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1. Introduction

Let G be a finite group, H a subgroup of G. It is well-known fact that the normal
closure HG of H in G plays a very important role in determining the structure
of the group G, especially for a p-group. For example, let G be a p-group, for
every a ∈ G if 〈a〉G is abelian, then the nilpotence class of G is less or equal to
3. Moreover the nilpotence class of 〈a〉G for every a ∈ G is equal or less than 2
if and only if G is 3-Engel group. In [1] and [2], the authors studied p-groups G
such that 〈a〉G having a cyclic subgroup maximal subgroup for any a ∈ G.

Berkovich and Janko in [4] posed an open Problem 805: Study the p-groups
G such that AG is minimal nonabelian for all nonnormalabelian A < G.

In this paper, we study the above problem, i.e., finite p-groups G such that
AG is a minimal non-abelian group for all non-normal subgroup A < G and come
to the classification of such kinds of p-groups. For convenience, we say such a
p-group satisfies AG-MNA-property.

All notations are the same as in [3] and [6].

2. Preliminaries

Lemma 2.1 Let G be a p-group satisfying AG-MNA-property. Then the fol-
lowing holds:

(1) If an abelian subgroup A C G, then the subgroup of A is normal in G;

(2) If G is not a Dedekind group, then Cl(G) ≥ 3;

(3) For every a ∈ G, 〈ap〉 is normal in G;

(4) If p ≥ 3, then every element of order p is contained Z(G), i.e.,
Ω1(G) ≤ Z(G).

Proof. (1) If there exists a subgroup B < A such that B is non-normal G, then
BG ≤ A is a minimal non-abelian subgroup, a contradiction.

(2) If Cl(G) ≤ 2, then G
′ ≤ Z(G). Since G is not a Dedekind group, then

there exists a cyclic subgroup A of G such that A 5 G. It is easy to see that
AG ≤ AG

′
, hence AG is abelian, a contradiction.

(3) Suppose that 〈ap〉 is not a normal subgroup in G. Then 〈a〉 5 G. Thus

〈a〉G is a minimal non-abelian subgroup. We have that 〈ap〉 ≤ Φ(〈a〉G) E G,
where Φ(〈a〉G) is the Frattini subgroup of 〈a〉G. Clearly Φ(〈a〉G) is abelian. Hence
〈ap〉E G, a contradiction.

(4) It is enough to show < a > CG for every element a of order p. Otherwise,
there exists 〈a〉 not normal in G. Hence 〈a〉G is a minimal non-abelian subgroup
and |〈a〉G| = p3. Since p ≥ 3, it follows that 〈a〉G has an abelian G-invariant
subgroup N of type (p, p) by Lemma 1.4 in [3]. Now, by (1), we get N ≤ Z(G)
and 〈a〉G is abelian, a contradiction.
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Lemma 2.2 Suppose that G is not a Dedekind p-group and satisfies AG-MNA-
property. Then Cl(G) ≤ 3 if p 6= 3, but Cl(G) ≤ 4 if p = 3.

Proof. Consider G = G/Z(G). Let 〈x〉 5 G, where x ∈ G. Obviously, 〈x〉
is not normal in G. Then 〈x〉G is a minimal non-abelian group. If [x, xg] 6= 1
for g ∈ G, then 〈x〉G = 〈x, xg〉 = H. Since H

′
= [x, xg] is of order p, it follows

that [x, xg] ∈ Z(G). Hence 〈x〉G is abelian, thus G is a 2-Engel group. Therefore,
Cl(G) ≤ 2 if p 6= 3, but Cl(G) ≤ 3 if p = 3, which concludes the lemma.

Proposition 2.3 Suppose that S is not a Dedekind p-group G and satisfies AG-
MNA-property. Then p = 2 and Cl(G) = 3.

Proof. At first we show that p = 2. Otherwise, let 〈y〉 5 G. Then 〈y〉G is a
minimal non-abelian group. By Lemma 2.1(4), we have |y| ≥ p2. But by Lemma
2.1(3) it follows that 〈yp〉EG, hence 〈yp〉g = 〈yp〉 = 〈(yg)p〉. Therefore (yg)p = ydp,
where (d, p) = 1. By regularity of 〈y〉G, we have (y−dyg)p = 1. Let y1 = y−dyg,
then there exists an element y1 of order p such that 〈y〉G = 〈y, yg〉 = 〈y, y1〉.
By Lemma 2.1(4), we have y1 ∈ Z(G), consequently 〈y〉G = 〈y, y1〉 is abelian, a
contradiction.

Now, by Lemma 2.1(2) and Lemma 2.2, we have Cl(G) = 3 and p = 2.

3. Classification of p-groups satisfying AG-MNA-property

Theorem 3.1 Assume that a p-group G is not a Dedekind group and satisfies
AG-MNA-property. Then one of the following holds:

(1) G ∼= D24;

(2) G ∼= Q24;

(3) G ∼= SD24;

(4) G ∼= 〈x, y〉 and |G| = 25, where |x| = 8 and |y| = 4, 〈x〉∩〈y〉 = 1, Cl(G) = 3.

Proof. (a) We assume Ω1(G) � Z(G) and prove (1) or (3) holds.
At first we have p = 2 by Lemma 2.1 (4). Since G is not a Dedekind group,

there exists 〈x〉 5 G. Hence H = 〈x〉G is a minimal non-abelian subgroup by G
satisfying AG-MNA-property, which implies H ∼= D8. Because Aut(D8) ∼= D8

and H/Z(H) ∼= Inn(H) ∼= C2 × C2, we have |G/HCG(H)| ≤ 2.
If |G/HCG(H)| = 2. We assert that CG(H) ≤ H. Otherwise, there exists

y ∈ CG(H) − H. Let A = 〈x, y〉, then it must hold that A 5 G. In fact, if
AEG then 〈x〉EG for A is abelian and by Lemma 2.1(1), a contradiction. Hence
AG ≤ HCG(H) is a minimal non-abelian subgroup. Since H ≤ AG, we have
H = AG, and then y ∈ H, which contradicts the fact y ∈ CG(H) \H. Therefore
G = HCG(H), consequently G ∼= D24 or G ∼= SD24 , i.e., (1) or (3) holds.

(b) Now, we assume Ω1(G) ≤ Z(G) and shall prove (2) or (4) holds.
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(I) At first, we assume |Ω1(G)| = 2. Since G has no abelian G-invariant sub-
groups of type (p, p), G is a 2-group maximal class by Lemma 1.4 in [3].
Then, G ∼= Q24 , that is, G is as in (2).

(II) Now assume |Ω1(G)| ≥ 4. We have divided the proof into two subcases.

(i) If exp(G) ≤ 4. By Ω1(G) ≤ Z(G) and G is not a Dedekind group, there
exists some 〈a〉 5 G and |a| = 4. Let 〈a〉G = 〈a, ab〉. Since 〈a2〉E G by

Lemma 2.1 (3), we get that (a2)b = a2 = (ab)2. Hence |〈a〉G| = 8. But
〈a〉G is a minimal non-abelian subgroup by hypothesis, it follows that
〈a〉G ∼= D8. Also 〈a〉G can be generated by two elements of order 2 and
Ω1(G) ≤ Z(G), so that 〈a〉G is abelian, a contradiction. Therefore G
is a Dedekind group, a last contradiction.

(ii) Suppose exp(G) ≥ 8. At first we claim that if x ∈ G of order ≥ 8 then
〈x〉E G.

If there exists some x ∈ G such that |x| ≥ 8 and 〈x〉 5 G, then we may set

〈x〉G = 〈x, xg〉 = H for some g ∈ G. It follows that 〈x2〉 E G by Lemma 2.1 (3),
hence (〈x2〉)g = 〈x2〉 = 〈x1

2〉. Therefore there exists k such that x2 = x1
2k where

(k, 2) = 1. By Hall-Petrescu formula and H is a minimal non-abelian subgroup,
we have (xx1

−k)4 = x4(x1
−k)4[x, x1

−k]6 = 1. If |xx1
−k| = 2. Then it follows by

H = 〈xx1
−k, x1〉 and Ω1(G) ≤ Z(G) that H is abelian, a contradiction. Thus

|xx1
−k| = 4. Let x2 = xx−k

1 , then H = 〈x, x2〉. Since x2
2 = (xx−k

1 )2 ∈ 〈x〉
and |x2| = 4, we come to x2

2 = [x, x1] and 〈x2〉 E H. Because Cl(H) = 2 and
exp(H) = |x|, one has that x2

2 ∈ 〈x〉 ∩ 〈x2〉 6= 1. Hence 〈x〉 is a cyclic subgroup of
H having index 2 in G, so there exists x3 of order 2 such that H = 〈x, x3〉. But
x3 ∈ Z(G), we get that H is abelian, a contradiction. The claim follows.

Let x be an element of order 8, and y ∈ G an element of order 4 such that 〈y〉
is not normal in G. Then 〈x〉 E G by above argument, thus K = 〈x, y〉 = 〈x〉〈y〉
is a subgroup of order at most 32. In the following, we discuss the structure of K
case by case.

Case 1. Assume that 〈x〉 ∩ 〈y〉 6= 1. By Ω1(G) ≤ Z(G), we have 〈y2〉 E G. If
Cl(K) ≤ 2, since [x, y]2 = [x, y2] = [x2, y] = 1, then K is minimal non-abelian.
By 〈x〉∩ 〈y〉 6= 1, then there exists l such that x4l = y2 where (l, 2) = 1. It follows
that (x−2ly)2 = x−4ly2 = 1. Hence |x−2ly| = 2. Obviously, since K = 〈x, x−2ly〉
is minimal non-abelian, we get 〈x−2ly〉 5 G, which contradicts Ω1(G) ≤ Z(G).
Therefore, Cl(K) = 3. Notice that K has a maximal and cyclic subgroup 〈x〉
and Ω1(G) ≤ Z(G), we get that K ∼= Q24 . It follows that 〈y〉G = 〈y〉K ∼=
Q8 E G. Let T = 〈y, Ω1(G)〉, since 〈y〉G ≤ 〈T 〉G, we have that 〈T 〉G is a non-
abelian subgroup and T 5 G. Now because T is abelian, it follows that 〈T 〉G is a

minimal non-abelian subgroup. Hence 〈y〉G = 〈T 〉G. Otherwise, 〈y〉G is abelian,
a contradiction. By Ω1(G) ≤ 〈T 〉G and |Ω1(〈T 〉G)| = |Ω1(〈y〉G)| = |Ω1(Q8)|=2, it
follows that |Ω1(G)| = 2, which contradicts |Ω1(G)| ≥ 4.

Case 2. Now, assume that 〈x〉 ∩ 〈y〉 = 1. If Cl(K) = 3. Take a ∈ G \ K, set
T = 〈y, a〉. Because |K| = 25 and K

′ ≤ 〈x〉, if |K : K
′| = 4, then K is of maximal
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nilpotent class, which contradicts Cl(K) = 3. Thus K
′
= 〈x2〉. If |〈y〉K | = 23,

then 〈y〉K is abelian by 〈y〉K ≤ 〈y〉K ′
, so K is a 2-Engle group. Thus Cl(K) ≤ 2,

a contradiction. It follows that 〈y〉K = 〈x2, y〉 is a minimal non-abelian subgroup.
If 〈y〉K < 〈y〉G, since 〈y〉G is a minimal non-abelian subgroup, then 〈y〉K is abelian,
a contradiction too. Hence 〈y〉K = 〈y〉G = 〈x2, y〉. In order to prove that G = K,
we divide the following proof into two subcases.

Subcase 1. While |a| = 2. By Ω1(G) ≤ Z(G), it follows that T is abelian.
If T E G, then 〈y〉 is normal in G by Lemma 2.1(1), a contradiction. Hence
T 5 G. Consequently TG is a minimal non-abelian subgroup, it follows that

〈y〉G = TG = 〈a〉〈y〉G = 〈y〉K , so that a ∈ K, a contradiction.

Subcase 2. While |a| = 4. Since TG = 〈a〉G〈y〉G = 〈a〉T 〈y〉T = T , then T E G.
Thus T = 〈a〉〈y〉G. By a2 ∈ Ω1(〈y〉G), it follows |T | = 25. If exp(G) = 4, then
Cl(G) ≤ 2 by the same argument in the proof of (i). Since T

′
= 〈[a, y]〉 and

[a, y]2 = [a2, y] = 1, we have |T ′| = 2. It follows that T is a minimal non-abelian
subgroup. It follows by 〈y〉G < T that 〈y〉G is abelian, a contradiction. Hence
there exists a1 ∈ T \ 〈y〉G with |a1| = 8. If a1 ∈ K, then |〈a1, 〈y〉G〉| = 25. It
follows that 〈a1, 〈y〉G〉 = T ≤ K, which contradicts a ∈ G \K. Thus a1 /∈ K. Let
H = 〈a1, x〉. Because of 〈a1〉E G and 〈x〉E G, we get Cl(H) ≤ 2 by Theorem 21
in [3]. By |T : 〈y〉G| = 2, it follows that a1

2 ∈ 〈y〉G. Hence |〈a1, x, y〉| = 26.
If 〈a1〉 ∩ 〈x〉 = 1, then |〈a1, x〉| = 26. We get 〈a1, x〉 = 〈a1, x, y〉, which

contradicts Cl(〈x, y〉) = 3. Therefore, 〈a1〉 ∩ 〈x〉 6= 1.
Now, assume that 〈a1〉 ∩ 〈x〉 = 〈a1

2〉. Since Cl(〈a1, x〉) ≤ 2, one has 〈a1, x〉 =
〈a2, x〉, where |a2| = 2. By a2 ∈ Ω1(〈a1, x, y〉) = Ω1(〈x, y〉), it follows that a1 ∈
〈a1, x〉 ≤ 〈x, y〉 = K, a contradiction. Hence 〈a1〉 ∩ 〈x〉 = 〈a1

4〉 = 〈x4〉. By
Cl(〈a1, x〉) ≤ 2, there exists a3 of order 4 such that 〈a1, x〉 = 〈a3, x〉 = 〈x〉o 〈a3〉.
Noticing 〈a3〉G ≤ Ω2(〈x, a1〉) and Ω2(〈x, a1〉) = 〈x2〉 × 〈a3〉 is abelian, we assert
〈a3〉 E G. Otherwise, 〈a3〉G is abelian, a contradiction. Hence 〈a1, x〉 is abelian.
If a3 ∈ K, then a1 ∈ 〈a1, x〉 = 〈a3, x〉 ≤ K, a contradiction. Thus a3 6∈ K. Let
T2 = 〈y, a3〉. Since T2

G = 〈a3〉G〈y〉G = 〈a3〉〈y〉T2 = T2, T2 E G. Let t ∈ T2, then
t = m1m2, where m1 ∈ 〈a3〉 and m2 ∈ 〈y〉G. By Hall-Petrescu formula, we get
t4 = (m1m2)

4 = m1
4m2

4c2
6c3

4 = 1, where ci ∈ Ki(〈m1, m2〉), i = 2, 3. Hence
exp(T2) = 4, it is impossible by the same argument in the proof of (i). Therefore
|a| 6= 4.

Subcase 3. Assume that |a| ≥ 8. By T = 〈y, a〉, where a ∈ G \K and |y| = 4.
Similarly, we have TG = 〈a〉〈y〉G = T E G. By the same reasoning as above, we
have 〈a〉∩〈y〉 = 1 and Cl(〈y, a〉) = 3. Since [a, y2] = 1, y induces an automorphism
of order 2 of 〈a〉. We have ay = a1+2n−1

or ay = a−1+k2n−1
. Since Cl(〈y, a〉) = 3,

then ay = a−1+k2n−1
and |a| = 8. This case is subcase 2. Hence it is impossible if

|a| ≥ 8. Therefore, G = K.
If Cl(K) = 2, it follows that [x, y2] = [x2, y] = [x, y]2 = 1 by y2 ∈ Z(G).

Since K
′
= 〈[x, y], γ3(K)〉 = 〈[x, y]〉, we have |K ′ | = 2, hence K is a minimal non-

abelian subgroup. Therefore x ∈ K = 〈y〉G. But 〈y〉G is a minimal non-abelian
subgroup, we get exp(〈y〉G) = 4, which contradicts |x| = 8.
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