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Abstract. It is an interesting topic to determine the structure of a finite group with
a given number of elements of the largest order. In this article, it is proved that finite
groups with 6pq elements of the largest order, where p, q are primes and 13 < p < q,
are solvable.
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1. Introduction

In this paper, all groups considered are finite. Let πe(G) be a set of orders of
elements of a group G, k the largest order of elements of G and n the number of
cyclic subgroups of order k. If t is a positive integer, then π(t) denotes the set of
prime divisors of t, especially, π(G) = π(|G|). Mt(G) denotes the set of elements of
order t of G, especially, M(G) = Mk(G). Nt(G) denotes the subgroups generated
by elements of order t, e.g., Nt(G) =< a|a ∈ Mt(G) >, especially, N(G) denotes
the one generated by elements of the largest order. ϕ(x) the Euler function of x.
The other notations and terminology are standard (see [4]).
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Definition. ([9]) Two groups G1 and G2 are said to be conformal groups if
πe(G1) = πe(G2) and |Mt(G)| = |Mt(S)| for all t ∈ πe(G1).

Two conformal groups are also called Grassmann equivalent. An open pro-
blem was proposed by Thompson (see [9]): Let G be a conformal group of a finite
solvable group. Is G solvable or not?

It is an interesting topic to determine the structure of finite groups by the
number of elements of the largest order. Because it may give useful information
to the open problem on the solvability of a group proposed by Thompson. Many
authors had investigated the groups with some kinds of restriction to the number
of elements of the largest order, they proved that these groups are solvable (see
[2], [3], [6]-[8], [12]-[14]). In this paper we will continue this work and obtain the
following theorem:

Main Theorem. Let G be a finite group. If |M(G)| = 6pq, where p, q are primes
and 13 < p < q, then G is solvable.

2. Preliminary results

Lemma 2.1. ([14, Lemma 2.2])] Suppose that G has m cyclic subgroups of order l.
Then |Ml(G)| = mϕ(l), particularly, |M(G)| = nϕ(k), where k is the largest order
of elements of G.

Corollary 2.1. Let G be a group with k and n mentioned as above. If |M(G)| =
6pq, where p, q are primes, then all the possibilities for n, k and ϕ(k) are as in
Table 1.

Table 1

n ϕ(k) k
1 6pq k
3 2pq (1) r, 2r, where r = 2pq + 1 is a prime; (2) q2, where q = 2p + 1 is a prime
p 6q r, 2r, where r = 6q + 1 is a prime
3p 2q r, 2r, where r = 2q + 1 is a prime
q 6p r, 2r, where r = 6p + 1 is a prime
3q 2p r, 2r, where r = 2p + 1 is a prime
pq 6 7, 14, 9, 18
3pq 2 3, 4, 6
6pq 1 2

Lemma 2.2. ([14, Theorem 1.1]) Suppose k is the largest order of elements of G.
If |M(G)| = ϕ(k), then G is supersolvable.

Let n ∈ N. We say that a finite non-abelian simple group G is a simple
Kn-group if |π(G)| = n.

Lemma 2.3. ([5]) Let G be a simple K3-group. Then G is isomorphic to one of
following simple groups: A5(2

2 ·3 ·5), A6(2
3 ·32 ·5), L2(7)(23 ·3 ·7), L2(8)(23 ·32 ·7),

L2(17)(24 · 32 · 17), L3(3)(24 · 33 · 13), U3(3)(25 · 33 · 7), U4(2)(26 · 34 · 5).
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Lemma 2.4. ([10, Theorem 2]) Let G be a simple K4-group. Then G is isomor-
phic to one of following simple groups:

(1) A7(2
3 · 32 · 5 · 7), A8(2

6 · 32 · 5 · 7), A9(2
6 · 34 · 5 · 7), A10(2

7 · 34 · 52 · 7).

(2) M11(2
4 · 32 · 5 · 11), M12(2

6 · 33 · 5 · 11), J2(2
7 · 33 · 52 · 7).

(3) L2(16)(24 · 3 · 5 · 17), L2(25)(23 · 3 · 52 · 13), L2(49)(24 · 3 · 52 · 72), L2(81)(24 ·
34 · 5 · 41), L3(4)(26 · 32 · 5 · 7), L3(5)(25 · 3 · 53 · 31), L3(7)(25 · 32 · 73 · 19),
L3(8)(29 · 32 · 72 · 73), L3(17)(29 · 32 · 173 · 307), L4(3)(27 · 36 · 5 · 13), S4(4)(28 ·
32 · 52 · 17), S4(5)(26 · 32 · 54 · 13), S4(7)(28 · 32 · 52 · 74), S4(9)(28 · 38 · 52 · 41),
S6(2)(29 ·34 ·5·7), O+

8 (2)(212 ·35 ·52 ·7), G2(3)(26 ·36 ·7·13), U3(4)(26 ·3·52 ·13),
U3(5)(24 ·32 ·53 ·7), U3(7)(27 ·3·73 ·43), U3(8)(29 ·34 ·7·19), U3(9)(25 ·36 ·52 ·73),
U4(3)(27·36·5·7), U5(2)(210·35·5·11), Sz(8)(26·5·7·13), Sz(32)(210·52·31·41),
3D4(2)(212 · 34 · 72 · 13), 2F4(2)

′
(211 · 33 · 52 · 13).

(4) L2(t), where t is a prime satisfying the equation t2− 1 = 2a · 3b ·uc for some
a, b, c ≥ 1 and a prime u > 3.

(5) L2(2
m), satisfies the equations 2m− 1 = u and 2m + 1 = 3tb for some t > 3,

b ≥ 1 and primes u, t.

(6) L2(3
m), satisfies the equations 3m−1 = 2ub and 3m +1 = 4t or 3m−1 = 2u

and 3m + 1 = 4tb, where u and t are odd primes and b ≥ 1.

Lemma 2.5. ([10, Theorem 1]) Let G be a simple K4-group with 3 6∈ π(G). Then
G ∼= Sz(8)(26 · 5 · 7 · 13) or G ∼= Sz(32)(210 · 52 · 31 · 41).

Lemma 2.6. ([14, Theorem 2.2]) Suppose that a ∈ Mr(G). If πe(CG(a)) ⊆ πe(〈a〉),
then CG(a) ≤ Nr(G).

Lemma 2.7. If |M(G)| = 2m, where m is an odd positive integer, then:

(1) k = 4, qr or 2qr, where q is an odd prime and r ∈ N.

(2) If G is non-solvable, then k = 2qr for some odd prime q and 2‖ϕ(k) =
(q − 1)qr−1. Moreover, any Sylow 2-subgroup of G contains a maximal sub-
group which is elementary abelian.

(3) If k = 14, |G| = 2α ·3 ·7β and G is non-solvable, then G ∼= E×L2(7), where
E is an elementary abelian 2-subgroup.

Proof. By [6, Lemma 2.7], (1)-(2) is true. (3) is hold by the proof of [6,
Lemma 3.4(2)].

Lemma 2.8. ([11, p. 11]) Suppose that H is a proper subgroup of a group G.
Let H1, H2, · · · , Hn be all conjugate classes of H in G. Then 〈H1, H2, · · · , Hn〉 =
H1H2 · · ·Hn.
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Lemma 2.9. Suppose that G has n cyclic subgroups Ai of order k, where
i = 1, 2, ..., n. Let {A1, A2, ..., As} be a complete representative system of the
conjugate classes of n cyclic subgroups of order k, and let ni be the length of the
conjugate classes containing Ai. Then the following statements hold:

(1) ni = |G : NG(Ai)|, n =
n∑

i=1

ni, π(ni)
⋃

π(Ai) = π(n1)
⋃

π(A1),

where i = 1, 2, ..., s.

(2) π(CG(Ai)) = π(Ai), |NG(Ai) : CG(Ai)| | ϕ(k) and |G| = |G : NG(Ai)||NG(Ai) :
CG(Ai)||CG(Ai)|, where i = 1, 2, ..., s.

(3) Let A = 〈a〉, |a| = k. If i = 1, |M(G)| = 2m, where m is an odd positive
integer, then G is solvable.

Proof. By [3, Lemma 2.6], (1), (2) are true. Now, we prove (3). Since |a| = k
is an element of the largest order, we have πe(CG(a)) ⊆ πe(〈a〉). By Lemma 2.6,
CG(A) ≤ N(G). If i = 1, then the all cyclic subgroups Ai of order k are conjugate
in G, so N(G) = AG = AAg1 · · ·Agn−1 by Lemma 2.8. Since |M(G)| = ϕ(k) = 2m,
then by Lemma 2.7, k = 4, qr or 2qr, where q is an odd positive integer, thus
π(N(G)) ≤ 2, so N(G) is solvable. Since N(G) ¢ G, we get |G/N(G)| | |G :
CG(A)| = n · |NG(A) : CG(A)| | |M(G)|, so G/N(G) is solvable, hence G is
solvable.

Lemma 2.10. ([11]) Let G = L2(q). Then G has a subgroup which is isomorphic

to the dihedral group containing the cyclic subgroup of order
q ± 1

2
.

3. Proof of Main Theorem

Proof of Main Theorem. We will prove the theorem step by step according to
the possible values of ϕ(k).

Case 1. If n = 1 and ϕ(k) = 6pq, it can be shown that G is supersolvable from
Lemma 2.1 and Lemma 2.2.

Case 2. If n = 3 and ϕ(k) = 2pq, then by Corollary 2.1, (1) k = r or 2r, where
r = 2pq + 1 is a prime; (2) k = q or q2 where q = 2p + 1 is a prime. Let a be an
element with largest order k of G and let A = 〈a〉. Then it is a well-known fact
that

|G| = |G : NG(A)| · |NG(A) : CG(A)| · |CG(A)|. (∗)
Suppose that G is non-solvable, by Lemma 2.7 (2), we get k = 2r. Let |CG(A)| =
2α · rβ, where α, β ∈ N. Clearly, CG(A) is solvoble. The fact NG(A)/CG(A) ≤
Aut(A) implies that |NG(A)/CG(A)| | ϕ(k), thus NG(A)/CG(A) is solvable, hence
NG(A) is solvable. Let η be the permutation representation of G on right cosets
of NG(A) in G. Then G/kerη . S3. Since kerη ≤ NG(A) is solvable, we get G is
solvable, a contradiction.
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Case 3. If n = p and ϕ(k) = 6q, then by Corollary 2.1, k = r or 2r, where
r = 6q + 1 is a prime. Suppose that G is non-solvable, by Lemma 2.7 (2), we
get k = 2r. Using the same argument as Case 2, we get NG(A) is solvable. By
Lemma 2.9 (2) and (3), we have i ≥ 2, so there exists a i such that p - ni, thus
G is a {2, 3, q, r}-group from (∗). Let |CG(A)| = 2α · rβ, where α, β ∈ N. Then
CG(A) has no elements of order 22 and r2. If β ≥ 2, then CG(A) has at least r2−1
elements of order 2r. By q > p, we get r2− 1 = 6q(6q +2) > 6pq, a contradiction.
Thus β = 1. Let R be a Sylow r-subgroup of CG(A). If R 6 CG(A), then CG(A)
has at least r+1 Sylow r-subgroups, so CG(A) has at least (r+1) ·(r−1) = r2−1
elements of order 2r, a contradiction. So R¢CG(A), thus R Char CG(A)¢NG(A),
hence NG(A) ≤ NG(R). Since |G : NG(A)| = |G : NG(R)| · |NG(R) : NG(A)| and
|G : NG(A)| < p. By Sylow Theorem, |G : NG(R)| = 1, so R ¢ G. Thus G/R
is a {2, 3, q}-group. By Lemma 2.3 and q > p > 13, G/R is solvable, so is G, a
contradiction.

Case 4. If n = 3p and ϕ(k) = 2q, then by Corollary 2.1, k = r or 2r, where
r = 2q + 1 is a prime. Suppose that G is non-solvable, by Lemma 2.7 (2), we get
k = 2r. Using the same argument as Case 2, we get NG(A) is solvable and π(G) ⊆
{2, 3, p, q, r}. By Lemma 2.9 (2) and (3), we have i ≥ 2. If 3 - (n1, n2, ..., ns), then
there exists a i such that 3 - ni. By |G| = ni · |NG(A) : CG(A)| · |CG(A)|, we
get G is a {2, p, q, r}-group. Since p, q are primes and q > p > 13, we have G
is solvable by Lemma 2.3 and Lemma 2.5, a contradiction. If 3 | (n1, n2, ..., ns),
then 3 ‖ (n1, n2, ..., ns) by n1 + n2 + · · ·+ ns = 3p. Let ni = 2αi · 3βi · pγi · qθi · rλi ,
where αi, βi, γi, θi, λi ∈ N. By |G| = ni · |NG(Ai) : CG(Ai)| · |CG(Ai)| and ni < 3p,
there exists a i such that βi = 1,γi = θi = λi = 0, so G is a {2, 3, q, r}-group
and 3 ‖ |G|. Since G is non-solvable and q > p > 13, we get no section of G
which is isomorphic to the one of simple K3-groups, so G has a section W which
is isomorphic to the one of simple K4-groups. By Lemma 2.4, W is isomorphic to
one of following simple K4-groups:

(I): Assume that W ∼= L2(t), where t is a prime satisfying the equation t2 − 1 =
2a · 3b · uc for some a, b, c ≥ 1 and a prime u > 3.

Now, t = r, u = q. Then r2 − 1 = 2a · 3b · qc. Clearly, b = 1, so 2q(r + 1) =
2a · 3 · qc, thus 2q + 2 = r + 1 = 2a−1 · 3 · qc−1. If c ≥ 2, then q | 2, a contradiction.
Hence c = 1. By Lemma 2.10, L2(r) has a subgroup which is isomorphic to the
dihedral group containing the cyclic subgroup of order r±1

2
, then it has a cyclic

subgroup of order r+1
2

= 2a−2 · 3, so it has the element of order 2a−2. If a ≥ 5,
then G has an element of order 8, contrary to the Lemma 2.7 (2), thus a ≤ 4,
hence q + 1 = 2a−2 · 3 ≤ 12, a contradiction. Therefore, W � L2(r).

(II): Assume that W ∼= L2(2
m), satisfies the equations 2m−1 = u and 2m+1 = 3tb

for some t > 3, b ≥ 1 and primes u, t.
Now, if u = q, t = r, then 2 = 3rb − q = 3(2q + 1)b − q ≥ 5q + 3 > 3, a

contradiction. If u = r, t = q, then 2 = 3qb − r = 3qb − (2q + 1), so 3qb − 3 = 2q,
thus 3 | 2q, hence 3 | q, a contradiction. Therefore, W � L2(2

m).
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(III): Assume that W ∼= L2(3
m), satisfies the equations 3m−1 = 2ub and 3m+1 =

4t or 3m − 1 = 2u and 3m + 1 = 4tb, where u and t are odd primes and b ≥ 1.
Since |L2(3

m)| = 3m·(3m+1)·(3m−1)
2

and |L2(3
m)| | |G|, we have m = 1, it is

impossible. Therefore, W � L2(3
m).

Case 5. If n = q and ϕ(k) = 6p, then by Corollary 2.1, k = r or 2r, where
r = 6p + 1 is a prime. Suppose that G is non-solvable, by Lemma 2.7 (2), we
get k = 2r. Using the same argument as Case 2, we get NG(A) is solvable and
π(G) ⊆ {2, 3, p, q, r}. By Lemma 2.9 (2) and (3), we have i ≥ 2. The same
discussion as Case 4, we get G is a {2, 3, p, r}-group and 3 ‖ |G|. Since G is
non-solvable and q > p > 13, by Lemma 2.3, if there is a section Y of G which is
isomorphic to the simple K3-groups, then Y ∼= L2(17), so 32 | |G|, a contradiction.
Thus G has a section W which is isomorphic to the one of simple K4-groups. By
Lemma 2.4, W is isomorphic to one of following simple K4-groups:

(I): Assume that W ∼= L2(t), where t is a prime satisfying the equation t2 − 1 =
2a · 3b · uc for some a, b, c ≥ 1 and a prime u > 3.

Now, t = r, u = p. Then r2 − 1 = 2a · 3b · pc. Clearly, b = 1, so 6p(r + 1) =
2a · 3 · pc, 6p + 2 = r + 1 = 2a−1 · pc−1. If c ≥ 2, then p | 2, a contradiction.
Hence c = 1. By Lemma 2.10, L2(r) has a subgroup which is isomorphic to the
dihedral group containing the cyclic subgroup of order r±1

2
, then it has a cyclic

subgroup of order r+1
2

= 2a−2, so it has the element of order 2a−2. If a ≥ 5, then
G has an element of order 8, contrary to the Lemma 2.7 (2), thus a ≤ 4, hence
3p + 1 = 2a−2 ≤ 4, a contradiction. Therefore, W � L2(r).

(II): Assume that W ∼= L2(2
m), satisfies the equations 2m−1 = u and 2m+1 = 3tb

for some t > 3, b ≥ 1 and primes u, t.
Now, if u = p, t = r, then 2 = 3rb − q = 3(6p + 1)b − p ≥ 17p + 3 > 3, a

contradiction. If u = r, t = p, then 2 = 3pb − r = 3pb − (6p + 1), so pb − 2p = 1,
thus p | 1, a contradiction. Therefore, W � L2(2

m).

(III): Assume that W ∼= L2(3
m), satisfies the equations 3m−1 = 2ub and 3m+1 =

4t or 3m − 1 = 2u and 3m + 1 = 4tb, where u and t are odd primes and b ≥ 1.
Since |L2(3

m)| = 3m·(3m+1)·(3m−1)
2

and |L2(3
m)| | |G|, we have m = 1, it is

impossible. Therefore, W � L2(3
m).

Case 6. If n = 3q and ϕ(k) = 2p, then by Corollary 2.1, k = r or 2r, where
r = 2p + 1 is a prime. Suppose that G is non-solvable. Using the same argument
as Case 5, we get a contradiction.

Case 7. If n = pq and ϕ(k) = 6, then by Corollary 2.1, k = 7, 14, 9, 18. Suppose
that G is non-solvable, by Lemma 2.7 (2), we get k = 14, 18. Assume that k = 14.
By n1 + n2 + · · · + ns = pq, there exists a i ∈ N such that 3 - ni, so 32 - |G| by
(∗). Since p, q are primes and q > p > 13, we get G is a {2, 3, 7}-group. Then
by Lemma 2.7 (3), G ∼= A×L2(7), where A is an elementary abelian 2-subgroup,
so G has (2a − 1) × 48 elements of order 14. Clearly, (2a − 1) × 48 6= 6pq, a
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contradiction. Assume that k = 18. By Lemma 2.9 (2) and (3), we have i ≥ 2.
The same discussion as Case 4, we get G is a {2, 3, p}-group or {2, 3, q}-group.
Since G is non-solvable and q > p > 13, by Lemma 2.3, we get G is a {2, 3, p}-
group and p = 17. Now, G has a section W which is isomorphic to L2(17), then
8 ∈ π(L2(17)), contrary to the Lemma 2.7 (2).

Case 8. If n = 3pq and ϕ(k) = 2, then by Corollary 2.1, k = 3, 4, 6. Let a be an
element with largest order k of G. Then CG(〈a〉) is a {2}-group or {2, 3}-group.
Since |NG(〈a〉) : CG(〈a〉)| | ϕ(k) = 2, k ≤ 6 and q > p > 13. The same discussion
as Case 4, we get G is a {2}-group or {2, 3}-group. Hence G is solvable.

Case 9. If n = 6pq and ϕ(k) = 1, then G is an elementary abelian 2-group for
k = 2, the number of maximal order elements in G is 2t − 1 for some positive
integer t, a contradiction.
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