RECOGNIZING CHEVALLEY GROUPS $G_2(q)$ BY nse

Shitian Liu
School of Science
Sichuan University of Science and Engineering
Zigong Sichuan, 643000
China
e-mail: liust@suse.edu.cn

Zhanghua Zhang
Sichuan Water Conservancy Vocational College
Chongzhou Chengdu, 611231
China
e-mail: 243512561@qq.com

Abstract. Let $G_2(q)$ be a Chevalley group over a finite field $K = F_q$ of characteristic p. For a group G, let $\omega(G)$ be the set of element orders of G and s_k be the number of elements of order k in G. In this note, we give a new characterization of some special Chevalley groups $G_2(q)$ by nse.

Keywords and Phrases: Element order, Alternating group, Thompson’s conjecture, Conjugacy classes, Simple group.

AMS Subject Classification: 20D05, 20D06, 20D20.

1. Introduction

For a finite group G, let $\omega(G)$ be the set of element orders of G. If $k \in \omega(G)$ and s_k be the number of elements of order k in G, then let $nse(G) = \{s_k | k \in \omega(G)\}$. J. G. Thompson put forward a very interesting problem related to algebraic number fields as follows (see [22], for instance).

Thompson’s Problem. Let $T(G) = \{(n, s_n) | n \in \omega(G) \text{ and } s_n \in nse(G)\}$, where s_n is the number of elements with order n. Suppose that $T(G) = T(H)$. If G is a finite solvable group, is it true that H is also necessarily solvable?

So, some authors consider these cases (see [14], [19], and [20]).

If we consider only $nse(G)$, then whether can it characterize finite simple groups? Some groups $PSL(2, r)$ and S_r, where r is a prime and S_r is a symmetric group of degree r, are proved valid by nse (see [2], [3]). Recently, alternating
groups A_p of special class under condition that $p \mid |G|$ but $p^2 \nmid |G|$, are characterized by nse only (see [1]). In this note, we give a new characterization of Chevalley groups $G_2(q)$ where $q \equiv -1 \mod 3$ and q is odd. In fact, we have the following.

Main theorem. Let p be a prime and $p = q^2 + q + 1$ such that q is odd and $q \equiv -1 \mod 3$. Assume that $p \mid |G|$. If nse$(G) = nse(G_2(q))$, then G is isomorphic to $G_2(q)$.

Some notations are introduced. All groups considered are finite and p is a prime. For a natural number n, let $\pi(n)$ be the set of prime divisors of n. We denote by $\pi(G)$ the set of prime divisors of $|G|$ and by $\omega(G)$ the set of element orders of G. We also denote the number of elements of order k in G by s_k and let nse$(G) := \{s_k : s_k \in \omega(G)\}$. If there is no ambiguity, we write s_k instead of $s_k(G)$. Let $GK(G)$ be a graph with vertex set $\pi(G)$ such that two primes p and q in $\pi(G)$ are joined by an edge if G has an element of order $p \cdot q$. We set $s(G)$ denote the number of connected components of the prime graph $GK(G)$ and let $m_1, m_2, \ldots, m_{s(G)}$ be the connected components of $GK(G)$. If $2 \in \pi(G)$, we assume that $2 \in m_1(G)$. $|G|$ can be expressed as a product of co-prime positive integers OC_2, $i = 1, 2, \ldots, s(G)$. The sets of order components of finite simple groups with disconnected prime graph can be obtained by [12] and [26]. Let r be a prime. Then we denote the number of the Sylow r-subgroup G_r of G by $n_r(G)$ or n_r. Also, $|x^G|$ denotes the order of conjugacy class of x in G. The other notations are standard (see [7], for instance).

2. Some preliminary results

In this section, we give some lemmas which will be used to prove the main theorem.

Lemma 1. Let G be a finite group and m be a positive integer dividing $|G|$. If $L_m(G) = \{g \in G | g^m = 1\}$, then $m \mid |L_m(G)|$.

Proof. See [8].

Lemma 2. Let G be a group containing more than two elements. If the maximal numbers of elements of the same order in G is finite, then G is finite and $|G| \leq s(s^2 - 1)$.

Proof. See [21].

Lemma 3. Let G be a group and P be a cyclic Sylow p-subgroup of G of order p^a. If there is a prime r such that $p^r \in \omega(G)$, then $s_{p^r} = s_r(C_G(P))s_{p^r}$. In particular, $\phi(r)s_{p^r} \mid s_{p^r}$, where $\phi(r)$ is the Euler function of r.

Proof. See [18].

Lemma 4. Let $q > 1$ be an integer, m be a nature number, and p be an odd prime. If p divides $q - 1$, then $q^m - 1 \mid m_p \cdot (q - 1)_p$.
Proof. See Lemma 8(1) of [9].

Lemma 5. Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p-subgroup of G and $n = p^s m$ with $(p, m) = 1$. If P is not cyclic and $s > 1$, then the number of elements of order n is always a multiple of p^s.

Proof. See [15].

Lemma 6. Let a, b and n be positive integers such that $(a, b) = 1$. Then there exists a prime p with the following properties:

- p divides $a^n - b^n$,
- p does not divide $a^k - b^k$ for all $k < n$,

with the following exceptions: $a = 2, b = 1; n = 6$ and $a + b = 2^k; n = 2$.

Proof. See [24].

Remark 7. If $b = 1$, the prime p is called the Zsigmondy prime. If p is a Zsigmondy of $a^n - 1$, then Fermat's little theorem shows that $n \mid p - 1$. Put $Z_n(a) = \{p : p$ is a Zsigmondy prime of $a^n - 1 \}$. If $r \in Z_n(a)$ and $r \mid a^n - 1$, then $n \mid m$.

Lemma 8. If G is a finite group such that $t(G) \geq 2$, then G has one of the following structures:

1. G is a Frobenius group or 2-Frobenius group;
2. G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(G/K) \cup \pi(H) \subseteq \pi_1$ and K/H is a non-abelian simple group. In particular, H is nilpotent, $G/K \leq \text{Out}(K/H)$ and the odd order components of G are the odd order components of K/H.

Proof. See [23].

Lemma 9. Let G be a Frobenius group of even order with kernel K and complement H. Then $s(G) = 2$, the prime graph components of G are $\pi(H)$ and $\pi(K)$ and the following assertions hold:

1. K is nilpotent;
2. $|K| \equiv 1(\text{mod } |H|)$.

Proof. See [6].

Lemma 10. Let G be a 2-Frobenius group, i.e., G is a finite group and has a normal series $1 \leq H \leq K \leq G$ such that K and G/H are Frobenius groups with kernels H and K/H, respectively. Then:

1. $t(G) = 2$, $\pi_1 = \pi(G/K) \cup \pi(H)$ and $\pi_2 = \pi(K/H)$;
2. G/K and K/H are cyclic, $|G/K| \mid (|K/H| - 1)$ and $G/K \leq \text{Aut}(K/H)$.
Proof. See [6].

Lemma 11. Let G be a finite non-abelian simple group and p is the largest prime divisor of $|G|$ with $p \mid |G|$. Then $p \nmid |\text{Out}(G)|$.

Proof. See [13].

3. Some information for $G_2(q)$

Let $\sum = \{\pm \xi_i, \xi_i - \xi_j \mid 1 \leq i, j \leq 3, i \neq j\}$ (where $\xi_1 + \xi_2 + \xi_3 = 0$) be the root system of type G_2, and choose $a = \xi_2, b = \xi_1 - \xi_2$ for a fundamental system of roots.

Let χ be a homomorphism of the root module P_0 (i.e. P_0 is the additive group generated by the roots) into the multiplicative group K^*. Put $\chi(\xi_i) = z_i, i = 1, 2, 3$. Then the element $h(\chi_1)$ of Cartan subgroup H associated with H will be denoted by $h(z_1, z_2, z_3)$. For each $r \in \sum$, there exists uniquely a homomorphism ϕ_r of $\text{SL}(2, K)$ into G such that $\phi_r\left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array}\right) = x_r(t), \phi_r\left(\begin{array}{cc} 1 & 0 \\ t & 1 \end{array}\right) = x_{-r}(t)$ for every $t \in K$. Let ω be an element of order 3 in K and $y_i \in P$ where P is a parabolic subgroup of G. Let $2 < q \equiv \epsilon \mod 3$ and assume that q is odd.

We know that $\text{m}_1(G_2(q)) = q^3(q^3 - \epsilon)(q^2 - 1)(q + \epsilon)$ and $\text{m}_2(G_2(q)) = q^2 - \epsilon q + 1$.

Lemma 1. In case $p \neq 2, 3$, the representatives and the orders of the centralizers in $G_2(q)$ are given by Table 1.

Proof. See [5].

Lemma 2. Let $L = G_2(q)$ with that q is odd and $q \equiv -1 \mod 3$. Let $p = q^2 + q + 1$ be a prime. Then

\[
\text{s}_p(L) = \sum_{|x|=p, x \neq 1} |x^L| = \frac{q^2 + q}{6(q^2 + q + 1)}|L|.
\]

Proof. Let $p = q^2 + q + 1$. Then from Lemma 1, we know that the order of the centralizers of an p-element in L is of order p and the number of the conjugacy classes of p-elements in L is $\frac{1}{6}(q^2 + q - 1 - \epsilon)$. Let $q \equiv -1 \mod 3$. Since $s_p(L) = \sum_{|x|=p, x \neq 1} |x^L|$, and $\epsilon = -1$, then

\[
s_p(L) = \frac{q^2 + q}{6(q^2 + q + 1)}|L|.
\]

Lemma 3. For $u \neq p$, then for every $u \in \omega(L), p \mid s_u(L)$.

Proof. It is easy to get from Lemma 1, that $p \mid s_u(L)$ for all $u \in \omega(L)$ such that $u \neq p$.

Let n denote the number of conjugacy classes and Z the order of centralizers of elements of G, respectively.
Table 1. The representatives and the orders of the centralizers in case $p \neq 2,3$

<table>
<thead>
<tr>
<th>Representatives</th>
<th>n</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(-1,-1,1)$</td>
<td>$q^6(q^2-1)(q^6-1)$</td>
<td></td>
</tr>
<tr>
<td>$h(\omega,\omega,\omega)$</td>
<td>1</td>
<td>$q^3(q^2-1)^2$</td>
</tr>
<tr>
<td>$h(z,z^{-1},1)$, $z^{q-1} = 1$, $z^2 \neq 1$</td>
<td>q^2-3</td>
<td>$q(q-1)^2(q+1)$</td>
</tr>
<tr>
<td>$h(z^{-1},z^{-1},z^2)$, $z^{q-1} = 1$, $z^2 \neq 1$, $z^3 \neq 1$</td>
<td>$q^2-1-\epsilon$</td>
<td>$q(q-1)^2(q+1)$</td>
</tr>
<tr>
<td>$h(z_1,z_2,z_3)$, $z_j^{q-1} = 1$, $z_j \in Z_j^\pm 1$</td>
<td></td>
<td>$(q-1)^2$</td>
</tr>
<tr>
<td>$h(z_1,z_2,z_3)$, $z_j^{q+1} = 1$, $z^2 \neq 1$, $z^3 \neq 1$</td>
<td></td>
<td>$(q-1)(q+1)^2$</td>
</tr>
<tr>
<td>$h(z, z^q, z^{-q})$, $z^{q-1} = 1$, $z^{q+1} \neq 1$</td>
<td></td>
<td>$(q-1)^2$</td>
</tr>
<tr>
<td>$h(z, z^q, z^{-q})$, $z^{q-1} = 1$, $z^{q+1} \neq 1$</td>
<td></td>
<td>$(q-1)^2$</td>
</tr>
<tr>
<td>$h(z, z^q, z^{q+1})$, $z^{q-1} = 1$, $z^3 \neq 1$</td>
<td></td>
<td>$(q-1)^2$</td>
</tr>
<tr>
<td>$h(z, z^q, z^{q+1})$, $z^{q-1} = 1$, $z^3 \neq 1$</td>
<td></td>
<td>$(q-1)^2$</td>
</tr>
<tr>
<td>$h(-1, -1, 1)x(b)$</td>
<td>$q^3(q^2-1)$</td>
<td></td>
</tr>
<tr>
<td>$h(-1, -1, 1)x(c)$</td>
<td>$2q^2$</td>
<td></td>
</tr>
<tr>
<td>$h(\omega, \omega, \omega)y, y \in \Phi_0$ or Φ_0^\ast</td>
<td>$3q^3$</td>
<td></td>
</tr>
<tr>
<td>$h(z, z^{-1}, 1)x(b)$, $z^{q-1} = 1$, $z^2 \neq 1$</td>
<td>$q^3(q-1)$</td>
<td></td>
</tr>
<tr>
<td>$h(z, z^{-1}, 1)x(b)$, $z^{q-1} = 1$, $z^2 \neq 1$, $z^3 \neq 1$</td>
<td>$q(q-1)$</td>
<td></td>
</tr>
<tr>
<td>$h(z, z^{-1}, 1)x_2a+b$</td>
<td>$q(q+1)$</td>
<td></td>
</tr>
<tr>
<td>$h(z, z^{-1}, 1)x_{2a+b}(1)$, $z^{q+1} = 1$, $z \neq 1$</td>
<td>q^3</td>
<td></td>
</tr>
<tr>
<td>$h(z, z^{-1}, 1)x_{2a+b}(1)$, $z^{q+1} = 1$, $z^3 \neq 1$</td>
<td>q^3</td>
<td></td>
</tr>
</tbody>
</table>

Lemma 4. Assume that $L = G_2(q)$ where q is odd and $q \equiv -1 \mod 3$. Let $p = q^2 + q + 1$ be a prime. Then $s_2 = \frac{1}{q(q^3-1)} \cdot |L|$, in particular, $p \mid s_2$.

Proof. It is known that L has one class of involutions (see [12, 17]). By Lemma 1, the order of the centralizers and the numbers of conjugacy classes of the elements x of order 2 in L are $q^2(q^3 - 1)$ and 1, respectively. Since $s_2 = \sum_{|x| = 2, x \neq 1} |x^L|$, then

$s_2 = \frac{|L|}{q(q^3-1)}$. In particular, $p \mid s_2$.

We also need the following due to Nosratpur and Darafsheh.

Lemma 5. Let $L = G_2(q)$, where q is odd and $q \equiv -1 \mod 3$, and $d(q) = q^2 + q + 1$.

1. If $p \in \pi(L)$, then $|L_p| \leq q^3$, where $L_p \in \operatorname{Syl}_p(L)$.

2. If $p \in \pi_1(L)$, $p^a \mid |L|$, and $p^a - 1 \equiv 0 \mod d(q)$, then $p^a = q^3$ or $p^a = q^6$.

Proof. See Lemma 3.2 of [16].
4. Proof of the main theorem

In the proof of main theorem, we use the order components of finite simple groups that are listed as in Tables 1, 2 and 3 (see [10] and [23]).

Let G be a group such that $nse(G) = nse(G_2(q))$, and s_n be the number of elements of order n. By Lemma 2 We note that $s_n = k\phi(n)$, where k is the number of cyclic subgroups of order n. Also we note that if $n > 2$, then $\phi(n)$ is even. If $m \in \omega(G)$, then by Lemma 1 and the above discussion, we have

\[
(4.1) \quad \left\{ \begin{array}{l}
\phi(m) | s_m \\
m | \sum_{d|m} s_d.
\end{array} \right.
\]

Proof of the main theorem Proof. In the proof of the main theorem, we always assume that $nse(G) = nse(G_2(q))$ and $L = G_2(q)$ where q is odd and $q \equiv -1 \mod 3$. We divide the proof into the following series of Lemmas.

Lemma 1. Let $p \neq u \in \pi(L)$. Then $p | s_u(L)$.

Proof. It is easy to see that $p | s_u$ by Lemma 1. In fact, we can show this by the following.

By [4, Proposition 7], the maximal torus T of $G_2(q)$ has the order $(q \pm 1)^2$, $q^2 - 1$, $q^2 \pm q + 1$. Then there is an element $x \in L$ and some torus T such that $p \neq |x| = u$ and $T \leq C_L(x)$. It follows that $|x^L|$ is the multiple of $\frac{|L|}{|T|}$ for some T. But $s_u(L) = \sum_{|x| = u, x \neq 1} |x^L|$. Hence $p | s_u(L)$. $

\]

Lemma 2. $s_2(G) = s_2(L)$. In particular, $p | s_2$.

Proof. We know that if $2 < n \in \omega(G)$, then s_n is even. By Lemma 1, $2 | 1 + s_2(L)$. On the other hand, in G, the only odd number in $nse(G) \setminus \{1\}$ is $s_2(G)$. Hence we have $s_2(G) = s_2(L)$. By Lemma 1, $p | s_2$. $

\]

Lemma 3. For $u \in \omega(G)$, $p | s_u(G)$ if and only if $s_u(G) = s_p(G)$. In particular $s_p(G) = s_p(L)$, in particular, $p | s_p$.

Proof. By Lemmas 2 and 3, $s_u(G) = s_p(L)$ if and only if $p | s_u(G)$. By Lemma 1, $p | 1 + s_p(G)$ and so $p | s_p(G)$. Therefore, we have $s_p(G) = s_p(L)$, in particular, $p | s_p$. $

\]

Lemma 4. The Sylow p-subgroup of G is of order p.

Proof. Let $G_p \in \text{Syl}_p(G)$. Then by Lemma 1, $|G_p| = 1 + s_p + \cdots + s_{p^i}$ for some integer i. If $\exp(G_p) \geq p^3$, then by (4.1), $\phi(p^3) | s_{p^3}$ and hence, $p^2 | s_{p^3}$. But there is no number from $nse(G)$ which is divisible by p^2. Thus $\exp(G_p) = p$ or p^2.

Let $\exp(G_p) = p^2$. Then there is an element of order p^2 with $\phi(p^2) | s_{p^2}$. Hence $p(p - 1) | s_{p^2}$. \n
If $|G| = p^2$, then G_p is cyclic and so $n_p = \frac{s_p^2}{p - 1} = t$ for some integer t. We know that the intersection of any two Sylow p-subgroups of G may lie in a subgroup of order p. Therefore the number of cyclic subgroups of order p is something between 1 and the number of Sylow p-subgroups of G. It follows that $\frac{q^2 + q}{6(q^2 + q + 1)}|L| = s_p \leq (p - 1)n_p(G) = (p - 1)t$ and so $n_p \geq \frac{|L|}{6(q^2 + q + 1)}$. Thus $s_p^2 \geq \frac{p - 1}{6}|L| > |L|$ since q is odd, $p = q^2 + q + 1$ with $q \equiv -1 \mod 3$.

If $|G_p| \geq p^3$, then by Lemma 5, $p^2 | s_p^2$ and so $s_p^2 = p^2t$ for some integer t. But the equation $s_p^2 = p^2t$ has no solution in nse(G), a contradiction.

Let $\exp(G_p) = p$. Then by Lemmas 2 and 3, $s_p = \frac{q^2 + q}{6(q^2 + q + 1)}|L|$. Since $1 + s_p = \frac{1}{p^2}[q^{10} - 2q^9 - 7q^7 - 7q^6 - 5q^5 + 13q^4 - 8q^3 - 6q^2 + 15q - 9] + \frac{13q + 10}{q^2 + q + 1}$, then $|G_p| = p$.

Lemma 5. The prime divisor of $|G|$ is the same as $|L|$.

Proof. By Lemma 3, $s_p = \frac{q^2 + q}{6(q^2 + q + 1)}|L|$. Also by Lemma 4, $|G_p| = p = q^2 + q + 1$. It follows from Sylow’s theorem, that $n_p = \frac{s_p}{\phi(p)} = \frac{|L|}{6p}$. Therefore, $\pi(G) = \pi(L)$.

Lemma 6. Let $r \in \pi(G) - \{p\}$. Then $r \cdot p \notin \omega(G)$.

Proof. If $2 \cdot p \in \omega(G)$, then by Lemma 1, $2 \cdot p | 1 + s_2 + s_p + s_2p$ and also $p | 1 + s_p$.

By Lemma 2, $p \mid s_2$. It follows that $p \mid s_2p$.

By Lemma 4, we have that $|G_p| = |G_p| = p$. Then by Lemma 3, $s_2p = s_p \cdot t$ for some integer t and so $p \mid t$.

Let $t = pk$. Then $(k, p) = 1$ and hence $s_2p = s_p \cdot pk = \frac{a(q + 1)|L|}{6} k$. We know that $|L| = \sum_{n \in \text{nse}(G)} n$ and so $s_2p > 2|L|$, a contradiction. It follows that $s_2p = s_p . pk \notin \text{nse}(G)$. Therefore $s_2p = s_p$, also a contradiction since $p \nmid s_p$.

Therefore $2 \cdot p \notin \omega(G)$. Similarly we can prove that $r \cdot p \notin \omega(G)$ for $r \in \pi(G) \backslash \{2, p\}$.

Lemma 7. $|G| \mid \frac{q^2 + q}{6}|L|$.

Proof. By Lemma 6, $r \cdot p \notin \omega(G)$ for any prime $r \in \pi(G) - \{p\}$. It follows that the Sylow r-subgroup G_r of G acts fixed freely on the set of elements of order p and so $|G_r| \mid s_p$. Therefore $|G| \mid \frac{q^2 + q}{6}|L|$.

Lemma 8. There is a normal series $1 \leq H \leq K \leq G$ such that K/H is isomorphic to $G_2(q)$.

Proof. By Lemma 6, $s(G) \geq 2$. Then by Lemma 8, we have the following:

1. G is a Frobenius group or 2-Frobenius group;

2. G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(G/K) \cup \pi(H) \subseteq \pi_1$ and K/H is a non-abelian simple group. In particular, H is nilpotent, $G/K \not\leq Out(K/H)$ and the odd order components of G are the odd order components of K/H.

First we prove that G is neither a Frobenius group nor a 2-Frobenius group.

Let G be a Frobenius group of even order with kernel H and complement K. Then by Lemma 9, $s(G) = 2$, $\pi(G) = \{\pi(H), \pi(K)\}$. By Lemma 3, $\pi(H) = \{p\}$ or $\pi(K) = \{p\}$. If $\pi(H) = \{p\}$, then since H is nilpotent, H_p is characteristic in H. By hypothesis, we have that $H_p^g = G_p$ for some g and hence, G_p is normal in G. It follows from Lemma 6, that the Sylow p-subgroup of G acts fixed point freely on the set of elements of order r and so $p \mid |G_r| < q + 1 < q^2 + q + 1 = p$, a contradiction.

Let G be a 2-Frobenius group. Then G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(G/K) \cup \pi(H) \subseteq \pi_1$ and K/H is a cyclic group of order p and $|G/K| = (p-1)$. Similarly as the argument for the Frobenius group, we get a contradiction.

Therefore G has a normal series $1 \leq H \leq K \leq G$ such that $\pi(G/K) \cup \pi(H) \subseteq \pi_1$ and K/H is a non-abelian simple group. In particular, H is nilpotent, $G/K \leq Out(K/H)$ and the odd order components of G are the odd order components of K/H.

According to classification theorem of finite simple groups, K/H is an alternating group, sporadic group or simple group of Lie type. By Lemma 6, $s(K/H) \geq 2$.

Let $K/H \cong A_m$ with $m \geq 5$, then $m \geq p$. On the other hand, by Lemma 1 of [11] there is a prime $r \in \pi(A_m) \cap \pi(G)$ such that $q^2 - 1 \leq q^g - 1 < r < q^6 - 1$ and $r \in \pi(A_m)$ but $r \nmid |G|$ by Lemma 5, a contradiction.

Let K/H be sporadic simple groups, we can rule out this case by considering their odd order component since the odd components of K/H is $p = q^2 + q + 1$ with q odd and $q \equiv -1 \mod 3$.

Therefore K/H is isomorphic to a simple group of Lie type. We consider the following cases.

Case 1: Let $s(K/H) = 2$. Then we have that $OC_2(K/H) = p = q^2 + q + 1$ with q odd and $q \equiv -1 \mod 3$.

1.1. Let $K/H \cong A_{p'-1}(q')$ with $(q', q') \neq (3, 2), (3, 4)$.

Then $\frac{q^{p'-1}-1}{(q'-1)(q'-1)} = q^2 + q + 1$ and so $p' - 1 = 2$, $q' = q$. Then by Lemma 7, $(q^4 - 1)(q^4 - 1)(q^4 - 1)|\frac{q^2+q}{6}L| = \frac{q^2+q}{6}q^6(q^2 - 1)(q^6 - 1)$, a contradiction.

Similarly, we can rule out these cases “$K/H \cong A_{p'-1}(q')$ and $K/H \cong A_{p'}(q')$”.

1.2. Let $K/H \cong B_{p'}(3)$. Then $\frac{3^{p'-1}}{2} = q^2 + q + 1$. But by Lemma 6, the equation has no solution in \mathbb{N}.

1.3. Let $K/H \cong C_n(q')$ with $n = 2^m \geq 2$, q' odd. Then $\frac{q^{2^m+1}}{2(q-1)} = q^2 + q + 1$ and so by Lemma 6, the equation has no solution. Similarly, we can rule out “$K/H \cong C_{p'}(q')$”.
1.4. Let $K/H \cong D_{p'}(q')$ with $p' \geq 5, q' = 2, 3, 5$. Then $\frac{q'^{-1} - 1}{(2q' - 1)} = q^2 + q + 1$ and so $q \geq 2q'$. By Lemma 7, $q^p | q^7$ and hence, $q^p < 2^7 q^7$. If $q' = 2$, then $p' < 14$. It follows that $p' = 5, 6, 7, \cdots , 13$. Thus order consideration rules out these cases. Similarly, we can rule out $K/H \cong D_{p'+1}(q')$ with $q' = 2, 3$.

1.5. Let $K/H \cong D_n(q')$, with $n = 2^m \geq 4$, then $q^m = q(q+1)$, the equation has no solution. Similarly, we can rule out these cases if $q' \leq 5$. Similarly, we rule out $K/H \cong D_{n}(2)$ with $n = 2^m + 1 \geq 5, K/H \cong D_{p}(3)$ with $5 \leq p \neq 2^m + 1$ and $K/H \cong D_{n}(3)$ with $9 \leq 2^m + 1 \neq p$.

1.6. Let $K/H \cong G_2(q')$, with $2 < q' \equiv e \mod 3, \epsilon = \pm 1$, then $q^2 - \epsilon q' + 1 = q^2 + q + 1$ and hence, $q' - (q' - \epsilon) = q(q+1)$. If $\epsilon = -1$, then we have the desired result. If $\epsilon = 1$, then $q' = 3, q = 2$. Order consideration rule out this case.

1.7. Let $K/H \cong D_4(q')$, then $q^4 + q^2 + 1 = q^2 + q + 1$ and hence, $q^2(q^2 + 1) = q(q+1)$. Thus $q^2 = q$, and so $(q^2 - 1)(q^6 - 1)| (q^6 - 1)$, a contradiction.

1.8. Let $K/H \cong F_4(q')$ with q' odd, then $q^4 - q^2 + 1 = q^2 + q + 1$ and hence, $q^2(q^2 - 1) = q(q+1)$, a contradiction.

1.9. Let $K/H \cong E_6(q')$, then $q^{12} + q^{13} + 1 = q^2 + q + 1$. If q' is odd, then $q = q^3$, and so $q^12 | q^2$, a contradiction. If q' is even and $q' \equiv 1 \mod 3$, then $q^3(q^3 + 1) = 3(q^2+q)+2 = 2(1+3\frac{1^2+1}{2})$, the equation has no solution. Similarly, $K/H \not\cong 2 E_6(q')$ with $q' > 2$.

Case 2: Let $s(L/K) = 3$. Then $q^2 + q + 1 \in \{OC_2(K/H), OC_3(K/H)\}$.

2.1. Let $K/H \cong L_2(q')$, where $4 | q' + 1$. Then $q' = q^2 + q + 1$ or $\frac{q'^{-1} - 1}{2} = q^2 + q + 1$.

If $q' = q^2 + q + 1$, then $4 | q' + 1 = q^2 + q + 2$. So there is a prime r such that $p < r < p^6$ and $r \in \pi(H)$ or $r \in \pi(G) \setminus \pi(L_2(q'))$ contradicting the maximality of p. If $r \in \pi(H)$, then $r \sim p$, a contradiction. If the latter, $r | \text{Out}(L_2(q'))$, contradicting Lemma 11.

If $\frac{q'^{-1} - 1}{2} = q^2 + q + 1$, then $q' = 2q + 1$. Similarly, we can rule out this case as above.

Similarly, $K/H \not\cong L_2(q)$, with $4 | q - 1$ and $K/H \not\cong L_2(q)$, with $q > 2$ and q even.

2.2. Let $K/H \cong D_{p'}(3)$ with $5 \leq p' \leq 2^n + 1$. Then $p = \frac{3^{p'-1} + 1}{2}$ or $p = \frac{3^{p'-1} + 1}{4}$. In both cases, by Lemma 6, there is no solution. Similarly, $K/H \not\cong 2 D_{p'+1}(2)$ with $n \geq 2, p' = 2^n - 1$.

2.3. Let $K/H \cong G_2(q')$ with $q' \equiv 0 \mod 3$. Then $q^2 - q' + 1 = q^2 + q + 1$ or $q^2 + q' + 1 = q^2 + q + 1$. If the former, then $q'(q' - 1) = q(q+1)$ and so $q' = 3, q = 2$. Order consideration rules out this case. If the latter, $q = q'$ and so $(q^3 - 1)^2 | (q^2 - 1)^2$, a contradiction. Similarly we can rule out $K/H \cong G_2(q')$ with $q' = 3^{2m+1} > 3^n$.
2.4. Let $K/H \cong F_4(q')$, where q' is even. Then $q'^4 + 1 = q^2 + q + 1$ or $q'^4 - q'^2 + 1 = q^2 + q + 1$. If the former, $q'^4 = q(q + 1)$, a contradiction. If the latter, $q'^2(q'^2 - 1) = q(q + 1)$, but the equation has no solution in \mathbb{N}. Similarly, $K/H \not\cong F_4(q')$, where $q' = 2^{2m+1} > 2$.

Case 3: $s(K/H) \in \{4, 5\}$. Then $p = q^2 + q + 1 \in \{OC_2(K/H), OC_3(K/H), OC_4(K/H), OC_5(K/H)\}$.

3.1. Let $K/H \cong L_3(4)$ or $2E_6(2)$. Then $2^n - 1 = 7$ or $2^n - 1 = 19$. If the former, $n = 3$, then order consideration rules out. If the latter, it is impossible.

3.2. Let $K/H \cong B_3(q')$, with $q' = 2^{2m+1}$. Then $p = q^2 + q + 1 \in \{q' - 1, q' \pm \sqrt{q'} + 1\}$. If the former, then $q^2 + q + 1 = p = q' - 1$. Order consideration rules out. If the latter, then $\sqrt{q'}(\sqrt{q'} + \sqrt{2}) = q(q + 1)$ or $\sqrt{q'}(\sqrt{q'} - \sqrt{2}) = q(q + 1)$, the equation has no solution in \mathbb{N}.

3.3. Let $K/H \cong E_8(q')$. If $q^{10 - q^2 + 1} = q^2 + q + 1$, then $q^{30} \equiv 1 \mod d(q)$. By Lemma 5, $q^{30} = q^6$ and so $q^{120} = q^{24} > q^6$, a contradiction. If $q^{10 - q^2 + 1} = q^2 + q + 1$, then $q^{15} \equiv 1 \mod d(q)$. By Lemma 5, $q^{15} = q^6$ and so $q^{120} = q^{48} > q^6$, a contradiction. If $q^8 + q^4 + 1 = q^2 + q + 1$, then $q^4(q^4 + 1) = q(q + 1)$ and so $q^4 = q$.

Hence $K/H \cong G_2(q)$ with $q \equiv -1 \mod 3$ and q odd.

Lemma 9. $\pi(H) \subseteq \pi(q^2 + q)$.

Proof. Let $r \in \pi(H)$. Then $r \neq p$ and by Lemma 8, H is nilpotent. It follows that H_r is normal in G. By Lemma 6, $r \cdot p \notin \omega(G)$, and hence, the Sylow p-subgroup of G acts fixed point freely on the set of elements of order r. Thus $p \mid |H_r| - 1$. If $r \notin \pi(q(q + 1))$, then by Lemma 7, $|H_r| \mid (q^2 + q)r|L_r|$. By the proof of Lemma 8, we know that $r \not| q(q + 1)$ and hence, $|H_r| \mid |L_r|$. On the other hand, $H_r \leq q^t - 1$ for some integer $t \in \{2, 6\}$ and so $p \leq |H_r| \leq q^2 + q + 1 = p$, a contradiction. Thus $\pi(H) \subseteq \pi(q^2 + q)$.

Lemma 10. G is isomorphic to $G_2(q)$ with $q \equiv -1 \mod 3$ and q odd.

Proof. By Lemma 8, we have that K/H is isomorphic to $G_2(q)$. We will prove that $H = 1$. Assume the contrary, then by Lemma 9, H is a π-group with $\pi = \pi(q^2 + q)$. By Lemma 6, $2 \cdot p \notin \omega(G)$ and hence, the Sylow p-subgroup acts fixed point freely on $H_2 - 1$ and so $p \mid |H | - 1 = (q + 1)_2 - 1 < q + 1 < q^2 + q + 1 = p$, where n_r denotes the number such that $r^{n_r} \mid n$ but $r^{m+1} \nmid n$ for some integer m, a contradiction. If $2 \neq r \in \pi(q(q + 1))$, then we also have $r \cdot p \in \omega(G)$. It follows that the Sylow p-subgroup acts fixed point freely on $H_r - 1$ and so $p \mid |H_r| - 1 \leq q + 1 < q^2 + q + 1 = p$, a contradiction. It follows that $H = 1$ and so $K \cong G_2(q)$. We refine the normal series into $1 \leq K < G$ and so $K < G < \text{Aut}(K)$. If $G \cong G_2(q)$, it is the desired result. If $G \cong \text{Aut}(G_2(q))$, then there is a prime $r \in \pi(f)$ where $q = r^l$ (by [7, pp. xvi], $|\text{Out}(G_2(q))| = f$) such that $s_r(\text{Aut}(G_2(q))) \notin \text{nse}(G)$, a contradiction. This completes the proof of the Lemma.

This completes the proof.
5. Some applications

On Thompson’s conjecture, if G and H are of the same order type, then $\text{nse}(G) = \text{nse}(H)$ and $|G| = |H|$.

Corollary 1. Let $p = q^2 + q + 1$ be a prime and $p || |G|$ with $q \equiv -1 \mod 3$. Then $G \cong G_2(q)$ if and only if $|G| = |G_2(q)|$ and $\text{nse}(G) = \text{nse}(G_2(q))$.

Shi gave the following conjecture.

Conjecture. [22] Let G be a group and H a finite simple group. Then $G \cong H$ if and only if (a) $\omega(G) = \omega(H)$ and (b) $|G| = |H|$. Then we have the following corollary.

Corollary 2. Let $p = q^2 + q + 1$ be a prime and $p || |G|$ with $q \equiv -1 \mod 3$. Then $G \cong G_2(q)$ if and only if $\omega(G) = \omega(G_2(q))$ and $|G| = |G_2(q)|$.

Acknowledgments. The object was supported by the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (Grant No: 2013QYJ02 and 2014QYJ04), by the Scientific Research Project of Sichuan University of Science and Engineering (Grant No: 2014RC02) and by the Department of Education of Sichuan Province (Grant No: 15ZA0235). The authors are very grateful for the helpful suggestions of the referee.

References

[16] Nosratpur, P., Darafshekh, M.R., *Characterization of the groups $G_2(q)$ for $2 < q \equiv -1 \pmod{3}$ by order components*, Sibirsk. Mat. Zh., 54 (5)(2013), 1102–1114.

Accepted: 27.03.2015