× ((n− r)2An−rΦn−r − (n− r)Bn−rΦn−r)] = (1− α)dn−1.(8)

But under the assumption ak = bk = Bk = 0, 2 ≤ k ≤ n− 1 and ϕk = 0, 2 ≤
k ≤ n− 1, equation (7) and (8), respectively yield:

n2anϕn − nbnϕn = (1− α)cn−1.(9)

and

−n2AnΦn − nBnΦn = (1− α)dn−1.(10)
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By the definition of Kp
n, An = −an, Thus

−n2anΦn − nBnΦn = (1− α)dn−1.(11)

Solving either of equations (9) or (10), we obtain

|an| ≤
1

n
+

2(1− α)

n2

upon noticing that |bn| ≤ 1 and |Bn| ≤ 1.

Remark 2.1. For n = 2 equations (9) and (11) yield

4a2ϕ2 − 2b2ϕ2 = (1− α)c1,

− 4a2Φ2 − 2B2Φ2 = (1− α)d1.

Solving these two equations, we have |a2| ≤ 2−α
2 .

Remark 2.2. When ϕ(z) = 1
1−z , this class Q

∗∗
Σ (α, ϕ) will reduce to the class of

all bi-quasi-convex functions of order α [16] .

Remark 2.3. When ϕ(z) = 1
1−z , as every convex function is starlike, immediate

replacements of (f ∗ϕ)′ and (h∗ϕ)′ by (f ∗ϕ) and (h∗ϕ) respectively in a result
of Libera [9], the class Q∗∗

Σ (α, ϕ) will reduce to the class of bi-close-to-convex
functions of order α studied by Hamidi and Jahangiri[15].

Remark 2.4. Replacing ϕ(z) by 1
1−z and f by h, the class Q∗∗

Σ (α, ϕ) reduces to
the class of bi-convex functions of order α discussed by Brannan and Taha [5].
When n=2 and α = 0, |a2| ≤ 1, which is an improvement of the corresponding
estimate of Brannan and Taha [5].

Remark 2.5. Replacing h by f in Remark 2.3, we notice that the classQ∗∗
Σ (α, ϕ)

reduces to the class of bi-starlike functions α discussed by Brannan and Taha [5].
When n=2 and α = 0, |a2| ≤ 1, which is an improvement of the corresponding
estimate of Brannan and Taha [5].
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