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Abstract. This report presents a matrix inversion method that has the following fea-
tures: general applicability for any non-singular (n × n) matrix A with either real or
complex elements aij , i, j = 1, 2, ..., n; univocally defined matrix operations; analytical
representation of the sought-for inverse matrix A−1 as a product of three uniquely speci-
fied non-singular triangular matrices (A−1 = PGV, P and V lower triangular, G upper
triangular); and convenient (minimal) number, n3, of required multiplication/division
operations.

The inversion procedure is carried out in two stages: I) transformation of matrix
A into an upper triangular matrix T having unit diagonal elements; II) transformation

of matrix T into the (n × n) unit matrix U(n) having elements u
(n)
ij = 0 if i ̸= j, and

= 1 if i = j.
The first stage conforms with a Gaussian elimination procedure that can be car-

ried out in the natural order, through n consecutive ordered steps, since at each step
univocally prescribed non-zero diagonal elements (leading pivots) are made available. A
sequence of transformed non-singular (n×n) matrices {A(k)}, k = 1, 2, ..., n, having ele-

ments a
(k)
ij , is obtained with pivots a

(k)
kk = 1. The viability of the procedure is assured by

the ordered use of univocally defined, very simple non-singular lower triangular (n× n)
operational matrices P(k) which post-multiply A(k−1) (A(0) coinciding with A) and

transform diagonal element a
(k−1)
kk into a leading pivot having a positive non-zero value

given by the sum of the absolute values of all the elements in its row.
A simple numerical example is detailed for illustrating practical aspects.

The present matrix inversion method is free from any operational ambiguity. The

simplicity and univocal definiteness of its transformations are expected to provide ope-

rational advantages for the development of related numerical algorithms both for finding

matrix inverses and for solving systems of linear algebraic equations. Further useful fea-

tures are related with the final triangular matrix factorization achieved which, in par-

ticular, allows an immediate computation of the determinants of matrices A and A−1.
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General presentation

The determination of the unique inverse matrix A−1 of a given non-singular
(n× n) matrixA, having n2 elements aij, i, j = 1, 2, ..., n, that are real or complex
numbers, represents a basic problem in linear algebra with implications for many
theories, and applications in various fields.

Gaussian elimination has been recognized as the most widely used method for
inverting matrices [1] and it is known that it may need suitable matrix transforma-
tions such as row (column) interchanges or combinations, for achieving adequate
non-zero diagonal elements (pivots). The focus of the present inversion method
consists in prescribing all required transformations at the outset, in view of avoi-
ding any operational ambiguity and potentially critical situations. With such a
formulation:

i) A numerical algorithm based on the present method is of general use with
no operational ambiguity, exploits a very simple logic, and can be applied
through consecutive steps taken in the natural order.

ii) In the successive ordered matrix transformations which achieve the triangu-
lar factorization of A, a leading pivot has a positive non-zero value given by
the sum of the absolute values of all the elements in its row, which tends to
diminish the possible negative effects of round-off errors.

iii) The sought-for inverse matrix A−1 has an analytical representation, of great
practical interest in some contexts, as a product of three uniquely specified
non-singular triangular matrices, A−1 = PGV, P and V lower triangu-
lar, G upper triangular. In particular, an immediate computation of the
determinants of matrices A and A−1 is made available.

iv) The inversion of a matrix A having complex elements is obtained in a
straightforward way in analogy with the case of real elements.

In general, for solving a given problem, preference is given to the numerical
method which requires a minimum number of operations and is logically simpler
and, thus, is realized more rapidly on a computer [2]. As for the number of opera-
tions, a specific count for the present inversion method is detailed in Appendix 1
where the minimal count, n3, for all required multiplication/division operations is
obtained [1]. The development of different numerical methods for solving specific
problems should turn out to be a useful endeavour in many cases, particularly if
various difficulties and complexities are at work.

The present inversion method is described for the case of a matrix A having
real elements aij. The case of complex elements can be handled by introducing
simple variations that are detailed below.

The inverse matrix A−1 is achieved through two consecutive transformations:
τ1, which transforms A into an upper triangular matrix T having all diagonal
elements tii = 1; and τ2, which transforms T into the (n × n) unit matrix U(n)

having elements u
(n)
ij = 0 if i ̸= j, and = 1 if i = j.

Transformation τ1 conforms with a Gaussian elimination procedure that can
be carried out in the natural order, through n consecutive ordered steps, since
at each step univocally prescribed non-zero diagonal elements (leading pivots)
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are made available. A sequence of transformed non-singular (n × n) matrices

A(k) , k = 1, 2, ..., n, having elements a
(k)
ij , is obtained with pivots a

(k)
kk = 1. The

feasibility of the procedure is assured by the ordered use of univocally defined, very
simple non-singular lower triangular (n×n) operational matrices P(k) which post-

multiply A(k−1) (A(0) coinciding withA) and transform diagonal element a
(k−1)
kk

into the positive sum
n∑

q=k

|a(k−1)
kq |.

A matrix P(k) differs (or may differ) from U(n) only in the diagonal and lower

elements of the k-th column, prescribed by the relations: p
(k)
ik = σ(a

(k−1)
ki ), i = k,

k+ 1, ..., n, where symbol σ(r) indicates, for any real number r, the values: −1 if
r ≤ 0, and 1 if r > 0. A matrix P(k) has thus a very simple structure with only
two possible absolute values, 0 or 1, for its elements. This structural simplicity
provides a convenient matrix multiplication property: the matrix product P(k)

P(s), with s > k, is a matrix having the same elements as the unit matrix U(n)

except for the k-th and s-th columns which equal, respectively, the k-th column
of P(k) and the s-th column of P(s).

Transformation τ1

This transformation requires n consecutive ordered steps. At the k-th step, k =
1, 2, ..., n−1, matrix A is transformed into a matrix A(k) that admits the following
four-block representation:

(1.0) A(k) =

[
Z(k) W(k)

R(k) S(k)

]
;

where Z(k) is an upper triangular square sub-matrix of order k with all diagonal
elements z

(k)
ii = 1; R(k) is an (n−k)×k) null matrix; S(k) is a non-singular square

sub-matrix of order (n− k); and W(k) is a (k× (n− k)) matrix. At the last step,

k = n, matrix A(n) = T is obtained by transforming element a
(n−1)
nn into unity.

At the k-th step, k = 1, 2, ..., n, the following transformations apply:

(1.1) A(k−1)P(k) = A(k−1)⊕;

(1.2) V(k)A(k−1)⊕ = A(k);

where:

• A(k−1) with elements a
(k−1)
ij , A(k−1)⊕ with elements a

(k−1)⊕
ij , and A(k) with

elements a
(k)
ij , are (n × n) non-singular matrices and A(0) = A so that

elements a
(0)
ij = aij;

• P(k) and V(k) are non singular (n × n) lower triangular operational matri-
ces which differ (or may differ) from U(n) only in the diagonal and lower

elements of the k-th column. For P(k), these elements are: p
(k)
ik = σ(a

(k−1)
ki );

i = k, k + 1, ..., n; while for V(k), they are: v
(k)
kk = (a

(k−1)⊕
kk )−1; v

(k)
ik =

−a
(k−1)⊕
ik (a

(k−1)⊕
kk )−1; i = k + 1, k + 2, ..., n.
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Operational matrices P(k) and V(k) play key roles and allow transformation
τ1 to be carried out through all its consecutive steps taken in the natural or-
der, so that the sequence of transformed matrices {A(k)} achieves the sought-for
triangular factorization of A.

The univocal algebraic relations among matrix elements in equations (1.1)
and (1.2) may be visualized with the help of the following matrix representations:

A(k−1) =



1 a
(k−1)
12 a

(k−1)
13 · a

(k−1)
1k−1 a

(k−1)
1k a

(k−1)
1k+1 a

(k−1)
1k+2 a

(k−1)
1k+3 · a

(k−1)
1n−1 a

(k−1)
1n

0 1 a
(k−1)
23 · a

(k−1)
2k−1 a

(k−1)
2k a

(k−1)
2k+1 a

(k−1)
2k+2 a

(k−1)
2k+3 · a

(k−1)
2n−1 a

(k−1)
2n

0 0 1 · a
(k−1)
3k−1 a

(k−1)
3k a

(k−1)
3k+1 a

(k−1)
3k+2 a

(k−1)
3k+3 · a

(k−1)
3n−1 a

(k−1)
3n

............................................................................................................................

0 0 0 · 1 a
(k−1)
k−1k a

(k−1)
k−1k+1 a

(k−1)
k−1k+2 a

(k−1)
k−1k+3 · a

(k−1)
k−1n−1 a

(k−1)
k−1n

0 0 0 · 0 a
(k−1)
kk a

(k−1)
kk+1 a

(k−1)
kk+2 a

(k−1)
kk+3 · a

(k−1)
kn−1 a

(k−1)
kn

0 0 0 · 0 a
(k−1)
k+1k a

(k−1)
k+1k+1 a

(k−1)
k+1k+2 a

(k−1)
k+1k+3 · a

(k−1)
k+1n−1 a

(k−1)
k+1n

0 0 0 · 0 a
(k−1)
k+2k a

(k−1)
k+2k+1 a

(k−1)
k+2k+2 a

(k−1)
k+2k+3 · a

(k−1)
k+2n−1 a

(k−1)
k+2n

0 0 0 · 0 a
(k−1)
k+3k a

(k−1)
k+3k+1 a

(k−1)
k+3k+2 a

(k−1)
k+3k+3 · a

(k−1)
k+3n−1 a

(k−1)
k+3n

.............................................................................................................................

0 0 0 · 0 a
(k−1)
n−1k a

(k−1)
n−1k+1 a

(k−1)
n−1k+2 a

(k−1)
n−1k+3 · a

(k−1)
n−1n−1 a

(k−1)
n−1n

0 0 0 · 0 a
(k−1)
nk a

(k−1)
nk+1 a

(k−1)
nk+2 a

(k−1)
nk+3 · a

(k−1)
nn−1 a

(k−1)
nn



P(k) =



1 0 0 · 0 0 0 0 0 · 0 0

0 1 0 · 0 0 0 0 0 · 0 0

0 0 1 · 0 0 0 0 0 · 0 0
..........................................................................
0 0 0 · 1 0 0 0 0 · 0 0

0 0 0 · 0 σ
(
a
(k−1)
kk

)
0 0 0 · 0 0

0 0 0 · 0 σ
(
a
(k−1)
kk+1

)
1 0 0 · 0 0

0 0 0 · 0 σ
(
a
(k−1)
kk+2

)
0 1 0 · 0 0

0 0 0 · 0 σ
(
a
(k−1)
kk+3

)
0 0 1 · 0 0

..........................................................................

0 0 0 · 0 σ
(
a
(k−1)
kn−1

)
0 0 0 · 1 0

0 0 0 · 0 σ
(
a
(k−1)
kn

)
0 0 0 · 0 1
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A((k−1)⊕) =



1 a
(k−1)
12 a

(k−1)
13 · a(k−1)

1k−1

n∑
q=k

(a
(k−1)
1q p

(k)
qk ) a

(k−1)
1k+1 a

(k−1)
1k+2 a

(k−1)
1k+3 · a(k−1)

1n−1 a
(k−1)
1n

0 1 a
(k−1)
23 · a(k−1)

2k−1

n∑
q=k

(a
(k−1)
2q p

(k)
qk ) a

(k−1)
2k+1 a

(k−1)
2k+2 a

(k−1)
2k+3 · a(k−1)

2n−1 a
(k−1)
2n

0 0 1 · a(k−1)
3k−1

n∑
q=k

(a
(k−1)
3q p

(k)
qk ) a

(k−1)
3k+1 a

(k−1)
3k+2 a

(k−1)
3k+3 · a(k−1)

3n−1 a
(k−1)
3n

............................................................................................................................

0 0 0 · 1
n∑

q=k

(a
(k−1)
k−1q p

(k)
qk ) a

(k−1)
k−1k+1 a

(k−1)
k−1k+2 a

(k−1)
k−1k+3 · a(k−1)

k−1n−1 a
(k−1)
k−1n

0 0 0 · 0
n∑

q=k

|a(k−1)
kq | a

(k−1)
kk+1 a

(k−1)
kk+2 a

(k−1)
kk+3 · a(k−1)

kn−1 a
(k−1)
kn

0 0 0 · 0
n∑

q=k

(a
(k−1)
k+1q p

(k)
qk ) a

(k−1)
k+1k+1 a

(k−1)
k+1k+2 a

(k−1)
k+1k+3 · a(k−1)

k+1n−1 a
(k−1)
k+1n

0 0 0 · 0
n∑

q=k

(a
(k−1)
k+2q p

(k)
qk ) a

(k−1)
k+2k+1 a

(k−1)
k+2k+2 a

(k−1)
k+2k+3 · a(k−1)

k+2n−1 a
(k−1)
k+2n

0 0 0 · 0
n∑

q=k

(a
(k−1)
k+3q p

(k)
qk ) a

(k−1)
k+3k+1 a

(k−1)
k+3k+2 a

(k−1)
k+3k+3 · a(k−1)

k+3n−1 a
(k−1)
k+3n

............................................................................................................................

0 0 0 · 0
n∑

q=k

(a
(k−1)
n−1q p

(k)
qk ) a

(k−1)
n−1k+1 a

(k−1)
n−1k+2 a

(k−1)
n−1k+3 · a(k−1)

n−1n−1 a
(k−1)
n−1n

0 0 0 · 0
n∑

q=k

(a
(k−1)
nq p

(k)
qk ) a

(k−1)
nk+1 a

(k−1)
nk+2 a

(k−1)
nk+3 · a(k−1)

nn−1 a
(k−1)
nn



V(k) =



1 0 0 · 0 0 0 0 0 · 0 0
0 1 0 · 0 0 0 0 0 · 0 0
0 0 1 · 0 0 0 0 0 · 0 0
.......................................................................................
0 0 0 · 1 0 0 0 0 · 0 0

0 0 0 · 0 (a
(k−1)⊕
kk )−1 0 0 0 · 0 0

0 0 0 · 0 −a
(k−1)⊕
k+1k

(
a
(k−1)⊕
kk

)−1

1 0 0 · 0 0

0 0 0 · 0 −a
(k−1)⊕
k+2k

(
a
(k−1)⊕
kk

)−1

0 1 0 · 0 0

0 0 0 · 0 −a
(k−1)⊕
k+3k

(
a
(k−1)⊕
kk

)−1

0 0 1 · 0 0

.......................................................................................

0 0 0 · 0 −a
(k−1)⊕
n−1k

(
a
(k−1)⊕
kk

)−1

0 0 0 · 1 0

0 0 0 · 0 −a
(k−1)⊕
nk

(
a
(k−1)⊕
kk

)−1

0 0 0 · 0 1
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A((k))=



1 a
k−1)⊕
12 a

(k−1)⊕
13 · a(k−1)⊕

1k−1 a
(k−1)⊕
1k a

(k−1)⊕
1k+1 a

(k−1)⊕
1k+2 a

(k−1)⊕
1k+3 0 · a(k−1)⊕

1n−1 a
(k−1)⊕
1n

0 1 a
(k−1)⊕
23 · a(k−1)⊕

2k−1 a
(k−1)⊕
2k a

(k−1)⊕
2k+1 a

(k−1)⊕
2k+2 a

(k−1)⊕
2k+3 · a(k−1)⊕

2n−1 a
(k−1)⊕
2n

0 0 1 · a(k−1)⊕
3k−1 a

(k−1)⊕
3k a

(k−1)⊕
3k+1 a

(k−1)⊕
3k+2 a

(k−1)⊕
3k+3 · a(k−1)⊕

3n−1 a
(k−1)⊕
3n

........................................................................................................................

0 0 0 · 1 a
(k−1)⊕
k−1k a

(k−1)⊕
k−1k+1 a

(k−1)⊕
k−1k+2 a

(k−1)⊕
k−1k+3 · a(k−1)⊕

k−1n−1 a
(k−1)⊕
k−1n

0 0 0 · 0 1 a
(k)
kk+1 a

(k)
kk+2 a

(k)
kk+3 · a(k)kn−1 a

(k)
kn

0 0 0 · 0 0 a
(k)
k+1k+1 a

(k)
k+1k+2 a

(k)
k+1k+3 · a(k)k+1n−1 a

(k)
k+1n

0 0 0 · 0 0 a
(k)
k+2k+1 a

(k)
k+2k+2 a

(k)
k+2k+3 · a(k)k+2n−1 a

(k)
k+2n

0 0 0 · 0 0 a
(k)
k+3k+1 a

(k)
k+3k+2 a

(k)
k+3k+3 · a(k)k+3n−1 a

(k)
k+3n

........................................................................................................................

0 0 0 · 0 0 a
(k)
n−1k+1 a

(k)
n−1k+2 a

(k)
n−1k+3 · a(k)n−1n−1 a

(k)
n−1n

0 0 0 · 0 0 a
(k)
nk+1 a

(k)
nk+2 a

(k)
nk+3 · a(k)nn−1 a

(k)
nn



In the representation of A(k), transformed elements a
(k)
ij are given by the positions:

a
(k)
kj = v

(k)
kk a

(k−1)⊕
kj ; j = k + 1, k + 2, ..., n.

a
(k)
ij = a

(k−1)⊕
ij + v

(k)
ik a

(k−1)⊕
kj ; i, j = k + 1, k + 2, ..., n.

It is important to notice that in the representation of A(k−1)⊕, the key pivotal
element a

(k−1)⊕
kk is non-zero since it is given by the expression:

a
(k−1)⊕
kk =

n∑
q=k

|a(k−1)
kq |.

At the end of the n-th step, the transformation of matrix A is expressed by the
following equivalences:

(2.0) VAP = T;

(2.1) V =
n∏

q=1

V(n+1−q);

(2.2) P =
n∏

q=1

P(q);

(2.3) T = A(n);

so that the sought-for inverse A−1 may be represented by the formula:

(3.0) A−1 = PT−1V.
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Transformation τ2

Matrix T is transformed into the unit matrix U(n) through (n − 1) consecutive
ordered steps in such a way that at the k-th step, k = 1, 2, ..., n − 1, it is trans-
formed into an upper triangular matrix T(k) that admits the following four-block
representation:

(4.0) T(k) =

[
U(k) D(k)

Q(k) H(k)

]
;

where D(k) is a (k× (n− k)) null matrix; Q(k) is an ((n− k)× k) null matrix; and
H(k) is a square upper triangular sub-matrix of order (n− k) with all its diagonal

elements h
(k)
ii = 1.

At the k-th step, k = 1, 2, ..., n− 1, the following transformation applies:

(4.1) T(k−1)G(k) = T(k);

where:

• T(0) = T, so that elements t
(0)
ij = tij;

• G(k) is a non-singular (n × n) upper triangular operational matrix which

differs (or may differ) from U(n) only in the k-th row for the elements g
(k)
kj ,

with j > k, given by the expressions: g
(k)
kj = −t

(k−1)
kj , j = k + 1, k + 2, ..., n.

The following matrix representations help in visualizing the operations re-
quired by (4.1)

T(k−1) =



1 0 0 · 0 0 0 0 0 · 0 0
0 1 0 · 0 0 0 0 0 · 0 0
0 0 1 · 0 0 0 0 0 · 0 0
..............................................................................................
0 0 0 · 1 0 0 0 0 · 0 0

0 0 0 · 0 1 t
(k−1)
kk+1 t

(k−1)
kk+2 t

(k−1)
kk+3 · t

(k−1)
kn−1 t

(k−1)
kn

0 0 0 · 0 0 1 t
(k−1)
k+1k+2 t

(k−1)
k+1k+3 · t

(k−1)
k+1n−1 t

(k−1)
k+1n

0 0 0 · 0 0 0 1 t
(k−1)
k+2k+3 · t

(k−1)
k+2n−1 t

(k−1)
k+2n

0 0 0 · 0 0 0 0 1 · t
(k−1)
k+3n−1 t

(k−1)
k+3n

..............................................................................................

0 0 0 · 0 0 0 0 0 · 1 t
(k−1)
n−1n

0 0 0 · 0 0 0 0 0 · 0 1
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G(k) =



1 0 0 · 0 0 0 0 0 · 0 0

0 1 0 · 0 0 0 0 0 · 0 0

0 0 1 · 0 0 0 0 0 · 0 0
.....................................................................................................
0 0 0 · 1 0 0 0 0 · 0 0

0 0 0 · 0 1 −t
(k−1)
kk+1 −t

(k−1)
kk+2 −t

(k−1)
kk+3 · −t

(k−1)
kn−1 −t

(k−1)
kn

0 0 0 · 0 0 1 0 0 · 0 0

0 0 0 · 0 0 0 1 0 · 0 0

0 0 0 · 0 0 0 0 1 · 0 0
.....................................................................................................
0 0 0 · 0 0 0 0 0 · 1 0

0 0 0 · 0 0 0 0 0 · 0 1



T(k) =



1 0 0 · 0 0 0 0 0 · 0 0

0 1 0 · 0 0 0 0 0 · 0 0

0 0 1 · 0 0 0 0 0 · 0 0
..........................................................................................
0 0 0 · 1 0 0 0 0 · 0 0

0 0 0 · 0 1 0 0 0 · 0 0

0 0 0 · 0 0 1 t
(k−1)
k+1k+2 t

(k−1)
k+1k+3 · t

(k−1)
k+1n−1 t

(k−1)
k+1n

0 0 0 · 0 0 0 1 t
(k−1)
k+2k+3 · t

(k−1)
k+2n−1 t

(k−1)
k+2n

0 0 0 · 0 0 0 0 1 · t
(k−1)
k+3n−1 t

(k−1)
k+3n

..........................................................................................

0 0 0 · 0 0 0 0 0 · 1 t
(k−1)
n−1n

0 0 0 · 0 0 0 0 0 · 0 1


At the end of the (n−1)-th step, the transformation of matrix T is expressed

by the following equivalences:

(5.0) TG = U(n);

(5.1) G =
n−1∏
q=1

G(q).

Since G is, according to (5.0), the inverse of T, expression (3.0) for A−1 is rewrit-
ten as follows:

(6.0) A−1 = PGV.
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A numerical example

The practical application of the present method for matrix inversion is illustrated
through an elementary example for which, it is to be noticed, the simplest Gaus-
sian elimination procedure cannot be carried out in the natural order.

It is required to find the inverse A−1 of the matrix:

A =


0 1 −1 0
1 1 −1 −2
0 1 1 0
1 0 1 −1



Transformation τ1

Step 1:

A(0)P(1) = A(0)⊕;


0 1 −1 0

1 1 −1 −2

0 1 1 0

1 0 1 −1




−1 0 0 0

1 1 0 0

−1 0 1 0

−1 0 0 1

=


2 1 −1 0

3 1 −1 −2

0 1 1 0

−1 0 1 −1



V(1)A(0)⊕ = A(1);


1
2

0 0 0
−3
2

1 0 0

0 0 1 0
1
2

0 0 1




2 1 −1 0

3 1 −1 −2

0 1 1 0

−1 0 1 −1

=


1 1

2
−1
2

0

0 −1
2

1
2

−2

0 1 1 0

0 1
2

1
2

−1


Step 2:

A(1)P(2) = A(1)⊕;


1 1

2
−1
2

0

0 −1
2

1
2

−2

0 1 1 0

0 1
2

1
2

−1




1 0 0 0

0 −1 0 0

0 1 1 0

0 −1 0 1

=


1 −1 −1

2
0

0 3 1
2

−2

0 0 1 0

0 1 1
2

−1



V(2)A(1)⊕ = A(2);


1 0 0 0

0 1
3

0 0

0 0 1 0

0 −1
3

0 1




1 −1 −1
2

0

0 3 1
2

−2

0 0 1 0

0 1 1
2

−1

=


1 −1 −1

2
0

0 1 1
6

−2
3

0 0 1 0

0 0 1
3

−1
3
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Step 3:

A(2)P(3) = A(2)⊕;


1 −1 −1

2
0

0 1 1
6

−2
3

0 0 1 0

0 0 1
3

−1
3




1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1 1

=


1 −1 −1

2
0

0 1 5
6

−2
3

0 0 1 0

0 0 2
3

−1
3



V(3)A(2)⊕ = A(3);


1 0 0 0

0 1 0 0

0 0 1 0

0 0 −2
3

1




1 −1 −1
2

0

0 1 5
6

−2
3

0 0 1 0

0 0 2
3

−1
3

=


1 −1 −1

2
0

0 1 5
6

−2
3

0 0 1 0

0 0 0 −1
3


Step 4:

A(3)P(4) = A(3)⊕;


1 −1 −1

2
0

0 1 5
6

−2
3

0 0 1 0

0 0 0 −1
3




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

=


1 −1 −1

2
0

0 1 5
6

2
3

0 0 1 0

0 0 0 1
3



V(4)A(3)⊕=A(4)=T;


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 3




1 −1 −1
2

0

0 1 5
6

2
3

0 0 1 0

0 0 0 1
3

=


1 −1 −1

2
0

0 1 5
6

2
3

0 0 1 0

0 0 0 1



Transformation τ2

Step 1:

T(0)G(1) = T(1);


1 −1 −1

2
0

0 1 5
6

2
3

0 0 1 0

0 0 0 1




1 1 1
2

0

0 1 0 0

0 0 1 0

0 0 0 1

=


1 0 0 0

0 1 5
6

2
3

0 0 1 0

0 0 0 1


Step 2:

T(1)G(2) = T(2);


1 0 0 0

0 1 5
6

2
3

0 0 1 0

0 0 0 1




1 0 0 0

0 1 −5
6

−2
3

0 0 1 0

0 0 0 1

=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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Step 3:

T(2)G(3) = T(3) = U(4);

Since T(2) = U(4), also G(3) = U(4) and T(3) = U(4).

A−1 = PGV.

P =
4∏

q=1

P(q); G =
3∏

q=1

G(q); V =
4∏

q=1

V(5−q).

P =


−1 0 0 0

1 1 0 0

−1 0 1 0

−1 0 0 1




1 0 0 0

0 −1 0 0

0 1 1 0

0 −1 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



=


−1 0 0 0

1 −1 0 0

−1 1 1 0

−1 −1 −1 −1



G =


1 1 1

2
0

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 −5
6

−2
3

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 =


1 1 −1

3
−2
3

0 1 −5
6

−2
3

0 0 1 0

0 0 0 1



V =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 3




1 0 0 0

0 1 0 0

0 0 1 0

0 0 −2
3

1




1 0 0 0

0 1
3

0 0

0 0 1 0

0 −1
3

0 1




1
2

0 0 0
−3
2

1 0 0

0 0 1 0
1
2

0 0 1



=


1
2

0 0 0
−1
2

1
3

0 0

0 0 1 0

3 −1 −2 3
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A−1 = PGV =


−1 0 0 0

1 −1 0 0

−1 1 1 0

−1 −1 −1 −1




1 1 −1
3

−2
3

0 1 −5
6

−2
3

0 0 1 0

0 0 0 1




1
2

0 0 0
−1
2

1
3

0 0

0 0 1 0

3 −1 −2 3



=


−1 −1 1

3
2
3

1 0 1
2

0

−1 0 1
2

0

−1 −2 1
6

1
3




1
2

0 0 0
−1
2

1
3

0 0

0 0 1 0

3 −1 −2 3

=


2 −1 −1 2
1
2

0 1
2

0
−1
2

0 1
2

0
3
2

−1 −1
2

1


Complex elements

If the elements of matrix A are complex numbers: aij = bij + icij, i being the
imaginary unit such that i2 = −1, in transformation τ1 matrices A(k−1) (with

A(0) = A), k = 1, 2, ..., n, have complex elements a
(k−1)
ij = b

(k−1)
ij + ic

(k−1)
ij , so that

the specification of operational matrix P(k) must be such as to achieve a suitable
non-zero leading pivot a

(k−1)⊕
kk .

Specification of P(k), k = 1, 2, ..., n

P(k) is a non singular (n×n) lower triangular matrix which differs (or may differ)
from U(n) only in the diagonal and lower elements of the k-th column. These
elements are:

p
(k)
ik = σ(b

(k−1)
ki )− iσ(c

(k−1)
ki ); i = k, k + 1, ..., n;

Specification of a
(k−1)⊕
kk , k = 1, 2, ..., n

a
(k−1)⊕
kk =

n∑
q=k

(∣∣∣b(k−1)
kq

∣∣∣+ ∣∣∣c(k−1)
kq

∣∣∣)+ i
n∑

q=k

(
σ
(
b
(k−1)
kq

)
c
(k−1)
kq − σ

(
c
(k−1)
kq

)
b
(k−1)
kq

)

Inversion by partitioning

A given square (n × n) matrix A may be partitioned into four blocks Aq,
q = 1, 2, 3, 4, in view of operating with matrices of reduced dimensions [3]:

(7.0) A =

[
A1 A2

A3 A4

]
,

where A1 is a square sub-matrix of order s, s = 1, 2, ..., n−1; A2 is an (s×(n−s))
sub-matrix; A3 is an ((n − s) × s) sub-matrix; and A4 is a square sub-matrix of
order n− s.
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IfA is non-singular, the possibility of inverting it by operating on its blocks is,
however, not granted since it is necessary that all required operations be feasible.
In this connection, it is to be noticed that the present τ1 transformations provide
feasibility.

In the four-block representation of the matrix A(k):

(1.0) A(k) =

[
Z(k) W(k)

R(k) S(k)

]
,

the matrix Z(k) is non-singular so thatA(k) can be easily inverted once the inverses
(Z(k))−1 and (S(k))−1 have been computed. Inverse (A(k))−1 is provided by the
following expression:

(8.0) (A(k))−1 =

[
(Z(k))−1 −(Z(k))−1W(k)(S(k))−1

R(k) (S(k))−1

]

In view of the relationship between A and A(k):

(8.1) V{k}AP[k] = A(k);

where

(8.2) V{k} =
k∏

q=1

V(k+1−q);

(8.3) P[k] =
k∏

q=1

P(q);

the required inverse A−1 is represented by the expression:

(9.0) A−1 = P[k](A(k))−1V{k}.

Appendix 1

Operational counts

Logical simplicity and number of required arithmetic operations are important
features of numerical methods.

If operations of multiplication and division are considered equivalent and ope-
rations of subtraction and addition are neglected, for the present matrix inversion
method the number of required multiplications/divisions turns out to be n3, i.e.,
the best result available [1].

The overall number of operations, N0, required for achievingA−1, is expressed
by the sum:

(10.0) N0 = Nτ1 +Nτ2 +Nν +Np +Ng +Ngv +Np(gv);
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where Nτ1, Nτ2, Nν , Np, Ng, Ngv and Np(gv) represent, respectively, the maximal
numbers of operations required for carrying out transformations τ1 and τ2; for
computing V according to (2.1); P according to (2.2); G according to (5.1); GV;
and P(GV).

Evaluation of Nτ1

(10.1) Nτ1 =
n∑

k=1

N1k,

where N1k represents the maximal number of operations required for carrying out
the k-th step in transformation τ1.

Evaluation of N1k, k = 1, 2, ..., n

– Operations for P(k) : 0;

– Operations for A(k−1)P(k) : 0;

– Operations for V(k) : n− k + 1;

– Operations for V(k)A(k−1)⊕ : (n− k + 1)(n− k);

N1k = (n+ 1)2 − 2(n+ 1)k + k2.

Nτ1 is evaluated by taking into account the formulae:

n∑
k=1

k = 2−1n(n+ 1);
n∑

k=1

k2 = 6−1n(n+ 1)(2n+ 1).

Nτ1 =
n∑

k=1

N1k =
n∑

k=1

((n+ 1)2 − 2(n+ 1)k + k2)

= n(n+ 1)2 − n(n+ 1)2 + 3−1n3 + 2−1n2 + 6−1n

= 3−1n3 + 2−1n2 + 6−1n.

Evaluation of Nτ2

(10.2) Nτ2 =
n−1∑
k=1

N2k,

where N2k represents the maximal number of operations required for carrying out
the k-th step in transformation τ2.

In view of the specifications of the elements of upper triangular matrices
T(k−1) and G(k) in (4.1), one finds: N2k = 0, and consequently Nτ2 = 0.
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Evaluation of Nv

By introducing the matrix V[s], s = 1, 2, ..., n− 1, through the position:

(10.3) V[s] =
s∏

q=1

V(n+1−q);

Nv may be expressed by the sum:

(10.4) Nv =
n−1∑
s=1

Nvs,

where Nvs represents the maximal number of operations for V[s]V(n−s).

Evaluation of Nvs, s = 1, 2, ..., n− 1.

Nvs =
s∑

q=1

q = 2−1s(s+ 1).

The value of Nv is found to be:

Nv =
n−1∑
s=1

2−1s(s+ 1) = 4−1(n− 1)n+ 6−1n3 − 4−1n2 + 12−1n

= 6−1n3 − 6−1n.

Evaluation of Np

By introducing matrix P[s], s = 1, 2, ..., n− 1, through the position:

(10.5) P[s] =
s∏

q=1

P(q).

Np may be expressed by the sum:

(10.6) Np =
n−1∑
s=1

Nps,

where Nps represents the maximal number of operations for P[s]P(s+1).
In view of the specifications of the elements of lower triangular matrices P(k)

in (1.1), one finds: Nps = 0, and consequently Np = 0.
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Evaluation of Ng

By introducing the matrix G[s], s = 1, 2, ..., n− 2, through the position:

(10.7) G[s] =
s∏

q=1

G(q),

Ng may be expressed by the sum:

(10.8) Ng =
n−2∑
s=1

Ngs,

where Ngs represents the maximal number of operations for G[s]G(s+1).

Evaluation of Ngs, s = 1, 2, ..., n− 2

Ngs = s(n− s− 1)

The value of Ng is found to be:

Ng =
n−2∑
s=1

s(n− s− 1) = 2−1(n− 2)(n− 1)2 − 6−1(n− 2)(n− 1)(2n− 4 + 1)

= 2−1(n3 − 4n2 + 5n− 2)− 6−1(2n3 − 9n2 + 13n− 6)

= 6−1n3 − 2−1n2 + 3−1n.

Evaluation of Ngv

Ngv is expressed by the sum:

(10.9) Ngv =
n−1∑
s=1

Ngvs,

where Ngvs represents the maximal number of operations required for multiplying
the s-th row, s = 1, 2, ..., n− 1, of G with V.

Ngvs = s(n− s) +
n−s∑
q=1

q = s(n− s) + 2−1(n− s)(n− s+ 1)

= ns− s2 + 2−1(n2 − 2ns+ n+ s2 − s) = 2−1n2 + 2−1n− 2−1s2 − 2−1s.

The value of Ngv is found to be:

Ngv = 2−1n2(n− 1) + 2−1n((n− 1)− 2−1(3−1n3 − 2−1n2 + 6−1n)− 2−2(n− 1)n

= 3−1n3 − 3−1n.
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Evaluation of Np(gv)

Since the lower triangular matrix P has elements having absolute values either 0
or 1, the evaluation of Np(gv) is immediate:

Np(gv) = 0.

Evaluation of N0

The value of N0, as defined by (10.0), is found to be:

N0 = 3−1n3+2−1n2+6−1n+6−1n3−6−1n+6−1n3−2−1n2+3−1n+3−1n3−3−1n = n3.

Acknowledgements. I dedicate this work to the memory of my father, Odino
Reali, who could see me through a university education in difficult times. At
the international colloquium on applications of mathematics in memoriam Lothar
Collatz held in Hamburg, 4 and 5 July 1997, and for which no proceedings were
published, I suggested the possibility of inverting A by representing it as a sum
B+C (B and C being (n×n) non-singular matrices respectively lower and upper
triangular), and by applying Scarborough’s inversion method [4] to the auxiliary

(2n× 2n) matrix [
B −U(n)

C U(n)

]

having the inverse [
A−1 A−1

−CA−1 BA−1

]
.

The diagonal elements bii of B played the role of free parameters to be suitably
specified in view of avoiding the occurrence of null diagonal elements. A spe-
cific application for supporting a block solution of a linear algebraic system was
envisaged.
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