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related fixed point theorem for four mappings on two complete fuzzy metric spaces.
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Of course this is a new result on this line.

AMS Subject Classification (2000): 47H10, 54H25.

Keywords: modified intuitionistic fuzzy metric space, common fixed point, Cauchy
sequence.

1. Introduction

Motivated by the potential applicability of fuzzy topology to quantum particle
physics particularly in connection with both string and e(∞) theory developed by
El Naschie [10], [11], Park introduced and discussed in [24] a notion of intuitionistic
fuzzy metric spaces which is based on the idea of intuitionistic fuzzy sets due
to Atanassov [3] and the concept of fuzzy metric space given by George and
Veeramani [18]. Actually, Park’s notion is useful in modelling some phenomena
where it is necessary to study the relationship between two probability functions.
It has direct physics motivation in the context of the two-slit experiment as the
foundation of E-infinity of high energy physics, recently studied by El Naschie
[12], [13].
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Alaca et al. [2] using the idea of intuitionistic fuzzy sets, they defined the
notion of intuitionistic fuzzy metric space as Park [24] with the help of continuous
t-norms and continuous t-conorms as a generalization of fuzzy metric space due
to Kramosil and Michalek [22]. Further, they introduced the notion of Cauchy
sequences in intuitionistic fuzzy metric spaces and proved the well known fixed
point theorems of Banach [4] and Edelstein [9] extended to intuitionistic fuzzy
metric spaces with the help of Grabiec [13]. Turkoglu et al. [30] introduced
the concept of compatible maps and compatible maps of types (α) and (β) in
intuitionistic fuzzy metric spaces and gave some relations between the concepts
of compatible maps and compatible maps of types (α) and (β).

Since the intuitionistic fuzzy metric space has extra conditions, Saadati,
Sedghi and Shobe [28] modified the idea of intuitionistic fuzzy metric spaces and
gave the new notion of intuitionistic fuzzy metric spaces with the help of the
notion of continuous t-representable.

Related fixed point theorems on two or three metric spaces were proved by
Fisher[14],[15], Nung[23], Popa [24], Jain, Sahu and Fisher [19], Jain, Shrivastava
and Fisher [20], Cho, Kang and Kim [5], Fisher and Murthy [16] and many others.
Sharma, Deshpande and Thakur [29] established a related fixed point theorem for
four mappings on two complete fuzzy metric spaces. Deshpande and Pathak [8]
intuitionistically fuzzified the results of Sharma, Deshpande and Thakur [29] and
proved a related fixed point theorem for two pairs of mappings on two intuitionistic
fuzzy metric spaces. In this paper, we extend the results of Deshpande and Pathak
[8] and prove a related fixed point theorem for six mappings on three complete
modified intuitionistic fuzzy metric spaces.

2. Preliminaries

Definition 2.1. ([26]) A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is continuous
t-norm if ∗ is satisfying the following conditions:

(i) ∗ is commutative and associative,

(ii) ∗ is continuous,

(iii) a ∗ 1 = a for all a ∈ [0, 1],

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

Definition 2.2. ([26]) A binary operation ¦ : [0, 1] × [0, 1] → [0, 1] is continuous
t-conorm if ¦ is satisfying the following conditions:

(i) ¦ is commutative and associative,

(ii) ¦ is continuous,

(iii) a ¦ 0 = a for all a ∈ [0, 1],

(iv) a ¦ b = c ¦ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].
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Lemma 2.1. ([7]) Consider the set L∗ and operation ≤L∗ defined by

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1}
(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1 and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗.

Then (L∗, ≤L∗) is a complete lattice.

Definition 2.3. ([3]) An intuitionistic fuzzy set Aζ,η in a universe U is an ob-
ject Aζ,η = {(ζA(u), ηA(u))| u ∈ U}, where, for all u ∈ U, ζA(u) ∈ [0, 1] and
ηA(u) ∈ [0, 1] are called the membership degree and the non-membership degree,
respectively, of u in Aζ,η, and, furthermore, they satisfy ζA(u) + ηA(u) ≤ 1.

For every zi = (xi, yi) ∈ L∗, if ci ∈ [0, 1] such that
n∑

j=1

cj = 1, then it is

easy that

(2.1) c1(x1, y1) + · · ·+ cn(xn, yn) =
n∑

j=1

cj (xj, yj) =

(
n∑

j=1

cjxj,

n∑
j=1

cjyj

)
∈ L∗.

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). Classically, a triangular
norm ∗ = T on [0, 1] is defined as an increasing, commutative, associative map-
ping T : [0, 1]2 → [0, 1] satisfying T (1, x) = 1∗x = x, for all x ∈ [0, 1]. A triangu-
lar conorm S = ¦ is defined as an increasing, commutative, associative mapping
S : [0, 1]2 → [0, 1] satisfying S(0, x) = 0 ¦ x = x, for all x ∈ [0, 1]. Using the
lattice (L∗, ≤L∗) these definitions can be straightforwardly extended.

Definition 2.4. ([6]) A triangular norm (t-norm) on L∗ is a mapping τ : (L∗)2 → L∗

satisfying the following conditions:

(∀ x ∈ L∗)(τ(x, 1L∗) = x) (boundary condition),

(∀(x, y) ∈ (L∗)2)(τ(x, y) = τ(y, x)) (commutativity),

(∀(x, y, z) ∈ (L∗)3)(τ(x, τ(y, z)) = τ(τ(x, y), z)) (associativity),

(∀(x, x′, y, y′) ∈ (L∗)4)(x ≤L∗ x′) and (y ≤L∗ y′ → τ(x, y) ≤L∗ τ(x′, y′))
(monotonicity).

Definition 2.5. ([6], [7]) A continuous t-norm τ on L∗ is called continuous t-
representable if and only if there exist a continuous t-norm ∗ and a continuous
t-conorm ¦ on [0, 1] such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗,

τ(x, y) = (x1 ∗ y1, x2 ¦ y2).

Now, define a sequence τn recursively by τ 1 = τ and

τn(x(1), ..., x(n+1)) = τ(τn−1(x(1), ..., x(n), x(n+1)) for n ≥ 2 and x(i) ∈ L∗.

Definition 2.6. ([28]) Let M,N are fuzzy sets from X2 × (0, +∞) to [0, 1]
such that M(x, y, t) + N(x, y, t) ≤ 1 for all x, y ∈ X and t > 0. The 3-tuple
(X,MM,N , τ) is said to be an intuitionistic fuzzy metric space if X is an arbi-
trary (non-empty) set, τ is a continuous t-representable and MM,N is a mapping
X2 × (0, +∞) → L∗ (an intuitionistic fuzzy set, see Definition 2.3) satisfying the
following conditions for every x, y ∈ X and t, s > 0:
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(a) MM,N(x, y, t)>L∗0L∗ ;

(b) MM,N(x, y, t) = 1L∗ if and only if x = y;

(c) MM,N(x, y, t) = MM,N(y, x, t);

(d) MM,N(x, y, t + s) ≥L∗ τ(MM,N(x, z, t),MM,N(z, y, s));

(e) MM,N(x, y, ·) : (0,∞) → L∗ is continuous.

In this case, MM,N is called an intuitionistic fuzzy metric.
Here,

MM,N(x, y, t) = (M(x, y, t), N(x, y, t)).

Example 2.1. ([28]) Let (X, d) be a metric space. Denote

τ(a, b) = (a1b1, min(a2 + b2, 1))

for all a = (a1, a2) and b = (b1, b2) ∈ L∗ and let M and N be fuzzy sets on
X2 × (0,∞) defined as follows:

MM, N(x, y, t)=(M(x, y, t), N(x, y, t))=

(
htn

htn + md(x, y)
,

md(x, y)

htn + md(x, y)

)

for all t, h, m, n ∈ R+.

Then, (X,MM,N ,τ) is an intuitionistic fuzzy metric space.

Example 2.2. ([28]) Let X = N . Define

τ(a, b) = (max(0, a1 + b1 − 1), a2 + b2 − a2b2)

for all a = (a1, a2) and b = (b1, b2) ∈ L∗ and let M and N be fuzzy sets on
X2 × (0,∞) defined as follows:

MM,N(x, y, t) = (M(x, y, t), N(x, y, t)) =





(
x

y
,

y − x

y

)
if x ≤ y,

(
y

x
,

x− y

x

)
if y ≤ x,





for all x, y ∈ X and t > 0. Then (X,MM, N ,τ) is an intuitionistic fuzzy metric
space.

Definition 2.7. ([28]) A sequence {xn} in an intuitionistic fuzzy metric space
(X,MM, N , τ) is called a Cauchy sequence if for each 0 < ε < 1 and t > 0, there
exists n0 ∈ N such that

MM,N(xn, ym, t) >L∗(Ns(ε), ε)
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and for each n,m ≥ n0, here Ns is the standard negator. The sequence {xn} is said
to be convergent to x ∈ X in the intuitionistic fuzzy metric space (X,MM,N , τ)

and denoted by xn

MM,N−→ x if MM,N(xn, x, t) → 1L∗ whenever n → ∞ for every
t > 0. An intuitionistic fuzzy metric space is said to be complete if and only if
every Cauchy sequence is convergent.

Lemma 2.2. ([27]) Let MM, N be an intuitionistic fuzzy metric space. Then, for
any t > 0, MM,N(x, y, t) is non-decreasing with respect to t, in (L∗,≤L∗), for all
x, y in X.

Lemma 2.3. ([1]) Let (X,MM,N , τ) be a modified intuitionistic fuzzy metric
space. For each λ ∈ (0, 1), define the map Eλ : X2 → R+ ∪ {0} by

Eλ(x, y) = inf{t > 0 : MM,N(x, y, t)>L∗(1− λ, λ)},

then

(a) For each λ ∈ (0, 1), we have a µ ∈ (0, 1) such that

Eλ(x1, xn) ≤ Eµ(x1, x2) + Eµ(x2, x3) + · · ·+ Eµ(xn−1, xn),

for any x1, x2, x3, ..., xn ∈ X.

(b) The sequence {xn}n∈N in X is convergent to x if and only if Eλ(xn, x) → 0.

Also, the sequence {xn}n∈N is a Cauchy sequence in X if and only if it is a
Cauchy sequence with respect to Eλ.

Lemma 2.4. ([21]) Let (X,MM, N ,τ) be an intuitionistic fuzzy metric space. If
for a sequence {xn} in X, there exists k ∈ (0, 1) such that

MM,N(xn, xn+1, kt) ≥L∗ MM,N(xn−1, xn, t), for all n and for all t,

then {xn} is a Cauchy sequence in X.

Proof. Let (X,MM, N ,τ) be an intuitionistic fuzzy metric space. Let for a
sequence {xn} in X, there exists k ∈ (0, 1) such that

MM, N(xn, xn+1, kt) ≥L∗ MM, N(xn−1, xn, t), for all n and t,

then

MM,N(xn, xn+1, t) ≥L∗ MM,N

(
xn−1, xn,

t

k

)
≥L∗ MM,N

(
xn−2, xn−1,

t

k2

)

. . . ≥L∗ MM,N(x0, x1,
t

kn
), for all n.
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Now

Eλ(xn+1, xn) = inf{t > 0 : MM,N(xn+1, xn, t) ≥L∗ (1− λ, λ)}

≤ inf{t > 0 : MM,N

(
x1, x0,

t

kn

)
≥L∗ (1− λ, λ)}

= inf{knt > 0 : MM,N(x1, x0, t) ≥L∗ (1− λ, λ)}
= kn inf{t > 0 : MM,N(x1, x0, t) ≥L∗ (1− λ, λ)}
= kn Eλ(x0, x1).

Eλ(xn+1, xn) ≤ knEλ(x0, x1) . . . (A)

Again from Lemma 2.3, for λ ∈ (0, 1), there exists µ ∈ (0, 1) such that

Eλ(xn, xn+p) ≤ Eµ(xn, xn+1) + Eµ(xn+1, xn+2) + · · ·+ Eµ(xn+p−1, xn+p)

≤ kn Eµ(x0, x1) + kn+1 Eµ(x0, x1) + · · ·+ kn+p−1 Eµ(x0, x1),

using (A)

= (kn + kn+1 + · · ·+ kn+p−1)Eµ(x0, x1),

=
kn

1− k
Eµ(x0, x1), as 0 < k < 1,

which tends to 0, as n → ∞. Hence {xn} is a Cauchy sequence in X.

Lemma 2.5. ([21]) In an intuitionistic fuzzy metric space (X,MM, N ,τ), if
for some x, y in X there exists k ∈ (0, 1) such that

MM, N(x, y, kt) ≥L∗ MM, N(x, y, t), for all t,

then x = y.

Proof. Let for λ ∈ (0, 1)

Eλ(x, y) = inf{t > 0 : MM,N(x, y, t) ≥L∗ (1− λ, λ)}
≤ inf{t > 0 : MM,N(x, y, t/k) ≥L∗ (1− λ, λ)}
= inf{kt > 0 : MM,N(x, y, t) ≥L∗ (1− λ, λ)}
= k inf{t > 0 : MM,N(x, y, t) ≥L∗ (1− λ, λ)}
= k Eλ(x, y).

Therefore, Eλ(x, y) = 0. Hence x = y.

Sharma, Deshpande and Thakur [29] established the following related fixed
point theorem for four mappings on two complete fuzzy metric spaces.

Theorem A. Let (X, M1, ∗) and (Y,M2, ∗) be two complete fuzzy metric spaces.
Let A,B be mappings from X into Y and S, T be mappings from Y into X satis-
fying the inequalities:
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(i) M1(SAx, TBx′, kt) ≥ M1(x, x′, t) ∗M1(x, SAx, t) ∗M1(x
′, TBx′, t)

∗M1(SAx, TBx′, t)

(ii) M2(BSy,ATy′, kt) ≥ M2(y, y′, t) ∗M2(y,BSy, t) ∗M2(y
′, ATy′, t)

∗ M2(BSy,ATy′, kt)

for all x, x′ in X and y, y′ in Y . If one of the mappings A,B, S, T is continuous,
then SA and TB have a unique common fixed point z in X and BS and AT have
a unique common fixed point w in Y . Further, Az = Bz = w and Sw = Tw = z.

Deshpande and Pathak [8] intuitionistically fuzzify the results of Sharma,
Deshpande and Thakur [29] and proved the following:

Theorem B. (X, M1, N1, ∗, ¦) and (Y, M2, N2, ∗, ¦) be two complete intuitionistic
fuzzy metric spaces. Let A,B be mappings from X into Y and let S, T be mappings
from Y into X satisfying the inequalities:

(i) M1(SAx, TBx′, kt) ≥ M1(x, x′, t) ∗M1(x, SAx, t) ∗M1(x′, TBx′, t)
∗M1(SAx, TBx′, t)

and

N1(SAx, TBx′, kt) ≤ N1(x, x′, t) ¦N1(x, SAx, t) ¦N1(x′, TBx′, t)
¦N1(SAx, TBx′, t)

(ii) M2(BSy,ATy′, kt) ≥ M2(y, y′, t) ∗M2(y, BSy, t) ∗M2(y′, ATy′, t)
∗M2(BSy, ATy′, t)

and

N2(BSy,ATy′, kt) ≤ N2(y, y′, t) ¦N2(y, BSy, t) ¦N2(y′, ATy′, t)
¦ N2(BSy, ATy′, t)

for all x, x′ in X and y, y′ in Y . If one of the mappings A,B, S, T is continuous,
then SA and TB have a unique common fixed point z in X and BS and AT have
a unique common fixed point w in Y . Further, Az = Bz = w and Sw = Tw = z.

We extend the results of Deshpande and Pathak [8] and prove a related fixed
point theorem for six mappings on three complete modified intuitionistic fuzzy
metric spaces.

3. Main result

Theorem 3.1. Let (X,MM1, N1 ,τ), (Y,MM2, N2 ,τ) and (Z,MM3, N3 ,τ) be three
complete intuitionistic fuzzy metric spaces. Let A,B be continuous mappings from
X into Y , let S, T be continuous mappings from Y into Z and let P,Q be conti-
nuous mappings from Z into X satisfying the inequalities:
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(3.1) MM1,N1(PSAx,QTBx′, kt) ≥L∗ MM1, N1(x, x′, t) ∗MM1,N1(x, PSAx, t)

∗MM1,N1(x
′, QTBx′, t) ∗MM1,N1(PSAx,QTBx′, t)

(3.2) MM2,N2(APSy,BQTy′, kt) ≥L∗ MM2,N2(y, y′, t) ∗MM2,N2(y,APSy, t)

∗MM2,N2(y
′, BQTy′, t) ∗MM2,N2(APSy,BQTy′, t)

(3.3) MM3,N3(SAPz, TBQz′, kt) ≥L∗ MM3,N3(z, z
′, t) ∗MM3,N3(z, SAPz, t)

∗MM3,N3(z
′, TBQz′, t) ∗MM3,N3(SAPz, TBQz′, t)

for all x, x′ in X, y, y′ in Y and z, z′ in Z, t > 0 and k ∈ (0, 1), then PSA and
QTB have a unique common fixed point u in X, APS and BQT have a unique
common fixed point v in Y and SAP and TBQ have a unique common fixed point
w in Z. Further, Au = Bu = v, Sv = Tv = w and Pw = Qw = u.

Proof. Let x = x0 be an arbitrary point in X and define sequences {xn}, {yn}
and {zn} in X, Y and Z respectively as follows:

Choose a point z1 = Sy1, a point y1 = Ax0, a point x1 = Pz1, a point z2 =
Ty2, a point y2 = Bx1 and a point x2 = Qz2. In general, having chosen x2n−2 in
X, choose a point y2n−1 = Ax2n−2, a point y2n = Bx2n−1, a point z2n−1 = Sy2n−1,
a point z2n = Ty2n, a point x2n−1 = Pz2n−1 and a point x2n = Qz2n for all
n = 1, 2, ...

Applying inequality (3.1), we have

(3.4)

MM1,N1(x2n+1, x2n, kt) = MM1,N1(PSAx2n, QTBx2n−1, kt)

≥L∗ MM1,N1(x2n, x2n−1, t) ∗MM1,N1(x2n, PSAx2n, t)

∗MM1, N1(x2n−1, QTBx2n−1, t) ∗MM1,N1(PSAx2n, QTBx2n−1, t)

= MM1,N1(x2n, x2n−1, t) ∗MM1,N1(x2n, x2n+1, t)

∗MM1,N1(x2n−1, x2n, t) ∗MM1,N1(x2n+1, x2n, t)

≥L∗ MM1,N1(x2n, x2n−1, t) ∗MM1,N1(x2n, x2n+1, t)

Similarly, we have

(3.5)
MM1,N1(x2n+2, x2n+1, kt) ≥L∗ MM1,N1(x2n+1, x2n, t)

∗MM1,N1(x2n+1, x2n+2, t).

Thus, from (3.4) and (3.5), it follows that

MM1,N1(xn+1, xn+2, kt) ≥L∗ MM1,N1(xn, xn+1, t) ∗MM1,N1(xn+1, xn+2, t),

for n = 1, 2, ....
Consequently, for positive integers n, p we have

MM1,N1(xn+1, xn+2, kt) ≥L∗ MM1,N1(xn, xn+1, t) ∗MM1,N1(xn+1, xn+2, t/k
p).

Thus, since MM1, N1(xn+1, xn+2, kt) → 1L∗ as p →∞, we have

(3.6) MM1,N1(xn+1, xn+2, kt) ≥L∗ MM1,N1(xn, xn+1, t)
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Similarly, applying inequality (3.2) and (3.3), we have

(3.7) MM2,N2(yn+1, yn+2, kt) ≥L∗ MM2,N2(yn, yn+1, t)

(3.8) MM3,N3(zn+1, zn+2, kt) ≥L∗ MM3,N3(zn, zn+1, t)

By Lemma 2.4, {xn} is a Cauchy sequence in a complete intuitionistic fuzzy
metric space X and so has a limit u in X. It follows similarly that the sequences
{yn} and {zn} are also Cauchy sequences in complete intuitionistic fuzzy metric
space Y and Z and so have limits v in Y and w in Z.

Using (3.1), we have

MM1,N1(PSAx2n, u, kt) ≥L∗ MM1,N1(PSAx2n, x2n, kt
2
) ∗MM1,N1(x2n, u, kt

2
)

= MM1,N1(PSAx2n, QTBx2n−1,
kt
2
) ∗MM1,N1(x2n, u, kt

2
)

≥L∗ MM1,N1(x2n, x2n−1,
t
2
) ∗MM1,N1(x2n, PSAx2n, t

2
)

∗MM1,N1(x2n−1, QTBx2n−1,
t
2
)

∗MM1,N1(PSAx2n, QTBx2n−1,
t
2
) ∗MM1,N1(x2n, u, kt

2
)

≥L∗ MM1,N1(x2n, x2n−1,
t
2
) ∗MM1,N1(x2n, x2n+1,

t
2
)

∗MM1,N1(x2n−1, x2n,
t
2
) ∗MM1,N1(x2n+1, x2n, t

2
) ∗MM1,N1(x2n, u, kt

2
)

Taking limit n →∞, we have

lim
n→∞

MM1, N1(PSAx2n, u, kt) → 1L∗ .

Thus, we have

(3.9) lim
n→∞

PSAx2n = u = lim
n→∞

PSy2n+1

Similarly, we can prove that

(3.10) lim
n→∞

QTBx2n−1 = u = lim
n→∞

QTy2n

(3.11) lim
n→∞

APSy2n−1 = v = lim
n→∞

APz2n−1

(3.12) lim
n→∞

BQTy2n = v = lim
n→∞

BQz2n

(3.13) lim
n→∞

SAPz2n = w = lim
n→∞

SAx2n

(3.14) lim
n→∞

TBQz2n−1 = w = lim
n→∞

TBx2n−1

Since A and B are continuous, we have

(3.15) lim
n→∞

Ax2n = Au = v, lim
n→∞

Bx2n−1 = Bu = v.
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Using inequality (3.1), we have

MM1,N1(PSAu, QTBx2n−1, kt) ≥L∗ MM1,N1(u, x2n−1, t) ∗MM1,N1(u, PSAu, t)

∗MM1,N1(x2n−1, QTBx2n−1, t) ∗MM1,N1(PSAu, QTBx2n−1, t).

Letting n →∞ and using (3.10), we have

MM1, N1(PSAu, u, kt) ≥L∗ MM1, N1(u, PSAu, t).

Therefore, by Lemma 2.5 and using (3.15), we have PSAu = u = PSv.
Using inequality (3.1), we have

MM1,N1(PSAx2n, QTBu, kt) ≥L∗ MM1,N1(x2n, u, t) ∗MM1,N1(x2n, PSAx2n, t)

∗MM1,N1(u,QTBu, t) ∗MM1,N1(PSAx2n, QTBu, t).

Letting n → ∞ and using (3.9), we have

MM1,N1(u, QTBu, kt) ≥L∗ MM1,N1(u,QTBu, t).

Therefore, by Lemma 2.5 and using (3.15), we have QTBu = u = QTv.
Since S and T are continuous, we have

(3.16) lim
n→∞

Sy2n−1 = Sv = w, lim
n→∞

Ty2n = Tv = w.

Using inequality (3.2), we have

MM2, N2(APSv, BQTy2n, kt) ≥L∗ MM2, N2(v, y2n, t) ∗MM2, N2(v,APSv, t)

∗MM2, N2(y2n, BQTy2n, t) ∗MM2, N2(APSv,BQTy2n, t).

Letting n →∞ and using (3.12), we have

MM2, N2(APSv, v, kt) ≥L∗ MM2, N2(v,APSv, t).

Therefore, by Lemma 2.5 and using (3.16), we have APSv = v = APw.
Using inequality (3.2), we have

MM2,N2(APSy2n−1, BQTv, kt)

≥L∗ MM2,N2(y2n−1, v, t) ∗MM2,N2(y2n−1, APSy2n−1, t)

∗MM2,N2(v,BQTv, t) ∗MM2,N2(APSy2n−1, BQTv, t).

Letting n →∞ and using (3.11), we have

MM2, N2(v,BQTv, kt) ≥L∗ MM2, N2(v,BQTv, t).

Therefore, by Lemma 2.5 and using (3.16), we have BQTv = v = BQw.
Since P and S are continuous, we have

(3.17) lim
n→∞

Pz2n = Pw = u, lim
n→∞

Qz2n−1 = Qw = u.
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Using inequality (3.3), we have

MM3,N3(SAPw, TBQz2n−1, kt) ≥L∗ MM3,N3(w, z2n−1, t) ∗MM3,N3(w, SAPw, t)

∗MM3,N3(z2n−1, TBQz2n−1, t) ∗MM3,N3(SAPw, TBQz2n−1, t).

Letting n → ∞ and using (3.14), we have

MM3, N3(SAPw, w, kt) ≥L∗ MM3, N3(w, SAPw, t).

Therefore, by Lemma 2.5 and using (3.17), we have SAPw = w = SAu.
Using inequality (3.3), we have

MM3, N3(SAPz2n, TBQw, kt) ≥L∗ MM3, N3(z2n, w, t) ∗MM3, N3(z2n, SAPz2n, t)

∗ MM3, N3(w, TBQw, t) ∗MM3, N3(SAPz2n, TBQw, t).

Letting n → ∞ and using (3.13), we have

MM3, N3(w, TBQw, kt) ≥L∗ MM3, N3(w, TBQw, t).

Therefore, by Lemma 2.5 and using (3.17), we have TBQw = w = TBu.
Thus, we have

(3.18)





PSAu = QTBu = PSv = QTv = Pw = Qw = u,
APSv = BQTv = APw = BQw = Au = Bu = v,
SAPw = TBQw = SAu = TBu = Sv = Tv = w.





To prove the uniqueness of the fixed point, suppose that PSA and QTB have
a common fixed point u′ also.

Using inequality (3.1), we have

MM1,N1(PSAu, QTBu′, kt) ≥L∗ MM1,N1(u, u′, t) ∗MM1,N1(u, PSAu, t)

∗MM1,N1(u
′, QTBu′, t) ∗MM1,N1(PSAu, QTBu′, t).

Therefore, we have

MM1, N1(u, u′, kt) ≥L∗ MM1, N1(u, u′, t).

By Lemma 2.5, we have u = u′. Similarly we can prove that v and w are unique
common fixed point of APS and BQT and of SAP and TBQ. This completes
the proof.

If we put M1 = M2 = M3 = M and N1 = N2 = N3 = N in Theorem 3.1, we
get the following:

Corollary 1. Let (X,MM, N ,τ), (Y,MM, N ,τ) and (Z,MM, N ,τ) be three com-
plete intuitionistic fuzzy metric spaces. Let A,B be continuous mappings from X
into Y , let S, T be continuous mappings from Y into Z and let P,Q be continuous
mappings from Z into X satisfying the inequalities:
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(3.1) MM,N(PSAx, QTBx′, kt) ≥L∗ MM,N(x, x′, t) ∗MM,N(x, PSAx, t)

∗MM,N(x′, QTBx′, t) ∗MM,N(PSAx, QTBx′, t)

(3.2) MM,N(APSy, BQTy′, kt) ≥L∗ MM,N(y, y′, t) ∗MM,N(y, APSy, t)

∗MM,N(y′, BQTy′, t) ∗MM,N(APSy, BQTy′, t)

(3.3) MM,N(SAPz, TBQz′, kt) ≥L∗ MM, N(z, z′, t) ∗MM, N(z, SAPz, t)

∗MM, N(z′, TBQz′, t) ∗MM, N(SAPz, TBQz′, t)

for all x, x′ in X, y, y′ in Y and z, z′ in Z, t > 0 and k ∈ (0, 1), then PSA and
QTB have a unique common fixed point u in X, APS and BQT have a unique
common fixed point v in Y and SAP and TBQ have a unique common fixed point
w in Z. Further, Au = Bu = v, Sv = Tv = w and Pw = Qw = u.

If we put A = B, S = T and P = Q in Theorem 3.1, we get the following:

Corollary 2. Let (X,MM1,N1 , τ), (Y,MM2,N2 , τ) and (Z,MM3,N3 , τ) be three
complete intuitionistic fuzzy metric spaces. Let A be continuous mapping from
X into Y , let S be continuous mapping from Y into Z and let P be continuous
mapping from Z into X satisfying the inequalities:

(3.4) MM1,N1(PSAx, PSAx′, kt) ≥L∗ MM1,N1(x, x′, t) ∗MM1,N1(x, PSAx, t)

∗MM1,N1(x
′, PSAx′, t) ∗MM1,N1(PSAx, PSAx′, t)

(3.5) MM2,N2(APSy,APSy′, kt) ≥L∗ MM2,N2(y, y′, t) ∗MM2,N2(y,APSy, t)

∗MM2,N2(y
′, APSy′, t) ∗MM2,N2(APSy, APSy′, t)

(3.6) MM3,N3(SAPz, SAPz′, kt) ≥L∗ MM3,N3(z, z
′, t) ∗MM3,N3(z, SAPz, t)

∗MM3,N3(z
′, SAPz′, t) ∗MM3,N3(SAPz, SAPz′, t)

for all x, x′ in X, y, y′ in Y and z, z′ in Z, t > 0 and k ∈ (0, 1), then PSA has a
unique common fixed point u in X, APS has a unique common fixed point v in
Y and SAP has a unique common fixed point w in Z. Further, Au = v, Sv = w
and Pw = u.

Remark 3.1. From Theorem 3.1, with P = Q = Ix (the identity mapping on X),
we obtain modified intuitionistic version of the results of Sharma, Deshpande and
Thakur [29] and Deshpande and Pathak [8].
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