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Abstract. For some pair of division rings K and F with K D F and dimp K =r , we
want to determine the overgroups of K* = SL(1, K) in GL(r, F') and obtain the maximal
subgroups of GL(r, F'). Let R stand for real number field, C' for complex one and @
for the skew-field of quaternions. All the overgroups of C* = SL(1,C) in GL(2, R) and
Q* = SL(1,Q) in GL(2,C) are found in this paper.
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1. Introduction

The subgroup structure of classical groups, especially maximal subgroups in clas-
sical groups, is one of the most important topics of group theory. By a theorem
of Aschbacher(see [2]), the maximal subgroups of a classical group over finite field
must be either a member of one of the classes C; ~ Cg, or an almost simple group.
Under the guidance of this theorem, series of works have been done to approach
the complete classification of the maximal subgroups(see [3], [8]). The second
author of this paper has done much work(see [4], [5], [6], [7]) on the maximality of
the subgroups in Aschbacher’s classes. However, the results are for the classical
groups over arbitrary fields, not necessarily finite, or sometimes over arbitrary
division rings.

Let K, F be two division rings, with K D F, and dimp K = r < oo We
can regard K as a left F-space. Write n-dimensional left K-space as V(n, K),
it can be regarded as an nr-dimensional left space V' = V(nr, F) over F. Thus
the GL(n, K) acting on V(n, K) is a subgroup of GL(nr, F) acting on V' (nr, F').
In the article [5], when n > 2, the overgroups of SL(n, K) in GL(nr, F') and
the overgroups of Sp(n, K, f) in GL(nr, F) were determined. As an application
of the main result of the paper to the case F' is a finite field and r is prime,
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the maximality of the subgroups in Aschbacher’s class C3 was obtained. However,
when n = 1, it is remained to determine the overgroups of SL(1, K) in GL(r, F'). In
this paper,we shall determine the overgroups of C* in GL(2, R) and the overgroups
of @* in GL(2,C) and obtain the maximal subgroups of GL(2, R) and GL(2,C).

Our main results are the following two theorems.

Theorem 1.1 Let R be the real number field and C' the complex one. The group
SL(1,C) is just the multiplicative group C*, which can be written as the group

{(_ab 2) € GL(2,R) | a,b € R}. Let X be the overgroup of C* in GL(2, R),
C* =SL(1,0) < X < GL(2, R), then one of the following holds.

e X =C*xAutC/R = a b O b € GL(2,R) | a,b€e R},
—b a b —a
which is the normalizer of C* in GL(2, R).

o X ={A € GL(2,R) | det A > 0}, which is the group made up of all the
elements in GL(2, R) whose determinant are positive real numbers.

Theorem 1.2 Let C' be the complex number field and Q) the skew-field of quater-
nions. The group SL(1, Q) is just the multiplicative group Q*, which can be written

as the group {(_043 g) € GL(2,0) | o, 5 € C’}. Let X be the overgroup of Q*
in GL(2,C), Q" =SL(1,Q) < X < GL(2,C), then one of the following holds.

e QO = SL(1,Q) <« X < Q" x AutQ/C. Let € = cos + isinf, Then

Q* % AutQ/C = {(_g‘ew afw) €GL(2,C) |a,B€C,0 € [o,zw)}. And

Q* x AutQ/C is the normalizer of Q* in GL(2,C).
o HaX < GL(2,C). Here H={A € GL(2,C) | 0 < det A € R} which is

the group made up of all the elements in GL(2,C) whose determinant are

positive real numbers. X = H - <{ ((1] (1)@)) la € 1, }>, where 1, is a set

of angles in [0, 27).

2. Preliminaries

While K can be regarded as a left F-space, we can take an F-basis {ki,..., k. }
of K. The left K-basis of V(n, K) is marked as {eq, ..., e, }, thus {e;; = k;e;|1 <
i <n,1 <j <r}forms an F-basis of V(nr, F)). Now, we write all vectors in
V = V(nr, F) as nr-dimensional rows and write each g € GL(m’ F) as a matrix
in Maty, F, sendmg cach z € V(nr, F) to zg. Write K as K and denote each
T = clkl + -4 c,«k: with all ¢; € F as & = (¢q, ..., ¢,) € Matyx,F when viewing
K as a left F-space. For each § € K we can view it as an F-linear translation by
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7+ 26 on K. This transformation can be identified with the matrix 60 € Mat, F’
relative to the basis {ki, ..., k.}. In this point of view, we have Mat, K’ C Mat,,. F".
For each 0 € AwtK/F = {0 € AuwtK | a° = a, Ya € F}, it can be written
as an matrix ) of the F-linear translation & — #% on K relative to the basis
{k1, ..., k.}. We point out that the normalizer of K* in GL(r, F) is K* x AutK/F,
and regard AutK/F as a subgroup of GL(nr, F'). Each 0 € AutK/F sends the
vector O1e1+ -+ -+ 06, € V(n,K) to 07e; + - - - 4+ 0%e, with all §; € K, having the
matrix o™ = diag(c™,...,0(). One can see that the normalizer of SL(n, K) in
GL(nr, F) is I' = GL(n, K) x AutK/F. When n > 2, the overgroups of SL(n, K)
in GL(nr, F) have been determined in the following theorem.

Theorem 2.1 ([5], Theorem 1) Let K and F be division rings with K O F
and dimp K =r < oo, n >2, N =SL(n,K) < X <G = GL(nr, F), then one of
the following holds.

e SL(nd,F) < X < T' = GL(nd, E) x AutE/F, for an intermediate division
ring E between F' and K, where d = dimg K.

e n=2, K isa fieldf N =SL(2,K) =Sp(2, K, f) for any non-degenerate al-
ternating K-form f, X > Sp(2d, E, fg) for an intermediate field E
(F C F CK,d= dimgK) and an alternating E-form fr = ¢pf with
0 # ¢ € Homg(K, E).

o N =SL(2,4)= A5 and G = GL(4,2) = As, X = Sp(4,2) = As or X = A;.

Let 1 <i,j < n be distinct, E;; stands for n x n matrix whose (1, j)-entry is equal
to 1 and zeros for all other positions.D enote identity matrix by I. T;;(a) = I+ak;;
with I a € F. Then T;; = {T};(a)la € F'} are subgroups of GL(n, F') which are
called root subgroups of GL(n, F'). To prove our main results,we use the following
facts.

Remark 2.2 Let F't be the addition group of F. Then each T;; = F'*.

Tij(a)T;;(b) = Tij(a + b), hence Tj;(a)™ = Ti;(—a).
With the map t;; : T;j(a) — a, we can easily get this remark.

Remark 2.3 ([1], Propositions 6.2, 6.3) SL(n, F) is generated by the root sub-
groups T;;. And the subgroups T;; are conjugate in SL(n, F).

Remark 2.4 Let R stand for real number field,C for complex one and Q) for the

skew-field of quaternions. Then Aut(C/R) = {(é iol) }, while Aut(Q/C) =

{(3 eﬁ{,) 10 e [O,27r)}.

Take a basis {1,i} of C' as a F-space, each element of C' can be written as a 2-
dimensional vector on V' (2, R). For each a+bi € C with a,b € R, (a+bi)” = a+bi
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with ¢ € Aut(C/R). Then o : (a,b) — (a,b) (1 0 ), hence Aut(C/R) =

0 =1

{ ((1) £1> } In the same way, take a basis {1,j} of @ as a C-space, the elements

of @ can be written as « + (§j with o, 8 € C. For each 0 € Aut(Q/C), ¢1, 92 € Q,
from (q1q2)” = qfq5 we can get

ijU — —jai, (jO’)Z - _1.

Let j = a + 3. Then we can get a = 0,3 = € and j° = €Y.

Aut(Q/C) = {((1) e?g) 16 e [0,2@}.

Therefore,

3. Proofs of the main results

From Theorem 2.1 we can know that when F' is a maximal skew-subfield of K,
then SL(n, K) x AutK/F is a maximal subgroup of GL(nr, K) in most cases.
Therefore, we can guess that I' = C* x AutC'/R resp. A = Q* x AutQ/C may
be a maximal subgroup of GL(2, R) resp. GL(2,C'). To prove this, we need the
following lemma.

Lemma 3.1 Let X be an overgroup of ' = C* x AuwtC/R in GL(2,R), A € X\I'.
(', A) refers to the group generated by I' and A. Then SL(2, R) < (I', A) < X.

b

Proof. Let A= (a
c d

) with a, b, c,d € R, transform A with a matrix (_Z 2 > e

EIEH AN

ac + bd ad—bc_ det A

a2+ 02" a4+ a2+ b2
When t = +1,s # 0. Or A € C*, in contradiction. Next, we give the following

transformation:
1 =z 1 0y (l+sz tx
—x 1 s t) \Ns—x t )’

(184155 tf) (1:5? 1?390)1: (f(lw) 9(093))’

s+ (82 4+t — 1)z — s’z (2) = t(1 4 2?)
(1+ sx)? + (tx)? VIV = (1+ sz)? + (tx)?’

as follows:

where

where

flz) = r € R.
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-1 -1
a b 1 =z 14+sz tz N,
Note that ( b a) , <_$ 1) , ( e 14 sx) are elements in C*,

10 1 0
then the matrices , € (I', A). Then, the commutator
(+ 2) (st o) S0

(i ?)1 (f(lw) g(ow)l (i t) (f(lx) g(oaﬂ) _<r<1x) (1))

= Tgl(T‘(I)) < <F, A),

e}

where
(s 4+ (t — 1)?]x(1 + t + sz)

£2(1 + 22)

We can find that 7(z) is a continuous function for x € R because t*(1 + z?) > 0.

r(z) = , ¢ € R.

oy 87+ (= D[+ 1)(1 = 2?) + 2sa]
r'(z) = 21+ 22)2 , T € R.

While s = 0 and ¢t = +1,7/(x) = 0. However, these two cases show that A € T,
in contradiction. Therefore, r(z) has two Extreme values denoted a and b with

a < b. Note that » )
_ Cs[st (1)
:cl—l>r:iloor(x) N 12 ’

we can get the range of the continuous function r(z) is [a, ).

Form Remark 2.2 we know Ty = {T»(x) | * € R} = RT. Because the
additive group R can be generated by all the elements in [a, b], the multiplicative
group Ty = {Ts(x) | x € R} can be generated by all the elements in {7 (r(z)) |
x € R} = {Ty(x) | © € [a,b]}. So, for all z € R, the Ty (x) € (I', A). From

1
q 0) € I', such that

0 1\ /1 0\ /0 -1\ (1 —r
-1 0 r 1 1 0/) \0 1)
we can get T2 < (I', A). So, the special linear group SL(2, R) is a subgroup of

(I, A) by the Remark 2.3. Note that SL(2, R) is just the kernel of det from (I", A)
to the multiplicative group R*, SL(2, R) < (T, A). .

Remark 2.3, we can find a matrix

From this lemma, we can get the following corollary.

Corollary 3.2 Let X be an overgroup of C* in GL(2,R), A € X\I' =
C* x Aut C/R. (C* A) refers to the group gemerated by C* and A. Then,
SL(2,R) < (C*, A) < X.

Lemma 3.3 Let X be an overgroup of I'=C* x AutC'/R in GL(2,R), A € X\I'.
(', A) refers to the group generated by I' and A. Then (I'; A) = X = GL(2, R).
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Proof. For each matrix B € GL(2, R), denote det B = d.We can give the fol-
lowing transformations:

d>0B(\(/)3 \(/)a)_l e_lsL(Q,R)
scos (7 V(L ) esen

~1 —1
. 0 v—d 0 1 0
Note that the matrices ( 0 \/c_l) , ( 0 \/—_d) , (0 _1> all are ele-

ments in I and SL(2, R)<(I", A), we can get GL(2, R) < (I'; A). Hence GL(2, R) =
(I, A) = X. .

Lemma 3.4 Let A be a matriz in GL(2,C) whose determinant is det A € R,
A e X\A = Q" x AwtQ/C. (C*, A) refers to the group generated by C* and A.
Then SL(2,C) <1 (C*, A).

Proof. Denote A = (3 ?) ¢ A = Q" x AutQ/C'. Science det A € R, we can

transform B with a matrix (_aB g) € Q* as follow:

CN(E0) -0

where v; € C,t € R as det (_(% g ) € R. Science the complex number 7; can

be written as se'’ where s € R,0 € [0,27), e = cos@ + isinf, we can transform

the matrix (1 O) to (1 O) as follow:
Tt s t
.0 20
ez 0 1 0 e’z 0 10

i2 2]
Note that the matrices (6 i OQ € @, we can know <i 0) ¢ A.

13

Then, from Corollary 3.2 we have SL(?, C) < (C* A). n

Lemma 3.5 Let X be an overgroup of A = Q* x AutQ/C in GL(2,C), A € X\A.
(A, A) refers to the group generated by A and A. Then (A, A) = X = GL(2,C).

Proof. For an arbitrary matrix A € X\A, Q* is not normalized by A. Hence,
there exists a matrix M € Q* with AM # MA. Let B= AMA™!, then B ¢ Q*,
and det B = det M € R. From Lemma 3.4 we know SL(2, C)<(C*, B) < (A, B) <
X < GL(2,0).
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Now, we just have to prove X = GL(2,C). For each matrix D € GL(2,C),
denote det D = § = del with d > 0 and 6 € [0,27).W e can give the following

transformations:
Vi o\ /1 o\!
D(O i 0 el € SL(2,0).

Note that the matrices (\égl \93) ) ([1) 6(30) all are elements in A and

SL(2,C)<(A, D), we can get GL(2,C) < (A, D). Hence GL(2,C) = (A,D) = X. =

Proof of Theorem 1.1. The first item of Theorem 1.1 follows immediately
from Lemma 3.1 and Lemma 3.3 as C* x AutC/R is a maximal subgroups of
GL(2, R). For an arbitrary matrix A € X\I', C* is not normalized by A. There
exists a matrix M € C* with AM # MA. Let B = AMA™!, then B ¢ C*,
and det B = det M > 0. From Corollary 3.2, (C*, B) > SL(2, R). Then, for an
arbitrary matrix D whose determinant is d > 0, we can give the following trans-

Vi o\ .
0 Vi € SL(2,R). That means (C*,B) = GL,(2,R) :=

{A € GL(2, R)|det A > 0}. So, the second item of Theorem 1.1 is established. u

formation: D (

Proof of Theorem 1.2. From Lemma 3.5;we can get Q* x AutQ/C is a
maximal subgroup of GL(2,C). From Remark 2.4, the group Q* x AutQ/C =

{(—gew @fie) e GL(2,C) | o, 8 € C,0 € [0, 27r)}. Then, the first item of Theo-

rem 1.2 is established.

For an arbitrary matrix A € X\A, Q* is not normalized by A. There exists
a matrix M € Q* with AM # MA. Let B = AMA™! then B ¢ Q*, and
0 < det B = det M € R. From Lemma 34, (Q*,B) > (C*, B) > SL(2,0).

Then, for an arbitrary matrix D whose determinant is d > 0, we can give the
-1
following transformation: D (\{)E \93) € SL(2,C). That means (Q*, B) =

GL,(2,C) := {A € GL(2,0)|0 < det A € R}. For the overgroup X between
(Q*, B) and GL(2,('), we can give a homomorphism

@:XH{G e%) \ee[o,zyr)}.

For each element A € X, whose determinant is § = te'?, ©(A) = (1 6(1)9). The
kernel of the homomorphism is just

H=GL.(2,C0):={A € GL(2,C) | 0 < det A € R}.

X:H-{(é 6?0) |9€[0,27r)}.

The second item of Theorem 1.2 is finished. "
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