ON THE OVERGROUPS OF SL(1, K) **IN** GL(r, F)

Xin Hou Shangzhi Li

LMIB and School of Mathematics and Systems Science Beihang University Beijing, 100191 China e-mails: houge19870512@126.com lisz@buaa.edu.cn

Abstract. For some pair of division rings K and F with $K \supset F$ and $\dim_F K = r$, we want to determine the overgroups of $K^* = \mathrm{SL}(1, K)$ in $\mathrm{GL}(r, F)$ and obtain the maximal subgroups of $\mathrm{GL}(r, F)$. Let R stand for real number field, C for complex one and Q for the skew-field of quaternions. All the overgroups of $C^* = \mathrm{SL}(1, C)$ in $\mathrm{GL}(2, R)$ and $Q^* = \mathrm{SL}(1, Q)$ in $\mathrm{GL}(2, C)$ are found in this paper.

Keywords: classical group, maximal subgroup, overgroup, quaternion. **2010 Mathematics Subject Classification:** 20G15, 20E28.

1. Introduction

The subgroup structure of classical groups, especially maximal subgroups in classical groups, is one of the most important topics of group theory. By a theorem of Aschbacher(see [2]), the maximal subgroups of a classical group over finite field must be either a member of one of the classes $C_1 \sim C_8$, or an almost simple group. Under the guidance of this theorem, series of works have been done to approach the complete classification of the maximal subgroups(see [3], [8]). The second author of this paper has done much work(see [4], [5], [6], [7]) on the maximality of the subgroups in Aschbacher's classes. However, the results are for the classical groups over arbitrary fields, not necessarily finite, or sometimes over arbitrary division rings.

Let K, F be two division rings, with $K \supset F$, and $\dim_F K = r < \infty$ We can regard K as a left F-space. Write n-dimensional left K-space as V(n, K), it can be regarded as an nr-dimensional left space V = V(nr, F) over F. Thus the $\operatorname{GL}(n, K)$ acting on V(n, K) is a subgroup of $\operatorname{GL}(nr, F)$ acting on V(nr, F). In the article [5], when $n \ge 2$, the overgroups of $\operatorname{SL}(n, K)$ in $\operatorname{GL}(nr, F)$ and the overgroups of $\operatorname{Sp}(n, K, f)$ in $\operatorname{GL}(nr, F)$ were determined. As an application of the main result of the paper to the case F is a finite field and r is prime, the maximality of the subgroups in Aschbacher's class C_3 was obtained. However, when n = 1, it is remained to determine the overgroups of SL(1, K) in GL(r, F). In this paper, we shall determine the overgroups of C^* in GL(2, R) and the overgroups of Q^* in GL(2, C) and obtain the maximal subgroups of GL(2, R) and GL(2, C). Our main results are the following two theorems.

Theorem 1.1 Let R be the real number field and C the complex one. The group SL(1,C) is just the multiplicative group C^* , which can be written as the group $\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in GL(2,R) \mid a, b \in R \right\}$. Let X be the overgroup of C^* in GL(2,R), $C^* = SL(1,C) < X < GL(2,R)$, then one of the following holds.

- $X = C^* \rtimes \operatorname{Aut} C/R = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \text{ or } \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \in \operatorname{GL}(2, R) \mid a, b \in R \right\},$ which is the normalizer of C^* in $\operatorname{GL}(2, R)$.
- $X = \{A \in GL(2, R) \mid \det A > 0\}$, which is the group made up of all the elements in GL(2, R) whose determinant are positive real numbers.

Theorem 1.2 Let C be the complex number field and Q the skew-field of quaternions. The group SL(1, Q) is just the multiplicative group Q^* , which can be written as the group $\left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \in GL(2, C) \mid \alpha, \beta \in C \right\}$. Let X be the overgroup of Q^* in GL(2, C), $Q^* = SL(1, Q) < X < GL(2, C)$, then one of the following holds.

- $Q^* = \operatorname{SL}(1,Q) \triangleleft X \leq Q^* \rtimes \operatorname{Aut}Q/C$. Let $e^{i\theta} = \cos\theta + i\sin\theta$, Then $Q^* \rtimes \operatorname{Aut}Q/C = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta}e^{i\theta} & \overline{\alpha}e^{i\theta} \end{pmatrix} \in \operatorname{GL}(2,C) \mid \alpha, \beta \in C, \theta \in [0,2\pi) \right\}$. And $Q^* \rtimes \operatorname{Aut}Q/C$ is the normalizer of Q^* in $\operatorname{GL}(2,C)$.
- $H \triangleleft X < \operatorname{GL}(2, C)$. Here $H = \{A \in \operatorname{GL}(2, C) \mid 0 < \det A \in R\}$ which is the group made up of all the elements in $\operatorname{GL}(2, C)$ whose determinant are positive real numbers. $X = H \cdot \left\langle \left\{ \begin{pmatrix} 1 & 0 \\ 0 & e^{i(k\alpha)} \end{pmatrix} \mid \alpha \in I_{\alpha} \right\} \right\rangle$, where I_{α} is a set of angles in $[0, 2\pi)$.

2. Preliminaries

While K can be regarded as a left F-space, we can take an F-basis $\{k_1, ..., k_r\}$ of K. The left K-basis of V(n, K) is marked as $\{e_1, ..., e_n\}$, thus $\{e_{ij} = k_j e_i | 1 \le i \le n, 1 \le j \le r\}$ forms an F-basis of V(nr, F). Now, we write all vectors in V = V(nr, F) as nr-dimensional rows and write each $g \in GL(nr, F)$ as a matrix in $Mat_{nr}F$, sending each $x \in V(nr, F)$ to xg. Write K as \vec{K} and denote each $\vec{x} = c_1\vec{k_1} + \cdots + c_r\vec{k_r}$ with all $c_i \in F$ as $\vec{x} = (c_1, ..., c_r) \in Mat_{1 \times r}F$ when viewing K as a left F-space. For each $\theta \in K$ we can view it as an F-linear translation by

 $\vec{x} \mapsto \vec{x\theta}$ on \vec{K} . This transformation can be identified with the matrix $\theta^{(r)} \in \operatorname{Mat}_r F$ relative to the basis $\{k_1, ..., k_r\}$. In this point of view, we have $\operatorname{Mat}_n K \subset \operatorname{Mat}_{nr} F$. For each $\sigma \in \operatorname{Aut} K/F = \{\sigma \in \operatorname{Aut} K \mid a^{\sigma} = a, \forall a \in F\}$, it can be written as an matrix $\theta^{(r)}$ of the *F*-linear translation $\vec{x} \mapsto \vec{x^{\sigma}}$ on \vec{K} relative to the basis $\{k_1, ..., k_r\}$. We point out that the normalizer of K^* in $\operatorname{GL}(r, F)$ is $K^* \rtimes \operatorname{Aut} K/F$, and regard $\operatorname{Aut} K/F$ as a subgroup of $\operatorname{GL}(nr, F)$. Each $\sigma \in \operatorname{Aut} K/F$ sends the vector $\theta_1 e_1 + \cdots + \theta_r e_r \in V(n, K)$ to $\theta_1^{\sigma} e_1 + \cdots + \theta_r^{\sigma} e_r$ with all $\theta_i \in K$, having the matrix $\sigma^{(nr)} = \operatorname{diag}(\sigma^{(r)}, ..., \sigma^{(r)})$. One can see that the normalizer of $\operatorname{SL}(n, K)$ in $\operatorname{GL}(nr, F)$ is $\Gamma = \operatorname{GL}(n, K) \rtimes \operatorname{Aut} K/F$. When $n \geq 2$, the overgroups of $\operatorname{SL}(n, K)$ in $\operatorname{GL}(nr, F)$ have been determined in the following theorem.

Theorem 2.1 ([5], Theorem 1) Let K and F be division rings with $K \supset F$ and $\dim_F K = r < \infty$, $n \ge 2$, $N = \operatorname{SL}(n, K) \le X \le G = \operatorname{GL}(nr, F)$, then one of the following holds.

- $\operatorname{SL}(nd, E) \triangleleft X < \Gamma = \operatorname{GL}(nd, E) \rtimes \operatorname{Aut} E/F$, for an intermediate division ring E between F and K, where $d = \dim_E K$.
- n = 2, K is a field, N = SL(2, K) = Sp(2, K, f) for any non-degenerate alternating K-form f, $X \supseteq Sp(2d, E, f_E)$ for an intermediate field E $(F \subseteq E \subseteq K, d = \dim_E K)$ and an alternating E-form $f_E = \phi_E f$ with $0 \neq \phi_E \in \operatorname{Hom}_E(K, E)$.
- $N = SL(2,4) \cong A_5$ and $G = GL(4,2) \cong A_8$, $X = Sp(4,2)' \cong A_6$ or $X \cong A_7$.

Let $1 \leq i, j \leq n$ be distinct, E_{ij} stands for $n \times n$ matrix whose (i, j)-entry is equal to 1 and zeros for all other positions.D enote identity matrix by I. $T_{ij}(a) = I + aE_{ij}$ with $I \ a \in F$. Then $T_{ij} = \{T_{ij}(a) | a \in F\}$ are subgroups of GL(n, F) which are called root subgroups of GL(n, F). To prove our main results, we use the following facts.

Remark 2.2 Let F^+ be the addition group of F. Then each $T_{ij} \cong F^+$.

 $T_{ij}(a)T_{ij}(b) = T_{ij}(a+b)$, hence $T_{ij}(a)^{-1} = T_{ij}(-a)$. With the map $t_{ij}: T_{ij}(a) \mapsto a$, we can easily get this remark.

Remark 2.3 ([1], Propositions 6.2, 6.3) SL(n, F) is generated by the root subgroups T_{ij} . And the subgroups T_{ij} are conjugate in SL(n, F).

Remark 2.4 Let R stand for real number field, C for complex one and Q for the skew-field of quaternions. Then $\operatorname{Aut}(C/R) \cong \left\{ \begin{pmatrix} 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \right\}$, while $\operatorname{Aut}(Q/C) \cong \left\{ \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \mid \theta \in [0, 2\pi) \right\}$.

Take a basis $\{1, i\}$ of C as a F-space, each element of C can be written as a 2dimensional vector on V(2, R). For each $a+bi \in C$ with $a, b \in R$, $(a+bi)^{\sigma} = a \pm bi$ with $\sigma \in \operatorname{Aut}(C/R)$. Then $\sigma : (a,b) \mapsto (a,b) \begin{pmatrix} 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$, hence $\operatorname{Aut}(C/R) \cong \left\{ \begin{pmatrix} 1 & 0 \\ 0 & \pm 1 \end{pmatrix} \right\}$. In the same way, take a basis $\{1,j\}$ of Q as a C-space, the elements of Q can be written as $\alpha + \beta j$ with $\alpha, \beta \in C$. For each $\sigma \in \operatorname{Aut}(Q/C), q_1, q_2 \in Q$, from $(q_1q_2)^{\sigma} = q_1^{\sigma}q_2^{\sigma}$ we can get

$$ij^{\sigma} = -j^{\sigma}i, (j^{\sigma})^2 = -1$$

Let $\mathbf{j}^{\sigma} = \alpha + \beta \mathbf{j}$. Then we can get $\alpha = 0, \beta = e^{\mathbf{i}\theta}$ and $\mathbf{j}^{\sigma} = e^{\mathbf{i}\theta}$. Therefore, Aut $(Q/C) \cong \left\{ \begin{pmatrix} 1 & 0 \\ 0 & e^{\mathbf{i}\theta} \end{pmatrix} \mid \theta \in [0, 2\pi) \right\}.$

3. Proofs of the main results

From Theorem 2.1 we can know that when F is a maximal skew-subfield of K, then $\operatorname{SL}(n, K) \rtimes \operatorname{Aut} K/F$ is a maximal subgroup of $\operatorname{GL}(nr, K)$ in most cases. Therefore, we can guess that $\Gamma = C^* \rtimes \operatorname{Aut} C/R$ resp. $\Lambda = Q^* \rtimes \operatorname{Aut} Q/C$ may be a maximal subgroup of $\operatorname{GL}(2, R)$ resp. $\operatorname{GL}(2, C)$. To prove this, we need the following lemma.

Lemma 3.1 Let X be an overgroup of $\Gamma = C^* \rtimes \operatorname{Aut} C/R$ in $\operatorname{GL}(2, R)$, $A \in X \setminus \Gamma$. $\langle \Gamma, A \rangle$ refers to the group generated by Γ and A. Then $\operatorname{SL}(2, R) \triangleleft \langle \Gamma, A \rangle \leq X$.

Proof. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in R$, transform A with a matrix $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in C^*$ as follows:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ s & t \end{pmatrix},$$

where

$$s = \frac{ac+bd}{a^2+b^2}, t = \frac{ad-bc}{a^2+b^2} = \frac{\det A}{a^2+b^2}$$

When $t = \pm 1, s \neq 0$. Or $A \in C^*$, in contradiction. Next, we give the following transformation:

$$\begin{pmatrix} 1 & x \\ -x & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ s & t \end{pmatrix} = \begin{pmatrix} 1+sx & tx \\ s-x & t \end{pmatrix},$$
$$\begin{pmatrix} 1+sx & tx \\ s-x & t \end{pmatrix} \begin{pmatrix} 1+sx & tx \\ -tx & 1+sx \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ f(x) & g(x) \end{pmatrix},$$

where

$$f(x) = \frac{s + (s^2 + t^2 - 1)x - s^2x}{(1 + sx)^2 + (tx)^2}, g(x) = \frac{t(1 + x^2)}{(1 + sx)^2 + (tx)^2}, x \in R.$$

Note that $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}^{-1}$, $\begin{pmatrix} 1 & x \\ -x & 1 \end{pmatrix}$, $\begin{pmatrix} 1+sx & tx \\ -tx & 1+sx \end{pmatrix}^{-1}$ are elements in C^* , then the matrices $\begin{pmatrix} 1 & 0 \\ s & t \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ f(x) & g(x) \end{pmatrix} \in \langle \Gamma, A \rangle$. Then, the commutator

$$\begin{pmatrix} 1 & 0 \\ s & t \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ f(x) & g(x) \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 \\ s & t \end{pmatrix} \begin{pmatrix} 1 & 0 \\ f(x) & g(x) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ r(x) & 1 \end{pmatrix}$$
$$= T_{21}(r(x)) \in \langle \Gamma, A \rangle,$$

where

$$r(x) = \frac{[s^2 + (t-1)^2]x(1+t+sx)}{t^2(1+x^2)}, \ x \in \mathbb{R}$$

We can find that r(x) is a continuous function for $x \in R$ because $t^2(1 + x^2) > 0$.

$$r'(x) = \frac{[s^2 + (t-1)^2][(1+t)(1-x^2) + 2sx]}{t^2(1+x^2)^2}, \ x \in \mathbb{R}$$

While s = 0 and $t = \pm 1, r'(x) \equiv 0$. However, these two cases show that $A \in \Gamma$, in contradiction. Therefore, r(x) has two Extreme values denoted a and b with a < b. Note that

$$\lim_{x \to \pm \infty} r(x) = \frac{s[s^2 + (t-1)^2]}{t^2},$$

we can get the range of the continuous function r(x) is [a, b].

Form Remark 2.2 we know $T_{21} = \{T_{21}(x) \mid x \in R\} \cong R^+$. Because the additive group R^+ can be generated by all the elements in [a, b], the multiplicative group $T_{21} = \{T_{21}(x) \mid x \in R\}$ can be generated by all the elements in $\{T_{21}(r(x)) \mid x \in R\} = \{T_{21}(x) \mid x \in [a, b]\}$. So, for all $x \in R$, the $T_{21}(x) \in \langle \Gamma, A \rangle$. From Remark 2.3, we can find a matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \Gamma$, such that

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ r & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -r \\ 0 & 1 \end{pmatrix},$$

we can get $T_{12} < \langle \Gamma, A \rangle$. So, the special linear group SL(2, R) is a subgroup of $\langle \Gamma, A \rangle$ by the Remark 2.3. Note that SL(2, R) is just the kernel of det from $\langle \Gamma, A \rangle$ to the multiplicative group R^* , $SL(2, R) \lhd \langle \Gamma, A \rangle$.

From this lemma, we can get the following corollary.

Corollary 3.2 Let X be an overgroup of C^* in GL(2, R), $A \in X \setminus \Gamma = C^* \rtimes Aut C/R$. $\langle C^*, A \rangle$ refers to the group generated by C^* and A. Then, $SL(2, R) \triangleleft \langle C^*, A \rangle \leq X$.

Lemma 3.3 Let X be an overgroup of $\Gamma = C^* \rtimes \operatorname{Aut} C/R$ in $\operatorname{GL}(2, R)$, $A \in X \setminus \Gamma$. $\langle \Gamma, A \rangle$ refers to the group generated by Γ and A. Then $\langle \Gamma, A \rangle = X = \operatorname{GL}(2, R)$. **Proof.** For each matrix $B \in GL(2, R)$, denote det B = d. We can give the following transformations:

$$\begin{pmatrix}
d > 0, B \begin{pmatrix}
\sqrt{d} & 0 \\
0 & \sqrt{d}
\end{pmatrix}^{-1} \in \operatorname{SL}(2, R) \\
d < 0, B \begin{pmatrix}
\sqrt{-d} & 0 \\
0 & \sqrt{-d}
\end{pmatrix}^{-1} \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix} \in \operatorname{SL}(2, R)$$

Note that the matrices $\begin{pmatrix} \sqrt{d} & 0 \\ 0 & \sqrt{d} \end{pmatrix}^{-1}$, $\begin{pmatrix} \sqrt{-d} & 0 \\ 0 & \sqrt{-d} \end{pmatrix}^{-1}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ all are elements in Γ and $\operatorname{SL}(2, R) \triangleleft \langle \Gamma, A \rangle$, we can get $\operatorname{GL}(2, R) \leq \langle \Gamma, A \rangle$. Hence $\operatorname{GL}(2, R) = \langle \Gamma, A \rangle = X$.

Lemma 3.4 Let A be a matrix in GL(2, C) whose determinant is det $A \in R$, $A \in X \setminus \Lambda = Q^* \rtimes \operatorname{Aut} Q/C$. $\langle C^*, A \rangle$ refers to the group generated by C^* and A. Then $SL(2, C) \lhd \langle C^*, A \rangle$.

Proof. Denote $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \notin \Lambda = Q^* \rtimes \operatorname{Aut} Q/C$. Science det $A \in R$, we can transform B with a matrix $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \in Q^*$ as follow:

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ \gamma_1 & t \end{pmatrix},$$

where $\gamma_1 \in C, t \in R$ as det $\begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{pmatrix} \in R$. Science the complex number γ_1 can be written as $se^{i\theta}$ where $s \in R, \theta \in [0, 2\pi), e^{i\theta} = \cos \theta + i \sin \theta$, we can transform the matrix $\begin{pmatrix} 1 & 0 \\ \gamma_1 & t \end{pmatrix}$ to $\begin{pmatrix} 1 & 0 \\ s & t \end{pmatrix}$ as follow:

$$\begin{pmatrix} e^{\mathrm{i}\frac{\theta}{2}} & 0\\ 0 & e^{-\mathrm{i}\frac{\theta}{2}} \end{pmatrix} \begin{pmatrix} 1 & 0\\ \gamma_1 & t \end{pmatrix} \begin{pmatrix} e^{-\mathrm{i}\frac{\theta}{2}} & 0\\ 0 & e^{\mathrm{i}\frac{\theta}{2}} \end{pmatrix} = \begin{pmatrix} 1 & 0\\ s & t \end{pmatrix}, s, t \in R.$$

Note that the matrices $\begin{pmatrix} e^{i\frac{\theta}{2}} & 0\\ 0 & e^{-i\frac{\theta}{2}} \end{pmatrix}$, $\begin{pmatrix} e^{-i\frac{\theta}{2}} & 0\\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix} \in Q^*$, we can know $\begin{pmatrix} 1 & 0\\ s & t \end{pmatrix} \notin \Lambda$. Then, from Corollary 3.2 we have $SL(2, C) \lhd \langle C^*, A \rangle$.

Lemma 3.5 Let X be an overgroup of $\Lambda = Q^* \rtimes \operatorname{Aut} Q/C$ in $\operatorname{GL}(2, C), A \in X \setminus \Lambda$. $\langle \Lambda, A \rangle$ refers to the group generated by Λ and A. Then $\langle \Lambda, A \rangle = X = \operatorname{GL}(2, C)$.

Proof. For an arbitrary matrix $A \in X \setminus \Lambda$, Q^* is not normalized by A. Hence, there exists a matrix $M \in Q^*$ with $AM \neq MA$. Let $B = AMA^{-1}$, then $B \notin Q^*$, and det $B = \det M \in R$. From Lemma 3.4 we know $\operatorname{SL}(2, C) \triangleleft \langle C^*, B \rangle < \langle \Lambda, B \rangle \le X \le \operatorname{GL}(2, C)$.

Now, we just have to prove $X = \operatorname{GL}(2, C)$. For each matrix $D \in \operatorname{GL}(2, C)$, denote det $D = \delta = de^{i\theta}$ with d > 0 and $\theta \in [0, 2\pi)$. We can give the following transformations:

$$D\begin{pmatrix} \sqrt{d} & 0\\ 0 & \sqrt{d} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0\\ 0 & e^{\mathrm{i}\theta} \end{pmatrix}^{-1} \in \mathrm{SL}(2, C).$$

Note that the matrices $\begin{pmatrix} \sqrt{d} & 0 \\ 0 & \sqrt{d} \end{pmatrix}^{-1}$, $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}^{-1}$ all are elements in Λ and $\operatorname{SL}(2,C) \triangleleft \langle \Lambda, D \rangle$, we can get $\operatorname{GL}(2,C) \leq \langle \Lambda, D \rangle$. Hence $\operatorname{GL}(2,C) = \langle \Lambda, D \rangle = X$.

Proof of Theorem 1.1. The first item of Theorem 1.1 follows immediately from Lemma 3.1 and Lemma 3.3 as $C^* \rtimes \operatorname{Aut} C/R$ is a maximal subgroups of $\operatorname{GL}(2, R)$. For an arbitrary matrix $A \in X \setminus \Gamma$, C^* is not normalized by A. There exists a matrix $M \in C^*$ with $AM \neq MA$. Let $B = AMA^{-1}$, then $B \notin C^*$, and det $B = \det M > 0$. From Corollary 3.2, $\langle C^*, B \rangle \triangleright \operatorname{SL}(2, R)$. Then, for an arbitrary matrix D whose determinant is d > 0, we can give the following transformation: $D\left(\sqrt[]{d} & 0\\ 0 & \sqrt[]{d} \right)^{-1} \in \operatorname{SL}(2, R)$. That means $\langle C^*, B \rangle = \operatorname{GL}_+(2, R) :=$ $\{A \in \operatorname{GL}(2, R) | \det A > 0\}$. So, the second item of Theorem 1.1 is established.

Proof of Theorem 1.2. From Lemma 3.5,we can get $Q^* \rtimes \operatorname{Aut} Q/C$ is a maximal subgroup of $\operatorname{GL}(2,C)$. From Remark 2.4, the group $Q^* \rtimes \operatorname{Aut} Q/C = \left\{ \begin{pmatrix} \alpha & \beta \\ -\overline{\beta}e^{\mathrm{i}\theta} & \overline{\alpha}e^{\mathrm{i}\theta} \end{pmatrix} \in \operatorname{GL}(2,C) \mid \alpha, \beta \in C, \theta \in [0,2\pi) \right\}$. Then, the first item of Theorem 1.2 is established.

For an arbitrary matrix $A \in X \setminus \Lambda$, Q^* is not normalized by A. There exists a matrix $M \in Q^*$ with $AM \neq MA$. Let $B = AMA^{-1}$, then $B \notin Q^*$, and $0 < \det B = \det M \in R$. From Lemma 3.4, $\langle Q^*, B \rangle > \langle C^*, B \rangle > \mathrm{SL}(2, C)$. Then, for an arbitrary matrix D whose determinant is d > 0, we can give the following transformation: $D\begin{pmatrix} \sqrt{d} & 0\\ 0 & \sqrt{d} \end{pmatrix}^{-1} \in \mathrm{SL}(2, C)$. That means $\langle Q^*, B \rangle =$ $\mathrm{GL}_+(2, C) := \{A \in \mathrm{GL}(2, C) | 0 < \det A \in R\}$. For the overgroup X between $\langle Q^*, B \rangle$ and $\mathrm{GL}(2, C)$, we can give a homomorphism

$$\Theta: X \to \left\{ \begin{pmatrix} 1 & 0 \\ 0 & e^{\mathrm{i}\theta} \end{pmatrix} \mid \theta \in [0, 2\pi) \right\}.$$

For each element $A \in X$, whose determinant is $\delta = te^{i\theta}$, $\Theta(A) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$. The kernel of the homomorphism is just

$$H = \operatorname{GL}_+(2,C) := \{A \in \operatorname{GL}(2,C) \mid 0 < \det A \in R\}$$

So

$$X = H \cdot \left\{ \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \mid \theta \in [0, 2\pi) \right\}.$$

The second item of Theorem 1.2 is finished.

References

- [1] ALPERIN, J.L., BELL, R.B., *Groups and representations*, Springer, New York, 1995.
- [2] ASCHBACHER, M., On the maximal subgroups of finite classical groups, Invent. Math., 76 (1984), 469-514.
- [3] KLEIDMAN, P., LIEBECK, M., The subgroup structure of the finite classical groups, Cambridge Univ. Press, Cambridge, 1989.
- [4] LI, S., Maximal subgroups in classical groups over arbitrary fields, Proc. Sympos. Pure Math., 47 (1987), 487-493.
- [5] LI, S., Overgroups in GL(nr, F) of certain subgroups of SL(n, K). I, J. Algebra, 125 (1989), 215-235.
- [6] LI, S., Overgroups in $GL(U \otimes W)$ of certain subgroups of $GL(U) \otimes GL(W)$. I, J. Algrbra, 137 (1991), 338-368.
- [7] LI, S., Overgroups of certain subgroups in the classical groups over arbitrary division rings, Contemp. Math., 82 (1989), 53-57.
- [8] SEITZ, G., The maximal subgroups of classical algebraic groups, Mem. AMS, 67, no. 365 (1987).

Accepted: 17.05.2016