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Abstract. Rough sets and soft sets are important tools to deal with uncertainties.
In this paper, we apply rough soft set theory to BCK-algebras. The lower and upper
rough soft BCK-algebras (ideals) are discussed. Finally, we establish a kind of decision
making method for rough soft BCK-algebras.
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1. Introduction

In 1982, Pawlak [23] introduced the concept of rough sets as an important tool
to discuss imprecision, vagueness and uncertainties. Since then, this subject
has been investigated in many studies, for examples, see [2, 24, 28, 29, 27].
It soon invoked a natural question concerning a possible connection between
rough sets and algebraic systems. Biswas [4] introduced the concepts of rough
groups and rough subgroups. Kuroki [17] studied the properties of rough ideals
in semigroups. In particular, Davvaz [8] dealt with a relationship between rough
sets and rings with respect to an ideal of rings.

In 1999, Molodtsov [22] put forward the concept of soft sets as a new math-
ematical tool for dealing with uncertainties. At present, research on the soft
set theory is progressing rapidly. Maji[19] defined some basic operations on soft
sets. In 2009, Ali [3] gave some new operations on soft sets. In particular,
Çaǧman and Maji [5, 6, 20] applied soft set theory to decision making. At the
same time, some soft algebras were also discussed, such as [1, 14, 16, 18, 25, 26].
Chen [7] presented a new concept of soft set parameterization reduction, and
compared this concept with the related concept of attributes reduction in rough
set theory. In particular, Feng [10, 11] proposed rough soft sets by combing
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Pawlak rough sets and soft sets, rough sets can be regarded as a collection of
rough sets sharing a common Pawlak approximation space.

As is well known, BCK and BCI-algebras [12] are two classes of algebras
of logic. They have been extensively investigated by many researchers, for ex-
amples, see [15, 26]. Dudek and Jun applied rough set theory to BCK and
BCI-algebras [9, 13], respectively. In 2008, Jun [14, 16] applied soft set theory
to BCI-algebras.

In the present paper, we apply rough soft set theory to BCK-algebras.
Some new basic theory on rough soft BCK-algebras are obtained. Finally, we
put forward a kind of decision making for rough soft BCK-algebras.

2. Preliminaries

Recall that a BCK-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying the
following:

(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (x ∗ y) = 0,

(2) (x ∗ (x ∗ y)) ∗ y = 0,

(3) x ∗ x = 0,

(4) 0 ∗ x = 0,

(5) x ∗ y = 0 and y ∗ x = 0 imply x = y.

For any BCK-algebra X, the relation ≤ defined by x ≤ y if and only if
x ∗ y = 0 is a partial order on X.

A non-empty subset S of a BCK-algebra X is called a subalgebra of X if
x ∗ y ∈ S whenever x, y ∈ S. A non-empty subset I of X is called an ideal of X,
denoted by I ▹ X, if it satisfies: (1) 0 ∈ I; (2) x ∗ y ∈ I and y ∈ I imply x ∈ I
for all x, y ∈ X. Note that every ideal of a BCK-algebra X is a subalgebra of
X.

Throughout this paper, X is always a BCK-algebra.

Definition 2.1 ([22]). A pair S = (F,A) is called a soft set over U , where
A ⊆ E and F : A → P(U) is a set-valued mapping.

Definition 2.2 ([14]). Let (F,A) be a soft set over X. Then

(1) (F,A) is called a soft BCK-algebra over X if F (x) is a subalgebra of X
for all x ∈ Supp(F,A).

(2) (F,A) is called an idealistic soft BCK-algebra if F (x) is an ideal of X
for all x ∈ Supp(F,A), where Supp(F,A) = {x ∈ A|F (x) ̸= ∅} is called a soft
support of the soft set (F,A).

Definition 2.3 ([3]). Let (F,A) and (G,B) be two soft sets over a common
universe U .

(1) The restricted intersection of (F,A) and (G,B), denoted by (F,A) e
(G,B), is defined as the soft set (H,C), where C = A∩B, andH(c) = F (c)∩G(c)
for all c ∈ C,
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(2) The extended intersection of (F,A) and (G,B), denoted by (F,A) ⊓E

(G,B), is defined as the soft set (H,C), where C = A ∪B, and ∀e ∈ C,

H(e) =


F (e), if e ∈ A−B,

G(e), if e ∈ B −A,

F (e) ∩G(e), if e ∈ A ∩B.

(3) The restricted union of (F,A) and (G,B), denoted by (F,A)∪R (G,B),
is defined as the soft set (H,C), where C = A ∩B, and H(c) = F (c) ∪G(c) for
all c ∈ C,

(4) The extended union of (F,A) and (G,B), denoted by (F,A)∪̃(G,B), is
defined as the soft set (H,C), where C = A ∪B, and ∀e ∈ C,

H(e) =


F (e), if e ∈ A−B,

G(e), if e ∈ B −A,

F (e) ∪G(e), if e ∈ A ∩B.

Definition 2.4 ([23]). Let ρ be an equivalence relation on the universe X,
(X, ρ) be a Pawlak approximation space. A subset A ⊆ X is called definable if
ρ(A) = ρ(A), otherwise, X is a rough set, where

ρ(A) = {x ∈ X : [x]ρ ⊆ A},

and
ρ(A) = {x ∈ X : [x]ρ ∩A ̸= ∅}.

3. Lower and upper soft approximations

Let I ▹ X. Define a relation ≡I on X as follows:
x ≡I y ⇐⇒ x ∗ y ∈ I and y ∗ x ∈ I.
Then ≡I is an equivalence on x with respect to (briefly, w.r.t.) I. Moreover,

≡I satisfies x ≡I y and u ≡I v =⇒ x ∗ u ≡I y ∗ v. Hence ≡I is a congruence on
X.

Let [x]I denote the equivalence class of X w.r.t. I and X/I denote the set
of all equivalence classes, that is, X/I = {[x]I |x ∈ X}. Define an operation ∗ on
X/I by [x]I ∗ [y]I = [x ∗ y]I , then it is clear that (X/I, ∗, I) is a BCK-algebra.

Definition 3.1. Let I ▹ X and S = (F,A) a soft set over X. The lower and
upper soft approximation of S = (F,A) w.r.t. I are denoted by:

Apr
I
(S) = (F I , A) and AprI(S) = (F I , A), which are soft sets over X with

F I(x) = Apr
I
(F (x)) = {y ∈ X|[y]I ⊆ F (x)} and F I(x) = AprI(F (x)) = {y ∈

S|[y]I ∩ F (x) ̸= ∅}, for all x ∈ A.
(i) Apr

I
(S) = AprI(S), S is called definable;

(ii) Apr
I
(S) ̸= AprI(S), Apr

I
(S) (AprI(S)) is called a lower (upper) rough

soft set. Moreover, S is called a rough soft set.
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Therefore, when U = X and ρ is the induced relation by an ideal I, then we
use the pair (X, I) instead of the approximation space (U, ρ).

Similar to Theorem 4 in [10], we have

Theorem 3.2. Let I ▹X, (X, I) a Pawlak approximation space and S = (F,A)
and T = (G,B) two soft sets over X. Then

(1) Apr
I
(S e T) = Apr

I
(S) eApr

I
(T);

(2) Apr
I
(S ⊓E T) = Apr

I
(S) ⊓E Apr

I
(T);

(3) AprI(S e T) ⊆ AprI(S) eAprI(T);
(4) AprI(S ⊓E T) ⊆ AprI(S) ⊓E AprI(T);
(5) Apr

I
(S ∪R T) ⊇ Apr

I
(S) ∪R Apr

I
(T);

(6) Apr
I
(S∪̃T) ⊇ Apr

I
(S)∪̃Apr

I
(T);

(7) AprI(S ∪R T) = AprI(S) ∪R AprI(T);
(8) AprI(S∪̃T) = AprI(S)∪̃AprI(T);
(9) S ⊆ T ⇒ Apr

I
(S) ⊆ Apr

I
(T), AprI(S) ⊆ AprI(T).

Theorem 3.3. Let (X, I) be an approximation space and S = (F,A) a soft set
over X, If I = {0}, then S is definable.

Proof. For all x ∈ A, we have [x]I = {y ∈ X|x ∗ y, y ∗ x = 0} = {x}. Hence
F I(x) = {y ∈ X|[y[I⊆ F (x)} = {y ∈ X|{y} ⊆ F (x)} = F (x) and F I(x) = {y ∈
X|[y]I ∩ F (x) ̸= ∅} = {y ∈ X|{y} ∩ F (x) ̸= ∅} = F (x). Thus, for all x ∈ A,
F I(x) = F I(x). Thus means that Apr

I
(S) = AprI(S), which implies, S is

definable.

Let A,B ⊆ X, we denote A ∗B = {x ∗ y|∀x ∈ A, y ∈ B}.

Definition 3.4. LetS = (F,A) and T = (G,B) be two soft sets overX, then we
denoteS∗T byS∗T = (F,A)∗(G,B) = (H,A∗B), whereH(x, y) = F (x)∗G(y)
for all x ∈ A, y ∈ B.

Example 3.5. Let X = {0, 1, 2, 3, 4} be a BCK-algebra with the following
Cayley table:

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

Let I = {0, 1, 2}▹X, then [0]I = [1]I = [2]I = {0, 1, 2}, [3]I = {3} and [4]I = {4}.
Define two soft sets S = (F,A) and T = (G,B) over X, where A = {0, 1, 3}

and B = {0, 3, 4} by F (0) = {0, 2}, F (1) = {0, 1}, F (3) = {0, 4} and G(0) =
{0, 1, 4}, G(3) = {0, 2}, G(4) = {0, 1}.

Thus, H(0, 0) = {0, 2},H(0, 3) = {0, 2},H(0, 4) = {0, 2},H(1, 0) = {0, 1},
H(1, 3) = {0, 1},H(1, 4) = {0, 1},H(3, 0) = {0, 4},H(3, 3) = {0, 4},H(3, 4) =
{0, 4}.
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Theorem 3.6. Let I ▹ X and (X, I) a Pawlak approximation space. Suppose
that S = (F,A) and T = (G,B) are two soft sets over X. Then

AprI(S) ∗AprI(T) ⊆ AprI(S ∗ T).

Proof. Let z ∈ F I(x) ∗GI(y), then there exist u ∈ F I(x) and v ∈ GI(y) such
that z = u ∗ v, and so [u]I ∩F (x) ̸= ∅ and [v]I ∩G(y) ̸= ∅. Thus, there exist a ∈
F (x) and b ∈ G(y) such that a ∈ [u]I , b ∈ [v]I , and so a∗ b ∈ [u]I ∗ [v]I = [u∗v]I ,
which implies [u ∗ v]I ∩ (F (x) ∗ G(y)) ̸= ∅. This means that z ∈ AprI(S ∗ T).
Therefore, AprI(S) ∗AprI(T) ⊆ AprI(S ∗ T).

The following example shows that the inclusion symbol “⊆” in above theorem
may not be replaced by an equal sign.

Example 3.7. Let X = {0, 1, 2, 3, 4} be a BCK-algebra with the following
Cayley table:

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 3 0 0
4 4 3 4 1 0

Let I = {0, 1, 2} ▹ X, then [0]I = [1]I = [2]I = {0, 1, 2} and [3]I = [4]I = {3, 4}.
Define two soft sets S = (F,A) and T = (G,B) over X, where A = {1}

and B = {3} by F (1) = {4} and G(3) = {0, 4}. By calculation, we have
F I(1) = {3, 4} and GI(3) = {0, 1, 2, 3, 4}. Thus, F I(1) · GI(3) = {0, 1, 3, 4}
and AprI(F (1) ·G(3)) = AprI({0, 4}) = {0, 1, 2, 3, 4}, which implies, AprI(S) ∗
AprI(T) ( AprI(S ∗ T).

4. Rough soft ideals

In this section, we introduce the concepts of rough soft subalgebras (ideals)
of BCK-algebras and obtain some related properties.

Definition 4.1. Let I▹X, (X, I) a Pawlak approximation space andS = (F,A)
a soft set over X. Then Apr

I
(S) (AprI(S)) is called a lower (upper) rough soft

BCK-algebras (resp., ideal) w.r.t. I over X if F I(x) (F I(x)) is a subalgebra
(resp., ideal) of X for all x ∈ Supp(F,A). Moreover, S is called a rough soft
BCK-algebra (resp., rough soft ideal) w.r.t. I over X if F I(x) and F I(x) are
subalgebras (resp., ideals) of X for all x ∈ Supp(F,A).

Example 4.2. Let X = {0, 1, 2, 3} be a BCK-algebra with the Cayley table
as follows:
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∗ 0 1 2 3

0 0 0 0 0
1 1 0 0 1
2 2 2 0 2
3 3 3 3 0

Let I = {0, 1} ▹ X, then [0]I = [1]I = {0, 1}, [2]I = {2} and [3]I = {3}.
Let A = X and F : A → P(X) be a set-valued function define by F (0) =

F (1) = X,F (2) = {0, 1, 3} and F (3) = {0, 1, 2}.
By calculations, F I(0) = F I(1) = X, F I(2) = F I(3) = {0, 1} ▹ X and

F I(0) = F I(1) = X, F I(2) = {0, 1, 3} ▹ X and F I(3) = {0, 1, 2} ▹ X.
This means that, S is a rough soft ideal w.r.t. I over X.

Since any ideal of a BCK-algebra is a subalgebra of X [21], we can obtain
the following:

Proposition 4.3. Any rough soft ideal of X is a rough soft BCK-algebra.

The converse of the above proposition may not be true as shown in the
following example:

Example 4.4. Let X = {0, 1, 2, 3, 4} be a BCK-algebra with the following
Cayley table:

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0

Let I = {0, 2} ▹ X, then [0]I = [2]I = {0, 2}, [1]I = {1}, [3]I = {3} and
[4]I = {4}.

Define a soft set S = (F,A) over X, where A = {2} by F (2) = {0, 3}. By
calculations, F I(2) = ∅ and F I(2) = {0, 2, 3}. Then S is a rough soft BCK-
algebra w.r.t. I over X, but it is not a rough soft ideal w.r.t. I over X since
F I(2) = {0, 2, 3} is not an ideal of X.

Now, we give some operations of rough soft ideals.

Theorem 4.5. Let I ▹ X and (X, I) a Pawlak approximation space. Assume
that Apr

I
(S) = (F I , A) and Apr

I
(T) = (GI , B) are lower rough soft ideals w.r.t.

I over X. If S e T is a non-null soft set, then Apr
I
(S e T) and Apr

I
(S ⊓E T)

are lower rough soft ideals over X.

Proof. By the hypothesis, ∀x ∈ Supp(F,A), y ∈ Supp(G,B), F I(x) and GI(y)
are ideals of X. Since S e T is non-empty, ∀x′ ∈ A ∩ B, F I(x

′) ∩ GI(x
′) is an

ideal of X. By Theorem 3.2, Apr
I
(S e T) is a lower rough soft ideal over X.

Similarly, we can prove Apr
I
(S⊓E T) is also a lower rough soft ideal over X.
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Remark 4.6. In general, AprI(SeT) and AprI(S⊓E T) are not upper rough
soft ideals over X if AprI(S) = (F I , A) and AprI(T) = (GI , A) are both upper
rough soft ideals over X as shown in the following example:

Example 4.7. Let X = {0, 1, 2, 3, 4} be a BCK-algebra with the Cayley table
as follows:

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 4 4 0

Let I = {0, 1, 2} ▹ X, then [0]I = [1]I = [2]I = {0, 1, 2}, [3]I = {3} and
[4]I = {4}. Define two soft sets S = (F,A) and T = (G,B) over X, where
A = {0, 1, 3} and B = {3, 4} by F (0) = {0, 2}, F (1) = {0, 1}, F (3) = {0, 3} and
G(3) = {0, 3, 4}, G(4) = {0, 4}.

By calculations, F I(3) = {0, 1, 2, 3} ▹ X and GI(3) = {0, 1, 2, 3, 4} ▹ X.
Since A∩B = {3} and F (3)∩G(3) = {3}, but AprI(SeT) = AprI({3}) =

{3} 6 X.

Theorem 4.8. Let I ▹ X and S = (F,A) a soft BCK-algebra over X. If
Apr

I
(S) ̸= ∅, then S is a lower rough soft BCK-algebra w.r.t. I over X.

Proof. ∀a, b ∈ F I(x), then [a]I ⊆ F (x) and [b]I ⊆ F (x). Since F (x) is a
subalgebra of X for all x ∈ A, then F (x) ∗ F (x) ⊆ F (x), [a ∗ b]I = [a]I ∗ [b]I ⊆
F (x) ∗F (x) ⊆ F (x), which implies, a ∗ b ∈ F I(x). Thus, S is a lower rough soft
BCK-algebra w.r.t. I over X.

Theorem 4.9. Let I ▹X and S = (F,A) a soft BCK-algebra over X, then S
is an upper rough soft BCK-algebra w.r.t. I over X.

Proof. ∀a, b ∈ F I(x), then [a]I ∩ F (x) ̸= ∅ and [b]I ∩ F (x) ̸= ∅, and so there
exist y, z ∈ F (x) such that y ∈ [a]I and z ∈ [b]I . Since F (x) is a subalgebra of
X, then y ∗ z ∈ F (x). Moreover, y ∗ z ∈ [a]I ∗ [b]I = [a ∗ b]I . This implies that
y ∗ z ∈ F (x) ∩ [a ∗ b]I , that is, F (x) ∩ [a ∗ b]I ̸= ∅. Thus, a ∗ b ∈ F I(x), and so
S is an upper rough soft BCK-algebra w.r.t. I over X.

Corollary 4.10. Let I ▹ X and S = (F,A) a soft BCK-algebra over X. If
Apr

I
(S) ̸= ∅, then S is a rough soft BCK-algebra w.r.t. I over X.

Theorem 4.11. Let I ▹X and S = (F,A) an idealistic soft BCK-algebra over
X. If Apr

I
(S) ̸= ∅, then S is a lower rough soft ideal w.r.t. I over X.

Proof. Since S is an idealistic soft BCK-algebra over X, then for all x ∈ A,
F (x) is an ideal of X. Let y ∈ [0]I , then y = y ∗ 0 ∈ I ⊆ F (x), which implies,
[0]I ⊆ F (x), that is, 0 ∈ F I(x). Now, let a, b ∈ X be such that b ∈ F I(x) and
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a∗ b ∈ F I(x), then [b]I ⊆ F (x) and [a]I ∗ [b]I = [a∗ b]I ⊆ F (x). Suppose y ∈ [a]I
and z ∈ [b]I , then y ∗ z ∈ [a]I ∗ [b]I = [a ∗ b]I ⊆ F (x). Since z ∈ [b]I ⊆ F (x)
and F (x) is an ideal of X, y ∈ F (x), that is, [a]I ⊆ F (x). This means that
a ∈ F I(x), which implies, F I(x) is an ideal of X. Hence S is a lower rough soft
ideal w.r.t. I over X.

In general, we need to add a condition on upper rough soft ideals as shown
in the following:

Theorem 4.12. Let I ▹X and S = (F,A) an idealistic soft BCK-algebra over
X with I ⊆ F (x) for all x ∈ A, then S is an upper rough soft ideal w.r.t. I over
X.

Proof. Clearly, 0 ∈ F I(x). Let y, z ∈ X be such that z ∈ F I(x) and y ∗
z ∈ F I(x), then [z]I ∩ F (x) ̸= ∅ and [y ∗ z]I ∩ F (x) ̸= ∅, and so there exist
a, b ∈ F (x) such that a ∈ [z]I and b ∈ [y ∗ z]I . Thus, z ∗ a ∈ I ⊆ F (x) and
(y∗z)∗b ∈ I ⊆ F (x). Since F (x) is an ideal ofX, then z ∈ F (x) and y∗z ∈ F (x),
and so y ∈ F (x). This means that [y]I ∩ F (x) ̸= ∅, and so, y ∈ F I(x). Hence
F I(x) is an ideal of X. Thus, S is an upper rough soft ideal w.r.t. I over X.

Corollary 4.13. Let I ▹ X and S = (F,A) an idealistic soft BCK-algebra
over X with I ⊆ F (x) for all x ∈ A. If Apr

I
(S) ̸= ∅, then S is a rough soft

ideal w.r.t. I over X.

5. Applications of rough soft BCK-algebras in decision making

In this section, we illustrate a kind of new decision making method for rough
soft sets on BCK-algebras.

Decision making method:
We will put forward the new method to find which is the best parameter

e of a given soft set S = (F,A). In other words, F (e) is the nearest accurate
BCK-algebra on S w.r.t. an ideal of BCK-algebra.

Let X be a BCK-algebra and E a set of related parameters. Let A =
{e1, e2, · · · , em} ⊆ E and S = (F,A) be an original description soft set over X.
Let I ▹ X and (X, I) be a Pawlak approximation space. Then we present the
decision algorithm for rough soft BCK-algebras as follows:

Step 1. Input the original description BCK-algebra X, soft set S and
Pawlak approximation space (X, I), where I ▹ X.

Step 2. Compute the lower and upper rough soft approximation operators
Apr

I
(S) and AprI(S) on S, respectively.

Step 3. Compute the different values of ∥F (ei)∥, where

∥F (ei)∥ =
|F I(ei)| − |F I(ei)|

|F (ei)|
.
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Step 4. Find the minimum value ∥F (ek)∥ of ∥F (ei)∥, where ∥F (ek)∥ =
min
i

∥F (ei)∥.

Step 5. The decision is F (ek).

Example 5.1. Assume that we want to find the nearest accurate BCK-algebra
on a soft set S. Let a BCK-algebra as in Example 4.7, I = {0, 1, 2} ▹ X.
Define a soft set S = (F,A) over X, where A = {e1, e2, e3, e4}. The tabular
representation of the soft set S is given in Table 1.

Table 1 table for soft set S
0 1 2 3 4

e1 0 1 0 1 0
e2 0 0 1 0 1
e3 1 1 0 1 1
e4 1 0 1 0 0

Now, the tabular representations of two soft sets Apr
I
(S) and AprI(S)

over X are given by Tables 2 and 3, respectively.

Table 2 table for soft set Apr
I
(S)

0 1 2 3 4

e1 0 0 0 1 0
e2 0 0 1 0 1
e3 0 0 0 1 1
e4 0 0 0 0 0

Table 3 table for soft set AprI(S)
0 1 2 3 4

e1 1 1 1 1 0
e2 1 1 1 0 1
e3 1 1 1 1 1
e4 1 1 1 0 0

Then, we can calculate ∥F (e1)∥ = 1.5, ∥F (e2)∥ = 1, ∥F (e3)∥ = 0.75, ∥F (e4)∥ =
1.5. This means the minimum value for ∥F (ei)∥ is ∥F (e3)∥ = 0.75. That is
F (e3) is the closest accurate BCK-algebra on S.

6. Conclusion

Recently, some researchers established some decision making methods based on
soft sets [20, 5] and fuzzy soft sets. In the present paper, we first put forward a
kind of new decision making method based on rough soft sets. We apply rough
soft set theory to BCK-algebras and investigate some related results. We hope
it would be served as a foundation of rough soft sets and other decision making
methods in different areas, such as theoretical computation sciences, information
sciences and intelligent systems, and so on.
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