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′
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1. Introduction

Knowledge about differential equations is often incomplete or vague. For exam-
ple, initial conditions or the values of functional relationships may not be known
precisely. In such a situation, the usage of fuzzy differential equations (FDEs) is
a natural way to model dynamical systems under possibilistic uncertainty. FDEs
is a very important topic from the theoretical point of view (see e.g. [8] and
references therein) as well as of their applications, for example, in modelling hy-
draulic [2], in population models [3, 12], in modelling of a three-phase induction
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motor [26]. The study of fuzzy differential equations forms a suitable setting for
modelling dynamical systems.

Some authors have studied fuzzy differential equations. FDEs were first for-
mulated by Kaleva [7]. He discussed the properties of differentiable fuzzy set
value mappings and give the existence and uniqueness theorem for a solution of
the fuzzy differential equation. Seikkala [23] defined the fuzzy derivatives which is
generalization of the Hukuhara derivative in [19]. Since then there appeared a lot
of papers concerning different approaches to the theory of FDEs. A rich collection
of results from the theory of FDEs is contained in the monographs of Lakshmikan-
tham and Mohapatra [8]. Park [17] studied the existence and uniqueness theorem
for fuzzy differential equations. For the cauchy problem x

′
= f(t, x), x(t0) = x0,

the local existence theorems are proved in [25], and the existence theorems under
compactness-type conditions are investigated in [24] when the fuzzy valued map-
ping f satisfies the generalized Lipschitz condition. There appeared a lot of papers
concerning different approaches to the theory of FDEs (see, e.g., [14], [15], [16]).

On the other hand, the theory of impulsive differential equations or implicit
impulsive integro-differential equations has been emerging as an important area
of investigation in recent years and has been developed very rapidly due to the
fact that such equations find a wide range of applications modeling adequately
many real processes observed in physics, chemistry, biology and engineering. Cor-
respondingly, applications of the theory of impulsive differential equations to dif-
ferent areas were considered by many authors (see, e.g, [5], [11], [13]). There are
not too many papers on impulsive fuzzy differential equations, but some basic
results on impulsive fuzzy differential equations can be found in [4], [6], [9], [20],
[21]. For the monographs of the theory of impulsive diffferential equations, we can
refer the books of Bainov and Simenov [1], Lakshmikantham et.al [10], Samoilenko
and Perestyuk [22].

Motivated and inspired by the above works, In this paper, we prove the
existence and uniqueness theorem of a solution to the fuzzy impulsive differential
equation,

(1.1)

x′(t) = f(t, x(t)),

x(t0) = x0,

∆x(tk) = Ik(x(tk)), k = 1, 2...,m

where f : I×Ed → Ed is levelwise continuous and satisfies a generalized Lipschitz
condition, x0 ∈ Ed, ∆x(tk) = x(t+k )− x(t−k ), where x(t−k ) and x(t+k ) represent the
left and right limits of x(t) at t = tk respectively. Under some hypotheses, we also
consider the ε-approximate solution for the above fuzzy differential equation.

The paper is organized as follows. In Section 2, we collect the fundamental
notions and facts which will be used in the rest of the article. In Section 3, we
prove the existence and uniqueness theorem of a solution to the fuzzy impulsive
differential equation (1.1).
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2. Preliminaries

In this section, our aim is to give a background of the fuzzy set space, and an
overview of properties used by us, of integration and differentiation of fuzzy set-
valued mappings.

Let A, B be nonempty compact subsets of Rd. The Hausdorff metric is defined
as follows

dH(A, B) = max{d∗H(A,B), d∗H(B, A)},
where

d∗H(A,B) = sup
x∈A

inf
y∈B

‖x− y‖

and ‖.‖ denotes usual Euclidean norm in Rd.

We have d∗H(A,B) = 0 if and only if A ⊂ B and d∗H(A,B) ≤ d∗(A,C) +
d∗H(C, B) for nonempty compact subsets A,B,C of Rd.

Let K(Rd) denote a family of all nonempty compact convex subsets of Rd and
define addition and scalar multiplication in K(Rd) as usual, i.e, for A,B ∈ K(Rd)
and λ ∈ R.

A + B = {a + b|a ∈ A, b ∈ B}, λA = {λa|a ∈ A}.

Denote
Ed = {u : Rd → [0, 1] | u satisfies (i)-(iv) below},

(i) u is normal, i.e., there exists an x0 ∈ Rd such that u(x0) = 1,

(ii) u is fuzzy convex, that is, u(λx + (1 − λ)y) ≥ min {u(x), u(y)} for any
x, y ∈ Rd and 0 ≤ λ ≤ 1,

(iii) u is upper semicontinuous,

(iv) [u]0 = cl{x ∈ Rd : u(x) > 0} is compact, where cl denotes the closure in
(Rd, ‖.‖).

For α ∈ (0, 1], denote [u]α = {x ∈ Rd|u(x) ≥ α}. We will call this set an
α-cut (α-level set) of u. For u ∈ Ed one has that [u]α ∈ K(Rd) for every α ∈ (0, 1].

If g : Rd×Rd → Rd is a function then according to Zadeh’s extension principle
we can extend g to Ed × Ed → Ed by the formula

g(u, v)(z) = sup
z=g(x,y)

min {u(x), v(y)} .

It is well known that if g is continuous then [g(u, v)]α = g([u]α, [v]α) for all
u, v ∈ Ed, α ∈ [0, 1]. Especially, for addition and a scalar multiplication in fuzzy
number space Ed, we have:

[u + v]α = [u]α + [v]α, [λu]α = λ[u]α,

where u, v ∈ Ed, λ ∈ R and α ∈ [0, 1].
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Define D : Ed × Ed → [0,∞) by the expression

D(u, v) = sup
0≤α≤1

dH([u]α, [v]α),

where dH is the Hausdorff metric in K(Rd). It is easy to see that D is a metric
in Ed. In fact (Ed, D) is a complete metric space, and for every u, v, w, z ∈ Ed,
λ ∈ R, one has D(u + w, v + w) = D(u, v), D(u + v, w + z) ≤ D(u,w) + D(v, z),
D(λu, λv) = |λ|D(u, v) (see, e.g., [18]).

We define θ̂ ∈ Ed as θ̂ = χ{0}, where for x ∈ Rd we have

χ{x}(y) = 1 if y = x and

χ{x}(y) = 0 if y 6= x.

Let [a, b] ⊂ R be a compact interval, −∞ < a, b < +∞. A fuzzy valued
mapping F : [a, b] → Ed is strongly measurable if for all α ∈ [0, 1] the set-
valued mapping [F (.)]α : [a, b] → K(Rd) is measurable, i.e., the set {t ∈ [a, b] |
[F (t)]α ∩ C 6= ∅} for each closed set C ⊂ Rd is Lebesgue measurable. A fuzzy
mapping F : [a, b] → Ed is called integrably bounded if there exists an integrable
function h : [a, b] → R such that ‖x‖ ≤ h(t) for all x ∈ [F (t)]0.

Definition 2.1. (Puri and Ralescu [18]). Let F : [a, b] → Ed. The integral of F

over [a, b], denoted by

∫ b

a

F (t)dt, is defined levelwise by the expression

[∫ b

a

F (t)dt

]α

=

∫ b

a

[F (t)]αdt

=

{∫ b

a

f(t)dt | f : [a, b] → Rd is measurable selection for [F (.)]α
}

,

for all α ∈ (0, 1].

By virtue of Remark 4.1 in [7], we have that

[∫ b

a

F (t)dt

]0

=

∫ b

a

[F (t)]0dt.

We recall (see [7]) some properties of integrability for fuzzy mappings.

1. Let F,G : [a, b] → Ed be integrable and λ ∈ R. Then

(i)

∫ b

a

(
F (t) + G(t)

)
dt =

∫ b

a

F (t)dt +

∫ b

a

G(t)dt,

(ii)

∫ b

a

λF (t)dt = λ

∫ b

a

F (t)dt,

(iii) D(F, G) is integrable,
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(iv) D

(∫ b

a

F (t)dt,

∫ b

a

G(t)dt

)
≤

∫ b

a

D
(
F (t), G(t)

)
dt.

2. If F : [a, b] → Ed is continuous then it is integrable.

3. If F : [a, b] → Ed is integrable and c ∈ [a, b], then∫ b

a

F (t)dt =

∫ c

a

F (t)dt +

∫ b

c

F (t)dt.

Let u, v ∈ Ed. If there exists w ∈ Ed such that u = v + w, then we call w the
H-difference of u and v and we denote it by uª v. Note that uª v 6= u + (−1)v.

Definition 2.2. (Puri and Ralescu [19]) A mapping F : [a, b] → Ed is differen-
tiable at t0 ∈ [a, b] if there exists F

′
(t0) ∈ Ed such that the limits

lim
h→0+

1

h
(F (t0 + h)ª F (t0)),

lim
h→0+

1

h
(F (t0)ª F (t0 − h))

exist and equal to F
′
(t0). The limits are taken in the metric space (Ed, D), and

at the boundary points we consider only the one-sided derivatives.

Definition 2.3. The integral of a fuzzy mapping F : [a, b] → Ed is defined
levelwise by [∫ b

a

F (t)dt

]α

=

∫ b

a

Fα(t)dt,

i.e., the set of all
∫ b

a
f(t)dt such that f : [a, b] → Rd is a measurable selection for

Fα for all α ∈ [0, 1].

Definition 2.4. A strongly measurable and integrably bounded mapping

F : [a, b] → Ed is said to be integrable over [a, b] if

∫ b

a

F (t)dt ∈ Ed.

Note that if F : [a, b] → Ed is strongly measurable and integrably bounded,
then F is integrable. Further if F : [a, b] → Ed is continuous, then it is integrable.

Definition 2.5. A mapping F : [a, b] → Ed is called differentiable at t0 ∈ [a, b]
if for any α ∈ [0, 1], the set-valued mapping Fα(t) = [F (t)]α is Hukuhara diffe-
rentiable at point t0 with DFα(t0) and the family {DFα(t0) : α ∈ [0, 1]} define a
fuzzy number F (t0) ∈ Ed. If F : [a, b] → Ed is differentiable at t0 ∈ [a, b], then we
say that F ′(t0) is the fuzzy derivative of F (t) at the point t0.

Theorem 2.1. Let F : [a, b] → Ed be differentiable. Denote Fα(t) = [fα(t), gα(t)].
Then fα and gα are differentiable and

[F ′(t)]α = [f ′α(t), g′α(t)].
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Theorem 2.2. Let F : [a, b] → Ed be differentiable and assume that the derivative
F ′ is integrable over [a, b]. Then, for each s ∈ [a, b], we have

F (s) = F (a) +

∫ s

a

F ′(t)dt.

Definition 2.6. A mapping f : [a, b]×Ed → Ed is called levelwise continuous at
a point (t0, x0) ∈ [a, b]× Ed provided for any fixed α ∈ [0, 1] and arbitrary ε > 0,
there exists δ(ε, α) > 0 such that

d([f(t, x)]α, [f(t0, x0)]
α) < ε

whenever |t− t0| < δ(ε, α) and d([x]α, [x0]
α) < δ(ε, α) for all t ∈ [a, b], x ∈ Ed.

Definition 2.7. A mapping f : [a, b]×Ed → Ed is called levelwise continuous at
a point (t0, x0) ∈ [a, b]× Ed provided for any fixed α ∈ [0, 1] and arbitrary ε > 0,
there exists δ(ε, α) > 0 such that

d([f(t, x)]α, [f(t0, x0)]
α) < ε

whenever |t− t0| < δ(ε, α) and d([x]α, [x0]
α) < δ(ε, α) for all t ∈ [a, b], x ∈ Ed.

3. Existence and uniqueness results

Assume that f : I × Ed → Ed is levelwise continuous, where the interval
I = {t : |t− t0| ≤ δ ≤ a}.

Consider the fuzzy differential equation (1.1). We denote J0 = I × B(x0, b),
where a > 0, b > 0, x0 ∈ Ed,

B(x0, b) = {x ∈ Ed | D(x, x0) ≤ b}.(3.1)

Definition 3.1. A mapping x : I → Ed is a solution to the problem (1.1) if it is
levelwise continuous and satisfies the integral equation

(3.2) x(t) = x0 +

∫ t

t0

f(s, x(s))ds +
∑

0<t<tk

Ik(x(tk)), k = 1, 2, ..., m, ∀t ∈ I.

According to the method of successive approximation, let us consider the sequence
{xn(t)} such that

xn(t) = x0 +

∫ t

t0

f(s, xn−1(s))ds +
∑

0<t<tk

Ik(x(tk)), n = 1, 2, ...,(3.3)

where x0(t) = x0, t ∈ I.
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Theorem 3.1. Assume that

(i) a mapping f : J0 → Ed is levelwise continuous,

(ii) for any pair (t, x), (t, y) ∈ J0 we have

d([f(t, x)]α, [f(t, y)]α) ≤ Ld([x]α, [y]α),(3.4)

where L > 0 is a given constant and for any α ∈ [0, 1].

(iii) There exists a constant κ and χ such that

(a) d
(
[Ik(x(tk))]

α, [Ik(y(tk))]
)α

≤ κ,

(b) d
(
[Ik(x(tk))]

α, 0) ≤ χ.

Then there exists a unique solution x = x(t) of (1.1) defined on the interval

|t− t0| ≤ δ = min

{
a,

b

M

}
,(3.5)

where M = D(f(t, x), 0̂), 0̂ ∈ Ed such that 0̂(t) = 1 for t = 0 and 0 otherwise and
for any (t, x) ∈ J0.

Moreover, there exists a fuzzy set valued mapping x : I → Ed such that
D(xn(t), x(t)) → 0 on |t− t0| ≤ δ as n →∞.

Proof. Let t ∈ I, from (3.3), it follows that, for n = 1,

x1(t) = x0 +

∫ t

t0

f(s, x0)ds +
∑

0<t<tk

Ik(x(tk))(3.6)

which proves that x(t) is levelwise continuous on |t − t0| ≤ a and, hence on
|t− t0| ≤ δ.

Moreover, for any α ∈ [0, 1] we have

d([x1(t)]
α, [x0]

α) = d

([∫ t

t0

f(s, x0)ds

]α

, 0

)
+ d

(
[Ik(x(tk))]

α, 0
)

(3.7)

≤
∫ t

t0

d([f(s, x0)]
α, 0)ds + d ([Ik(x(tk))]

α, 0)

and by the definition of D, we get

D(x1(t), x0) ≤ M |t− t0|+ χ ≤ Mδ + χ = b + χ(3.8)

Now, assume that xn−1(t) is levelwise continuous on |t− t0| ≤ δ, and that

D(xn−1(t), x0) ≤ M |t− t0|+ χ ≤ Mδ + χ = b + χ(3.9)

From (3.3), we deduce that xn(t) is levelwise continuous on |t − t0| ≤ δ and
that

D(xn(t), x0) ≤ M |t− t0|+ χ ≤ Mδ + χ = b + χ(3.10)
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Consequently, we conclude that {xn(t)} consists of levelwise continuous mappings
on |t− t0| ≤ δ, and

(t, xn(t)) ∈ J0, |t− t0| ≤ δ, n = 1, 2, 3...(3.11)

Let us prove that there exists a fuzzy set valued mapping x : I → Ed such that
D(xn(t), x(t)) → 0 uniformly on |t− t0| ≤ δ as n →∞.

For n=2, from (3.3),

x2(t) = x0 +

∫ t

t0

f(s, x1(s))ds +
∑

0<t<tk

Ik(x(tk)).(3.12)

From (3.6) and (3.12) , we have

(3.13)

d([x2(t)]
α, [x1(t)]

α) = d

([∫ t

t0

f(s, x1(s))ds

]α

,

[∫ t

t0

f(s, x0(s))ds

]α)

+ d([Ik(x2(tk))]
α, [Ik(x1(tk))]

α)

≤
∫ t

t0

d([f(s, x1(s))]
α, [f(s, x0)]

α)ds

+ d([Ik(x2(tk))]
α, [Ik(x1(tk))]

α)

for any α ∈ [0, 1]. According to condition (3.4), we obtain

(3.14)
d([x2(t)]

α, [x1(t)]
α) ≤

∫ t

t0

Ld([x1(s)]
α, [x0]

α)ds

+ d([Ik(x2(tk))]
α, [Ik(x1(tk))]

α)

and by the definition of D, we obtain

D(x2(t), x1(t)) ≤ L

∫ t

t0

D(x1(s), x0(s))ds + κ.(3.15)

Now, we can apply the first inequality (3.8) in the right hand side of (3.15) to get

D(x2(t), x1(t)) ≤ ML
|t− t0|2

2!
+ κ ≤ ML

δ2

2!
+ κ.(3.16)

Starting from (3.8) and (3.16), assume that

D(xn(t), xn−1(t)) ≤ MLn−1 |t− t0|n
n!

+ κ ≤ MLn−1 δn

n!
+ κ,(3.17)

and let us prove that such an inequality holds for D(xn+1(t), xn(t)).
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Indeed, from (3.3) and condition (3.4), it follows that

(3.18)

d([xn+1(t)]
α, [xn(t)]α) = d

([∫ t

t0

f(s, xn(s))ds

]α

,

[∫ t

t0

f(s, xn−1(s))ds

]α)

+d([Ik(x(tk))]
α, [Ik(y(tk))]

α)

≤
∫ t

t0

d([f(s, xn(s))]α, [f(s, xn−1(s))]
α)ds

+ d([Ik(x2(tk))]
α, [Ik(x1(tk))]

α)

≤
∫ t

t0

Ld([xn(s)]α, [xn−1(s)]
α)ds

+ d([Ik(x2(tk))]
α, [Ik(x1(tk))]

α)

for any α ∈ [0, 1] and from the definition of D, we have

D(xn+1(t), xn(t)) ≤ L

∫ t

t0

D([xn(s)]α, [xn−1(s)]
α)ds + κ.(3.19)

According to (3.17), we get

(3.20)

D(xn+1(t), xn(t)) ≤ MLn

∫ t

t0

|s− t0|n
n!

ds + κ

= MLn |t− t0|n+1

(n + 1)!
+ κ ≤ MLn δn+1

(n + 1)!
+ κ.

Consequently, inequality (3.17) holds for n = 1, 2.... We can also write

D(xn(t), xn−1(t)) ≤ M

L
.
(Lδ)n

n!
+ κ(3.21)

for n = 1, 2..., and |t− t0| ≤ δ.
Let us mention now that

xn(t) = x0 + [x1(t)− x0] + ... + [xn(t)− xn−1(t)],(3.22)

which implies that the sequence {xn(t)} and the series

x0 +
∞∑

n−1

[xn(t)− xn−1(t)](3.23)

have the same convergence properties.
From (3.21), according to the convergence criterion of Weierstrass, it follows

that the series having the general term xn(t)− xn−1(t), so D(xn(t), xn−1(t)) → 0
uniformly on |t− t0| ≤ δ as n →∞.

Hence, there exists a fuzzy set -valued mapping x : I → Ed such that
D(xn(t), x(t)) → 0 uniformly on |t− t0| ≤ δ as n →∞.
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From (3.4), we get

d
(
[f(t, xn(t))]α, [f(t, x(t))]α

)
≤ Ld

(
[xn(t)]α, [x(t)]α

)
(3.24)

for any α ∈ [0, 1]. By the definition of D,

D
(
f(t, xn(t)), f(t, x(t))

)
≤ LD(xn(t)), x(t)) → 0(3.25)

uniformly on |t− t0| ≤ δ as n →∞.

Taking (3.25) in to account, from (3.3), we obtain, for n →∞,

x(t) = x0 +

∫ t

t0

f(s, x(s))ds +
∑

0<t<tk

Ik(x(tk)).(3.26)

Consequently, there is at least one levelwise continuous solution of (1.1).
We want to prove now that this solution is unique, that is, from

y(t) = x0 +

∫ t

t0

f(s, y(s))ds +
∑

0<t<tk

Ik(y(tk))(3.27)

on |t − t0| ≤ δ, it follows that D
(
x(t), y(t)

)
≡ 0. Indeed, from (3.3) and (3.27),

we obtain

(3.28)

d([y(t)]α, [xn(t)]α) = d

([∫ t

t0

f(s, y(s))ds

]α

,

[∫ t

t0

f(s, xn−1(s))ds

]α)

+ d([Ik(y(tk))]
α, [Ik(xn(tk))]

α)

≤
∫ t

t0

d([f(s, y(s))ds]α , [f(s, xn−1(s))ds]α)ds

+ d([Ik(y(tk))]
α, [Ik(xn(tk))]

α)

≤
∫ t

t0

Ld([y(s)]α, [xn−1(s)]
α)ds

+ d([Ik(y(tk))]
α, [Ik(xn(tk))]

α)

for any α ∈ [0, 1], n = 1, 2....

By the definition of D, we obtain

(3.29) D
(
y(t), xn(t)

)
≤ L

∫ t

t0

D
(
y(s), xn−1(s)

)
ds + κ, n = 1, 2...,

But D(y(t), x0) ≤ b on |t− t0| ≤ δ , y(t) being a solution of (3.27). It follows from
(3.29) that

D
(
y(t), x1(t)

)
≤ bL|t− t0|+ κ(3.30)
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on |t− t0| ≤ δ. Now, assume that

D(y(t), xn(t)) ≤ bLn |t− t0|n
n!

+ κ(3.31)

on the interval |t− t0| ≤ δ. From

D(y(t), xn+1(t)) ≤ L

∫ t

t0

D(y(s), xn(s))ds + κ(3.32)

and (3.31), one obtains

D
(
y(t), xn+1(t)

) ≤ bLn+1 |t− t0|n+1

(n + 1)!
+ κ(3.33)

Consequently, (3.31) holds for any n, which leads to the conclusion

D(y(t), xn(t)) = D(x(t), xn(t)) → 0(3.34)

on the interval |t− t0| ≤ δ as n →∞. This proves the uniqueness of the solution
for (1.1).

Definition 3.2. A mapping x : L → Ed is an ε-approximate solution of (1.1) if
the following properties hold

(a) x(t) is levelwise continuous on |t− t0| ≤ δ,

(b) the derivative x′(t) exists and it is levelwise continuous,

(c) for all t for which x′(t) is defined,we have

D
(
x′(t), f(t, x(t))

)
< ε.(3.35)

Theorem 3.2. A mapping f : J0 → Ed is levelwise continuous, and let ε > 0
be arbitrary.Then there exists at least one ε-approximate solution of (1.1), defined
on |t − t0| ≤ δ = min{a, b/M}, where M = D(f(t, x), 0̂), 0̂ ∈ Ed and for any
(t, x) ∈ J0.

Proof. In as much as a mapping f : J0 → Ed is a levelwise continuous on a
compact set J0, it follows that f(t, x) is uniformly levelwise continuous.

Consequently, for any α ∈ [0, 1], we can find δ > 0 such that

d([f(t, x)]α, [f(s, y)]α) < ε.

Now, we construct the approximate solution for t ∈ [t0, t0+δ], the construction
being completely similar for t ∈ [t0 − δ, t0].

Let us consider a division

t0 < t1 < ... < tn = t0 + δ(3.36)
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of [t0, t0 + δ] such that

max
k

(tk − tk−1) < λ = min

{
δ,

δ

M

}
.(3.37)

We define a mapping x : I → Ed as follows

x(t0) = x0,(3.38)

x(t) = x(tk) + f(tk, x(tk))(t− tk)(3.39)

on tk < t < tk+1, k = 0, 1, ....n − 1. It is obvious that a mapping x : I → Ed

satisfies the first two properties from the definition of an ε-approximate solution.
Now, we want to prove that the last property is also fulfilled.
Indeed, x′(t) = f(tk, x(tk)) on (tk, tk+1) and for any α ∈ [0, 1],

(3.40) d
(
[x′(t)]α, [f(t, x(t))]α

)
= d

([
f
(
tk, x(tk)

)]α
,
[
f(t, x(t))

]α
)

< ε

since |t− tk| < λ ≤ δ,

(3.41) d
(
[x(t)]α, [x(tk)]

α
)
≤ d

(
[f

(
tk, x(tk)

)
]α, 0

)
|t− tk| < Mλ ≤ δ.

Thus, by the definition of D, we have

(3.42) D
(
x′(t), f(t, x(t))

)
< ε

on |t− t0| < δ and (t, x) ∈ J0. Since Ik is a bounded function, we know that the
theorem (3.2) holds.
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