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Abstract. In this paper, we study the Morita theory for semirings with slu. We
characterize the equivalent functors between the subcategories of right semimodules
over semirings with slu. Also, we give an equivalent condition of the Morita context
of semirings (not necessarily with slu) and study the corresponding results in semirings
with slu settings. Finally, we apply the results to semirings with identity.
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1. Introduction

Morita equivalence theory gave a characterization of equivalences between two
module categories over two rings with 1. The Hom functor and tensor product
functor play an important role in studying Morita equivalence theory. The Morita
equivalence theory has also been studied in many other algebraic structures, such
as rings without 1, semigroups, semirings, etc. In [1], Abrams generalized the
Morita equivalence theory to rings without 1. Banaschewski [2] and Knauer [13]
got the Morita equivalence theory for monoids. Talwar [20] and Lawson [17] in-
vestigated the Morita equivalence theory for semigroups with local units. Laan
and Marki [16] continued to study the Morita contexts in semigroup settings. On
the other hand, there are very few papers related to these theory for semirings.
Recently, Katsov and Nam [12] initially studied these problems for a semiring with
1. In [12], they give the Morita equivalence theory for semirings with 1. Motivated
by the paper [1] and [20], it is a natural thing to consider the generalized Morita
theorems for semirings without 1.

In this paper, we shall study the Morita theory for semirings without 1. The
paper is constructed as follows: In Section 2, we recall some notions on semirings
and semimodules; In Section 3, we give the Morita theory for semirings with slu;
In Section 4, we study the Morita context for semirings (not necessarily with slu);
we apply the results to semirings with 1 in Section 5.

1Supported by the Natural Science Foundation of Shandong Province (ZR2015AM010).
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2. Preliminaries

A semiring is a set R with two binary operations “ + ” and “ · ” satisfying the
followings:

(1) (R, +) is a commutative semigroup;
(2) (R, ·) is a semigroup;
(3) For all a, b, c ∈ R, a(b + c) = ab + ac, (b + c)a = ba + ca.
If a semiring R has an element 1 such that 1r = r = r1, for all r ∈ R, then 1

is called the identity of R.
Let R be a semiring. A commutative semigroup (M, +) is called a right R-

semimodule over R if there is a scalar multiplication M × R → M, denoted by
(m, r) 7→ mr, satisfying the followings:

(1) m(rr
′
) = (mr)r

′
;

(2) (m + m
′
)r = mr + m

′
r;

(3) m(r + r
′
) = mr + mr

′
;

for all r, r
′ ∈ R and m,m

′ ∈ M.
If MR = M, then M is called unital.
Let M and N be two R-semimodules. A map f : M → N is called R-

semimodule homomorphism if f satisfies the followings:
(1) f(m1 + m2) = f(m1) + f(m2),
(2) f(mr) = f(m)r,

for all m,m1,m2 ∈ M, r ∈ R.
The set of all R-semimodule homomorphisms from M to N is denoted by

HomR(M, N). Let EndR(M) be the set of all R-semimodule homomorphisms from
M to itself.

Similarly, we can define left semimodules. Let Mod-R and R-Mod be the
categories of right and left semimodules, respectively.

Denote by Mod-UR (UR-Mod) the subcategory of unital right (left) R-
semimodules.

Definition 1. [[11], Definition 3.1] For a right semimodule M ∈ Mod-R and
a left semimodule N ∈ R-Mod, let F be the free semigroup generated by the
cartesian product M × N. The tensor product M ⊗ N is the factor semigroup
F/σ], where the congruence σ] is generated by the relation σ of the form

< (m1 + m2, n), (m1, n) + (m2, n) >, < (m,n1 + n2), (m, n1) + (m,n2) >,

and
< (mr, n), (m, rn) >,

with m1,m2 ∈ M, n1, n2 ∈ N and r ∈ R.

Let R and S be two semirings. A commutative semigroup M is called an R-
S-bisemimodule if it is both a left R-semimodule and a right S-semimodule and
satisfies (rm)s = r(ms), for all r ∈ R,m ∈ M, s ∈ S, denoted by RMS. For RMS

and RNS, if a semigroup homomorphism f : M → N satisfies rf(m)s = f(rms),
then f is called bisemimodule homomorphism. Let RHomS(M, N) be the set of all
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bisemimodule homomorphisms from M to N. Denote by R-Mod-S the category
of all R-S-bisemimodules together with bisemimodule homomorphisms.

Let M be an S-R-bisemimodule and let N be a left R-semimodule. The
tensor product M ⊗R N is a left S-semimodule with action

s ·
(

n∑
i=1

mi ⊗ ni

)
=

n∑
i=1

s ·mi ⊗ ni;

Similarly, let M be a right R-semimodule and N be an R-S-bisemimodule, then
M ⊗R N is a right S-semimodule with action

(
n∑

i=1

mi ⊗ ni

)
· s =

n∑
i=1

mi ⊗ ni · s,

where s ∈ S,mi ∈ M, ni ∈ N.
For an R-S-bisemimodule M and a left R-semimoduleN, we have that

HomR(M, N) is a left S-semimodule with action (s · f)(m) = f(m · s); For an
S-R-bisemimodule M and a right R-semimodule N, we have that HomR(M, N) is a
right S-semimodule with action (f ·s)(m) = f(s·m); For a right R-semimodule and
an S-R-bisemimodule N, we have that HomR(M, N) is a left S-semimodule with
action (s·f)(m) = sf(m); For a left R-semimodule M and a R-S-bisemimodule N,
we have that HomR(M, N) is a right S-semimodule with action (f ·s)(m) = f(m)s,
for all s ∈ S, f ∈ HomR(M, N),m ∈ M.

3. Morita equivalence for semirings with slu

In paper [10], Katsov proved that the tensor product functor − ⊗R B and Hom
functor HomS(B,−) are adjoint pair, where R and S are semirings with identity
and B ∈ R-Mod-S. In the following, we will prove that the statement also holds
when R and S are semirings without identity.

Let R] be the smallest congruence on a semigroup S containing the relation
R. For a, b ∈ S, if there exist u, v ∈ S

⋃{1} such that

a = ucv, b = udv,

where (c, d) ∈ R or (d, c) ∈ R, we say that a is connected to b by an elementary
R-transition [8].

Proposition 1. [8] Let S be a semigroup and let R be a relation on S. For
a, b ∈ S, we have (a, b) ∈ R] ⇔ one of the two conditions holds:

(1) a = b.

(2) there exists a sequence

a = c1 → c2 → · · · → cn = b

of elementary R-transitions connecting a to b, where n is a positive integer.
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Lemma 1. Let R and S be two semirings. Assume g : A → HomS(B,C) is an
R-semimodule homomorphism, where A ∈ R-Mod, B ∈ S-Mod-R and C ∈ S-Mod.
For all a ∈ A, we write g(a) = ga. Then

(1) If (b, a) is connected to (b
′
, a

′
) by an elementary σ-transition, where σ is the

relation defined in Definition 1, we have ga(b) = ga′ (b
′
).

(2) We can define an S-semimodule homomorphism g
′

: B ⊗R A → C by

g
′
(

n∑
i=1

bi ⊗ ai

)
=

n∑
i=1

gai
(bi).

Proof. (1) Suppose (b, a) and (b
′
, a

′
) is connected by by an elementary σ-

transition. Let S(B×A) be the commutative free semigroup generated by B×A.
There exists (x, y) belongs to S(B × A)

⋃{(0, 0)} such that

(b, a) = (x, y) + (c, d),

(b′, a′) = (x, y) + (c′, d′),

where ((c, d), (c′, d′)) ∈ σ or ((c′, d′), (c, d)) ∈ σ.
Since B×A is the generating set and the elements in B×A are independent,

we have (x, y) = (0, 0). This implies that ((b, a), (b′, a′)) ∈ σ or ((b′, a′), (b, a)) ∈ σ.
Without loss of generality, we assume ((b, a), (b′, a′)) ∈ σ. Note that (b, a) and
(b′, a′) are independent, there exists r ∈ R such that b = b′r, ra = a′. Since g is an
R-semimodule homomorphism, we have r · g(a) = g(r · a), for all a ∈ A. Then, we
get r · ga = gra. Hence, we have

ga(b) = ga(b
′r) = (rga)(b

′) = gra(b
′) = ga′(b

′).

(2) If b1 ⊗ a1 = b2 ⊗ a2, then (b1, a1) = (b2, a2) or (b1, a1) is connected
to (b2, a2) by an elementary σ-transition by Proposition 1. By part (1), we

have ga1(b1) = ga2(b2). On the other hand, if b ⊗ a =
n∑

i=1

bi ⊗ a, then we have
(

(b, a),

(
n∑

i=1

bi, a

))
∈ σ and b =

n∑
i=1

bi. This concludes that ga(b) =
n∑

i=1

ga(bi).

Similarly, if b ⊗ a =
n∑

i=1

b⊗ ai, we get ga(b) =
n∑

i=1

gai
(b). Then we prove that g

′
is

well-defined.
For all s ∈ S, we have

g
′
(s

n∑
i=1

bi⊗ai) = g
′
(

n∑
i=1

sbi ⊗ ai

)
=

n∑
i=1

gai
(sbi) = s

n∑
i=1

gai
(bi) = sg

′
(

n∑
i=1

bi ⊗ ai

)
.

Therefore, g
′
is an S-semimodule homomorphism.

Theorem 1. Let R and S be two semirings. For A ∈ R-Mod, B ∈ S-Mod-R and
C ∈ S-Mod, there is a semigroup isomorphism

∆ : HomS(B ⊗R A,C) ∼= HomR(A,HomS(B, C)).
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Similarly, for A ∈ Mod-R, B ∈ R-Mod-S and C ∈ Mod-S, there is a semigroup
isomorphism

Ω : HomS(A⊗R B,C) ∼= HomR(A,HomS(B, C)).

Proof. We only prove the first isomorphism. If f ∈ HomS(B ⊗R A,C), for
all a ∈ A, we can define a map fa : B → C by fa(b) = f(b ⊗ a). Then we
can check that the map f̄ : A → HomS(B, C) by putting f̄(a) = fa is an S-
semimodule homomorphism. It is a routine procedure to check that ∆ : f 7→ f̄ is
a homomorphism.

Now, we exhibit the inverse of ∆. Define ∆−1 : HomR(A, HomS(B, C)) →
HomS(B ⊗R A,C) by putting ∆(g) = g

′
, where g

′
is defined as in Lemma 1.

Hence, ∆ is a semigroup isomorphism.

By Theorem 1, we have that (− ⊗R B, HomS(B,−)) is an adjoint pair. We
write L = −⊗R B and K = HomS(B,−). Hence, we have the following canonical
transformations

υ : LK → IdMod-S and η : IdMod-R → KL

such that
υC(ϕ⊗ b) = ϕ(b) and ηA(a)(b) = a⊗ b,

where ϕ ∈ HB, b ∈ B and a ∈ A.
In particular, we take A = B = S = R, then we have υC : HomR(R, C) ⊗R

R → R by putting υC

(
n∑

i=1

ϕi ⊗ ri

)
=

n∑
i=1

ϕi(ri), where C ∈ Mod-R.

Let R be a semiring and C ∈ Mod-R. For c ∈ C, we define λc : R → C by
putting λc(r) = cr. Then λc ∈ HomR(R, C). For all ϕ ∈ HomR(R, C), r ∈ R, since

(ϕ · r)(a) = ϕ(ra) = ϕ(r)a = λϕ(r)(a),

where a ∈ R, we have ϕ · r = λϕ(r).

Definition 2. Let R be a semiring and E be an idempotents set of R. If for any
finite number of elements r1, ..., rn ∈ R, there exists e ∈ E such that

er1 = r1 = r1e, ..., ern = rn = rne,

then E is called a set of local units of R (abbreviated slu). In this case, we say R
is a semiring with slu.

Obviously, if R is a semiring with 1, then R is a semiring with slu. If R is
an idempotent commutative (multiplication) semiring, by induction, we can prove
that R is a semiring with slu.

Theorem 2. Let R be a semiring with local units. Then we have EndR(R)⊗RR ∼=
R as R-semimodules.
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Proof. For all r ∈ R, there exists e ∈ E such that er = re = r. Define µR : R →
EndR(R)⊗RR by putting µR(r) = λr⊗ e. Suppose f ∈ E with rf = fr = r. Since
λr = λe · r, we have

λr ⊗ e = λe · r ⊗ e = λe ⊗ re = λe ⊗ r = λe ⊗ rf = λe · r ⊗ f = λr ⊗ f.

This proves that µR is independent of the choice of the idempotent. Suppose
r1, ..., rn ∈ R. There exists e ∈ E such that

er1 = r1, ..., ern = rn.

Then

µR

(
n∑

i=1

ri

)
= λ n∑

i=1
ri

⊗ e =
n∑

i=1

λri
⊗ e =

n∑
i=1

µR(ri).

For all r ∈ R, a ∈ R, there exists e ∈ E such that re = er = r, ea = ae = a. Then

µR(ar) = λar ⊗ e = λa · r ⊗ e = λa ⊗ re = λa ⊗ er = (λa ⊗ e)r = µR(a)r.

This proves that µR is an R-semimodule homomorphism. Also, we can easily
check that µR is the inverse of the map υR. So we have that υR is an isomorphism.
That is, EndR(R)⊗RR ∼= R as R-semimodule.

Let R be a semiring with slu and M ∈ Mod-UR. We denote by

Mod-FR = {M ∈ Mod-UR|υM is an isomorphism}.

Definition 3. Let R and S be two semirings with slu. We say that R and S are
Morita equivalent, if the two subcategories Mod-FR and Mod-FS are equivalent.

Analogous to Theorem 6.1 in [20], we have the following.

Theorem 3. Let R and S be two semirings with slu and G : Mod-FR 
Mod-FS : H are equivalent functors. Set U = H(S) and V = G(R). Then
the following conditions hold:

(1) G ∼= HomR(U,−)⊗SS, H ∼= HomS(V,−)⊗RR;

(2) U ∼= HomS(V, S)⊗RR, V ∼= HomR(U,R)⊗SS as bisemimodules.

Proof. For r ∈ R, we have λr ∈ EndR(R). Then G(λr) ∈ EndS(G(R)) =
EndS(V ). For r ∈ R, v ∈ V, defining r · v = G(λr)(v). It is easy to check that V
is an R-S-bisemimodule. Similarly, we have that U is an S-R-bisemimodule.

(1) Since G and H are equivalent functors, we have

HomS(S,G(M)) ∼= HomR(H(S), M) = HomR(U,M),

For all M ∈ Mod-FR. We obviously have G(M) ∈ Mod-FS. By the definition of
Mod-FS, we have

G(M) ∼= HomS(S, G(M))⊗S S.



morita equivalence for semirings without identity 501

Then G(M) ∼= HomR(U,M) ⊗S S. This proves that G ∼= HomR(U,−) ⊗S S.
Similarly, we have H ∼= HomS(V,−)⊗RR.

(2) Let Γ : G −→ HomR(U,−) ⊗S S be the natural isomorphism. We know
that ΓR is a right S-isomorphism. There exists a commutative diagram:

G(R)(= V )
G(λr) //

ΓR

²²

G(R)(= V )

ΓR

²²
HomR(U,R)⊗S S

HomR(U,λr)⊗SIdS

// HomR(U,R)⊗S S,

where
(HomR(U, λr)⊗S IdS)(ϕ⊗ t) = λrϕ⊗ t.

Since λrϕ(u) = rϕ(u) = (r · ϕ)(u), for all u ∈ U, we have λrϕ = r · ϕ. Hence, we
have

(HomR(U, λr)⊗S IdS)(ϕ⊗ t) = λrϕ⊗ t = r · ϕ⊗ t = r · (ϕ⊗ t).

This concludes that (HomR(U, λr)⊗S IdS)ΓR(v) = r · ΓR(v), for all v ∈ V. Using
the commutative diagram, we have

ΓR(rv) = ΓR(G(λr)(v)) = (HomR(U, λr)⊗S IdS)ΓR(v) = r(ΓR(v)).

It follows that ΓR is a left R-semimodule homomorphism. This proves that V ∼=
HomR(U,R)⊗SS as S-R-bisemimodules. Similarly, we have U ∼= HomS(V, S)⊗RR
as R-S-bisemimodules.

4. Morita context for semirings

In the following, we study the Morita context in semiring settings.

Definition 4. Let R and S be two semirings (not necessarily with slu). If there
exist commutative semigroups U and V, such that

(1) U is an R-S-bisemimodule, V is an S-R-bisemimodule;

(2) there are bisemimodule homomorphisms τ : U⊗SV → R and µ : V ⊗R U → S
written corresponding as

τ(u⊗ v) = 〈u, v〉 , µ(v ⊗ u) = [v, u]

such that

〈u1, v〉 · u2 = u1 · [v, u2], [v1, u] · v2 = v1 · 〈u, v2〉

for each u, u1, u2 ∈ U, v, v1, v2 ∈ V.

Then (R, S, U, V, τ, µ) is called a Morita context.
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Analogous to Theorem 1 in [18], we get the following theorem.

Theorem 4. Let U and V be two commutative semigroups. Then the following
two conditions are equivalent:

(1) There exist two semirings R and S such that (R, S, U, V, τ, µ) is a Morita
context.

(2) There exist semigroup homomorphisms Φ : U ⊗Z V ⊗Z U → U and
Ψ : V ⊗Z U ⊗Z V → V such that

(I) Φ(Φ(u1 ⊗ v1 ⊗ u2)⊗ v2 ⊗ u3) = Φ(u1 ⊗Ψ(v1 ⊗ u2 ⊗ v2)⊗ u3)
= Φ(u1 ⊗ v1 ⊗ Φ(u2 ⊗ v2 ⊗ u3));

(II) Ψ(Ψ(v1 ⊗ u1 ⊗ v2)⊗ u2 ⊗ v3) = Ψ(v1 ⊗ Φ(u1 ⊗ v2 ⊗ u2)⊗ v3)
= Ψ(v1 ⊗ u1 ⊗Ψ(v2 ⊗ u2 ⊗ v3)).

Proof. (1) ⇒ (2) : Suppose that (R, S, U, V, τ, µ) is a Morita context. Define
Φ : U ⊗Z V ⊗Z U → U and Ψ : V ⊗Z U ⊗Z V → V by putting Φ(u1 ⊗ v1 ⊗ u2) =
τ(u1 ⊗ v1) · u2 and Ψ(v1 ⊗ u1 ⊗ v2) = µ(v1 ⊗ u1) · v2. We can easily check that Φ
and Ψ satisfy the two conditions in 2).

(2) ⇒ (1) : Define Fa : U → U by putting Fa(u) = Φ(a ⊗ u) and define
Gb : V → V by putting Gb(v) = Ψ(b ⊗ v), where a ∈ U ⊗Z V and b ∈ V ⊗Z U.
Then Fa and Gb are semigroup homomorphisms.

We write F = {Fa|a ∈ U ⊗Z V } and G = {Rb|b ∈ V ⊗Z U}. For all
Fu1⊗v1 , Fu2⊗v2 ∈ F , for all w ∈ U, we have

Fu1⊗v1Fu2⊗v2(w) = Φ(u1 ⊗ v1 ⊗ Φ(u2 ⊗ v2 ⊗ w))
= Φ(Φ(u1 ⊗ v1 ⊗ u2)⊗ v2 ⊗ w)
= FΦ(u1⊗v1⊗u2)⊗v2(w).

That is, Fu1⊗v1Fu2⊗v2 = FΦ(u1⊗v1⊗u2)⊗v2 ∈ F . It is easy to check that Fa + Fb =
Fa+b ∈ F and multiplication distributes over addition from either side. Hence,
F is a subsemiring of ZEndZ(U). Similarly, we have that G is a a subsemiring of

ZEndZ(V ).
For all u ∈ U, Fa ∈ F , Gb ∈ G, define Fa ·u = Φ(a⊗u) and u ·Gb = Φ(u⊗ b).

Then we can check that U is a F -G-bisemimodule. Similarly, for all v ∈ V, we can
define Gb · v = Ψ(b⊗ v) and v · Fa = Ψ(v ⊗ a). Then V is a G-F -bisemimodule.

Now, we define α : U ⊗G V → F and β : V ⊗F U → G by putting α(u⊗ v) =
Fu⊗v and β(v⊗u) = Gv⊗u, where u ∈ U and v ∈ V. It is easy to check that α and
β are both bisemimodule homomorphisms. Then

α(u1 ⊗ v) · u2 = Fu1⊗v · u2 = Φ(u1 ⊗ v ⊗ u2) = u1 ·Gv⊗u2 = u1β(v ⊗ u2).

Similarly, we have
β(v1 ⊗ u)v2 = v1α(u⊗ v2).

Then (F ,G, U, V, α, β) is a Morita context.
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Definition 5. Let R and S be two semirings with slu. A Morita context
(R,S, U, V, τ, µ) is called unital, if U is a unital R-S-bisemimodule and V is a
unital S-R-bisemimodule.

Lemma 2. Let (R,S, U, V, τ, µ) be a unital Morita context. For any u1, ..., un ∈ U
and v1, ..., vm ∈ V, then

(1) there exists idempotent e ∈ R such that eui = ui and vje = vj, for all
i = 1, · · · , n; j = 1, ..., m.

(2) there exists idempotent f ∈ S such that uif = ui and evj = vj, for all
i = 1, ..., n; j = 1, ..., m.

Proof. (1) Since U and V are unital, for every i and j, there exist ai ∈ U, bj ∈ V,
xi ∈ R, yj ∈ S such that

ui = xiai, vj = bjyj.

Since R is a semiring with slu, there exists an idempotent e ∈ R such that exi = xi

and yje = yj. Then we can prove the result.
Similarly, we can prove (2).

We extend Lemma 3.15 in [17] to semiring settings.

Lemma 3. Let (R, S, U, V, τ, µ) be a unital Morita context. If τ and µ are
surjective, then τ and µ are isomorphisms.

Proof. Firstly, we show that τ is injective. Suppose

τ
( ∑

i

ui ⊗ vi

)
= τ

( ∑
j

u′j ⊗ v′j
)
, i.e.,

∑
i

〈ui vi〉 =
∑

j

〈
u′j, v

′
j

〉
.

There exist idempotents e, f ∈ R such that eui = ui and v′jf = v′j by Lemma 2.
Since τ is surjective, we can assume that

τ
( ∑

k

ak ⊗ bk

)
= e and τ

( ∑

l

cl ⊗ dl

)
= f.

Then we have

∑
i

ui ⊗ vi = τ
( ∑

k

ak ⊗ bk

) ∑
i

ui ⊗ vi =
∑
k

∑
i

〈ak, bk〉ui ⊗ vi

=
∑
k

∑
i

ak[bk, ui]⊗ vi =
∑
k

∑
i

ak ⊗ [bk, ui]vi

=
∑
k

∑
i

ak ⊗ bk 〈ui, vi〉 =
∑
k

ak ⊗ bk

∑
i

〈ui, vi〉

=
∑
k

ak ⊗ bk

∑
j

〈
u′j, v

′
j

〉
=

∑
k

〈ak, bk〉
∑
j

u′j ⊗ v′j

= e
∑
j

u′j ⊗ v′j.
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Similarly, we have
∑
j

u′j ⊗ v
′
j =

( ∑
i

ui ⊗ vi

)
f. So we have

∑
i

ui ⊗ vi = e
∑

j

u′j ⊗ v′j = e
( ∑

i

ui ⊗ vi

)
f =

( ∑
i

ui ⊗ vi

)
f =

∑
j

u′j ⊗ v′j.

This proves that τ is injective. Similarly, we can prove that µ is injective.

Let R be a semiring with slu. Define τ : R ⊗R R → R by τ(r1 ⊗ r2) = r1r2,
then (R,R, R, R, τ, τ) is a unital Morita context and τ is surjective. Hence, we
have R⊗R R ∼= R by Lemma 3.

Theorem 5. Let U and V be two commutative semigroups. Then the following
two conditions are equivalent:

(1) There exist two semirings R and S with slu such that (R, S, U, V, τ, µ) is a
unital Morita context and τ and µ are surjective.

In this case, −⊗RV : Mod-FR  Mod-FS : −⊗S U are equivalent functors.

(2) There exist surjective semigroup homomorphisms Φ : U ⊗ V ⊗ U → U and
Ψ : V ⊗U ⊗V → V satisfy the two conditions in part (2) of Theorem 4 and

(III) For any finite elements xk ∈ U, yl ∈ V, k = 1, 2, ..., n, l = 1, 2, ...,m,
there exist finite elements ui ∈ U, vi ∈ V such that

(i) Φ(
∑
i

(ui ⊗ vi)⊗ xk) = xk;

(ii) Ψ(yl ⊗
∑
i

(vi ⊗ ui)) = yl;

(iii)
∑
i

Φ(
∑
i

(ui ⊗ vi)⊗ ui)⊗ vi =
∑
i

(ui ⊗ vi).

IV) For any finite elements xk ∈ U, yl ∈ V, k = 1, 2, ..., n, l = 1, 2, ...,m,
there exist finite elements u

′
i ∈ U, v

′
i ∈ V such that

(i) Ψ(
∑
i

(v
′
i ⊗ u

′
i)⊗ y) = y;

(ii) Φ(x⊗∑
i

(u
′
i ⊗ v

′
i)) = y;

(iii)
∑
i

Ψ(
∑
i

(v
′
i ⊗ u

′
i)⊗ v

′
i)⊗ u

′
i =

∑
i

(v
′
i ⊗ u

′
i).

Proof. (1) ⇒ (2) : For any finite elements xk ∈ U, yl ∈ V, k = 1, 2, ..., n,
l = 1, 2, ..., m, by Lemma 2, there exists an idempotent e ∈ R with exk = xk = xke
and eyl = yl = yle. Since τ is surjective, there exist finite elements ui ∈ U, vi ∈ V
such that τ(

∑
i

(ui ⊗ vi)) = e. Then we have

Φ
( ∑

i

(ui ⊗ vi)⊗ xk

)
= τ

( ∑
i

ui ⊗ vi

)
· xk = exk = xk

and

Ψ
(
yl ⊗

∑
i

(vi ⊗ ui)
)

=
∑

i

µ(yl ⊗ vi)⊗ ui =
∑

i

ylτ(vi ⊗ ui) = yle = yl.
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Since e = τ(
∑
i

ui ⊗ vi) is an idempotent, we have

τ
(
e
( ∑

i

ui ⊗ vi

))
= eτ

( ∑
i

ui ⊗ vi

)
= τ

( ∑
i

ui ⊗ vi

)
.

As τ is an isomorphism, we get that e(
∑
i

ui ⊗ vi) =
∑
i

ui ⊗ vi. Then

∑
i

Φ
( ∑

i

(ui ⊗ vi)⊗ ui

)
⊗ vi =

∑
i

(
τ
( ∑

i

ui ⊗ vi

)
ui

)
⊗ vi

= τ
( ∑

i

ui ⊗ vi

) ∑
i

ui ⊗ vi

= e
∑
i

ui ⊗ vi =
∑
i

ui ⊗ vi.

This proves that (III) holds. Similarly, we can prove that (IV) holds.
Suppose that (R, S, U, V, τ, µ) is a unital Morita context and τ and µ are

surjective. For all X ∈ Mod-FS, we have HomS(S, X) ⊗S S ∼= X. Since S is a
semirng with slu, we have S ⊗S S ∼= S. So we get X ⊗S S ∼= X. Then

(X ⊗S V )⊗R U ∼= X ⊗S (V ⊗R U) ∼= X ⊗S S ∼= X.

Similarly, for all Y ∈ Mod-FR, we have (Y ⊗R U)⊗R V ∼= Y.

Then −⊗R V : Mod-FR  Mod-FS : −⊗S U are equivalent functors.
(2) ⇒ (1) : For all Fa1⊗b1 , · · · , Fan⊗bn ∈ F , by condition (III), there exist finite

elements ui ∈ U, vi ∈ V such that Φ(
∑
i

(ui⊗vi)⊗ak) = ak, Ψ(bl⊗
∑
i

(vi⊗ui)) = bl

and
∑
i

Φ(
∑
i

(ui ⊗ vi)⊗ ui)⊗ vi =
∑
i

(ui ⊗ vi). Hence,

F∑
i

(ui⊗vi)Fak⊗bl
= FΦ(

∑
i

(ui⊗vi)⊗ak)⊗bl
= Fak⊗bl

;

Fak⊗bl
F∑

i
(ui⊗vi) = F∑

i
Φ(ak⊗bl⊗ui)⊗vi

= Fak⊗Ψ(bl⊗
∑
i

(ui⊗vi)) = Fak⊗bl
;

F∑
i

(ui⊗vi)F
∑
i

(ui⊗vi) = F∑
i

Φ(
∑
i

(ui⊗vi)⊗ui)⊗vi
= F∑

i
(ui⊗vi).

This shows that F is a semiring with slu. Similarly, we have that G is a semiring
with slu.

Since Φ and Ψ are surjective, we obviously have that U and V are unital as
bisemimodules and α and β are surjective. Hence, (F ,G, U, V, α, β) is a unital
Morita context.

5. Applications to semirings with identity

Let R be a semiring with 1. For all M ∈ Mod-R, we have HomR(R,M) ⊗R R ∼=
HomR(R,M) ∼= M. Hence, Mod-FR = Mod-R. By Theorem 3, we have the
following statement.
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Theorem 6. Let R and S be two semirings with identity and G : Mod-R 
Mod-S : H are equivalent functors. Let U = H(S) and V = G(R). Then we have
the following:

(1) G ∼= HomR(U,−), H ∼= HomS(V,−);

(2) U ∼= HomS(V, S), V ∼= HomR(U,R) as bisemimodules.

Proof. (1) Since R is a semiring with identity and U is a unital semimodule, we
have HomR(U,N) is also a unital semimodule, for all N ∈ Mod-S. This implies
that

G ∼= HomR(U,−)⊗SS ∼= HomR(U,−).

Similarly, we have H ∼= HomS(V,−).

(2) is obvious.

Using Theorem 5, we can get the following theorem.

Theorem 7. Let U and V be two commutative semigroups. Then the following
two conditions are equivalent:

(1) There exist two semirings with identity R and S such that (R,S, U, V, τ, µ)
be a unital Morita context and τ and µ are surjective. In this case, −⊗R V :
Mod-R  Mod-S : −⊗S U are equivalent functors.

(2) There exist surjective semigroup morphisms Φ : U ⊗Z V ⊗Z U → U and
Ψ : V ⊗Z U ⊗Z V → V satisfy the two conditions in part (2) of Theorem 4
and

(III)′ There exist finite elements ui ∈ U, vi ∈ V such that

Φ(
∑
i

(ui⊗ vi)⊗x) = x and Ψ(y⊗∑
i

(vi⊗ui)) = y, for all x ∈ U, y ∈ V.

(IV)′ There exist finite elements u
′
i ∈ U, v

′
i ∈ V such that

Ψ(
∑
i

(v
′
i⊗u

′
i)⊗y) = y and Φ(x⊗∑

i

(u
′
i⊗v

′
i)) = x, for all x ∈ U, y ∈ V.

Proof. (1) ⇒ (2) : Suppose 1R = τ(
∑
i

ui⊗vi). Analogous to the proof of Theorem

5, we can get that condition (III)′ is valid. Suppose 1S = τ(
∑
i

v
′
i ⊗ u

′
i). We can

prove that condition (IV)′ is valid.
(2) ⇒ (1) : For all Fu⊗v ∈ F , we have

F∑
i

(ui⊗vi)Fu⊗v = Fu⊗vF∑
i

(ui⊗vi) = Fu⊗v.

This proves that F∑
i

(ui⊗vi) is the identity of F . Similarly, we can prove that G has

identity. Using Theorem 5, we can prove the statement.

The following theorem generalizes the corresponding result in semigroup theory
to semiring theory.
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Theorem 8. Let R and S be two semirings with identity and the two semirings
are equivalent as Theorem 6. We identify V with U∗ = HomR(U,R) and S with
EndR(U). Define τ : U∗⊗RU → R given by τ(ϕ⊗u) = 〈ϕ, u〉 and µ : U ⊗S U∗ → S
given by µ(u⊗ϕ) = [u, ϕ], where [u, ϕ]u′ = u 〈ϕ, u′〉 . Then (R, S, U, V, τ, µ) defines
a Morita context.

Proof. We can easily check that τ and µ are both bisemimodule homomorphisms.
For all ψ ∈ U∗, u, u

′ ∈ U, then

〈
ψ[u, ϕ], u

′〉
=

〈
ψ, [u, ϕ]u

′〉
=

〈
ψ, u

〈
ϕ, u

′〉〉

= 〈ψ, u〉 〈ϕ, u
′〉

=
〈〈ψ, u〉ϕ, u

′〉
.

This proves that ψ[u, ϕ] = 〈ψ, u〉ϕ. Hence, (R, S, U, V, τ, µ) is a Morita context.
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