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Abstract. For some pair of division rings K and F with K ⊃ F and dimF K = r , we
want to determine the overgroups of K∗ = SL(1,K) in GL(r, F ) and obtain the maximal
subgroups of GL(r, F ). Let R stand for real number field, C for complex one and Q

for the skew-field of quaternions. All the overgroups of C∗ = SL(1, C) in GL(2, R) and
Q∗ = SL(1, Q) in GL(2, C) are found in this paper.
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1. Introduction

The subgroup structure of classical groups, especially maximal subgroups in clas-
sical groups, is one of the most important topics of group theory. By a theorem
of Aschbacher(see [2]), the maximal subgroups of a classical group over finite field
must be either a member of one of the classes C1 ∼ C8, or an almost simple group.
Under the guidance of this theorem, series of works have been done to approach
the complete classification of the maximal subgroups(see [3], [8]). The second
author of this paper has done much work(see [4], [5], [6], [7]) on the maximality of
the subgroups in Aschbacher’s classes. However, the results are for the classical
groups over arbitrary fields, not necessarily finite, or sometimes over arbitrary
division rings.

Let K, F be two division rings, with K ⊃ F , and dimF K = r < ∞ We
can regard K as a left F -space. Write n-dimensional left K-space as V (n, K),
it can be regarded as an nr-dimensional left space V = V (nr, F ) over F . Thus
the GL(n,K) acting on V (n, K) is a subgroup of GL(nr, F ) acting on V (nr, F ).
In the article [5], when n ≥ 2, the overgroups of SL(n,K) in GL(nr, F ) and
the overgroups of Sp(n,K, f) in GL(nr, F ) were determined. As an application
of the main result of the paper to the case F is a finite field and r is prime,
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the maximality of the subgroups in Aschbacher’s class C3 was obtained. However,
when n = 1, it is remained to determine the overgroups of SL(1, K) in GL(r, F ). In
this paper,we shall determine the overgroups of C∗ in GL(2, R) and the overgroups
of Q∗ in GL(2, C) and obtain the maximal subgroups of GL(2, R) and GL(2, C).
Our main results are the following two theorems.

Theorem 1.1 Let R be the real number field and C the complex one. The group
SL(1, C) is just the multiplicative group C∗, which can be written as the group{(

a b
−b a

)
∈ GL(2, R) | a, b ∈ R

}
. Let X be the overgroup of C∗ in GL(2, R),

C∗ = SL(1, C) < X < GL(2, R), then one of the following holds.

• X = C∗ o AutC/R =

{(
a b
−b a

)
or

(
a b
b −a

)
∈ GL(2, R) | a, b ∈ R

}
,

which is the normalizer of C∗ in GL(2, R).

• X = {A ∈ GL(2, R) | det A > 0}, which is the group made up of all the
elements in GL(2, R) whose determinant are positive real numbers.

Theorem 1.2 Let C be the complex number field and Q the skew-field of quater-
nions. The group SL(1, Q) is just the multiplicative group Q∗, which can be written

as the group

{(
α β

−β α

)
∈ GL(2, C) | α, β ∈ C

}
. Let X be the overgroup of Q∗

in GL(2, C), Q∗ = SL(1, Q) < X < GL(2, C), then one of the following holds.

• Q∗ = SL(1, Q) C X ≤ Q∗ o AutQ/C. Let eiθ = cos θ + i sin θ, Then

Q∗ o AutQ/C =

{(
α β

−βeiθ αeiθ

)
∈ GL(2, C) | α, β ∈ C, θ ∈ [0, 2π)

}
. And

Q∗ o AutQ/C is the normalizer of Q∗ in GL(2, C).

• H C X < GL(2, C). Here H = {A ∈ GL(2, C) | 0 < det A ∈ R} which is
the group made up of all the elements in GL(2, C) whose determinant are

positive real numbers. X = H ·
〈{(

1 0
0 ei(kα)

)
|α ∈ Iα

}〉
, where Iα is a set

of angles in [0, 2π).

2. Preliminaries

While K can be regarded as a left F -space, we can take an F -basis {k1, ..., kr}
of K. The left K-basis of V (n,K) is marked as {e1, ..., en}, thus {eij = kjei|1 ≤
i ≤ n, 1 ≤ j ≤ r} forms an F -basis of V (nr, F ). Now, we write all vectors in
V = V (nr, F ) as nr-dimensional rows and write each g ∈ GL(nr, F ) as a matrix

in MatnrF , sending each x ∈ V (nr, F ) to xg. Write K as ~K and denote each

~x = c1
~k1 + · · · + cr

~krwith all ci ∈ F as ~x = (c1, ..., cr) ∈ Mat1×rF when viewing
K as a left F -space. For each θ ∈ K we can view it as an F -linear translation by
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~x 7→ ~xθ on ~K. This transformation can be identified with the matrix θ(r) ∈ MatrF
relative to the basis {k1, ..., kr}. In this point of view, we have MatnK ⊂ MatnrF .
For each σ ∈ AutK/F = {σ ∈ AutK | aσ = a, ∀a ∈ F}, it can be written

as an matrix θ(r) of the F -linear translation ~x 7→ ~xσ on ~K relative to the basis
{k1, ..., kr}. We point out that the normalizer of K∗ in GL(r, F ) is K∗oAutK/F ,
and regard AutK/F as a subgroup of GL(nr, F ). Each σ ∈ AutK/F sends the
vector θ1e1 + · · ·+ θrer ∈ V (n,K) to θσ

1 e1 + · · ·+ θσ
r er with all θi ∈ K, having the

matrix σ(nr) = diag(σ(r), ..., σ(r)). One can see that the normalizer of SL(n,K) in
GL(nr, F ) is Γ = GL(n,K)oAutK/F . When n ≥ 2, the overgroups of SL(n,K)
in GL(nr, F ) have been determined in the following theorem.

Theorem 2.1 ([5], Theorem 1) Let K and F be division rings with K ⊃ F
and dimF K = r < ∞, n ≥ 2, N = SL(n,K) ≤ X ≤ G = GL(nr, F ), then one of
the following holds.

• SL(nd,E) C X < Γ = GL(nd,E) o AutE/F , for an intermediate division
ring E between F and K, where d = dimE K.

• n = 2, K is a field, N = SL(2, K) = Sp(2, K, f) for any non-degenerate al-
ternating K-form f , X D Sp(2d,E, fE) for an intermediate field E
(F ⊆ E ⊆ K, d = dimE K) and an alternating E-form fE = φEf with
0 6= φE ∈ HomE(K,E).

• N = SL(2, 4) ∼= A5 and G = GL(4, 2) ∼= A8, X = Sp(4, 2)′ ∼= A6 or X ∼= A7.

Let 1 ≤ i, j ≤ n be distinct, Eij stands for n×n matrix whose (i, j)-entry is equal
to 1 and zeros for all other positions.D enote identity matrix by I. Tij(a) = I+aEij

with I a ∈ F . Then Tij = {Tij(a)|a ∈ F} are subgroups of GL(n, F ) which are
called root subgroups of GL(n, F ). To prove our main results,we use the following
facts.

Remark 2.2 Let F+ be the addition group of F . Then each Tij
∼= F+.

Tij(a)Tij(b) = Tij(a + b), hence Tij(a)−1 = Tij(−a).
With the map tij : Tij(a) 7→ a, we can easily get this remark.

Remark 2.3 ([1], Propositions 6.2, 6.3) SL(n, F ) is generated by the root sub-
groups Tij. And the subgroups Tij are conjugate in SL(n, F ).

Remark 2.4 Let R stand for real number field,C for complex one and Q for the

skew-field of quaternions. Then Aut(C/R) ∼=
{(

1 0
0 ±1

)}
, while Aut(Q/C) ∼=

{(
1 0
0 eiθ

)
| θ ∈ [0, 2π)

}
.

Take a basis {1, i} of C as a F -space, each element of C can be written as a 2-
dimensional vector on V (2, R). For each a+bi ∈ C with a, b ∈ R, (a+bi)σ = a±bi
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with σ ∈ Aut(C/R). Then σ : (a, b) 7→ (a, b)

(
1 0
0 ±1

)
, hence Aut(C/R) ∼=

{(
1 0
0 ±1

)}
. In the same way, take a basis {1, j} of Q as a C-space, the elements

of Q can be written as α + βj with α, β ∈ C. For each σ ∈ Aut(Q/C), q1, q2 ∈ Q,
from (q1q2)

σ = qσ
1 qσ

2 we can get

ijσ = −jσi, (jσ)2 = −1.

Let jσ = α + βj. Then we can get α = 0, β = eiθ and jσ = eiθ. Therefore,

Aut(Q/C) ∼=
{(

1 0
0 eiθ

)
| θ ∈ [0, 2π)

}
.

3. Proofs of the main results

From Theorem 2.1 we can know that when F is a maximal skew-subfield of K,
then SL(n,K) o AutK/F is a maximal subgroup of GL(nr,K) in most cases.
Therefore, we can guess that Γ = C∗ o AutC/R resp. Λ = Q∗ o AutQ/C may
be a maximal subgroup of GL(2, R) resp. GL(2, C). To prove this, we need the
following lemma.

Lemma 3.1 Let X be an overgroup of Γ = C∗oAutC/R in GL(2, R), A ∈ X\Γ.
〈Γ, A〉 refers to the group generated by Γ and A. Then SL(2, R) C 〈Γ, A〉 ≤ X.

Proof. Let A=

(
a b
c d

)
with a, b, c, d ∈ R, transform A with a matrix

(
a b

−b a

)
∈ C∗

as follows: (
a b
c d

)(
a b
−b a

)−1

=

(
1 0
s t

)
,

where

s =
ac + bd

a2 + b2
, t =

ad− bc

a2 + b2
=

det A

a2 + b2
.

When t = ±1, s 6= 0. Or A ∈ C∗, in contradiction. Next, we give the following
transformation: (

1 x
−x 1

)(
1 0
s t

)
=

(
1 + sx tx
s− x t

)
,

(
1 + sx tx
s− x t

)(
1 + sx tx
−tx 1 + sx

)−1

=

(
1 0

f(x) g(x)

)
,

where

f(x) =
s + (s2 + t2 − 1)x− s2x

(1 + sx)2 + (tx)2
, g(x) =

t(1 + x2)

(1 + sx)2 + (tx)2
, x ∈ R.
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Note that

(
a b
−b a

)−1

,

(
1 x
−x 1

)
,

(
1 + sx tx
−tx 1 + sx

)−1

are elements in C∗,

then the matrices

(
1 0
s t

)
,

(
1 0

f(x) g(x)

)
∈ 〈Γ, A〉. Then, the commutator

(
1 0
s t

)−1 (
1 0

f(x) g(x)

)−1 (
1 0
s t

)(
1 0

f(x) g(x)

)
=

(
1 0

r(x) 1

)

= T21(r(x)) ∈ 〈Γ, A〉,

where

r(x) =
[s2 + (t− 1)2]x(1 + t + sx)

t2(1 + x2)
, x ∈ R.

We can find that r(x) is a continuous function for x ∈ R because t2(1 + x2) > 0.

r′(x) =
[s2 + (t− 1)2][(1 + t)(1− x2) + 2sx]

t2(1 + x2)2
, x ∈ R.

While s = 0 and t = ±1,r′(x) ≡ 0. However, these two cases show that A ∈ Γ,
in contradiction. Therefore, r(x) has two Extreme values denoted a and b with
a < b. Note that

lim
x→±∞

r(x) =
s[s2 + (t− 1)2]

t2
,

we can get the range of the continuous function r(x) is [a, b].
Form Remark 2.2 we know T21 = {T21(x) | x ∈ R} ∼= R+. Because the

additive group R+ can be generated by all the elements in [a, b], the multiplicative
group T21 = {T21(x) | x ∈ R} can be generated by all the elements in {T21(r(x)) |
x ∈ R} = {T21(x) | x ∈ [a, b]}. So, for all x ∈ R, the T21(x) ∈ 〈Γ, A〉. From

Remark 2.3, we can find a matrix

(
0 1
−1 0

)
∈ Γ, such that

(
0 1
−1 0

)(
1 0
r 1

)(
0 −1
1 0

)
=

(
1 −r
0 1

)
,

we can get T12 < 〈Γ, A〉. So, the special linear group SL(2, R) is a subgroup of
〈Γ, A〉 by the Remark 2.3. Note that SL(2, R) is just the kernel of det from 〈Γ, A〉
to the multiplicative group R∗, SL(2, R) C 〈Γ, A〉.

From this lemma, we can get the following corollary.

Corollary 3.2 Let X be an overgroup of C∗ in GL(2, R), A ∈ X\Γ =
C∗ o Aut C/R. 〈C∗, A〉 refers to the group generated by C∗ and A. Then,
SL(2, R) C 〈C∗, A〉 ≤ X.

Lemma 3.3 Let X be an overgroup of Γ=C∗ oAutC/R in GL(2, R), A ∈ X\Γ.
〈Γ, A〉 refers to the group generated by Γ and A. Then 〈Γ, A〉 = X = GL(2, R).
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Proof. For each matrix B ∈ GL(2, R), denote det B = d.We can give the fol-
lowing transformations:





d > 0, B

(√
d 0

0
√

d

)−1

∈ SL(2, R)

d < 0, B

(√−d 0

0
√−d

)−1 (
1 0
0 −1

)
∈ SL(2, R)

Note that the matrices

(√
d 0

0
√

d

)−1

,

(√−d 0

0
√−d

)−1

,

(
1 0
0 −1

)
all are ele-

ments in Γ and SL(2, R)C〈Γ, A〉, we can get GL(2, R) ≤ 〈Γ, A〉. Hence GL(2, R) =
〈Γ, A〉 = X.

Lemma 3.4 Let A be a matrix in GL(2, C) whose determinant is det A ∈ R,
A ∈ X\Λ = Q∗ o AutQ/C. 〈C∗, A〉 refers to the group generated by C∗ and A.
Then SL(2, C) C 〈C∗, A〉.

Proof. Denote A =

(
α β
γ δ

)
/∈ Λ = Q∗ o AutQ/C. Science det A ∈ R, we can

transform B with a matrix

(
α β

−β α

)
∈ Q∗ as follow:

(
α β
γ δ

)(
α β

−β α

)−1

=

(
1 0
γ1 t

)
,

where γ1 ∈ C, t ∈ R as det

(
α β

−β α

)
∈ R. Science the complex number γ1 can

be written as seiθ where s ∈ R, θ ∈ [0, 2π), eiθ = cos θ + i sin θ, we can transform

the matrix

(
1 0
γ1 t

)
to

(
1 0
s t

)
as follow:

(
ei θ

2 0

0 e−i θ
2

)(
1 0
γ1 t

) (
e−i θ

2 0

0 ei θ
2

)
=

(
1 0
s t

)
, s, t ∈ R.

Note that the matrices

(
ei θ

2 0

0 e−i θ
2

)
,

(
e−i θ

2 0

0 ei θ
2

)
∈ Q∗, we can know

(
1 0
s t

)
/∈ Λ.

Then, from Corollary 3.2 we have SL(2, C) C 〈C∗, A〉.

Lemma 3.5 Let X be an overgroup of Λ = Q∗oAutQ/C in GL(2, C),A ∈ X\Λ.
〈Λ, A〉 refers to the group generated by Λ and A. Then 〈Λ, A〉 = X = GL(2, C).

Proof. For an arbitrary matrix A ∈ X\Λ, Q∗ is not normalized by A. Hence,
there exists a matrix M ∈ Q∗ with AM 6= MA. Let B = AMA−1, then B /∈ Q∗,
and det B = det M ∈ R. From Lemma 3.4 we know SL(2, C)C〈C∗, B〉 < 〈Λ, B〉 ≤
X ≤ GL(2, C).
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Now, we just have to prove X = GL(2, C). For each matrix D ∈ GL(2, C),
denote det D = δ = deiθ with d > 0 and θ ∈ [0, 2π).W e can give the following
transformations:

D

(√
d 0

0
√

d

)−1 (
1 0
0 eiθ

)−1

∈ SL(2, C).

Note that the matrices

(√
d 0

0
√

d

)−1

,

(
1 0
0 eiθ

)−1

all are elements in Λ and

SL(2, C)C〈Λ, D〉, we can get GL(2, C) ≤ 〈Λ, D〉. Hence GL(2, C) = 〈Λ, D〉 = X.

Proof of Theorem 1.1. The first item of Theorem 1.1 follows immediately
from Lemma 3.1 and Lemma 3.3 as C∗ o AutC/R is a maximal subgroups of
GL(2, R). For an arbitrary matrix A ∈ X\Γ, C∗ is not normalized by A. There
exists a matrix M ∈ C∗ with AM 6= MA. Let B = AMA−1, then B /∈ C∗,
and det B = det M > 0. From Corollary 3.2, 〈C∗, B〉 B SL(2, R). Then, for an
arbitrary matrix D whose determinant is d > 0, we can give the following trans-

formation: D

(√
d 0

0
√

d

)−1

∈ SL(2, R). That means 〈C∗, B〉 = GL+(2, R) :=

{A ∈ GL(2, R)| det A > 0}. So, the second item of Theorem 1.1 is established.

Proof of Theorem 1.2. From Lemma 3.5,we can get Q∗ o AutQ/C is a
maximal subgroup of GL(2, C). From Remark 2.4, the group Q∗ o AutQ/C ={(

α β

−βeiθ αeiθ

)
∈ GL(2, C) | α, β ∈ C, θ ∈ [0, 2π)

}
. Then, the first item of Theo-

rem 1.2 is established.
For an arbitrary matrix A ∈ X\Λ, Q∗ is not normalized by A. There exists

a matrix M ∈ Q∗ with AM 6= MA. Let B = AMA−1, then B /∈ Q∗, and
0 < det B = det M ∈ R. From Lemma 3.4, 〈Q∗, B〉 > 〈C∗, B〉 B SL(2, C).
Then, for an arbitrary matrix D whose determinant is d > 0, we can give the

following transformation: D

(√
d 0

0
√

d

)−1

∈ SL(2, C). That means 〈Q∗, B〉 =

GL+(2, C) := {A ∈ GL(2, C)|0 < det A ∈ R}. For the overgroup X between
〈Q∗, B〉 and GL(2, C), we can give a homomorphism

Θ : X →
{(

1 0
0 eiθ

)
| θ ∈ [0, 2π)

}
.

For each element A ∈ X, whose determinant is δ = teiθ, Θ(A) =

(
1 0
0 eiθ

)
. The

kernel of the homomorphism is just

H = GL+(2, C) := {A ∈ GL(2, C) | 0 < det A ∈ R}.
So

X = H ·
{(

1 0
0 eiθ

)
| θ ∈ [0, 2π)

}
.

The second item of Theorem 1.2 is finished.
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