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1. Introduction and preliminaries

The Hyperstructure theory was introduced in 1934, at the eighth Congress of
Scandinavian Mathematicians, when F. Marty [1] defined hypergroups based on
the notion of hyperoperation, began to analyze their properties and applied them
to groups. In the following decades and nowadays, a number of different hyper-
structures are widely studied from the theoretical point of view and for their
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applications to many subjects of pure and applied mathematics, such as in fuzzy
sets and rough set theory, optimization theory, theory of discrete event dynami-
cal systems, cryptography, codes, analysis of computer programs, automata, for-
mal language theory, combinatorics, artificial intelligence, probability, graphs and
hypergraphs, geometry, lattices and binary relations (see [2], [3], [4], [5]).

Ternary algebraic operations were considered in the 19th century by several
mathematicians. Cayley [6] introduced the notion of ”cubic matrix” which was
generalized by Kapranov, et al. in 1990 [7]. Ternary structures and their generali-
zation, the so-called n-ary structures, raise certain hopes in view of their possible
applications in physics and other sciences. Some significant physical applications
in Nambu mechanics, although still hypothetical, in the fractional quantum Hall
effect, the non-standard statistics (the anyons), supersymmetric theories, Yang-
Baxter equation etc. can be seen in [22], [25], [8], [27], [28], [29]). The notion
of an n-ary group was introduced in 1928 by W. Dörnte [15] (under inspiration
of Emmy Noether). The idea of investigations of n-ary algebras, i.e., sets with
one n-ary operation, seems to be going back to Kasner’s lecture [16] at the 53rd
annual meeting of the American Association of the Advancement of Science in
1904. Sets with one n-ary operation having different properties were investigated
by many authors. Such systems have many applications in different branches. For
example, in the theory of automata [24] are used n-ary systems satisfying some
associative laws, some others n-ary systems are applied in the theory of quantum
groups [14] and combinatorics [30]. Different applications of ternary structures
in physics are described by R. Kerner in [8]. In physics there are also used such
structures as n-ary Filippov algebras (see [9]) and n-Lie algebras (see [22]). Some
n-ary structures induced by hypercubes have applications in error-correcting and
error-detecting coding theory, cryptology, as well as in the theory of (t,m, s)-
nets (see for example [26]). Ternary semigroups are universal algebras with one
associative operation. The theory of ternary algebraic systems was introduced
by D. H. Lehmer [17] in 1932. He investigated certain algebraic systems called
triplexes which turn out to be commutative ternary groups. The notion of ternary
semigroups was introduced by S. Banach (cf. [23]). By an example he showed
that a ternary semigroup does not necessary reduce to an ordinary semigroup.

n-ary generalizations of algebraic structures is the most natural way for fur-
ther development and deeper understanding of their fundamental properties. In
[10], Davvaz and Vougiouklis introduced the concept of n-ary hypergroups as a
generalization of hypergroups in the sense of Marty. Also, n-ary hypergroups can
be seen as an interesting generalization of n-ary groups. Davvaz and et. al. in
[11] considered a class of algebraic hypersystems which represent a generalization
of semigroups, hypersemigroups and n-ary semigroups. Ternary semihypergroups
are algebraic structures with one associative hyperoperation and they are a par-
ticular case of an n-ary semihypergroup (n-semihypergroup) for n = 3 (cf. [11],
[12], [10, 13]). Recently, Hila et. al. [20], [21] introduced and studied some classes
of hyperideals in ternary semihypergroups.

Several difficult problems in economics, engineering, environment, social scien-
ces, medicine and many other fields involve uncertain data. We usually come
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across the data which is blurred and contains many types of uncertainties. There
are several well-known theories developed to overcome difficulties which arise due
to uncertainty. For instance, probability theory, fuzzy sets theory [31], rough sets
theory [32] and other mathematical tools. But all these theories have their in-
herited difficulties as pointed out by Molodtsov [33]. In probability theory, we
have to make a great deal of experiments in order to check samples. In social
sciences and economics, it is not always possible to make so many experiments.

Pawlak [32] introduced the theory of rough sets in 1982. It was a significant
approach for modeling vagueness. In this theory, equivalence classes are used to
approximate crisp subsets by their upper and lower approximations. This theory
has been applied to many problems successfully, yet has its own limitations. It
is not always possible to have an appropriate equivalence relation among the ele-
ments of a given set, so we cannot have equivalence classes to get upper and lower
approximations of a subset. Later, some authors [34] tried to have approximations
not with the help of equivalence relation, but by using a relation in general.

Fuzzy set theory was developed by Zadeh [31]. It is the most appropriate
approach to deal with uncertainties. However, some authors [33] think that the
difficulties in fuzzy set theory are due to the inadequacy of parametrization tools
of this theory.

In 1999, Molodtsov introduced the concept of soft sets as a new mathema-
tical tool for dealing with uncertainties that is free from the difficulties affecting
existing methods. Soft set theory has rich potential for applications in several
directions, few of which had been demonstrated by Molodtsov in his pioneer work
[33]. Molodtsov also showed how Soft Set Theory (SST) is free from parametriza-
tion inadequacy syndrome of Fuzzy Set Theory (FST), Rough Set Theory (RST),
Probability Theory, and Game Theory. SST is a very general framework. Many
of the established paradigms appear as special cases of SST. Applications of Soft
Set Theory in other disciplines and real life problems are now catching momen-
tum. At present, research in the theory of soft sets is in progress. Theoretical and
application aspects of soft set theory are discussed in several papers, such as [35],
[36], [37], [38]. Maji et al. [35] applied soft sets to a decision making problem and
studied several operations on the theory of soft sets. Pei et al. [36] discussed the
relationship between soft sets and information systems. Roy et al. [37] applied
fuzzy soft set theory to a decision making problem. Maji et al. [38] studied several
operations on the theory of soft sets. Ali et al. [39] also studied some new notions
such as the restricted intersection, the restricted union, the restricted difference,
and the extended intersection of two soft sets. The algebraic structure of soft
sets has been studied by several authors. For example, Aktas and Cagman [40]
introduced the basic concepts of soft set theory and compared soft sets to the
related concepts of fuzzy sets and rough sets. They also discussed the notion of
soft groups and drove their basic properties using Molodtsov’s definition of soft
sets. Other applications of soft set theory in different algebraic structure can be
found in [41], [42], [43], [44], [45], [46], [47], [48], [49] etc. Recently, Leoreanu-Fotea
and Corsini [19] and then Davvaz et. al. [50], [51], [52] introduced and analyzed
several types of soft hyperstructures: soft hypergroupoids, soft semihypergroups,
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soft hypergroups and soft polygroups.
In this paper, we introduce and initiate the study of soft ternary semihyper-

groups by using soft set theory. The notions of soft ternary semihypergroups, soft
ternary subsemihypergroups, soft left (lateral, right) hyperideals, soft hyperideals,
soft quasi-hyperideals and soft bi-hyperideals are introduced, and several related
properties are investigated.

Recall first the basic terms and definitions from hyperstructure theory and
soft set theory.

2. Ternary semihypergoups

Let H be a nonempty set and let P∗(H) = P(H)\{∅} denote the set of all
nonempty subsets of H. A map ◦ : H ×H → P∗(H) is called a hyperoperation or
join operation on H. A hypergroupoid is a pair (H, ◦), where ◦ is a hyperoperation
on H. A hypergroupoid (H, ◦) is called a semihypergroup if for all x, y, z ∈ H,
(x ◦ y) ◦ z = x ◦ (y ◦ z), which means that∪

u∈x◦y

u ◦ z =
∪

v∈y◦z

x ◦ v.

If x ∈ H and A,B are non-empty subsets of H then

A ◦B =
∪

a∈A,b∈B
a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A nonempty subset B of a semihypergroup H is called a sub-semihypergroup
of H if B ◦ B ⊆ B. A semihypergroup (H, ◦) is a hypergroup if it satisfies the
reproduction axiom: for all a ∈ H, a ◦H = H ◦ a = H.

A map f : H ×H ×H → P∗(H) is called a ternary hyperoperation on H. A
ternary hypergroupoid is a pair (H, f) where f is a ternary hyperoperation on H.

If A,B,C are non-empty subsets of H, then we define

f(A,B,C) =
∪

a∈A,b∈B,c∈C
f(a, b, c).

A ternary hypergroupoid (H, f) is called a ternary semihypergroup if for all
a1, a2, ..., a5 ∈ H, we have

(∗) f(f(a1, a2, a3), a4, a5) = f(a1, f(a2, a3, a4), a5) = f(a1, a2, f(a3, a4, a5)).

Since we can identify the set {x} with the element x, any ternary semigroup
[17] is a ternary semihypergroup.

Due to the associative law in a ternary semihypergroup (H, f), for any ele-
ments x1, x2, ..., x2n+1 ∈ H and positive integers m,n with m ≤ n, one may write

f(x1, x2, ..., x2n+1) = f(x1, ..., xm, xm+1, xm+2, ..., x2n+1)

= f(x1, ..., f(f(xm, xm+1, xm+2), xm+3, xm+4), ..., x2n+1).
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A ternary hypergroupoid (H, f) is commutative if for all a1, a2, a3 ∈ H and
for all σ ∈ S3, f(a1, a2, a3) = f(aσ(1), aσ(2), aσ(3)).

Let (H, f) be a ternary semihypergroup. A nonempty subset T of H is called
a ternary subsemihypergroup if f(T, T, T ) ⊆ T .

An element e of a ternary semihypergroup (H, f) is called a left identity
element of H if for all a ∈ H, f(e, a, a) = {a}. An element e ∈ H is called an
identity element of H if for all a ∈ H, f(a, a, e) = f(e, a, a) = f(a, e, a) = {a}.
Hence f(e, e, a) = f(e, a, e) = f(a, e, e) = {a}.

A nonempty subset I of a ternary semihypergroup H is called a left (right,
lateral) hyperideal of H if

f(H,H, I) ⊆ I (f(I,H,H) ⊆ I, f(H, I,H) ⊆ I).

A nonempty subset I of a ternary semihypergroup H is called a hyperideal
of H if it is a left, right and lateral hyperideal of H. A nonemtpy subset I of a
ternary semihypergroup H is called two-sided hyperideal of H if it is a left and
right hyperideal of H.

Different examples can be found in [20], [21].

3. Preliminaries of soft set theory

Let U be an initial universe set and E be a set of parameters. The power set of
U is denoted by P(U) and A is a subset of E.

Definition 3.1. A pair (F,A) is called a soft set over U , where F : A → P(U) is
a mapping.

In the other words, a soft set over U is a parameterized family of subsets of
the universe U . For a ∈ A,F (a) may be considered as the set of a-approximate
elements of the soft set (F,A). Notice that a soft set is not a set, as Molodtsov
pointed out in several examples in [33].

Let us consider the following example. We quote it directly from [38].

Example 3.2. [38] Let us consider a soft set (F,E), which describes the ”attrac-
tiveness of houses”, considered for purchase. Suppose that there are six houses
in the universe U , given by U = {h1, h2, h3, h4, h5, h6} and E = {e1, e2, e3, e4, e5}
is a set of decision parameters, where ei(i = 1, 2, 3, 4, 5) stand for the parame-
ters ”expensive”, ”beautiful”, ”wooden”, ”cheap” and ”in green surroundings”,
respectively. Consider a mapping F : E → P(U). For instance, suppose that
F (e1) = {h2, h4}, F (e2) = {h1, h3}, F (e3) = {h3, h4, h5}, F (e4) = {h1, h3, h5},
F (e5) = {h1}. The soft set (F,E) is a parameterized family {F (ei), i = 1, ..., 5}
of subsets of the set U , and can be viewed as a collection of approximations:
(F,E)={expensive houses = {h2, h4}, beautiful houses ={h1, h3}, wooden houses
={h3, h4, h5}, cheap houses ={h1, h3, h5}, in green surroundings houses ={h1}}.
Each approximation has two parts: a predicate and an approximate value set.
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In [47], for a soft set (F,A), the set Supp(F,A) = {x ∈ A|F (x) ̸= ∅} is called
the support of the soft set (F,A). If Supp(F,A) ̸= ∅, then (F,A) is called non-null.

Definition 3.3. Let (F,A) and (G,B) be two soft sets over a common universe
U . The extended intersection of (F,A) and (G,B), denoted by (F,A)

∩
E(G,B)

is the soft set (K,C), satisfying the following conditions: (i) C = A ∪ B; (ii) for
all e ∈ C,

K(e) =


F (e) if e ∈ A\B,
G(e) if e ∈ B\A,
F (e) ∪G(e) if e ∈ A ∩B.

Definition 3.4. Let (F,A) and (G,B) be two soft sets over a common universe
U . The restricted intersection of (F,A) and (G,B), denoted by (F,A)

∩
R(G,B)

is the soft set (K,C), satisfying the following conditions: (i) C = A ∩ B; (ii) for
all e ∈ C, K(e) = F (e) ∩G(e). We write (F,A)∩̃(G,B) = (K,C).

Definition 3.5. Let (F,A) and (G,B) be two soft sets over a common universe U .
The bi-intersection of (F,A) and (G,B) is the soft set (K,C), where C = A ∩ B
and K : C → P(U) is a mapping given by K(x) = F (x)∩G(x) for all x ∈ G. We
write (F,A)⊓̃(G,B) = (K,C).

Definition 3.6. Let (F,A) and (G,B) be two soft sets over a common universe
U . The extended union of (F,A) and (G,B), denoted by (F,A)

∪
E(G,B) is the

soft set (K,C), satisfying the following conditions: (i) C = A ∪ B; (ii) for all
e ∈ C,

K(e) =


F (e) if e ∈ A\B,
G(e) if e ∈ B\A,
F (e) ∪G(e) if e ∈ A ∩B.

Definition 3.7. Let (F,A) and (G,B) be two soft sets over a common universe
U . The restricted union of (F,A) and (G,B), denoted by (F,A)

∪
R(G,B), is the

soft set (K,C) satisfying the following conditions: (i) C = A ∩ B; (ii) for all
e ∈ C,K(e) = F (e) ∪G(e). We write (F,A)∪̃(G,B) = (K,C).

Definition 3.8. Let (Fi, Ai)i∈I be a nonempty family of soft sets over a common
universe U . The union of these soft sets is the soft set (G,B) such that B =∪

i∈I Ai and for all x ∈ B, G(x) =
∪

i∈I(x) Fi(x), where I(x) = {i ∈ I|x ∈ Ai}. We

write
∪̃

i∈I(Fi, Ai) = (G,B).

Definition 3.9. Let (F,A) and (G,B) be two soft sets over a common universe U .
Then (F,A) AND (G,B) denoted by (F,A)∧̃(G,B) is defined by (F,A)∧̃(G,B) =
(K,A×B), where K(x, y) = F (x) ∩G(y) for all (x, y) ∈ A×B.

Definition 3.10. Let (F,A) and (G,B) be two soft sets over a common universe
U . Then (F,A)OR (G,B) denoted by (F,A)∨̃(G,B) is defined by (F,A)∨̃(G,B) =
(K,A×B), where K(x, y) = F (x) ∪G(y) for all (x, y) ∈ A×B.
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Definition 3.11. Let (F,A) and (G,B) be two soft sets over a common universe
U . We say that (F,A) is a soft subset of (G,B), denoted by (F,A)⊆̃(G,B), if it
satisfies: (i) A ⊆ B; (ii) F (a) ⊆ G(a) for all a ∈ A.

We say that (F,A) and (G,B) are soft equal, denoted by (F,A) = (G,B) if
(F,A) ⊆ (G,B) and (G,B) ⊆ (F,A).

4. Soft ternary semihypergroups

Hereafter, we shall consider soft sets over a ternary semihypergroup (H, f).

Definition 4.1. The restricted hyperproduct of soft sets (F1, B1), (F2, B2), (F3, B3)

over a ternary semihypergroup H, denoted by f̂((F1, B1), (F2, B2), (F3, B3)), is
defined as a soft set

(K,D) = f̂((F1, B1), (F2, B2), (F3, B3)),

where D =
∩
{Bi|i = 1, 2, 3} ̸= ∅ and K : D → P(H) defined by

K(d) = f(F1(d), F2(d), F3(d)) for all d ∈ D.

Definition 4.2. Let (F,A) be a non-null soft set over a ternary semihypergroup
(H, f). Then, (F,A) is called a soft ternary semihypergroup over H if F (x) is a
ternary subsemihypergroup of H for all x ∈ Supp(F,A), i.e.

f̂((F,A), (F,A), (F,A)) ⊆ (F,A).

A soft set (H,E) over H is said to be an absolute soft set over H, if for all
e ∈ E, H(e) = H.

Proposition 4.3. A soft set (F,A) over a ternary semihypergroup H is a soft
ternary semihypergroup over H if and only if for all a ∈ A,F (a) ̸= ∅ is a ternary
subsemihypergroup of H.

Proof. Let (F,A) be a soft ternary hypergroup over H and a ∈ A be such that
F (a) ̸= ∅. By definition

f̂((F,A), (F,A), (F,A)) = (K,A ∩ A ∩ A) = (K,A)

where K is defined by

K(a) = f(F (a), F (a), F (a)) for all a ∈ A.

Since f̂((F,A), (F,A), (F,A)) ⊆ (F,A), it follows that K(a) ⊆ F (a) for all a ∈ A,
and so f(F (a), F (a), F (a)) ⊆ F (a). This means that F (a) is a ternary subsemi-
hypergroup of H.

Conversely, let F (a) ̸= ∅ be a ternary semihypergroup of H for all a ∈ A. We
have f(F (a), F (a), F (a)) ⊆ F (a), that is K(a) ⊆ F (a). Thus, (K,A) ⊆ (F,A),
which implies that
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f̂((F,A), (F,A), (F,A)) ⊆ (F,A)

Hence (F,A) is a ternary semihypergroup over H.

Example 4.4. LetH = {a, b, c, d, e, g} and f(x, y, z) = (x∗y)∗z for all x, y, z ∈ H,
where ∗ is defined by the table:

∗ a b c d e g
a a {a, b} c {c, d} e {e, g}
b b b d d g g
c c {c, d} c {c, d} c {c, d}
d d d d d d d
e e {e, g} c {c, d} e {e, g}
g g g d d g g

Then (H, f) is a ternary semihypergroup. We define F : H → P(H) by F (a) =
{a, b}, F (b) = {b, d, g}, F (c) = {c, d}, F (d) = {d}, F (e) = {a, b, e, g}, F (g) =
{d, g}. It is clear that for all x ∈ H, F (x) is a ternary subsemihypergroup of H.
Hence, (F,H) is a soft ternary semihypergroup over H. Notice that not every
soft set over a ternary semihypergroup H, is a soft ternary semihypergroup over
H. Let G : H → P(H) defined by G(a) = {a, b, c}, G(b) = {b, d, g}, G(c) =
{c, d}, G(d) = {d}, G(e) = {a, b, e, g}, G(g) = {d, e, g}. Then (G,H) is a soft set
over H, but it is not a soft ternary semihypergroup over H, because G(a) and
G(g) are not ternary subsemihypergroups of H.

Proposition 4.5. Let (F,A) and (G,B) be two soft ternary semihypergroups over
H such that A ∩ B = ∅. Then (F,A)

∪
E(G,B) is a soft ternary semihypergroup

over H.

Proof. By definition, (K,C) = (F,A)
∪

E(G,B), where C = A∪B and A∩B = ∅.
Then for all c ∈ C, either c ∈ A\B or c ∈ B\A. If c ∈ A\B, then K(c) =
F (c) and if c ∈ B\A, then K(c) = G(c). So in both cases K(c) is a ternary
subsemihypergroup of H. Therefore, (K,C) is a soft ternary semihypergroup
over H.

Proposition 4.6. Let (F,A) and (G,B) be two soft ternary semihypergroups over
H such that A ∩ B ̸= ∅. Then (F,A)

∪
E(G,B) is a soft ternary semihypergroup

over H.

Proof. Let us assume that A ∩B ̸= ∅. Let (K,C) = (F,A)
∪

E(G,B) where

K(c) =


F (c) if c ∈ A\B,
G(c) if c ∈ B\A,
F (c) ∪G(c) if c ∈ A ∩B.

To show that (K,C) is a soft ternary semihypergroup over H, we have to show
that

f̂((K,C), (K,C), (K,C)) ⊆ (K,C).
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We have

f̂((K,C), (K,C), (K,C)) = (P,C).

and

P (c) = f(K(c), K(c), K(c)) for all c ∈ C.

For c ∈ C, we have

P (c) = f(K(c), K(c), K(c))

= f((F,A) ∪E (G,B), (F,A) ∪E (G,B), (F,A) ∪E (G,B))

⊆


F (c) if c ∈ A\B,
G(c) if c ∈ B\A,
F (c) ∩G(c) if c ∈ A ∩B.

Then P (c) ⊆ K(c) for all c ∈ C. Therefore, (F,A) ∪E (G,B) is a soft ternary
semihypergroup over H.

Proposition 4.7. Let (F,A) and (G,B) be two soft ternary semihypergroups over
H such that A ∩ B ̸= ∅. Then (F,A) ∩R (G,B) is a soft ternary semihypergroup
over H.

Proof. Let us assume that A ∩ B ̸= ∅. Let (K,C) = (F,A) ∩R (G,B) where
C = A ∩ B ̸= ∅ and K(c) = F (c) ∩ G(c) for all c ∈ C. To show that (K,C) is a
soft ternary semihypergroup over H, we have to show that

f̂((K,C), (K,C), (K,C)) ⊆ (K,C).

We have

f̂((K,C), (K,C), (K,C)) = (P,C).

and

P (c) = f(K(c), K(c), K(c)) for all c ∈ C.

For c ∈ C, we have

P (c) = f(K(c), K(c), K(c))

= f(F (c) ∩G(c), F (c) ∩G(c), F (c) ∩G(c))

⊆ F (c) ∩G(c)

= K(c).

Then P ⊆ K. Therefore, (F,A) ∩R (G,B) is a soft ternary semihypergroup
over H.

Proposition 4.8. Let (F,A) and (G,B) be two soft ternary semihypergroups over
H. Then (F,A) ∧ (G,B) is a soft ternary semihypergroup over H.
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Proof. Let (F,A) ∧ (G,B) = (K,A × B) = (K,C) where K(a, b) = F (a) ∩
G(b) for all (a, b) ∈ A × B. We have to show that (K,A × B) is a soft ternary
semihypergroup over H. We have

(P,C) = f̂((K,A×B), (K,A×B), (K,A×B))

where C = A×B and P (a, b) = f(K(a, b), K(a, b), K(a, b)) for all (a, b) ∈ C. For
(a, b) ∈ C, we have

P (a, b) = f(K(a, b), K(a, b), K(a, b))

= f(F (a) ∩G(b), F (a) ∩G(b), F (a) ∩G(b))

⊆ F (a) ∩G(b)

= K(a, b).

Then P ⊆ K. Therefore, (F,A)∧(G,B) is a soft ternary semihypergroup overH.

Definition 4.9. Let (F1, A1), (F2, A2), (F3, A3) be three soft sets over a ternary
semihypergroup (H, f). Define

f ∗((F1, A1), (F2, A2), (F3, A3)) = (K,A1 × A2 × A3)

be a soft set where K(a1, a2, a3) = f((F1(a1), F2(a2), F3(a3)).

Proposition 4.10. Let (H, f) be a commutative ternary semihypergroup. If
(F1, A1), (F2, A2), (F3, A3) are soft ternary semihypergroup over H, then
f ∗((F1, A1), (F2, A2), (F3, A3)) is a soft ternary semihypergroup over H.

Proof. Let f ∗((F1, A1), (F2, A2), (F3, A3)) = (K,A1 × A2 × A3) where

K(a1, a2, a3) = f(F1(a1), F2(a2), F3(a3))

for all (a1, a2, a3) ∈ A1 × A2 × A3. We have

(P,C) = f̂((K,A1 × A2 × A3), ..., (K,A1 × A2 × A3))

where C = A1 × A2 × A3 and

P (a1, a2, a3) = f(K(a1, a2, a3), K(a1, a2, a3), K(a1, a2, a3))

for all (a1, a2, a3) ∈ C. For (a1, a2, a3) ∈ C, since H is commutative, we have

P (a1, a2, a3) = f(K(a1, a2, a3), K(a1, a2, a3), K(a1, a2, a3))

= f(f(F1(a1), F2(a2), F3(a3)), f(F1(a1), F2(a2), F3(a3)))

⊆ f(F1(a1), F2(a2), F3(a3))

= K(a1, a2, a3).

Then P ⊆ K. This completes the proof.
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5. Soft ternary subsemihypergroups and soft hyperideals

Definition 5.1. Let (F,A) and (G,B) be two soft sets overH such that (F,A) is a
ternary semihypergroup and (G,B) ⊆ (F,A). Then (G,B) is called a soft ternary
subsemihypergroup (hyperideal) of (F,A) if G(b) is a ternary subsemihypergroup
(hyperideal) of F (b) for all b ∈ B.

Proposition 5.2. Let (F,A) be a soft ternary semihypergroup over H and let
{(Ki, Ai)|i ∈ I} be a non-empty family of soft ternary subsemihypergoups of
(F,A). Then the following hold:

1. ∩Ri∈I
(Ki, Ai) is a soft ternary subsemihypergroup of (F,A).

2. ∧i∈I(Ki, Ai) is a soft ternary subsemihypergroup of ∧i∈I(F,A).

3. ∪Ei∈I
(Ki, Ai) is a soft ternary subsemihypergroup of (F,A)

if the set {Ai|i ∈ I} is pairwise disjoint.

Proof. Straightforward.

Definition 5.3. A soft set (F,A) over a ternary semihypergroup H is called a

soft left (right, lateral) hyperideal over H, if f̂((H,E), (H,E), (F,A)) ⊆ (F,A). A
soft set (F,A) over H is called a soft hyperideal over H, if it is a soft left, soft
right and a soft lateral hyperideal over H.

Proposition 5.4. A soft set (F,A) over H is a soft left (right, lateral) hyperideal
over H if and only if for all a ∈ A,F (a) ̸= ∅ is a left (right, lateral) hyperideal
of H.

Proof. Let us suppose that (F,A) is a soft left hyperideal over H. We show that
F (a) ̸= ∅ is a left hyperideal of H. By the definition we have

f̂((H,E), (H,E), (F,A)) = (K,E ∩ E ∩ A) = (K,A).

where f(H(a), H(a), F (a)) = K(a), for all a ∈ A. That is, f(H,H, F (a)) = K(a).

Since f̂((H,E), (H,E), (F,A)) ⊆ (F,A), where (K,A) ⊆ (F,A). Thus we have,
(K(a) ⊆ F (a) for all a ∈ A. Therefore, f(H,H, F (a)) ⊆ F (a). This shows that
F (a) is a left hyperideal of H.

Conversely, let us assume that F (a) ̸= ∅ is a left hyperideal of H. We will
show that (F,A) is a soft left hyperideal over H. By the definition

f̂((H,E), (H,E), (F,A)) = (K,E ∩ E ∩ A) = (K,A)

where f(H(a), H(a), F (a)) = K(a), for all a ∈ A. That is, f(H,H, F (a)) = K(a).
But f(H,H, F (a)) ⊆ F (a). This implies K(a) ⊆ F (a) and so (K,A) ⊆ (F,A).

Thus f̂((H,E), (H,E), (F,A)) ⊆ (F,A). Hence, (F,A) is a soft left hyperideal
over H.

The soft hyperideal over H defined above is different from the soft hyperideal
of a soft ternary semihypergroup. The following example shows this.
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Example 5.5. LetH = {a, b, c, d, e, f} and f(x, y, z) = (x◦y)◦z for all x, y, z ∈ H
with the hyperoperation ◦ given by the following table:

◦ 0 a b c d e f
0 0 0 0 0 0 0 0
a 0 a {a, b} c {c, d} e {e, f}
b 0 b b d d f f
c 0 c {c, d} c {c, d} c {c, d}
d 0 d d d d d d
e 0 e {e, f} c {c, d} e {e, f}
f 0 f f d d f f

Then (H, f) is a ternary semihypergroup. Let we consider the soft set (F,H),
where F : H → P(H) is defined as F (0) = {0}, F (a) = {0, d}, F (b) = {0, b, d, f},
F (c) = {0, c, d}, F (d) = {0, d, f}, F (e) = {0, e, f}, F (f) = {0, a, b}. It is clear
that (F,H) is a soft ternary semihypergroup over H. Let we consider now the
soft set (G, {b}) in which G : {b} → P(H) is defined as G(b) = {0, d}. As {b} ⊆ H
and G(b) is a hyperideal of F (b), therefore (G, {b}) is a soft hyperideal of (F,H).
But G(b) = {0, d} is not a hyperideal over H, so (G, {b}) is not a soft hyperideal
over H.

Proposition 5.6. Let (F,A) and (G,B) be any two soft hyperideals over a ternary
semihypergroup H, with A ∩ B ̸= ∅. Then (F,A) ∩R (G,B) is a soft hyperideal
over H contained in both (F,A) and (G,B).

Proof. Straightforward.

Proposition 5.7. Let (F,A) and (G,B) be any two soft hyperideals over a ternary
semihypergroup H. Then (F,A) ∪E (G,B) is a soft hyperideal over H containing
both (F,A) and (G,B).

Proof. By the definition, (K,C) = (F,A) ∪E (G,B), where C = A ∪ B for
all c ∈ C = A ∪ B, either c ∈ A\B or c ∈ B\A or c ∈ A ∩ B. If c ∈ A\B,
then K(c) = F (c) if c ∈ B\A, then K(c) = G(c), and if c ∈ A ∩ B, then
K(c) = F (c)∪G(c), in all the casesK(c) is a hyperideal ofH. Hence, (K,C) is soft
hyperideal over H. Since A ⊆ A ∪ B,B ⊆ A ∪ B and F (c) ⊆ K(c), G(c) ⊆ K(c)
for all c ∈ C. Therefore, by the definition of soft subsets (F,A) ⊆ (K,C) and
(G,B) ⊆ (K,C).

Proposition 5.8. Let (F,A) and (G,B) be any two soft hyperideals over a ternary
semihypergroup H. Then (F,A) ∧ (G,B) is a soft hyperideal over H.

Proof. Straightforward.

Proposition 5.9. Let (F,A) and (G,B) be any two soft hyperideals over a ternary
semihypergroup H. Then (F,A) ∨ (G,B) is a soft hyperideal over H.

Proof. Straightforward.
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Proposition 5.10. Let (F,A) be a soft ternary semihypergroup over H and let
{(Ki, Ai)|i ∈ I} be a non-empty family of soft hyperideals of (F,A). Then the
following hold:

1. ∩Ri∈I
(Ki, Ai) is a soft hyperideal of (F,A).

2. ∧i∈I(Ki, Ai) is a soft hyperideal of ∧i∈I(F,A).

3. ∪Ri∈I
(Ki, Ai) is a soft hyperideal of (F,A).

4. ∨i∈I(Ki, Ai) is a soft hyperideal of ∨i∈I(F,A).

Proof. Straightforward.

6. Soft quasi-hyperideals over ternary semihypergroups

Definition 6.1. A soft set (F,A) over a ternary semihypergroup H is called a
soft quasi-hyperideal over H if

1. f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (F,A), (H,E))

∩R f̂((H,E), (H,E), (F,A)) ⊆ (F,A).

2. f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (H,E), (F,A), (H,E), (H,E))

∩R f̂((H,E), (H,E), (F,A)) ⊆ (F,A).

where (H,E) is the absolute soft set over H.

Proposition 6.2. A soft set (F,A) over a ternary semihypergroup H is a soft
quasi-hyperideal over H if and only if for all a ∈ A,F (a) ̸= ∅ is a quasi-hyperideal
of H.

Proof. Let us suppose that a soft set (F,A) over H is a soft quasi-hyperideal over
H. We show that F (a) is a quasi-hyperideal of H. By the definition of restricted
product,

(1) f̂((F,A), (H,E), (H,E)) = (G,A ∩ E ∩ E) = (G,A)

(2) f̂((H,E), (F,A), (H,E)) = (S,E ∩ A ∩ E) = (S,A)

(3) f̂((H,E), (H,E), (F,A)) = (I, E ∩ E ∩ A) = (I, A)

(4) f̂((H,E), (H,E), (F,A), (H,E), (H,E)) = (J,E ∩ E ∩ A ∩ E ∩ E) = (J,A)

Equations (1), (2), (3) imply that

(5) f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (F,A), (H,E))

∩Rf̂((H,E), (H,E), (F,A)) = (G,A) ∩R (S,A) ∩R (I, A)

(6) f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (F,A), (H,E))

∩Rf̂((H,E), (H,E), (F,A)) = (K,A)
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But (F,A) is a soft quasi-hyperideal over H. Thus f̂((F,A), (H,E), (H,E)) ∩R

f̂((H,E), (F,A), (H,E)) ∩R f̂((H,E), (H,E), (F,A)) ⊆ (F,A). From equation
(6), (K,A) ⊆ (F,A), that is, K(a) ⊆ F (a) for all a ∈ A. Again, equation (6)
implies that, ∀a ∈ A,

f(F (a), H(a), H(a)) ∩ f(H(a), F (a), H(a)) ∩ f(H(a), H(a), F (a)) = K(a).

This implies that, ∀a ∈ A,

(7) f(F (a), H(a), H(a)) ∩ f(H(a), F (a), H(a)) ∩ f(H(a), H(a), F (a)) ⊆ F (a).

Similarly, from equations (1), (3), (4), we have

(8) f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (H,E), (F,A), (H,E), (H,E))

∩Rf̂((H,E), (H,E), (F,A)) = (P,A).

Since (F,A) is a soft quasi-hyperideal over H, we have

f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (H,E), (F,A), (H,E), (H,E))

∩Rf̂((H,E), (H,E), (F,A)) ⊆ (F,A).

Therefore, (P,A) ⊆ (F,A), that is, for all a ∈ A, P (a) ⊆ F (a). From equation
(8), we have for all a ∈ A,

f(F (a), H(a), H(a))∩f(H(a), H(a), F (a), H(a), H(a))∩f(H(a), H(a), F (a))=P (a).

This implies that

(9) f(F (a), H(a), H(a)) ∩ f(H(a), H(a), F (a), H(a), H(a)) ∩ f(H(a), H(a), F (a))

⊆ F (a).

From equations (7) and (9), it is clear that F (a) is a quasi-hyperideal of H.
Conversely, let F (a) ̸= ∅ be a quasi-hyperideal of H for all a ∈ A. We will

show that (F,A) is a soft quasi-hyperideal over H. From equations (1), (2), (3)
we have

f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (F,A), (H,E))

∩Rf̂((H,E), (H,E), (F,A)) = (G,A) ∩R (S,A) ∩R (I, A) = (K,A).

By the definition, ∀a ∈ A, we have

f(F (a), H(a), H(a)) ∩ f(H(a), F (a), H(a)) ∩ f(H(a), H(a), F (a)) = K(a).

But F (a) is a quasi-hyperideal of H. Therefore,

K(a) = f(F (a), H(a), H(a))∩f(H(a), F (a), H(a))∩f(H(a), H(a), F (a)) ⊆ F (a),

and so, (K,A) ⊆ (F,A). Thus

(10) f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (F,A), (H,E))

∩Rf̂((H,E), (H,E), (F,A)) ⊆ (F,A).
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From equations (1), (3), and (4) we have for, all a ∈ A,

f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (H,E), (F,A), (H,E), (H,E))

∩Rf̂((H,E), (H,E), (F,A)) = (G,A) ∩R (I, A) ∩R (J,A) = (P,A)

and also

f(F (a), H(a), H(a)) ∩ f(H(a), H(a), F (a), H(a), H(a))

∩f(H(a), H(a), F (a)) = P (a).

Since F (a) is a quasi-hyperideal of H, so we have

P (a) = f(F (a), H(a), H(a)) ∩ f(H(a), H(a), F (a), H(a), H(a))

∩f(H(a), H(a), F (a)) ⊆ F (a)

and thus (P,A) ⊆ (F,A). Hence we have

(11) f̂((F,A), (H,E), (H,E)) ∩R f̂((H,E), (H,E), (F,A), (H,E), (H,E))

∩Rf̂((H,E), (H,E), (F,A)) ⊆ (F,A).

From equations (10) and (11), (F,A) is a soft quasi-hyperideal over H.

Proposition 6.3. Let (R,A), (L,B) and (M,C) be soft right, soft left and soft
lateral hyperideals over H, respectively. Then (R,A)∩R (M,C)∩R (L,B) is a soft
quasi-hyperideal over H.

Proof. It is straightforward.

Proposition 6.4. Let (R,A), (L,B) and (M,C) be soft right, soft left and soft
lateral hyperideals over H, respectively, such that A∩B ∩C = ∅. Then (R,A)∩E

(M,C) ∩E (L,B) is a soft quasi-hyperideal over H.

Proof. By definition, (S,D) = (R,A)∩E (M,C)∩E (L,B), where D = A∪B∪C,
A ∩B ∩ C = ∅, and

S(d) =


R(d) if d ∈ A\B ∩ C
M(d) if d ∈ C\A ∩B,
L(d) if d ∈ B\A ∩ C.

for any d ∈ D. In each case, S(d) is a quasi-hyperideal of H. Since every left, right
and lateral hyperideal of a ternary semihypergroup H is a quasi-hyperideal of H,
thus, by definition, (S,D) = R,A) ∩E (M,C) ∩E (L,B) is a soft quasi-hyperideal
over H.

Proposition 6.5. Every soft left (right, lateral) hyperideal over a ternary semi-
hypergroup H is a soft quasi-hyperideal over H.

Proof. Let (L,A) be a soft left hyperideal over H. Then L(a) is a left hyperideal
of H. Since each left hyperideal of H is a quasi-hyperideal of H, therefore L(a)
is a quasi-hyperideal of H. Hence (L,A) is a soft quasi-hyperideal over H.

The converse of the above proposition is not true in general as the following
example shows.
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Example 6.6. Let we consider the ternary semihypergroup (H, f) of the Example
5.5. Let we consider A = {b} and G : {b} → P(H) defined as G(b) = {0, b, d, f}.
Then it can be easily verified that (G,B) is a soft quasi-hyperideal over H. But
it is not a soft left and a soft lateral hyperideal over H.

Proposition 6.7. Every soft left (right, lateral) hyperideal over a ternary semi-
hypergroup H is a soft ternary semihypergroup over H.

Proof. It is straightforward.

Proposition 6.8. Every soft quasi-hyperideal is a soft ternary semihypergroup
over H.

Proof. It is straightforward.

Proposition 6.9. Let (R,A), (L,B) and (M,C) be soft right, soft left and soft
lateral hyperideals over H, respectively. Then (R,A) ∧ (M,C) ∧ (L,B) is a soft
quasi-hyperideal over H.

Proof. By definition, (S,D) = (R,A) ∧ (M,C) ∧ (L,B), where D = A×C ×B,
and for any (a, c, b) ∈ A × C × B, S(a, c, b) = R(a) ∩ M(c) ∩ L(b) is a quasi-
hyperideal of H. Since the intersection of a left, right and a lateral hyperideal is
a quasi-hyperideal of H, then (R,A) ∧ (M,C) ∧ (L,B) is a soft quasi-hyperideal
over H.

Proposition 6.10. Let (F,A) and (G,B) be two soft quasi-hyperideals over a
ternary semihypergroup H. Then the following hold:

1. (F,A) ∩R (G,B) is a soft quasi-hyperideal over H.

2. (F,A) ∩E (G,B) is a soft quasi-hyperideal over H.

3. (F,A) ∧ (G,B) is a soft quasi-hyperideal over H.

4. (F,A) ∪E (G,B) is a soft quasi-hyperideal over H, whenever A ∩B = ∅.

Proof. It is straightforward.

Proposition 6.11. Let (F,A) be a soft quasi-hyperideal and (G,B) a soft ternary
semihypergroup H. Then (F,A) ∩R (G,B) is a soft quasi-hyperideal of (G,B).

Proof. By definition, (S,C) = (F,A) ∩R (G,B), where C = A ∩ B ̸= ∅ and
S(c) = F (c) ∩ G(c) for all c ∈ C, since S(c) ⊆ F (c) and S(c) ⊆ G(c). We show
that S(c) is a quasi-hyperideal of G(c). Since S(c) ⊆ G(c),

f(S(c), G(c), G(c)) ∩ f(G(c), S(c), G(c), G(c)) ∩ f(G(c), G(c), S(c))

⊆ f(G(c), G(c), G(c)) ∩ f(G(c), G(c), G(c), G(c)) ∩ f(G(c), G(c), G(c))

⊆ f(G(c), G(c), G(c)) ⊆ G(c)

because G(c) is a ternary subsemihypergroup of H. This implies that
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(1) f(S(c), G(c), G(c)) ∩ f(G(c), S(c), G(c), G(c))∩
f(G(c), G(c), S(c)) ⊆ G(c).

Also S(c) ⊆ F (c). So

f(S(c), G(c), G(c)) ∩ f(G(c), S(c), G(c), G(c)) ∩ f(G(c), G(c), S(c))

⊆ f(F (c), G(c), G(c)) ∩ f(G(c), F (c), G(c), G(c)) ∩ f(G(c), G(c), F (c))

⊆ f(F (c), H(c), H(c))

∩f(H(c), F (c), H(c), H(c)) ∩ f(H(c), H(c), F (c)) ⊆ F (c)

because F (c) is a quasi-hyperideal of H. Thus

(2) f(S(c), G(c), G(c)) ∩ f(G(c), S(c), G(c), G(c))∩
f(G(c), G(c), S(c)) ⊆ F (c).

From equations (1) and (2), we have

(3) f(S(c), G(c), G(c)) ∩ f(G(c), S(c), G(c), G(c)) ∩ f(G(c), G(c), S(c))

⊆ F (c) ∩G(c) = S(c).

Similarly, we can show that

(4) f(S(c), G(c), G(c)) ∩ f(G(c), G(c), S(c), G(c), G(c))

∩f(G(c), G(c), S(c)) ⊆ S(c).

From equation (3) and (4), S(c) is a quasi-hyperideal of G(c). Thus (F,A) ∩R

(G,B) is a soft quasi-hyperideal of (G,B).

7. Soft bi-hyperideals over ternary semihypergroups

Definition 7.1. A soft set (F,A) over a ternary semihypergroup H is called a
soft bi-hyperidea over H if

1. (F,A) is a soft ternary semihypergroup over H.

2. f̂((F,A), (H,E), (F,A), (H,E), (F,A)) ⊆ (F,A) where (H,E) is the abso-
lute soft set over H.

Proposition 7.2. A soft set (F,A) over a ternary semihypergroup H is a soft
bi-hyperideal over H if and only if for all a ∈ A, F (a) ̸= ∅ is a bi-hyperideal of H.

Proof. Let (F,A) be a soft bi-hyperideal over a ternary semihypergroup H. Then
by definition, (F,A) is a soft ternary semihypergroup over H. By Proposition 4.3,
for any a ∈ A,F (a) ̸= ∅ is a ternary subsemihypergroup of H. Moreover, since
(F,A) is a soft bi-hyperideal over H, we have

f̂((F,A), (H,E), (F,A), (H,E), (F,A)) ⊆ (F,A) where (H,E) is the absolute soft

set over H. It follows that f̂(F (a), H, F (a), H, F (a)) ⊆ F (a), which shows that
F (a) is a bi-hyperideal of H.

Conversely, let us suppose that (F,A) is a soft set over H such that for all
a ∈ A,F (a) is a bi-hyperideal of H, whenever F (a) ̸= ∅. Then it is clear that
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each F (a) ̸= ∅ is a ternary subsemihypergroup of H. Hence, by Proposition 4.3,
(F,A) is a soft ternary semihypergroup over H. Furthermore, since F (a) ̸= ∅ is a

bi-hyperideal of H, then for all a ∈ A, f̂(F (a), H, F (a), H, F (a)) ⊆ F (a). Hence,

we conclude that f̂((F,A), (H,E), (F,A), (H,E), (F,A)) ⊆ (F,A). This shows
that (F,A) is a soft bi-hyperideal over H.

Proposition 7.3. Every soft quasi-hyperideal over a ternary semihypergroup H
is a soft bi-hyperideal over H.

Proof. It is straightforward.

Proposition 7.4. Let (F,A) be a soft bi-hyperideal over H and (G,B) a soft
ternary semihypergroup over H. Then (F,A) ∩R (G,B) is a soft bi-hyperideal
of (G,B).

Proof. By the definition, (S,C) = (F,A) ∩R (G,B) where C = A ∩ B ̸= ∅, and
S is defined by S(c) = F (c) ∩ G(c) for all c ∈ C. We will show that (S,C) is a
soft bi-hyperideal of (G,B). We have

f̂((S,C), (S,C), (S,C))

= f̂(((F,A) ∩R (G,B)), ((F,A) ∩R (G,B)), ((F,A) ∩R (G,B)))

⊆ f̂((F,A), (F,A), (F,A)) ⊆ (F,A),

because (F,A) is a soft bi-hyperideal over H. This implies that

(1) f̂((S,C), (S,C), (S,C)) ⊆ (F,A)

Also

f̂((S,C), (S,C), (S, c))

= f̂(((F,A) ∩R (G,B)), ((F,A) ∩R (G,B)), ((F,A) ∩R (G,B)))

⊆ f̂((G,B), (G,B), (G,B)) ⊆ (G,B),

because (G,B) is a soft ternary semihypergroup over H. This implies that

(2) f̂((S,C), (S,C), (S,C)) ⊆ (G,B).

From equations (1) and (2), we have

f̂((S,C), (S,C), (S,C)) ⊆ (F,A) ∩R (G,B) = (S,C).

This implies that (S,C) is a soft ternary semihypergroup over H. Also

f̂((S,C), (G,B), (S,C), (S,C))

= f̂(((F,A) ∩R (G,B)), (G,B), ((F,A) ∩R (G,B)), (G,B), ((F,A) ∩R (G,B)))

⊆ f̂((G,B), (G,B), (G,B))

⊆ f̂((G,B), (G,B), (G,B)) ⊆ (G,B),

and so

(3) f̂((S,C), (G,B), (S,C), (S,C)) ⊆ (G,B).



algebraic hyperstructures of soft sets associated ... 367

Again

f̂((S,C), (G,B), (S,C), (S,C))

= f̂(((F,A) ∩R (G,B)), (G,B), ((F,A)

∩R(G,B)), (G,B), ((F,A) ∩R (G,B)))

⊆ f̂((F,A), (H,E), (F,A))

⊆ (F,A),

because (F,A) is a soft bi-hyperideal over H. This implies that

(4) f̂((S,C), (G,B), (S,C), (S,C)) ⊆ (F,A).

From equations (3) and (4), we have

f̂((S,C), (G,B), (S,C), (S,C)) ⊆ (F,A) ∩R (G,B) = (S,C).

Hence (S,C) is a soft bi-hyperideal of (G,B).

Definition 7.5. A soft hyperideal (F,A) over a ternary semihypergroup H is soft

idempotent if f̂((F,A), (F,A), (F,A)) = (F,A).

Theorem 7.6. Let (F,A) be a soft bi-hyperideal over H and (G,B) a soft bi-

hyperideal of (F,A) such that f̂((G,B), (G,B), (G,B)) = (G,B). Then (G,B) is
a soft bi-hyperideal over H.

Proof. By the condition, we have f̂((G,B), (G,B), (G,B)) ⊆ (G,B). This im-
plies that (G,B) is a soft ternary semihypergroup over H. Since (G,B) ⊆ (F,A)

and f̂((G,B), (G,B), (G,B)) = (G,B), we have

f̂((G,B), (H,E), (G,B), (H,E), (G,B))

= f̂(f̂((G,B), (G,B), (G,B)), (H,E), (G,B), (H,E), f̂((G,B), (G,B), ..., (G,B)))

= f̂((G,B), (G,B), f̂((G,B)), (H,E), (G,B), (H,E), (G,B)), (G,B), (G,B))

⊆ f̂((G,B), (G,B), f̂((F,A)), (H,E), (F,A), (H,E), (F,A)), (G,B), (G,B))

⊆ f̂((G,B), (G,B), (F,A), (G,B), (G,B)) since (F,A) is a soft bi-hyperideal of H

= f̂((G,B), (G,B), ..., (F,A), (G,B), f̂((G,B), (G,B), (G,B)))

= f̂((G,B), f̂((G,B), (F,A), (G,B), (G,B), (G,B), (G,B)), (G,B))

⊆ f̂((G,B), f̂((G,B), (F,A), (G,B), (G,B)), (G,B))

⊆ f̂((G,B), (G,B), (G,B)) = (G,B)

because (G,B) is a soft bi-hyperideal of (F,A). This implies that

f̂((G,B), (H,E), (G,B), (H,E), (G,B)) ⊆ (G,B).

Hence, (G,B) is a soft bi-hyperideal over H.
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Proposition 7.7. Let (F,A) be a non-empty soft subset over a ternary semi-
hypergroup H. If (Gi, Bi), i = 1, 2, 3 are soft left, lateral and right hyperideals
respectively, over H such that

f̂((G1, B1), (G2, B2), (G3, B3)) ⊆ (F,A) ⊆ (G1, B1) ∩R (G2, B2) ∩R (G3, B3),

then (F,A) is a soft bi-hyperideal over H.

Proof. By definition,

f̂((F,A), (F,A), (F,A)) ⊆ f̂((G1, B1) ∩R (G2, B2) ∩R (G3, B3), (G1, B1)

∩R(G2, B2) ∩R (G3, B3), (G1, B1) ∩R (G2, B2) ∩R (G3, B3))

⊆ f̂((G1, B1), (G2, B2), (G3, B3)) ⊆ (F,A).

This implies that f̂((F,A), (F,A), (F,A)) ⊆ (F,A). Thus (F,A) is a soft ternary
semihypergroup over H. Let us consider again

f̂((F,A), (H,E), (F,A), (H,E), (F,A)) ⊆ f̂((G1, B1) ∩R (G2, B2) ∩R (G3, B3),

(H,E), (G1, B1) ∩R (G2, B2) ∩R (G3, B3), (H,E), (G1, B1) ∩R (G2, B2) ∩R (G3, B3))

⊆ f̂((G1, B1), (H,E), (G2, B2), (H,E), (G3, B3))

⊆ f̂((G1, B1), (G2, B2), (G3, B3)) ⊆ (F,A)

because (G2, B2) is a soft lateral hyperideal over H. This implies that

f̂((F,A), (H,E), (F,A), (H,E), (F,A)) ⊆ (F,A).

Hence, (F,A) is a soft bi-hyperideal over H.

Proposition 7.8. Let (F,A) and (G,B) be two non-empty soft sets over a ternary

semihypergroup H. Then the soft set (S,C) = f̂((F,A), (H,E), (G,B)) is a soft
bi-hyperideal over H.

Proof. By definition, we have

f̂((S,C), (S,C), (S,C))

= f̂(f̂((F,A), (H,E), (G,B)), f̂((F,A), (H,E), (G,B)), f̂((F,A), (H,E), (G,B)))

= f̂((F,A), f̂((H,E), (G,B), (F,A)), f̂((H,E), (G,B), (F,A)), (H,E), (G,B))

⊆ f̂((F,A), f̂((H,E)), (H,E), (H,E)), f̂((H,E)), (H,E), (H,E)), (H,E), (G,B))

⊆ f̂((F,A), f̂((H,E)), (H,E), (H,E)), (G,B)) ⊆ f̂((F,A)), (H,E), (G,B))=(S,C).

This implies that f̂((S,C)), (S,C), (S,C)) ⊆ (S,C). Thus, (S,C) is a soft ternary
semihypergroup over H. Also, we have

f̂((S,C), (H,E), (S,C), (H,E), (S,C))

= f̂(f̂((F,A), (H,E), (G,B)), (H,E), f̂((F,A), (H,E), (G,B)), (H,E),

f̂((F,A), (H,E), (G,B)))

= f̂((F,A), f̂((H,E), (G,B), (H,E)), f̂((F,A), (H,E), (G,B)),

f̂((H,E), (F,A), (H,E)), (G,B))
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⊆ f̂((F,A), f̂((H,E)), (H,E), (H,E)), f̂((H,E)), (H,E), (H,E)),

f̂((H,E)), (H,E), (H,E)), (G,B))

⊆ f̂((F,A), f̂((H,E)), (H,E), (H,E)), (G,B))

⊆ f̂((F,A)), (H,E), (G,B)) = (S,C).

This implies that f̂((S,C)), (H,E), (S,C), (H,E), (S,C)) ⊆ (S,C). Hence (S,C)
is a soft bi-hyperideal over H.

8. Conclusion

Molodtsov introduced the concept of soft set theory, which can be seen and used as
a new mathematical tool for dealing with uncertainly. In the present paper, we in-
troduce and initiate the study of soft ternary semihypergroups by using soft sets.
The notions of soft ternary semihypergroups, soft ternary subsemihypergroups,
soft left (lateral, right) hyperideals, soft hyperideals, soft quasi-hyperideals and
soft bi-hyperideals are introduced here, and several related properties are investi-
gated. Based on these results, we could apply soft sets to other types of hyper-
ideals in ternary semihypergroups and do some further work on the properties of
soft ternary semihypergroups. Moreover, one may characterize several classes of
ternary semihypergroups such as regular ternary semihypergroups by the proper-
ties of soft hyperideals (quasi and bi)-hyperideals. Also, by using soft set theory,
one may consider other soft algebraic hyperstructures such as soft ternary semi-
hyperrings etc.
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