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Abstract. A high-order explicit difference scheme for solving four-dimensional para-
bolic equations is given. The scheme is constructed by the method of undetermined co-
efficients, and appropriate parameter is chosen to endow the truncation error of schemes
is O

(
∆t4 +∆x4

)
. And the new difference scheme is proved to be stable if r ≤ 1

12 with
the Fourier analysis method. Finally, the numerical experiment shows the numerical
solutions of difference scheme and the exact solutions are matched and the difference
scheme is effective.

Keywords: four-dimensional parabolic equations, explicit difference scheme, trunca-
tion error.

1. Introduction

Many mathematical models of modern science, technology and engineering can
be described by partial differential equation and lots of basic equations them-
selves in natural science are partial differential equations. People have been
always using differential equation to describe, explain and predict all kinds of
natural phenomena, which turns out to be successful. However, many partial
differential equations dont have analytical solutions that people can only figure
out its numerical solution through all kinds of methods. Up till now, differen-
tial equations main numerical computation methods are finite difference method
and finite element method, meanwhile, there are boundary element, mixed finite
element, spectral method and finite volume method etc, among which, finite dif-
ference method is still the more effective method to solve the numerical solution
of partial differential equation.

The difference method of parabolic equation is a classical problem in numer-
ical solution of partial differential equation. Equations described the motion
law of underground flow are mostly parabolic equations, in particular, the mo-
tion of underground petroleum and natural gas are the typical examples of using
parabolic equation to describe. We can also encounter the following multidimen-
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sional parabolic equations in the fields of seepage, diffusion, heat conduction and
so on

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+
∂2u

∂w2
, 0 < x, y, z, w < 1, t > 0,(1)

u(x, y, z, w, 0) = φ(x, y, z, w), 0 ≤ x, y, z, w ≤ 1,(2)

u(0, y, z, w, t) = f1(y, z, w, t), u(1, y, z, w, t)

= f2(y, z, w, t), 0 ≤ y, z, w ≤ 1, 0 ≤ t ≤ T,(3)

u(x, 0, z, w, t) = g1(x, z, w, t), u(x, 1, z, w, t)

= g2(x, z, w, t), 0 ≤ x, z, w ≤ 1, 0 ≤ t ≤ T,(4)

u(x, y, 0, w, t) = h1(x, y, w, t), u(x, y, 1, w, t)

= h2(x, y, w, t), 0 ≤ x, y, w ≤ 1, 0 ≤ t ≤ T,(5)

u(x, y, z, 0, t) = k1(x, y, z, t), u(x, y, z, 1, t)

= k2(x, y, z, t), 0 ≤ x, y, z ≤ 1, 0 ≤ t ≤ T.(6)

Where φ, f1, f2, g1, g2, h1, h2, k1 and k2 are sufficiently smooth functions.
Various numerical finite difference schemes have been proposed to solve

parabolic problems approximately. For multidimensional problems, the explicit
difference scheme and implicit difference scheme are the common finite difference
schemes. The implicit difference scheme has the advantage of good stability, but
it is needed to solve different linear equations on each time layer which will cost
to big computation. The alternating-direction implicit (ADI) difference scheme
can overcome these disadvantages.

As we known, the ADI scheme is unconditional stable and only need to solve
a sequence of tridiagonal linear systems [1–2]. In recent years, there are many
new methods which use ADI scheme to solve the multidimensional parabolic
equations [3–9], some of them have the accuracy of O

(
∆t2 +∆x4

)
[3,6,7,8,9].

The explicit difference scheme has worse stability than the implicit differ-
ence scheme, but it has the advantage of smaller amount of calculation. The
general explicit scheme is the classical explicit scheme with the stability condi-
tion of r ≤ 1

8 , where r = ∆t
∆x2

is the mesh spacing ratio. Its deficiency is that
the accuracy is not high, and its truncation error is O

(
∆t+∆x2

)
. Recently,

there has been a interest in the development and application of explicit differ-
ence schemes for the numerical solution of multidimensional parabolic equations
[10−12], but the schemes only have the truncation error of O

(
∆t2 +∆x4

)
. For

four-dimensional situation, in reference [12], Ma constructed an explicit scheme
with the truncation error of O(∆t2 +∆x4) and the stability condition is r < 3

8 ,
the scheme’s accuracy is not high enough. This paper presents an explicit scheme
for solving Eq.(1), the stability condition is r ≤ 1

12 , and the truncation error is
O(∆t4 +∆x4), the scheme has higher accuracy than the above schemes.

The remainder of this paper is organized as follows. In Section 2, we con-
struct a three-layer explicit difference scheme with the accuracy ofO(∆t4 +∆x4);
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In Section 3, by using the Fourier analysis method, it is proved that the difference
scheme is stable when r ≤ 1

12 . In Section 4, though choosing the proper parame-
ter θ, we obtain a three-level explicit scheme with branching stability. In Section
5, we compare the difference of exact solution and the scheme constructed in
this paper with that in the reference [12], and compare the computational ef-
ficiency of the two difference schemes with the classical explicit scheme. The
results shows that the difference scheme in this paper is effective.

2. Construction of the difference scheme

Let ∆t denote the step length of time and ∆x = ∆y = ∆z = ∆w be the step
length of space in the direction of x, y, z, w respectively. We approximate the
Eq.(1) using the following difference equation with parameters

∆tu
n
ijkl + θ1∆tu

n−1
ijkl + θ2∆t

(
1

3
♢
)
un−1
ijkl + θ3∆t

(
1

12
�
)
un−1
ijkl

=
1

∆x2

[(
θ4
12

�+
θ5
3
♢
)
unijkl +

(
θ6
12

�+
θ7
3
♢
)
un−1
ijkl

]
,

(7)

where unijkl denotes the value of u at node (i∆x, j∆y, k∆z, l∆w, n∆t), ∆tu
n
ijkl =

un+1
ijkl −u

n
ijkl

∆t , and

�unijkl = (x�+ y�+ z�+ w�)unijkl,

♢unijkl = (x♢+ y♢+ z♢+ w♢)unijkl,

x�unjkl = uni,j+1,k+1,l+1 + uni,j−1,k+1,l+1

+ uni,j+1,k−1,l+1 + uni,j−1,k−1,l+1 + uni,j+1,k+1,l−1

+ uni,j−1,k+1,l−1 + uni,j+1,k−1,l−1 + uni,j−1,k−1,l−1 − 8unijkl

x♢unijkl = uni,j+1,k,l + uni,j−1,k,l + uni,j,k+1,l

+ uni,j,k−1,l + uni,j,k,l+1 + uni,j,k,l−1 − 6unijkl,

the rest can be inferred by analogy. θ1− θ7 are parameters to be determined. A
proper choice of undetermined parameters θ1 − θ7 can make difference equation
(7) approach Eq.(1), and not only has truncation error with order as high as
possible, but also has higher stability.

When the solution of Eq.(1) is smooth enough, we can get the following
relation:

(8)
∂n

∂tn

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂w2

)m
u =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

∂w2

)m+2n

u.
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Using Taylor’s expansion of u at node (i∆x, j∆y, k∆z, l∆w, n∆t), we have

∆tu
n
ijkl =

∂u

∂x
+

∆t

2

∂2u

∂x2
+

∆t2

6

∂3u

∂x3
+O

(
∆t3

)
∆tu

n−1
ijkl =

∂u

∂x
− ∆t

2

∂2u

∂x2
+

∆t2

6

∂3u

∂x3
+O

(
∆t3

)
♢unijkl = 3∆x2

∂u

∂t
+

∆x4

4

∂2u

∂t2
− ∆x4

2

(
∂4u

∂x2∂y2
+

∂4u

∂x2∂z2

+
∂4u

∂x2∂w2
+

∂4u

∂y2∂z2
+

∂4u

∂y2∂w2
+

∂4u

∂z2∂w2

)
+O

(
∆x6

)
�unijkl = 12∆x2

∂u

∂t
+∆x4

∂2u

∂t2
+ 2∆x4

(
∂4u

∂x2∂y2
+

∂4u

∂x2∂z2

+
∂4u

∂x2∂w2
+

∂4u

∂y2∂z2
+

∂4u

∂y2∂w2
+

∂4u

∂z2∂w2

)
+O

(
∆x6

)
.

Substituting the above Taylor expansions into (7) and using relation (8), we can
obtain

(1 + θ1)
∂u

∂t
+

∆t

2
(1− θ1)

∂2u

∂t2
+

∆t2

6
(1 + θ1)

∂3u

∂t3
+

∆t3

24
(1− θ1)

∂4u

∂t4

+∆x2 (θ2 + θ3)
∂2u

∂t2
− ∆t∆x2

2
(θ2 + θ3)

∂3u

∂t3
+

∆t2∆x2

6
(θ2 + θ3)

∂4u

∂t4

= (θ4 + θ5 + θ6 + θ7)
∂u

∂t
+

∆x2

12
(θ4 + θ5 + θ6 + θ7)

∂2u

∂t2
−∆t (θ6 + θ7)

∂2u

∂t2

+
∆x2

6
[(θ4 + θ6)− (θ5 + θ7)]

(
∂4u

∂x2∂y2
+

∂4u

∂x2∂z2
+

∂4u

∂x2∂w2

+
∂4u

∂y2∂z2
+

∂4u

∂y2∂w2
+

∂4u

∂z2∂w2

)
+

∆t2

2
(θ6 + θ7)

∂3u

∂t3
− ∆t∆x2

12
(θ6 + θ7)

∂3u

∂t3
+

∆t2∆x2

24
(θ6 + θ7)

∂4u

∂t4

− ∆t∆x2

6
(θ6 − θ7)

(
∂5u

∂x2∂y2∂t
+

∂5u

∂x2∂z2∂t
+

∂5u

∂x2∂w2∂t

+
∂5u

∂y2∂z2∂t
+

∂5u

∂y2∂w2∂t
+

∂5u

∂z2∂w2∂t

)
+

∆t2∆x2

12
(θ6 − θ7)

(
∂6u

∂x2∂y2∂t2
+

∂6u

∂x2∂z2∂t2
+

∂6u

∂x2∂w2∂t2

+
∂6u

∂y2∂z2∂t2
+

∂6u

∂y2∂w2∂t2
+

∂6u

∂z2∂w2∂t2

)
− ∆t3

6
(θ6 + θ7)

∂4u

∂t4
+O

(
∆t4 +∆x4

)
.
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In order to make the truncation error of scheme (7) getting to O
(
∆t4 +∆x4

)
,

the following equation system should be available.

1 + θ1 = θ4 + θ5 + θ6 + θ7
r

2
(1− θ1) + θ2 + θ3 =

1

12
(θ4 + θ5 + θ6 + θ7)− r (θ6 + θ7)

θ4 + θ6 − θ5 − θ7 = 0

r2

6
(1 + θ1)−

r

2
(θ2 + θ3) =

r2

2
(θ6 + θ7)−

r

12
(θ6 + θ7)

r3

24
(1− θ1) +

r2

6
(θ2 + θ3) =

r2

24
(θ6 + θ7)−

r3

6
(θ6 + θ7)

θ6 − θ7 = 0.

(9)

Where r = ∆t
∆x2

. Let θ3 = θ, the solution of the above equation system is:

θ1=24r − 1; θ2=− 24r3 + 6r2 + r − θ; θ4=θ5 = 9r − 12r2; θ6=θ7 = 12r2 + 3r.

Substituting the above values into (7), we obtain the following single param-
eter three-level explicit difference scheme with its truncation error getting to
O
(
∆t4 +∆x4

)
.

12un+1
ijkl = [24(1− 2r) + (9r2 − 12r3 − θ)�+ (48r3 + 12r2 − 4r + 4θ)♢]unijkl

+ [12(24r − 1) + (12r3 + 3r2 + θ)�+ (−48r3 + 36r2 + 4r − 4θ)♢]un−1
ijkl .(10)

3. Analysis of stability

According to Fourier method for analyzing stability. The two-level equation
system equivalent to (10) is

un+1
ijkl =

24(1−2r)+(9r2−12r3−θ)�+(48r3+12r2−4r+4θ)♢
12

unijkl

+
12(24r−1)+(12r3+3r2+θ)�+(−48r3+36r2+4r−4θ)♢

12
vnijkl

vn+1
ijkl = unijkl.

(11)

Let

(12) unijkl = UneI(iθ+jφ+kψ+lζ), vnijkl = V neI(iθ+jφ+kψ+lζ),

where I =
√
−1. And through simple calculation, we have

(13) �unijkl = −4s2u
n
ijkl,♢unijkl = −12s1u

n
ijkl,
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where

s1 = sin2
θ

2
+ sin2

φ

2
+ sin2

ψ

2
+ sin2

ζ

2
∈ [0, 4]

s2 = sin2
θ + φ+ ψ

2
+ sin2

θ − φ+ ψ

2
+ sin2

θ + φ− ψ

2

+ sin2
θ − φ− ψ

2
+ sin2

θ + φ+ ζ

2
+ sin2

θ + φ− ζ

2
+ sin2

θ − φ+ ζ

2

+ sin2
θ−φ−ζ

2
+sin2

θ+ψ+ζ

2
+sin2

θ+ψ−ζ
2

+sin2
θ−ψ+ζ

2
+sin2

θ−ψ−ζ
2

+ sin2
φ+ ψ + ζ

2
+ sin2

φ+ ψ − ζ

2
+ sin2

φ− ψ + ζ

2
+ sin2

φ− ψ − ζ

2
∈ [0, 16] .

Substituting (12) into (11) and using (13) we obtain[
Uk+1

V k+1

]
=

[
g11 g12
g21 g22

] [
Uk

V k

]
= G (s1,s2)

[
Uk

V k

]
where

g11 = 2 (1− 12r)−
(
3r2 − 4r3 − θ

3

)
s2 − 4

(
12r3 + 3r2 − r + θ

)
s1,

g12 = 24r − 1−
(
4r3 + r2 +

θ

3

)
s2 − 4

(
−12r3 + 9r2 + r − θ

)
s1, g21 = 1, g22 = 0.

The characteristic equation of propagation matrix G (s1,s2) is

(14) λ2 − g11λ− g12 = 0.

Lemma 1 ([13]). The two roots of real coefficient quadratic Eq.(14) are less
than or equal to 1 in norm if and only if

(15) |g11| ≤ 1− g12 ≤ 2.

Lemma 2 ([13]). The difference scheme (10) is stable, i.e., the family of ma-
trices Gn (s1,s2) ((s1, s2) ∈ [0, 4]× [0, 16] , n = 1, 2, · · ·) is uniformly bounded if
and only if

(1) |λ1,2| ≤ 1 (λ1,2 are roots of (14));

(2) (s1, s2) which assures 1− g211/4 = g211 + 4g12 = 0 is not existent or not in
the region of [0, 4]× [0, 16].

Theorem 1. A sufficient condition for scheme (10) being stable is

(16) r ≤ 1

12
,max

{
−12r3 + 3r2,−12r3 + 15r2 − 3

4
r

}
≤ θ ≤ −12r3 + 3r2 + r.
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Proof. If g12 ̸= −1, 1− g211/4 = g211 + 4g12 = 0 do not hold for any (s1, s2). By
Lemma 1 and Lemma 2, the stability conditions of scheme (10) become

−1 + g12 ≤ g11 ≤ 1− g12 < 2.

From g11 ≤ 1− g12, we have

(17) −4r2s2 − 48r2s1 ≤ 0.

it is hold unconditionally.
Because 1− g12 < 2, we have

(18) 24r −
(
4r3 + r2 +

θ

3

)
s2 − 4

(
−12r3 + 9r2 + r − θ

)
s1 > 0.

A sufficient condition which assures the above inequality hold is

4r3 + r2 +
θ

3
≥ 0,(19)

− 12r3 + 9r2 + r − θ ≥ 0,(20)

24r − 16

(
4r3 + r2 +

θ

3

)
− 16

(
−12r3 + 9r2 + r − θ

)
> 0,(21)

it is equivalent to

− 12r3 − 3r2 ≤ θ ≤ −12r3 + 9r2 + r,(22)

θ > −12r3 + 15r2 − 3

4
r.(23)

Using −1 + g12 ≤ g11, we obtain

(24) 3 (16r − 1)−
(
8r3 − 2r2 +

2

3
θ

)
s2 − 4

(
−24r3 + 6r2 + 2r − 2θ

)
s1 ≤ 1.

A sufficient condition which assures the above inequality hold is

8r3 − 2r2 +
2

3
θ ≥ 0,(25)

− 24r3 + 6r2 + 2r − 2θ ≥ 0,(26)

3 (16r − 1) ≤ 1,(27)

it is equivalent to

− 12r3 + 3r2 ≤ θ ≤ −12r3 + 3r2 + r,(28)

r ≤ 1

12
.(29)

By combining the inequalities (22),(23),(28) and (29), we complete the proof.



A HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME... 679

4. Choice of parameter and determination of difference scheme

We should choose parameters θ such that (16) is satisfied. Provide methods as
follows:

If −12r3+3r2 ≥ −12r3+15r2− 3
4r, we have r ≤

1
16 , now −12r3+3r2 ≤ θ ≤

−12r3 + 3r2 + r. In particular, take θ = −12r3 + 3r2, we obtain a three-level
explicit scheme as follow:

6un+1
ijkl =

[
12 (1− 2r) + 3r2�+

(
12r2 − 2r

)
♢
]
unijkl

+
[
6 (24r − 1) + 3r2�+

(
12r2 + 2r

)
♢
]
un−1
ijkl .(30)

The above scheme is stable if r ≤ 1
16 , and the truncation error isO(∆t4+∆x4).

If −12r3+3r2 ≤ −12r3+15r2− 3
4r, we have r ≥

1
16 . Consider the inequality

(29), we obtain 1
16 ≤ r ≤ 1

12 . And when 1
16 ≤ r ≤ 1

12 , the inequality −12r3 +
15r2− 3

4r ≤ −12r3+3r2+r holds. Now −12r3+15r2− 3
4r ≤ θ ≤ −12r3+3r2+r.

In particular, take θ = −12r3+15r2− 3
4r, we obtain a three-level explicit scheme

as follow:

(31)

12un+1
ijkl =

[
24 (1− 2r) +

(
−6r2 +

3

4
r

)
�+

(
72r2 − 7r

)
♢
]
unijkl

+

[
12 (24r − 1) +

(
18r2 − 3

4
r

)
�+

(
−24r2 + 7r

)
♢
]
un−1
ijkl .

The above scheme is stable if 1
16 ≤ r ≤ 1

12 , and the truncation isO(∆t4+∆x4).
If we use schemes (30) and (31) simultaneously, a three-level explicit scheme is
constructed which is stable for arbitrary 0 < r ≤ 1

12 and its truncation error is
O
(
∆t4 +∆x4

)
. Since the above two schemes are the same when r = 1

16 , we call
them an explicit difference scheme with branching stability.

5. Numerical experiment

Consider initial and boundary value problem as follows:

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+
∂2u

∂w2
, (0 < x, y, z, w < 1, t > 0)

u (x, y, z, w, 0) = sin (x+ y + z + w) , (0 ≤ x, y, z, w ≤ 1)

u(0, y, z, w, t) = e−4t sin (y + z + w) , u(1, y, z, w, t)

= e−4t sin (1 + y + z + w) , (0 ≤ y, z, w ≤ 1, t ≥ 0)

u(x, 0, z, w, t) = e−4t sin (x+ z + w) , u(x, 1, z, w, t)

= e−4t sin (x+ 1 + z + w) , (0 ≤ x, z, w ≤ 1, t ≥ 0)

u(x, y, 0, w, t) = e−4t sin (x+ y + w) , u(x, y, 1, w, t)

= e−4t sin (x+ y + 1 + w) , (0 ≤ x, y, w ≤ 1, t ≥ 0)

u(x, y, z, 0, t) = e−4t sin (x+ y + z) , u(x, y, z, 1, t)

= e−4t sin (x+ y + z + 1) , (0 ≤ x, y, z ≤ 1, t ≥ 0) .

(32)
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Taking ∆x = ∆y = ∆z = ∆w = 0.1,∆t = r∆x2 = r/100, r = 1/18, 1/16, 1/15,
1/12. For convenience, we use the exact solution of (32) u(x, y, z, w, t) =
e−4t sin (x+ y + z + w) to calculate the value of the first level u1ijkl.

Table 1 shows the comparison of the exact solutions and the scheme con-
structed in this paper and that in the reference [12] at the time strata n=100.
From Table 1, one can easily see that numerical results of schemes (30) and (31)
are completely identical with theoretical analysis, it has higher accuracy than
the scheme in reference [12]. Table 2 shows the comparison of the efficiency of
the scheme constructed in this paper and the classical scheme one and that in
the reference [12]. The result is tested by the unit of second. From table 2, we
can see that the computational efficiency of three schemes are similar. Among
these three schemes, the classical explicit scheme has the highest computational
efficiency, the second one is the scheme in this paper, and the lowest is the one
constructed in the reference [12]. From the result of these two tables, we can
see that the scheme constructed in this paper is a high accuracy and efficiency
difference scheme.

Table 1 Comparison of calculating results among difference schemes with exact solution

r result
(x, y, z, w)

(0.1, 0.1, 0.1, 0.1) (0.3, 0.3, 0.3, 0.3) (0.5, 0.5, 0.5, 0.5) (0.7, 0.7, 0.7, 0.7)

1
18

exact solution 0.311 821 832 0.746 318 557 0.728 108 460 0.268 237 541
scheme (30) 0.311 821 790 0.746 318 060 0.728 107 769 0.268 237 293
reference [12] 0.311 821 775 0.746 317 889 0.728 107 532 0.268 237 208

1
16

exact solution 0.303 279 309 0.725 872 770 0.708 161 548 0.260 889 033
scheme (30) 0.303 279 269 0.725 872 281 0.708 160 857 0.260 888 784
reference [12] 0.303 279 256 0.725 872 117 0.708 160 626 0.260 888 701

1
15

exact solution 0.298 266 543 0.713 875 148 0.696 456 667 0.256 576 917
scheme (31) 0.298 266 507 0.713 874 702 0.696 456 031 0.256 576 687
reference [12] 0.298 266 491 0.713 874 508 0.696 455 756 0.256 576 588

1
12

exact solution 0.279 030 435 0.667 835 187 0.651 540 076 0.240 029 498
scheme (31) 0.279 030 413 0.667 834 911 0.651 539 673 0.240 029 351
reference [12] 0.279 030 390 0.667 834 619 0.651 539 249 0.240 029 197

Table 2 Comparison of the calculation efficiency among three kinds of difference schemes (unit:s)

difference scheme r = 1
16

,n=20 r = 1
12

,n=20 r = 1
16

,n=50 r = 1
12

,n=50

classical explicit scheme 74.382 486 75.544 137 184.658 025 181.476 046
schemes (30) and (31) 76.473 674 76.003 696 184.740 697 182.145 808
reference [12] scheme 77.470 928 76.269 907 185.713 634 183.290 512

6. Conclusions

In this paper, we proposed a high-order accuracy explicit difference scheme with
branching stability for solving four-dimensional parabolic problems. The stable
character of the scheme is which has been verified by a discrete Fourier analysis.
The scheme which proposed in this paper is fourth-order accurate in space and
fourth-order accurate in time and allows a considerable saving in computing
time. Numerical examples are given to test its high accuracy and to show its
superiority over some other schemes in terms of accuracy and computational
costs.
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