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Abstract. In this paper, we establish the existence of at least three solutions to a
Dirichlet boundary problem involving the (p1, ..., pn)-Kirchhoff type systems. Our tech-
nical approach is mainly based on the general three critical points theorem obtained by
Ricceri.
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1. Introduction and main results

In the present paper, we deal with the existence of at least three solutions for
nonlinear elliptic equations of (p1, ..., pn)-Kirchhoff type under Dirichlet boundary
conditions:
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(1.1)





−
[
M1

(∫

Ω

|∇u1|p1

)]p1−1

∆p1u1=λFu1(x, u1, ..., un)+µGu1(x, u1, ..., un),

in Ω,

−
[
M2

(∫

Ω

|∇u2|p2

)]p2−1

∆p2u2=λFu2(x, u1, ..., un)+µGu2(x, u1, ..., un),

in Ω,

· · ·

−
[
Mn

(∫

Ω

|∇un|pn

)]pn−1

∆pnun=λFun(x, u1, ..., un)+µGun(x, u1, ..., un),

in Ω,

ui = 0 for 1 ≤ i ≤ n, on ∂Ω,

where Ω ⊂ RN(N ≥ 1) is a non-empty bounded open set with a sufficient
smooth boundary ∂Ω, λ, µ ∈ [0, +∞), pi > N , ∆p is the p-Laplacian operator
∆pu = div

(|∇u|p−2∇u
)
. F, G : Ω×Rn 7→ R are functions such that F (·, t1, ..., tn),

G(·, t1, ..., tn) are measurable in Ω for all (t1, ..., tn) ∈ Rn and F (x, ·), G(x, ·) are
continuously differentiable in Rn for a.e. x ∈ Ω. Fui

is the partial derivative of
F with respect to ui, 1 ≤ i ≤ n, so does Gui

. Mi : R+ → R, i = 1, 2, ..., n are
continuous functions, which satisfy the bounded conditions as follows.
(M) There are two positive constants m0, m1 such that

(1.2) m0 ≤ Mi(t) ≤ m1, ∀t ≥ 0, i = 1, 2, ..., n.

In what follows, |Ω| denotes the Lebesgue measure of Ω, X denotes the
Cartesian product of Sobolev spaces W 1,p1

0 (Ω), . . . , W
1,pn−1

0 (Ω) and W 1,pn

0 (Ω), i.e.,
X = W 1,p1

0 (Ω)× · · · ×W 1,pn

0 (Ω). The space X is endowed with the norm

‖(u1, . . . , un)‖ =
n∑

i=1

‖ui‖pi
, ‖ui‖p =

(∫

Ω

|∇ui|pi

)1/pi

, 1 ≤ i ≤ n.

Let

(1.3) C = max



 sup

ui∈W
1,pi
0 (Ω)\{0}

max
x∈Ω̄

{|ui(x)|pi}
‖ui‖pi

pi



 .

Since pi > N , W 1,pi
0 (Ω) → C0(Ω̄), 1 ≤ i ≤ n, are compact, and one has C < +∞.

As usual, a weak solution of system (1.1) is any (u1, ..., un) ∈ X such that

(1.4)

n∑
i=1

[
Mi

(∫

Ω

|∇ui|pi

)]pi−1 ∫

Ω

|∇ui|pi−2∇ui∇ξi

−
n∑

i=1

λ

∫

Ω

Fui
(x, u1, ..., un) ξidx−

n∑
i=1

λ

∫

Ω

Gui
(x, u1, ..., un) ξidx = 0

for all (ξ1, ..., ξn) ∈ X.
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The system (1.1) is related to the stationary version of a model, the so-
called Kirchhoff equation which was introduced by [1]. More precisely, Kirchhoff
proposed the following mathematical model.

(1.5) ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0,

which generalizes the D’Alembert’s wave equation involving free vibrations of
elastic strings, where ρ is the mass density, P0 is the initial tension, h is the area
of the cross-section, E is the Young modulus of the material, and L is the length
of the string.

Later, (1.5) was developed to the following result

(1.6) utt −M

(∫

Ω

|∇u|2
)

∆u = f(x, u) in Ω,

where M : R+ → R is a given function. After that, some authors studied the
following problem

(1.7) −M

(∫

Ω

|∇u|2
)

∆u = f(x, u) in Ω, u = 0 on ∂Ω,

which is the stationary counterpart of (1.6). By using variational methods and
other techniques, many results of (1.7) were obtained, please refer to [2]-[12] and
the references therein. In particular, Alves et al. [2, Theorem 4] assumed that M
satisfies bounded condition (M) and f(x, t) satisfies the following condition.

0 < υF (x, t) ≤ f(x, t)t, for all |t| ≥ R, x ∈ Ω for some υ > 2 and R > 0, (AR)

where F (x, t) =
∫ t

0
f(x, s)ds. One positive solutions for (1.7) was obtained.

In [13], applying Ekeland’s Variational Principle, the authors established the
existence of a weak solution for boundary problem involving the nonlocal elliptic
system of p-Kirchhoff type

(1.8)





−
[
M1

(∫

Ω

|∇u|p
)]p−1

∆pu = f(u, υ) + ρ1(x), in Ω,

−
[
M2

(∫

Ω

|∇υ|p
)]p−1

∆pυ = g(, u, υ) + ρ2(x), in Ω,

∂u

∂η
=

∂υ

∂η
= 0, on ∂Ω,

where η is the unit exterior vector on ∂Ω, and Mi, ρi(i = 1, 2), f , g satisfy suitable
assumptions.

In [14], when µ = 0, n = 2 in (1.1), Cheng et al. studied the existence of two
solutions and three solutions of the following nonlocal elliptic system

(1.9)





−
[
M1

(∫

Ω

|∇u|p
)]p−1

∆pu = λFu(x, u, υ), in Ω,

−
[
M2

(∫

Ω

|∇υ|q
)]q−1

∆qυ = λFυ(x, u, υ), in Ω,

u = υ = 0, on ∂Ω.
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In [15], when n = 2 in (1.1), Chen et al. proved the existence of three solutions
of the following problem

(1.10)





−
[
M1

(∫

Ω

|∇u|p
)]p−1

∆pu = λFu(x, u, υ) + µGu(x, u, υ), in Ω,

−
[
M2

(∫

Ω

|∇υ|q
)]q−1

∆qυ = λFυ(x, u, υ) + µGυ(x, u, υ), in Ω,

u = υ = 0, on ∂Ω.

In this paper, our objective is to prove the existence of three solutions of
problem (1.1) by applying three critical points theorem introduced by Ricceri
[16]. Our result, under some suitable conditions, ensures the existence of an open
interval Λ ⊂ [0, +∞) and a positive real number ρ such that, for each λ ∈ Λ,
problem (1.1) admits at least three weak solutions whose norms in X are less
than ρ. The purpose of the present paper is to generalize the main result of [15]
to the general case.

Now, for every x0 ∈ Ω and choosing R1, R2 with R2 > R1 > 0, such that
B(x0, R2) ⊆ Ω, where B(x,R) =

{
y ∈ RN : |y − x| < R

}
, let

(1.11)
αi = αi(N, pi, R1, R2) =

C1/pi(RN
2 −RN

1 )1/pi

R2 −R1

(
πN/2

Γ(1 + N/2)

)1/pi

,

1 ≤ i ≤ n,

where Γ is the Gamma function. Moreover, assume that a, c are positive constants,
define

y(x) =
a

R2 −R1


R2 −

{
N∑

i=1

(xi − xi
0)

2

}1/2

 , ∀x ∈ B(x0, R2)\B(x0, R1),

A(c) =

{
(t1, . . . , tn) ∈ Rn :

n∑
i=1

|ti|pi ≤ c

}
,

M+ = max

{
mpi−1

1

pi

, i = 1, ..., n

}
, M− = min

{
mpi−1

0

pi

, i = 1, ..., n

}
.

Our main result is the following theorem.

Theorem 1.1 Let R2>R1>0, such that B(x0, R2) ⊆ Ω. Assume that there exist

n+2 positive constants a, b, γi for 1 ≤ i ≤ n, with γi < pi,
n∑

i=1

(aαi)
pi > bM+/M−,

and a function α(x) ∈ L∞(Ω) such that

(j1) F (x, t1, ..., tn)≥0, for a.e. x∈Ω\B(x0, R1) and all (t1, ..., tn)∈ [0, a]×· · ·× [0, a];

(j2)
n∑

i=1

(aαi)
pi |Ω| sup

(x,t1,...,tn)∈Ω×A(bM+/M−)

F (x, t1, ..., tn) < b
∫

B(x0,R1)

F (x, a, ..., a)dx;
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(j3) F (x, t1, ..., tn) ≤ α(x)

(
1 +

n∑
i=1

|ti|γi

)
for a.e. x ∈ Ω and all (t1, ..., tn) ∈ Rn;

(j4) F (x, 0, ..., 0) = 0, for a.e. x ∈ Ω.

Then there exist an open interval Λ ⊆ [0,∞) and a positive real number ρ with
the following property:

for each λ ∈ Λ and for Carathéodory functions Gui
: Ω×Rn 7→ R satisfying

(j5) sup
{|ti|≤ξ,1≤i≤n}

(
n∑

i=1

|Gui
(·, s, t)|

)
∈ L1(Ω) for all ξ > 0,

there exists δ > 0 such that, for each µ ∈ [0, δ], problem (1.1) has at least three
weak solutions wi = (ui1, ..., uin) ∈ X (i = 1, 2, 3) whose norms ‖wi‖ are less
than ρ.

2. Proof of the main result

Our analysis is based on the following modified form of Ricceri’s three critical
points theorem (Theorem 1 in [16]) and Proposition 3.1 of [17], which is our
mainly tool in proving our main result.

Theorem 2.1 ([16], Theorem 1) Let X be a reflexive real Banach space and Φ :
X 7→ R be a continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse
on X∗ and Φ is bounded on each bounded subset of X; Ψ : X 7→ R is a continuously
Gâteaux differentiable functional whose Gâteaux derivative is compact; I ⊆ R an
interval. Suppose that

lim
‖x‖→+∞

(Φ(x) + λΨ(x)) = +∞

for all λ ∈ I, and that there exists h ∈ R such that

(2.1) sup
λ∈I

inf
x∈X

(Φ(x) + λ(Ψ(x) + h)) < inf
x∈X

sup
λ∈I

(Φ(x) + λ(Ψ(x) + h)).

Then, there exists an open interval Λ ⊆ I and a positive real number ρ with the
following property: for every λ ∈ Λ and every C1 functional J : X 7→ R with
compact derivative, there exists δ > 0 such that, for each µ ∈ [0, δ] the equation

Φ
′
(x) + λΨ

′
(x) + µJ

′
(x) = 0

has at least three solutions in X whose norms are less than ρ.
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Proposition 2.1 ([17], Proposition 3.1) Suppose that X is a non-empty set and
Φ, Ψ are two real functions on X. Assume that there exist r > 0 and x0, x1 ∈ X
such that

Φ(x0) = −Ψ(x0) = 0, Φ(x1) > 1, sup
x∈Φ−1([−∞,r])

−Ψ(x) < r
−Ψ(x1)

Φ(x1)
.

Then, for each h satisfying

sup
x∈Φ−1([−∞,r])

−Ψ(x) < h < r
−Ψ(x1)

Φ(x1)

one has

sup
λ≥0

inf
x∈X

(Φ(x) + λ(Ψ(x) + h)) < inf
x∈X

sup
λ≥0

(Φ(x) + λ(Ψ(x) + h)).

Before giving the proof of Theorem 1.1, we define a functional and give a
lemma.

The functional H : X → R is defined by

(2.2)

H(u1, ..., un) = Φ(u1, ..., un) + λJ(u1, ..., un) + µψ(u1, ..., un)

=
n∑

i=1

1

pi

M̂i

(∫

Ω

|∇ui|pi

)
−λ

∫

Ω

F (x, u1, ..., un)dx−µ

∫

Ω

G(x, u1, ..., un)dx

for all (u1, ..., un) ∈ X, and where

(2.3) M̂i(t) =

∫ t

0

[Mi(s)]
pi−1 ds, 1 ≤ i ≤ n, for all t ≥ 0.

By the conditions (M) and (j3), it is easy to see that H ∈ C1(X,R) and a critical
point of H corresponds to a weak solution of the system (1.1).

Lemma 2.2 Suppose that there exist two positive constants a, b with
n∑

i=1

(aαi)
p > bM+/M−, such that

(j1) F (x, t1, ..., tn)≥0, for a.e. x∈Ω\B(x0, R1) and all (t1, ..., tn)∈ [0, a]×· · ·× [0, a];

(j2)
n∑

i=1

(aαi)
pi |Ω| sup

(x,t1,...,tn)∈Ω×A(bM+/M−)

F (x, t1, ..., tn) < b
∫

B(x0,R1)

F (x, a, ..., a)dx.

Then there exist r > 0 and ui0 ∈ W 1,pi
0 (Ω), 1 ≤ i ≤ n, such that

Φ (u10, ..., un0) > r

and

|Ω| sup
(x,t1,...,tn)∈Ω×A(bM+/M−)

F (x, t1, . . . , tn) ≤ bM+

C

∫
Ω

F (x, u10, ..., un0)dx

Φ(u10, ..., un0)
.
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Proof. Let

w0(x) =





0, x ∈ Ω̄\B(x0, R2),

a

R2 −R1


R2 −

{
N∑

i=1

(
xi − xi

0

)
}1/2


 , x ∈ B(x0, R2)\B(x0, R1),

a, x ∈ B(x0, R1).

and u10(x) = · · · = un0(x) = w0(x). It is obvious to verify (u10, ..., un0) ∈ X, and
in particular, we have

(2.4) ‖ui0‖pi

pi
= (RN

2 −RN
1 )

πN/2

Γ(1 + N/2)

(
a

R2 −R1

)pi

, 1 ≤ i ≤ n.

Hence, it follows from (1.11) and (2.4) that

(2.5) ‖ui0‖pi

pi
= ‖w0‖pi

pi
=

(aαi)
pi

C
, 1 ≤ i ≤ n.

Under condition (M), by a direct computation, one has

(2.6) M−

(
n∑

i=1

‖ui‖pi

pi

)
≤ Φ (u1, . . . , un) ≤ M+

(
n∑

i=1

‖ui‖pi

pi

)
.

Put r =
bM+

C
, and using the assumption of Lemma 2.2

n∑
i=1

(aαi)
pi > bM+/M−,

it follows from (2.5)and (2.6) that

Φ (u10, . . . , un0) ≥ M−

(
n∑

i=1

‖ui0‖pi

pi

)
=

M−
C

n∑
i=1

(aαi)
pi >

M−
C

bM+

M−
= r.

Since, 0 ≤ ui0 ≤ a, 1 ≤ i ≤ n, for each x ∈ Ω, condition (j1) ensures that

∫

Ω\B(x0,R2)

F (x, u10, . . . , un0)dx +

∫

B(x0,R2)\B(x0,R1)

F (x, u10, . . . , un0)dx ≥ 0.

Hence, from condition (j2), we get
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|Ω| sup
(x,t1,...,tn)∈Ω×A(bM+/M−)

F (x, t1, . . . , tn) <
b

n∑
i=1

(aα1)p

∫

B(x0,R1)

F (x, a, ..., a)dx

=
bM+

C

∫
B(x0,R1)

F (x, a, . . . , a)dx

M+
n∑

i=1

(aα1)p/C

≤ bM+

C

∫
Ω\B(x0,R1)

F (x, u10, ..., un0)dx +
∫

B(x0,R1)
F (x, u10, ..., un0)dx

M+

(
n∑

i=1

‖ui0‖pi

pi

)

≤ bM+

C

∫
Ω

F (x, u10, ..., un0)dx

Ψ(u10, ..., un0)
.

Next, we can give the proof of our main result.

Proof of Theorem 1.1. For each (u1, . . . , un) ∈ X, 1 ≤ i ≤ n, assume that

Φ(u1, ..., un) =
n∑

i=1

M̂i(||ui||pi
pi

)

pi

,

Ψ(u1, ..., un) = −
∫

Ω

F (x, u1, ..., un)dx,

J(u, v) = −
∫

Ω

G(x, u1, ..., un)dx.

based on conditions of Theorem 1.1, it is easy to know that Φ is a continuously
Gâteaux differentiable and sequentially weakly lower semicontinuous functional.
Additionally from Lemma 2.2 the Gâteaux derivative of Φ has a continuous inverse
on X∗. Ψ and J are continuously Gâteaux differential functionals whose Gâteaux
derivatives are compact. Obviously, Φ is bounded on each bounded subset of X.
In particular, for each (u1, . . . , un), (ξ1, . . . , ξn) ∈ X, we have

〈
Φ
′
(u1, ..., un), (ξ1, ..., ξn)

〉
=

n∑
i=1

[
Mi

(∫

Ω

|∇ui|pi

)]pi−1 ∫

Ω

|∇ui|pi−2∇ui∇ξi

〈
Ψ
′
(u1, ..., un), (ξ1, ..., ξn)

〉
= −

n∑
i=1

∫

Ω

Fui
(x, u1, ..., un)ξidx,

〈
J
′
(u1, ..., un), (ξ1, ..., ξn)

〉
= −

n∑
i=1

∫

Ω

Gui
(x, u1, ..., un)ξidx.

Hence, it follows from (1.4) that the weak solutions of problem (1.1) are exactly
the solutions of the following equation

Φ
′
(u1, ..., un) + λΨ

′
(u1, ..., un) + µJ

′
(u1, ..., un) = 0 .
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Thanks to (j3), for each λ > 0, one has

(2.7) lim
‖(u,v)‖→+∞

(λΦ(u1, . . . , un) + µΨ(u1, . . . , un)) = +∞,

and so the first condition of Theorem 2.1 holds.

By Lemma 2.2, there exists (u10, ..., un0) ∈ X such that

(2.8)

Φ(u10, ..., un0) =
n∑

i=1

M̂i(||ui0||pi
pi

)

pi

≥ M−

(
n∑

i=1

||ui0||pi
pi

)
=

M−
C

n∑
i=1

(aαi)
pi

>
M−
C

bM+

M−
=

bM+

C
> 0 = Φ (0, ..., 0)

and

(2.9) |Ω| sup
(x,t1,...,tn)∈Ω×A(bM+/M−)

F (x, t1, . . . , tn) ≤ bM+

C

∫
Ω

F (x, u10, . . . , un0)dx

Φ (u10, . . . , un0)
.

From (1.3), we have

max
x∈Ω̄

{|ui(x)|pi} ≤ C ‖u‖pi

pi
, 1 ≤ i ≤ n,

for each (u1, . . . , un) ∈ X. One has

(2.10) max
x∈Ω̄

{
n∑

i=1

|ui (x)|pi

pi

, 1 ≤ i ≤ n

}
≤ C

{
n∑

i=1

‖u‖pi

pi

pi

, 1 ≤ i ≤ n

}
,

for each (u1, . . . , un) ∈ X.

Suppose that r =
bM+

C
, for each (u1, ..., un) ∈ X such that

Φ(u1, ..., un) =
n∑

i=1

M̂i(||ui||pi
pi

)

pi

≤ r.

Thanks to (2.10), we get

(2.11)
n∑

i=1

|ui(x)|pi ≤ C

n∑
i=1

‖ui‖pi

pi
≤ Cr

M−
=

C

M−

bM+

C
=

bM+

M−
.
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Then, from (2.9) and (2.11), we obtain

sup
(u1,...,un)∈Φ−1(−∞,r)

(−Ψ(u1, . . . , un)) = sup
{(u1,...,un)|Φ(u1,...,un)≤r}

∫

Ω

F (x, u1, . . . , un)dx

≤ sup{
(u1,...,un)|

n∑
i=1

|ui(x)|pi≤bM+/M−
}

∫

Ω

F (x, u1, . . . , un)dx

≤
∫

Ω

sup
(t1,...,tn)∈A(bM+/M−)

F (x, t1, . . . , tn)dx

≤ |Ω| sup
(x,t1,...,tn)∈Ω×A(bM+/M−)

F (x, t1, . . . , tn)

≤ bM+

C

∫
Ω

F (x, u10, . . . , un0)dx

Φ(u10, . . . , un0)

= r
−Ψ(u10, . . . , un0)

Φ(u10, . . . , un0)
.

Consequently we have

(2.12) sup
{(u1,...,un)|Φ(u1,...,un)≤r}

(−Ψ(u1, . . . , un)) < r
−Ψ(u10, . . . , un0)

Φ(u10, . . . , un0)
.

Fix h such that

sup
{(u1,...,un)|Φ(u1,...,un)≤r}

(−Ψ(u1, . . . , un)) < h < r
−Ψ (u10, . . . , un0)

Φ (u10, . . . , un0)
,

by (2.8), (2.12) and Proposition 2.1, with (u11, . . . , vn1) = (0, . . . , 0) and
(u∗1, . . . , u

∗
n) = (u10, . . . , un0), we have

(2.13) sup
λ≥0

inf
x∈X

(Φ (x) + λ (h + Ψ (x))) < inf
x∈X

sup
λ≥0

(Φ (x) + λ (h + Ψ (x))) ,

and so the condition (2.1) of Theorem 2.1 holds.
Now, all the conditions of Theorem 2.1 hold. Hence, applying Theorem 2.1,

our conclusion is obtained.
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