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In memoriam of Professor Ivo Rosenberg 

 

 

The “Italian Journal of Pure and Applied Mathematics“ cannot more take advantage of the 

precious collaboration of prof. Ivo Rosenberg, who has passed away. 

 

The members of Editorial Board express their deep sorrow for this loss. 

 

The Chief Editor regrets the loss of Prof. Ivo Rosenberg. He has been a great man of 

science and a very dear friend. 

 

All they who knew him will remember always his scientific value and his exquisite human 

qualities. 

 

Piergiulio Corsini 
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Abstract. In this paper, we prove the existence and uniqueness of a fixed point of a
self mapping on partial S-metric spaces under the partially α-contractive condition.
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1. Introduction and mathematical preliminaries

The existence and uniqueness of a fixed point for a self mapping on different
types of metric spaces were the main topic for many research papers [4-18].
The notion of S-metric space was introduced by Sedghi [3]. A generalization of
S-metric space was given by Nabil in [1], where he introduced partial S-metric
spaces. Moreover, he proved the existence of a fixed point for a self mapping in
partial S-metric space. In this paper, we generalize the results in [1] by adding
a control function to the contraction principle, which makes the results in [1] a
direct consequences of our theorems.

Before proceeding to the main results, we set forth some definitions that will
be used in the sequel.

Definition 1.1 ([4]). Let X be a nonempty set and p : X×X −→ [0,+∞). We
say that (X, p) is a partial metric space if for all x, y, z ∈ X we have:

1. x = y if and only if p(x, y) = p(x, x) = p(y, y);

2. p(x, x) ≤ p(x, y);

∗. Corresponding author
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3. p(x, y) = p(y, x);

4. p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

Definition 1.2 ([3]). Let X be a nonempty set. An S-metric space on X
is a function S : X3 → [0,∞) that satisfies the following conditions, for all
x, y, z, a ∈ X :

1. S(x; y; z) ≥ 0,

2. S(x; y; z) = 0 if and only if x = y = z,

3. S(x; y; z) ≤ S(x;x; a) + S(y; y; a) + S(z; z; a).

The pair (X;S) is called an S-metric space.

Next, we give the definition of partial S-metric space.

Definition 1.3 ([1]). Let X be a nonempty set. A partial S-metric space on
X is a function Sp : X

3 → [0,∞) that satisfies the following conditions, for all
x, y, z, t ∈ X :

(i) x = y if and only if Sp(x, x, x) = Sp(y, y, y) = Sp(x, x, y);

(ii) Sp(x, y, z) ≤ Sp(x, x, t) + Sp(y, y, t) + Sp(z, z, t)− Sp(t, t, t);
(iii) Sp(x, x, x) ≤ Sp(x, y, z);
(iv) Sp(x, x, y) = Sp(y, y, x).

The pair (X,Sp) is called a partial S-metric space.

Definition 1.4. A sequence {xn}∞n=0 of elements in (X,Sp) is called p-Cauchy if
the limit limn,m→∞ Sp(xn, xn, xm) exists and finite. The partial S-metric space
(X,Sp) is called complete if for each p-Cauchy sequence {xn}∞n=0 there exists
z ∈ X such that Sp(z, z, z) = limn Sp(z, z, xn) = limn,m Sp(xn, xn, xm).

Moreover, (X,Sp) is a complete partial S-metric space if and only if (X,Sp)
is a complete S-metric space. A sequence {xn}n in a partial S-metric space
(X,Sp) is called 0-Cauchy if limn,m→∞ Sp(xn, xn, xm) = 0. We say that (X,Sp)
is 0-complete if every 0-Cauchy in X converges to a point x ∈ X such that
Sp(x, x, x) = 0.

One can easily construct an example of a partial S-metric space by using the
ordinary partial metric space.

Example 1.5 ([1]). Let X = [0,∞) and p be the ordinary partial metric space
on X. Define the mapping on X3 to be Sp(x, y, z) = p(x, z) + p(y, z). Then Sp
defines a partial S-metric space.

Now we introduce the notion of partially α−contractive.
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Definition 1.6. Let (X,Sp) be a partial S-metric space and T : X −→ X be
a given mapping. We say that T is partially α−contractive if there exists a
constant k ∈ [0, 1) and a function α : X × X −→ [0,+∞) such that for all
x, y ∈ X we have

(1.1) α(x, y)Sp(Tx, Tx, Ty) ≤ max{kSp(x, x, y), Sp(x, x, x), Sp(y, y, y)}.

Definition 1.7. Let (X,Sp) be a partial S-metric space and T : X −→ X be a
given mapping. We say that T is Rα−admissible if x, y ∈ X, α(x, y) ≥ 1 implies
that α(x, Ty) ≥ 1. Also, we say that T is α−admissible if x, y ∈ X, α(x, y) ≥ 1
implies that α(Tx, Ty) ≥ 1.

Example 1.8. Let X = [0,+∞). Define T : X −→ X by Tx =
√
x and

α : X ×X −→ X by

α(x, y) =

{
ex−y, if x ≥ y
0, if x < y.

It is a straightforward to verify that T is α−admissible and Rα−admissible.

Now, we set

ρSp(α) : = inf{Sp(x, x, y) | x, y ∈ X : α(x, y) ≥ 1}
= inf{Sp(x, x, x) | x ∈ X : α(x, x) ≥ 1},
XSp(α) = {x ∈ X | Sp(x, x, x) = ρSp(α)},
ZSp(α) = {x ∈ XSp | α(x, x) ≥ 1}.

Definition 1.9. Let (X,Sp) be a partial S-metric space and T : X −→ X be
a given mapping. We say that T is Rµ−subadmissible if x, y ∈ X, µ(x, y) ≤ 1
implies that µ(x, Ty) ≤ 1.

2. Main result

In this section, we prove the existence of a fixed point in a partial S-metric
space. We prove relevant corollary. This next theorem is considered to be our
main result.

Definition 2.1 ([?]). Let T : X → X be a map and µ : X ×X → [0,+∞) be a
function. We say that T is µ-subadmissible if x, y ∈ X, µ(x, y) ≤ 1 implies that
µ(Tx, Ty) ≤ 1.

Definition 2.2. A map T : X → X is said to be triangular µ-subadmissible if
the following holds:

(T1) T is µ-subadmissible,

(T2) µ(x, u) ≤ 1 and µ(u, y) ≤ 1 implies that µ(x, y) ≤ 1, x, u, y ∈ X.
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Lemma 2.3. Let T : X → X be a triangular µ− suborbital admissible map-
ping. Assume that there exists x1 ∈ X such that µ (x1, Tx1) ≤ 1. Then there
exists a sequence {xn} such that µ (xn, xm) ≤ 1 for all m, n ∈ N with n < m.

The letter N represent the set of positive integers and N0 = N∪{0}. Further,
the nonnegative real numbers will be denoted by R+

0 = [0,∞).

In 2014 the concept of pair (F , h) is an upper class (see Definition 2.4 until
2.10 ) was introduced by A.H. Ansari in [19]

Definition 2.4 ([19, 20]). A function h : R+×R+ → R is said to be a function
of subclass of type I, if x ≥ 1 =⇒ h(1, y) ≤ h(x, y) for all y ∈ R+.

Example 2.5 ([19, 20]). Define h : R+ × R+ → R by:

(a) h(x, y) = (y + l)x, l > 1;

(b) h(x, y) = (x+ l)y, l > 1;

(c) h(x, y) = xny, n ∈ N;

(d) h(x, y) = y;

(e) h(x, y) = 1
n+1

(∑n
i=0 x

i
)
y, n ∈ N;

(f) h(x, y) =
[

1
n+1

(∑n
i=0 x

i
)
+ l
]y
, l > 1, n ∈ N

for all x, y ∈ R+. Then h is a function of subclass of type I.

Definition 2.6 ([19, 20]). Let h,F : R+ × R+ → R, then we say that the pair
(F , h) is an upper class of type I, if h is a function of subclass of type I and: (i)
0 ≤ s ≤ 1 =⇒ F(s, t) ≤ F(1, t), (ii) h(1, y) ≤ F(1, t) =⇒ y ≤ t for all t, y ∈ R+.

Example 2.7 ([19, 20]). Define h,F : R+ × R+ → R by:

(a) h(x, y) = (y + l)x, l > 1 and F(s, t) = st+ l;

(b) h(x, y) = (x+ l)y, l > 1 and F(s, t) = (1 + l)st;

(c) h(x, y) = xmy, m ∈ N and F(s, t) = st;

(d) h(x, y) = y and F(s, t) = t;

(d) h(x, y) = 1
n+1

(∑n
i=0 x

i
)
y, n ∈ N and F(s, t) = st;

(e) h(x, y) =
[

1
n+1

(∑n
i=0 x

i
)
+ l
]y
, l > 1, n ∈ N and F(s, t) = (1 + l)st

for all x, y, s, t ∈ R+. Then the pair (F , h) is an upper class of type I.
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Definition 2.8 ([19, 20]). A function h : R+ × R+ × R+ → R is said to be a
function of subclass of type II, if for all x, y ≥ 1, we have h(1, 1, z) ≤ h(x, y, z),
for all z ∈ R+.

Example 2.9 ([19, 20]). Define h : R+ × R+ × R+ → R by:

(a) h(x, y, z) = (z + l)xy, l > 1;

(b) h(x, y, z) = (xy + l)z, l > 1;

(c) h(x, y, z) = z;

(d) h(x, y, z) = xmynzp,m, n, p ∈ N;

(e) h(x, y, z) = xm+xnyp+yq

3 zk,m, n, p, q, k ∈ N

for all x, y, z ∈ R+. Then h is a function of subclass of type II.

Definition 2.10 ([19, 20]). Let h : R+ ×R+ ×R+ → R and F : R+ ×R+ → R,
then we say that the pair (F , h) is an upper class of type II, if h is a subclass of
type II and the following holds:

(i) if 0 ≤ s ≤ 1 then we have F(s, t) ≤ F(1, t),

(ii) if h(1, 1, z) ≤ F(s, t) then we have z ≤ st for all s, t, z ∈ R+.

Example 2.11 ([19, 20]). Define h : R+×R+×R+ → R and F : R+×R+ → R
by:

(a) h(x, y, z) = (z + l)xy, l > 1,F(s, t) = st+ l;

(b) h(x, y, z) = (xy + l)z, l > 1,F(s, t) = (1 + l)st;

(c) h(x, y, z) = z, F (s, t) = st;

(d) h(x, y, z) = xmynzp,m, n, p ∈ N,F(s, t) = sptp

(e) h(x, y, z) = xm+xnyp+yq

3 zk,m, n, p, q, k ∈ N,F(s, t) = sktk

for all x, y, z, s, t ∈ R+. Then the pair (F , h) is an upper class of type II.

Notation.

ρSp(α, µ) := inf{Sp(x, x, y) | x, y ∈ X : α(x, y) ≥ 1, µ(x, y) ≤ 1}
= inf{Sp(x, x, x) | x ∈ X : α(x, x) ≥ 1, α(x, x) ≤ 1},

XSp(α, µ) = {x ∈ X | Sp(x, x, x) = ρSp(α, µ)},
ZSp(α, µ) = {x ∈ XSp | α(x, x) ≥ 1, µ(x, x) ≤ 1}.
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Definition 2.12. Let (X,Sp) be a partial S-metric space and T : X −→ X be
a given mapping. We say that T is partially (F , h, α, µ)-contractive if there
exists a constant k ∈ [0, 1) and a function α, µ : X ×X −→ [0,+∞) such that
for all x, y ∈ X we have

h(α(x, y), Sp(Tx, Tx, Ty)) ≤ F(µ(x, y),max{kSp(x, x, y),
Sp(x, x, x), Sp(y, y, y)}).(2.1)

where the pair (F , h) is an upper class of type I.

Theorem 2.13. Let (X,Sp) be a complete partial S-metric space, T be a self
mapping on X and assume that T is partially (F , h, α, µ)-contractive. If T
is α−admissible ,µ−subadmissible and Rα−admissible, Rµ−subadmissible and
if XSp(α, µ) is nonempty, then ZSp(α, µ) is nonempty. Also, assume that there
exists x0 ∈ X such that α(x0, x0) ≥ 1, µ(x0, x0) ≤ 1, then there exists a ∈ ZSp(α)
such that Ta = a.

Moreover, if for all u, v in ZSp(α, µ) with the property Tu = u and Tv = v
we have α(u, v) ≥ 1, µ(u, v) ≤ 1, then T has a unique fixed point in ZSp(α, µ).

Proof. Let x0 ∈ X such that α(x0, x0) ≥ 1. Define a sequence {xn} for all
n ≥ 0 in X such that x1 = Tx0, x2 = Tx1, · · · , xn+1 = Txn, · · · . Since T
is α−admissible ,µ−subadmissible and Rα−admissible, Rµ−subadmissible, we
have α(x0, x1) = α(x0, Tx0) ≥ 1 ,µ(x0, x1) = µ(x0, Tx0) ≤ 1 , and hence
α(x1, x2) = α(Tx0, Tx1) ≥ 1, µ(x1, x2) = µ(Tx0, Tx1) ≤ 1 . So, by induction
on n we get

α(xn, xn+1) ≥ 1, µ(xn, xn+1)) ≤ 1,

for all n ≥ 0. Also, since T is Rα−admissible and Rµ−subadmissible; α(x0, x0) ≥
1, µ(x0, x0) ≤ 1 implies α(x0, x1) = α(x0, Tx0) ≥ 1, µ(x0, x1) = µ(x0, Tx0) ≤ 1.
By induction on n, we also conclude that

α(x0, xn) ≥ 1, µ(x0, xn) ≤ 1

for all n ≥ 0. Also, given the fact that T is α-admissible and α(x0, x0) ≥ 1, it
not difficult to prove that α(xn, xn) ≥ 1 for all n ≥ 0. Hence,

h(1, Sp(x1, x1, x1) = h(1, Sp(Tx0, Tx0, Tx0))

≤ h(α(x0, x0), Sp(Tx0, Tx0, Tx0))
≤ F(µ(x0, x0),max{kSp(x0, x0, x0), Sp(x0, x0, x0), Sp(x0, x0, x0)})
≤ F(1,max{kSp(x0, x0, x0), Sp(x0, x0, x0), Sp(x0, x0, x0)}).

This implies that

Sp(x1, x1, x1) ≤ max{kSp(x0, x0, x0), Sp(x0, x0, x0), Sp(x0, x0, x0)}
= Sp(x0, x0, x0).
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By induction on n, we obtain:

Sp(xn+1, xn+1, xn+1) ≤ Sp(xn, xn, xn).

Therefore, {Sp(xn, xn, xn)}{n≥0} is a nonincreasing sequence. Define

r0 := lim
n
Sp(xn, xn, xn) = inf

n
Sp(xn, xn, xn) ≥ 0

and

M0 :=
2

1− k
Sp(x0, x0, x1) + Sp(x0, x0, x0).

Next, we show that Sp(x0, x0, xn) ≤ M0, for any n ≥ 0. If n = 0; the
case is trivial. For n = 1 and using the fact that k ∈ [0, 1) we deduce that

Sp(x0, x0, x1) ≤
2

1− k
Sp(x0, x0, x1) ≤

2

1− k
Sp(x0, x0, x1)+Sp(x0, x0, x0) =M0.

So, we may assume that it is true for all n ≤ n0−1 and prove it for n = n0 ≥ 2.

Sp(x0, x0, xn0) ≤ Sp(x0, x0, x1) + Sp(x0, x0, x1) + Sp(xn0 , xn0 , x1)− Sp(x1, x1, x1)
≤ 2Sp(x0, x0, x1) + Sp(x1, x1, xn0)

≤ 2Sp(x0, x0, x1) + α(x0, xn0−1)Sp(Tx0, Tx0, Txn0−1)

≤ 2Sp(x0, x0, x1)+max{kSp(x0, x0, xn0−1), Sp(x0, x0, x0), Sp(xn0−1, xn0−1, xn0−1)}
≤ 2Sp(x0, x0, x1) + max{kSp(x0, x0, xn0−1), Sp(x0, x0, x0)}.

Also, by induction assumption, we have Sp(x0, x0, xn0−1) ≤ 2
1−kSp(x0, x0, x1) +

Sp(x0, x0, x0). So, we have

Sp(x0, x0, xn0) ≤ 2Sp(x0, x0, x1)

+ max{ 2k

1− k
Sp(x0, x0, x1) + kSp(x0, x0, x0), Sp(x0, x0, x0)}

≤ 2Sp(x0, x0, x1) +
2k

1− k
Sp(x0, x0, x1) + Sp(x0, x0, x0)

=
2

1− k
Sp(x0, x0, x1) + Sp(x0, x0, x0) =M0.

Hence, we conclude that Sp(x0, x0, xn) ≤M0. Next, we need to show that

lim
n,m

Sp(xn, xn, xm) = r0.

For all n,m we have Sp(xn, xn, xm) ≥ Sp(xn, xn, xn) ≥ r0. Let ϵ > 0 find a
natural number n0 such that Sp(xn0 , xn0 , xn0) < r0 + ϵ and 2M0k

n0 < r0 + ϵ.
Now for any n,m ≥ 2n0, since T is Rα−admissible and using the fact that
α(xn, xn+1) ≥ 1, µ(xn, xn+1) ≤ 1 we deduce that α(xn, xm) ≥ 1, µ(xn, xm) ≤ 1.
Hence,

h(1, Sp(xn, xn, xm) ≤ h(α(xn, xm), Sp(xn, xn, xm)) ≤ F(µ(xn, xm), θ) ≤ F(1, θ),
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where

θ = max{kSp(xn−1, xn−1, xm−1), Sp(xn−1, xn−1, xn−1), Sp(xm−1, xm−1, xm−1)}.

This implies that

Sp(xn, xn, xm)

≤ max{kSp(xn−1, xn−1, xm−1), Sp(xn−1, xn−1, xn−1), Sp(xm−1, xm−1, xm−1)}
≤ max{k2Sp(xn−2, xn−2, xm−2), Sp(xn−2, xn−2, xn−2), Sp(xm−2, xm−2, xm−2)}
≤ · · · ≤ max{kn0Sp(xn−n0 , xn−n0 , xm−n0), Sp(xn−n0 , xn−n0 , xn−n0),

Sp(xm−n0 , xm−n0 , xm−n0)}
≤ r0 + ϵ.

Hence,
lim
n,m

Sp(xn, xn, xm) = r0.

Since (X, p) is a complete partial S-metric space; there exists x̃ ∈ X such that

r0 = Sp(x̃, x̃, x̃) = lim
n
Sp(x̃, x̃, xn) = lim

n,m
Sp(xn, xn, xm).

Now, we show that Sp(x̃, x̃, x̃) = Sp(x̃, x̃, T x̃). For each natural number n we
have

Sp(x̃, x̃, T x̃) ≤ 2Sp(x̃, x̃, xn)− Sp(xn, xn, xn) + Sp(T x̃, T x̃, xn).

Using the property that T is α−contractive, we deduce that there exists a sub-
sequence of natural numbers {nl} such that

h(1, Sp(T x̃, T x̃, xnl
) ≤ h(α(x̃, xnl−1), Sp(T x̃, T x̃, xnl

))

≤ F(µ(x̃, xnl−1),max{kSp(x̃, x̃, xnl−1), Sp(x̃, x̃, x̃), Sp(xnl−1, xnl−1, xnl−1)})
≤ F(1,max{kSp(x̃, x̃, xnl−1), Sp(x̃, x̃, x̃), Sp(xnl−1, xnl−1, xnl−1)}),

and thus

Sp(T x̃, T x̃, xnl
) ≤ max{kSp(x̃, x̃, xnl−1), Sp(x̃, x̃, x̃), Sp(xnl−1, xnl−1, xnl−1)}.

So, for l ≥ 1, we have either Sp(T x̃, T x̃, xnl
) ≤ kSp(x̃, x̃, xnl−1) or less than or

equal Sp(x̃, x̃, x̃) or less than or equal Sp(xnl−1, xnl−1, xnl−1). In all of these three
cases, if we take the limit as l goes toward ∞ we get Sp(x̃, x̃, T x̃) ≤ Sp(x̃, x̃, x̃).
But, we know by the property (ii) of the partial S-metric space definition that
Sp(x̃, x̃, x̃) ≤ Sp(x̃, x̃, T x̃). Therefore, Sp(x̃, x̃, x̃) = Sp(x̃, x̃, T x̃).

Now, we show that XSp(α, µ) is nonempty. For each natural number l pick
xl ∈ X with α(xl, xl) ≥ 1 and Sp(xl, xl, xl) < ρSp(α, µ) +

1
l and show that

lim
n,m

Sp(x̃n, x̃n, x̃m) = ρSp(α, µ).
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Let ϵ > 0 put n0 := ( 3
ϵ(1−k))+1 if l ≥ n0 then we have: ρSp(α, µ) ≤ Sp(x̃l, x̃l, T x̃l)

≤ Sp(x̃l, x̃l, T x̃l) ≤ rxl ≤ Sp(x̃l, x̃l, T x̃l) < ρSp(α, µ) +
1
l ≤ ρSp(α, µ) +

1
n0

<

ρSp(α, µ) +
ϵ(1−k)

3 . Hence, we deduce that:

Ul := Sp(x̃l, x̃l, x̃l)− Sp(T x̃l, T x̃l, T x̃l) <
ϵ(1− k)

3
,

for i ≥ n0.
Also, if l ≥ n0, then Sp(x̃l, x̃l, x̃l) = rxl ≤ Sp(xl, xl, xl) < ρSp(α) +

1
n0
.

Which implies that Sp(x̃l, x̃l, x̃l) ≤ ρSp(α, µ) +
ϵ(1−k)

3 for all l ≥ n0. Now,
if n,m ≥ n0, then Sp(x̃n, x̃n, x̃m) ≤ 2Sp(x̃n, x̃n, T x̃n) + Sp(T x̃n, T x̃n, T x̃m) +
2Sp(T x̃m, T x̃m, x̃m)− Sp(T x̃n, T x̃n, T x̃n)− Sp(T x̃m, T x̃m, T x̃m).

We know that Sp(x̃, x̃, x̃) = Sp(x̃, x̃, T x̃) which implies that

h(1, Sp(T x̃n, T x̃n, T x̃m) ≤ h(α(x̃n, x̃m), Sp(T x̃n, T x̃n, T x̃m))
≤ F(µ(x̃n, x̃m),max{kSp(x̃n, x̃n, x̃m), Sp(x̃n, x̃n, x̃n), Sp(x̃m, x̃m, x̃m)})
≤ F(1,max{kSp(x̃n, x̃n, x̃m), Sp(x̃n, x̃n, x̃n), Sp(x̃m, x̃m, x̃m)})

Therefore,

Sp(T x̃n, T x̃n, T x̃m) ≤ max{kSp(x̃n, x̃n, x̃m), Sp(x̃n, x̃n, x̃n), Sp(x̃m, x̃m, x̃m),
Sp(x̃n, x̃n, x̃m) ≤ Un + Um + Sp(T x̃n, T x̃n, T x̃m)

< Un + Um +max{kSp(x̃n, x̃n, x̃m), Sp(x̃n, x̃n, x̃n), Sp(x̃m, x̃m, x̃m)}.

Hence,

ρSp(α, µ) ≤ Sp(x̃n, x̃n, x̃m)

≤ max{2
3
ϵ,
2

3
ϵ(1− k) + Sp(x̃n, x̃n, x̃n),

2

3
ϵ(1− k) + Sp(x̃m, x̃m, x̃m)}

≤ max{2
3
ϵ, ρSp(α, µ) + ϵ(1− k)} < ρSp(α, µ) + ϵ.

Thus,

lim
n,m

Sp(x̃n, x̃n, x̃m) = ρSp(α, µ).

Since (X,Sp) is complete, there exists a ∈ X such that,

Sp(a, a, a) = lim
n
Sp(a, a, x̃n) = lim

n,m
Sp(x̃n, x̃n, x̃m) = ρSp(α, µ).

Therefore, we have a ∈ XSp(α, µ) and thus XSp(α, µ) is nonempty. This implies
that, ZSp(α, µ) is nonempty.

Now, let x0 ∈ ZSp(α, µ) be arbitrary. Then by the above argument we have

ρSp(α, µ) ≤ Sp(T x̃, T x̃, T x̃) ≤ Sp(x̃, x̃, T x̃) = Sp(x̃, x̃, x̃) = r0 = ρSp(α, µ).
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Thus, T x̃ = x̃, Now, assume that T has two fixed points u, v ∈ ZSp(α, µ). By
our hypothesis, we know that α(u, v) ≥ 1, µ(u, v) ≤ 1. Thus,

h(1, Sp(u, u, v) ≤ h(α(u, v), Sp(Tu, Tu, Tv))
≤ F(µ(u, v),max{kSp(u, u, v), Sp(u, u, u), Sp(v, v, v)})
≤ F(1,max{kSp(u, u, v), Sp(u, u, u), Sp(v, v, v)}).

So we have,

Sp(u, u, v) ≤ max{kSp(u, u, v), Sp(u, u, u), Sp(v, v, v)}.

Now, if Sp(u, u, v) ≤ kSp(u, u, v) we deduce that Sp(u, u, v) = 0 and in this
case u = v, or Sp(u, u, v) ≤ Sp(u, u, u) = Sp(v, v, v) and in this case by condi-
tion (ii) of the definition of the partial S-metric space we obtain Sp(u, u, v) =
Sp(u, u, u) = Sp(v, v, v) and hence by condition (i) of the same definition we
conclude that u = v. Therefore, we obtain the uniqueness as desired.

As a consequence of the above result, the following corollary follows easily.

Corollary 2.14. Let (X,Sp) be a 0-complete partial S-metric space, k ∈ [0, 1)
and consider the map T : X −→ X to be α-admissible and Rα-admissible,and
there exists x0 ∈ X such that α(x0, x0) ≥ 1, also for every x, y ∈ X we have
α(x, y)Sp(Tx, Tx, Ty) ≤ kSp(x, x, y). Then there exists x̃ ∈ X such that T x̃ = x̃.

Proof. Using the same technique and notation in the proof of Theorem 2.13, we
deduce that Sp(xn, xn, xn) ≤ α(xn, xn)Sp(xn, xn, xn) ≤ knSp(x0, x0, x0). Thus,

r0 = Sp(x̃, x̃, x̃) = limnSp(x̃, x̃, xn) = limn,mSp(xn, xn, xm) = 0.

This implies that Sp(x̃, x̃, x̃) = 0. Since Sp(x̃, x̃, x̃) = Sp(x̃, x̃, T x̃) = 0, we have
x̃ = T x̃ as required.

In closing, we change the contraction principle in Theorem 2.13, to show
that there exist a unique fixed point in the whole space X.

Theorem 2.15. Let (X,Sp) be a complete partial S-metric space, k ∈ [0, 1)
and assume the there exists x0 ∈ X such that α(x0, x0) ≥ 1. Consider the map
T : X −→ X to be α−admissible and Rα−admissible. Assume that for every
x, y ∈ X we have

(2.2) α(x, y)Sp(Tx, Tx, Ty) ≤ max{kSp(x, x, y),
Sp(x, x, x) + Sp(y, y, y)

2
},

then there exists a unique u ∈ X such that Tu = u.

Proof. Note that, for every x, y ∈ X we have:

α(x, y)Sp(Tx, Tx, Ty) ≤ max{kSp(x, x, y),
Sp(x, x, x) + Sp(y, y, y)

2
}

≤ max{kSp(x, x, y), Sp(x, x, x), Sp(y, y, y)}.
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Thus, all conditions of Theorem 2.13 are satisfied. Hence, there exists u ∈ X
such that Tu = u. Assume that there exist two fixed points u, v ∈ X for T such
that α(u, v) ≥ 1. Hence,

Sp(u, u, v) = Sp(Tu, Tu, Tv) ≤ α(u, v)Sp(Tu, Tu, Tv)

≤ max{kSp(u, u, v),
Sp(u, u, u) + Sp(v, v, v)

2
}.

Thus, we either have Sp(u, u, v) ≤ kSp(u, u, v) which implies that Sp(u, u, v) = 0
and hence u = v, or 0 = 2Sp(u, u, v)−Sp(u, u, u)−Sp(v, v, v) which also implies
that u = v as desired.

Example 3. Let (X,Sp) be a partial S-metric space, where X = [0, 1] ∪ [2, 3]
and the partial S-metric space Sp : X

3 −→ [0,+∞) is defined by

Sp(x, y, z) =

{
∥max{x, y} − z∥, if {x, y, z} ∩ [2, 3] ̸= ∅
|x− y − z|, if {x, y, z} ⊂ [0, 1].

Define the functions T : X −→ X and α : X × X −→ [0,∞) as follows Tx =
x+ 1

2
if 0 ≤ x ≤ 1, T2 = 1, and Tx =

x+ 2

2
if 2 < x ≤ 3,

α(x, y) =

{
ex−y, if x ≥ y
0, if x < y.

It is easy to see that T is α−admissible and Rα−admissible. Note that, we can
always pick our x, y and z such that max{x, y} > z. Also T is an increasing
function. So, for every x ≥ y ∈ X we have:

Sp(Tx, Tx, Ty) ≤ α(x, y)Sp(Tx, Tx, Ty) ≤
1

2
Sp(x, x, y),

if x, y ∈ [0, 1], and

Sp(Tx, Tx, Ty) ≤ α(x, y)Sp(Tx, Tx, Ty) ≤
Sp(x, x, x) + Sp(y, y, y)

2
,

{x, y} ∩ [2, 3] ̸= ∅.
One can verify that the function T in this example satisfies the conditions

of Theorem 2.15 and the unique fixed point will be 1.
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ciple with control functions on partial metric spaces, Journal of Computer
and Mathematics with Applications, 63 (2012), 716-719 .

[9] T. Abdeljawad, Fixed points for generalized weakly contractive mappings in
partial metric spaces, Math. Comput. Modelling, 54 (2011), 2923–2927.

[10] S. Oltra and O. Valero, Banach’s fixed point theorem for partial metric
spaces, Rend. Istit. Mat. Univ. Trieste, 36 (2004), 17-26.

[11] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl.
Gen. Topol., 6 (2005), 229–240.

[12] T. Abdeljawad, Meir-Keeler alpha-contractive fixed and common fixed point
theorems, Fixed point theory and applications, 19, DOI:10.1186/1687-1812-
2013-19.

[13] H.P. Masiha, F. Sabetghadam, and N. Shahzad, fixed point theorems in
partial metric spaces with an application, Filomat, 27 (2013), 617-624.

[14] W. Shatanawi, A. Pitea, Some coupled fixed point theorems in quasi-partial
metric spaces, Fixed point theory and applications, 153 DOI: 10.1186/1687-
1812-2013-153 Published: 2013.

[15] S.K. Malhotra, S. Shukla, R. Sen, A generalization of Banach contraction
principle in ordered cone metric spaces, Journal of Advanced Mathematical
Studies, 5 (2012), 59-67.

[16] Sana Hadj Amor, Tripled coincidence point theorems for weak Ï†-
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1. Introduction

All groups considered in this paper are finite and simple groups are nonabelian.
Let G be a group. For x ∈ G we denote by xG the conjugacy class of x, and by
|xG| the size of xG. Then set N(G) = {|xG|

∣∣ x ∈ G}. It is a well-established
topic to investigate the relationship between the arithmetical properties of N(G)
and the structural properties of group G. More recently, there have appeared a
number of papers addressing this research field. This paper is also a contribution
along this line, which is related to an open conjecture of John G. Thompson (ref.
to [15, Problem 12.38]):

Thompson’s conjecture. If S is a simple group and G is a group satisfying
that Z(G) = 1 and N(G) = N(S), then G ∼= S.

The prime graph of a group G is a simple graph whose vertices are the prime
divisors of |G| and where two distinct primes p and q are joined by an edge if and
only if G contains an element of order pq. Using the prime graph of simple group,
the second author proved that Thompson’s conjecture holds for all simple groups
with disconnected prime graph in 1994 (see [1], also ref. to [2, 3, 4]). For the
simple groups with connected prime graph, the conjecture has made considerable
progress in recent years. Several mathematicians had proved the conjecture is
true for the following simple groups: A10, A16, A22, U4(4), U4(5), An(q), Bn(q),
Cn(q), Dn(q),

2Dn(q), and E7(q)(see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]).
A group M is said to be an almost simple related to S if and only if

S ≤ M ≤Aut(S) for some simple group S. Naturally, one can put forward the
following question: what are almost simple groups we can generalize Thomp-
son’s conjecture to? Some authors have generalized the conjecture to almost
sporadic simple groups except Aut(J2) and Aut(McL), symmetric groups Sn,
where n = p, p+1, and p is an odd prime number, projective general linear groups
PGL(2, q), the automorphism groups of Suzuki-Ree groups (see[15, 16, 17, 18]).
But they still used the second author’s method, which is only valid for the groups
with the disconnected prime graph.

In this paper, using Vasil’ev and Gorshkov’s methods, we generalized Thomp-
son’s conjecture to projective general linear groups PGL(3, q), where q ∈
{2, 3, 4, 5, 7, 8, 9, 11}. Note that PGL(3, 4) and PGL(3, 7) have the connected
prime graphs.

Our main result is the following theorem:

Main Theorem. Let G be a group with Z(G) = 1 and M one of groups
PGL(3, q), where q ∈ {2, 3, 4, 5, 7, 8, 9, 11}. If N(G) = N(M), then G ∼=M .

By [19], we get PGL(3, q) = L3(q).d, d = gcd(3, q − 1). Hence

M = PGL(3, q) =

{
L3(q), q = 2, 3, 5, 8, 9, 11,

L3(q).3, q = 4, 7.

Since simple groups L3(2), L3(3), L3(5), L3(8), L3(9), L3(11) have discon-
nected prime graphs, the second author in [1] has proved that Thompson’s
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conjecture is right for these groups. Therefore, it is enough to prove Main The-
orem for PGL(3, 4) and PGL(3, 7). We shall give the proofs on PGL(3, 4) in
Section 3 and PGL(3, 7) in Section 4.

For convenience, we denote by π(n) the set of all primes dividing n where
n is a positive integer, and then nπ to denote π-part of n for π ⊆ π(n). In
addition, for a group G, we also denote by π(G) = π(|G|), and Soc(G) the socle
of G which is a subgroup generated by all minimal normal subgroups of G. The
other notation and terminologies in this paper are standard and the reader is
referred to [19] and [21] if necessary.

2. Preliminaries

First, we cite here some known results which are useful in the sequel.

Lemma 2.1. Let K be a normal subgroup of G and G = G/K. Then
(a) If x is the image of an element x of G in the group G, then |xK |

∣∣|xG|
and |xG|

∣∣|xG|.
(b) If x ∈ G and (|x|, |K|) = 1, then CG(x) = CG(x)K/K.
(c) If x, y ∈ G, (|x|, |y|) = 1, and xy = yx, then CG(xy) = CG(x)∩CG(y).

Lemma 2.2 ([5, Lemma 4]). Let G be a group with trivial center, p ∈ π(G) and
p2 not divide n for any n ∈ N(G). Then a Sylow p-subgroup of G is elementary
abelian.

Lemma 2.3 ([9, Lemma 1.10]). Let a Sylow p-subgroup of G be of order p, x
be an element of order p, and |xG| be a number that is maximal with respect to
divisibility in N(G). Then CG(x) is abelian.

Lemma 2.4 ([9, Lemma 1.9]). Let G be a group, and p and q be two numbers
in π(G). If G satisfies the following conditions:

(a)N(G) contains no number divisible by p2 or q2;
(b)N(G) contains no number except 1 co-prime to pq;
(c)N(G) contains a number hq such that any n in N(G) not divisible by q

does not divide hq and N(G) contains no number divisible by hq and n;
(d)N(G) contains a number hp such that any l in N(G) not divisible by p

does not divide hp and N(G) contains no number divisible by hp and l.
Then Sylow p-subgroups and q-subgroups of G are cyclic groups of prime order.
In addition, G has no element of order pq.

Lemma 2.5 ([9, Lemma 1.12]). Let G be a group, K the soluble radical of
G, and G/K = S a simple group. Suppose that there exists a prime p such
that p ∈ π(G) \ π(K). Assume that an element g of order p of G satisfies the
following conditions:

(a) |gG| = |gS |, where g is the image of an element g in the group S ;
(b) the number |gG| is maximal with respect to divisibility in N(G);
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(c) the subgroup CG(g) is abelian.

Then K ≤ Z(G).
Let M be one of PGL(3, 4) and PGL(3, 7). Information on the set N(M)

and the order of M given in the next two lemmas is obtained via [19] or GAP
[22].

Lemma 2.6. Let M ∼= PGL(3, 4). Then:

(1) |M | = 26 · 33 · 5 · 7;
(2) N(M) = {n1 = 1, n2 = 32 · 5 · 7, n3 = 24 · 3 · 7, n4 = 26 · 3 · 5, n5 =

26 · 5 · 7, n6 = 26 · 32 · 5,
n7 = 22 · 33 · 5 · 7, n8 = 26 · 32 · 7, n9 = 24 · 32 · 5 · 7}.
Especially,

(3) N(M) contains no number other than n1, n4 and n6 not divisible by 7;

(4) N(M) contains no number other than n1, n3 and n8 not divisible by 5;

(5) For any n ∈ N(M) and p ∈ {5, 7}, it follows that p2 ̸ |n;
(6) |xM | = n1, x ∈M if and only if x = 1.

Lemma 2.7. Let M ∼= PGL(3, 7). Then:

(1) |M | = 25 · 33 · 73 · 19;
(2) N(M) = {n1 = 1, n2 = 24 · 32 · 19, n3 = 3 · 72 · 19, n4 = 25 · 3 · 73, n5 =

23 · 73 · 19,
n6 = 25 ·32 ·73, n7 = 25 ·33 ·7 ·19, n8 = 2 ·32 ·73 ·19, n9 = 24 ·32 ·72 ·19, n10 =
23 · 3 · 73 · 19}.
In particular,

(3) N(M) contains no number other than n1, n4 and n6 not divisible by 19;

(4) N(M) contains no number divided by 192;

(5) |xM | = n1, x ∈M if and only if x = 1.

Lemma 2.8. If M is one of PGL(3, 4) and PGL(3, 7), and G is a group with
Z(G) = 1 and N(G) = N(M), then |M |

∣∣|G| and π(G) = π(M).

Proof. Since the number in N(G) divides |G|, under the hypothesis we see that
|M |

∣∣|G| by Lemma 2.6 and Lemma 2.7. π(M) = π(G) is the result of Lemma
1.2.1 in [1] or Lemma 3 in [5].

Lemma 2.9. Let S be a simple group.

(i) If π(S) ⊆ {2, 3, 5, 7}, then S is isomorphic to one of simple groups of
Table 1.

(ii) If π(S) ⊆ {2, 3, 7, 19}, then S is isomorphic to one of simple groups
of Table 2.

Proof. This is an immediate consequence of Theorem 2 in [23].

For convenience, we list all the cases of S in Lemma 2.9 as well as the orders
of S, the orders of the outer automorphism of S in Table 1 and Table 2.
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Table 1. Non-abeian simple groups S with π(S) ⊆ {2, 3, 5, 7}

S Order of S |Out(S)| S Order of S |Out(S)|
A5 22 · 3 · 5 2 A9 26 · 34 · 5 · 7 2
L2(7) 23 · 3 · 7 2 J2 27 · 33 · 52 · 7 2
A6 23 · 32 · 5 22 U3(5) 24 · 32 · 53 · 7 |S3|
L2(8) 23 · 32 · 7 3 S6(2) 29 · 34 · 5 · 7 1
A7 23 · 32 · 5 · 7 2 U4(3) 27 · 36 · 5 · 7 |D8|
U3(3) 25 · 33 · 7 2 S4(7) 28 · 32 · 52 · 74 2
A8 26 · 32 · 5 · 7 2 A10 27 · 34 · 52 · 7 2
L3(4) 26 · 32 · 5 · 7 |D12| O+

8 (2) 212 · 35 · 52 · 7 |S3|
U4(2) 26 · 34 · 5 2 L2(49) 24 · 3 · 52 · 72 22

Table 2. Non-abeian simple groups S with π(S) ⊆ {2, 3, 7, 19}

S Order of S |Out(S)| S Order of S |Out(S)|
L2(7) 23 · 3 · 7 2 L2(8) 23 · 32 · 7 3
U3(3) 25 · 33 · 7 2 L3(7) 25 · 32 · 73 · 19 |S3|
U3(8) 27 · 34 · 7 · 19 |3× S3|

3. Proof of the main theorem for PGL(3, 4)

Theorem 3.1. Let G be a group with trivial center. If N(G) = N(PGL(3, 4)),
then G ∼= PGL(3, 4).

Proof. We divide the proof of this theorem into six steps.

Step 1. Sylow 5-subgroups and Sylow 7-subgroups of G are cyclic groups of
prime order and there are no elements of order 35 in G.

In view of N(G) = N(PGL(3, 4)) and Lemma 2.8, we can choose p = 5 and
q = 7, and take h5 = n6 and h7 = n8 such that G satisfies the hypotheses of
Lemma 2.4. Hence Sylow 5-subgroups and Sylow 7-subgroups of G are cyclic
groups of prime order and there are no elements of order 5 · 7 in G.

Step 2. Let g, h ∈ G be elements of orders 5 and 7, respectively. Then |gG| =
n8 = 26 · 32 · 7 and |hG| = n6 = 26 · 32 · 5, and CG(g) and CG(h) are abelian.

Since the Sylow 5-subgroup of G is order of 5 by Step 1, one has that 5 ̸
∣∣ |xG|

for any 1 ̸= x ∈ CG(g). Hence |xG| = n3 or n8 by (4) and (6) of Lemma 2.6.
Assume that |gG| = n3 = 24 · 3 · 7. Let H be a Sylow 3-subgroup of CG(g).
Then H is a nontrivial group of order |G|3/3 by Lemma 2.8. It follows that
Z(H) ̸= 1 and let 1 ̸= y ∈ Z(H). Then H ≤ CG(y), and so |yG|3 ≤ 3.
Thus |yG| = n3. Since H ≤ CG(gy), we have that |(gy)G| = n3. In view
of CG(gy) = CG(g)

∩
CG(y), we see that CG(g) = CG(y). The group CG(y)
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contains an element w from the center of a Sylow 3-subgroup of G, then |wG|
is not divisible by 3, and so |wG| = n5 = 26 · 5 · 7 by (2) of Lemma 2.6. Thus
w ̸∈ CG(g), a contradiction. It follows that |gG| = n8 = 26 · 32 · 7. Since n8 is
maximal with respect to divisibility in N(G), Lemma 2.3 implies that the group
CG(g) is abelian.

In a similar way, we can show that |hG| = n6 = 26 · 32 · 5 and CG(h) is
abelian.

In the following discussion, we assume that K is the soluble radical of a
group G, and G = G/K.

Step 3. G is non-soluble and has a unique composition factor S such that
5 · 7

∣∣|S| and S E G ≤Aut(S). Moreover, S may be isomorphic to one of the
following groups:

A7, A8, A9, L4(3), S6(2), U4(3).

Assume that 5
∣∣|K|. Then K/O{5,7}′(K) has a normal subgroup T of order 5.

Hence an element of G/O{5,7}′(K) of order 7 can act trivially on T , which implies
that G/O{5,7}′(K) contains an element of order 35, so does G, contradicting with
Step 1. Thus 5 does not divide |K| and similarly we can prove that 7 does not
divide |K|, and so G is not soluble.

Let L = S1 × S2 × · · · × Sk be the socle of G, where S1, S2, . . . , and Sk are
simple groups. Let g be an element of order 5 of G and suppose that 5 ̸∈ π(L).
Then g is of order 5 in G and induces a nontrivial outer automorphism of the
group L. Suppose that there exists i such that Sgi ̸= Si. Without loss of

generality, we assume that i = 1. Let H = ⟨s |s = s1s
g
1s
g2

1 s
g3

1 s
g4

1 , s1 ∈ S1⟩.
Then H lies in the centralizer of the element g and is isomorphic to S1, but
the centralizer of g is abelian by Step 2, a contradiction. Hence g induces a
nontrivial outer automorphism of the group Si such that 5

∣∣|Out(Si)|. In view of
π(Si) ⊆ π(G) = {2, 3, 5, 7} and by Table 1, the prime divisors of |Out(Si)| are
less than 5, a contradiction. Therefore 5

∣∣|L| and similarly we can get 7
∣∣|L|.

If k > 1 and g ∈ Si, then Sj < CG(g) for any 1 ≤ j ≤ k, j ̸= i, but CG(g)
is abelian by Step 2, a contradiction. Thus k = 1. Let S = S1 = L, and we get
that G has a unique composition factor S such that 5 ·7

∣∣|S| and SEG ≤Aut(S).
Since {5, 7} ⊆ π(S) ⊆ {2, 3, 5, 7}, 5 ∥ |S|, and 7 ∥ |S|, we can easily get that
S can be isomorphic to one of the groups: A7, A8, A9, L3(4), S6(2), U4(3) by
Table 1.

Step 4. S ∼= L3(4).
By Step 3, S may be isomorphic to one of groups A7, A8, A9, L3(4), S6(2),

U4(3). Recall that S EG ≤Aut(S).
If S ∼= A7, then A7 E G ≤Aut(A7) = S7 by Table 1. Since 26 · 33

∣∣|G|,
24 ∥ |S7|, and 32 ∥ |S7|, we have π(K) = {2, 3}. Let g, h ∈ G be elements of
orders 5 and 7, and g, h ∈ G be the image of the element g and h, respectively.
If G ∼= A7, then

|gG| = 26 · 32 · 7, |hG| = 26 · 32 · 5,



20 YANHENG CHEN, GUIYUN CHEN, YUMING FENG and B.O. ONASANYA

|gG| = 23 · 32 · 7, |hG| = 23 · 32 · 5.

Set x = g, h. Then |xG| = |xG||xK |, and so |K : CK(x)| = 23. It follows that
g, h centralize every 3−element of K, and thus there exists a 3−element y in K
such that 35

∣∣|CG(y)|. By Lemma 2.6, one has that |yG| = n1 = 1, and so y = 1,
a contradiction. If G ∼= S7, then we also can get a contradiction in a similar
way. Hence S is not isomorphic to A7.

If S ∼= A8, then A8 E G ≤Aut(A8) = S8. By [19], S has an element x of
order 6 satisfying with |xS | = 25 · 3 · 5 · 7 which does not divide any element of
N(G). Thus it is impossible that S is isomorphic to A8.

Let x be an element of order 7 in G and x be its image in G. If S is one of
A9, S6(2) and U4(3), then by [19], |xS | is a multiple of 34, so are |xG| and |xG|.
This contradicts with (2) of Lemma 2.6, and so S ∼= L3(4).

Step 5. G = G/K ∼= PGL(3, 4).
By virtue of L3(4) ≤ G/K ≤Aut(L3(4)), G may be isomorphic to one of

the following groups: L3(4), L3(4).21, L3(4).22, L3(4).23, L3(4).3 = PGL(3, 4),
L3(4).22.23, L3(4).3.21, L3(4).3.22, L3(4).D12. Let g, h ∈ G be elements of orders
5 and 7, and g, h ∈ G be the image of the element g and h, respectively.

If G ∼= L3(4), then 3
∣∣|K|, and so K ̸= 1. By Lemma 2.6 (2), Step 2 and [19],

we have that n8 is maximal in N(G), CG(g) is abelian, and |gG| = |gS | = n8.
Thus by Lemma 2.5, K ≤ Z(G) = 1, a contradiction.

If G is one of L3(4).22, L3(4).22.23, L3(4).3.21, L3(4).3.22 and L3(4).D12,
then by [22], there exists an element g of order 5 in G such that |gS |
= 8064 ̸

∣∣ |gG| = 4032, a contradiction with Lemma 2.1.
If G is one of L3(4).21 and L3(4).23, also by [22], we can find an element h of

order 7 in G such that |hS | = 5760 ̸
∣∣ |hG| = 2880, a contradiction again. Hence

G = G/K ∼= PGL(3, 4).

Step 6. K is a trivial group such that G ∼= PGL(3, 4).
Let h ∈ G, |h| = 7, and h ∈ G/K = G be the image of the element h. In

view of Lemma 2.6 (2), Step 2 and [19], we see that n6 is maximal in N(G),

CG(h) is abelian and |hG| = |hS | = |hG| = n6. Thus K ≤ CG(h). If K ̸= 1,
then h centralizes an element from the center of a Sylow p-subgroup of G for
some prime p ∈ π(K), which is impossible by Lemma 2.6. Hence K is a trivial
group, and so G ∼= PGL(3, 4).

4. Proof of the main theorem for PGL(3, 7)

Theorem 4.1. Let G be a group with trivial center. If N(G) = N(PGL(3, 7)),
then G ∼= PGL(3, 7).

Proof. We divide the proof of this theorem into eight steps.

Step 1. The Sylow 19-subgroup P of G is order of 19.
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Using Lemma 2.2 and (2) of Lemma 2.7, we derive that P is elementary
abelian. Assume that 192 divides G. Since N(G) = N(PGL(3, 7)), the cen-
tralizer of every element of G contains an element of order 19 by (4) of Lemma
2.7. Considering an element y of G such that |yG| = n2 = 24 · 32 · 19.

Suppose that 19 does not divide |y|. Let x be an element of order 19 in CG(y).
Then by (3) of Lemma 2.1, CG(xy) = CG(x)

∩
CG(y), and so lcm(|xG|, |yG|)

divides |(xy)G|. Since P is abelian, CG(x) includes P up to conjugacy. Hence
19 does not divide |xG|. It follows that |xG| is equal to n4 = 25 · 3 · 73 or
n6 = 25 ·32 ·73 by (3) and (5) of Lemma 2.7. In both cases, 25 ·32 ·73 ·19 divides
|(xy)G|, which is impossible by (2) of Lemma 2.7.

Suppose that 19 divides |y|. Let |y| = 19t. Since P is elementary abelian,
one has that gcd(19, t) = 1. Put u = y19 and v = yt. Then y = uv, and so
CG(uv) = CG(u)

∩
CG(v) by Lemma 2.1. Therefore, |vG| divides |yG| = n2 =

24 · 32 · 19. On the other hand, the element v is order of 19, and thus |vG| is
equal to n4 = 25 · 3 · 73 or n6 = 25 · 32 · 73 by Lemma 2.7, a contradiction. Hence
P has order of 19.

Step 2. For an element x ∈ G of order 19, it follows that |xG| = n6 = 25 ·32 ·73
and CG(x) is abelian.

By Step 1, for any 1 ̸= y ∈ CG(x) one has that 19 ̸
∣∣ |yG|, and hence |yG| = n4

or n6 by (3) and (5) of Lemma 2.7. Assume that |xG| = n4 = 25 · 3 · 73 and
let H be a Sylow 3-subgroup of CG(x). Then H is a nontrivial group of order
|G|3/3 by Lemma 2.8. Hence there exists a 3-subgroup K of G such that H is a
normal subgroup of K and |K/H| = 3. Then 1 ̸= H

∩
Z(K) ≤ CG(x). Taking

1 ̸= h ∈ H
∩
Z(K), we have that K ≤ CG(h), and so |hG|3 = 1. But |hG| = n4

or n6, one has that 3
∣∣|hG|, a contradiction. It follows that |xG| = n6 = 25 ·32 ·73.

Since n6 is maximal with respect to divisibility in N(G), Lemma 2.3 implies
that the group CG(x) is abelian.

Step 3. Suppose that q ∈ {2, 3, 7}, Q is a Sylow q-subgroup of G. Then
19 ̸
∣∣ |CG(x)|, x ∈ Z(Q).
Let 1 ̸= x ∈ Z(Q). Then q does not divide |xG|, and by Lemma 2.7,

|xG| = n3 = 3 · 72 · 19 while q = 2, |xG| = n5 = 23 · 72 · 19 while q = 3, and |xG|
is equal to n2 = 24 · 32 · 19 while q = 7. The Step 3 follows.

Step 4. G is non-soluble and O2, 2′(G) = O2(G).
Let K = O2(G), G = G/K, and denote by x the images of an element x

of G in G. If the statement is false, then there exists r ∈ {3, 7, 19} such that
Or(G) ̸= 1.

If O19(G) ̸= 1, then |O19(G)| = 19 by Step 1. Let Q be a Sylow 7-subgroup
of G and y ∈ Z(Q) be an element of order 7. Obviously, the subgroup O19(G)⟨y⟩
is cyclic. Hence 19 divides |CG(y)|. Since (7, |K|) = 1, Lemma 2.1(2) implies
that 19 divides |CG(y)|, which is impossible by Step 3. Thus, O19(G) = 1.

If O7(G) ̸= 1, then V = Z(O7(G)) is a nontrivial normal subgroup of G. If
x is an element of order 19 in G, then V = CV (x) × [V, x] such that x acts
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fixed-point freely on [x, V ], and then |[x, V ]| − 1 is divisible by 19. Lemma 2.1

(1) implies that |xG| is a divisor of 25 · 32 · 73, and hence |[V, x]| = |V : CV (x)|
divides 73, which implies [V, x] = 1 and V = CV (x). Let Q be a Sylow 7-
subgroup of G. Then Z(Q) has a nontrivial intersection with V and let z be of
order 7 from this intersection. Since (|K|, 7) = 1, there exists a pre-image z
of z in G such that z lies in the center of a Sylow 7-subgroup of G by Lemma
2.1 (2). Further, the centralizer of z also contains an element of order 19, which
contradicts Step 3. Therefore, O7(G) = 1.

Similarly, we can prove O3(G) = 1. The Step 4 holds.

Step 5. Let K = O2(G), G = G/K. Then every minimal normal subgroup of
G is non-soluble. Especially, Soc(G)EG .Aut(Soc(G)).

Let N be any minimal normal subgroup of G and assume that N is soluble.
Then N is an elementary ablelian p-group for some p ∈ {3, 7, 19}, and so
N ≤ Op(G). It follows that Op(G) is nontrivial, contradicts Step 4. Hence every
minimal normal subgroup of G is non-soluble. Let N1, N2, . . . , Ns be all minimal
normal subgroups of G, where s is a positive integer. Then Soc(G) = N1×N2×
· · · × Ns. We assert that CG(Soc(G)) = 1. Otherwise, 1 ̸= CG(Soc(G)) E G.
But CG(Soc(G))

∩
Soc(G)=1 because Ni(1 ≤ i ≤ s) are a direct product of

some isomorphic simple groups. Hence CG(Soc(G)) is soluble, a contradiction.
By N/C theorem, we have Soc(G)EG = G/CG(Soc(G)) .Aut(Soc(G)).

Step 6. Let L = Soc(G). Then L is a non-ableian simple group and 19
∣∣|L|.

By Step 5, we have that L is a direct product of non-ableian simple groups
of S1, S2, . . . , and Sk. Let g be an element of order 19 of G and suppose that
19 ̸∈ π(L). Then g is of order 19 in G and induces a nontrivial outer au-
tomorphism of the group L. Suppose that there exists a positive integer i
satisfying Sgi ̸= Si. Without loss of generality, we assume that i = 1. Let

H = ⟨s |s = s1s
g
1s
g2

1 · · · s
g18

1 , s1 ∈ S1⟩. Then H lies in the centralizer of the
element g and is isomorphic to S1, but the centralizer of g is abelian by Step 2,
a contradiction. Hence g induces a nontrivial outer automorphism of the group
Si such that 19

∣∣|Out(Si)|. In view of π(Si) ⊆ π(G) = {2, 3, 7, 19} and Table 2,
the prime divisors of |Out(Si)| are not greater than 5, a contradiction. Therefore
19
∣∣|L|.
If k > 1 and g ∈ Sj , then Si ≤ CG(g) for any 1 ≤ i ≤ k, i ̸= j. On the other

hand, CG(g) is abelian by Step 2, a contradiction. Therefore k = 1, and so L is
a non-ableian simple group and 19

∣∣|L|.
Step 7. L ∼= L3(7).

By Step 6 and Step 1, we have that L is a non-ableian simple group satisfying
19 ∥ |M |. Then by Table 2, L may be isomorphic to one of U3(8) and L3(7).

By Table 2 and Step 5, we see that π(Out(L)) ⊆ {2, 3} and LEG .Aut(L).
In view of K = O2(G) and 73

∣∣|G|, we have that 73 divides |L|. Hence L must
be isomorphic to L3(7).
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Step 8. G ∼= PGL(3, 7).

Let x be an element of order 19 in G and x be its image in G. It is clear that
x ∈ L. By Lemma 2.1 and [19], we have that |xL| = |xG| = |xG| = 25 · 32 · 73
such that K ≤ CG(x). If K ̸= 1, then x centralizes an element from the center
of a Sylow 2-subgroup of G, which is impossible by Step 3. Hence G = G and
L3(7)EG .Aut(L3(7)). By [22], we see that |N(G)| ̸= |N(T )| for any group T
except PGL(3, 7), where T satisfies with L3(7) ≤ T ≤Aut(L3(7)). Therefore
G ∼= PGL(3, 7).

Proof of Main Theorem. It follows directly from Theorem 3.1 and Theo-
rem 4.1.
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Abstract. The purpose of this paper is to introduce and study the stronger form of
nano continuity called nano contra continuity. Further the concept of nano kernel and
nano Bi-contra continuity is also discussed. These type of mappings can be used in
Biotechnology, to study contra or two way contra effects. Here we applied both contra
and Bi-contra mapping between a set of viruses to a set of antiviruses as a treatment
for disease causing viruses.

Keywords: nano topology, nano α-open sets, nano rare set, nano contra continuity,
nano Bi-contra continuity.

1. Introduction

Ganster and Reily [5] introduced and studied notion of LC-continuous functions.
Dontchev [4] presented a new notion of continuous function called contra con-
tinuity, a stronger form of LC-continuity. Lellis Thivagar et al. [6] introduced
a nano topological space with respect to a subset X of a universe which is de-
fined in terms of lower and upper approximations of X. The elements of a nano
topological space are called the nano open sets. But certain nano terms are
satisfied simply to mean ”very small”. It comes from the Greek word ’Nanos’
which means ’dwarf’, in its modern scientific sense, an order to magnititude-
one billionth of something. Nano car is an example. The topology introduced
here is named so because of its size, since it has almost five elements in it. Nano

∗. Corresponding author
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continuous function [6] has been defined in terms of nano open sets and its
characterisations were derived. Certain weak forms of nano α-open sets, nano
semi-open sets and nano pre-open sets were also established[6]. In this paper
nano contra continuity and nano Bi-contra continuity and their properties are
discussed.

2. Preliminaries

The following recalls necessary concepts and preliminaries required in the sequel.

Definition 2.1 ([8]). Let U be a non-empty finite set of objects called the
universeR be an equivalence relation on U named as the indiscerniblity relation.
Elements belonging to the same equivalence class are said to be indiscernible
with one another. The pair (U , R) is said to be the approximation space. Let
X ⊆ U .

(i) The Lower appproximation of X with respect to R is the set of all objects
which can be for certain classified as X with respect to R and it is denoted
by LR(X). That is, LR(X) =

{∪
x∈U{R(x) : R(x) ⊆ X}

}
, where R(x)

denotes the equivalence class determined by x.

(ii) The Upper approximation of X with respect to R is the set of all objects
which can be possibly classified as X with respect to R and it is denoted
by UR(X) =

{∪
X∈U{R(x) : R(x) ∩X ̸= ∅}

}
.

(iii) The Boundary region of X with respect to R is the set of all objects which
can be classified neither as X nor as not -X with respect to R and it is
denoted by BR(X) = UR(X)− LR(X).

Definition 2.2 ([9]). Let U be the universe, R be an equivalence relation on
U and τR(X) = {U , ∅, LR(X), UR(X), BR(X)} where X ⊆ U and τR(X)satisfies
the following axioms.

(i) U and ∅ ∈ τR(X).

(ii) The union of the elements of any subcollectionτR(X) is in τR(X).

(iii) The intersection of the elements of any finite subcollection of τR(X) is in
τR(X).

That is, τR(X) forms a topology U called as the nano topology on U with respect
to X. We call (U , τR(X)) as the nano topological space. The elements of τR(X)
are called nano open sets. A set A is said to be nano closed if its complement
is nano open.

Definition 2.3 ([6]). If (U , τR(X)) is a nano topological space with respect to
X where X ⊆ U and if A ⊆ U , then nano interior of A is defined as the union
of all nano open subsets contained in A and its denoted by N Int(A). That is
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N Int(A) is the largest nano open subset contained in A. The nano closure of A
is defined as the intersection of all nano closed sets containing A and its denoted
by NCl(A). That is, NCl(A) is the smallest nano closed set containing A.

Definition 2.4 ([6]). Let (U , τR(X)) be a nano topological space and A ⊆ U .
Then A is said to be,

(i) nano semi-open if A ⊆ NCl(N Int(A)).

(ii) nano pre-open if A ⊆ N Int(NCl(A)).

(iii) nano α-open if A ⊆ N Int(NCl(N Int(A)).

Definition 2.5 ([6]). Let (U , τR(X)) be a nano topological space and A ⊆
U is called nano α-closed (respectively,nano semi-closed,nano pre-closed) if its
complement is nano α-open (nano semi-open, nano pre-open).

Definition 2.6 ([6]). Let (U , τR(X)) and (V, τR′(Y )) be nano topological spaces.
Then a mapping f: (U , τR(X)) → (V, τR′(Y )) is nano continuous on U if the
inverse image of every nano open set in V is nano open in U .

Throughout this paper, U and V are non empty finite universes, X ⊆ U
and Y ⊆ V, where R and R′ are equivalence relations on U and V respectively.
(U , τR(X)) and (V, τR′(Y )) are the nano topological space with respect to X
and Y , respectively.

3. Nano kernel

In this section, the notion of nano kernel is introduced and its properties are
investigated.

Definition 3.1. Let (U , τR(X)) be a nano topological space and A ⊆ U . The
set Nker(A) =

∩
{U: A ⊆U, U ∈ τR(X)} is called the nano kernel of A and is

denoted by Nker(A).

Example 3.2. Let U = {a, b, c, d, e} with U/R = {{a, b}, {c}, {d, e}}. Let
X = {a} ⊆ U so that τR(X) = {U , ∅, {a, b}}, then the NKer{a} = {a, b},
NKer{a, b} = {a, b}, NKer{a, b, c} = U .

Theorem 3.3. Let (U , τR(X)) be a nano topological space and A,B ⊆ U . Then
the following properties hold.

(i) x ∈ N kerA iff A ∩ F ̸= ∅ for any nano closed set containing x.

(ii) If A ⊆ NkerA and then A = NKer(A) if A is nano open in U .

(iii) If A ⊆ B, then N kerA ⊆ N kerB.
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Proof. (i) ⇒. If x ∈ N kerA, then x ∈ A ⊆ F c, where F c is a nano open set
and A ⊆ F c,⇒ A∩F c ̸= ∅. Hence A ⊆ F c ⊆ F ⇒ A∩F ̸= ∅, F is nano closed.
Hence x ∈ A∩F ̸= ∅, F is nano closed. Therefore A∩F ̸= ∅ for any nano closed
set containing x.

⇐. Let A ∩ F ̸= ∅ for any nano closed set containing x.

Assume that x /∈ NkerA, hence their exist an nano open set F c such that
A ⊆ F c and x /∈ F c. Hence A ⊆ F and x /∈ F , where F is a nano closed which
is a contradiction. Hence x ∈ NkerA.

(ii) Let A be a nano open set. Since A is nano open NkerA ⊆ A holds.

Let B be any nano open set containing A, then we have A ⊆W . Hence A ⊆
W ∩ A ⊆ A and W ∩ A is nano open. Now, A ⊆ ∩{W.A ⊆ W, W ∈ τR(X)}.
Therefore A ⊆ NkerA and hence A = NkerA.

(iii) Let A ⊆ B, To prove that. NkerA ⊆ NkerB. Let V ∈ NkerA ⇒
A ⊆ V and V is nano open in {U , τR(X)}. Since A ⊆ B, so A ⊆ B ⊆ V ,
where V is a nano open set in (U , τR(X)). Therefore V ∈ Nker(B). Hence
V ∈ Nker(A)⇒ V ∈ Nker(B) and thus NkerA ⊆ Nker(B).

4. Nano kernel

In this section we introduce and define the concept of nano no where dense sets
and nano rare sets and some of their properties are investigated.

Definition 4.1. Let (U , τR(X)) be a nano topological space and let A ⊆ U ,
then A is called nano nowhere dense if N Int[NCl(A)] = ∅.

Example 4.2. Let U = {a, b, c, d} with U/R = {a, c}, {b, d} and let X =
{a, c} ⊆ U , τR(X) = {U , ∅, {a, c}}, then the nano closed set are U , ∅, {b, d}.
Nano semi-closed sets are U , ∅, {b, d}, {b}, {d}. Nano nowhere dense sets are
U , ∅, {b, d}, {b}, {d}.

Remark 4.3. The following theorem is the consequence of the above
example.

Theorem 4.4. Every nano nowhere dense set is nano semi-closed.

Proof. Let A⊆ U be a nano nowhere dense set,then N Int[NCl(A)] = ∅.
Clearly, N Int[NCl(A)] = ∅ ⊆ A ⇒ N Int[NCl(A)] ⊆ A. Hence A is nano
semi-closed.

Remark 4.5. The converse of Theorem 4.4 is not true which can be shown by
the following example.

Example 4.6. Let U = {a, b, c, d} with U/R = {{a}, {c}, {b, d}}, and let
X = {a, b} ⊆ U , τR(X) = {U , ∅, {a}, {a, b, d}, {b, d}}. The set {b, c, d} is a
nano semi-closed set in U but not nano nowhere dense.
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Definition 4.7. Let (U , τR(X)) be a nano topological space and A ⊆ U ,then
A is said to be a nano rare set if N Int(A) = ∅, otherwise it is known as nano
non-rare set in U .

Example 4.8. Let U = {a, b, c, d} with U/R = {{a}, {c}, {b, d}} and X =
{a, b} ⊆ U . Then the nano topology τR(X) = {U , ∅, {a}, {a, b, d}, {b, d}}. Then
the nano rare sets are ∅, {b}, {c}, {d}, {c, d}, {b, c}. Nano non-rare sets are U ,
{a}, {a, b}, {a, c}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

Theorem 4.9. In a nano topological space [U , τR(X)] if LR(X) = UR(X), then
U , LR(X) and any set A ⊇ LR(X) are the only nano non-rare sets in U .

Proof. Since LR(X) = UR(X) = X, the nano topological space, τR(X) =
{U , ∅, LR(X)}. If A ̸= ∅ and A ⊂ LR(X), then N Int(A) = ∅, since ∅ is the only
nano open subset of A. Hence A is a nano non-rare subset of A. If A ⊃ LR(X),
then LR(X) is the largest nano open subset of A and henceN Int(A) = LR(X) ̸=
∅. Therefore, A is a nano non-rare set. Thus U , LR(X) and any set A ⊃ LR(X)
are the only nano non-rare sets in U , if LR(X) = UR(X).

Theorem 4.10. In a nano topological space if LR(X) = ∅ and UR(X) ̸= U ,
then U , UR(X) and any set A ⊇ UR(X) are the only nano non-rare sets.

Proof. Since LR(X) = ∅ and UR(X) = X, the nano topological space,
τR(X) = {U , ∅, UR(X)} and the members of τR(X) are nano open in U . Let
A ⊂ UR(X), then N Int(A) = ∅. Therefore A is a nano rare set in U . If
A ⊇ UR(X), then UR(X) is the largest nano open subset of A. Therefore
N Int(A) = UR(X) and hence A is a nano non-rare set in U . Thus U , and
any set A ⊇ UR(X) are the only nano non-rare sets in U .

Theorem 4.11. In [U , τR(X)] if UR(X) = U and LR(X) ̸= ∅ then U and any
set A ⊇ LR(X), BR(X) are the only nano non-rare sets in U .

Proof. Since UR(X) = U and LR(X) ̸= ∅ the nano open sets in U are U , ∅,
LR(X) and BR(X). Let A ⊆ U such that A ̸= ∅. If A = ∅, then A is nano rare
open. Therefore, let A ̸= ∅, when A ⊂ LR(X), then N Int(A) = ∅, since the
largest nano open subset of A is ∅. That is, A is nano rare open in U . When
LR(X) ⊂ A, N Int(A) = LR(X) and therefore A is nano non-rare open in U .
Similarly it can be shown that any set A ⊂ BR(X) is nano rare set in U and
A ⊇ BR(X) is a nano non-rare set in U . Thus U and any set A ⊇ LR(X), BR(X)
are the only nano non-rare sets in U .

Theorem 4.12. If LR(X) ̸= UR(X) where LR(X) ̸= ∅ and UR(X) ̸= U in a
nano topological space then any set A ⊇ LR(X), UR(X) and BR(X) are the only
nano non-rare sets in U .

Proof. The nano topology on U is given by τR(X) = {U , ∅, LR(X), UR(X),
BR(X)}. Then A ⊇ U such that A ⊇ UR(X), then N Int(A) = UR(X) and
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therefore any A ⊇ UR(X) is nano non-rare in U . Similarly it can be shown
that A ⊇ BR(X) and A ⊆ LR(X) are nano non-rare in U . When A ⊂ BR(X),
N Int(A) = ∅ and hence A is nano rare in U . When A ⊂ UR(X) such that A
is neither a subset of LR(X) nor a subset of BR(X), N Int(A) = ∅ and hence
A is nano rare in U . Thus any set A ⊇ LR(X), UR(X) and BR(X) are the only
nano non-rare sets in U .

Theorem 4.13. Every nano nowhere dense set is nano rare.

Proof. Let A ⊆ U be a nano nowhere dense set in U , then by definition
N Int[NCl(A)] = ∅. We know thatA ⊆ NCl(A) =⇒ N Int(A) ⊆ N Int[NCl(A)]
= ∅ =⇒ N Int(A) = ∅. That is, A is a nano rare set in U .

Remark 4.14. The converse of Theorem 4.13 is not true which can be seen
from the following example.

Example 4.15. Let U = {a, b, c, d} with U/R = {{a}, {b, c, d}} and X =
{a, d} ⊆ U . Then the nano topology τR(X) = {U , ∅, {a}, {b, c, d}}. Then the
nano rare sets in U are {b}, {c}, {d}, {b, d}, {c, d} but are not nano nowhere dense
in U .

Theorem 4.16. If a set A⊆ U in a nano topological space is both nano pre-open
and nano semi-closed then it is a nano non-rare set.

Proof. By definition of nano pre-open and nano semi-closed, A ⊆ N Int[NCl(A)]
and N Int[NCl(A)] ⊆ A which implies A = N Int[NCl(A)]. Hence A becomes
nano regular open set in U . Since every nano regular open set is nano open, then
N Int(A) ̸= ∅. Hence A is not a nano rare set in U if it is both nano pre-open
and nano semi-closed in U .

5. Nano contra continuous function

In this section, the notion of nano form of contra continuity is introduced and
its properties are investigated. This nano contra continuity is also compared
with other nano continuous functions.

Definition 5.1. Let (U , τR(X)) and (V, τR′(Y )) be nano topological spaces,
then the mapping f : (U , τR(X)) → (V, τR′(Y )) is nano contra continuous, if
the inverse image of every nano open set in V is nano closed in U . That is, if
f−1(B) is nano closed in U for every nano open set B of V.

Example 5.2. Let U = {a, b, c, d, e} with U/R = {{a}, {b}, {c}, {d}, {e}} and
X = {d, e} ⊆ U . Then τR(X) = {U , ∅, {d, e}}. Then nano closed sets are
U , ∅, {a, b, c}. Let V = {x, y, z, u, v} with V/R′ = {{x, y}, {z, v}, {u}}. Let
Y = {z, u, v} ⊆ V. Then τR′(Y ) = {V, ∅, {z, u, v}}. Define f : U → V by f(a) =
z, f(b) = u, f(c) = v, f(d) = v, f(d) = x, f(e) = y. Then f−1({z, u, v}) =
{a, b, c} which is a nano closed set in U . That is, the inverse image of every
nano open set in V is nano closed in U . Therefore f is nano contra continuous.
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Definition 5.3. A function f : U → V is said to be

(i) Nano perfectly continuous. if f−1(V ) is nano clopen in U for every nano
open set V in V.

(ii) Nano strongly continuous. if f−1(V ) is nano clopen in U for every subset
V in V.

(iii) Nano α-continuous. if f−1(V ) is nano α-open in U for every nano α- open
set V in V.

(iv) Nano pre-continuous. if f−1(V ) is nano pre-open in U for every nano open
set V in V.

Theorem 5.4. For a function f : (U , τR(X)) → (V, τR(Y )) the following con-
ditions are equivalent.

(i) f is nano contra continuous.

(ii) The inverse image of each nano closed set in V is nano open in U .

(iii) For each x ∈ U and each nano closed set B in V with f(x) ∈ B, there
exists a nano open set A in U such that f(A) ⊆ B.

(iv) f(N (cl(A)) ⊆ NKerf(A) for every subset A of U .

(v) N cl[f−1(B)] ⊆ f−1[NKer(B)].

Proof. (i) ⇒ (ii). Let f be nano contra continuous. Let B be a nano closed
set in V and therefore BC is nano open in V. By (i) f−1(BC) is nano closed in
U . But, f−1(BC) = {f−1(B)}C . Hence f−1(B) is nano open in U .

(ii) ⇒ (i) . Let B be a nano open set in V. Then BC is nano closed in V.
By (ii) f−1(BC) is nano open in U . Hence f−1(B) is nano closed in U . Hence
f is nano contra continuous.

(ii) ⇒ (iii). Let B be a nano closed set such that f(x) ∈ B. By (ii)
x ∈ f−1(B) which is nano open. Let A = f−1(B). Then x ∈ A and f(A) ⊆ B.

(iii) ⇒ (ii). Let B be any nano closed set in V and x ∈ f−1(B). Then
f(x) ∈ B and there exists a nano open set Ux ∈ NO(X,x) such that f(Ux) ⊆ B.
Therefore f−1(B) = ∪{Ux.x ∈ f−1(B)} ∈ NO(X).

(iii) ⇒ (iv). Let A be any subset of U . If y /∈ kerf(A), then by Theorem
3.3 there exists B ∈ N ⊆ (V, f(x)) such that f(A) ∩ (B) = ∅. Thus we have
A ∩ f−1(B)=∅ and since f−1(B) is nano open we have N cl(A) ∩ f−1(B) = ∅.
Therefore, we obtain f(N (cl(A)) ∩ B = ∅ and hence y /∈ f(N cl(A)). This
implies that f [N (cl(A)] ⊆ NKer[f(A)].

(iv) ⇒ (v). Let B be any subset of V. By(iv) and Theorem 3.3 we have
f [N cl(f−1(B))] ⊆ kerf [f−1(B)] ⊆ kerB. ThusN cl[f−1(B)] ⊆ f−1[NKer(B)].

(v)⇒ (i). Let B be any nano open set of V. Then by, Theorem 3.3 we have
N cl[f−1(B)] ⊆ f−1[NKer(B)] and N cl[f−1(B)] = f−1(B). This proves that
f−1(B) is nano closed in U .



32 M. LELLIS THIVAGAR, SAEID JAFARI and V. SUTHA DEVI

Remark 5.5. The concept of nano continuity and nano contra continuity are
independent of each other as shown in the following example.

Example 5.6. Let U = {a, b, c, d, e} with U/R = {{a, c}, {b}, {d}, {e}} and
let X = {a, d, e} ⊆ U . Then τR(X) = {U , ∅, {d, e}, {a, c, d, e}, {a, c}}. The
nano closed sets are U , ∅, {a, b, c}, {b}, {a, c}. Let V = {x, y, z, w} with V/R′ =
{{x}, {y, z}, {w}}. Let Y = {x, z} ⊆ V.

Then τR′(Y ) = {V, ∅, {x}, {x, y, z}, {y, z}}. Define f : U → V as f(a) =
x, f(b) = w, f(c) = x, f(d) = z, f(e) = y. Then f−1({x}) = {a, c}, f−1({x, y, z})
= {a, c, d, e}, f−1({y, z}) = {d, e}. Hence f is a nano continuous function, but
not nano contra continuous function. Because, f−1({x}) = {a, c} is not nano
closed in U ,where {x} is nano open in U . Therefore f is nano continuous but
not nano contra continuous.

Example 5.7. Let U = {a, b, c, d, e} with U/R = {{a}, {b}, {c}, {d}, {e}} and
let X = {a, b} ⊆ U . Then τR(X) = {U , ∅, {a, b}}. The nano closed sets are
U , ∅, {c, d, e}. Let V = {x, y, z, u, v} with V/R′ = {{u, v}, {x, z}, {y}}. Let
Y = {x, y, z} ⊆ V. Then τR′(Y ) = {V, ∅, {x, y, z}}. Define f : U → V as
f(a) = u, f(b) = v, f(c) = x, f(d) = y, f(e) = z. Thus f−1({x, y, z}) = {c, d, e}
is a nano closed in U and not a nano open set in U . Hence f is nano contra
continuous function, but not nano continuous function.

Theorem 5.8. Every nano strongly continuous function is nano contra contin-
uous.

Proof. Let B be a subset of V. Since f is nano strongly continuous, f−1(B) is
a nano clopen in U . That is f−1(B) is both nano closed and also nano open in
U . Since B is any subset of V and f−1(B) is nano closed in U . Then f is nano
contra continuous.

Remark 5.9. The converse of Theorem 5.8 need not be true which can be
shown by the following example.

Example 5.10. Consider Example 5.7, the function f : U → V is nano contra
continuous. Consider {y, z} to be any subset of U . Then f−1({y, z}) = {d, e}
where it is not nano clopen in U . Therefore f is nano contra continuous but not
strongly continuous.

Theorem 5.11. Every nano perfectly continuous function is nano contra con-
tinuous function.

Proof. Let B be a nano open subset of V. Since f is nano perfectly continuous,
f−1(B) is a nano clopen in U . That is f−1(B) is nano closed in U . Since B is a
nano open subset of V and f−1(B) is nano closed in U . Then f is nano contra
continuous.

Remark 5.12. The converse of Theorem 5.11 need not be true as shown in the
following example.
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Example 5.13. Let U = {a, b, c, d} with U/R = {{a}, {b, c}, {d}} and let X =
{a, d} ⊆ U . Then τR(X) = {U , ∅, {a, d}}. Then nano closed sets are U , ∅, {b, c}.
Let V = {x, y, z, w} with V/R′ = {{x, z}, {y, w}}. Let Y = {x, z} ⊆ V. Then
τR′(Y ) = {V, ∅, {x, z}}. Define f : U → V as f(a) = y, f(b) = x, f(c) = z, f(d) =
w then f−1({x, z}) = {b, c} which is a nano closed set and not a nano open set
in U . Hence f is nano contra continuous and not nano perfectly continuous.

Theorem 5.14. For a function f : U → V the following conditions are equiva-
lent

(i) f is nano perfectly continuous.

(ii) f is nano continuous and nano contra continuous.

(iii) f is nano α-continuous and nano contra continuous.

(iv) f is nano pre-continuous and nano contra continuous.

Proof. (i) ⇒ (ii). Let B be a nano open set in V. Since f is nano perfectly
continuous. f−1(B) is a nano clopen set in U . Hence f−1(B) is nano open
and nano closed in U . Therefore f is both nano continuous and nano contra
continuous.

(ii) ⇒ (iii). Given that f is nano continuous and nano contra continuous.
Since, every nano continuous map is nano α-continuous, f is nano α-continuous.

(iii) ⇒ (iv). Given that f is nano α-continuous and nano contra contin-
uous. Since every nano α-continuous map is nano pre-continuous, f is nano
pre-continuous.

(iv) ⇒ (i). Given that f is nano pre-continuous and nano contra contin-
uous. To prove that f is nano perfectly continuous. Let B be a nano open
set in V. by(iv) f−1(B) is both nano pre-open and nano closed in V. Hence
f−1(B) ⊆ N IntN cl[f−1(B)] ⊆ N Int[f−1(B)]. Since f−1(B) is nano closed
in V. But N Int[f−1(B)] ⊆ f−1(B). Therefore N Int[f−1(B)] = f−1(B) and
hence f−1(B) is nano open in V. So, f−1(B) is nano open and nano closed in
V. Thus f is nano perfectly continuous.

Theorem 5.15. Every nano strongly continuous function is both nano contin-
uous and nano contra continuous.

Proof. Let B be an arbitrary set in V. Since f is nano strongly continuous.
f−1(B) is nano clopen in U . That is f−1(B) is both nano open as well as nano
closed in U . Since it holds for every subset of V, it is also true for all the
nano open sets in V. Therefore clearly f is nano continuous and nano contra
continuous.

Remark 5.16. From the above discussion we have the following table which
gives the relationship between different types of nano continuous functions. The
symbol ”1” in a cell means that a function corresponding row implies a function
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Functions A B C D

A 1 0 0 0

B 1 1 0 1

C 1 1 1 1

D 0 0 0 1

(A) Nano continuous function (B) Nano perfectly continuous function (C)
Nano strongly continuous function (D) Nano contra continuous function

on the corresponding column. The symbol ”0” means that a function on the
corresponding row does not imply a function on the corresponding column.

Remark 5.17. The composition of two nano contra continuous function need
not be nano contra continuous as the following example shows.

Example 5.18. Let U = {a, b, c, d, e} with U/R′ = {{a}, {b}, {c}, {d}, {e}},
U/R” = {{a, b}, {c, e}, {d}}, U/R′′′ = {{a}, {b}, {c}, {d}, {e}}. LetX = {d, e} ⊆
U , Y = {c, d, e} ⊆ U , Z = {a, b} ⊆ U . Then τR′(X) = {U , ∅, {d, e}}, τR”(X) =
{U , ∅, {c, d, e}}, τR′′′(X) = {U , ∅, {a, b}}. Then f : (U , τR′(X)) → (U , τR′′(Y ))
defined by f(a) = c, f(b) = d, f(c) = e, f(d) = a, f(e) = b. g : (U , τR′′(Y )) →
(U , τR′′′(Z)) be defined as an identity function. Here f and g are nano contra
continuous functions. But (gof)−1({a, b}) = f−1({g−1({a, b})}) = f−1({a, b}) =
{d, e}, which is not nano closed in [U , τR′(X)]. Hence gof is not nano contra
continuous.

Theorem 5.19. Let f : U → V and g: V → W be the functions then gof is
nano contra continuous if g is nano continuous and f is nano contra continuous.

Proof. Let g be a nano continuous and f a nano contra continuous function.
Suppose B is a nano open set in W. Since g is nano continuous g−1(B) is
nano open in V. Since f is nano contra continuous, f−1(g−1((B))) is nano
closed in U . That is (gof)−1(B) is nano closed in U . Hence gof is nano contra
continuous.

6. Nano Bi-contra continuity

In this section, we define nano bi-contra continuous functions and derive some
results involving its characterizations.

Definition 6.1. Let f : U → V be a surjective map. Then f is called a nano
bi-contra continuous map if f is nano contra continuous and f−1(B) is nano
open in U implies B is nano closed in V.

Example 6.2. Let U = {a, b, c, d, e} with U/R = {{a, b}, {c, d}, {e}} and let
X = {c, d} ⊆ U . Then τR(X) = {U , ∅, {c, d}}. The nano closed sets are
U , ∅, {a, b, e}. Let V = {x, y, z, u, v} with V/R′ = {{x, y}, {z, u, v}}. Let Y =
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{z, u, v} ⊆ V. Then τR′(Y ) = {V, ∅, {z, u, v}}. Define f : U → V by f(a) =
u, f(b) = v, f(c) = x, f(d) = y, f(e) = z. Now the inverse image of nano open
set in V is f−1({z, u, v}) = {a, b, e} which is a nano closed set in U . Hence f is
nano contra continuous. That is f−1({x, y}) = {c, d} which is a nano open set
in U . Hence f is nano bi-contra continuous.

Theorem 6.3. Let f : U → V be a nano bi-contra continuous and an onto
mapping. If A is a subset of U which is both nano closed and nano open, then
the restriction fA : {A, τRA(X)} → {V, τR′(Y )} is a nano bi-contra continuous
map.

Proof. Given that f is nano bi-contra continuous. Let B be a nano open set
in V , then f−1(B) is nano closed in U . Because f is nano contra continuous.
Since A is nano closed and nano open, f−1(B) ∩ A is nano closed in A. Also
f−1
A (B) = f−1(B) ∩ A is nano closed in A. Hence f−1

A (B) be nano open in A
and f−1

A (B) = f−1(B) ∩ A. Since A is nano clopen, f−1(B) is nano open in U
and since f is nano bi-contra continuous, B is nano closed in V.

Theorem 6.4. Let f : U → V be nano open and nano bi-contra continuous,
and g: V → W is nano continuous and nano bi-contra continuous, then the
composition gof : U → V is nano bi-contra continuous map.

Proof. Let B be nano open in W. Since g is nano continuous g−1(B) is open
in V. Since f is nano bi-contra continuous f−1[g−1(B)] is nano closed in U .
(gof)−1(B) = f−1[g−1(B)], so (gof)−1(B) is nano closed in U . f−1[g−1(B)] is
nano open in U , since f is nano open, f(f−1(g)−1(B)) = g−1(B) is nano open
in V. Again g is nano contra continuous. So B is nano closed in W. Hence
(gof)−1(B) is nano bi-contra continuous.

7. Application

Nano contra continuous and nano bi-contra continuous function can be used to
define contra and two way contra effects in bio-technology. To illustrate this we
have shown a real life example.

Consider the anti-viruses as a treatment for the disease causing viruses. Let
V = {v1, v2, v3, v4, v5, v6} be the universe of viruses of three diseases namely
Flu-virus, Polio-virus and Hepatitis-virus. In the sequel, v1 − A/H5N1Flu,
v2 − A/HN1− Flu, v3 − Polio, v4 −Hepatitis− C, v5 −Hepatitis− B, v6 −
Hepatitis−D and let A = {a1, a2, a3, a4, a5, a6} be the universe of anti-viruses
for three diseases namely Flu-virus, Polio-virus and Hepatitis-virus are a1 as
Arbidol, a2 as Amantadine, a3 as Sabin, a4 as Interferon, a5 as Rebetol, a6
as Alpha-Interferon. We know that anti-virus depends on the disease causing
virus. Let U/R = {{v1, v2, v3}, {v4, v5, v6}} and X = {v1, v2, v3} ⊆ V. Then
τR(X) = {U , ∅, {v1, v2, v3}}. The nano closed sets are V, ∅, {v4, v5, v6}. Let
A/R′ = {{a1, a2}, {a3}, {a4, a5, a6}} instead and Y = {a4, a5, a6} ⊆ A. Then
τR′(Y ) = {A, ∅, {a4, a5, a6}}. Define f : V → A by f(v1) = a1, f(v2) = a2,
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f(v3) = a3, f(v4) = a4, f(v5) = a5, f(v6) = a6. Then f−1(A) = V, f−1(∅) = ∅,
f−1({a4, a5, a6}) = {v4, v5, v6}. That is, the inverse image of every nano open
set in A is nano closed in V. Therefore f is nano contra continuous. Also,
f−1({a1, a2, a3}) = {v1, v2, v3} which is a nano open set in V. That is, the
inverse image of every nano closed set in A is nano open in V. Therefore, the
anti-viruses as a function of treatment for disease causing viruses is both nano
contra continuous and nano bi-contra continuous.

Conclusion

These types of mappings (nano contra continuous and nano bi-contra continuous
mappings) will be of much use in biotechnology, where they need contra or two
way contra effects. This mapping is obtained by fixing a contra mapping between
a set of viruses to a set of anti-viruses and another contra mapping between the
negative viruses to the positive viruses of the anti-virus set.
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Abstract. A graph is symmetric if its automorphism group acts transitively on the
set of arcs of the graph. In this paper, we classify connected heptavalent symmetric
graphs of order 8p for each prime p. As a result, a connected heptavalent symmetric
graph of order 8p with p a prime exists if and only if p = 2 or 3, and up to isomorphism,
there are only two such graphs: one for each p = 2 and 3.

Keywords: symmetric graph, s-transitive graph, Cayley graph.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and
undirected. For group-theoretic concepts or graph-theoretic terms not defined
here we refer the reader to [20, 23] or [1, 2], respectively. Let G be a permutation
group on a set Ω and v ∈ Ω. Denote by Gv the stabilizer of v in G, that is, the
subgroup of G fixing the point v. We say that G is semiregular on Ω if Gv = 1
for every v ∈ Ω and regular if G is transitive and semiregular.

For a graph X, denote by V (X), E(X) and Aut(X) its vertex set, its edge
set and its full automorphism group, respectively. A graph X is said to be G-
vertex-transitive if G ≤ Aut(X) acts transitively on V (X). X is simply called
vertex-transitive if it is Aut(X)-vertex-transitive. An s-arc in a graph is an

∗. Corresponding author
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ordered (s + 1)-tuple (v0, v1, · · · , vs−1, vs) of vertices of the graph X such that
vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1.
In particular, a 1-arc is just an arc and a 0-arc is a vertex. For a subgroup
G ≤ Aut(X), a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if
G is transitive or regular on the set of s-arcs in X, respectively. A (G, s)-arc-
transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive.
In particular, a (G, 1)-arc-transitive graph is called G-symmetric. A graph X
is simply called s-arc-transitive, s-regular or s-transitive if it is (Aut(X), s)-arc-
transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive, respectively.

As we all known that the structure of the vertex stabilizers of symmetric
graphs is very useful to classify such graphs, and this structure of the cubic
or tetravalent case was given by Miller [7] and Potočnik [19]. Thus, classifying
symmetric graphs with small valency has received considerable attention, see
[8, 26, 27]. Following this structure given by Guo [9], a series of pentavalent
symmetric graphs is classified in [14, 17, 18, 24, 25]. Recently, the structure of
heptavalent case was determined by Guo [10]. Thus, as an application of this
result, we classify heptavalent symmetric graphs of order 8p for each prime p in
this paper.

2. Preliminary results

Let X be a connected G-symmetric-transitive graph with G ≤ Aut(X), and
let N be a normal subgroup of G. The quotient graph XN of X relative to N
is defined as the graph with vertices the orbits of N on V (X) and with two
orbits adjacent if there is an edge in X between those two orbits. In view of [15,
Theorem 9], we have the following:

Proposition 2.1. Let X be a connected heptavalent G-symmetric graph with
G ≤ Aut(X), and let N be a normal subgroup of G. Then one of the following
holds:

(1) N is transitive on V (X);

(2) X is bipartite and N is transitive on each part of the bipartition;

(3) N has r ≥ 3 orbits on V (X), N acts semiregularly on V (X), the quotient
graph XN is a connected heptavalent G/N -symmetric graph.

The following proposition characterizes the vertex stabilizers of connected
heptavalent s-transitive graphs (see [10, Theorem 1.1]).

Proposition 2.2. Let X be a connected heptavalent (G, s)-transitive graph for
some G ≤ Aut(X) and s ≥ 1. Let v ∈ V (X). Then s ≤ 3 and one of the
following holds:

(1) For s = 1, Gv ∼= Z7, D14, F21, D28, F21 × Z3;
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(2) For s = 2, Gv ∼= F42, F42×Z2, F42×Z3, PSL(3, 2), A7, S7, Z3
2 o SL(3, 2)

or Z4
2 o SL(3, 2);

(3) For s = 3, Gv ∼= F42×Z6, PSL(3, 2)×S4, A7×A6, S7×S6, (A7×A6)oZ2,
Z6
2 o (SL(2, 2)× SL(3, 2)) or [220]o (SL(2, 2)× SL(3, 2)).

In particular, a Sylow 3-subgroup of Gv is elementary abelian.

To extract a classification of connected heptavalent symmetric graphs of
order 2p for a prime p from Cheng and Oxley [5], we introduce the graphs
G(2p, r). Let V and V ′ be two disjoint copies of Zp, say V = {0, 1, · · · , p − 1}
and V ′ = {0′, 1′, · · · , (p − 1)′}. Let r be a positive integer dividing p − 1 and
H(p, r) the unique subgroup of Z∗

p of order r. Define the graph G(2p, r) to have
vertex set V ∪ V ′ and edge set {xy′ | x− y ∈ H(p, r)}.

Proposition 2.3. Let X be a connected heptavalent symmetric graph of order
2p with p a prime. Then X is isomorphic to K7,7 or G(2p, 7) with 7

∣∣ (p − 1).
Furthermore, Aut(G(2p, 7)) = (Zp o Z7)o Z2.

In view of [11, Theorem 3.1], we have the classification of connected hep-
tavalent symmetric graphs of order 4p for a prime p.

Proposition 2.4. Let X be connected heptavalent symmetric graph of order 4p
with p a prime. Then X is isomorphic to K8.

For a finite group G and a subset S of G such that 1 ̸∈ S and S = S−1,
the Cayley graph Cay(G,S) on G with respect to S is defined to have vertex
set V (Cay(G,S)) = G and edge set E(Cay(G,S)) = {{g, sg} | g ∈ G, s ∈ S}.
Clearly, a Cayley graph Cay(G,S) is connected if and only if S generates G.
Furthermore, Aut(G,S) = {α ∈ Aut(G) | Sα = S} is a subgroup of the auto-
morphism group Aut(Cay(G,S)). Given a g ∈ G, define the permutation R(g)
on G by x 7→ xg, x ∈ G. Then R(G) = {R(g) | g ∈ G}, called the right regular
representation of G, is a permutation group isomorphic to G. The Cayley graph
is vertex-transitive because it admits the right regular representation R(G) of
G as a regular group of automorphisms of Cay(G,S). A graph X is isomorphic
to a Cayley graph on G if and only if Aut(X) has a subgroup isomorphic to G,
acting regularly on vertices (see [21]).

Example 2.5. LetG = ⟨a⟩×⟨b⟩ ∼= Z8×Z2 and S = {ab, a2b, a3b, a5b, a6b, a7b, b}.
We can define the Cayley graph:

G16 = Cay(G,S).

Then by Magma [3], G16 = K8,8 − 8K2 is 2-transitive and Aut(G16) = (Z8 ×
Z2).S7 ∼= S8 × Z2.

The next example is about a connected heptavalent symmetric graph of order
24.
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Example 2.6. Define the Cayley graph on the symmetric group S4:

G24 = Cay(S4, S).

where S = {(1, 2, 3, 4), (1, 4, 3, 2), (1, 2, 4), (1, 4, 2), (3, 4), (2, 4), (1, 4)(2, 3)}. By
Magma [3], Aut(G24) = S4.D14

∼= PGL(2, 7) and G24 is a connected heptavalent
1-transitive graph.

3. Classification

This section is devoted to classifying heptavalent symmetric graphs of order 8p
for p a prime.

Theorem 3.1. Let X be a connected heptavalent symmetric graph of order 8p
with p a prime. Then X ∼= G16 or G24.

Proof. By [16] and Magma [3], there is a unique connected heptavalent sym-
metric graphs of order 16 or 24. Thus, by Examples 2.5 and 2.6, we have that
X ∼= G16 and G24 for p = 2 and p = 3, respectively. Let p ≥ 5 and A = Aut(X).
Then we only need to prove that there are no new such graphs.

Case 1: A has a solvable minimal normal subgroup.

LetN be a solvable minimal normal subgroup of A. ThenN is an elementary
abelian q-group with q = 2 or p. Since X has order 8p, by Proposition 2.1,
N is semiregular on V (X) and the quotient graph XN of X relative to N is
a heptavalent symmetric graph with A/N as an arc-transitive automorphism
group. Clearly, the order of XN is even and at least 8. This implies that
N = Z2, Z2

2 or Zp.
Suppose that N = Z2. Then XN is a heptavalent symmetric graph of order

4p. Note that p ≥ 5. Thus, by Proposition 2.4, there is no such graph, a
contradiction.

Suppose that N = Z2
2. Then XN is a heptavalent symmetric graph of order

2p, and by Proposition 2.3, XN
∼= G(2p, 7) or K7,7.

Assume thatXN
∼= G(2p, 7). ThenA/N ≤ (ZpoZ7)oZ2. Since 2·7·p

∣∣ |A/N |,
we have that A = (ZpoZ7)oZ2. Set C = CA(N). By ”N/C-Theorem” (see [12,
Chapter I, Theorem 4.5]), A/C . Aut(N) ∼= GL(2, 2). Since 7 and p does not
divide the order of GL(2, 2), we have that Zp o Z7 ≤ C, that is, all p-elements
and 7-elements commute with N . On the other hand, Z2 normalizes N and
hence Z2 normalizes an element of order 2 in N . This implies that A has a
normal subgroup of order 2, which contradicts that N is minimal normal.

Assume that XN
∼= K7,7. Then A/N . Aut(K7,7) ∼= (S7 × S7) o Z2. By

Magma [3], K7,7 has two minimal arc-transitive subgroups Z2
7 o Z2 or Z2

7 o Z4.
Thus, A/N has a subgroup M/N = Z2

7 oZ2 or Z2
7 oZ4. A similar argument as

above, we can deduce that Z2 or Z4 normalizes an element of order 2 in N . It
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forces that M has a normal subgroup T ∼= Z2, and XT is a heptavalent M/T -
symmetric graph of order 4p. However, by Lemma 2.4, there is no heptavalent
symmetric graph of order 4p with p ≥ 5, a contradiction.

Suppose thatN = Zp. ThenXN
∼= K8 andA/N ≤ S8. Note that 8·7

∣∣ |A/N |.
From the information in [4], we have that A/N = Z3

2 oZ7, Z3
2 o F21, PSL(2, 7),

PSL(2, 7)o Z2, Z3
2 o PSL(2, 7), A8 or S8.

Assume that A/N = Z3
2oZ7, Z3

2oF21, Z3
2oPSL(2, 7), A8 or S8. Then A/N

has an arc-transitive groupM/N = Z3
2oZ7. By ”N/C-Theorem”,M/CM (N) .

Aut(Zp) ∼= Zp−1. Thus, 2
2
∣∣ |CM (N)|. It forces that CM (N) has a characteristic

subgroup K ∼= Z2
2 or Z3

2. Since CM (N) EM , we have K EM . Then XK is
a heptavalent M/K-symmetric graph of order 2p or p. Note that there is no
heptavalent graph of order p ≥ 5. Thus, K = Z2

2 and XK is a heptavalent
symmetric graph of order 2p. By the above argument, this is also impossible.

Assume that A/N = PSL(2, 7) or PSL(2, 7) o Z2. By ”N/C-Theorem”,
A/CA(N) . Aut(N) ∼= Zp−1. Since PSL(2, 7) is simple, we have that PSL(2, 7)
commutes with N . By Atlas [6], the Schur multiplier Mult(PSL(2, 7)) = Z2.
It implies that A has a normal subgroup M = PSL(2, 7) × Zp and M is arc-
transitive. Clearly, Mv

∼= F21. Let PSL(2, 7) ∼= K ≤ M . Then K EM . It
follows that XK is a heptavalent graph of order p. This is impossible because
there is no heptavalent graph of order p.

Case 2: A has no solvable minimal normal subgroup.

For convenience, we still use N to denote a minimal normal subgroup of A.
Then N is non-solvable. Since every group of order qs·rt with q, r primes and s, t
non-negative integers is solvable, the order |N | has at least three different primes.
Note that |V (X)| = 8p. Thus, Nv ̸= 1. By Proposition 2.1, N acting on V (X)
has at most two orbits. Since A is arc-transitive, we have that |A|

∣∣ 227·34·52·7·p
by Lemma 2.2. It follows that |N |

∣∣ 227·34·52·7·p.
Since N is non-solvable, N ∼= T1×T2×· · ·×Tn with T ∼= T1 ∼= T2 ∼= · · · ∼= Tn

is a non-abelian simple group. Note that N has at most two orbits on V (X).
Thus, 4p

∣∣ |N |. Now we divide the prime p into the next three subcases: p = 5,
p = 7 and p > 7.

Subcase 2.1: Let p = 5. Then |T |
∣∣ 227·34·53·7 and 4·5

∣∣ |T |.
By [6, pp.12-14] and [22, Theorem 2], a simple calculation implies that T is

isomorphic to the following groups listed in Table 1:

Assume that n ≥ 2. Then by Table 1, n = 2 and T ∼= A5 or A6. Note
that 4·5

∣∣ |N | or 8·5
∣∣ |N |. By Magma [3], Nv has a normal subgroup M ∼= A5

or A6 and Nv/M is solvable. Thus, M is also a normal subgroup of Av. By
Proposition 2.2, Av ∼= A7 × A6, S7 × S6 or (A7 × A6) o Z2. It forces that
Av/M ∼= A7 or S7. However, Nv/M is solvable and normal in Av/M , this is
impossible. Thus, n = 1 and N is a non-abelian simple group listed in Table 1.

Suppose that N ∼= A5. Then Nv
∼= Z3 and N has two orbits on V (X). Since

Nv E Av, we have Av = F21 × Z3, F42 × Z3 or F42 × Z6. Let P be a Sylow 7-
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Table 1: Non-abelian simple groups of order dividing 227·34·53·7

3-prime factor 4-prime factor

T Order T Order

A5 22 · 3 · 5 A7 23 · 32 · 5 · 7
A6 23 · 32 · 5 A8 26 · 32 · 5 · 7

PSU(4, 2) 26 · 34 · 5 A9 26 · 34 · 5 · 7
A10 27 · 34 · 52 · 7
J2 27 · 33 · 52 · 7

PSL(3, 4) 26 · 32 · 5 · 7
PSp(6, 2) 29 · 34 · 5 · 7
PSU(3, 5) 24 · 32 · 53 · 7

subgroup of Av. Then P EAv. By ”N/C-Theorem”, A/CA(N) . Aut(N) ∼= S5.
Since 7 ̸

∣∣ |S5|, we have that P ≤ CA(N) and P E AvN . Since P is a Sylow
7-subgroup of A, we have that P is characteristic in AvN . Note that N has
two orbits on V (X). By Proposition 2.1, X is bipartite and |A : AvN | = 2. It
implies that AvN E A. Thus, P E A. However, P lies in the vertex stabilizer
Av and P cannot be normal, a contradiction.

Suppose that N ∼= A6. Then by Atlas [6], Nv
∼= Z2

3 or Z2
3 × Z2. Note that

Nv E Av. By Proposition 2.2, Av has no normal subgroup isomorphic to Nv, a
contradiction.

Suppose that N ∼= PSU(4, 2). Then |Nv| = 23·34 or 22·34. By Atlas [6], a
Sylow 3-subgroup of Nv is non-abelian. However, the Sylow 3-subgroups of Av
are elementary abelian by Proposition 2.2, a contradiction.

Suppose that N ∼= A7, A8, A9, A10, J2, PSL(3, 4), PSp(6, 2) or PSU(3, 5).
Then |Nv| = |N |/20 or |N |/40. By Atlas [6], N has no subgroups of such orders,
a contradiction.

Subcase 2.2: Let p = 7. Then |N |
∣∣ 227·34·52·72.

By [6, pp.12-14] and [22, Theorem 2], a simple calculation implies that T is
isomorphic to the following groups listed in Table 2.

Assume that n ≥ 2, then n = 2 and N = PSL(2, 7)2, PSL(2, 8)2, A2
7, A

2
8 or

PSL(3, 4)2. Note that |N : Nv| = 28 or 56. Thus, Nv is non-solvable and Nv has
a normal subgroup isomorphic to PSL(2, 7), PSL(2, 8), A7, A8 or PSL(3, 4). By
Proposition 2.2, Av has no subgroups isomorphic to PSL(2, 8), A8 or PSL(3, 4).
Therefore, N = PSL(2, 7)2 or A2

7. If N = PSL(2, 7)2, then Nv = S3 × PSL(2, 7)
or Z3×PSL(2, 7). Since NvEAv, we have Av has a normal subgroup isomorphic
to S3 × PSL(2, 7) or Z3 × PSL(2, 7). This is impossible by Proposition 2.2.
If N = A2

7, then by Magma [3], A2
7 has no subgroup of index 28 or 56, a

contradiction.

Thus, n = 1 and N is a non-abelian simple group listed in Table 2.
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Table 2: Non-abelian simple groups of order dividing 227·34·52·72

3-prime factor 4-prime factor

T Order T Order

PSL(2, 7) 23 · 3 · 7 A7 23 · 32 · 5 · 7
PSL(2, 8) 23 · 32 · 7 A8 26 · 32 · 5 · 7
PSU(3, 3) 25 · 33 · 7 A9 26 · 34 · 5 · 7

A10 27 · 34 · 52 · 7
J2 27 · 33 · 52 · 7

PSL(2, 49) 24 · 3 · 52 · 72
PSL(3, 4) 26 · 32 · 5 · 7
PSp(6, 2) 29 · 34 · 5 · 7

Suppose that N = PSL(2, 7). Then Nv = Z3 or S3. Since Nv EAv, we have
Nv = Z3 and Av = F21×Z3, F42×Z3 or F42×Z6. In this case, N is transitive on
V (X) and A = NAv. Since N∩Av = Z3, we have that NoF21 ≤ A and NoF21

is arc-transitive. Thus, A has a subgroup B = N oZ7 = PSL(2, 7)oZ7, and B
is arc-transitive. However, Bv = Z7 o Z3, this is impossible by Proposition 2.2.

Suppose that N = PSL(2, 8), PSU(3, 3), A9, A10, J2. Since |N : Nv| = 28
or 56, we have a Sylow 3-subgroup of Nv is also a Sylow 3-subgroup of N . By
Proposition 2.2, a Sylow 3-subgroup of Av is elementary abelian. However, by
Atlas [6], a Sylow 3-subgroup of N is not elementary abelian, a contradiction.

Suppose that N = A7, PSL(2, 49) or PSp(6, 2). Then by Atlas [6], N has no
subgroups of index 28 or 56, a contradiction.

Suppose that N = A8. Then by Atlas [6], Nv = A6, (A5 × Z3) o Z2 or S6.
By Proposition 2.2, Av has no normal subgroup isomorphic to (A5 × Z3)o Z2.
Thus Nv = A6 or S6. Since NvEAv, we have that Av = A7×A6, (A7×A6)oZ2

or S7 × S6 by Proposition 2.2. The normality of N in A implies that A has an
arc-transitive subgroup B = N o Z7 and Bv = A6 × Z7 or S6 × Z7. This is
impossible by Proposition 2.2.

Suppose that N = PSL(3, 4). Then by Atlas [6], Nv = A6 and N is transitive
on V (X). The similar argument as above, A has an arc-transitive subgroup
B = N o Z7 and Bv = A6 × Z7. This is impossible by Proposition 2.2.

Subcase 2.3: Let p > 7. Then |N |
∣∣ 227·34·52·7·p.

By [6, pp.12-14], [22, Theorem 2] and [13, Theorem A], a simple calculation
implies that T is isomorphic to the following groups listed in Table 3. Since
4p
∣∣ |N | and p2 does not divide the orders of the groups listed in Table 3, we

have n = 1 and N is a non-abelian simple group.

Suppose that N = PSL(2, 17), PSL(3, 3), M12, PSU(3, 8), 2F4(2)
′, PSL(4, 4),

A11, PΩ−(8, 2), G2(4). Then |N : Nv| = 4p or 8p. It follows that a sylow
3-subgroup of Nv is also a Sylow 3-subgroup of N . By Atlas [6], a Sylow 3-
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Table 3: Non-abelian simple groups of order dividing 227·34·52·7·p
3-prime factor 4-prime factor 5-prime factor

T Order T Order T Order

PSL(2, 17) 24 · 32 · 17 M11 24 · 32 · 5 · 11 PSL(2, 26) 26 · 32 · 5 · 7 · 13
PSL(3, 3) 24 · 33 · 13 M12 26 · 32 · 5 · 11 PSL(2, 29) 22 · 3 · 5 · 7 · 29

PSL(2, 11) 22 · 3 · 5 · 11 PSL(2, 41) 23 · 3 · 5 · 7 · 41
PSL(2, 19) 22 · 32 · 5 · 19 PSL(2, 71) 23 · 32 · 5 · 7 · 71
PSL(2, 16) 24 · 3 · 5 · 17 PSL(2, 449) 26 · 32 · 52 · 7 · 449
PSL(2, 25) 25 · 3 · 52 · 13 PSL(4, 4) 212 · 34 · 52 · 7 · 17
PSL(2, 27) 22 · 33 · 7 · 13 PSL(5, 2) 210 · 32 · 5 · 7 · 31
PSL(2, 31) 25 · 3 · 5 · 31 A11 27 · 34 · 52 · 7 · 11
PSL(2, 81) 24 · 34 · 5 · 41 M22 27 · 32 · 5 · 7 · 11
PSp(4, 4) 28 · 32 · 52 · 17 PΩ−(8, 2) 212 · 34 · 5 · 7 · 17
PSU(3, 4) 26 · 3 · 52 · 13 G2(4) 212 · 33 · 52 · 7 · 13
PSU(3, 8) 28 · 34 · 7 · 19
Sz(8) 26 · 5 · 7 · 13

2F4(2)
′ 211 · 33 · 52 · 13

subgroup of N is not elementary abelian. However, a Sylow 3-subgroup of Av
is elementary abelian by Proposition 2.2, a contradiction.

Suppose thatN = M11, PSL(2, 11), PSL(2, 19), PSL(2, 27), PSU(3, 4), Sz(8),
PSL(2, 26), PSL(2, 29), PSL(2, 41), PSL(2, 71), PSL(2, 449), M22. Then by At-
las [6] and Magma [3], N has no subgroups of index 4p or 8p, a contradiction.

Suppose that N = PSL(2, 16). Then by Atlas [6], Nv = D30 or A5. Since
Nv E Av, we have that Av has a normal subgroup isomorphic to D30 or A5.
However, by Proposition 2.2, Av has no such normal subgroups, a contradiction.

Suppose that N = PSL(2, 25). Then by Atlas [6], Nv = Z2
5 o Z12. Clearly,

Nv has a characteristic subgroup isomorphic to Z2
5. The normality of Nv in Av

implies that Av has a normal subgroup isomorphic to Z2
5. This is impossible by

Proposition 2.2.

Suppose that N = PSL(2, 81). Then |Nv| = 2·34·5 or 22·34·5. By Atlas [6],
Nv has a characteristic subgroup Z4

3. Since Nv E Av, we have that Av has a
normal subgroup Z4

3. This is impossible by Proposition 2.2.

Suppose that N = PSp(4, 4). Then by Atlas [6], Nv = (A5 × A5) o Z2.
However, by Proposition 2.2, Av has no normal subgroup isomorphic to Nv, a
contradiction.

Suppose that N = PSL(5, 2). Then by Atlas [6], Nv = Z4
2 o A7. Since

Nv EAv, we have that Av has a normal subgroup isomorphic to Z4
2 oA7. This

is impossible by Proposition 2.2.

Suppose that N = PSL(2, 31). Then by Atlas [6], Nv = A5. This implies
that Av has a normal subgroup isomorphic to A5. However, by Proposition 2.2,
this is impossible.
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Abstract. The notion of an almost generalized pseudo-Ricci symmetric space time has
been introduced and studied. The beauty of such spacetime is that it has the flavour of
Ricci symmetric, Ricci recurrent , generalized Ricci recurrent, pseudo-Ricci symmetric,
generalized pseudo-Ricci symmetric and almost pseudo-Ricci symmetric space. Having
found, faulty example in [8] the present paper attempts to construct a nontrivial example
of an almost pseudo Ricci symmetric spacetime.

Keywords: almost pseudo Ricci symmetric spacetime, quasi-Einstein.

1. Introduction

In the example given in ([8], page 2884-2885) authors have calculated or assumed
the value of the covariant derivatives corresponding to the vanishing component
of the Ricci tensor R13 & R14 (namely, R13,3 & R14,4 ) to be zero. But, those

value are found to be R13,3=
2q2(1−q)
(1+2q)3

= −R14,4 which are non-zero as q ̸= 0, 1.

Consequently for their [8] choice of the 1-forms

Ai(x) = − q

1 + 2q
for i=1,

= 0 otherwise,

Bi(x) =
1 + q

1 + 2q
for i=1,

= 0 otherwise,

the relations

R13,3 = (A3 +B3)R13 +A1R33 +A3R13,

R14,4 = (A4 +B4)R14 +A1R44 +A4R14,

do not stand. Hence, (R4, g) under-considered metric ([8], equation 6.2, page
2884) can not be an almost pseudo-Ricci symmetric spacetime. Coming back to
our present paper, we structured it as follows: Keeping in tune with Dubey[11],
a new type of spacetime called an almost generalized pseudo-Ricci symmetric

∗. The author dedicates this work to the memory of Late Professor M. C. Chaki
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spacetime which is abbreviated by A(GPRS)n-spacetime is introduced in section
2. Some interesting results of a conformally flat almost generalized pseudo-Ricci
symmetric spacetime are obtained. A non-trivial example of an almost pseudo-
Ricci symmetric spacetime is constructed in section 3. Finally, we ensured that
there exists a spacetime (R4, g) which is an almost generalized pseudo-Ricci
symmetric for some choice of the 1-forms.

2. A(GPRS)n-spacetime

In the sense of Chaki and Kawaguchi, a non-flat n-dimensional semi-Riemann
manifold (Mn, g)(n > 3) is said to be an almost pseudo-Ricci symmetric man-
ifold, [7] if its Ricci tensor S of type (0, 2) is not identically zero and satisfies
the equation

(2.1) (∇XS)(Y, U) = [A(X) +B(X)]S(Y, U) +A(Y )S(X,U) +A(U)S(Y,X)

where A(X) and B(X) are two non-zero 1-forms defined by A(X) = g(X, θ)
and B(X) = g(X, ϱ), ∇ being the operator of the covariant differentiation. The
local expression of the above equation is

(2.2) Rik,l= (Al +Bl)Rik +AiRkl +AkRil,

where Al and Bl are two non-zero co-vectors and comma followed by indices
denotes the covariant differentiation with respect to the metric tensor g. An
n-dimensional manifold of this kind is abbreviated by A(PRS)n.

Generalizing the sense of Chaki and Kawaguchi, in the present paper, we
attempt to introduce a new type of spacetime called almost generalized pseudo-
Ricci symmetric spacetime which is abbreviated by A(GPRS)n-spacetime and
defined as follows:

A non-flat n-dimensional semi-Riemann manifold (Mn, g)(n > 3), is termed
as almost generalized pseudo-Ricci symmetric manifold, if its Ricci tensor S of
type (0, 2) is not identically zero and admits the identity([2], [3])

(∇XS)(Y,U) = [A(X) +B(X)]S(Y, U) +A(Y ) S(X,U) +A(U) S(X,Y )

+[C(X) +D(X)]g(Y, U) + C(Y ) g(X,U) + C(U) g(X,Y )(2.3)

where A(X), B(X), C(X) and D(X) are non-zero 1-forms defined by A(X) =
g(X, θ), B(X) = g(X, ϱ), C(X) = g(X,π) and D(X) = g(X, δ). The beauty of
such A(GPRS)n-spacetime is that it has the flavour of
(a) Ricci symmetric space in the sense of Cartan (for A = B = C = D = 0),
(b) Ricci recurrent space by E. M. Patterson [14] (for B ̸= 0 and A = C = D =
0),
(c) generalized Ricci recurrent space by De, Guha and Kamilya [9] (for B ̸= 0,
D ̸= 0 and A = C = 0),
(d) pseudo-Ricci symmetric space by Chaki [6] (for A = B ̸= 0 and C = D = 0),
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(e) generalized pseudo-Ricci symmetric space, by Baishya [1] (for A = B ̸= 0
and C = D ̸= 0) and
(f) almost pseudo-Ricci symmetric space by Chaki and Kawaguchi [7] (for
A = B ̸= 0 and C = D = 0).

Next, if the vector fields associated to the 1-forms A&B are co-directional
with that of C & D respectively, that is C = ϕA & D = ϕB where ϕ being
constant, then the relation (2.3) turns into

(∇XZ)(Y, U) = [A(X) +B(X)]Z(Y,U)] +A(Y ) Z(X,U) +A(U)Z(X,U)

where Z(X,Y ) = S(X,Y ) + ϕ g(X,Y ) is a well known Z-tensor introduced in
([12], [13]). This leads to the following:

Theorem 2.1 ([13]). Every A(GPRS)n-spacetime is an almost pseudo Z-symme-
tric spacetime provided that the vector fields associated to the 1-forms A&B are
co-directional with that of C & D respectively.

It is to be noted that the converse of the Theorem 2.1 is also true. Thus we
can say that an almost pseudo Z-symmetric spacetime is a natural example of
an almost generalized pseudo Z-symmetric spacetime.

Definition 2.1. A non-flat Riemannian manifold (Mn, g)(n > 3) is said to be a
quasi-Einstein manifold [10] if its Ricci tensor S of type (0, 2) is not identically
zero and satisfies the condition

S(X,Y ) = λg(X,Y ) + µψ(X)ψ(Y ),

where λ, µ ∈ R and ψ is a non-zero 1-form such that g(X,U) = ψ(X), for all
vector fields X, U being a unit vector field of the 1-form.

Now, contracting Y over U in (2.1) we obtain

(2.4) dr(X) = r[A(X) +B(X)] + 2Ā(X) + 6C(X) + 4D(X)

where Ā(X) = S(X, θ). Again, from (2.1), one can easily bring out

(∇XS)(Y, U)− (∇US)(X,Y ) = B(X)S(Y, U)−B(U)S(X,Y )

+D(X)g(Y,U)−D(U)g(X,Y )(2.5)

after further contraction which leaves

(2.6) dr(X) = 2rB(X)− 2B̄(X) + 6D(X),

where B̄(X) = S(X, ϱ).
It is known ([15], p, 41) that a conformally flat (M4, g) spacetime possesses

the relation

(2.7) (∇XS)(Y, U)− (∇US)(X,Y ) =
1

6
[g(Y, U)dr(X)− g(X,Y )dr(U)].
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By virtue of (2.5), (2.6) and (2.7) we find

3[B(X)S(Y,U)−B(U)S(X,Y )]

= [rB(X)− B̄(X)]g(Y, U)− [rB(U)− B̄(U)]g(X,Y )(2.8)

which yields

(2.9) B(X)B̄(U) = B(U)B̄(X),

for Y = ϱ. Assuming the Ricci tensor of the spacetime as codazzi type (in the
sense of [4]) and then making use of (2.6), we obtain from (2.9) that

(2.10) B(X)D(U) = B(U)D(X) ∀ X and U.

This motivate us to state

Proposition 2.1. In a conformally flat A(GPRS)4-spacetime with codazzi type
of Ricci tensor, the 1-forms B and D are co-directional.

Again, for constant scalar curvature tensor (or codazzi type of Ricci tensor)
by virtue of (2.6), (2.8) and (2.10), we can easily find out

(2.11) S(Y, U) = −D(ϱ)

B(ϱ)
g(Y, U) +

1

B(ϱ)
[rB(Y ) + nD(Y )]B(U),

where D(U)
B(U) = k ∀ U. If the 1-forms B and D are co-directional, then (2.11)

takes the following form

(2.12) S(Y, U) == αg(Y, U) + βB(Y )B(U).

This leads to the followings:

Theorem 2.2. A conformally flat A(GPRS)4-spacetime with codazzi type of
Ricci tensor, is a quasi-Einstein spacetime.

But, it is proved in ([8], Theorem 3.1) that a conformally flat A(GPRS)4-
spacetime is always quasi-Einstein spacetime. In consequence of Corollary 3.1
in [8], we can state the following:

Corollary 2.1. A conformally flat almost generalized pseudo-Ricci symmetric
spacetime with constant scalar curvature can be considered as a model of the
perfect fluid spacetime in general relativity.

Corollary 2.2. A conformally flat almost generalized pseudo-Ricci symmetric
spacetime with constant scalar curvature is a space of quasi constant curvature.
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3. Existence of almost pseudo-Ricci symmetric spacetime

Example 3.1. Let (R4, g) be a 4-dimensional Lorentzian space endowed with
the Lorentzian metric g given by

(3.1) ds2 = gijdx
idxj = e−x

1
[(dx1)2 − (dx2)2 + 2 dx3dx4 ],

(i, j = 1, 2, 3, 4).
The non-zero components of Riemannian curvature tensors, Ricci tensors

(up to symmetry and skew-symmetry) and scalar curvature tensor are

R2324 =
1

4
e−x

1
= R3434,

R22 =
1

2
= −R34,

r = −3

2
ex

1
.

Covariant derivatives of Ricci tensors (up to symmetry) is expressed as

R12,2 = −R13,4= −R14,3=
1

4

R22,1 = −R34,1=
1

2
.

For the following choice of the1-forms

Ai =
1

2
, for i = 1

= 0, otherwise

Bi =
1

2
, for i = 1

= 0, otherwise,

one can easily verify the followings

R12,k = (Ak +Bk)R12 +A1Rk2 +A2R1k,

R13,k = (Ak +Bk)R13 +A1Rk3 +A3R1k,

R14,k = (Ak +Bk)R14 +A1Rk4 +A4R1k,

R23,k = (Ak +Bk)R23 +A2Rk3 +A3R2k,

R24,k = (Ak +Bk)R24 +A2Rk4 +A4R2k,

R34,k = (Ak +Bk)R34 +A3Rk4 +A4R3k,

R11,k = (Ak +Bk)R11 +A1Rk1 +A1R1k,

R22,k = (Ak +Bk)R22 +A2Rk2 +A2R2k,

R33,k = (Ak +Bk)R33 +A3Rk3 +A3R3k,

R44,k = (Ak +Bk)R44 +A4Rk4 +A4R4k,

where k = 1, 2, 3, 4.
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In consequence of the above, one can say that

Theorem 3.1. There exists a spacetime (R4, g) which is an almost pseudo-Ricci
symmetric spacetime with the above mentioned choice of the 1-forms.

It is obvious that the spacetime bearing the metric given by (3.1) can not be
Ricci symmetric, Ricci recurrent, generalized Ricci recurrent as well as almost
generalized pseudo-Ricci symmetric spacetime.

4. Existence of A(GPRS)n-spacetime

Example 4.1. Let (R4, g) be a 4-dimensional Lorentzian space endowed with
the Lorentzian metric g given by

(4.1) ds2 = gijdx
idxj = (x4)4/3[(dx1)2 + (dx2)2 + (dx3)2 ]− (dx4)2,

(i, j = 1, 2, 3, 4). The non-zero components of Ricci tensors (up to
symmetry)

R11 =
2

3(x4)2/3
= R22 = R33, R44 =

2

3(x4)2
.

Covariant derivative (up to symmetry) Rik,l of Ricci tensors is expressed by

R11,4 = − 4

3(x4)5/3
= R22,4= R33,4 , R44,4= −

4

3(x4)3

R14,1 = − 8

9(x4)5/3
= R24,2= R34,3 .

For following choice of the 1-forms

Ai =
1

x4
, for i = 4,

= 0, otherwise

Bi = − 19

3x4
, for i = 4,

= 0, otherwise

Ci = − 14

9(x4)3
, for i = 4

= 0, otherwise , ,

Di =
34

9(x4)3
, for i = 4

= 0, otherwise ,
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one can easily verify the followings

R12,k = (Ak +Bk)R12 +A1Rk2 +A2R1k + (Ck +Dk) g12 + C1gk2 + C2g1k,

R13,k = (Ak +Bk)R13 +A1Rk3 +A3R1k + (Ck +Dk) g13 + C1gk3 + C3g1k,

R14,k = (Ak +Bk)R14 +A1Rk4 +A4R1k + (Ck +Dk) g14 + C1gk4 + C4g1k,

R23,k = (Ak +Bk)R23 +A2Rk3 +A3R2k + (Ck +Dk) g23 + C2gk3 + C3g2k,

R24,k = (Ak +Bk)R24 +A2Rk4 +A4R2k + (Ck +Dk) g24 + C2gk4 + C4g2k,

R34,k = (Ak +Bk)R34 +A3Rk4 +A4R3k + (Ck +Dk) g34 + C3gk4 + C4g3k,

R11,k = (Ak +Bk)R11 +A1Rk1 +A1R1k + (Ck +Dk) g11 + C1gk1 + C1g1k,

R22,k = (Ak +Bk)R22 +A2Rk2 +A2R2k + (Ck +Dk) g22 + C2gk2 + C2g2k,

R33,k = (Ak +Bk)R33 +A3Rk3 +A3R3k + (Ck +Dk) g33 + C3gk3 + C3g3k,

R44,k = (Ak +Bk)R44 +A4Rk4 +A4R4k + (Ck +Dk) g44 + C4gk4 + C4g4k,

where k = 1, 2, 3, 4.

In consequence of the above, one can say that

Theorem 4.1. There exists a spacetime (R4, g) which is an almost generalized
pseudo-Ricci symmetric for the above mentioned choice of the1-forms.

It is obvious that the spacetime bearing the metric given by (4.1) can not be
Ricci symmetric, Ricci recurrent, generalized Ricci recurrent as well as pseudo-
Ricci symmetric.
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[16] J. Mikeš, On geodesic mappings of 2-Ricci symmetric Riemannian spaces.
Math. Notes, 28 (1981), 622–624, Transl. from: Mat. Zametki, 28 (1980),
313–317.
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Abstract. Let R be a commutative ring with identity and M be a unitary R-module.
Let S(M) be the set of all submodules ofM and ϕ : S(M)→ S(M)∪{∅} be a function.
A proper submodule N of M is called (n − 1, n)-ϕ-prime, if r1 . . . rn−1x ∈ N \ ϕ(N)
where r1, . . . , rn−1 ∈ R and x ∈ M , then there exists i ∈ {1, ..., n − 1} such that
r1 . . . ri−1ri+1 . . . rn−1x ∈ N or r1 . . . rn−1 ∈ (N :M) (n ≥ 2). In this work, (n−1, n)-ϕ-
prime submodules are studied and some results are obtained. Also, the characterization
of (n− 1, n)-ϕ-prime submodules of a free multiplication module is given.

Keywords: ϕ-prime submodule, ϕ-prime ideal, (n−1, n)-ψ-prime ideal, multiplication
module, (n− 1, n)-almost prime, (n− 1, n)- ϕ-CP submodule, (n− 1, n)-ϕ-FCP module.

1. Introduction

Throughout the paper, all rings are commutative with identity and all modules
are unitary. LetM be an R-module and N be a submodule ofM . The ideal {r ∈
R|rM ⊆ N} will be denoted by (N :M). Let S(M) be the set of all submodules
of M and ϕ : S(M) → S(M) ∪ {∅} be a function. A proper submodule N of
M is said to be a (n − 1, n)-ϕ-prime, if r1...rn−1x ∈ N \ ϕ(N), r1, ..., rn−1 ∈ R
and x ∈ M (n > 2), then r1...ri−1ri+1...rn−1x ∈ N for some i ∈ {1, ..., n − 1}
or r1...rn−1 ∈ (N : M). Without loss of generality, throughout of the paper we
will assume ϕ(N) ⊆ N . If ϕ(N) = ∅ (resp. ϕ(N) = 0, ϕ(N) = (N : M)N ,
ϕ(N) = (N : M)m−1N and ϕ(N) = ∩∞i=1(N : M)iN), then the submodule N
is called a (n − 1, n)- prime (resp. (n − 1, n)-weakly prime, (n − 1, n)-almost
prime, (n − 1, n)-m-almost prime and (n − 1, n)-ω -prime). Firstly, Anderson
and Bataineh in [4] introduced various generalizations of prime ideals. Let
ψ : I(R) → I(R) ∪ {∅} be a function where I(R) is the set of all ideals of R.
We call a proper ideal I of R a ψ-prime ideal if a, b ∈ R with ab ∈ I \ ψ(I),
then a ∈ I or b ∈ I. If ψ(I) = ∅ (resp. ψ(I) = 0, ψ(I) = I2, ψ(I) = Im and

∗. Corresponding author



56 MASOUD ZOLFAGHARI and MOHAMMAD HOSEIN MOSLEMI KOOPAEI

ψ(I) = ∩∞m=1I
m), then ideal I is called a prime ideal (resp. weakly prime ideal,

almost prime ideal, m-almost prime ideal and ω-prime ideal). Zamani in [11]
used this concept for ϕ-prime submodule, in fact a proper submodule N of M is
a prime submodule relative to ϕ or ϕ-prime submodule if rx ∈ N \ ϕ(N) where
r ∈ R and x ∈ M , then x ∈ N or r ∈ (N : M). If ϕ(N) = ∅ (resp. ϕ(N) = 0,
ϕ(N) = (N :M)N , ϕ(N) = (N :M)m−1N and ϕ(N) = ∩∞i=1(N :M)mN), then
a submodule N is a prime submodule (resp. weakly prime submodule, almost
prime submodule, m-almost prime submodule and ω-prime submodule). Some
properties of ϕ-prime submodules have been studied in [11]. Ebrahimpour and
Nekooei defined (n− 1, n)-ϕ-prime submodule and (n− 1, n)-ψ-prime ideal (see
[7]). A proper ideal I of R is (n − 1, n)-ψ-prime if r1 . . . rn ∈ I \ ψ(I) , then
r1 . . . ri−1ri+1 . . . rn ∈ I for some i ∈ {1, ..., n}. A number of results concerning
(n − 1, n)-ϕ- prime submodules have been established in [7]. Also some basic
properties of prime submodules have been studied in [1,3, 5, 6, 9].
In this work, we continue the above studies in a special case, by alternation of
n and ϕ. Again some other results lead us to conclude some corollaries and
propositions and theorems to concerning the properties of (n − 1, n)-ϕ-prime
submodules. Also, for a free multiplication module M , the results are given in
Section 4.

2. Some general results

The following propositions give some properties when we use the defintion (n−
1, n)-ϕ-prime submodule.

Proposition 2.1. Let R be a ring andM be an R-module. If N is a proper ϕ-
prime submodule of M ((1, 2)-ϕ-prime), then N is (n−1, n)-ϕ-prime submodule
(n > 2).

Proof. Let r1, . . . , rn−1 ∈ R and m ∈ M with r1 . . . rn−1m ∈ N \ ϕ(N).
Assume that r1 . . . rn−1 /∈ (N : M). Since N is a ϕ-prime submodule of M ,
hence m ∈ N , so r1 . . . ri−1ri+1 . . . rn−1m ∈ N for some i ∈ {1, ..., n− 1}.

Proposition 2.2. Let M be an R-module and ϕ1, ϕ2 : S(M)→ S(M)∪{∅} be
two functions where S(M) is the set of all submodules of M with ϕ1 6 ϕ2 (i.e.,
for every submodule N of M , ϕ1(N) ⊆ ϕ2(N)). If N is (n − 1, n)-ϕ1-prime
submodule, then N is (n− 1, n)-ϕ2-prime.

Proof. It is clear.

Proposition 2.3. Suppose that N is a (n − 1, n)-ϕ-prime submodule of M ,
then N is a (n, n+ 1)-ϕ-prime submodule of M .

Proof. Let r1 . . . rnm ∈ N \ ϕ(N) where r1, ..., rn ∈ R and m ∈ M . Then
r1 . . . rn−1(rnm)∈N\ϕ(N), so r1. . .rn−1∈(N :M) or r1 . . . ri−1ri+1 . . . rn−1(rnm)
∈ N for some i ∈ {1, ..., n− 1}.
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Thus r1 . . . rn−1rn ∈ (N : M) or r1 . . . ri−1ri+1 . . . rnm ∈ N for some i ∈
{1, ..., n}.

Example 2.4. We know that if N is a prime submodule of M , then N is a
(n− 1, n)-prime submodule of M (n > 2) by Proposition 2.1. But the converse
of Proposition 2.1, is not true in general. For example, let M = Z⊕ Z be a Z-
module and N = ⟨(3, 0)⟩. Since (N : M) = 0 and 3(2, 0) ∈ N but 3 ̸∈ (N : M)
and (2, 0) ̸∈ N , therefore N is not a prime submodule. We show that N is
a (2, 3)- prime submodule. Suppose that r1, r2 ∈ Z, (m,n) ∈ Z ⊕ Z with
r1r2(m,n) ∈ N . We have (r1r2m, r1r2n) ∈ ⟨(3, 0)⟩. If r1 = 0 or r2 = 0, then
0 = r1r2 ∈ (N : Z⊕ Z), so N is a (2, 3)-prime submodule. Now, let r1 ̸= 0 and
r2 ̸= 0, hence 0 ̸= r1r2 /∈ (N : Z⊕ Z). Since (r1r2m, r1r2n) ∈ ⟨(3, 0)⟩, therefore
n = 0 and 3 | r1r2m. If 3 | m, then r1(m, 0) ∈ N and r2(m, 0) ∈ N . If 3 - m,
then 3 | r1r2. Hence 3 | r1 or 3 | r2. Thus r1(m, 0) ∈ N or r2(m, 0) ∈ N , as
required.

Proposition 2.5 Let M be an R-module and suppose that for every x ∈ M ,
Ann(x) = 0. If N is a (n − 1, n)-weakly prime submodule of M , then N is a
(n− 1, n)-prime submodule .

Proof. Let r1 . . . rn−1x ∈ N where r1, ..., rn−1 ∈ R, x ∈ M (n > 2), and
suppose that r1 . . . rn−1 ̸∈ (N : M). Since N is a (n − 1, n)-weakly prime
submodule, hence 0 ̸= r1...rn−1x ∈ N , implies that r1 . . . ri−1ri+1 . . . rn−1x ∈ N
for some i ∈ {1, ...n−1}. Hence N is a (n−1, n)-prime submodule. But if x ̸= 0
and r1 . . . rn−1x = 0, then r1 . . . rn−1 = 0, so 0 = r1 . . . rn−1 ∈ (N :M), this is a
contradiction.

Proposition 2.6 Let φ : R → S be a ring homomorphism and M be an S-
module. Suppose that N is a (n−1, n)-ϕ-prime submodule of S-module M , then
N is a (n− 1, n)-ϕ-prime submodule of R-module M .

Proof. Let r1 . . . rn−1x ∈ N \ ϕ(N) where r1, . . . , rn−1 ∈ R, x ∈ M (n > 2).
We know that r1 . . . rn−1x = φ(r1 . . . rn−1)x = φ(r1) . . . φ(rn−1)x ∈ N \ ϕ(N)
where φ(ri) ∈ S, for all i ∈ {1, ..., n− 1} and x ∈M (n > 2). It is clear that N
is a (n− 1, n)-ϕ-prime submodule of R-module M .

3. Main results

We state the following theorems and propositions which in the proofs of them,
we use the definition (n− 1, n)-ϕ-prime submodule.

The motivation of [7, Theorem 2.7], we introduce function ϕR/I . Let M be
an R-module and I be an ideal of R. Since I ⊆ AnnR(M/IM), so M/IM is an
R/I-module. We know that (r + I)(m+ IM) = rm+ IM where r + I ∈ R/I,
m + IM ∈ M/IM . Now, for a submodule N of M with IM ⊆ N , let ϕR/I :
S(M/IM)→ S(M/IM)∪{∅} be defined by ϕR/I(N/IM) = (ϕ(N)+ IM)/IM
for IM ⊆ N and ϕ : S(M)→ S(M) ∪ {∅} be a function.
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Theorem 3.1. Let M be an R-module , I be an ideal of R and N be a sub-
module of M with IM ⊆ N . If N is a (n − 1, n)-ϕ-prime submodule M , then
N/IM is a (n− 1, n)-ϕR/I-prime submodule of M/IM (n ≥ 2).

Proof. See [7, Theorem 2.7].

Theorem 3.2. Let M be an R-module, L and N be two submodules of M with
L ⊆ N ⊂ M . Let ϕL : S(M/L) → S(M/L) ∪ {∅} be defined by ϕL(N/L) =
(ϕ(N) + L)/L with L ⊆ ϕ(N). If N/L is a (n − 1, n)-ϕL-prime submodule of
M/L, then N is a (n− 1, n)-ϕ-prime submodule of M (n ≥ 2).

Proof. Let r1, . . . , rn−1 ∈ R, x ∈ M with r1 . . . rn−1x ∈ N \ ϕ(N) and
r1 . . . rn−1 ̸∈ (N : M). So r1 . . . rn−1x ∈ N and r1 . . . rn−1x ̸∈ ϕ(N). Hence
r1 . . . rn−1x + L ∈ N/L and r1 . . . rn−1x + L ̸∈ (ϕ(N) + L)/L. Since N/L is
a (n − 1, n)-ϕL-prime and r1 . . . rn−1 + L ̸∈ (N/L :R M/L), thus there exists
i ∈ {1, . . . , n − 1} such that r1 . . . ri−1ri+1 . . . rn−1x + L ∈ N/L. Therefore
r1 . . . ri−1ri+1 . . . rn−1x ∈ N and so N is a (n− 1, n)-ϕ-prime.

Corollary 3.4. Let ϕ : S(M)→ S(M)∪ {∅} be a function and N be a proper
submodule of M . Then N is a (n − 1, n)-ϕ-prime submodule of M if and only
if N

ϕ(N) is a (n− 1, n)-weakly prime submodule of M
ϕ(N) .

Proof. It is straightforward.

Theorem 3.5. Let f : M → M ′ be an R-module epimorphism, ϕ : S(M)→
S(M)∪{∅} and ϕ′ : S(M ′)→ S(M ′)∪{∅} be two functions. Then the following
conditions hold:

(1) If N is a (n − 1, n)-ϕ-prime submodule of M with kerf ⊆ N and
f(ϕ(N)) ⊆ ϕ′(f(N)), then f(N) is a (n− 1, n)-ϕ′-prime submodule of M ′.

(2) If L is a (n−1, n)-ϕ′-prime submodule ofM ′ and f−1(ϕ′(L)) ⊆ ϕ(f−1(L)),
then f−1(L) is a (n− 1, n)-ϕ-prime submodule of M .

Proof. (1) Let r1, . . . , rn−1 ∈ R and m′ ∈ M ′ with r1 . . . rn−1m
′ ∈ f(N) \

ϕ′(f(N)). There existsm ∈M such that f(m) = m′. We have r1 . . . rn−1f(m) ∈
f(N) and r1 . . . rn−1f(m) /∈ ϕ′(f(N)). It follows that r1 . . . rn−1m ∈ N and
r1 . . . rn−1m /∈ ϕ(N), because r1 . . . rn−1f(m) /∈ f(ϕ(N)). Thus r1 . . . rn−1m ∈
N \ ϕ(N), so r1 . . . rn−1 ∈ (N :M) or r1 . . . ri−1ri+1 . . . rn−1m ∈ N for some i ∈
{1, ..., n−1}. Therefore r1 . . . rn−1 ∈ (f(N) :M ′) or r1 . . . ri−1ri+1 . . . rn−1f(m) ∈
f(N) for some i ∈ {1, ..., n− 1}.

(2) Let r1 . . . rn−1m ∈ f−1(L) \ ϕ(f−1(L)) where r1, . . . , rn−1 ∈ R and m ∈
M . We have r1 . . . rn−1m ∈ f−1(L) and r1 . . . rn−1m /∈ ϕ(f−1(L)). It follows
that r1...rn−1f(m) ∈ L \ ϕ′(L). So r1 . . . rn−1 ∈ (L : M ′) or r1 . . . ri−1ri+1 . . .
rn−1f(m) ∈ L for some i ∈ {1, ..., n − 1}, because L is a (n − 1, n)-ϕ′-prime
submodule ofM ′. Thus r1 . . . rn−1 ∈ (f−1(L) :M) or r1 . . . ri−1ri+1 . . . rn−1m ∈
f−1(L) for some i ∈ {1, ..., n− 1}, as required.
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Theorem 3.6. Let M be a free R-module with a basis {mα}α∈Λ, ϕ : S(M)→
S(M)∪{∅} and ψ : I(R)→ I(R)∪{∅} be two functions where I(R) is the set of
all ideals of R. If P is a (n− 1, n)-ψ-prime ideal of R with ψ(P )M ⊆ ϕ(PM),
then PM is a (n− 1, n)-ϕ-prime submodule of M and (PM :M) = P .

Proof. Since P is a proper ideal of R, so PM is a proper submodule of M .
Let r1, . . . , rn−1 ∈ R, x ∈ M with r1 . . . rn−1x ∈ PM \ ϕ(PM). Since M
is a free R-module with a basis {mα}α∈Λ, therefore PM = {

∑
f.s simi|si ∈

P,mi ∈ {mα}α∈Λ}. We have r1 . . . rn−1x ∈ PM and r1 . . . rn−1x ̸∈ ϕ(PM)
with x =

∑
f.s r

′
αmα (r′α ∈ R,mα ∈ {mα}α∈Λ). Thus

∑
f.s(r1 . . . rn−1r

′
α)mα =∑

f.s sαmα, so r1 . . . rn−1r
′
α = sα ∈ P for every α ∈ Λ. But r1 . . . rn−1r

′
α ̸∈

ψ(P ), otherwise r1 . . . rn−1r
′
α ∈ ψ(P ). Thus for every mα ∈ {mα}α∈Λ, we

have r1 . . . rn−1r
′
αmα ∈ ψ(P )mα. So for every α ∈ Λ, r1 . . . rn−1

∑
f.s r

′
αmα ∈

ψ(P )M . Since ψ(P )M ⊆ ϕ(PM), therefore r1 . . . rn−1
∑

f.s r
′
αmα ∈ ϕ(PM), so

r1 . . . rn−1x ∈ ϕ(PM). This is a contratiction. We showed that for every α ∈ Λ,
r1 . . . rn−1r

′
α ∈ P \ψ(P ). Since P is a (n−1, n)-ψ-prime ideal, so there exists i ̸=

α ∈ {1, . . . n − 1}, r1 . . . ri−1ri+1 . . . rn−1r
′
α ∈ P . For every mα ∈ {mα}α∈Λ, we

have r1 . . . ri−1ri+1 . . . rn−1r
′
αmα ∈ Pmα. Therefore r1 . . . ri−1ri+1 . . . rn−1x ∈

PM . But if i = α, we have r1 . . . rn−1 ∈ P , so r1 . . . rn−1 ∈ (PM : M). Thus
PM is (n− 1, n)-ϕ-prime submodule of M . It is clear that (PM :M) = P .

Now, the following corollary is given as a result of the above theorem. We
recall that an R-module M is a multiplication module if for every submodule N
of M , N = IM for some ideal I of R (see [2], [8], [10]).

Corollary 3.7. Let M be a free multiplication R-module and N be a proper
submodule of M . Let ψ : I(R) → I(R) ∪ {∅} be a function where I is the
set of all ideals of R and ϕ : S(M) → S(M) ∪ {∅} be a function with ψ(N :
M)M ⊆ ϕ((N : M)M). If (N : M) is (n− 1, n)-ψ-prime ideal of R, then N is
a (n− 1, n)-ϕ-prime submodule of M .

Proof. Since N = (N :M)M , by Theorem 3.6 the proof is clear.

Definition 3.8. A proper submodule P of an R-moduleM is called compactly
packed (or abbreviated by CP submodule) if for each family {Pα}α∈Λ of prime
submodules of M with P ⊆ ∪α∈ΛPα, then P ⊆ Pβ for some β ∈ Λ. Whenever
P ⊆ ∪α∈ΛPα implies that there exist α1 . . . αn ∈ Λ such that P ⊆ni=1 Pαi , P is
said finitely compactly packed (or abbreviated by FCP ) submodule. A module
M is said to be CP (FCP ), if every proper submodule of M is a CP (FCP)
submodule. We will call a proper submodule N of M as ϕ-CP if for each family
{Nα}α∈Λ of ϕ-prime submodules of M with N ⊆ ∪α∈ΛNα, then N ⊆ Nβ for
some β ∈ Λ. Whenever N ⊆ ∪α∈ΛNα implies that there exist α1 . . . αn ∈ Λ such
that N ⊆ni=1 Nαi , N is said ϕ-FCP submodule. A module M is said to be ϕ-CP
(ϕ-FCP) if every proper submodule is a ϕ-CP (ϕ-FCP).

Also, we call a proper submodule N of M as (n − 1, n)-ϕ-CP if for each
family {Nα}α∈Λ of (n − 1, n)-ϕ-prime submodules of M with N ⊆ ∪α∈ΛNα,
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then N ⊆ Nβ for some β ∈ Λ. Whenever N ⊆ ∪α∈ΛNα implies that there
exist α1 . . . αn ∈ Λ such that N ⊆ni=1 Nαi , then N is called (n − 1, n)-ϕ-FCP
submodule. A module M is said to be (n − 1, n)-ϕ-CP ((n − 1, n)-ϕ-FCP) if
every proper submodule is a (n− 1, n)-ϕ-CP ((n− 1, n)-ϕ-FCP).

Proposition 3.9. Let M be an R-module, ϕ1 and ϕ2 : S(M) → S(M) ∪ {∅}
be two functions where S(M) is the set of all submodules of M with ϕ1 ≤ ϕ2
(i.e., for every submodule N , ϕ1(N) ⊆ ϕ2(N)). If M is a (n − 1, n)-ϕ2-CP
((n− 1, n)-ϕ2-FCP) module, then M is a (n− 1, n)-ϕ1-CP ((n− 1, n)-ϕ1-FCP)
module.

Proof. Let N be a proper submodule of M with N ⊆ ∪α∈ΛNα where Nα is a
(n− 1, n)-ϕ1-prime submodule of M . By proposition 2.2., Nα is a (n− 1, n)-ϕ2-
prime submodule of M , so N ⊆ Nβ for some β ∈ Λ, because M is a (n− 1, n)-
ϕ2-CP module. Since Nβ is a (n − 1, n)-ϕ1-prime submodule of M , so N is
a (n − 1, n)-ϕ1-CP submodule of M . Thus M is a (n − 1, n)-ϕ1-CP module.
Similarly, we can prove that M is a (n− 1, n)-ϕ1-FCP module.

Proposition 3.10. Every (n, n+1)-ϕ-CP (FCP) module is a (n− 1, n)-ϕ-CP
(FCP) module.

Proof. Apply Proposition 2.3.

Theorem 3.11. Let f : M → M ′ be an R-module epimorphism, ϕ : S(M)→
S(M)∪{∅} and ϕ′ : S(M ′)→ S(M ′)∪{∅} be two functions. Then the following
conditions hold:

(i) If M is a (n−1, n)-ϕ-FCP (CP) module such that for every (n−1, n)-ϕ′-
prime submodule L of M ′ with f−1(ϕ′(L)) ⊆ ϕ(f−1(L)), then M ′ is a (n−1, n)-
ϕ′-FCP (CP) module.

(ii) If M ′ is a (n− 1, n)-ϕ′-FCP (CP) module such that every (n− 1, n)-ϕ-
prime submodule N of M with kerf ⊆ N and f(ϕ(N)) ⊆ ϕ′(f(N)), then M is
a (n− 1, n)-ϕ-FCP (CP) module.

Proof. (i) Let N ′ be a proper submodule of M ′ such that N ′ ⊆ ∪α∈ΛL′
α,

where L′
α is a (n − 1, n)-ϕ′-prime submodule of M ′ for each α ∈ Λ. We have

f−1(N ′) ⊆ ∪α∈Λf−1(L′
α). Since L

′
α is a (n−1, n)-ϕ′-prime submodule of M ′ for

each α ∈ Λ and f−1(ϕ′(L′
α) ⊆ ϕ(f−1(L′

α)), by Theorem 3.5. (2), f−1(L′
α) is a

(n−1, n)-ϕ-prime submodule ofM for each α ∈ Λ. ButM is a (n−1, n)-ϕ-FCP
module, thus there exist α1, . . . , αn ∈ Λ such that f−1(N ′) ⊆ ∪ni=1f

−1(L′
αi
),

hence f−1(N ′) ⊆ f−1(∪ni=1L
′
αi
). Since f is an epimorphism R-module, so N ′ ⊆

∪ni=1L
′
αi
. Therefore we showed that N ′ is a (n− 1, n)-ϕ′-FCP submodule of M ′.

Thus M ′ is a (n − 1, n)-ϕ′-FCP module. Similarly, we can prove that N ′ is a
(n− 1, n)-ϕ′-CP submodule of M ′. So M ′ is a (n− 1, n)-ϕ′-CP module.

(ii) Assume that L is a proper submodule of M with L ⊆ ∪α∈ΛNα where
Nα is a (n − 1, n)-ϕ-prime submodule of M for each α ∈ Λ. We have f(L) ⊆
f(∪α∈ΛNα) = ∪α∈Λf(Nα). Since Nα is a (n − 1, n)-ϕ-prime submodule of M ,
f(ϕ(Nα)) ⊆ ϕ′(f(Nα)) and kerf ⊆ Nα for each α ∈ Λ, by Theorem 3.5. (1),
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f(Nα) is a (n−1, n)-ϕ′-prime submodule of M ′. Since M ′ is a (n−1, n)-ϕ′-FCP
module, so there exist α1, . . . , αn ∈ Λ such that f(L) ⊆ ∪ni=1f(Nαi). Now, we
prove that L ⊆ ∪ni=1Nαi .

Let x ∈ L, so f(x) ∈ f(∪ni=1Nαi), hence f(x) = f(t) for some t ∈ ∪ni=1Nαi .
So x − t ∈ kerf ⊆ Nαj and t ∈ Nαj for some αj ∈ {α1, . . . , αn}. Therefore
x ∈ Nαj , so x ∈ ∪ni=1Nαi . It follows that L is a (n− 1, n)-ϕ-FCP submodule of
M . Thus M is a (n− 1, n)-ϕ-FCP module. Similarly, we can prove that L is a
(n− 1, n)-ϕ-CP submodule of M . So M is a (n− 1, n)-ϕ-CP module.

4. The generalization of prime submodules of free multiplication
modules

Let M be a free multiplicaton R-module. We study several relations between
various generalizations of (n−1, n)-ϕ-prime submodules among (n−1, n)-almost
prime submodules, (n− 1, n)-prime submodules and (n− 1, n)-m-almost prime
submodules.

Proposition 4.1. Let M be a free multiplication R-module and N be a proper
submodule of M . If N is a (n − 1, n)-almost prime submodule of M such that
(N :M)2 is a prime ideal of R, then N is a (n− 1, n)-prime submodule of M .

Proof. Let M be a free multiplication R-module with a basis {xα}α∈Λ and N
be a proper submodule ofM such that N is a (n−1, n)-almost prime submodule
with r1 . . . rn−1x ∈ N where r1, . . . , rn−1 ∈ R and x ∈M . If r1 . . . rn−1x ̸∈ (N :
M)N , we have r1 . . . rn−1x ∈ N \ (N : M)N , so r1 . . . rn−1 ∈ (N : M) or
r1 . . . ri−1ri+1 . . . rn−1x ∈ N for some i ∈ {1, ..., n− 1}. Thus N is a (n− 1, n)-
prime submodule of M . If r1 . . . rn−1x ∈ (N : M)N , because N = (N : M)M ,
hence r1 . . . rn−1x ∈ (N : M)2M . Suppose that r1 . . . rn−1 /∈ (N : M), we
prove that r1 . . . ri−1ri+1 . . . rn−1x ∈ N for some i ∈ {1, ..., n− 1}. On the other
hand, we have x =

∑
f.s rα

′xα that {xα}α∈Λ is a basis for M . Also, we get

r1 . . . rn−1x =
∑

f.s rα
′′xα with r′′α ∈ (N : M)2. Thus

∑
f.s(r1 . . . rn−1r

′
α)xα =∑

f.s r
′′
αxα, so r1 . . . rn−1r

′
α = r′′α, for all α ∈ Λ. Since M is a free module, so

r1 . . . rn−1rα
′ = r′′α for all α ∈ Λ. Thus r1 . . . rn−1rα

′ ∈ (N : M)2, because
r1 . . . rn−1 ̸∈ (N : M), hence r1 . . . rn−1 ̸∈ (N : M)2. But (N : M)2 is a prime
ideal of R, so rα

′ ∈ (N : M)2 for every α ∈ Λ. Therefore x =
∑

f.s rα
′xα ∈

(N : M)2M . Since (N : M)2M ⊆ (N : M)M = N , so x ∈ N and hence
r1 . . . ri−1ri+1 . . . rn−1x ∈ N for some i ∈ {1, . . . , n− 1}.

Corollary 4.2. Let M be a free multiplication R-module. If N is a (n− 1, n)-
m-almost prime submodule of M such that (N : M)m is a prime ideal of R,
then N is a (n− 1, n)-prime submodule of M .

Proof. The proof is similar to the proof of Proposition 4.1.

Corollary 4.3. Let M be a free multiplication R-module and I be a proper
ideal of R such that (IM : M)2 is a prime ideal of R. If IM is a (n − 1, n)-
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almost prime submodule of M , then IM is a (n − 1, n)-prime submodule of
M .

Proof. Apply Proposition 4.1.

Corollary 4.4. Let M be a free multiplication R-module and I be a proper
ideal of R such that (IM : M)m is a prime ideal of R. If IM is a (n − 1, n)-
m-almost prime submodule of M , then IM is a (n − 1, n)-prime submodule of
M .

Proof. Apply Corollary 4.2.

Proposition 4.5. Let M be a faithful finitely generated R-module with a basis
{xα}α∈Λ and I be a proper radical ideal of R such that I2 is a prime ideal of R.
If IM is a (n−1, n)-almost prime submodule ofM , then IM is a (n−1, n)-prime
submodule.

Proof. Since M is a faithful finitely generated R-module and I is a radical
ideal of R, so (IM :M) = I. Let r1 . . . rn−1x ∈ IM where r1, . . . , rn−1 ∈ R and
x ∈ M . If r1 . . . rn−1x ̸∈ (IM : M)IM , then r1 . . . rn−1x ∈ IM \ (IM : M)IM .
Hence r1 . . . rn−1 ∈ (IM : M) or r1 . . . ri−1ri+1 . . . rn−1x ∈ IM for some i ∈
{1, . . . , n− 1}. Now, assume that r1 . . . rn−1x ∈ (IM :M)IM and r1 . . . rn−1 ̸∈
(IM : M). Because (IM : M) = I, we have r1 . . . rn−1x ∈ I2M . On the
other hand we get x =

∑
f.s rα

′xα, since {xα}α∈Λ is a basis is for M . Therefore∑
f.s(r1 . . . rn−1rα

′)xα ∈ I2M , hence
∑

f.s(r1 . . . rn−1rα
′)xα =

∑
f.s r

′′
αxα where

r′′α ∈ I2 for all α ∈ Λ. Thus r1 . . . rn−1r
′
α = r′′α for all α ∈ Λ, hence r1 . . . rn−1r

′
α ∈

I2. Because r1 . . . rn−1 /∈ (IM :M) = I, so r1 . . . rn−1 /∈ I2. Since I2 is a prime
ideal of R, hence r′α ∈ I2 for all α ∈ Λ. Thus we proved that x =

∑
f.s r

′
αxα ∈

I2M . Therefore x ∈ IM and r1 . . . ri−1ri+1 . . . rn−1x ∈ IM .

Proposition 4.6. Let M be a free multiplication R-module and f : M → M ′

be an R-module epimorphism. Let N be a proper submodule ofM with kerf ⊆ N
and (N :M)2 be a prime ideal of R. If N is a (n−1, n)-almost prime submodule
of M , then f(N) is a (n− 1, n)-prime submodule of M ′.

Proof. Let N be a proper submodule of M , then f(N) is a proper submodule
of M ′. Suppose that r1 . . . rn−1m

′ ∈ f(N) where r1, . . . , rn−1 ∈ R and m′ ∈M ′.
Since f(M) =M ′, so f(m) = m′, for some m ∈M . So f(r1 . . . rn−1m) ∈ f(N).
Since ker(f) ⊆ N , hence r1 . . . rn−1m ∈ N . If r1 . . . rn−1m ̸∈ (N : M)N , then
r1 . . . rn−1m ∈ N \ (N : M)N . Since N is a (n − 1, n)-almost prime submod-
ule of M , so r1 . . . rn−1 ∈ (N : M) or r1 . . . ri−1ri+1 . . . rn−1m ∈ N for some i ∈
{1, ..., n−1}. Hence r1 . . . rn−1 ∈ (f(N) : f(M)) or r1 . . . ri−1ri+1 . . . rn−1f(m) ∈
f(N) for some i ∈ {1, ..., n − 1}. Thus f(N) is a (n − 1, n)-prime submodule
of M ′. Now, if r1 . . . rn−1m ∈ (N : M)N , so r1 . . . rn−1m ∈ (N : M)2M . As-
sume that r1 . . . rn−1 ̸∈ (N : M). Furthermore, since R-module M is free with
a basis {xi}i∈Λ, so m =

∑
f.s r

′
ixi, hence r1 . . . rn−1

∑
f.s r

′
ixi ∈ (N : M)2M .

Hence we have
∑

f.s r1 . . . rn−1r
′
ixi =

∑
f.s r

′′
i xi where r′′i ∈ (N : M)2. It
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follows that r1 . . . rn−1r
′
i = r′′i . Since (N : M)2 is a prime ideal of R, so

r′i ∈ (N : M)2 for every i ∈ Λ. Thus m =
∑

f.s r
′
ixi ∈ (N : M)2M , there-

fore m ∈ (N : M)M , because of (N : M)2M ⊆ (N : M)M . Thus m ∈ (N :
M)M = N , so r1 . . . ri−1ri+1 . . . rn−1m ∈ N for some i ∈ {1, . . . , n − 1}. So
r1 . . . ri−1ri+1 . . . rn−1f(m) ∈ f(N) for some i ∈ {1, . . . , n− 1} . Thus f(N) is a
(n− 1, n)-prime submodule of M ′.

Proposition 4.7. LetM be a free multiplication R-module and f :M →M ′ be
an R-module epimorphism. Let N be a proper submodule of M with kerf ⊆ N
and (N : M)m be a prime ideal of R. If N is a (n − 1, n)-m-almost prime
submodule of M , then f(N) is a (n− 1, n)- prime submodule of M ′.

Proof. The proof is similar to the proof of Proposition 4.6.

Theorem 4.8. Let M be a free multiplication R-module with a basis {xα}α∈Λ
and N be a proper submodule of M . If (N : M) is a (n − 1, n)-prime ideal of
R, then N is a (n− 1, n)-prime submodule of M .

Proof. Let r1, . . . , rn−1 ∈ R and x ∈ M with r1 . . . rn−1x ∈ N . Since
N = (N : M)M , so r1 . . . rn−1x ∈ (N : M)M . Because {xα}α∈Λ is a ba-
sis for M , so x =

∑
f.s r

′
αxα. Therefore

∑
f.s r1 . . . rn−1r

′
αxα ∈ (N : M)M ,

hence
∑

f.s r1 . . . rn−1r
′
αxα =

∑
f.s r

′′
αxα where r′′α ∈ (N : M). It is clear that

r1 . . . rn−1r
′
α ∈ (N :M) for all α ∈ Λ. Since (N :M) is a (n−1, n)-prime ideal of

R, we have two cases. The first case, i̸=α, so r1. . .ri−1ri+1. . .rn−1r
′
α∈(N :M) for

some i ∈ {1, ...n−1}, for all α ∈ Λ. Therefore r1 . . . ri−1ri+1 . . . rn−1
∑

f.s rα
′xα ∈

(N : M)M . So r1 . . . ri−1ri+1 . . . rn−1x ∈ (N : M)M = N . The second case,
i = α by elimination α, we have r1 . . . rn−1 ∈ (N :M). Finally, we showed that
N is a (n− 1, n)-prime submodule of M .

Theorem 4.9. Let M be a free multiplication R-module and N be a proper
submodule of M . If (N :M) is a (n− 1, n)-almost prime ideal of R, then N is
a (n− 1, n)-almost prime submodule of M .

Proof. Let r1, . . . , rn−1 ∈ R and x ∈ M with r1 . . . rn−1x ∈ N \ (N : M)N .
Since N = (N : M)M , so r1 . . . rn−1x ∈ (N : M)M \ (N : M)2M , hence
r1 . . . rn−1x ∈ (N :M)M and r1 . . . rn−1x ̸∈ (N :M)2M . Assume that {xα}α∈Λ
be a basis for M , so x =

∑
f.s rα

′xα. It is clear that r1 . . . rn−1rα
′ ∈ (N : M)

for all α ∈ Λ. Also we get r1 . . . rn−1rα
′ ̸∈ (N : M)2 for all α ∈ Λ, other-

wise r1 . . . rn−1rα
′ ∈ (N : M)2, so r1 . . . rn−1

∑
f.s r

′
αxα ∈ (N : M)2M , hence

r1 . . . rn−1x ∈ (N :M)2M , this is a contradiction. Thus we have r1 . . . rn−1rα
′ ∈

(N : M) \ (N : M)2. Since (N : M) is a (n − 1, n)-almost prime ideal of R,
therefore r1 . . . ri−1ri+1 . . . rn−1rα

′ ∈ (N : M) for some i ∈ {1, . . . , n − 1, α}. If
i ∈ {1, . . . , n−1} we get r1 . . . ri−1ri+1 . . . rn−1r

′
α ∈ (N :M) for all α ∈ Λ. Thus

r1 . . . ri−1ri+1 . . . rn−1
∑

f.s r
′
αxα ∈ (N : M)M . So r1 . . . ri−1ri+1 . . . rn−1x ∈

(N : M)M = N . But if i = α, by elimination α, we have r1 . . . rn−1 ∈ (N : M)
and hence we proved that N is a (n− 1, n)-almost prime submodule of M .
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Abstract. This paper give a new fact about the extending module. A module M is
called extending if every closed submodule N of M is a direct summand. Study of the
concepts complement closed submodule ((Closed-N)c) is achieved. Also we expose to a
new way to obtain generalization of extending module by complement closed submodule.

Keywords: extending module, essential submodule, closed submodule, exact se-
quence.

1. Introduction

In (1976), Goodearl introduced the definition of complement closed submodule
and Dungh, Huynh, Smith and Wisbauer [1], studied the extending modules.
Wang [5] studied closed-CS-module. A submodule A of M is called essential
submodule if A∩K ̸=0 for every non-zero submodule K of M, equivalently A
is a essential in M if and only if every non-zero element of M has a non-zero
multiple in A. Therefore if every submodule is essential in a direct summand of
M, then M is called extending module. A module M is called extending if every
closed submodule N of M is a direct summand of M. Extending modules has
been studied in [1] and [2]. Let Z(M)= {Ix∈M:Ix=0, for some ideal I≤ess R}.
If Z(M)=M, then M is a singular. Thus we can define another set: Let M

N be
a quotient module and let Z(MN )={a+Ix∈(MN ):Ix=0, for some ideal I≤ess R}. If
Z(MN )=M

N , then M
N is singular. Therefore if Z(MN )̸=M

N , this means the quotient
module M

N is non singular.

Remark 1.1. (a) We denote (Closed-N)c to complement closed submodule N
of M.

(b) Every semisimple R-module is an extending module. For example Z6 as
Z-module.

(c) Not every module M has closed submodule is extending; for example; the
module M=Z8⊕Z2 as a Z-module. Let A=(2,1) be the submodule generated by
(2,1). Clear that A is closed in M but not a summand. Hence M is not extending.

(d) Let us take (Closed-B)c belong to A; where A and B are submodules in
an R-Module M. Then A

B is essential in M.
(e) Every (Closed-N)c is closed.
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Theorem 1.2. Any module K is singular if and only if there exists a short exact
sequence

0 −→ N −→ L −→ K −→ 0

such that f is an essential monomorphism between N and L.

Definition 1.3. (see [4]) Let M be a module. Then M is called closed-CS-
module (generalization of extending module) if for every submodule N of M; the
quotient module M

N is non singular and is direct summand of M. (i.e. M has
(Closed-N)c and direct summand of M).

This paper, contain two main sections. In the first section we give some prop-
erties of (Closed-N)c and in the second section the closed-CS-module is inves-
tigated. We prove if K is maximal (Closed-K)c of M, then M

K is a projective
and K is a direct summand of M. (see Proposition 2.13). On the other hand,
we prove that an R-module M is closed-CS-module iff for every (Closed-N)c of
M, there is a decomposition M=M1⊕M2 such that A is a subset of M1 and Ac

=M2∈M. (see Theorem 3.5).

2. Complement closed submodule

Let N be a submodule of an R-module M (N≤M). Then we can denote (Closed-
N)c of M to the complement closed submodule N and (closed-CS-module) means
M has (Closed-N)c. If every (Closed-N)c of M is a direct summand, then we
obtain a generalization of extending module M (closed-CS-module).

Remark 2.1. If the quotient module M
N is non singular, then N is a (Closed-N)c.

Definition 2.2. For N subset of M and L subset of N such that L▹ N, then
M≡(NL ). So, if we have N as a module, then N is called generalization of extend-
ing module if the quotient module N

L is non singular and is a direct summand
in M.

Note that, if (Closed-N)c is a subset of M, then N subset of (Closed-K)c and from
the second isomorphism theorem, we have; N subset of (Closed-N)c +K⇐⇒(N∩K)
is a subset of (Closed-K)c. Also, by the third isomorphism theorem we can say:
N is a subset of K and K is a subset of M=⇒K is a subset of (Closed-N)c of M
⇐⇒ K

N is a subset of (Closed-KN )c.

Lemma 2.3. Let M be an R-module and let Bα in Λ, be an independent family
of submodules of M and Aα is a subset of Bα, for all α in Λ. Then ⊕Aα is a
subset of (Closed-N)c of Bαα if and only if Aα is a subset of (Closed-N)c of Bα,
for all α in Λ.

Proof. Suppose that ⊕Aα is a subset of ⊕Bα. We have, ⊕Bα
⊕Aα

∼= Bα
Aα . Then

Aα subset of (Closed-N)c of Bα, for all α in Λ. Conversely, Aα is a subset of
(Closed-N)c of Bα, for all α in Λ . Then Bα

Aα is non-singular, for all αinΛ and
hence ⊕ Bα

Aα is non-singular. But ⊕Bα
Aα
∼=⊕Bα

⊕Aα . So A⊕α is a subset of (Closed-N)c

of ⊕ Bα.
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Theorem 2.4. Let M be an R-module and let N and K are submodules of M.
Then (N∩K) is a subset of (Closed-N)c in M.

Proof. Let N be a subset of (closed-CS-module) and let K be a subset of (closed-
CS-M). We must prove that (N∩K) is a subset of (Closed-N)c in M. Let us take
an element m∈M such that m+(N∩K) belong to Z(MN ∩K). Thus Annihilator
of (m+N∩K) is a subset of (eR). Since Annihilator of (m+N∩K) is a subset of
Annihilator of (m+N), then Annihilator of (m+N) is a subset of (eR). We have
Z(MN )=0, therefore m+N=N. Similar, we get m+K=K. Thus m belong to N∩K
and then Z( M

N∩K )=0.

Lemma 2.5. Let L and K be a submodules of an R-module M. If L is a subset
of (Closed-K)c and K is a subset of (closed-CS-module), then L is a subset of
(closed-CS-module).

Proof. Let L be a subset of (Closed-K)c and let K be a subset of (closed-CS-
module). Let us take short exact sequence:

0 −→ (
K

L
) −→ (

M

L
) −→ (

M

L
)/(

K

L
) −→ 0.

Such that i is the inclusion map from (KL ) into (ML ) and π is the natural epimor-
phism from (ML ) into (ML )/(KL ). Since L is a subset of K and K is a subset of
(closed-CS-module), then (KL ) is a subset of (Closed-N)c of (ML ), (see Theorem
2.4). Since (KL ) and (ML )/(KL ) are non-singular, then M

L is non-singular.

Let M be an R-module such that L subset of K and K subset of M. If K subset of
(Closed-N)c of M, then L need not be (Closed-N)c. See the following example:

Example 2.6. Consider Z as Z-module, it is clear that Z subset of (Closed-N)c

of Z. But Z(2Z ⊆Z)=Z(Z2)= Z2 is singular. On the other hand, if L subset of
(Closed-N)c of M, then K need not be (Closed-K)c.

Example 2.7. Let 0 subset of 2Z and 2Z subset of Z. Clearly 0 subset of
(closed-CS-Z). But Z( Z2Z )=Z(Z2)=Z2 is singular. Also, an epimorphic image of
an (Closed-N)c need not be (closed-CS-module). We have the natural epimor-
phism π:Z −→ Z

4Z . That is means 0 subset of (Closed-N)c of Z. On the other
hand, since Z

4Z
∼= Z4 is a singular imply the image of zero always equal zero and

moreover it is not (closed-CS- Z4Z ).

Proposition 2.8. Let λ:M −→ N be an epimorphism and L subset of (closed-
CS-module). If ker(f) subset of L, then f(L) subset of (Closed-N)c.

Proof. Assume that L subset of (closed-CS-module). To show that f(L) subset
of (Closed-N)c. Let n belong to N such that Annihilator(n+f(L)) subset of
eR. Since f is an epimorphism, then n=f(m), for some m ∈ M. Since ker(f)
subset of L, then Annihilator(n+f(L)) subset of Annihilator(m+L) and hence
Annihilator(n+f(L)) subset of eR. But L subset of (Closed-N)c of M, so m ∈ L.
Thus n=f(m)∈f(L).
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Theorem 2.9. Let λ:M −→ N be an R-homomorphism and K (Closed-N)c,
then for every singular submodule L of M, f(L) subset of K .

Proof. Let µ:N −→ N
K be the natural epimorphism. Let µ◦λ: M −→ N

K . Now
µ◦λ|L:L −→ N

K . But N is a singular and N
K is non-singular. Thus µ◦λ|L=0. So

µ(λ(L)) =0 and hence λ(L) subset of ker(µ)=K.

As a result from Theorem 2.9, we introduce the following good corollary.

Corollary 2.10. If N is a module and K subset of (Closed-N)c. Then Hom(M,N)
M

subset of K, such that Z(M)=M.

Example 2.11. Suppose that M is an R-module. Let L subset of (closed-CS-
module). Then Z(M)=Z(L).

Proof. We must prove that Z(M) is a subset of Z(L). Let i:Z(M)−→M be the
inclusion map and µ:M−→M

L be the natural epimorphism from M into M
L . We

take the map µ◦i:Z(M)−→M
L . Since Z(M) is a singular and M

L is non-singular,
then µ◦i=0. So µ◦i:(Z(M))=µ(Z(M))=0. Thus Z(M) is a subset of ker(µ)=L.
We know that Z(L)=Z(M)∩A. So Z(L)=Z(M).

Theorem 2.12. Let M be an R-module and let L ⊆ K ⊆ M and N ⊆ (closed-
CS-module), then M

K is a singular if and only K subset of (closed-CS-module).

Proof. Let L subset of (Closed-N)c of M and M
K is singular. By the third

isomorphism theorem M
K
∼=(ML )/(KL ). Since M

L is non-singular, then (KL ) sub-
set of (closed-CS-MN ). Let µ:M−→M

N be the natural epimorphism. We have
K=µ−1(KL ) is a subset of µ−1(ML )=M. The converse is clear by [3].

Proposition 2.13. Let M be an R-module and K is maximal (Closed-K)c of M.
Then M

K is projective and K is a direct summand of M.

Proof. Since K is maximal submodule of M, then M
K is simple and hence

semisimple. But M
K is non-singular, therefore M

K is projective. Now consider
the following short exact sequence 0−→K−→M−→M

K−→0; where i is the in-
clusion map and π is the natural epimorphism from M into M

K . Since M
K is

projective, then the sequence is splits, (see [6]). Thus K is a direct summand of
M. Let M be an R-module and N subset of M. Recall that the resdual of M in
N (denoted by [N:M]) is defined as follows: [N:M]=r∈R, rM⊆N, (see [7]).

3. Closed-CS-module

In this section, we introduce main theorems which explain the new ways to
obtain a generalization of extending module.

Proposition 3.1. Let M be a (Closed-N)c and N ≤ M, then the quotient module
is a (Closed-N)c of M
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Proof. Let K
N subset of (Closed-N)c of M

N . Then by Theorem 2.4 and Lemma
2.5, K is a subset of (Closed-N)c in M. But M is a closed-CS-module. (i.e. has
(Closed-N)c) of M, therefore M=N⊕K, K is a subset of M. Since N is a subset
of K, then one can easily show that M

N =(KN )⊕(K+N
N ). Thus M

N is a closed-CS-
module.

Recall that a module M is called closed-CS-module if for any submodule N
of M, there is a direct summand K of M such that N is a subset of K and K

N is
singular.

Let N subset of (Closed-N)c. Since M is (Closed-N)c, then there exists a
direct summand K of M such that N is a subset of K and Z(KN )=(KN ); (KN is
a singular). But K

N is a subset of M
N , so is non-singular. Thus K=N. So any

(Closed-M)c is closed-CS-module.

Theorem 3.2. An R-module M is a closed-CS-module if and only if for every
N submodule of M, (Closed-N)c, there is a decomposition M=M1⊕M2 such that
N is a subset of M1 and M2 is a complement of N in M.

Proof. =⇒ Clear.

⇐= Let N be a subset of (Closed-N)c, then by our assumption, there exists
decomposition M=M1⊕M2 such that N is a subset of M1 and M2 is a comple-
ment of N in M. So N⊕M2 is a subset of (Closed-N)c of M. Thus N is a subset of
(Closed-N)c of M1 and hence Z(M1

N )=M1
N ; M1

N is singular). But N is a subset of
M1 and N is a subset of (Closed-N)c of M, therefore N is a subset of (Closed-N)c

of M1, (see Theorem 2.4). Thus N=M1.

Corollary 3.3. Every (Closed-L)c of closed-CS-module M is closed-CS-module.

Proof. Let M be a closed-CS-module and let N be a subset of M . We must
prove that N is a closed-CS-module. Let K subset of (Closed-N)c, then by
Theorem 2.4, L is a subset of (Closed-N)c of M. But M is a closed-CS-module,
therefore L is a direct summand of M and hence K is a direct summand of A.

Lemma 3.4. An R-module M is closed-CS-module if and only if every (Closed-
N)c of M is essential in a direct summand.

Proof. =⇒ Clear.

⇐= let N subset of (Closed-N)c, we need to show that N is a direct summand
of M. Since N subset of (Closed-N)c of M, then by our assumption N is a subset
of (Closed-N)c of M, where D is a direct summand of M. Thus Z(DN )=D

N ; (DN
is singular). But D

N subset of M
N , therefore D

N is non-singular. Thus N=D and
hence M is closed-CS-module.

Theorem 3.5. An R-module M is closed-CS-module if and only if for every
(Closed-N)c of M; there exists a decomposition M=M1⊕M2 such that N is a
subset of M1 and N⊕M2 is a subset of (Closed-N)c of M.



70 MAJID MOHAMMED ABED

Proof. =⇒ Clear .
⇐= Let N be a subset of (Closed-N)c of M, we need to show that N is a direct

summand of M. Since N is a subset of (Closed-N)c of M, then by assumption
there exists a decomposition M=M1⊕M2 such that N⊆M1 and (N⊆M2) is a
subset of (Closed-N)c of M. So M

(N⊕M2)
is a singular. But N⊕M1 and A are

subset of (Closed-N)c of M, therefore by Theorem 2.4, N is a subset of (Closed-
N)c of M1. Since M2 is a subset of (Closed-N)c of M2, then by Lemma 2.3,
(N⊕M2) is a subset of (Closed-N)c of M1⊕M2=M. So M

(N⊕M2)
is non-singular.

Thus M=N⊕M2.

Proposition 3.6. An R-module M is a closed-CS-module if and only if for every
direct summand A of the injective hull E(M) of M such that (A∩M)c is a subset
of (closed-CS-module), then (A∩M) is a direct summand of M.

Proof. =⇒ Clear .
⇐= Let N be a subset of (Closed-N)c of M and let K be a relative complement

of N, then (N⊕K) is a subset of (Closed-N)c of M. Since M is a subset of
(Closed-N)c of E(M), then (N⊕K) is a subset of (Closed-N)c of E(M). Thus
E(N)⊕E(K)=E(N⊕K)=E(M). Since E(N) is a summand of E(M), then by our
assumption E(N)∩M is a summand of M. Now N is a subset of (Closed-N)c of
E(N) and M is a subset of (Closed-N)c of M, thus N=(N∩M) is a subset of
(Closed-N)c of E(M)∩M. Hence by Lemma 3.5, M is closed-CS-module.

Theorem 3.7. Let R be a ring, then R is a closed-CS-module if and only if
every cyclic non-singular R-module is projective.

Proof. Let R be a closed-CS-ring and M=Ra, a∈M be a nonsingular R-module.
Let the following be a short exact sequence.

0 −→ Annihilator (a) −→ R −→ Ra −→ 0,

where i is the inclusion homomorphisim and f is a map defined by f(r)= ra, r∈
R. So f is an epimorphisim and ker(f) equal Annihilator of (a). Hence from the
first isomorphisim theorem, Annihilator of (a)R∼=Ra. But Ra is non-singular,
therefore Annihilator of (a) subset of (Closed-N)c of R. Since R is closed-CS-
ring, then Annihilator of (a) is a direct summand of R, so the sequence is split.
Thus R is equivalent to Annihilator of (a)⊕Ra. Since R is projective, then Ra
is projective. Conversely, let A be a (Closed-N)c of I, I an ideal in R, then R

A
is non-singular. Since R is cyclic, then R

A is cyclic. By our assumption R
A is a

projective. Now consider the following short exact sequence:

0 −→ A −→ R −→ AR −→ 0,

where i is the inclusion homomorphisim and π is the natural epimorphisim from
R into Ra. Since R

A is projective, then the sequence is split. Thus A is a
summand of R. Also a direct sum of closed-CS-module need not to be closed-
CS-modules (see [4]).
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Proposition 3.8. Let M and N be closed-CS-modules such that Annihilator of
M+Annihilator of N equal R. Then M⊕N is closed-CS-module.

Proof. Let A be a (Closed-N)c submodule of M⊕N.

Since Annihilator of M+Annihilator of N=R, then by the same way of the
prove [9, Proposition 4.2, CH.1], A=C⊕D, where C is a submodule of M and D
is a submodule of N. Since A=(C⊕D) is a subset of (closed-N)c of M⊕N, then C
and D are (Closed-N)c of M and N respectively by Lemma 2.3. But M and N are
closed-CS-modules, therefore C is a summand of M and D is a summand of N.
So A=C⊕D is a summand of M⊕N. Thus M⊕N is a closed-CS-module. Recall
that a submodule N of R-module M is called a fully invariant submodule of M,
if for every endomorphism f:M−→M, f(N) subset of N, (N is fully invariant) (see
[8]).

Corollary 3.9. Let M=⊕Mi be an R-module, such that every (Closed-N)c of
M is fully invariant, then M is closed-CS-module if and only if Mi is closed-CS-
module; i∈I.

Proof. =⇒ Clear.

⇐= let S be a (Closed-N)c of M. For each i∈I, let πi:M −→ Mi be the pro-
jection map. Let x∈S, then x=

∑
mi, mi ∈ Mi and mi=0 for all but finite many

element of i∈I, πi(x)=mi. Since we have (Closed-S)c, then by our assumption,
S is fully invariant and hence πi(x)=mi S∩Mi. So x∈

⊗
(S∩Mi). Thus S subset

of ⊕(S∩Mi). But ⊕(S∩Mi) subset of S, therefore S= ⊕(S∩Mi). Since S is a
subset of (Closed-M)c, then by Theorem 2.4, (S∩Mi) is a subset of (Closed-N)c

of Mi ∀ i∈I. But Mi closed-CS-modules for all i∈I, therefore (S∩Mi) is a direct
summand of Mi. Thus S is a direct summand on M.

An R-module M is called a distributive module if A∩(B+C)=(A∩B)+(A∩C),
for all submodules A, B and C of M, (see [9]).

Corollary 3.10. Let M=M1⊕M2 be distributive R-module. Then M is closed-
CS-module if and only if M1 and M2 are closed-CS-module.

Proof. =⇒ Clear.

⇐= Let K be a subset of (closed-N)c in M. Since M=M1⊕M2, then K=
K∩(M1⊕M2). But M is a distributive, therefore K=(K∩M1)⊕(K∩M2). By
Lemma 2.3, (K∩M1) is a subset of (Closed-N)c of M1 and (K∩M2) is a subset
of (Closed-N)c. Since M1 and M2 are closed-CS-modules, then (K∩M1) is a
direct summand of M1 and (K∩M2) is a direct summand of M2. Clearly that
K=(K∩M1)⊕(K∩M2) is a direct summand of M.

Corollary 3.11. Let M be an R-module and let N be a subset of (closed-CS-M.
Then [N:M] is a subset of (closed-CS-R).
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Proof. Let N be a subset of closed-CS-module. Assume that [N:M] is not closed-
CS-module in R. So there exists r∈R such that [N:M] ̸= r+[N:M]∈ Z( N

[N :M ]).
Thus rM not subset of N and hence there exists m0∈M such that rm0 not in N.
One can easily show that Annihilator of (r+[N:M]) is a subset of Annihilator of
(rm0+N).Since Annihilator of (r+[N:M]) is a subset of eR, then Annihilator of
(rm0+N) is a subset of eR. But M

N is non-singular, therefore rmo+N=N which
is contradiction.

Acknowledgments

The author would like to thank the referee, whose careful reading and thoughtful
comments have helped improve the paper.

References

[1] N.. Dungh, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending modules,
Pitman Researh Notes in Mathematics Series, 313, Longmon, New York,
1994.

[2] S.H. Mohamed, B.J. Muller, Continuous and discrete modules, London
Math, Soc. LNS, 147, Cambridge Univ. Press, Cambridge, 2008.

[3] K.R. Goodearl, Ring theory, non singular rings and modules, Marcel
Dekker, New York, 1976.

[4] A. Tercan, On CLS-modules, Rocky Mountain J. Math., 25 (1995), 1557-
1564.

[5] W. Yongduo, When an y-closed submodule is a direct summand,
https://arxiv.org /pdf/1005.0132v1., (2010)

[6] D. Kasch, Modules and ring, Acad. Press, London, 1982.

[7] M.D. Larsen, P.J. Mc Carthy, Multiplicative theory of ideals, Academic
Press, New York, 1971.

[8] M.S. Abass, On fully stable modules, Ph. D. Thesis, University of Baghdad,
1991.

[9] V. Erdogdu, Distributive modules, Canada Math. Bull., 30 (1987), 248-254.

Accepted: 21.10.2017



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (73–85) 73

Hesitant fuzzy sets approach to ideal theory in ordered
Γ-semigroups

Aakif Fairooze Talee∗

Department of Mathematics
Jamia Millia Islamia
New Delhi-110 025
India
fuzzyaakif786.jmi@gmail.com

M. Y. Abbasi
Department of Mathematics
Jamia Millia Islamia
New Delhi-110 025
India

G. Muhiuddin
Department of Mathematics
University of Tabuk
Tabuk 71491
Saudi Arabia
chishtygm@gmail.com

Sabahat Ali Khan
Department of Mathematics

Jamia Millia Islamia

New Delhi-110 025

India

Abstract. The aim of this paper is to apply hesitant fuzzy sets theory in ordered
Γ- semigroups. The hesitant fuzzy ideals in ordered Γ-semigroups are introduced and
some related properties are explored. Using this concept, some characterizations on
hesitant fuzzy left (right and bi-) ideals are given. The hesitant fuzzy interior ideal in
oredered Γ-semigroup are defined and their related properties are studied. Finally, the
characterization of a simple ordered Γ-semigroup in terms of a hesitant fuzzy simple
ordered Γ-semigroup is presented.
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1. Introduction

In 1981, the concept and notion of the Γ-semigroups was introduced by Sen [32].
Later on, this notion was futher studied by Sen and Saha in ([31], [30], [33]). In
1963, Fuchs had completed the first monograph on ordered algebras, in which
ordered group, ordered semigroup, ordered ring and ordered field were involved

∗. Corresponding author
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[7]. Since ordered semigroup has a close relation with theoretical computer
science, especially with formal language and theory of automata, it has been
extensively investigated by many researcher (see e.g. [3], [8]). For the general
development of gamma ordered semigroups, the ideal theory plays an important
role.

In the year 1997, Kwon and Lee [19] introduced the concepts of the weakly
prime ideals and the weakly semiprime ideals in ordered Γ-semigroups and gave
some characterizations of the weakly prime ideals and the weakly semiprime
ideals in ordered Γ-semigroups.

Since the concept of fuzzy sets was introduced by Zadeh in 1965[42], the
theories of fuzzy sets and fuzzy systems developed rapidly. The study of the
fuzzy algebraic structures has started in the pioneering paper of Rosenfeld [29]
in 1971. Rosenfeld introduced the notion of fuzzy groups and showed that many
results in groups can be extended in an elementary manner to develop the theory
of fuzzy group. Since then the literature of various fuzzy algebraic concepts has
been growing very rapidly.

Kuroki ([16], [17]) applied the fuzzy sets theory to semigroups and Fuzzy
sets in ordered semigroups were first considered by Kehayopulu and Tsingelis
in ([13], [14], [15]).

Recently, to deal with hesitant and incongruous problems, Torra and
Narukawa [38] and Torra [37] proposed the concept of hesitant fuzzy set(s)
[briefly, HFS(s)], a new generalization of fuzzy sets, which allows the member-
ship of an element of a set to be represented by several possible values. They
also discussed relationships among hesitant fuzzy sets and other generalizations
of fuzzy sets such as intuitionistic fuzzy sets, type-2 fuzzy sets, and fuzzy multi-
sets. Some set theoretic operations such as union, intersection and complement
on hesitant fuzzy sets have also been proposed by Torra [37]. Hesitant fuzzy sets
can be used as an efficient mathematical tool for modeling peoples hesitancy in
daily life than the other classical extensions of fuzzy sets. The motivation for
introducing these sets is that it is sometimes difficult to determine the member-
ship of an element into a set and in some circumstances this difficulty is caused
by a doubt between a few different values. For example, two experts discuss the
membership of x into A, and one wants to assign 0.3 and the other 0.4. So, the
uncertainty on the possible values is somehow limited.

After the pioneering work of Torra, the HFS has received much attention
from many authors and has been used in clustering analysis and decision-making
(see [4], [28], [39], [40], [41]). For example, Chen et al. [4] systematically in-
vestigated the correlation coefficients of HFSs and applied them to clustering
analysis, Xia and Xu [40] studied the aggregation operators of hesitant fuzzy
sets and applied them to decision making.

Recently, hesitant fuzzy sets theory have been applied to different algebraic
structures on various aspects viz., Jun et al. have applied the hesitant fuzzy sets
theory to the theory of semigroups (see [9, 10, 11, 12]). Muhiuddin et al. have
applied the hesitant fuzzy sets theory to different algebraic (see [20, 21, 22, 23,
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24, 25, 26]). As follow-up, we have studied the ideals of ordered Γ-semigroups
in terms of HFSs. In the present analysis, we first give the equivalent condition
on hesitant fuzzy bi-ideal in a ordered Γ-semigroups. Moreover, we prove that
a non-empty hesitant fuzzy subset H of an ordered Γ-semigroup S is hesitant
fuzzy ideal of S if and only if the T -cut HT of H is an ideal of S for every
T ⊆ P([0, 1]), provided HT is non-empty. Then we characterize simple ordered
Γ-semigroup by means of a hesitant fuzzy simple ordered Γ-semigroup. We prove
that in a simple ordered Γ-semigroup, every hesitant fuzzy interior ideal of S is
a constant function and in a left zero (right zero) ordered Γ-semigroup, every
hesitant fuzzy left (resp., hesitant fuzzy right) ideal is a constant function.

2. Preliminaries

Throughout the present paper, ordered Γ-semigroup will be denoted by po-Γ-
semigroup. To develop our main results, we need the following notions.

Definition 2.1 ([5]). Let S and Γ be two non-empty sets. Then S is called a Γ-
semigroup if there exist mappings S×Γ×S to S, written as (a, α, b)→ aαb and
Γ × S × Γ to Γ, written as (α, a, β) → αaβ satisfying the following associative
propeerties (aαb)βc = a(αbβ)c = aα(bβc) and α(aβb)γ = (αaβ)bγ = αa(βbγ),
for all a, b, c ∈ S and for all α, β, γ ∈ Γ.

Definition 2.2 ([6]). A Γ-semigroup S is a po-Γ-semigroup if S and Γ are
posets such that:

(1) a ≤ b in S⇒ aαc ≤ bαc, cαa ≤ cαb in S, for all c ∈ S and α ∈ Γ.
(2) α ≤ β in Γ⇒ aαb ≤ aβb, for all a, b ∈ S.

In our further discussion, unless otherwise mentioned S will stand for a
ordered Γ-semigroup. Torra [37] defined hesitant fuzzy sets in terms of a function
that returns a set of membership values for each element in the domain which
can be defined as follows:

Definition 2.3 ([37]). Let S be a reference set, a hesitant fuzzy set on S is a
function H that returns a subset of values in [0,1]:

H : S → P([0, 1]),

where P([0, 1]) denotes the set of all subsets of [0,1].

Mathematically, we can represent HFS H on S as:

H = {(a, h(a)) ∀a ∈ S : h(a) is the set of some different values in [0, 1]}.

Let H and G be any two HFSs on S, we define H ⊑ G if H(a) ⊆ G(a), for
all a ∈ S. For any element a of S, we define

Aa = {(b, c) ∈ S × S and γ ∈ Γ : a ≤ bγc}.
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For any HFSs H and G in S. The hesitant fuzzy product of H and G is defined
to be the HFS HõG on S as follows:

(HõG)a =


∪
a≤bγc

(Hb ∩Gc) if Aa ̸= ∅

∅ otherwise.

For any two HFSs H and G on S, let P([0, 1]) denotes the set of all subsets
of [0,1], the hesitant union H ⊔ G of H and G is defined to be HFS on S as
follows:

H ⊔G : S → P([0, 1]), a 7−→ H(a) ∪G(a)

and the hesitant intersection H ⊓ G of H and G is defined to be HFS on S as
follows:

H ⊓G : S → P([0, 1]), a 7−→ H(a) ∩G(a).

Let A be any non empty subset of S. Recall that, we denote by HA the
characteristic HFS on S as follows:

HA : S → (P[0, 1]) , a 7→

{
[0, 1], if a ∈ A

∅, if a /∈ A.

Let S be a po-Γ-semigroup, we define a hesitant fuzzy subset I of S as
follows:

I : S → (P[0, 1]) | x→ Ix := [0, 1].

3. Main results

Definition 3.1. A hesitant fuzzy set H on po-Γ-semigroup S is called a hesitant
fuzzy semigroup on S if it satisfies :

(∀ x, y ∈ S, γ ∈ Γ)(H(xγy) ⊇ H(x) ∩H(y)).

Definition 3.2. A hesitant fuzzy set H on po-Γ-semigroup S is called a hesitant
fuzzy left (resp., right) ideal on S if it satisfies:

(1) (∀ x, y ∈ S) x ≤ y ⇒ H(x) ⊇ H(y)

(2) (∀ x, y ∈ S, γ ∈ Γ)(H(xγy) ⊇ H(y)(resp.,H(xγy) ⊇ H(x)).

If a hesitant fuzzy setH on S is both a hesitant fuzzy left ideal and a hesitant
fuzzy right ideal on S, we say that H is a hesitant fuzzy (two-sided) ideal on S.

Example 3.3. Let S = M1×2(Z2) be a set of all 1 × 2 matrices over the field
Z2 and Γ = M2×1(Z2) be a set of all 2 × 1 matrices over the field Z2. Then
S is a Γ-semigroup with respect to usual matrix multiplication. Also S and Γ
are posts with respect to ≤ defined by (aij) ≤ (bij) if and only if aij ≤ bij ∀i, j.
Then, S is a po-Γ-semigroup.
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Define a hesitant fuzzy subset H of S such that

H(x) =

{
[0, 1], if x = (0, 0)

{0.1}, otherwise.

Clearly, H is a hesitant fuzzy ideal of S.

Definition 3.4. A hesitant fuzzy subsemigroupH on po-Γ-semigroup S is called
a hesitant fuzzy bi-ideal on S if it satisfies:

(1) (∀ x, y ∈ S) x ≤ y ⇒ H(x) ⊇ H(y);

(2) (∀ x, y, z ∈ S, α, β ∈ Γ)(H(xαyβz) ⊇ H(x) ∩H(z)).

Example 3.5. Let S = {a, b, c, d} and Γ = {α, β, γ} be two non empty sets.
Then S and Γ are posets with respect to the ordered relation ≤ given by a ≤
b ≤ c ≤ d and γ ≤ α ≤ β respectively. Clearly S is a po-Γ-semigroup with
respect to the operations defined below:

α a b c d

a a a a a
b a c a c
c a b a c
d c c c d

β a b c d

a a a a a
b a a a c
c a a a c
d c c c c

γ a b c d

a a a a a
b a a a a
c a a a a
d a a a a

Let H be a hesitant fuzzy subset of S such that

Ha = [0, 1]; Hb = [0.1, 0.9]; Hc = [0.2, 0.8]; Hd = [0.3, 0.7]

Clearly H is a hesitant fuzzy bi-ideal of S. But H is neither a hesitant fuzzy
right ideal nor a hesitant fuzzy left ideal of S, since H(bαd) = H(c) + H(b) and
H(dαa) = H(c) + H(a) respectively.

Definition 3.6. A hesitant fuzzy subsemigroupH on po-Γ-semigroup S is called
a hesitant fuzzy interior ideal on S if it satisfies:

(1) (∀ x, y ∈ S) x ≤ y ⇒ H(x) ⊇ H(y);

(2) (∀ x, y, z ∈ S, α, β ∈ Γ)(H(xαyβz) ⊇ H(y)).

Theorem 3.7. Let H be a non empty hesitant fuzzy subset of a po-Γ-semigroup
S. Then the following conditions are equivalent:

(1) H is a hesitant fuzzy bi-ideal of S;

(2) HõH ⊑ H, HõIõH ⊑ H and a ≤ b⇒ H(a) ⊇ H(b) ∀ a, b ∈ S.

Proof. (1)⇒ (2) Let H be a hesitant fuzzy bi-ideal of S. Then H is a hesitant
fuzzy subsemigroup of S. Again, let a ∈ S. If for some b, c ∈ S and γ ∈
Γsuch that a ≤ bγc. Then, we have (HõH)(a) =

∪
a≤bγc

{
H(b) ∩ H(c)

}
⊆∪

a≤bγcH(bγc) ⊆ H(a) ∀ a ∈ S implies HõH ⊑ H. Other wise, (HõH)(a) =
∅ ⊆ H(a). Consequenly, HõH ⊑ H.
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Further to prove HõIõH ⊑ H, let a ∈ S. Suppose ∃ u, v, p, q ∈ S and
α, β ∈ Γ such that a ≤ uαv and u ≤ pβq. Again, since H is a hesitant fuzzy
bi-ideal of S, we have

(HõIõH)(a) =
∪
a≤uαv

{(HõI)(u) ∩H(v)}

=
∪
a≤uαv

{
∪
u≤pβq

{H(p) ∩ I(q)} ∩H(v)}

=
∪
a≤uαv

{
∪
u≤pβq

{H(p) ∩ [0, 1]} ∩H(v)}

=
∪

a≤pβqαv
{H(p) ∩H(v)}

⊆
∪

a≤pβqαv
{H(pβqαv)}(cf.Definition 3.4)

⊆ H(a) ∀ a ∈ S.

implies HõIõH ⊑ H. Other wise, HõIõH(a) = ∅ ⊆ H(a). Consequently,
HõIõH ⊑ H.

Moreover, for all a, b ∈ S such that a ≤ b⇒ H(a) ⊇ H(b).

(2) ⇒ (1). Assume that HõH ⊑ H. Let a, b ∈ S and γ ∈ Γ we have H(aγb) ⊇
(HõH)(aγb) ⊇ {H(a) ∩H(b)}. Thus, H is a hesitant fuzzy subsemigroup of S.

Again, let a, b, c ∈ S and α, β ∈ Γ such that x ≤ a(αbβ)c := aγc, where
γ =: αbβ ∈ Γ. Since HõIõH ⊑ H, it follows that

H(a(αbβ)c) := H(aγc) ⊇ H(x)

⊇
(
(HõI)õH

)
(x)

=
∪

x≤mδn
{(HõI)(m) ∩H(n)}

=
∪

x≤mδn
{
∪

m≤pηq
{H(p) ∩ I(q)} ∩H(n)}

=
∪

x≤mδn
{
∪

m≤pηq
{H(p) ∩ [0, 1]} ∩H(n)}

=
∪

x≤p(ηqδ)n

{H(p) ∩H(n)} ⊇ {H(a) ∩H(c)}.

Hence, H is a hesitant fuzzy bi-ideal of S.

Theorem 3.8. Let H be a non empty hesitant fuzzy subsemigroup of a po-Γ-
semigroup S. Then the following conditions are equivalent:

(1) H is a hesitant fuzzy left (respecively right) ideal of S;

(2) IõH ⊑ H. (resp; HõI ⊑ H) and a ≤ b⇒ H(a) ⊇ H(b) ∀ a, b ∈ S.
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Proof. (1) ⇒ (2) Let H be a hesitant fuzzy left ideal of S. Again, let a ∈ S
and suppose there exist b, c ∈ S and γ ∈ Γ such that a ≤ bγc, then

(IõH)(a) =
∪
a≤bγc

{I(b) ∩H(c)}

⊆
∪
a≤bγc

{[0, 1] ∩H(c)}

⊆
∪
a≤bγc

{H(c)}

⊆
∪
a≤bγc

{H(bγc)} (cf.Definition 3.2)

⊆ H(a) ∀ a ∈ S (since a ≤ bγc).

implies IõH ⊑ H. Similar arguments for the right ideal. If there do not exist
b, c ∈ S and γ ∈ Γ such that a ≤ bγc, then (IõH)(a) = ∅ ⊆ H(a). Hence
IõH ⊑ H. Moreover, for all a, b ∈ S such that a ≤ b ⇒ H(a) ⊇ H(b), for all
a ∈ S implying that IõH ⊑ H.

Furthermore, by definition of HF left ideal, we have for all a, b ∈ S such that
a ≤ b⇒ H(a) ⊇ H(b).

(2) ⇒ (1). Assume that IõH ⊆ H and a ≤ b ⇒ H(a) ⊇ H(b). Again, let
a, b ∈ S and γ ∈ Γ, then we have

H(aγb) = (IõH)(aγb)

⊇ I(a) ∩H(b)

= [0, 1] ∩H(b)

= H(b).

Consequently, H is a hesitant fuzzy left ideal of S. In the similar way, we can
prove the another case.

Definition 3.9. Let H be a non-empty hesitant fuzzy subset of a S and T ⊆
P([0, 1]). Then the set HT := {x ∈ S : H(x) ⊇ T} is called the T -cut of H.

Theorem 3.10. Let H be a non-empty hesitant fuzzy subset of a po-Γ-semigroup
S. Then the T -cut HT of H is a left (respectively right) ideal of S for every
T ⊆ P([0, 1]), provided it is non-empty if and only if H is a hesitant fuzzy left
(resp., right) ideal of S.

Proof. For every T ⊆ P([0, 1]), let HT be a left ideal of S. We first show, H
is a hesitant fuzzy subsemigroup of S. If possible ∃ x0, y0 ∈ S, γ0 ∈ Γ such
that H(x0γ0y0) ⊂ {H(x0)∩H(y0)}. Let {H(x0)∩H(y0)} = T0. Then H(x0) ⊇
T0,H(y0) ⊇ T0. Thus x0, y0 ∈ HT0 but x0γ0y0 /∈ HT0 , a contradiction. Thus,
H(x0γ0y0) ⊇ {H(x0) ∩H(y0)}. Hence H is an hesitant fuzzy subsemigroup of
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S. Again suppose that ∃ x0, y0 ∈ S, γ0 ∈ Γ such that H(x0γ0y0) ⊂ H(y0). Since
H(y0) ⊆ P([0, 1]). Let H(y0) := T0 ⊆ P([0, 1]). Thus, y0 ∈ HT0 but x0γ0y0 /∈
HT0 , a contradiction. Thus, H(x0γ0y0) ⊇ H(y0). Moreover let x0, y0 ∈ S, be
such that x0 ≤ y0, then H(x0) ⊇ H(y0). Indeed: since HT ̸= ∅, let U = H(y0)
for any subset U of [0, 1]. Then y0 ∈ H(U). Since H(U) is a left ideal of S, we
have x0 ∈ HU . Therefore H(x0) ⊇ U = H(y0). Hence H is a hesitant fuzzy left
ideal of S.

Conversely, suppose that H is a hesitant fuzzy left ideal of S and T ⊆
P([0, 1]) such that HT is non empty. Let a, b ∈ HT and γ ∈ Γ. Then H(a) ⊇ T
and H(b) ⊇ T which implies H(a) ∩H(b) ⊇ T . Since H is a hesitant fuzzy left
ideal, it is a hesitant fuzzy subsemigroup, and hence H(aγb) ⊇ H(a)∩H(b) ⊇ T .
Consequently, aγb ∈ HT . Hence HT is a subsemigroup of S. Now, let a ∈ S; γ ∈
Γ and b ∈ HT . Then H(aγb) ⊇ H(b) ⊇ T and so aγb ∈ HT . Furthermore, let
a, b ∈ S, a ∈ HT such that b ≤ a. Then b ∈ HT . Indeed: since a ∈ HT ,H(a) ⊇ T
and H is a hesitant fuzzy left ideal of S, we have H(b) ⊇ H(a) ⊇ T, so b ∈ HT .
Hence HT is a left ideal of S. Similarly we can prove for another case.

Theorem 3.11. Let H be a non-empty hesitant fuzzy subset of a po-Γ-semigroup
S. Then the T -cut HT of H is an interior ideal of S for every T ⊆ P([0, 1]),
provided it is non-empty if and only if H is a hesitant fuzzy interior ideal of S.

Proof. For every T ⊆ P([0, 1]), let HT be an interior ideal of S. Assume that
∃ a0, x0, y0 ∈ S, β0, γ0 ∈ Γ such that H(x0β0a0γ0y0) ⊂ H(a0). Since H(a0) ⊆
P([0, 1]). Let H(a0) := T0 ⊆ P([0, 1]). Thus, a0 ∈ HT0 but x0β0a0γ0y0 /∈ HT0 ,
a contradiction.

Hence, H(x0β0a0γ0y0) ⊇ H(a0).
Conversely, Assume that H is a hesitant fuzzy interior ideal of S and T ⊆

P([0, 1]) such that HT is non empty. Let a, b ∈ S;β, γ ∈ Γ and x ∈ HT . Then
H(aβxγb) ⊇ H(x) ⊇ T and so aβxγb ∈ HT .

The rest of the proof is a consequence of Theorem 3.10

Remark 3.12. Let H be a hesitant fuzzy ideal of a po-Γ-semigroup S and
T1, T2 ⊆ P([0, 1]) such that T1 ⊂ T2, then HT1 ⊇ HT2 .

Definition 3.13. [27] A po-Γ-semigroup S is said to be regular if for each
element a ∈ S, there exist s ∈ S and α, β ∈ Γ such that a ≤ aαsβa.

Theorem 3.14. Let H be a hesitant fuzzy set in a regular po-Γ-semigroup S
then H is a hesitant fuzzy ideal of S if and only if H is a hesitant fuzzy interior
ideal of S.

Proof. Let H be a hesitant fuzzy ideal of S. For any x, y, z ∈ S and α, β ∈ Γ,
we have H(xαyβz) = H

(
(xα(yβz)

)
⊇ H(yβz) ⊇ Hy. Hence H is a hesitant

fuzzy interior ideal of S.
Conversely, let a, b ∈ S and γ ∈ Γ. Since S is regular, there exist elements

x ∈ S, α, β ∈ Γ such that a ≤ aαxβa. Since H is a hesitant fuzzy interior ideal
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of S, we have H(aγb) ⊇ H(aαxβaγb) ⊇ Ha. So H is a hesitant fuzzy right ideal
of S. Similarly, We can prove that H is a hesitant fuzzy left ideal of S. Hence
H is a hesitant fuzzy ideal of S.

Theorem 3.15. Let S be a regular po-Γ-semigroup and H be a hesitant fuzzy
right ideal and G be a hesitant fuzzy left ideal S. Then HõG = H ∩G.

Proof. Let H be a hesitant fuzzy right ideal and G be a hesitant fuzzy left
ideal of S. Let a ∈ S. Suppose there exist b, c ∈ S and γ ∈ Γ such that a ≤ bγc.

Then we have,

(HõG)(a) =
∪
a≤bγc

{
H(b) ∩G(c)

}
⊆

∪
a≤bγc

{
H(bγc) ∩G(bγc)

}
⊆ H(a) ∩G(a) =

(
H ∩G

)
(a) ∀ a ∈ S.

implies HõG ⊆ H ∩ G. If there do not exist b, c ∈ S such that a ≤ bγc. Then
(HõG)(a) = ∅ ⊆

(
H ∩G

)
(a). Thus HõG ⊑ H ∩G.

Again, Let a ∈ S. Since S is regular, then there exists an element x ∈ S and
α, β ∈ Γ such that a ≤ aαxβa := aγa where γ := αxβ ∈ Γ. Therefore,

(HõG)(a) =
∪
a≤pδq

{
H(p) ∩G(q)

}
⊇ H(a) ∩G(a) =

(
H ∩G

)
(a)

Thus HõG ⊒ H ∩G. Hence HõG = H ∩G.

In order to conclude the paper we obtain the following characterization of a
simple po-Γ-semigroup by means of a hesitant fuzzy simple po-Γ-semigroup.

Definition 3.16 ([27]). A po-Γ-semigroup S is said to be simple if it does not
contain any proper ideal. A po-Γ-semigroup S is said to be left (respectively
right) simple if S has no proper left (respectively right) ideals.

Definition 3.17. A po-Γ-semigroup S is said to be hesitant fuzzy simple if
every hesitant fuzzy ideal of S is a constant function. A po-Γ-semigroup S is
called hesitant fuzzy left (respectively right) simple if every hesitant fuzzy left
(respectively right) ideal of S is a constant function.

Theorem 3.18. A po-Γ-semigroup S is simple if and only if it is hesitant fuzzy
simple.

Proof. Suppose that the po-Γ-semigroup S is simple. Let H be a hesitant
fuzzy ideal of S and x, y ∈ S. Then, by Theorem 3.9, HH(x) and HH(y) are
ideals of S. Since S is simple, HH(x) = S = HH(y). Therefore, x, y ∈ HH(x) and
x, y ∈ HH(y). In particular, y ∈ HH(x) and x ∈ HH(y), hence H(y) ⊇ H(x) and
H(x) ⊇ H(y) implying H(x) = H(y), for all x, y ∈ S. Hence H is a constant
function. Consequently, S is a hesitant fuzzy simple.

Conversely, assume that S is a hesitant fuzzy simple. Let A be any ideal of
S. Then its characteristic function HA is a hesitant fuzzy ideal of S. Then HA is
a constant function. Let a ∈ S. Since A is non empty, therefore HA(a) = [0, 1]
and so a ∈ A. Thus we obtain S = A. Hence S is simple.
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Theorem 3.19. For a left (resp., right) simple po-Γ-semigroup S, every hesitant
fuzzy bi-ideal of S is a hesitant fuzzy right ideal (resp., hesitant fuzzy left ideal)
of S.

Proof. Let H be any hesitant fuzzy bi-ideal of S and a, b ∈ S. Then, (SΓa] is
a left ideal of S and S is left simple po-Γ-semigroup, so (SΓa] = S. So there
exist ao ∈ S, γ ∈ Γ such that b ≤ aoγa. Since H is hesitant fuzzy bi-ideal of S,
we have for any α ∈ Γ

H(aαb) ⊇ H(aαaoγa) ⊇ H(a) ∩H(a) = H(a).

Hence, H is a hesitant fuzzy right ideal of S. Similarly, we can prove the other
case also.

Theorem 3.20. Let S be a left simple po-Γ-semigroup. Then every hesitant
fuzzy left ideal of S is hesitant fuzzy left simple.

Proof. Let H be any hesitant fuzzy left ideal of S and a, b ∈ S. Then, (SΓa],
(SΓb] are left ideals of S and S is left simple po-Γ-semigroup, so (SΓa] = S =
(SΓb]. So there exist ao, bo ∈ S, α, β ∈ Γ such that b ≤ aoαa, a ≤ boβb. Since
H is hesitant fuzzy left ideal of S, we have

H(b) ⊇ H(aoαa) ⊇ H(a) and H(a) ⊇ H(boβb) ⊇ H(b).

Thus, H(a) = H(b). Since a and b are any elements of S, which implies that H
is a constant function. Hence H is a hesitant fuzzy left simple.

Theorem 3.21. Let S be a simple po-Γ-semigroup. Then every hesitant fuzzy
interior ideal of S is a constant function.

Proof. Let H be any hesitant fuzzy interior ideal of S and a and b any ele-
ments of S. Then, (SΓbΓS] is an ideal of S and S is simple po-Γ-semigroup,
so (SΓbΓS] = S. So, there exist elements ao, bo in S, α, β ∈ Γ such that
a ≤ aoαbβbo. Since H is hesitant fuzzy interior ideal of S, we have

H(a) ⊇ H(aoαbβbo) ⊇ H(b).

Similarly, we can see that H(b) ⊇ H(a). Thus H(a) = H(b). Since a and b are
arbitrary elements of S, hence H is a constant function.

Definition 3.22. A po-Γ-semigroup S is called left zero (resp., right zero), if
a ≤ aγb (resp., b ≤ aγb), for all a, b ∈ S, γ ∈ Γ.

Theorem 3.23. Let S be a left zero (resp., right zero) po-Γ-semigroup. Then
every hesitant fuzzy left (resp., hesitant fuzzy right) ideal is a constant function.

Proof. Let S be a left zero po-Γ-semigroup and H be a hesitant fuzzy left
ideal of S. Let a, b ∈ S, then a ≤ aγb and b ≤ bγa, for all γ ∈ Γ. Since
H is a hesitant fuzzy left ideal of S, we have H(a) ⊇ H(aγb) ⊇ H(b) and
H(b) ⊇ H(bγa) ⊇ H(a). Therefore H(a) = H(b). Hence H is a constant
function.



HESITANT FUZZY SETS APPROACH TO IDEAL THEORY IN ORDERED ... 83

References

[1] M.Y. Abbasi, A. F. Talee, X. Y. Xie and S. A. Khan, Hesitant fuzzy ideal
extension in po-semigroups, TWMS J. of Apl. and Eng. Math, 2017, (Ac-
cepted).

[2] M.Y. Abbasi, A. F. Talee and S. A. Khan, An application of hesitant fuzzy
ideal techniques to the intra-regular and weakly-regular po-semigroup, Pro-
ceedings of IIRAJ International Conference, GIFT, Bhubaneswar, India,
18th-19th February 2017, ISBN: 978-93-86352-38-5, 101-107

[3] M.W. Chan, K.P. Shum, Homomorphism of implicative semigroups, Semi-
group Forum, 46 (1993), 715.

[4] N. Chen, Z. Xu, M. Xia, Correlation coefficients of hesitant fuzzy sets and
their applications to clustering analysis, Applied Mathematical Modelling,
37 (2013), 21972211.

[5] T.K. Dutta and N.C. Adhikari, On Γ-semigroup with the right and left
unities, Soochow J. Math., 19 (1993), 461-474.

[6] T.K. Dutta and N.C. Adhikari, On po-Γ-semigroup, Southeast Asian Bull.
Math., 28 (2004), 1021-1028.

[7] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, 1963.

[8] Y.B. Jun, J. Meng, X.L. Xin, On ordered filters of implicative semigroups,
Semigroup Forum, 54 (1997), 7582.

[9] Y. B. Jun and S. Z. Song, HFS theory applied to filters in MTL-algebras,
Honam Math. J., 36 (2014), 813–830.

[10] Y. B. Jun, K. J. Lee and S. Z. Song, Hesitant fuzzy bi-ideals in semigroups,
Commun. Korean Math. Soc., 30 (2015), 143-154.

[11] Y. B. Jun, S. S. Ahn and G. Muhiuddin, Hesitant fuzzy soft subalgebras and
ideals in BCK/BCI-algebras, The Scientific World Journal, Volume 2014,
Article ID 763929, 2014, 7 pages.

[12] Y. B. Jun and S. Z. Song and G. Muhiuddin, Hesitant fuzzy semigroups with
a frontier, Journal of Intelligent and Fuzzy Systems, 30 (2016), 1613-1618.

[13] N. Kehayopulu and M. Tsingelis, A note on fuzzy sets in semigroups, Sci.
Math., 2 (1999), 411.

[14] N. Kehayopulu and M. Tsingelis, Fuzzy bi-ideals in ordered semigroups,
Inform. Sci., 171 (2005), 13-28.

[15] N. Kehayopulu and M. Tsingelis, Fuzzy sets in ordered groupoids, Semi-
group Forum, 65 (2002), 128-132.



84 A.F. TALEE, M.Y. ABBASI, G. MUHIUDDIN and SABAHAT ALI KHAN

[16] N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli,
XXVIII-1 (1979), 17-21.

[17] N. Kuroki, On fuzzy semigroups, Inform. Sci., 53 (1991), 203-236.

[18] Y. I. Kwon and S. K. Lee, Some special elements in ordered Γ-semigroups,
Kyungpook Math. J., 35 (1996), 679-685.

[19] Y. I. Kwon and S. K. Lee, The weakly semi-prime ideals of po-Γ-semigroups,
Kangweon-Kyungki Mathematical Journal, 5 (1997), 135-139.

[20] G. Muhiuddin, Hesitant fuzzy filters and hesitant fuzzy G-filters in resid-
uated lattices, Journal of Computational Analysis and Applications, 21
(2016), 394-404.

[21] G. Muhiuddin, E. H. Roh, Sun Shin Ahn and Y. B. Jun, Hesitant fuzzy
filters in lattice implication algebras, Journal of Computational Analysis
and Applications, 22 (2017), 1105-1113.

[22] G. Muhiuddin, H. S. Kim, S. Z. Song and Y. B. Jun, Hesitant fuzzy transla-
tions and extensions of subalgebras and ideals in BCK/BCI-algebras, Jour-
nal of Intelligent and Fuzzy Systems, 32 (2017), 43-48.

[23] G. Muhiuddin and Abdullah M. Al-roqi, Regular hesitant fuzzy filters and
MV -hesitant fuzzy filters of residuated lattices, Journal of Computational
Analysis and Applications, 24 (2018), 1133-1144.

[24] G. Muhiuddin and Young Bae Jun, Sup-hesitant fuzzy subalgebras and its
translations and extensions, Annals of Communications in Mathematics, 2
(2019), 48-56.

[25] G. Muhiuddin, Habib Harizavi and Y. B. Jun, Ideal theory in BCK/BCI-
algebras in the frame of hesitant fuzzy set theory, Applications and Applied
Mathematics, (In press) (2019).

[26] G. Muhiuddin, A.M. Alanazi, Mohamed E. A. Elnair and K. P. Shum,
Inf-hesitant fuzzy subalgebras and ideals in BCK/BCI-algebras, European
Journal of Pure and Applied Mathematics, 22 (2019), 12231233.

[27] P. Pal, S. K. Majumdar, B. Davaz and S. K. Sardar, Regularity of po-Γ-
semigroups in terms of fuzzy subsemigroups and fuzzy bi-ideals, Fuzzy Inf.
Eng, 7 (2015), 165-182.

[28] R. Rodriguez, L. Martinez, F. Herrera, Hesitant fuzzy linguistic term sets
for decision making, IEEE Transactions on Fuzzy Systems, 20 (2012), 109-
119.

[29] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.



HESITANT FUZZY SETS APPROACH TO IDEAL THEORY IN ORDERED ... 85

[30] N.K. Saha, On Γ-semigroup II, Bull. Cal. Math. Soc., 79 (1987), 331-335.

[31] M. K. Sen and N. K. Saha, On Γ-semigroup I, Bulletin of the Calcutta
Mathematical Society, 78 (1986), 180-186.

[32] M. K. Sen, On Γ-semigroups, Proceedings of the International Conference
on Algebra and it’s Applications, Decker Publication, New York, 1981,
301–308.

[33] M.K. Sen and N.K. Saha, Orthodox Γ-semigroups, Internat. J. Math. Math.
Sci., 13 (1990), 527-534.

[34] M.K. Sen and N.K. Saha, On Γ-semigroup I, Bull. Cal. Math. Soc., 78
(1986), 180186.

[35] A. F. Talee, M.Y. Abbasi and S. A. Khan, Hesitant fuzzy ideals in semi-
groups with frontier, Aryabhatta Journal of Mathematics and Informatics,
9 (2017), 163-170.

[36] A. F. Talee, M.Y. Abbasi and S. A. Khan, Hesitant fuzzy ideals in semi-
groups with two frontier, Journal of Basic and Applied Engineering Re-
search 4 (2017), 385-388.

[37] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529-539.

[38] V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, in: the
18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea,
2009, 1378-1382.

[39] G. Wei, Hesitant fuzzy prioritized operators and their application to multiple
attribute decision making, Knowledge-Based Systems, 31 (2012), 176-182.

[40] Z. Xu, M. Xia, Hesitant fuzzy entropy and cross-Entropy and their use in
multiattribute decision-making, International Journal of Intelligent system,
27 (2012), 799-822.

[41] D. Yu, Y. Wu, W. Zhou, Multi-criteria decision Making based on Cho-
quet integral under hesitant fuzzy environment, Journal of Computational
Information Systems, 7 (2011), 4506-4513.

[42] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

Accepted: 9.12.2017



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (86–94) 86

Intuitionistic fuzzy rare α-continuity

R. Dhavaseelan∗

Department of Mathematics
Sona College of Technology
Salem-636005, Tamil Nadu
India
dhavaseelan.r@gmail.com

S. Jafari
College of Vestsjaelland South

Herrestraede 11, 4200 Slagelse

Denmark

jafaripersia@gmail.com

Abstract. In this paper, the concepts of intuitionistic fuzzy rare α-continuous func-
tion, intuitionistic fuzzy rarely continuous function, intuitionistic fuzzy rarely pre-
continuous function, intuitionistic fuzzy rarely semi-continuous function are introduced
and studied in light of the concept of rare set in intuitionistic fuzzy setting. We present
some basic properties.

Keywords: intuitionistic fuzzy rare set, intuitionistic fuzzy rarely α-continuous func-
tion, intuitionistic fuzzy rarely pre- continuous function, intuitionistic fuzzy almost
α-continuous function, intuitionistic fuzzy weekly α-continuous function, intuitionistic
fuzzy rarely semi continuous function.

1. Introduction

The study of fuzzy sets was initiated by Zadeh [20] in 1965. Thereafter the paper
of Chang [3] in 1968 paved the way for the subsequent tremendous growth of
the numerous fuzzy topological concepts. In the course of time, Fuzzy Topology
proved to be very beneficial in fixing many realistic problems.

Several mathematicians have tried almost all the pivotal concepts of General
Topology for extension to the fuzzy settings. In 1981, Azad [1] gave fuzzy version
of the concepts given by Levine ([12], [13]) and thus initiated the study of weak
forms of several notions in fuzzy topological spaces.

Popa [17] introduced the notion of rare continuity as a generalization of weak
continuity [12] which has been further investigated by Long and Herrington
[14] and S. Jafari ([9], [10]). Noiri [15] introduced and investigated weakly
α-continuity as a generalization of weak continuity. He also introduced and
investigated almost α-continuity [16]. The concept of rare α-continuity was
introduced by S. Jafari [11]. The concept of new weaker form of Popa’s rare

∗. Corresponding author
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continuity via α-open sets [6] and rare s-precontinuity for multifunctions [7] are
introduced by E. Ekici and S. Jafari. The concept of fuzzy rare α-continuity
was introduced by R. Dhavaseelan and S. Jafari [5].

The purpose of the present paper is to introduce the concepts of intuitionistic
fuzzy rare α-continuous function, intuitionistic fuzzy rarely continuous function,
intuitionistic fuzzy rarely pre-continuous function, intuitionistic fuzzy rarely
semi-continuous function in the light of the concept of rare set in a intuitionistic
fuzzy setting.

Definition 1.1 ([4]). An intuitionistic fuzzy topology (IFT) on a nonempty set
X is a family τ of IFSs in X satisfying the following axioms:

(i) 0∼, 1∼ ∈ τ ;

(ii) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ ;

(iii) ∪Gi ∈ τ for arbitrary family {Gi | i ∈ Λ} ⊆ τ .

In this case the ordered pair (X, τ) or simply X is called an intuitionistic fuzzy
topological space (IFTS) and each IFS in τ is called an intuitionistic fuzzy open
set (IFOS). The complement A of an IFOS A in X is called an intuitionistic
fuzzy closed set (IFCS) in X.

Definition 1.2 ([4]). Let A be an intuitionistic fuzzy set in an intuitionistic
fuzzy topological space X. Then:

int(A) =
∪
{G | G is an IFOS in X and G ⊆ A} is called the intuitionistic

fuzzy interior of A;
cl(A) =

∩
{G | G is an IFCS in X and G ⊇ A} is called the intuitionistic

fuzzy closure of A.

Definition 1.3 ([18]). Let X be a nonempty set. If r ∈ I0,s ∈ I1 are fixed real
numbers such that r + s ≤ 1, then the intuitionistic fuzzy set xr,s is called an
intuitionistic fuzzy point(briefly IFP )in X given by

xr,s(xp) =

{
(r, s), if x = xp

(0, 1), if x ̸= xp,

for xp ∈ X is called the support of xr,s, where r denotes the degree of member-
ship value and s is the degree of non-membership value of xr,s.

Definition 1.4 ([2, 8]). An intuitionistic fuzzy set A in an intuitionistic fuzzy
topological space (X,T ) is called

(1) an intuitionistic fuzzy semiopen set (briefly IFSOS) if A ⊆ cl(int(A));

(2) an intuitionistic fuzzy α-open set(briefly IFαOS) if A ⊆ int(cl(int(A)));

(3) an intuitionistic fuzzy preopen set (briefly IFPOS) if A ⊆ int(cl(A));



88 R. DHAVASEELAN and S. JAFARI

(4) an intuitionistic fuzzy regular open set (briefly IFROS) if A = int(cl(A)).

An IFS A is called an intuitionistic fuzzy semiclosed set, intuitionistic fuzzy
α-closed set, intuitionistic fuzzy preclosed set, and intuitionistic fuzzy regular
closed set, respectively (briefly IFSCS, IFαCS, IFPCS, and IFRCS resp.), if the
complement of A is an IFSOS, IFαOS, IFPOS, and IFROS, respectively.

Definition 1.5 ([19]). Let A be an IFS of an IFTS (X,T ). The α-closure of A
(briefly αcl(A)) is defined as αcl(A) =

∩
{K| K is an IFαCS in X and A ⊆ K}.

Definition 1.6 ([19]). Let A be an IFS of an IFTS (X,T ). The α-interior of
A (briefly αint(A)) is defined as αint(A) =

∪
{K| K is an IFαOS in X and

K ⊆ A}.

2. Main results

Definition 2.1. An intuitionistic fuzzy set R is called intuitionistic fuzzy rare
set if IF int(R) = 0∼.

Definition 2.2. An intuitionistic fuzzy setR is called intuitionistic fuzzy nowhere
dense set if IF int(IFcl(R)) = 0∼.

Definition 2.3. Let (X,T ) and (Y, S) be two intuitionistic fuzzy topological
spaces. A function f : (X,T )→ (Y, S) is called:

(i) intuitionistic fuzzy α-continuous function if for each intuitionistic fuzzy
point xr,s in X and each intuitionistic fuzzy open set G in Y containing
f(xr,s), there exists an intuitionistic fuzzy α-open set U in X such that
f(U) ≤ G.

(ii) intuitionistic fuzzy almost α-continuous function if for each intuitionistic
fuzzy point xr,s in X and each intuitionistic fuzzy open set G containing
f(xr,s), there exists an intuitionistic fuzzy α-open set U such that f(U) ≤
IF int(IFcl(G)).

(iii) intuitionistic fuzzy weakly α-continuous function if for each intuitionistic
fuzzy point xr,s in X and each intuitionistic fuzzy open set G containing
f(xr,s), there exists an intuitionistic fuzzy α-open set U such that f(U) ≤
IFcl(G).

Definition 2.4. Let (X,T ) and (Y, S) be two intuitionistic fuzzy topological
spaces. A function f : (X,T )→ (Y, S) is called:

(i) intuitionistic fuzzy rarely α-continuous function if for each intuitionistic
fuzzy point xr,s in X and each intuitionistic fuzzy open set G in (Y, S)
containing f(xr,s), there exist an intuitionistic fuzzy rare set R with G ∩
IFcl(R) = 0∼ and intuitionistic fuzzy α open set U in (X,T ) such that
f(U) ≤ G ∪R.
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(ii) intuitionistic fuzzy rarely continuous function if for each intuitionistic
fuzzy point xr,s in X and each intuitionistic fuzzy open set G in (Y, S)
containing f(xr,s), there exist an intuitionistic fuzzy rare set R with G ∩
IFcl(R) = 0∼ and intuitionistic fuzzy open set U in (X,T ) such that
f(U) ≤ G ∪R.

(iii) intuitionistic fuzzy rarely pre-continuous function if for each intuitionistic
fuzzy point xr,s in X and each intuitionistic fuzzy open set G in (Y, S)
containing f(xr,s), there exist an intuitionistic fuzzy rare set R with G ∩
IFcl(R) = 0∼ and intuitionistic fuzzy preopen set U in (X,T ) such that
f(U) ≤ G ∪R.

(iv) intuitionistic fuzzy rarely semi-continuous function if for each intuitionistic
fuzzy point xr,s in X and each intuitionistic fuzzy open set G in (Y, S)
containing f(xr,s), there exist an intuitionistic fuzzy rare set R with G ∩
IFcl(R) = 0∼ and intuitionistic fuzzy semiopen set U in (X,T ) such that
f(U) ≤ G ∪R.

Example 2.1. Let X = {a, b, c}. Define the intuitionistic fuzzy sets A, B
and C as follows: A = ⟨x, (a0 ,

b
0 ,

c
1), (

a
1 ,

b
1 ,

c
0)⟩, B = ⟨x, (a1 ,

b
0 ,

c
0), (

a
0 ,

b
1 ,

c
1)⟩ and

C = ⟨x, (a0 ,
b
1 ,

c
0), (

a
1 ,

b
0 ,

c
1)⟩. Then T = {0∼, 1∼, A} and S = {0∼, 1∼, A,B,A∪B}

are intuitionistic fuzzy topologies on X. So (X,T ) and (X,S) are intuitionistic
fuzzy topological spaces. Define f : (X,T ) → (X,S) as an identity function.
Clearly f is intuitionistic fuzzy rarely α-continuous function.

Proposition 2.1. Let (X,T ) and (Y, S) be any two intuitionistic fuzzy topo-
logical spaces. For a function f : (X,T )→ (Y, S), the following statements are
equivalent:

(i) The function f is intuitionistic fuzzy rarely α-continuous function at xr,s
in (X,T ).

(ii) For each intuitionistic fuzzy open set G containing f(xr,s), there exists an
intuitionistic fuzzy α-open set U in (X,T ) such that IF int(f(U)∩G) = 0∼.

(iii) For each intuitionistic fuzzy open set G containing f(xr,s), there exists
an intuitionistic fuzzy α-open set U in (X,T ) such that IF int(f(U)) ≤
IFcl(G).

(iv) For each intuitionistic fuzzy open set G in (Y, S) containing f(xr,s), there
exists an intuitionistic fuzzy rare set R with G ∩ IFcl(R) = 0∼ such that
xr,s ∈ IF intα(f−1(G ∪R)).

(v) For each intuitionistic fuzzy open set G in (Y, S) containing f(xr,s), there
exists an intuitionistic fuzzy rare set R with IFcl(G) ∩R = 0∼ such that
xr,s ∈ IF intα(f−1(IFcl(G) ∪R)).
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(vi) For each intuitionistic fuzzy regular open set G in (Y, S) containing f(xr,s),
there exists an intuitionistic fuzzy rare set R with IFcl(G)∩R = 0∼ such
that xr,s ∈ IF intα(f−1(G ∪R)).

Proof. (i)⇒ (ii). Let G be an intuitionistic fuzzy open set in (Y, S) contain-
ing f(xr,s). By f(xr,s) ∈ G ≤ IF int(IFcl(G)) and IF int(IFcl(G)) containing
f(xr,s), there exist an intuitionistic fuzzy rare set R with IF int(IFcl(G)) ∩
IFcl(R) = 0∼ and an intuitionistic fuzzy α-open set U in (X,T ) containing
xr,s such that f(U) ≤ IF int(IFcl(G)) ∪ R. We have IF int(f(U) ∩ G) =

IF int(f(U)) ∩ IF int(G) ≤ IF int(IFcl(G) ∪ R) ∩ (IFcl(G)) ≤ IFcl(G) ∪
IF int(R) ∩ (IFcl(G)) = 0∼.

(ii)⇒(iii). It is straightforward.

(iii)⇒ (i). Let G be an intuitionistic fuzzy open set in (Y, S) containing
f(xr,s). Then by (iii), there exists an intuitionistic fuzzy α-open set U con-
taining xr,s such that IF int(f(U) ≤ IFcl(G). We have f(U) = (f(U) ∩
(IF int(f(U)))) ∪ IF int(f(U)) < (f(U) ∩ (IF int(f(U)))) ∪ IFcl(G) = (f(U) ∩
(IF int(f(U))))∪G∪(IFcl(G)∩G) = (f(U)∩(IF int(f(U)))∩G)∪G∪(IFcl(G)∩
G). Set R1 = f(U) ∩ (IF int(f(U))) ∩G and R2 = IFcl(G) ∩G. Then R1 and
R2 are intuitionistic fuzzy rare sets. More R = R1 ∪ R2 is an intuitionistic
fuzzy set such that IFcl(R) ∩G = 0∼ and f(U) ≤ G ∪ R. This show that f is
intuitionistic fuzzy rarely α-continuous function.

(i)⇒ (iv). Suppose that G is an intuitionistic fuzzy open set in (Y, S)
containing f(xr,s). Then there exist an intuitionistic fuzzy rare set R with
G ∩ IFcl(R) = 0∼ and U which is an intuitionistic fuzzy α open set in (X,T )
containing xr,s such that f(U) ≤ G∪R. It follows that xr,s ∈ U ≤ f−1(G∪R).
This implies that xr,s ∈ IF intα(f−1(G ∪R)).

(iv)⇒ (v). Suppose that G is an intuitionistic fuzzy open set in (Y, S)
containing f(xr,s). Then there exists an intuitionistic fuzzy rare set R with
G ∩ IFcl(R) = 0∼ such that xr,s ∈ IF intα(f−1(G ∪ R)). Since G ∩ IFcl(R) =
0∼,R ≤ G, where G = (IFcl(G)) ∪ (IFcl(G) ∩ G). Put we have R ≤ R ∪
(IFcl(G)) ∪ (IFcl(G) ∩ G). Now, R1 = R ∩ (IFcl(G)). It follows that R1

is an intuitionistic fuzzy rare set with IFcl(G) ∩ R1 = 0∼. Therefore xr,s ∈
IF intα(f

−1(G ∪R)) ≤ IF intα(f−1(G ∪R1)).

(v)⇒ (vi). Assume that G is an intuitionistic fuzzy regular open set in
(Y, S) containing f(xr,s). Then there exists an intuitionistic fuzzy rare set R
with IFcl(G) ∩ R = 0∼, such that xr,s ∈ IF intα(f

−1(IFcl(G) ∪ R)). Now
R1 = R ∪ (IFcl(G) ∪ G). It follows that R1 is an intuitionistic fuzzy rare
set and (G ∩ IFcl(R1)) = 0∼. Hence xr,s ∈ IF intα(f

−1(IFcl(G) ∪ R)) =
IF intα(f

−1(G∪ (IFcl(G)∩G))∪R) = IF intα(f
−1(G∪R1)). Therefore xr,s ∈

IF intα(f
−1(G ∪R1)).

(vi)⇒ (ii). Let G be an intuitionistic fuzzy open set in (Y, S) containing
f(xr,s). By f(xr,s) ∈ G ≤ IF int(IFcl(G)) and the fact that IF int(IFcl(G))
is an intuitionistic fuzzy regular open in (Y, S), there exists an intuitionis-
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tic fuzzy rare set R and IF int(IFcl(G)) ∩ IFcl(R) = 0∼ such that xr,s ∈
IF intα(f

−1(IF int(IFcl(G)) ∪R).
Let U = IF intα(f

−1(IF int(IFcl(G))∪R). Hence U is an intuitionistic fuzzy
α-open set in (X,T ) containing xr,s and therefore f(U) ≤ IF int(IFcl(G))∪R.
Hence, we have IF int(f(U) ∩G) = 0∼.

Proposition 2.2. Let (X,T ) and (Y, S) be any two intuitionistic fuzzy topo-
logical space. Then a function f : (X,T ) → (Y, S) is an intuitionistic fuzzy
rarely α-continuous function if and only if f−1(G) ≤ IF intα(f

−1(G ∪ R)) for
every intuitionistic fuzzy open set G in (Y, S), where R is an intuitionistic fuzzy
rare set with IFcl(R) ∩G = 0∼.

Proof. Suppose that G is an intuitionistic fuzzy rarely α-open set in (Y, S)
containing f(xr,s). Then G ∩ IFcl(R) = 0∼ and U be an intuitionistic fuzzy
α-open set in (X,T ) containing xr,s such that f(U) ≤ G ∪ R. It follows that
xr,s ∈ U ≤ f−1(G ∪R). This implies that f−1(G) ≤ IF intα(f−1(G ∪R)).

Definition 2.5. A function f : (X,T ) → (Y, S) is intuitionistic fuzzy Iα-
continuous function at xr,s in (X,T ) if for each intuitionistic fuzzy open set G
in (Y, S) containing f(xr,s), there exists an intuitionistic fuzzy α-open set U
containing xr,s such that IF int(f(U)) ≤ G.

If f has this property at each intuitionistic fuzzy point xr,s in (X,T ), then
we say that f is intuitionistic fuzzy Iα-continuous function on (X,T ).

Example 2.2. Let X = {a, b, c}. Define the intuitionistic fuzzy sets A and
B as follows: A = ⟨x, (a0 ,

b
1 ,

c
0), (

a
1 ,

b
0 ,

c
1)⟩ and B = ⟨x, (a1 ,

b
0 ,

c
0), (

a
0 ,

b
1 ,

c
1)⟩. Then

T = {0∼, 1∼, A} and S = {0∼, 1∼, B} be intuitionistic fuzzy topologies on X.
Suppose (X,T ) and (X,S) are intuitionistic fuzzy topological spaces. Let f :
(X,T )→ (X,S) be defined by f(a) = f(b) = b and f(c) = c. It is obvious that
f is an intuitionistic fuzzy Iα-continuous function.

Proposition 2.3. Let (Y, S) be an intuitionistic fuzzy regular space [2]. Then
the function f : (X,T )→ (Y, S) is an intuitionistic fuzzy Iα-continuous function
on X if and only if f is an intuitionistic fuzzy rarely α-continuous function on
X.

Proof. ⇒ It is obvious.
⇐ Let f be an intuitionistic fuzzy rarely α-continuous function on (X,T ). Sup-
pose that f(xr,s) ∈ G, where G is an intuitionistic fuzzy open set in (Y, S)
and xr,s an intuitionistic fuzzy point in X. By the intuitionistic fuzzy regu-
larity of (Y, S), there exists an intuitionistic fuzzy open set G1 in (Y, S) con-
taining f(xr,s) and IFcl(G1) ≤ G. Since f is intuitionistic fuzzy rarely α-
continuous function, then there exists an intuitionistic fuzzy α-open set U such
that IF int(f(U)) ≤ IFcl(G1). This implies that IF int(f(U)) ≤ G, which
means that f is intuitionistic fuzzy Iα continuous function on X.
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Definition 2.6. A function f : (X,T ) → (Y, S) is called intuitionistic fuzzy
pre-α-open if for every intuitionistic fuzzy α-open set U in X such that f(U) is
an intuitionistic fuzzy α-open in Y .

Proposition 2.4. If a function f : (X,T ) → (Y, S) is an intuitionistic fuzzy
pre-α-open and an intuitionistic fuzzy rarely α-continuous function then f is
intuitionistic fuzzy almost α-continuous function.

Proof. Suppose that xr,s is an intuitionistic fuzzy point inX andG an intuition-
istic fuzzy open set in Y containing f(xr,s). Since f is intuitionistic fuzzy rarely
α-continuous function at xr,s, then there exists an intuitionistic fuzzy α-open set
U in X, such that IF int(f(U)) ⊂ IFcl(G). Since f is intuitionistic fuzzy pre-
α-open, we have f(U) ⊂ IF int(IFcl(IF int(f(U)))) ⊂ IF int(IFcl(G)). Hence
f is intuitionistic fuzzy almost α-continuous function.

For a mapping f : X → Y , the graph g : X → X × Y of f is defined by
g(x) = (x, f(x)), for each x ∈ X.

Proposition 2.5. Let f : (X,T ) → (Y, S) be any function. If the g : X →
X × Y of f is intuitionistic fuzzy rarely α-continuous function then f is also
intuitionistic fuzzy rarely α-continuous function.

Proof. Suppose that xr,s is an intuitionistic fuzzy point in X and an intu-
itionistic fuzzy open set W in Y containing g(xr,s). It follows that there ex-
ists intuitionistic fuzzy open sets 1X and V in X and Y respectively such
that (xr,s, f(xr,s)) ∈ 1X × V ⊂ W . Since f is intuitionistic fuzzy rarely α-
continuous function, there exists an intuitionistic fuzzy α-open set G such that
IF int(f(G)) ⊂ IFcl(V ). Let E = 1X ∩ G. It follows that E is an intuition-
istic fuzzy α-open set in X, and we have IF int(g(E)) ⊂ IF int(1X × f(G)) ⊂
1X × IFcl(V ) ⊂ IFcl(W ). Therefore g is an intuitionistic fuzzy rarely α-
continuous function.

3. Conclusion

In this paper, the notion of intuitionistic fuzzy rare α-continuity is introduced
and studied.
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Abstract. Let S be a monoids with zero and As be a right S-act . In this paper,we
introduce the notion of En- semi prime subact of an S-act As which is define as :
A proper subact B of an S-act As is said to be En- semi prime subact, if whenever
f2(a)S ⊆ B for some endomorphism f of an S-act As, and a ∈ As, then f(a)S ⊆ B.
An S-act As itself is called En-semi prime if the zero subact (θ) of As is En-semi prime
subact of As. Also, we study and gives some related concepts of this notion like: semi
prime subact, En-prime subact, En- pure subact and En-radical of subact.

Keywords: En-semi prime subact, En-Prime subact, En-pure subact and En-radadical
of subact.

1. Introduction

Firstly we begin with some preliminary definitions and notions: ”Recall that a
nonempty set A is called a right S-act where S is monoid that is semigroup with
identity element 1, if there exists a mapping ϕ : A×S → A define as (a, s)→ as
and satisfying a.1 = a and a(st) = (as)t, for all a ∈ Aand s, t ∈ S. We call A
a right S-act or right act over S and write As” [1]. ”Similarly, we define a left
S-acts A and write sA . If S is a commutative monoid, then every left S-act
is right S-act. A non empty subset B of a right S-act As is called subact of
As and written by B ≤ As, if bs ∈ B for all b ∈ B and s ∈ S. An element
θ ∈ As is called a zero of As or fixed element if θs = θ for all s ∈ S, i.e. {θ} is
a one-element subact [1]. In this paper θ is a unique fixed element of all S-act
As. A nonempty subset I is called an ideal or two sided ideal of S (left and
right) if SI ⊆ I and IS ⊆ I. A mapping f : As → Bs, where As and Bs are
two right S-acts is called S- homomorphism if f(as) = f(a)s, for all a ∈ As and
s ∈ S. The set of all S-homomorphism from A in to B denoted by Hom(As, Bs)
or Homs(A,B). An S-homomorphism f : As → As is called an endomorphism
of As. The composition g ◦f of homomorphism f : As → Bs and g : Bs → Cs of
a right S-acts is a homomorphism of a right act,i.e. g ◦ f ∈ Hom(As, Bs)” [1].

Now, A. A. Estaji and S. Tajnia in [3] introduce the concept of semi prime
subact which is define as: ”A proper subact B of an Sact As is called semi-
prime, if whenever ask ∈ B for some s ∈ S, a ∈ As and k ∈ N implies that
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as ∈ B” [2]. Shireen in [3] introduce the notion of En-prime subact, where:
”A proper subact B of an Sact As is called En- prime subact of As if for any
endomorphism f of As and a ∈ As with f(a)S ⊆ B implies that either a ∈ B or
f(As) ⊆ B. The right S-act As is called En-prime if the zero subact (θ) of As
is En-prime subact” [3].

In this paper, we introduce the concept of En- semi prime subact as a gen-
eralization of En-prime subact, where a proper subact B of an Sact As is said
to be En- semi prime subact if whenever f2(a)S ⊆ B for some endomorphism f
of an Sact As and a ∈ As, then f(a)S ⊆ B. An Sact As itself is called En-semi
prime if the zero subact (θ) of As is En-semi prime subact of As. In section one,
we study some basic properties of this notion and the relationships between this
notion and some other related concepts like: semi prime, En-prime and maximal
subacts.

2. En-semi prime subacts and some related concept

In this section, we introduce the concept of En- semi prime subacts and give
some characterizations for this notion.

Definition 2.1. A proper subact B of an S-act As is said to be En- semi prime
subact, if whenever f2(a)S ⊆ B for some endomorphism f of an S-act As and
a ∈ As, then f(a) ⊆ B. An S-act As itself is called En-semi prime if the zero
subact (θ) of As is En-semi prime subact of As.

Proposition 2.2. Let B be a proper subact of an S-act As, then B is En- semi
prime subact of As if and only if fk(a)S ⊆ B for some endomorphism f of an
S-act As,a ∈ As and for k ≥ 2 then f(a)S ⊆ B.

Proof. The proof by induction on the positive integer k. If k = 2, then the
proposition is true by the definition of En- semi prime subact. Assume that our
proposition is true for k − 1 which means if fk−1(a)S ⊆ B, then f(a)S ⊆ B.
Now, suppose that fk(a)S ⊆ B and thus f2(fk−2(a))S ⊆ B which implies that
f(fk−2(a))S ⊆ B. Therefore f(a)S ⊆ B by our induction. �
Recall that a proper subact B of an Sact As is called semi-prime, if whenever
ask ∈ B for some s ∈ S, a ∈ As and k ∈ N implies that as ∈ B [2].

Proposition 2.3. Let B be a proper subact of an S-act As. If B is En- semi
prime subact of As, then B is semi prime subact.

Proof. Suppose that ask ∈ B, where a ∈ As, s ∈ S and k ∈ N . Define
f : As → As by f(c) = cs for all c ∈ As and s ∈ S. Now, f(a) = as and so
fk(a) = ask ∈ B. Hence fk(a)S ⊆ B, but B is En-semi prime subact of As
then f(a)S ⊆ B. Therefore as ∈ B. �

Remark 2.4. The converse of previous proposition is not true in general and
we can show that by the following example: Let Z ⊕ Z be an (Z, .)act with
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multiplication by integers as operation and let 6Z ⊕Z be a subact of Z ⊕Z(z,.)

which is semi prime subact of Z ⊕ Z(z,.). We define a function as: f : Z ⊕ Z →
Z ⊕ Z by f(x, y) = (y, x), for all x, y ∈ Z. Now, f2(0, 3) = (0, 3) ∈ 6Z ⊕ Z and
hence f2(0, 3)Z ⊆ 6Z ⊕ Z. But f(0, 3) = (3, 0) /∈ 6Z ⊕ Z which implies that
f(0, 3)Z * 6Z ⊕ Z. Thus 6Z ⊕ Z is not En- semi prime subact of Z ⊕ Z(z,.).

Recall that a proper subact B of an Sact As is called En- prime subact of As if
for any endomorphism f of As and a ∈ As with f(a)S ⊆ B implies that either
a ∈ B or f(As) ⊆ B. The right S-act As is called En-prime if the zero subact
(θ) of As is En-prime subact [3].

Proposition 2.5. Every En-prime subact of an Sact As is En-semi prime sub-
act of As.

Proof. Let B be a proper subact of an S-act As and suppose that f2(a)S ⊆ B
for some endomorphism f of an S-act As and a ∈ As . We have to prove that
f(a)S ⊆ B. Now, f2(a)S = f(f(a))S ⊆ B, but B is En- prime subact of
As, then either f(a) ∈ B or f(As) ⊆ B. That follows in any case f(a) ∈ B.
Therefore f(a)S ⊆ B. �

Proposition 2.6. Let As be an S-act and B a proper subact of As. If B = ∩Pi,
where Pi is En- prime subact of As, then B is En- semi prime subact of As.

Proof. Let f2(a)S ⊆ B for some endomorphism f of an Sact As and a ∈ As,
then f2(a)S ⊆ Pi for each i. But Pi is En- prime subact of As, then by prop.(2.5)
Pi is En- semi prime subact of As. Thus f(a)S ⊆ Pi for each i which implies
that f(a)S ⊆ ∩Pi = B. Therefore B is En- semi prime subact of As. �

Corollary 2.7. The intersection of En-semi prime subacts of an S-act As is
En-semi prime subact of As

Proposition 2.8. The union of any two En- semi prime subacts of As is En-
semi prime subact of As.

Proof. Let B1 and B2 be any two En- semi prime subacts of an Sact As.
Suppose that for some endomorphism f of As and a ∈ As we have f2(a)S ⊆
B1 ∪ B2. Now, since we have f2(a)S ⊆ B1 ∪ B2, then either f2(a)S ⊆ B1 or
f2(a)S ⊆ B2 . But B1 and B2 are En- semi prime subacts of As then either
f(a)S ⊆ B1 or f(a)S ⊆ B2 . Thus f(a)S ⊆ B1 ∪B2. �
Recall that a subact B of an S-act As is called fully invariant subact if f(B) ⊆ B
for every endomorphism f of As and As is called duo act if every subact of As
is fully invariant .

Proposition 2.9. Every maximal subact of duo act is En- semi prime subact.

Proof. Let B be a maximal subact of duo act As . Then by [[3], corl.(2.7)] we
have B is Enprime subact of As and by prop.(2.5) we get B is Ensemi prime
subact of As. �
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Definition 2.10. A subact B of an S-act As is called En- pure subact if f(As)∩
B = f(B) for any endomorphism f of As.

Example 2.11. The one element subact zero θ and the act itself are En-pure
subacts.

Proposition 2.12. Let As be an S-act As such that every subact of As is En-
pure subact of As, then each proper subact of As is En- semi prime subact of
As.

Proof. Let B be a proper subact of an Sact As and let f2(a)S ⊆ B, where f
an endomorphism of As and a ∈ As. Now, f(a) ∈ f(As) ∩ f(a)S = f(f(a)S) =
f2(a)S ⊆ B. Hence f(a) ∈ B and therefore f(a)S ⊆ B. �

Definition 2.13. The intersection of all En-prime subacts of an S-act As con-
taining a subact B of As is said to be En- radical of B and denoted by En-rad
(B) . If B is not contained in any En- prime subact of As, then we put En-
rad(B) = As.

Recall that a proper subact B of an S-act As is said to be prime subact of As,
if for every s ∈ S and a ∈ As, as ∈ B implies that a ∈ B or s ∈ (B : As) [2].
Recall that for a subact B of an Sact As, radA(B) is the intersection of all prime
subacts of As containing B and rad(B) = B, if B is not contained in any prime
subact of As [2].

Proposition 2.14. If B is a subact of an S-act As then:

1. B ⊆ En− rad(B).

2. rad(B) ⊆ En− rad(B).

Proof.
1. It is clear.
2. Let C be En-prime subact of an S-act As containing B. Then By [ ??,

prop.(2.3) ] C is a prime subact of As, hence rad(B) ⊆ C. Also, rad(B) ⊆ ∩C
for all En- prime subact C containing B. Therefore rad(B) ⊆ En− rad(B). �

Proposition 2.15. Let B be a subact of an S-act As . If En-rad(B) ̸= As,
then En-rad(B) is En- semi prime subact of As.

Proof. Let f2(a)S ⊆ En−rad(B), where f an endomorphism of As and a ∈ As.
Now, we have f2(a)S ⊆ ∩Pi, where Pi is En- prime subact of As containing B.
Then f2(a)S ⊆ Pi for all i which implies that f(a)S ⊆ Pi for all i. Therefore
f(a)S ⊆ ∩Pi. = En− rad(B). �

Definition 2.16. Let B be a subact of an S-act As, then we define: En(B)={
f(a), where f any endomorphism of As and a ∈ As such that fk(a) ∈ B for
some k ∈ N }.
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Recall that let B be a subact of an S-act As, then E(B) = {as : s ∈ S and
ask ∈ B for some k ∈ N} [2].

Proposition 2.17. Let B be a subact of an S-act As, then:

1. E(B) ⊆ En(B) and thus B ⊆ En(B).

2. En(B) ⊆ P for all En-prime subact P containing B and thus En(B) ⊆
En− rad(B) .

Proof. 1. Let x ∈ E(B), then x = as where a ∈ As and s ∈ S and there exists
a positive integer k such that ask ∈ B. Define f : As → As by f(b) = bs for all
b ∈ As and s ∈ S. Now, x = f(a) and fk(a) = ask ∈ B and hence x ∈ En(B).

2. Suppose that x ∈ En−(B), then there exists an endomorphism of As and
a ∈ As such that x = f(a) and for some positive integer k we have fk(a) ∈ B
and thus fk(a)S = fk−1(f(a)) ⊆ B ⊆ P But P is En- prime subact of an S-act
As, then either f(a) ∈ P or fk−1(As) ⊆ P , which follows that x = f(a) ∈ P .
Consequently, En(B) ⊆ En− rad(B). �

Proposition 2.18. Let B be a subact of an S-act As, then B is En-semi prime
subact of As if and only if En(B) = B.

Proof. Let x ∈ En(B), then there exists an endomorphism f of As and a ∈ As
such that x = f(a) and for some positive integer k we have fk(a) ∈ B and
thus fk(a)S ⊆ B. But B is En-semi prime subact of As, then f(a)S ⊆ B
wich implies that x = f(a) ∈ B. Therefore En(B) ⊆ B and the result follows
from prop.(2.17)(1). Conversely, suppose that En(B) = B and let f2(a)S ⊆ B
for some endomorphism f of As and a ∈ As, then f2(a) ∈ B and thus f(a) ∈
En− (B) = B . Hence f(a)S ⊆ B. �
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Abstract. The notions of join hesitant fuzzy filters and join hesitant fuzzy G-filters
in residuated lattices are introduced, and related properties are investigated. Charac-
terizations of join hesitant fuzzy filters and join hesitant fuzzy G-filters are discussed.
Conditions for a join hesitant fuzzy filter to be a join hesitant fuzzy G-filter are pro-
vided, and a new join hesitant fuzzy filter is construct by the given join hesitant fuzzy
filter.
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1. Introduction

Hesiatnt fuzzy sets, as another extension of fuzzy sets, have been proposed in
[16]. The motivation for introducing hesitant fuzzy sets is that it is sometimes
difficult to determine the membership of an element into a set and in some
circumstances this difficulty is caused by a doubt between a few different values.

As a non-classical logic system, residuated lattices are a formal and useful
tool for computer science to deal with uncertain and fuzzy information. In [20],
Zhu and Xu discussed filter theory of residuated lattices. Moreover, Jun et al.
applied the notion of hesitant fuzzy sets to MTL-algebras, BCK/BCI-algebras,
EQ-algebras and semigroups (see [4], [5], [6] and [7]). Also, Muhiuddin et al.
applied the notion of hesitant fuzzy sets to residuated lattices, lattice implication
algebras and BCK/BCI-algebras (see [8], [9], [10], [11], [12], [13] and [14]).

In this paper, we introduce join hesitant fuzzy filters and join hesitant fuzzy
G-filters in residuated lattices, and investigate their properties. We consider
characterizations of join hesitant fuzzy filters and join hesitant fuzzy G-filters.
We provide conditions for a join hesitant fuzzy filter to be a join hesitant fuzzy

∗. Corresponding author
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G-filter. Given a join hesitant fuzzy filter, we construct a new join hesitant
fuzzy filter.

2. Preliminaries

We display well-known results on residuated lattices and hesitant fuzzy sets. We
refer the reader to [1, 2, 3, 15, 16, 17, 18, 19] for further information regarding
residuated lattices and hesitant fuzzy sets.

A residuated lattice is an algebra L:=(L,∨,∧,⊗,→, 0, 1) of type (2, 2, 2, 2, 0, 0)
such that

(1) (L,∨,∧, 0, 1) is a bounded lattice.

(2) (L,⊗, 1) is a commutative monoid.

(3) ⊗ and → form an adjoint pair, that is,

(∀x, y, z ∈ L) (x ≤ y → z ⇔ x⊗ y ≤ z) .

In a residuated lattice L, the ordering ≤ is defined as follows:

(∀x, y ∈ L) (x ≤ y ⇔ x ∧ y = x ⇔ x ∨ y = y ⇔ x→ y = 1)

and x′ will be reserved for x→ 0, and x′′ = (x′)′, etc. for all x ∈ L.
In a residuated lattice L, the following properties are valid.

1→ x = x, x→ 1 = 1, x→ x = 1.(2.1)

0→ x = 1, x→ (y → x) = 1.(2.2)

x→ (y → z) = (x⊗ y)→ z = y → (x→ z).(2.3)

x ≤ y ⇒ z → x ≤ z → y, y → z ≤ x→ z.(2.4)

z → y ≤ (x→ z)→ (x→ y).(2.5)

z → y ≤ (y → x)→ (z → x).(2.6)

A nonempty subset F of a residuated lattice L is called a filter of L if it
satisfies the conditions:

(∀x, y ∈ L) (x, y ∈ F ⇒ x⊗ y ∈ F ) .(2.7)

(∀x, y ∈ L) (x ∈ F, x ≤ y ⇒ y ∈ F ) .(2.8)

A nonempty subset F of L is called a G-filter of L if it is a filter of L that
satisfies the following condition:

(∀x, y ∈ L) ((x⊗ x)→ y ∈ F ⇒ x→ y ∈ F ) .(2.9)
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Proposition 2.1 ([15]). A nonempty subset F of a residuated lattice L is a
filter of L if and only if it satisfies:

1 ∈ F.(2.10)

(∀x ∈ F ) (∀y ∈ L) (x→ y ∈ F ⇒ y ∈ F ) .(2.11)

Torra [16] defined hesitant fuzzy sets in terms of a function that returns a
set of membership values for each element in the domain.

Definition 2.2 ([16]). Let L be a reference set. Then we define hesitant fuzzy
set on L in terms of a function H that when applied to L returns a subset of
[0, 1].

For a hesitant fuzzy set H of L and a subset τ of [0, 1], the τ -exclusive set
of H is denoted by e(H; τ), and is defined to be the set

e(H; τ) := {x ∈ L | H(x) ⊆ τ} .

3. Join hesitant fuzzy filters

In what follows, let L denote a residuated lattice unless otherwise specified, and
we take L as a reference set.

Definition 3.1. A hesitant fuzzy set H of L is called a join hesitant fuzzy filter
of L if it satisfies:

(∀x, y ∈ L) (x ≤ y ⇒ xH ⊇ yH) ,(3.1)

(∀x, y ∈ L) (xH ∪ yH ⊇ (x⊗ y)H) .(3.2)

Proposition 3.2. Every join hesitant fuzzy filter H of L satisfies:

(∀x ∈ L) (xH ⊇ 1H) .(3.3)

(∀x, y ∈ L) (xH ∪ (x→ y)H ⊇ yH) .(3.4)

Proof. Let x, y ∈ L. Since x ≤ 1, we have xH ⊇ 1H by (3.1). Since x⊗ (x→
y) ≤ y, it follows from (3.2) and (3.1) that

xH ∪ (x→ y)H ⊇ (x⊗ (x→ y))H ⊇ yH.

This completes the proof.

Lemma 3.3. If a hesitant fuzzy set H of L satisfies two conditions (3.3) and
(3.4), then

(∀x, y, z ∈ L) (x ≤ y → z ⇒ xH ∪ yH ⊇ zH) ,(3.5)

(∀x, y, z ∈ L) (x⊗ y ≤ z ⇒ xH ∪ yH ⊇ zH) .(3.6)



JOIN HESITANT FUZZY FILTERS OF RESIDUATED LATTICES 103

Proof. Assume that x ≤ y → z for all x, y, z ∈ L. Then x→ (y → z) = 1, and
so

xH ∪ yH = (xH ∪ 1H) ∪ yH
= (xH ∪ (x→ (y → z))H) ∪ yH
⊇ yH ∪ (y → z)H ⊇ zH.

Since x ≤ y → z ⇔ x⊗ y ≤ z, we know that (3.5) induces (3.6).

We consider characterizations of join hesitant fuzzy filters.

Theorem 3.4. A hesitant fuzzy set H of L is a join hesitant fuzzy filter of L
if and only if it satisfies two conditions (3.3) and (3.4).

Proof. The necessity is from Proposition 3.2.
Conversely, let H be a hesitant fuzzy set of L that satisfies (3.3) and (3.4).

Let x and y be elements of L such that x ≤ y. Then x→ y = 1 and so

xH = xH ∪ 1H = xH ∪ (x→ y)H ⊇ yH.

Since x⊗y ≤ x⊗y for all x, y ∈ L, it follows from (3.6) that xH∪yH ⊇ (x⊗y)H
for all x, y ∈ L. Therefore H is a join hesitant fuzzy filter of L.

Theorem 3.5. A hesitant fuzzy set H of L is a join hesitant fuzzy filter of L
if and only if it satisfies the condition (3.5).

Proof. The necessity is from Lemma 3.3 and Theorem 3.4.
Conversely let H be a hesitant fuzzy set of L satisfying (3.5). Since

x ≤ x→ 1 and x→ y ≤ x→ y,

for all x, y ∈ L, it follows from (3.5) that

xH = xH ∪ xH ⊇ 1H and xH ∪ (x→ y)H ⊇ yH

for all x, y ∈ L. Hence H is a join hesitant fuzzy filter of L by Theorem 3.4.

Proposition 3.6. Every join hesitant fuzzy filter H of L satisfies the following
condition:

(∀x, y, z ∈ L) ((x→ (y → z))H ∪ (x→ y)H ⊇ (x→ (x→ z))H) .(3.7)

Proof. Let x, y, z ∈ L. Using (2.3) and (2.5), we have

x→ (y → z) = y → (x→ z) ≤ (x→ y)→ (x→ (x→ z)).

It follows from Theorem 3.5 that

(x→ (y → z))H ∪ (x→ y)H ⊇ (x→ (x→ z))H.

This completes the proof.
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Theorem 3.7. A hesitant fuzzy set H of L is a join hesitant fuzzy filter of L
if and only if H satisfies the condition (3.3) and

(∀x, y, z ∈ L) ((x→ (y → z))H ∪ yH ⊇ (x→ z)H) .(3.8)

Proof. Assume that H is a join hesitant fuzzy filter of L. Then the condition
(3.3) is valid. Using (3.4) and (2.3), we have

(x→ z)H ⊆ yH ∪ (y → (x→ z))H
= yH ∪ (x→ (y → z))H

for all x, y, z ∈ L.
Conversely, let H be a hesitant fuzzy set of L satisfying (3.3) and (3.8).

Taking x := 1 in (3.8) and using (2.1), we have

zH = (1→ z)H ⊆ (1→ (y → z))H ∪ yH
= (y → z)H ∪ yH

for all y, z ∈ L. Thus H is a join hesitant fuzzy filter of L by Theorem 3.4.

Proposition 3.8. Every join hesitant fuzzy filter H of L satisfies the following
condition:

(∀a, x ∈ L) (aH ⊇ ((a→ x)→ x)H) .(3.9)

Proof. If we take y := (a→ x)→ x and x := a in (3.4), then

((a→ x)→ x)H ⊆ aH ∪ (a→ ((a→ x)→ x))H
= aH ∪ ((a→ x)→ (a→ x))H
= aH ∪ 1H = aH.

This completes the proof.

Theorem 3.9. A hesitant fuzzy set H of L is a join hesitant fuzzy filter of L
if and only if it satisfies the following conditions:

(∀x, y ∈ L) (xH ⊇ (y → x)H) ,(3.10)

(∀x, a, b ∈ L) (aH ∪ bH ⊇ ((a→ (b→ x))→ x)H) .(3.11)

Proof. Assume that H is a join hesitant fuzzy filter of L. Using (3.4), (2.3),
(2.1) and (3.3), we have

(y → x)H ⊆ xH ∪ (x→ (y → x))H = xH ∪ 1H = xH,

for all x, y ∈ L.
Using (3.8) and (3.9), we get

((a→ (b→ x))→ x)H ⊆ ((a→ (b→ x))→ (b→ x))H ∪ bH ⊆ aH ∪ bH,
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for all a, b, x ∈ L.
Conversely, let H be a hesitant fuzzy set of L satisfying two conditions (3.10)

and (3.11). If we take y := x in (3.10), then xH ⊇ (x→ x)H = 1H for all x ∈ L.
Using (3.11) induces

yH = (1→ y)H = (((x→ y)→ (x→ y))→ y)H ⊆ (x→ y)H ∪ xH,

for all x, y ∈ L. Therefore H is a join hesitant fuzzy filter of L by Theorem
3.4.

Theorem 3.10. A hesitant fuzzy set H of L is a join hesitant fuzzy filter of L if
and only if the nonempty τ -exclusive set of H is a filter of L for all τ ∈ P([0, 1]).

Proof. Assume that H is a join hesitant fuzzy filter of L and let τ ∈ P([0, 1])
be such that e(H; τ) ̸= ∅. Let x, y ∈ L be such that x ∈ e(H; τ) and x → y ∈
e(H; τ). Then τ ⊇ xH and τ ⊇ (x → y)H. It follows from (3.3) and (3.4)
that 1H ⊆ xH ⊆ τ and yH ⊆ xH ∪ (x → y)H ⊆ τ . Hence 1 ∈ e(H; τ) and
y ∈ e(H; τ), and therefore e(H; τ) is a filter of L by Proposition 2.1.

Conversely, suppose that e(H; τ) is a filter of L for all τ ∈ P([0, 1]) with
e(H; τ) ̸= ∅. For any x ∈ L, let xH = δ. Then x ∈ e(H; δ) and e(H; δ) is a
filter of L. Hence 1 ∈ e(H; δ) and so xH = δ ⊇ 1H. For any x, y ∈ L, let
xH = δx and (x→ y)H = δx→y. If we take δ = δx ∪ δx→y, then x ∈ e(H; δ) and
x→ y ∈ e(H; δ) which imply that y ∈ e(H; δ). Thus

xH ∪ (x→ y)H = δx ∪ δx→y = δ ⊇ yH.

Therefore H is a join hesitant fuzzy filter of L by Theorem 3.4.

Theorem 3.11. For a hesitant fuzzy set H of L, let H∗ be a hesitant fuzzy set
of L which is given as follows:

H∗ : L→ P([0, 1]), x 7→

{
xH, if x ∈ e(H; τ),
[0, 1], otherwise,

where τ ∈ P([0, 1]) with τ ̸= [0, 1]. If H is a join hesitant fuzzy filter of L, then
so is H∗.

Proof. Suppose that H is a join hesitant fuzzy filter of L. Then e(H; τ) is
a filter of L for all τ ∈ P([0, 1]) with e(H; τ) ̸= ∅ by Theorem 3.10. Thus
1 ∈ e(H; τ), and so 1H∗ = 1H ⊆ xH ⊆ xH∗ for all x ∈ L. Let x, y ∈ L. If
x ∈ e(H; τ) and x→ y ∈ e(H; τ), then y ∈ e(H; τ). Hence

xH∗ ∪ (x→ y)H∗ = xH ∪ (x→ y)H ⊇ yH = yH∗.

If x /∈ e(H; τ) or x → y /∈ e(H; τ), then xH∗ = [0, 1] or (x → y)H∗ = [0, 1].
Thus

xH∗ ∪ (x→ y)H∗ = [0, 1] ⊇ yH∗.

Therefore H∗ is a join hesitant fuzzy filter of L.
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Theorem 3.12. If H is a join hesitant fuzzy filter of L, then the set

La := {x ∈ L | aH ⊇ xH}

is a filter of L for every a ∈ L.

Proof. Since 1H ⊆ aH for all a ∈ L, we have 1 ∈ La. Let x, y ∈ L be such that
x ∈ La and x→ y ∈ La. Then xH ⊆ aH and (x→ y)H ⊆ aH. Since H is a join
hesitant fuzzy filter of L, it follows from (3.4) that

aH ⊇ xH ∪ (x→ y)H ⊇ yH

so that y ∈ La. Hence La is a filter of L by Proposition 2.1.

Theorem 3.13. Let a ∈ L and let H be a hesitant fuzzy set of L. Then

(1) If La is a filter of L, then H satisfies the following condition:

(∀a, x, y ∈ L) (aH ⊇ xH ∪ (x→ y)H ⇒ aH ⊇ yH).(3.12)

(2) If H satisfies (3.3) and (3.12), then La is a filter of L.

Proof. (1) Assume that La is a filter of L. Let x and y be elements of L such
that

aH ⊇ xH ∪ (x→ y)H.

Then x→ y ∈ La and x ∈ La. Using (2.11), we have y ∈ La and so aH ⊇ yH.
(2) Suppose that H satisfies (3.3) and (3.12). Then 1 ∈ La by (3.3). Let x

and y be elements of L such that x ∈ La and x→ y ∈ La. Then aH ⊇ xH and
aH ⊇ (x → y)H, which imply that aH ⊇ xH ∪ (x → y)H. Thus aH ⊇ yH by
(3.12), and so y ∈ La. Therefore La is a filter of L by Proposition 2.1.

4. Join hesitant fuzzy G-filters

Definition 4.1. A hesitant fuzzy set H of L is called a join hesitant fuzzy
G-filter of L if it is a join hesitant fuzzy filter of L such that

(∀x, y ∈ L) (((x⊗ x)→ y)H ⊇ (x→ y)H) .(4.1)

Note that the condition (4.1) is equivalent to the following condition:

(∀x, y ∈ L) ((x→ (x→ y))H ⊇ (x→ y)H) .(4.2)

Example 4.2. Let L := [0, 1] (unit interval). For any a, b ∈ L, define

a ∨ b = max{a, b}, a ∧ b = min{a, b},

a→ b =

{
1, if a ≤ b,
b, otherwise,

and a⊗ b = min{a, b}.
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Then L := (L,∨,∧,⊗,→, 0, 1) is a residuated lattice. Let H be a hesitant fuzzy
set of L defined by

H : L→ P([0, 1]), x 7→

{
(0, 12 ], if x ∈ [12 , 1],

[0, 1], otherwise.

Then H is a join hesitant fuzzy G-filter of L.

Theorem 4.3. Let H be a hesitant fuzzy set of L. Then H is a join hesitant
fuzzy G-filter of L if and only if it is a join hesitant fuzzy filter of L that satisfies
the following condition:

(∀x, y, z ∈ L) ((x→ (y → z))H ∪ (x→ y)H ⊇ (x→ z)H) .(4.3)

Proof. Assume that H is a join hesitant fuzzy G-filter of L. Then H is a
join hesitant fuzzy filter of L. Note that x ≤ 1 = (x → y) → (x → y),
and thus x → y ≤ x → (x → y) for all x, y ∈ L. It follows from (3.1) that
(x→ y)H ⊇ (x→ (x→ y))H. Combining this and (4.2), we have

(x→ y)H = (x→ (x→ y))H,(4.4)

for all x, y ∈ L. Using (3.7) and (4.4), we have

(x→ (y → z))H ∪ (x→ y)H ⊇ (x→ z)H,

for all x, y, z ∈ L.
Conversely, let H be a join hesitant fuzzy filter of L that satisfies the condi-

tion (4.3). If we put y = x and z = y in (4.3) and use (2.1) and (3.3), then

(x→ y)H ⊆ (x→ (x→ y))H ∪ (x→ x)H
= (x→ (x→ y))H ∪ 1H
= (x→ (x→ y))H,

for all x, y ∈ L. Therefore H is a join hesitant fuzzy G-filter of L.

Theorem 4.4. Let H be a hesitant fuzzy set of L that satisfies the condition
(3.3) and

(∀x, y, z ∈ L) (xH ∪ ((y → z)→ (x→ y))H ⊇ yH) .(4.5)

Then H is a join hesitant fuzzy G-filter of L.

Proof. If we take z := 1 in (4.5) and use (2.1), then

xH ∪ (x→ y)H = xH ∪ (1→ (x→ y))H
= xH ∪ ((y → 1)→ (x→ y))H
⊇ yH.
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Hence H is a join hesitant fuzzy filter of L by Theorem 3.4. Let x, y, z ∈ L.
Since

x→ (y → z) ≤ (x→ y)→ (x→ (x→ z))

by (2.3), (2.4) and (2.5), we have

(x→ (y → z))H ⊇ ((x→ y)→ (x→ (x→ z)))H

by (3.1). It follows that

(x→ y)H ∪ (x→ (y → z))H ⊇ (x→ y)H ∪ ((x→ y)→ (x→ (x→ z)))H
⊇ (x→ (x→ z))H
⊇ (((x→ z)→ z)→ (x→ z))H
= (((x→ z)→ z)→ (1→ (x→ z)))H
⊇ (x→ z)H.

Therefore H is a join hesitant fuzzy G-filter of L by Theorem 4.3.

The following example shows that any join hesitant fuzzy G-filter may not
satisfy the condition (4.5).

Example 4.5. The join hesitant fuzzy G-filter H of L in Example 4.2 does not
satisfy the condition (4.5) since

2
3H ∪ ((13 →

1
4)→ (23 →

1
3))H = 2

3H ∪ 1H = τ + U = 1
3H.

Proposition 4.6. For a join hesitant fuzzy filter H of L, the condition (4.5) is
equivalent to the following condition.

(∀x, y ∈ L) (((x→ y)→ x)H ⊇ xH) .(4.6)

Proof. Assume that the condition (4.5) is valid. It follows from (3.3) and (2.1)
that

((x→ y)→ x)H = 1H ∪ ((x→ y)→ x)H
= 1H ∪ ((x→ y)→ (1→ x))H
⊇ xH

for all x, y ∈ L.
Conversely, suppose that the condition (4.6) is valid. It follows from (2.3)

and (3.4) that

xH ∪ ((y → z)→ (x→ y))H = xH ∪ (x→ ((y → z)→ y))H
⊇ ((y → z)→ y)H ⊇ yH

for all x, y ∈ L.
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Combining Theorem 4.4 and Proposition 4.6, we have the following result.

Theorem 4.7. Every join hesitant fuzzy filter satisfying the condition (4.6) is
a join hesitant fuzzy G-filter.

Proposition 4.8. Every join hesitant fuzzy filter H of L with the condition
(4.5) satisfies the following condition.

(∀x, y ∈ L) (((x→ y)→ y)H ⊇ ((y → x)→ x)H) .(4.7)

Proof. Let H be a join hesitant fuzzy filter of L that satisfies the condition
(4.5) and let x, y ∈ L. Since x→ ((y → x)→ x) = (y → x)→ (x→ x) = (y →
x)→ 1 = 1, that is, x ≤ (y → x)→ x, we have ((y → x)→ x)→ y ≤ x→ y by
(2.4). It follows from (2.6), (2.3) and (2.4) that

(x→ y)→ y ≤ (y → x)→ ((x→ y)→ x)

= (x→ y)→ ((y → x)→ x)

≤ (((y → x)→ x)→ y)→ ((y → x)→ x).

Using (3.1), (3.3), (2.1), (2.3) and (4.5), we have

((x→ y)→ y)H ⊇ ((((y → x)→ x)→ y)→ ((y → x)→ x))H
= 1H ∪ (1→ ((((y → x)→ x)→ y)→ ((y → x)→ x)))H
= 1H ∪ ((((y → x)→ x)→ y)→ (1→ ((y → x)→ x)))H
⊇ ((y → x)→ x)H.

Hence the condition (4.7) is valid.

Corollary 4.9. Every join hesitant fuzzy filter H of L with the condition (4.6)
satisfies the condition (4.7).

Proposition 4.10. Every join hesitant fuzzy G-filter H of L with the condition
(4.7) satisfies the condition (4.5).

Proof. Let H be a join hesitant fuzzy G-filter of L that satisfies the condition
(4.7). For any x, y, z ∈ L, we have

zH ∪ ((x→ y)→ (z → x))H = zH ∪ (z → ((x→ y)→ x))H
⊇ ((x→ y)→ x)H
⊇ ((x→ y)→ ((x→ y)→ y))H
⊇ ((x→ y)→ y)H
⊇ ((y → x)→ x)H

by (2.3), (3.4), (2.6), (3.1), (4.2) and (4.7). Since

(x→ y)→ x ≤ y → x ≤ z → (y → x),
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it follows from (3.1) that ((x→ y)→ x)H ⊇ (z → (y → x))H and so from (3.4)
that

zH ∪ ((x→ y)→ (z → x))H ⊇ zH ∪ ((x→ y)→ x)H
⊇ zH ∪ (z → (y → x))H
⊇ (y → x)H.

Therefore

zH ∪ ((x→ y)→ (z → x))H ⊇ (y → x)H ∪ ((y → x)→ x)H ⊇ xH.

Hence the condition (4.5) is valid.

Theorem 4.11. Let H be a join hesitant fuzzy filter of L. Then H is a join
hesitant fuzzy G-filter of L if and only if the following condition holds:

(∀x ∈ L) ((x→ (x⊗ x))H = 1H) .(4.8)

Proof. Suppose that H is a join hesitant fuzzy G-filter of L. Since x → (x →
(x⊗x)) = 1 for all x ∈ L, we have (x→ (x→ (x⊗x)))H = 1H. It follows from
(4.3) and (2.1) that

(x→ (x⊗ x))H ⊆ (x→ (x→ (x⊗ x)))H ∪ (x→ x)H = 1H

and so from (3.3) that (x→ (x⊗ x))H = 1H for all x ∈ L.
Conversely, let H be a join hesitant fuzzy filter of L which satisfies the

condition (4.8) and let x, y ∈ L. Since

x→ (x→ y) = (x⊗ x)→ y ≤ (x→ (x⊗ x))→ (x→ y)

by (2.3) and (2.5), it follows from (3.1) that

(x→ (x→ y))H ⊇ ((x→ (x⊗ x))→ (x→ y))H.

Hence, we have

(x→ y)H ⊆ ((x→ (x⊗ x))→ (x→ y))H ∪ (x→ (x⊗ x))H
⊆ (x→ (x→ y))H ∪ (x→ (x⊗ x))H
= (x→ (x→ y))H ∪ 1H
= (x→ (x→ y))H

by using (3.4), (4.8) and (3.3). Hence H is a join hesitant fuzzy G-filter of L.

Theorem 4.12. A hesitant fuzzy set H of L is a join hesitant fuzzy G-filter of
L if and only if it is a join hesitant fuzzy filter of L with an additional condition:

(∀x, y ∈ L) ((x→ y)H = (x→ (x→ y))H) .(4.9)
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Proof. Suppose that H is a join hesitant fuzzy G-filter of L. Then H is a join
hesitant fuzzy filter of L. Let x, y ∈ L. Since x→ y ≤ x→ (x→ y), we have

(x→ y)H ⊇ (x→ (x→ y))H

by (3.1). Hence (x→ y)H = (x→ (x→ y))H by using (4.2).
Conversely, let H be a join hesitant fuzzy filter of L with the condition (4.9).

It follows from Proposition 3.6 that

(x→ (y → z))H ∪ (x→ y)H ⊇ (x→ (x→ z))H = (x→ z)H

for all x, y, z ∈ L. Therefore H is a join hesitant fuzzy G-filter of L by Theorem
4.3.

Proposition 4.13. Every join hesitant fuzzy G-filter H of L satisfies the fol-
lowing conditions:

(∀x, y, z ∈ L) ((x→ (y → z))H ⊇ ((x→ y)→ (x→ z))H) .(4.10)

(∀x, y, z ∈ L) ((x→ (y → z))H = ((x→ y)→ (x→ z))H) .(4.11)

Proof. Let H be a join hesitant fuzzy G-filter of L. Using (2.3), (4.3), (2.5)
and (3.3), we have

((x→ y)→ (x→ z))H = (x→ ((x→ y)→ z))H
⊆ (x→ (y → z))H ∪ (x→ ((y → z)→ ((x→ y)→ z)))H
= (x→ (y → z))H ∪ ((y → z)→ ((x→ y)→ (x→ z)))H
= (x→ (y → z))H ∪ 1H
= (x→ (y → z))H

for all x, y, z ∈ L. Thus (4.10) holds. Since (x→ y)→ (x→ z) ≤ x→ (y → z)
for all x, y, z ∈ L, it follows from (3.1) that ((x → y) → (x → z))H ⊇ (x →
(y → z))H and so that

(x→ (y → z))H = ((x→ y)→ (x→ z))H

for all x, y, z ∈ L by using (4.10).

Proposition 4.14. Assume that L satisfies the divisibility, that is, x ∧ y =
x⊗ (x→ y) for all x, y ∈ L. If H is a join hesitant fuzzy G-filter of L satisfying
(4.11), then the following equality is true.

(∀x, y, z ∈ L) (((x⊗ y)→ z)H = ((x ∧ y)→ z)H) .(4.12)

Proof. Using the divisibility and (2.3), we have

(x ∧ y)→ z = (x⊗ (x→ y))→ z = (x→ y)→ (x→ z)
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for all x, y, z ∈ L. It follows from (2.3) and (4.11) that

((x⊗ y)→ z)H = (x→ (y → z))H
= ((x→ y)→ (x→ z))H
= ((x ∧ y)→ z)H

for all x, y, z ∈ L.

Theorem 4.15. Let L satisfy the divisibility, that is, x ∧ y = x ⊗ (x → y) for
all x, y ∈ L. Then every join hesitant fuzzy filter H of L satisfying the condition
(4.12) is a join hesitant fuzzy G-filter of L.

Proof. Using Proposition 3.6, (2.3) and (4.12), we have

(x→ (y → z))H ∪ (x→ y)H ⊇ (x→ (x→ z))H
= ((x⊗ x)→ z)H = ((x ∧ x)→ z)H = (x→ z)H

for all x, y, z ∈ L. Therefore H is a join hesitant fuzzy G-filter of L by Theorem
4.3.

Theorem 4.16. Let H and G be join hesitant fuzzy filters of L such that 1H =
1G and H ⊇ G, i.e., xH ⊇ xG for all x ∈ L. If H is a join hesitant fuzzy G-filter
of L, then so is G.

Proof. Assume that H is a join hesitant fuzzy G-filter of L. Using (2.3) and
(2.1), we have

x→ (x→ ((x→ (x→ y))→ y)) = (x→ (x→ y))→ (x→ (x→ y)) = 1

for all x, y ∈ L. Thus

(x→ ((x→ (x→ y))→ y))G ⊆ (x→ ((x→ (x→ y))→ y))H
= (x→ (x→ ((x→ (x→ y))→ y)))H
= 1H = 1G

by hypotheses and (4.4), and so

(x→ ((x→ (x→ y))→ y))G = 1G

for all x, y ∈ L by (3.3). Since G is a join hesitant fuzzy filter of L, it follows
from (3.4), (2.3) and (3.3) that

(x→ y)G ⊆ (x→ (x→ y))G ∪ ((x→ (x→ y))→ (x→ y))G
= (x→ (x→ y))G ∪ (x→ ((x→ (x→ y))→ y))G
= (x→ (x→ y))G ∪ 1G
= (x→ (x→ y))G

for all x, y ∈ L. Therefore G is a join hesitant fuzzy G-filter of L.
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modified structure of prey predator model is used, theoretical properties of the model
are presented, the boundedness of the model is shown and the dynamical behavior of
the model is proved as globally stable. Semi analytical solution by using differential
transformation method (DTM) is obtained for non- dimensional prey predator model
with Holling type I in the case of persistence dynamics of the model. The results seem
to satisfy biological domain of the problem. We conclude that the results of differential
transformation method is in good agreement with numerical results from interpolation
method (IM) by using MATHEMATICA program.

Keywords: prey predator model, differential transform method, boundedness, stabil-
ity.

1. Introduction

Nonlinear differential equations are used to describe many real world phenom-
ena as prey predator interactions. Prey predator models are classified as one of
the most important applications in applied mathematics, biology, and ecology
sciences. Lotka-Volterra model is considered as the original model to formulate
prey-predator interactions [1]. However, numerous extensions of the original
model have been applied to describe particular scenarios which involve surround-
ings and nature of species by many researchers [2]-[11] problems of biological
and ecological interest are described in the form of differential equations with
appropriate initial or boundary conditions.

Usually, difficulty arises in the solution of nonlinear system, so many numer-
ical methods and semi-analytical methods are developed for finding the solution
of these problems by many researchers.

Differential transform method (DTM) is applied for solving specific kind
of system of nonlinear differential equations. DTM is considered among the
few semi analytical methods to overcome the difficulties that are caused by the
nonlinear terms. The method gives an analytical solution in the form of a series
for differential equations. It formulize the Taylor series in a totally different
approach so it is a semi-numerical and semi-analytic method. Zhou [12] proposed
firstly the idea of differential transform (see Ref. [1, 8, 9, 13, 14, 15, 16]) and it
was used for solving linear and non-linear initial value problems in electric circuit
analysis. Simultaneously, Pukhov [17] also studied differential transformation
method. This method depends on transforming IVP or BVP into a recurrence
relation that finally leads to the solution of a system of algebraic equations as
coefficients of a power series solution. The method is helpful to obtain both
semi analytical and approximate solutions of linear and non-linear IVPs. This
method avoids discretization, linearization or perturbation, big computational
work and round-off errors.

Several authors have employed DTM for the solution of problems involved in
non-linear phenomenon. Moon et al. [18] applied the DTM for solving some non-
linear differential equations. Warade and Chopade [19] solved initial value prob-
lems involving fourth order ordinary differential equations by DTM. Chang and
Chang [20] introduced developed algorithm for calculating one-dimensional dif-
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ferential transform of nonlinear functions. Iftikhar et al. [21] used the DTM for
solving linear and nonlinear thirteenth order boundary value problems. Hatami
and Ganji [22] used Lagrangian and high accuracy multi- step differential trans-
formation method on the motion of a spherical particle. Hussain et al. [23]
obtained analytical solution of magnetohydrodynamic flow of Newtonian fluids
over a stretching sheet by using DTM. Hatami and Jing [24] used DTM for
solving the coupled nonlinear differential equations in fluid mechanics problems.
Sepasgozar et al. [25] applied DTM to obtain the solution of momentum and
heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel
with porous wall. Through the literature, we observe that DTM is used for
solving different real applications as semi analytical method.

Our objective for this paper is to introduce semi analytical solution of real
world problem. Differential transform method (DTM) is applied for solving
different style of prey predator model with Holling type I, which has been used
in Alebraheem and Abu Hasan, [3]. The logistic law describes the growth rates
of the model of the prey and predator. The persistence is considered as one of
the main important dynamic behaviors. The new idea here we use differential
transform method to solve the model with persistence dynamic behaviors. The
persistence condition of this model is determined to give biological meaning
and validation of the parametric values. We introduce comparison between
differential transform method and approximation method in case of persistence
dynamics of the model.

2. Mathematical model

The system of equations is written in non-dimensional form as

da

dt
= a(1− a)− αab,(2.1)

db

dt
= −ub+ eαab− eαb2(2.2)

The biological meanings of the parameters are explained as follows: The intrinsic
growth rate of prey is 1. α measures efficiency of the search and the capture of
predators is b, u is the death rates of predators. f(a) = αa denotes the functional
response which is defined as consumption rate of prey by a predator, g(a) = eαa,
g(a) represents numerical response of the predators y that characterize changing
in the population of predators through prey consumption. e represents efficiency
of converting consumed prey into predator births. Since the biological meaning
is taken into consideration, all the parameters and initial conditions of the model
are supposed positive values. The initial conditions of system (1) are:

(2.3) a(0) = a0, b(0) = b0 where 0 < a0, b0 < 1.

However, the initial conditions are 0 < a0, b0 ≤ 1 because the carrying capacity
of non dimensional system (2.3) is 1, so the maximum values of initial conditions
are 1, while they are greater than zero because of biological meaning.
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3. The boundedness of the model

3.1 Theorem

The solution of the system (2.1-2.2) for t ≥ 0 in R3
+ is bounded.

Proof. We show that the first equation of the system (2.1-2.2) is bounded
through

(3.1)
da

dt
≤ a(1 + a).

The solution of the equation 2.2 is a(t) = 1
(1+qe(−t)) , q = (1−a0)

a0
is the constant of

integration. then a(t) ≤ 1 ∀ t ≥ 0. Then, we prove that a(t) + b(t) ≤ L.∀t ≥ 0.
Let D(t) = a(t) + b(t). The time derivative of the function D

dD

dt
=

da

dt
+
db

dt
= ((1− a)− αb)a+ (−u+ eαa− eαb)b.(3.2)

However, the solutions initiating remain in nonnegative quadrant in R3
+ and all

the parameters are positive; it can be assumed the following

(3.3)
dD

dt
≤ ((1− a))a+ (−u+ eαa− eαb)b.

It can be concluded that

(3.4) max
(R+)

a(1− a) =
1

4
.

By substituting in (3.3), it become as follows

dD

dt
≤ 1

4
+ (−u+ eαa− eαb)b,(3.5)

dD

dt
≤ 1

4
+ (−u+ eαa− eαb)b+D(t)−D(t).(3.6)

The equation (3.6) can be written as follows

(3.7)
dD

dt
+D(t) ≤ 1

4
+ a+ (−u+ eαa− eαb+ 1)b.

Since a(t) ≤ 1, then

(3.8)
dD

dt
+D(t) ≤ 5

4
+ (−u+ eα− eαb+ 1)b.

But

(3.9) max
(R+)

(−u+ eα− eαb+ 1)b =
(1 + eα− u)2

4e
.



APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING ... 119

So Eq. (3.8) becomes:

(3.10)
dD

dt
+D(t) ≤ L,

where

(3.11) L =
1

4
(5 +

(1 + eα− u)2

4eα
).

Consequently,

(3.12) D(t) ≤ L+ σe−t,

where σ is a constant of integration. t→∞; Then D(t) ≤ L.

4. The dynamic behavior

One of the main properties of dynamic systems is stability. The stability is stud-
ied to determine properties of solutions or equations in differential equations,
consequently the dynamic behavior will be explained. The system has three non-
negative equilibrium points that are: The first point is E0 = (0, 0) exists without
conditions on parameters. The second point is E1 = (1, 0) exists without condi-

tions on parameters. The third point is E2 = (â, b̂) = ( (u+e)
(eα+e) ,

(eα−u)
(eα2+eα)

), which is

called persistence point. The equilibrium point E2 is positive under the follow-
ing condition: eα > u We are interested to study the dynamic behaviors in case
the permanent coexistence of prey predator system, so we study the coexistence
point E2 = (â, b̂) = ( (u+e)

(eα+e) ,
(eα−u)

(eα2+eα)
), it represents the permanent coexistence

(i.e. persistence) of prey predator system.

4.1 Theorem

The persistence equilibrium point E2 is globally asymptotically stable inside the
positive quadrant of a-b plane.

Proof. Let G(a, b) = 1
ab . G is a Dulac function, it is continuously differentiable

in the positive quadrant of x-y plane A = (a, b) | a > 0, b > 0, Hsu [26].

N1(a, b) = a(1− a)− αab,
N2(a, b) = −ub+ eαab− αeb2.(4.1)

Thus, ∆(GN1, GN2) = (∂(GN1))
∂a + (∂(GN2))

∂b = −1
b −

eα
a . It is observed that

∆(GN1, GN2) is not identically zero and does not change sign in the positive
quadrant of a-b plane. So by Bendixson-Dulac criterion, there is no periodic so-
lution inside the positive quadrant of a− b plane. E2 is globally asymptotically
stable inside the positive quadrant of a− b plane. In general, we conclude that
the dynamic behavior of this system is stable. Kolmogorov analysis [27] is ap-
plied to find the persistence condition of the system (2.1-2.2), so the persistence
condition is

(4.2) 0 <
u

eα
< 1.
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4.2 Corollary

The persistence dynamic behavior of the system (2.1-2.2) is globally asymptot-
ically stable.

5. Approximate analytical solution

The basic definitions and rules [13] of the DTM are summarized below:

5.1 Basic definitions and concepts

If u(t) is analytic in the domain T, then it will be differentiated continuously
with respect to time t, as shown in equation

(5.1)
(dnu(t))

(dtn)
= φ(t, n), ∀ t ε T.

If φ(t, n) = φ(ti, n), where n belongs to the set of non-negative integers, denoted
as the n-domain. The Eq. (5.1) can be rewritten as:

(5.2) U(n) = φ(ti, n) = [
(dnu(t))

(dtn)
] |(t=ti),

where the spectrum of u(t) at t = ti. is denoted by U(n). u(t) can be represented
by Taylor’s series as follows:

(5.3) u(t) =

∞∑
n=0

[
(t− ti)n

n!
]U(n).

The Eq. 5.2 is inverse of U(n). The combination of eq. 5.2 and eq. 5.3 yields:

(5.4) u(t) =

∞∑
n=0

[
(t− ti)n

n!
]U(n) = D−1U(n).

The symbol ”D” denotes the differential transformation process. By using the
differential transformation, a differential equation u(t) becomes:

(5.5) u(t) =

∞∑
n=0

[
(t− ti)n

n!
]U(n) +R(k+1)(t),

where R(k+1)(t) is the remainder. If F (n) and G(n) are transformed functions
corresponding to the given functions f(t) and g(t), the operation properties of
DTM are as follows:
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Base function Transformed Functions
q(t) = u(t)± v(t) Q(n) = U(n)± V (n)
q(t) = αu(t) Q(n) = αU(n)

q(t) = du(t)
dt Q(n) = (n+ 1)U(n+ 1)

q(t) = d2u(t)
d(t) Q(n) = (n+ 1)(n+ 2)U(n+ 2)

q(t) = dmu(t)
d(t)m

Q(n) = (n+ 1)(n+ 2)...(n+m)U(n+m)

q(t) = u(t)v(t) Q(n) =
∑k

l = 0v(l)U(n− l)
q(t) = tm Q(n)δ(n−m), δ(n−m)

q(t) = exp(γt) Q(n) = γn

n!

Q(T ) = (1 + t)m Q(n) = m(m−1)...(m−n+1)
n!

q(t) = sin(ωt+ α) Q(n) = ωn

n! sin((πn2 + ω))

q(t) = cos(ωt+ α) Q(n) = ωn

n! sin((πn2 + ω))

Table 1. Some basic transformations related to Differential Transform Method

By applying differential transformation method (DTM), the system (2.1)
and (2.2) is transformed to yield recurrence relation

(n+ 1)A(n+ 1) = A(n)−
n∑

(n1=0)

A(n1)A(n− n1)

− α
n∑

(n1=0)

A(n1)B(n− n1)(5.6)

(n+ 1)B(n+ 1) = −uB(n) + eα

n∑
(n1=0)

A(n1)B(n− n1)

− eα

n∑
(n1=0)

B(n1)B(n− n1).(5.7)

We choose the following appropriate valuesA(0) = 0.5, B(0) = 0.2, e = 0.5, α =
1.32, u = 0.52, when n = 0, 1, 2, 3, 4, 5, 6.

Inverse relation

a(t) = 0.5 + 0.118t+ 0.005676t2 − 0.0057915t3 + 0.0019652t4

− 0.00088551t5(5.8)

b(t) = 0.2− 0.0644t+ 0.0224068t2 − 0.0057254t3 + 0.0013109t4

− 0.00613653t5(5.9)

6. Results

In this section, the system of coupled non -linear differential equations (2.1) and
(2.2) have been solved analytically by applying differential transform method.
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The values of the parameters of interest have been chosen appropriately for satis-
fying the persistence of system (2.1)-(2.2). The accuracy of the results has been
checked and found in good agreement by their comparison with the numerical
results from interpolation method (IM) which is obtained by using MATHE-
MATICA program (see tables 2 and 3). In addition, the graphical patterns of
the results do correspond to the biological configuration of the problem.

Time DTM IM ∆=|DTM-IM|
0.0 0.5 0.5 0.00
0.1 0.511851 0.511850 0.000001
0.2 0.523784 0.523774 0.00001
0.3 0.535768 0.535732 0.000036
0.4 0.547779 0.547687 0.000092
0.5 0.559790 0.559602 0.000188
0.6 0.571778 0.571443 0.000335
0.7 0.583718 0.583175 0.000543
0.8 0.595582 0.594769 0.000813
0.9 0.607342 0.606194 0.001148
1.0 0.618964 0.617425 0.001539

Table 2. Comparative results of the prey equation (2.1) with absolute error
obtained through DTM and IM.

Time DTM IM ∆=|DTM-IM|
0.0 0.2 0.2 0.00
0.1 0.193778 0.193778 0.00
0.2 0.187971 0.187972 0.000001
0.3 0.182538 0.182552 0.000014
0.4 0.177429 0.177489 0.00006
0.5 0.172576 0.172758 0.000182
0.6 0.167882 0.168336 0.000454
0.7 0.163219 0.164201 0.000982
0.8 0.158415 0.160334 0.001919
0.9 0.153252 0.156715 0.003463
1.0 0.147456 0.153328 0.005872

Table 3. Comparative results of the predator equation (2.2) with absolute error
obtained through DTM and IM



APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING ... 123

Figure 1: I M results of prey equation (1.a).

Figure 2: DTM results of prey equation (1.a).

Figure 3: Comparative results of prey equation (1.a) when using IM and DTM.
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Figure 4: I M results of predator equation (1.b).

Figure 5: DTM results of predator equation (1.b).

Figure 6: Comparative results of predator equation (1.b) when using IM and
DTM.



APPLICATION OF DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING ... 125

7. Discussion

Fig 1 represents results of prey equation (2.1) through using IM by executing
Mathematica, while the results of prey equation (2.1) using DTM are denoted
through Fig 2. We notice through Fig 3 the comparison between both methods.
In the same manner, Fig 4 represents results of predator equation (2.2) through
using IM by executing Mathematica program, while the results of predator equa-
tion (2.2) using DTM are denoted through Fig 5. We notice that Fig 6 describes
the comparison between both methods. The results show excellent approxima-
tions and the figures explain very close correspondence for both equations with
only five terms of differential transformation method.

8. Conclusions

The prey predator model with Holing type I, has been considered for semi an-
alytical solution, using differential transform method. The non-linear coupled
equations have been solved smoothly without any rigorous computational work.
DTM has been employed for solving the prey predator model in the persistence
dynamics. The method worked well with efficacy and efficiency. We obtained
close correspondence results of the model between the interpolation method (IM)
and differential transform method (DTM) with only five terms. It is concluded
that DTM can be used to solve applied problems of non-linear phenomena sim-
ilar to this work.
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Abstract. In connection with the theory of (m, q)-isometries mappings on metric
spaces ([3]) and the theory ofm-quaternion-valued G-isometric mappings ([1]), we intro-
duce the concept of (m,∞)-generalized isometric mappings on a generalized real-valued
metric space. We present some essential properties of these classes of mappings.

Keywords: metric space, G-metric space, quaternion space, m-isometry.

1. Introduction and preliminaries results

In [9] and [10], the authors Mustafa and Sims introduced the concept of gen-
eralized metric spaces , which are called a real G-metric spaces as general-
ization of metric space (E, dR). A generalization of real metric and G-metric
spaces to complex-valued metric space (E, dC) and to complex-valued G-metric
space (E,GC) has been presented by many authors in the last years in papers
[2], [4], [5], [8] and [12]. Very recently, in paper [1] the present author introduced
and study the concept of quaternion-valued G-metric spaces (E,GH).

Definition 1.1 ([9], [10]). Let E be an non-empty set and let GR : E×E×E −→
R+ = [0, ∞) be a function satisfying the following conditions

(1) GR(u, v, w) = 0 if u = v = w;

(2) 0 < GR(u, u, v) for all u, v ∈ E with u ̸= v;

(3) GR(u, u, v) ≤ GR(u, v, w) for all u, v, w ∈ E with v ̸= w;

(4) GR(u, v, w) = GR(u,w, v) = GR(v, w, u) = ... (symmetry in all three
variables);

(5) GR(u, v, w) ≤ GR(u, a, a) + GR(a, v, w), for all u, v, w, a ∈ E (rectangle
inequality).

Then the function GR is called a real-valued generalized metric or, more
specifically, a G-metric on E and the pair (E,GR) is called a real G-metric
space.

Based on this notion, many fixed point results under different conditions
have been obtained for a variety of mappings in this new setting.
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A G-metric space (E,GR) is called symmetric G-metric space if GR(u, v, v) =
GR(u, u, v), for all u, v ∈ E. For k = 1, . . . , d , let (Ek, G

k
R) be G-metric spaces

and let E = E1 × E2 × . . . × Ed, then natural definitions for G-metrics on the
product space E would be

GmR (u, v, w) = GmR ((u1, . . . , ud), (v1, . . . , vd), (w1, . . . , wd))

= max
k∈{1,...,d}

{GkR(uk, vk, wk)}

or

GsR(u, v, w) = GsR((u1, . . . , ud), (v1, . . . , vd), (w1, . . . , wd)

=

d∑
k=1

GkR(uk, vk, wk))

for all u = (u1, . . . , ud), v = (v1, . . . , vd), w = (w1, . . . , wd) ∈ E.
It was observed in [10] that in general (E, GmR ) and (E, GsR) are not G-

metrics spaces. However, it was proved that (E, GmR ) (resp.(E, GsR)) is a
symmetric G-metric space if and only if each (Ek, G

k
R) is a symmetric G-metric

space for k = 1, . . . , d.
The set of real quaternions, denoted by H, is defined by

H := {a0 + a1i+ a2j + a3k, a0, a1, a2, a3 ∈ R },

where i2 = j2 = k2 = ijk = −1, ij = k, jk = i, ki = j. Note that ij =
−ji, ik = −ki, jk = −kj and there is an operation on H called quaternionic
conjugation which is defined by

(a0 + a1i+ a2j + a3k) = a0 − a1i− a2j − a3k.

Every element of H has an additive inverse − if q = a0+a1i+a2j+a3k ∈ H then
−q = (−a0) + (−a1)i+ (−a2)j + (−a3)k ∈ H. For all q ∈ H, Re(q) := 1

2(q + q)
is the real part of q and Im(q) := 1

2(q − q) is the imaginary part of q.
The sum of q1 = a0+ a1i+ a2j+ a3k and q2 = b0+ b1i+ b2j+ b3k is defined

as
q1 + q2 = (a0 + b0) + (a1 + b1)i+ (a2 + b2)j + (a3 + b3)k ∈ H.

We refer the reader to the paper [11] for more details.
In [6] the authors have considered a partial order on H as follows:

q1 4 q2 if and only if Re(q1) ≤ Re(q2),
Ims(q1) ≤ Ims(q2), q1, q2 ∈ H; s = i, j, k;

where Imi(qr) = a1r, Imj(qr) = a2r, Imk(qr) = a3r,

qr = a0r + a1ri+ q2rj + a3rk, r = 1, 2.

Following the partial order defined on H, the present author has been appar-
ently the first one introduce the notion of generalized quaternion metric space.
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Definition 1.2 ([1]). Let E be an non-empty set and let GH : E ×E ×E → H
be a function satisfying the following conditions:

(1) GH(u, v, w) = 0H if u = v = w;
(2) 0H ≺ GH(u, u, v) for all u, v ∈ E with u ̸= v;
(3) GH(u, u, v) 4 GH(u, v, w) for all u, v, w ∈ E with v ̸= w;
(4) GH(u, v, w) = GH(u,w, v) = GH(v, w, u) = ... (symmetry in all three

variables);
(5) GH(u, v, w) 4 GH(u, a, a)+GH(a, v, w), (for all u, v, w, a ∈ E, (rectangle

inequality).
Then the function GH is called a quaternion-valued generalized metric or,

more specifically, a quaternion-valued GH-metric on E and the pair (E,GH) is
called a quaternion-valued G-metric space.

In the paper [3], Bermúdez, Martinón and Müller introduced the notion of
(m, q)-isometry for maps on a real-valued metric space (E, dR). A map S : E →
E is called an (m, q)-isometric mapping for positive integer m ≥ 1 and for real
q > 0, if it satisfies

m∑
k=0

(−1)m−k
(
m

k

)
d(Sku, Skv)q = 0, ∀ u, v ∈ E.

Definition 1.3 ([1]). (i) Let (E,GR) be a real-valued G-metric space. A map
S : E → E is called an (m, q)-G-isometry for some positive integer m and q > 0
if, for all u, v, w ∈ E

m∑
r=0

(−1)m−r
(
m

r

)
GR(S

ru, Srv, Srw)q = 0.

(ii) Let (E,GH) be a quaternion-valued G-metric space. A map S : E → E is
called an m-quaternion-valued G-isometric map for some positive integer m if,
for all u, v, w ∈ E

m∑
r=0

(−1)m−r
(
m

r

)
GH(Sru, Srv, Srw) = 0H.

In the following, we collect some properties of (m, q)-G-isometric mappings.
The proof of the following theorem is very similar to ([1], Proposition 3.1,

Theorem 3.1, Theorem 3.3) we omit it.

Theorem 1.1. Let (E,GR) be a real-valued G-metric space and let S : E −→ E
be an mapping. The following statements hold:

(1) if S is an (m, q)-G-isometry, then S is an (n, q)-G-isometry for all pos-
itive integer n ≥ m.

(2) if S invertible (m, q)-G-isometry, then S−1 is an (m, q)-G-isometry.
(3) if S is an (m, q)-G-isometry, then Tn is an (m, q)-G-isometry for all

n = 1, 2, . . . , .
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Theorem 1.2. Let (X,GR) be a real-valued G-metric space and S,R : E → E
be a maps such that RS = SR. If S is an (m, q)-G-isometry and R is an
(n, q)-G-isometry, then SR is an (m+ n− 1, q)-G-isometry.

The proof of this theorem is very similar to ([1], Theorem 3.4).
For mare details about the concept ofm-quaternion valued G-isometries, the

reader can refer to [1].

2. (m,∞)-G-isometric mappings in generalized real metric space

In this section, we present the definition of (m,∞)-G-isometric mapping on a
real-valued metric spaces and give the main results of this topic. Similar results
for (m,∞)-isometric operators on Banach space were proved by P. Hoffmann et
al. in [7].

Let S : E → E be an (m, q)-G-isometric mapping. It obvious that for all
u, v, w ∈ E

m∑
k=0

(−1)m−k
(
m

k

)
GR(S

ku, Skv, Skw)q = 0

⇔
∑

k∈{0,...,m}
k even

(
m

k

)
GR(S

ku, Skv, Skw)q =
∑

k∈{0,...,m}
k odd

(
m

k

)
GR(S

ku, Skv, Skw)q

⇔ g

( ∑
k∈{0,...,m}
k even

(
m

k

)
GR(S

ku, Skv, Skw)q
) 1

q

= g

( ∑
k∈{0,...,m}
k odd

(
m

k

)
GR(S

ku, Skv, Skw)q
) 1

q

.

By taking the limit as q → ∞, we make the following definition of an (m,∞)-
G-isometric mapping.

Definition 2.1. Let m be a positive integer m ≥ 1. An mapping S acting on a
generalized real-valued metric space (E,GR) is called an (m,∞)-G-isometry (or
(m,∞)-generalized isometry) if for all u, v, w ∈ E

max
j∈{0....,m}
(j even)

{GR(S
ju, Sjv, Sjw)} = max

j∈{0,...,m}
(j odd)

{GR(S
ju, Sjv, Sjw)}.

Remark 2.1. (i) Every (1,∞)-G-isometric mapping S is an G-isometric map-
ping i.e.,S satisfies

GR(Su, Sv, Sw) = GR(u, v, w) for all u, v, w ∈ E.

(ii) An mapping S : E → E is an (2,∞)-G-isometric mapping if and only if

GR(Su, Sv, Sw) = max{GR(S
2u, S2v, S2w), GR(u, v, w)}, ∀ u, v, w ∈ E.
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(iii) An mapping S : E → E is an (3,∞)-G-isometric mapping if and only if

max{GR(Su, Sv, Sw), GR(S
3u, S3v, S3w)}

= max{GR(S
2u, S2v, S2w), GR(u, v, w)}, ∀ u, v, w ∈ E.

Example 2.1. Let E = R and let GR be the G-metric on E × E × E defined
as follows

GR(u, v, w) = |u− v|+ |v − w|+ |u− w|.

Define a map S : E → E by Su = u + 2. Clearly we have Sku = u + 2k for
all k ∈ N. From which we get GR(S

ku, Skv, Skw) = |u− v|+ |v − w|+ |u− w|.
Consequently,

max
j∈{0....,m}
(j even)

{GR(S
ju, Sjv, Sjw)} = max

j∈{0,...,m}
(j odd)

{GR(S
ju, Sjv, Sjw)}.

So, we have that S is an (m,∞)-G-isometric mapping.

Proposition 2.1. An mapping S acting on a real valued G-metric space E is
an (m,∞)-G-isometric if and only if ∀u, v, w ∈ E, ∀l ∈ N0

max
j∈{l,...,l+m}

(j even)

{GR(S
ju, Sjv, Sjw)} = max

j∈{l,...,l+m}
(j odd)

{GR(S
ju, Sjv, Sjw)}.

Proof. For l ∈ N0, substituting S
lu, Slv and Slw for u, v and w in Definition

2.1 ,we obtained the desired characterizations.

Lemma 2.1 ([7]). For all k ∈ N0 let π(k) = kmod 2 denote the parity of k. Let
further m ∈ N and a = (ak)k∈N ⊂ R. The following are equivalent:

(1) a satisfies

max
k∈{l,...,m+l}

k even

ak = max
k∈{l,...,m+l}

k odd

ak, ∀ l ∈ N0.

(2) a attains a maximum and

max
k∈N0

(ak) = max
k∈{l,...,m+l}

π(k)=π(m−1+l)

(ak), ∀ l ∈ N0.

Corollary 2.1. Let S : E → E be an mapping on a G-metric space E and m ∈
N. Then S is an (m,∞)-G-isometric mapping if and only if, for all u, v, w ∈ E

max
k∈N0

{GR(S
ku, Skv, Skw)} = max

k∈{j,...,m+j}
π(k)=π(m−1+j)

{GR(S
ku, Skv, Skw)}, ∀ j ∈ N.

Proof. The proof in an immediate consequence of Lemma 2.1.
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Corollary 2.2. Let S : E → E be an mapping on a G-metric space E such is
an (m,∞)-G-isometric. Then for all n ∈ N0

GR(S
nu, Snv, Snw) ≤ max

k∈{0,...,m−1}
{GR(S

ku, Sku, Skw)}, ∀ u, v, w,∈ E.

Proof. From Corollary 2.1, we have

max
k∈N0

{GR(S
ku, Sku, Skw)} = max

k∈{j,...,m−1+j}
π(k)=π(m−1+j)

{GR(S
ku, Skv, , Skw)},

∀ u, v, w ∈ E, ∀ j ∈ N0.

This gives that maxk∈N0{GR(S
ku, Skv, Skw)} <∞. Further, we see that for all

n ∈ N0

GR(S
nu, Snv, Snw)} ≤ max

k∈N0

{GR(S
ku, Skv, Skw)}

≤ max
0≤k≤m−1

{GR(S
ku, Skv, Skw)},∀ u, v, w ∈ E.

Theorem 2.1. Let S be an (m,∞)-G-isometry on a real-valued G-metric space
(E,GR) such that (E,GR) is symmetric. Then there exists a real-valued G-
metric G∞

R on E such that S is an G-isometry on (E,G∞
R ). Moreover G∞

R is
given by

G∞
R (u, v, w) = max

k∈{0,...,m−1}
{GR(S

ku, Skv, Skw)}, ∀ u, v, w ∈ E.

Proof. By the assumption that S is an (m,∞)-G-isometry, we have by Corol-
lary 2.2 that

max
k∈N0

{GR(S
ku, Skv, Skw)} = max

k∈{0,...,m−1}
{GR(S

ku, Skv, Skw)}, ∀ u, v, w ∈ E.

Define the map G∞
R : E × E × E → R+ by

G∞
R (u, v, w) := max

k∈{0,...,m−1}
{GR(S

ku, Skv, Skw)}, ∀ u, , v, w ∈ E.

A simple calculation shows that the map G∞
R satisfies the conditions (1)-(5) of

Definition 1.1. Hence G∞
R is a real-valued G-metric on E. Furthermore we have

G∞
R (u, v, w) = max

k∈{0,...,m−1}
{GR(S

ku, Skv, Skw)}

= max
k∈N
{GR(S

ku, Skv, Skw)}

= max
k∈{j,...,m−1+j}

{GR(S
ku, Skv, Skw)}, ∀ u, v, w ∈ E, ∀ j ∈ N.

Consequently, G∞
R (u, v, w) = G∞

R (Su, Sv, Sw). So, S is an isometry on (E,G∞)
and the proof is complete.
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Proposition 2.2. Let S : E → E be an mapping and m ∈ N,m ≥ 2. If S
satisfies the following conditions.

(i) GR(S
mu, Smv, Smw) = GR(S

m−1u, Sm−1v, Sm−1w), for all u, v, w ∈ E.
(ii) GR(S

mu, Smv, Smw) ≥ GR(S
ku, Skv, Skw) for k = 0, . . . ,m− 2, for all

u, v, w,∈ E, then S is an (m,∞)-G-isometry.

Proof. By the assumptions (i) and (ii), we have for all u, v, w ∈ E,

GR(S
m, Smv, Smw) = GR(S

m−1u, Sm−1v, Sm−1w)

and

GR(S
mu, Smv, Smw) ≥ GR(S

ku, Skv, Skw), k = 0. . . . ,m− 2.

From which we conclude that

max
k∈{0,...,m}
k even

{GR(S
ku, Skv, Skw)} = max

k∈{0,...,m}
k odd

{GR(S
ku, Skv, Skw)}.

This implies that S is an (m,∞)-G-isometry by Definition 2.1.

The following lemma gives a characterization of (2,∞)-G-isometric mapping
on a real-valued G-metric space.

Lemma 2.2. Let S : E −→ E be an mapping on a G-metric space E. Then S is
an (2,∞)-G-isometric mapping if and only if S satisfies the following conditions

(2.1)

{
GR(S

2u, S2v, S2w) = GR(Su, Sv, Sw), ∀ u, v, w ∈ E,
GR(S

2u, S2v, S2w) ≥ GR(u, v, w), ∀ u, v, w ∈ E.

Proof. Firstly, assume that S is an (2,∞)-G-isometry, then we have for all
u, v, w ∈ E,

GR(Su, Sv, Sw) = max{GR(S
2u, S2v, S2w), GR(u, v, w)}

and it follows that for all u, v, w ∈ E

GR(Su, Sv, Sw) ≥ GR(u, v, w)

and
GR(Su, Sv, Sw) ≥ GR(S

2u, S2v, S2w).

Replacing u −→ Su, v −→ Sv and w −→ Sw we obtain that

GR(S
2u, S2v, S2w) = max{GR(Su, Sv, Sw), GR(S

3u, S3v, S3w)}, ∀u, v, w ∈ E.

Thus, for all u, v, w ∈ E

GR(S
2u, S2v, S2w) ≥ GRSu, Sv, Sw).
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So,

GR(S
2u, S2v, S2w) = GR(Su, Sv, Sw) ≥ GR(u, v, w), ∀ u, v, w ∈ E.

This gives (2.1).
Conversely assume that S satisfies (2.1) in this case we have that S is an

(2,∞)-G-isometry by Proposition 2.2.

Theorem 2.2. Let S : E −→ E be an mapping on a G-metric space E. If S is
an (2,∞)-G-isometric mapping, then Sn is an (2,∞)-G-isometric mapping.

Proof. Let S be an (2,∞)-isometric mapping. We need to prove that Sn is an
(2,∞)-G-isometric mapping for all positive integer n. By Lemma 2.2 it suffices
to show that

GR(S
2nu, S2nv, S2nw) = GR(S

nu, Snv, Snw) ≥ GR(u, v, w), ∀ u, v, w ∈ E.

Firstly, we prove by mathematical induction on n that

GR(S
2nu, S2nv, S2nw) = GR(S

nu, Snv, Snw), ∀ u, v, w ∈ E.

For n = 1 it is true since S is an (2,∞)-G-isometry. Assume that this equality
is true for n and prove it for n+ 1. In fact, we have

GR(S
2n+2u, S2n+1v, S2n+2w) = GR(S

2nS2u, S2nS2v, , S2nS2v)

= GR(S
nS2u, SnS2v, SnS2w)

= GR(S
n+1u, Sn+1v, Sn+1w), ∀ u, v, w ∈ E.

Thus by induction, we proved thatGR(S
2nu, S2nv, S2nw) = GR(S

nu, Snv, , Snw),
∀u, v, w ∈ E holds for all n = 1, 2 . . . .
It remains to show that for all u, v, w ∈ E : GR(S

nu, Snv, Snw) ≥ GR(u, v, w, ),
for all n = 1, 2, . . . .

Indeed, since GR(Su, Sv, Sw) ≥ GR(u, v, w, ), ∀u, v, w ∈ E, we have by using
the same inequality that for all u, v, w ∈ E

GR(S
nu, Snv, Snw) = GR(SS

n−1u, SSn−1v, SSn−1w)

≥ GR(S
n−1u, Sn−1v, Sn−1w)

= GR(SS
n−2u, SSn−2v, SSn−2w)

≥ GR(S
n−2u, Sn−2v, Sn−2w)

≥ . . .
≥ GR(Su, Sv, Sw)

≥ GR(u, v, w).

By induction on n it follows that

GR(S
2nu, S2nv, , S2nw) = GR(S

nu, Snv, Snw) ≥ GR(u, v, w), ∀ u, v, w ∈ E.

Thus Sn is an (2,∞)-G-isometry.
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Theorem 2.3. Let T and S are two mappings acting on a G-metric space
T, S : E −→ E such that TS = ST . If T is an (m,∞)-G-isometry and S is an
(2,∞)-G-isometry, then TS is an (m,∞)-G-isometry.

Proof. Firstly, assume that T and S are both (2,∞)-G-isometry.
Since S is an (2,∞)-G-isometry, we have by Lemma 2.2

GR(S
2u, S2v, S2w) = GR(Su, Sv, Sw) ≥ GR(u, v, w), ∀ u, v, w ∈ E.

It follows that for all u, v, w ∈ E we have

GR((TS)
2u, (TS)2v, (TS)2w)

= GR(T
2S2u, T 2S2v, , T 2S2w) = GR(TS

2u, TS2v, TS2w)

= GR(S
2Tu, S2Tv, S2Tw) = GR(TSu, TSv, TSw)

≥ GR(Su, Sv, Sw) (since T is an (2,∞)− isometry)

≥ GR(u, v, w) (since S is an (2,∞)− isometry).

This implies that,

GR((TS)
2u, (TS)2v, (TS)2w)=GR(TSu, TSv, TSw) ≥ GR(u, v, w), ∀u, v, w ∈ E

thus, we have TS is an (2,∞)-G-isometry by the statement in Lemma 2.2.
If we assume that T is an (m,∞)-G-isometry for m > 2 and that S is an

(2,∞)-G-isometry, we have by this fact

GR(S
2u, S2v, S2w) = GR(Su, Sv, Sw) ≥ GR(u, v, w) ∀ u, v, w ∈ E

and also for all k = 1, 2, . . .

GR(S
ku, Skv, Skw) = GR(Su, Sv, Sw) ≥ GR(u, v, w) ∀ u, v, w ∈ E.

Thus we have for all u, v, w ∈ E

GR((TS)
ku, (TS)kv, (TS)kw) = GR(T

kSku, T kSkv, T kSkw)

= GR(ST
ku, ST kv, ST kw)

≥ GR(T
ku, T kv, T kw).

Using the above inequality, for all u, v, w ∈ E, we have

max
k∈{1,...,m}
k even

{GR((TS)
ku, (TS)kv, (TS)kw)}

= max
k∈{1,...,m}
k even

{GR(T
kSu, T kSv, T kSw)} ≥ max

k∈{1,...,m}
k even

GR(T
ku, T kv, T kw).

So that

max
k∈{0,...,m}
k even

{GR((TS)
ku, (TS)kv, (TS)kw)} ≥ max

k∈{0,...,m
k even

{GR(T
ku, T kv, , T kw)}.
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On the other hand, it is obvious that for all u, v, w ∈ E

max
k∈{1,...,m}
k even

{GR(T
kSu, T kSv, T kSw)} ≤ max

k∈{1,...,m}
k even

{GR(T
ku, T kv, T kw)}.

We get for all u, v, w ∈ E.

max
k∈{0,...,m}
k even

{GR((TS)
ku, (TS)kv, (TS)kw)} ≤ max

k∈{0,...,m}
k even

{GR(T
ku, T kv, T kw)}.

From the above inequality, we obtain for all u, v, w ∈ E

max
k∈{0,...,m}
k even

{GR((TS)
ku, (TS)kv, (TS)kv)} = max

k∈{0,...,m}
k even

GR(T
ku, T kv, T kw)

By a similar way we have also for all u, v, w ∈ E

max
k∈{0,...,m}
k odd

{GR((TS)
ku, (TS)kv, (TS)kw)} = max

k∈{0,...,m}
k odd

{GR(T
ku, T kv, T kw)}.

Using the fact that T is an (m,∞)-isometry, we deduce that for all u, v, w ∈ E.

max
k∈{0,...,m}
k even

{GR((TS)
ku, (TS)kv, (TS)kw)}

= max
k∈{0,...,m}
k odd

{GR((TS)
ku, (TS)kv, (TS)kw)}.

The conclusion that TS is an (m,∞)-G-isometric mapping follows immediately
from Definition 2.1.

Proposition 2.3. Let S : E → E be an (m,∞)-G-isometry mapping on a
real-valued generalized metric space E. Then S is an (m + 1,∞)-G-isometric
mapping.

Proof. Assume that S is an (m,∞)-G-isometry, then it follows that

max
k∈N0

{GR(S
ku, Skv, Skw)} = max

k∈{j,...,m−1+j}
π(k)=π(m−1+j)

{GR(S
ku, Skv, Skw)}

∀, u, v, w ∈ E, ∀j ∈ N. This implies that for all u, v, w ∈ E and ∀j ∈ N we have

max
k∈N0

{GR(S
ku, Skv, Skw)} = max

k∈{j,...,m−1+j}
π(k)=π(m−1+j)

{GR(S
ku, Skv, Skw)}

≤ max
k∈{j,...,m+j}
π(k)=π(m+j)

{GR(S
ku, Skv, Skw)} ≤ max

k∈N0

{GR(S
ku, Skv, Skw)}.

Consequently

max
k∈N
{GR(S

ku, Skv, Skw)} = max
k∈{j,...,m+j}
π(k)=π(m+j)

{GR(S
ku, Skv, Skw)}.

So, S is an (m+ 1,∞)-G-isometry.
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Proposition 2.4. Let S be an mapping acting on a real-valued G-metric space
(E,GR) such that Sn is an G-isometry for odd integer n, then S is an (m,∞)-
G-isometry for m ≥ 2n− 1.

Proof. As an consequence of Proposition 2.3, it suffices to show that S is an
(2n− 1,∞)-G-isometric mapping.

Indeed, by the assumption that Sn is an G-isometry, it follows that

GR(S
k+nu, Sn+kv, Sn+kw) = GR(S

ku, Skv, Skw), ∀ u, v, w ∈ E, ∀ k ∈ N0.

On the other hand , since n is odd integer we have for all k ∈ N , k is even if
and only if n+ k is odd. By assumption, Sn is an G-isometry it follows that

{GR(S
ku, Skv, Skw), k ∈ {0, 1, ..., 2n− 1}, k even }

q
{GR(S

ku, Skv, Skw), k ∈ {0, 1, ..., 2n− 1}, k odd }.

and it follows that for all u, v, w ∈ E

max
k∈{0,...,2n−1}

k even

{GR(S
ku, Skv, Skw)} = max

k∈{0,...,2n−1}
k odd

{GR(S
ku, Skv, Skw)}.

Consequently, S is an (2n− 1,∞)-G-isometry.

Theorem 2.4. If S : E → E is an invertible mapping on a real-valued G-metric
space E such is an (m,∞) -G-isometry, then S−1 is an (m,∞)-G-isometry.

Proof. Assume that S is an (m,∞)-G-isometry, then we have by Definition 2.1
for all u, v, w ∈ E

max
k∈{0,...,m}
k even

{GR(S
ku, Skv, Skw)} = max

k∈{0,...,m}
k odd

{GR(S
ku, Skv, Skw)}.

Replacing u→ S−mu , v → S−mv and w → S−mw we obtain for all u, v, w ∈ E

max
k∈{0,...,m}
k even

{GR(S
k−mu, Sk−mv, Sk−mw)}= max

k∈{0,...,m}
k odd

{GR(S
k−mu, Sk−mv, Sk−mw)}

or equivalently

max
k∈{0,...,m}
k even

{GR((S
−1)m−ku, (S−1)m−kv, (T−1)m−kw)}

= max
k∈{0,...,m}
k odd

{GR((S
−1)m−ku, (S−1)m−kv, (S−1)m−kw)}

this gives

max
k∈{0,...,m}
k even

{GR((S
−1)ku, (S−1)kv, (S−1)kw)}

= max
0∈{0,...,m}
k odd

{GR((S
−1)ku, (S−1)kv, (S−1)kw)}, ∀ u, v, w ∈ E.

Thus, S−1 is an (m,∞)-G-isometry.
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Theorem 2.5. For k = 1, 2, ..., d, let (Ek, Gk) be a G-metric space which is
symmetric, and let Sk : Ek → Ek be a map, mk ≥ 1. Denote by E = E1 ×E2 ×
...×Ed the product space endowed with the product G-metric

GR((u1, u2, . . . , ud), (v1, v2, . . . , vd), (w1, . . . , wk)) := max
1≤k≤d

g{GkR(uk, vk, wk)g}.

Let S := S1 × S2 × ...× Sd : E → E be a mapping defined by

S(u1, . . . , ud) := (S1u1, S2u2, . . . , Snud).

If each Sk is an (mk,∞)- G-isometry for k = 1, 2, . . . , d, then S is an (m,∞)-
G-isometry, where m = max{m1, . . . ,md}.

Proof. Let m = max{m1,m2, . . . ,md} and consider for all u, v, w ∈ E

max
j∈{0,...,m}
j even

{GR(S
ju, Sjv, (Sjw)}

= max
j∈{0,...,m}
j even

g( max
1≤k≤d

{GkR(S
j
kuk, S

j
kvk, S

j
kwk)}g)

= max
1≤k≤d

g( max
j∈{0,...,m}
j even

{GkR((S
j
kuk, S

j
kvk, S

j
kwk)}g)

By the assumption that each Sk is an (mk,∞)-G-isometry for each k = 1, 2, ..., d,
it follows that Sk is an (m,∞)-G-isometry for k = 1, 2, . . . , d (by Proposition
2.3 ). Then we have

max
j∈{0,...,..,m}

j even

{GR(S
ju, Sjv, Sjw)}

= max
1≤k≤d

g( max
j∈{0,...,m}
j odd

{GkR(S
j
kuk, S

j
kvk, S

j
kwk)}g)

= max
j∈{0,...,m}
j odd

g( max
1≤k≤d

{GkR(S
j
kuk, S

j
kvk, S

j
kwk)}g).

Thus, we have

max
j∈{0,...,m}
j even

{GR(S
ju, Sjv, Sjw)} = max

j∈{0,...,m}
j odd

{GR(S
ju, Sjv, Sjw)}.

Consequently, S is an (m,∞)-G-isometric mapping and the proof is completed.
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Abstract. In this paper, we consider a generalization of Cayley graphs and digraphs
(directed graphs) introduced by Iradmusa and Praeger. For non-empty subsets L,R of

group G, two-sided group digraph
−→
2S(G;L,R) has been defined as a digraph having the

vertex set G, and an arc from x to y if and only if y = l−1xr for some l ∈ L and r ∈ R.
This article has strived to answer some open problems posed by Iradmusa and Praeger
related to these graphs. Further, we determine sufficient conditions by which two-sided
group graphs to be non-planar, and then we consider some specific cases on subsets

L,R. We prove that the number of connected components of
−→
2S(G;L,R) is equal to

the number of double cosets of the pair L,R when they are two subgroups of G.

Keywords: Cayley digraph, Cayley graph, group.

1. Introduction

Let G be a finite group and S ⊆ G such that e ̸∈ S. The Cayley digraph is
defined as a digraph with vertex set G and an arc (x, y) (from vertex x to vertex

y) if and only if x−1y ∈ S denoted by
−−→
Cay (G,S). The condition e /∈ S yields a

digraph with no loops. Moreover, if S = S−1 (where S−1 =
{
s−1|s ∈ S

}
), then

we have a simple undirected graph [4] called a Cayley graph and denoted by
Cay(G,S). In this definition, S can be considered an empty set, by which the re-
lated Cayley graph has no edges. It is proved that the Cayley graph is connected
if and only if S generates G [4]. There are many applications of Cayley graphs
in different fields such as biology, coding theory and computer [3, 7, 9, 11]. So
far various generalizations of Cayley graphs have been introduced, for example:
generalized Cayley graph [12], quasi-Cayley graphs [6], various kinds of groupoid
graphs [13, 14], group action graphs [2], general semigroup graphs [10], and there
are many graphs that have been defined on algebraic structures by which many
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authors have been motivated to reveal some properties of the algebraic struc-
tures [1]. In this paper, we study a generalization of Cayley digraphs introduced
by Iradmusa and Praeger in 2016 [8]. They named it two-sided group digraph

(graph) and denoted by
−→
2S(G;L,R) ( 2S(G;L,R)). Also, they found conditions

for the adjacency relation defining the digraphs to be symmetric, transitive or
connected, etc. and they posed eight problems in their article [8]. This paper
has strived to answer a number of those problems which are as follows. We
should emphasize that we have solved only Problem 2 completely.

Problem 1 ([8]). Decide whether or not
−→
2S(G;L,R) can be a regular graph

of valency strictly less than |L| |R|, and, if it is possible, find necessary and
sufficient conditions for this to occur.

Problem 2 ([8]). Decide whether or not there exist G,L,R satisfying the hy-

pothesis of Theorem 1.7 such that G = ⟨L⟩⟨R⟩, and
−→
2S(G;L,R) has connected

components of different sizes.

Problem 3 ([8]). Find necessary and sufficient conditions on L and R for a

two-sided group digraph
−→
2S(G;L,R) to be connected, when at least one of L and

R is not inverse-closed.

Let G be a group and L,R be two non-empty subsets of G, then the two-

sided group digraph
−→
2S(G;L,R) is defined with vertex set G and an arc (x, y)

from x to y’ if and only if y = l−1xr for some l ∈ L and r ∈ R. The connection

set of
−→
2S(G;L,R) is defined as the set Ŝ(L,R) = {λl,r : l ∈ L, r ∈ R}, where

λl,r is a permutation of the form λl,r : g 7→ l−1gr, for certain l, r ∈ G. Note that

if there are no loops and the adjacency relation is symmetric, then
−→
2S(G;L,R)

will be regarded as a simple graph, and will be named a two-sided group graph.
Let x ∈ G be an arbitrary element; we define an equivalence relation on L×R
as follows: (l1, r1) ∼x (l2, r2) if and only if (x)λl1,r1 = (x)λl2,r2 ; then equivalence
class containing (l, r) is presented as Cx(l, r) = {(l′, r′)|(x)λl′,r′ = (x)λl,r, l

′ ∈
L, r′ ∈ R} and Cx is the set of all equivalence classes of ∼x. It is obvious when
Γ =

−→
2S(G;L,R) is an undirected graph, then valency(x) is equal to |Cx|. In

other words, the valency(x) is corresponding to a partition of |L||R|.

Definition 1.1 ([8]). Let G be a group with identity element e and two subsets
L,R. Then a pair (L,R) has 2S-graph-property if both L and R are non-empty,
and the following conditions hold:

(i) L−1xR = LxR−1 for each x ∈ G;
(ii) Lx ∩R = ∅ for each x ∈ G;
(iii) (LL−1)x ∩ (RR−1) = {e} for each x ∈ G.
(i) and (ii) in previous definition guarantee a two-sided digraph with these

properties is a simple graph.
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Theorem 1.2 ([8]). Let G be a group, and L,R be non-empty, inverse-closed

subsets of G. Then Γ =
−→
2S(G;L,R) is a two-sided graph, which is regular of

valency |L||R|, if and only if (L,R) has the 2S-graph-property.
The authors of [8] posed Problem 1 after Theorem 1.2. Although we didn’t

determine necessary and sufficient conditions by which a two-sided group graph
would be a regular simple graph of valency strictly less than |L||R|, for which
we present some recognized sufficient conditions and also necessary conditions
independently. As some results of above theorem, we have the next corollaries.

Corollary 1.3. Let G be a group and L,R be two non-empty subsets of G, that
L−1xR = LxR−1 and Lx ∩ R = ∅ for each x ∈ G. If (LL−1) ∩ (RR−1) = {e}
and LL−1 E G or RR−1 E G, then Γ = 2S(G;L,R) is a regular simple graph
of valency |L||R|.

Corollary 1.4. Let G be a group and L,R be two non-empty subsets of G,
that L−1xR = LxR−1, Lx ∩ R = ∅ for each x ∈ G. If Γ is regular of valency
strictly less than |L||R|, then the orders of elements of LL−1 and RR−1 are not
relatively prime.

Proof. It is obvious Γ is a simple graph. If the orders of elements of LL−1 and
RR−1 are relatively prime, then it is true for (LL−1)x and RR−1 for all x ∈ G
and it implies that Γ is regular of valency |L||R| by Theorem 1.2, which is a
contradiction.

The next theorem answers Problem 1 by using above equivalence relation
without presenting certain properties on L,R and G.

Theorem 1.5. Let G be a group and L,R be two non-empty subsets of G,
and |L| > 1, |R| > 1. Then Γ = 2S(G;L,R) is a regular simple graph of
valency strictly less than |L| |R|, if and only if L−1xR = LxR−1, Lx ∩ R = ∅,
{e} $ RR−1 ∩ (LL−1)x, and |Cx| = |Ce| for all x ∈ G.

Corollary 1.6. Let G be a group and L,R are two non-empty subsets of G. If
at least one of L or R is normal in G, L−1xR = LxR−1 for each x ∈ G and
|LL−1 ∩RR−1| > 1. Then Γ = 2S(G;L,R) is a regular simple graph of valency
strictly less than |L| |R|.

Proof. By Proposition 4.1 from [8] Γ = 2S(G;L,R) is a Cayley digraph and
other assumptions guarantee Γ is a regular simple graph of valency strictly less
than |L||R|.

Theorem 1.7 ([8]). Let L,R be non-empty, inverse-closed subsets of a group

G, and let Γ =
−→
2S(G;L,R). Then Γ is connected if and only if

(1) G = ⟨L⟩⟨R⟩, and there exist words w in L and w′ in R, with lengths of
opposite parity, such that the evaluation ww′ = e in G.
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Further, if G = ⟨L⟩⟨R⟩, but condition (1) does not hold, then Γ is discon-
nected with exactly two connected components.

Problem 2 is related to above theorem; to solve this problem, we obtain two
theorems and one corollary (Theorem 1.8, Corollary 1.9 and Theorem 1.10).

Theorem 1.8. Let G be a group, and L,R be non-empty, inverse-closed subsets
of G. Let G = ⟨L⟩⟨R⟩ and at least L or R including a non-identity element of

odd order. Then Γ =
−→
2S(G;L,R) is connected.

Corollary 1.9. If G is a group of odd order, L,R are non-empty, inverse-closed
subsets of G including at least a non-identity element and G = ⟨L⟩⟨R⟩. Then

Γ =
−→
2S(G;L,R) is connected.

Theorem 1.10. If G is a group of even order, L,R are non-empty, inverse-
closed subsets of G and G = ⟨L⟩⟨R⟩ but condition (1) of Theorem 1.7 does not

hold. Then Γ =
−→
2S(G;L,R) has two connected components of the same size.

Theorem 1.11. Let L,R be non-empty subsets of a group G such that at least

one of them is inverse closed and let Γ =
−→
2S(G;L,R). Then Γ is connected if

and only if

(2) G = ⟨L⟩⟨R⟩, and there exist words w in L ∪L−1 and w′ in R ∪R−1, with
lengths of opposite parity, such that ww′ = e in G.

Theorem 1.11 is not a complete answer to Problem 3. In fact, the only case
which remains to be answered is when both L,R are not inverse-closed.

Moreover, in this paper, we present sufficient conditions by which Γ =−→
2S(G;L,R) is a non-planar graph. Also, we consider the case in which both
L,R are singleton and, in this case, necessary and sufficient conditions has been
found by which Γ = 2S(G;L,R) is a matching. Then we consider a partic-
ular case when L,R are both subgroups of G and we prove that the number
of connected components is equal to the number of double cosets of the pair
(L,R) when Γ = 2S(G;L,R) is not connected. Further, if L and R are p-
Sylow and q-Sylow subgroups of G, respectively, for prime numbers p ̸= q and
if L# = L− {e}, R# = R − {e}, and the pair (L#, R#) has 2S-graph-property;
therefore Γ, in this case, is a regular simple graph of valency (|L| − 1)(|R| − 1).

For a vertex x of a two-sided group digraph
−→
2S(G;L,R), the arcs beginning

with x, are the pair (x, y) with y = (x)λ, for some λ ∈ Ŝ(L,R), such elements
y are called out-neighbors of x, and the number of distinct out-neighbors of x
is called the out-valency of x. Similarly, the arcs ending in x are the pairs (y, x)
with (y)λ = x, for some λ ∈ Ŝ(L,R), such elements y are called in-neighbors of
x, and the number of distinct in-neighbors of x is called the in-valency of x. If
there is a constant c such that each vertex x has out-valency c and in-valency

c, then
−→
2S(G;L,R) is regular of valency c.
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Remark 1.12. Let L be a non-empty subset of a group G. Then a word w in
L is a string w = l1l2...lk with each li ∈ L; the integer k is called the length of
w, denoted by |w|, and we often identify w with its evaluation in G (the element
of G is obtained by multiplying together the li in the given order).

The following remark, from Iradmusa and Praeger [8], is used in our proof.
They have shown that the connected components are the sets Cδ = {g|g ∈
G, δ(g) = δ}, for δ ∈ {0, 1}.

Remark 1.13. Let G be a group and L,R be non-empty, inverse-closed subsets

of G, and let Γ =
−→
2S(G;L,R). If G = ⟨L⟩⟨R⟩ but condition (1) does not hold,

then for each g ∈ G, we can present g = ww′, where w and w′ are words in L and
R, respectively, the parity of the sum |w|+|w′| is independent of the words w,w′,
and depends only on g. Let δ (g) ∈ {0, 1}, where δ (g) ≡ |w|+ |w′| (mod2).

2. Main results

Let G be a group with two non-empty subsets L,R. If l is an arbitrary element

of L, so l−1lr = r and this relation means (l, r) is an arc in Γ =
−→
2S(G;L,R), for

each l ∈ L, r ∈ R. Similarly, (r−1, l−1) is an arc as well. Thus, {l, r}, {r−1, l−1}
are edges in Γ, in the case that Γ is undirected, so valency(l) ≥ |R| and
valency(r−1) ≥ |L|. Hence, if Γ is an undirected regular graph, we will have

valency(x) ≥ |L|+|R|
2 for each x ∈ G.

Proposition 2.1. Let G be a group with two non-empty subsets L,R and Γ =
2S(G;L,R) is a regular, undirected graph, then |L|+|R|

2 ≤ valency(x) ≤ |L||R|.

Remark 2.2. Let L,R be non-empty subsets of group G, and Γ =
−→
2S(G;L,R)

be a complete digraph (without regarding directions among all arcs). Then for
each e ̸= g ∈ G: (e, g) or (g, e) is an arc, so l−1er = g or l−1gr = e, for some
l ∈ L and r ∈ R. Thus l−1r = g or g = lr−1; therefore, g ∈ L−1R ∪ LR−1, and
it follows that G = ⟨L−1R∪LR−1⟩. In particular, if L and R be inverse-closed,
in this case, we have G = ⟨LR⟩; however the reverse is not true in general. The
following example illustrates this point.

Example 2.3. LetG = S3, L = {(12)}, R = {(123), (132)} and Γ =
−→
2S(G;L,R).

Figure 1 displays this graph. Clearly, G = S3 = ⟨LR⟩, and Γ is not complete.

Theorem 2.4. Let G be a group, and |G| = pαqβm, where p and q are distinct
prime numbers and gcd(m, p) = 1, gcd(m, q) = 1. Let L and R be p-Sylow
subgroup and q-Sylow subgroup of G, respectively. Suppose that L# = L −
{e}, R# = R − {e} and Γ =

−→
2S(G;L#, R#), then pair (L#, R#) has the 2S-

graph-property; therefore, Γ is a simple graph and it is regular of valency (pα −
1)(qβ − 1).
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Figure 1: 2S(S3, L,R).

Proof. It is clear that L#−1gR# = L#gR#−1. In addition, L#g ∩R# = ∅, for
each g ∈ G, since L contains elements of a p-power order andR contains elements
of a q-power order and p ̸= q. Finally, we have (L#L#−1)g ∩ (R#R#−1) ⊆
Lg ∩R = {e}. So pair (L#, R#) satisfies the third condition as well, therefore Γ
is a graph. Thus by Theorem 1.2 Γ is regular of valency (pα − 1)(qβ − 1).

A graph is planar if it can be drawn in such a way that no edges cross each
other; by Kuratowski’s theorem [6] we know that a graph is planar if and only
if it contains no subgraph that is a subdivision of either K5 or K3,3; based on
this theorem we have the next result.

Theorem 2.5. Let L,R be non-empty subsets of a group G and let Γ =
2S(G;L,R) be a two-sided group (undirected) graph. If we have L ∩ L−1LR =
∅, R ∩ L−1RR = ∅, |L| ≥ 3 and |R| ≥ 3, then Γ is non-planar.

Proof. If {l, l′} is an edge, for two arbitrary l, l′ ∈ L, then l′ = l−1
1 lr1 for some

l1 ∈ L, r1 ∈ R, thus L ∩ L−1LR ̸= ∅ is a contradiction. So, for each l, l′ ∈ L,
{l, l′} is not an edge. Similarly, assumption R ∩L−1RR ̸= ∅ implies that {r, r′}
is not an edge, for each r, r′ ∈ R. And also for each r ∈ R and l ∈ L we have
r = l−1lr, so {r, l} is an edge; therefore, Γ contains a complete bipartite graph
K|L|,|R| as a subgraph. Since |L| ≥ 3 and |R| ≥ 3, so Γ contains K3,3, hence Γ
is non-planar. It is reminded that an independent set is a set of vertices in a
graph, no two of which are adjacent.

Lemma 2.6. Let L,R be two subsets of a group G, and Γ =
−→
2S(G;L,R). If S

is an independent subset of G, then LS ∩ SR = ∅.

Proof. Let x ∈ LS ∩ SR then x = ls1 = s2r for some s1, s2 ∈ S and l ∈ L,
r ∈ R. Therefore we have s1 = l−1s2r so s1 connected to s2, and this is a
contradiction.

Corollary 2.7. Let L,R be two subsets of group G, and Γ =
−→
2S(G;L,R). If S

is an independent subset of G, then |LS|+ |SR| ≤ |G|.

Proof. According to Lemma 2.6 we have : LS∩SR = ∅; therefore we conclude:
|LS|+ |SR| ≤ |G|.



On two-sided group digraphs and graphs 147

In this part, we introduce some notations about two-sided group digraph.

Let G be a group, and L,R be two non-empty subsets of G, and Γ =
−→
2S(G;L,R)

be a two-sided group digraph of G with respect to L,R. Let A = Aut(Γ), Aut(G,
L,R) = {α ∈ Aut(G)|Lα = L,Rα = R} , A1 and 1A be the stabilizer and the
orbit of identity. It is reminded that R(G) and L(G) are considered as right
and left representation respectively. Obviously, we have following results.

Proposition 2.8. (1) R(NG(R)), L(NG(L)) are subgroups of A.

(2) NG(L)NG(R) ⊆ 1A.

Proof. It is clear.

Corollary 2.9. Let G be a group and L,R be non-empty subsets of G, and let

Γ =
−→
2S(G;L,R) be a two-sided group digraph. Then Aut(G,L,R) ≤ Aut(G) ∩

A1 ≤ Aut(G,L−1R).

Proof. The first part of above inequality is clear. Now, assume that φ ∈
Aut(G) ∩A1, therefore φ is a group homomorphism which keeps the adjacency
relation and φ(1) = 1. Since 1 is connected to all elements of L−1R; therefore,
φ(1) = 1 connected to φ(L−1R). Thus φ(L−1R) ⊆ L−1R. It follows that
φ ∈ Aut(G,L−1R).

2.1 Proof of Theorems

Proof of Theorem 1.5. First, if all given conditions are satisfied, it is clear, Γ
is an undirected regular graph of valency strictly less than |L| |R| by Lemma 3.1
[8] and argument which was presented before definition 1.1. Conversely, let Γ
be a regular (undirected) graph of valency strictly less than |L| |R|. By Lemma
3.1 [8], it is clear that L−1xR = LxR−1, Lx ∩ R = ∅ and |Cx| = |Ce| for each
x ∈ G. On the other hand, for each x ∈ G, we have

∣∣L−1xR
∣∣ < |L| |R|, so

there exist (l1, r1), (l2, r2) ∈ L×R such that (l1, r1) ̸= (l2, r2) (|L| > 1, |R| > 1)
and l−1

1 xr1 = l−1
2 xr2 (l1, l2 ∈ L and r1, r2 ∈ R), then x−1l2l

−1
1 x = r2r

−1
1 . If

r2r
−1
1 = e, then r1 = r2, and so l2 = l1 is a contradiction; therefore, r2r

−1
1 ̸= e.

Similarly if l1 = l2 then r1 = r2, i.e. {e} $ RR−1 ∩ (LL−1)x.

Example 2.10. Let G = S3, L = {(12), (23)} and R = {(123), (132)}. It’s easy
to see that, this example has the mentioned above properties. This graph has
been drawn by Figure 2, as you can see : valency(x) = 3 < |L| |R| = 4.

The next theorem gives a sufficient condition by which a simple two-sided
group graph is regular of valency less than |L||R|.

Theorem 2.11. Let G be a group, and L, R be two non-empty subsets of G. If
G factorizes as G = NG(L)NG(R) and |LL−1 ∩RR−1| > 1, Γ = 2S(G;L,R) be
a simple graph, then Γ is regular of valency less than |L| |R|.
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Figure 2: 2S(S3, L,R).

Proof. By Theorem 1.13 of [8] Γ is vertex-transitive, thus Γ is regular. It is
clear the valency of Γ is less than |L| |R|.

Theorem 2.12. Let G be a group, and L, R are two non-empty subsets of G,
|G| = pm where p is a prime number, gcd(p,m) = 1, |Sylp(G)| > 1, LL−1 =
RR−1 and LL−1 ⊆ P , for some P ∈ Sylp(G), |L| > 1, |R| > 1 and L−1xR =
LxR−1, Lx ∩ R = ∅ for each x ∈ G, then Γ = 2S(G;L,R) is a non-regular
simple graph.

Proof. It is clear Γ is a simple graph and (LL−1)x ⊆ P x, for all x ∈ G. Since
|Sylp(G)| > 1, so there is x ∈ G such that P x ̸= P ; therefore |(LL−1)x∩RR−1| ≤
|P x ∩ P | = 1. On the other hand, we have |LL−1 ∩ RR−1| > 1, thus Γ is not
regular.

Proof of Theorem 1.8. Let e ̸= l ∈ L be an arbitrary element of odd
order, and suppose m is its order. If r ∈ R is an arbitrary element, so we
have lmrr−1 = e, and it means condition (1) of Theorem 1.7 holds, hence Γ is
connected. Similarly, if R includes an element of odd order, then condition (1)
holds.

Proof of Theorem 1.10. By Theorem 1.7 Γ is disconnected with exactly
two connected components, and according to Remark 1.13 these two connected
components are C0, and C1. We show that |C0| = |C1|. It is adequate to define
function ϕ : C0 → C1 such that ϕ(g) = lg, where l ∈ L is an arbitrary element
but fixed in L. It is clear that ϕ is well-defined, for g ∈ C0 and g = xgyg, we
have lg = lxgyg, so |lg| = |lxg| + |yg| = |xg| + |yg| ± 1 ≡ 1(mod2), because
|xg| + |yg| ≡ 0(mod2), and it means lg ∈ C1. It is obvious ϕ is a one-to-one
map, hence |C0| = |C1|.

Corollary 1.9 and Theorem 1.10 answer Problem 2, i.e. there are no G,L,R

satisfying the hypothesis of Theorem 1.7 such that G = ⟨L⟩⟨R⟩, and
−→
2S(G;L,R)

has connected components of different sizes.
It should be reminded, Theorem 1.11 is a generalization of Theorem 1.7.

Proof of Theorem 1.11. If Γ is connected, then by Lemma 3.4 [8] condition
(2) holds. Conversely, suppose that condition (2) holds. First, sinceG = ⟨L⟩⟨R⟩,
then we can write g = xgyg for every g ∈ G in which xg and yg are words in
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L ∪ L−1 and R ∪ R−1, respectively. By condition (2) there are words xe in
L ∪ L−1 and ye in R ∪R−1 with lengths of opposite parity, such that xeye = e.
It implies, as it has been done in [8], for each g ∈ G we can find xg and yg with
the same length. Now, we suppose L is inverse-closed, then xg = lklk−1...l1 and
yg = r1...rk such that li ∈ L and ri ∈ R ∪ R−1. If we put gi = l−1

i gi−1ri and
g0 = e, then there is a path from e to g in Γ, because either (gi−1, gi) or (gi, gi−1)
is an arc in Γ, and it depends on ri ∈ R or ri ∈ R−1. By a similar argument we
can obtain a path from e to g when R is inverse-closed, thus Γ is connected.

2.2 Considering some specific case

Now, we consider the case in which L, R are singleton. Let L,R be non-empty

subsets of group G, and Γ =
−→
2S(G;L,R). It can be proved if |L| = 1 (or

|R| = 1) then Γ is a regular digraph of valency |R| (|L|). Furthermore, if
L = {l}, R = {r}, l ̸= r, then (L,R) has 2S-graph-property if and only if
l2 = r2, l2 ∈ Z(G) and r ̸= x−1lx for each x ∈ G; in particular l ̸= r.

Example 2.13. Let G = D8 = ⟨a, b| a4 = b2 = e, bab = a−1⟩, be the dihedral
group of order eight and L = {a2}, R = {b}. Then (a2)2 = b2 = e and also
l2 = (a2)2 = a4 = e ∈ Z(D8), and b, a2 are not conjugate. Finally, Γ can be
presented as follows.

Figure 3: Γ = 2S(D8;L,R).

Proposition 2.14. Let G be a group and L, R be non-empty subsets of G.

(1) Γ =
−→
2S(G;L,R) is matching if and only if L and R are single-member

having 2S-graph-property.

(2) If L,R are single-member subsets and pair (L,R) has the 2S-graph-
property then the order of G is even.

Proof. (1) Due to 2S-graph-property conditions and by Theorem 1.2, Γ =
−→
2S(G;L,R) is a regular graph of valency |L| |R| = 1, and it implies that graph

Γ is a matching. Conversely, by Theorem 1.2 if Γ =
−→
2S(G;L,R) is a matching,

thus Γ is a regular graph of valency 1 i.e. |L| |R| = 1, and so pair (L,R) has
2S-graph-property.

(2) By part (1), in this case, graph Γ =
−→
2S(G;L,R) is a matching and it

concludes |G| is even.
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Proposition 2.15. Let G be a group, L = {l}, R = {r} be single-member

subsets of G and n ≥ 3 is an integer number. Then digraph Γ =
−→
2S(G;L,R)

has a cycle of length n (thus girthΓ ≤ n) if and only if lng = grn for some
g ∈ G, and n is the least integer with this property.

Proof. Suppose that digraph Γ has a cycle of length n, and this cycle is

x1x2...xnx1 in which xi ̸= xj , when i ̸= j. Because of Γ =
−→
2S(G;L,R) is

a regular digraph of valency one, so we have: x2 = l−1x1r, x3 = l−1x2r, ...,
x1 = l−1xnr and then x1 = l−1l−1...l−1︸ ︷︷ ︸

n−time

x1 r...rr︸ ︷︷ ︸
n−time

= l−nx1r
n , thus lnx1 = x1r

n.

Conversely, if lng = grn for some g ∈ G, then g = xn ∈ G is satisfied with
xn = l−nxnr

n, and if we set l−1xnr = x1, l
−1x1r = x2, ..., l

−1xn−2r = xn−1

then x1x2...xnx1 is a cycle of length n.

Let L,R be subgroups of group G and Γ =
−→
2S(G;L,R). Because of L = L−1

and R = R−1, adjacency relation in Γ is symmetric. However, the pair (L,R)
doesn’t have 2S-graph-property, because {e} ⊆ Lx ∩ R for each x ∈ G, so each
vertex of Γ has a loop. In this case, because adjacency relation is symmetric,
let us call Γ a graph for simply in spite of having loop on each vertex, and
also we use words such as complete graph, regular graph, connected graph and
domination number though we know, it is not a simple graph.

Let L,R be subgroups of group G and H = {λl,r|l ∈ L, r ∈ R}. It is
clear H is a group (with the composition operation), and for each x ∈ G and
λl,r ∈ H we have: (x)λl,r = l−1xr, i.e. H acts on G, and stabilizer of x
is stabH(x) = {λl,r ∈ H|l−1xr = x} ≤ H, and the orbit of x; orbit(x) =
{l−1xr|λl,r ∈ H} = LxR is a double coset of L and R, for each x ∈ G and then

valency(x), in Γ =
−→
2S(G;L,R), is equal to |H|

|stabH(x)| = |LxR|, and also an orbit is
a connected component which is a complete subgraph with a loop on each vertex.
In particular, the orbit(e) = {l−1

r|l ∈ L, r ∈ R} = LR, thus |orbit(e)| = |LR| =
|L||R|
|L∩R| , stabH(e) = {λr,r ∈ H|r ∈ R ∩ L}, so |stabH(e)| = |R ∩ L|, and hence

|H| = |L||R|. In this case, if Γ is regular, then |orbit(x)| = |orbit(e)| = |LR|
for each x ∈ G. In other words, if Γ is a regular graph, then all double coset
of L and R are the same size. In one specific case, if we consider L = {e},
then the connected component is the left coset R and the number of connected
components is |G|

|R| and Γ is a regular graph of valency |R|. By considering the
action of H on G, we have: the kernel of this action contains all λl,l such that
l ∈ L ∩ R ∩ Z(G), and it is faithful if and only if L ∩ R ∩ Z(G) = {e}, because
λl,r belongs to the kernel, if and only if (x)λl,r = x for each x ∈ G, therefore
l−1xr = x for each x ∈ G. Specially, if x ∈ Z(G), then l−1xr = x and it
concludes that l = r, it means l ∈ L∩R. Now, l−1xl = x for each x ∈ G implies
that l ∈ L ∩ R ∩ Z(G). If G = LR, then H acts on G transitively, and Γ is a
complete graph. Therefore, we have the following theorem.

Theorem 2.16. Let G be a group and L,R be subgroups of G, and H = {λl,r|l ∈
L, r ∈ R}. Then the group H acts on G, Γ =

−→
2S(G;L,R) is a graph with one
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loop on each vertex, valency(x) = |H|
|stabH(x)| for each x ∈ G and |H| = |L||R|. In

particular Γ is regular if and only if valency(x) = |LR| for each x ∈ G. Graph
Γ is connected if and only if G = LR and otherwise, the number of connected
components is equal to the number of double coset of the pair (L,R).

A dominating set for a graph is a subset D of its vertices such that every
vertex which is not inD is adjacent to at least one member ofD. The domination
number γ(G) is the number of vertices in the smallest dominating set for the
graph [5].

Corollary 2.17. Let G be a group, and L,R be subgroups of G, and Γ =−→
2S(G;L,R). Then domination number of Γ is the number of double coset of the
pair (L,R) .

Proof. Since L,R ≤ G, then connected components graph Γ are complete,
therefore domination number of each connected component of graph Γ is one,
so domination number of Γ is the number of connected components. It is trivial
that the domination set contains one representative of each double coset of L
and R.

Theorem 2.18. Let L,R be two subgroups of a group G. Then:

(1) Γ =
−→
2S(G;L,R) is a regular graph with one loop on each vertex, of

valency strictly less than |L| |R|, if and only if |L ∩R| > 1.

(2) The valency of e in graph Γ =
−→
2S(G;L,R) is one, if and only if L =

R = {e}.

Proof. By Theorem 2.16, part (1) is clear.

If valency (e) = 1, then |L||R|
|L∩R| = 1, therefore L = R = {e}, and the converse

is clear. In this case H = {λe,e} = {id} and orbit(x) = {x} i.e. the graph Γ has
only loops on each vertex.
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Abstract. In this paper, we will use nse to give a new characterization of simple
group S4(7).

Keywords: finite groups, characteristic, simple group, element orders.

1. Introduction

In this paper, all groups are finite. Let G be a group. We denote by π(G) the
set of prime divisors of |G|, πe(G) the set of element orders of G and np(G) the
number of Sylow p-subgroups of G, for p ∈ π(G). Recall that G is a simple
Kn-group if G is simple with |π(G)| = n. Write Mt(G) := {g ∈ G | gt = 1} with
integer t. We call that groups G1 and G2 are of the same order type if and only
if |Mt(G1)| = |Mt(G2)| for all t. All further unexplained notation is standard,
readers may refer to [1].

This paper is related to Thompson’s Problem.

Thompson’s problem. Suppose that G1 and G2 are two groups of the same
order type. If G1 is solvable, is it true that G2 is also necessarily solvable?

Unfortunately, up to now, no one can prove the Thompson’s Problem, even
give a counterexample. Let k ∈ πe(G) and mk(G) be the number of elements

∗. Corresponding author
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of order k in G. Set nse(G) := {mk(G)
∣∣k ∈ πe(G)}. We call nse(G) the set

of numbers of elements with the same order. It is clear that if the assumption
on Thompson’s Problem holds, we always have nse(G1) = nse(G2). So it is
natural to investigate the Thompson’s Problem by nse(G), for instance, Asboei
A.K, and Amiri S.S.S characterized PSL(2, p) by the set nse in [6]. Recently,
Liu characterized A26 by the set nse in [7].

In this present paper we provide a new method in characterizing the simple
group S4(7). Our result is:

Main theorem. Let G be a group. Then G ∼= S4(7) if and only if:
(1) |G| = |S4(7)|;
(2) nse(G) = nse(S4(7)).

2. Preliminaries

In this section, we give some lemmas which will be used in the sequel.

Lemma 2.1 ([2, Theorem 9.1.2]). Let G be a group and t be a positive integer
dividing |G|. Then t

∣∣|Mt(G)|.

Lemma 2.2 ([2, Theorem 9.3.1]). Let G be a solvable group of order mn, where
(m,n) = 1. Then the number hm of subgroups of order m may be expressed as
a product of factors, each of which (a) is congruent to 1 modulo some prime
factor of m, and (b) is a power of a prime and divides one of the chief factors
of G.

Lemma 2.3 ([3, Theorem 2]). If G is a simple K3-group, then G is isomorphic
to one of the following groups: A5(2

2 ·3·5), A6(2
2 ·32 ·5), L2(7)(2

3 ·3·7), L2(8)(2
3 ·

32 ·7), L2(17)(2
3 ·3 ·7 ·17), L3(3)(2

4 ·33 ·13), U3(3)(2
5 ·33 ·7) or U4(2)(2

6 ·34 ·5).

Lemma 2.4 ([5, Lemma 2.3]). Let G be a simple group of order 2a · 3b · 5c · 7d,
then G ∼= A7(2

3 · 32 · 5 · 7), A8(2
6 · 32 · 5 · 7), A9(2

6 · 34 · 5 · 7), A10(2
7 · 34 · 52 ·

7), L2(49)(2
4 ·3 ·52 ·72), L3(4)(2

6 ·32 ·5 ·7), S4(7)(28 ·32 · 52 ·74), S6(2)(29 ·34 ·5 ·
7), U3(5)(2

4 ·32 ·53 ·7), U4(3)(2
7 ·36 ·5 ·7), J2(27 ·33 ·52 ·7) or O+

8 (2)(2
12 ·35 ·52 ·7).

Lemma 2.5 ([5, Lemma 2.5]). Let G be a group, P ∈ Sylp(G), where p ∈ π(G).
If G has a normal series: K E L E G such that P ≤ L and p - |K|, then the
following hold:

(1) NG/K(PK/K) = NG(P )K/K;
(2) |G : NG(P )| = |L : NL(P )|, that is, np(G) = np(L);
(3) |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )| , that is,

np(L/K)t = np(G) = np(L) for some positive integer t. And |NK(P )|t = |K|.

3. Proof of the main theorem

Proof. The necessity of the proof is trivial, we only prove the other direction.
By [1], we see that |S4(7)| = 28 · 32 · 52 · 74 and nse(S4(7)) = {1, 52675, 274400,
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2366700, 5531904, 6860000, 5764800, 10290000, 11524800, 5409600, 13171200,
23049600, 27659520, 9878400, 6585600}.

Let t ∈ πe(G) and k be the number of cyclic subgroups of G with order t.
Then mt(G) = kφ(t). If t > 2, then φ(t) is even, so is mt(G). This indicates
that m2(G) = 52675. Moreover, m3(G) = 274400 or 6860000, m5(G) = 5531904
and m7(G) = 5764800 by Lemma 2.1.

We claim that G is non-solvable. Suppose false, then G is solvable. Let
π = {3, 5, 7} and H be a Hall π-subgroup of G. By Lemma 2.2, we see that
n7(H) = 3a0 ·5b0 , where 3a0 ≡ 1(mod 7), 5b0 ≡ 1(mod 7) with a0 ≤ 2 and b0 ≤ 2,
implying n7(H) = 1. As a result, m7(G) ≤ (74 − 1) · 28 = 614400 contradicting
with m7(G) = 5764800. Hence G is non-solvable, as claimed.

Let N be a maximal solvable normal subgroup of G and M/N be a minimal
normal subgroup of G/N . Then M/N is non-solvable.

Assume that M/N is non-simple. Then M/N = S1 × · · · × Sl is a direct
product of isomorphic simple groups Si, where l ≥ 2. Moreover, by comparing
the group orders, it follows by Lemma 2.3 and Lemma 2.4 that l = 2 and
that S1 ∼= A5 or L2(7). Assume that S1 ∼= A5. Then M/N = A5 × A5. Let
A/N := CG/N (M/N). Then G/A ∼= (G/N)/(A/N) is a subgroup of Aut(M/N),
the automorphic group ofM/N . Notice that Aut(A5×A5) =Aut(A5) ≀S2. Then
|A|
∣∣24 · 74, which implies that A is solvable. Thus A = N as N is the maximal

solvable normal subgroup of G. Consequently, G/N ≤ Aut(A5) ≀ S2, implying
and 74

∣∣|N | and |N |∣∣24 · 74, this forces m7(G) = m7(N) < |N |, contrary to
m7 = 5764800. Hence S1 � A5. Similarly, S1 � L2(7).

Consequently, M/N is a non-abelian simple group. By Lemma 2.3 and 2.4,
it follows thatM/N ∼= A5, A6, L2(7), L2(8), A7, A8, L2(49), L3(4) or S4(7). Next
we prove that CG/N (M/N) = 1.

Suppose that A/N := CG/N (M/N) > 1. Since A/N∩M/N = Z(M/N) = 1,
we see that A/N ×M/N ≤ G/N . This indicates that |M/N |

∣∣|G/A|. On the
other hand, G/A ∼= (G/N)/(A/N) ≤Aut(M/N) implies that |G/A|

∣∣|Aut(M/N)|.
That is, |G|/|Aut(M/N)| divides |A| and |A| divides |G|/|M/N |.

IfM/N ∼= A5, then the argument above forces 25·3·5·74
∣∣|A| and |A|∣∣26·3·5·74.

Moreover, A E G implies that m7 = m7(A) ≤ |A| ≤ 26 · 3 · 5 · 74 = 2304960,
contrary to m7 = 5764800. Similarly, M/N � A6.

Now we consider the case M/N ∼= L2(7). The the same argument above
gives 24 · 3 · 52 · 73

∣∣|A| and |A|∣∣25 · 3 · 52 · 73. Notice that A E G. It follows
that m5(G) = m5(A) < |A| ≤ 25 · 3 · 52 · (73 − 1) = 823200, contradicting with
m5 = 5531904. Analogously, M/N � L2(8).

As a result,M/N must be a simple K4-group. Since A/N is non-solvable, we
see that A/N has a section which is a simple group. Note that A/N ×M/N ≤
G/N , in comparison the order of A/N ×M/N with |G|, then only possibility
is A/N has a section isomorphic to L2(7) and M/N ∼= L2(49). In this case,
A/N ×M/N ≤ G/N implies that |N |

∣∣14. Note that |M/N | = 24 · 3 · 52 · 72
and M EG, we obtain m5(G) = m5(M). Recall that m5(M/N) = 4704. Then
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m5(M) ≤ m5(M/N) · 14 = 65856 < m5(G). This contradiction shows that
CG/N (M/N) = 1, as required.

Furthermore, G/N ≤ Aut(M/N). Recall that M/N ∼= A5, A6, L2(7), L2(8),
A7, A8, L2(49), L3(4) or S4(7), we will discuss it case by case.

Assume first that M/N ∼= A5. Then G/N ≤ S5, which implies that G/N =
A5 or S5. Moreover, |N | = 25 · 3 · 5 · 74 or 24 · 3 · 5 · 74. Since N E G, we see
that m7(G) = m7(N). Moreover, by Lemma 2.2 we obtain that n7(N) = 1 or
8. Therefore, m7 ≤ 19200, contrary to m7 = 5764800. Similarly, M/N � A6.

If M/N ∼= L2(7), then G/N ≤ Aut(L2(7)) and thus |N | = 25 · 3 · 52 · 73 or
24 ·3·52 ·73. As NEG, thenm5(G) = m5(N). By Lemma 2.2, we have n5(N) = 1
or 24, which implies m5 ≤ 400, again contradiction. Similarly, M/N � L2(8).

Now we consider the case that M/N ∼= A7. Then G/N ≤ S7, which implies
that G/N ∼= A7 or S7. Hence |N | = 25 · 5 · 73 or |N | = 24 · 5 · 73. By Lemma
2.5, we see that n3(G) = n3(G/N)t for some integer t. As a result, n3(G) = 70t
since n3(G/N) = 70. Let P3 be a Sylow 3-subgroup of G. As there is no
element of order 9 in G/N , we see that P3 is elementary abelian. This implies
that 140t ≤ m3 ≤ 560t. If m3 = 274400, then 490 ≤ t ≤ 1960. On the other
hand, |NN (P3)|t = |N | by Lemma 2.5, which indicates that t

∣∣|N |. Along with
the fact that 3

∣∣(70t − 1) by Sylow’s Theorem, we obtain that t = 490 or 1960,
yielding |NN (P3)| = 24 · 7. Notice that the action of P3 on N by conjugation
is coprime, there is a P3-invariant group N5 ∈ Syl5(N). In N5P3, by applying
Sylow’s Theorem, we have P3 E G. Hence N5P3 = N5 × P3 ≤ G. This implies
that N5 ≤ NN (P3), a contradiction. Similarly, if m3 = 6860000, we also get a
contradiction.

Assume then that M/N ∼= L2(49). In this case, G/N ≤ Aut(L2(49)). Let
P5 be a Sylow 5-subgroup of G. Then P5 is a cyclic subgroup of order 25
because M/N has an element of order 25. Moreover, 5 - |G/M | and M E
G imply m25(G) = m25(M). By Lemma 2.5, we have n5(G) = n5(M/N)t
and |NM (P5)|t = |M | for some integer t. Furthermore, by [1], we see that
n5(M/N) = 23 · 3 · 72. As a result, m25 = φ(25) ·n5(G) = 20tn5(M/N) = 25 · 3 ·
5·72t = 27659520, implying t = 1176 = 23·3·72. Thus n5(M) = 26·32·74, yielding
|NM (P5)|

∣∣22 · 52. Since |NN (P5)|t = |N |
∣∣24 · 3 · 72, we have that |NN (P5)|

∣∣2. By
a similar argument above, there is also contradiction.

Now we show that M/N � L3(4). If not, then M/N ∼= L3(4), implying
G/N ≤ Aut(L3(4)). Moreover, |N |

∣∣22 · 5 · 73. By [1], we obtain n3(L3(4)) =
23 · 5 · 7. Moreover, n3(M) = n3(M/N)t according to Lemma 2.5. Assume that
m3 = 274400. Then 2n3(M) ≤ m3 ≤ 8n3(M), which implies that 122 < t ≤ 490.
If 5
∣∣t, then t = 140, 245 or 490. Note that 3

∣∣(n3(G)− 1), we obtain t = 490 and
thus n3(G) = 137200. Hence |NG(P3)| = 24 · 32 · 7. The similar argument in the
case G ∼= A7 also gives a contradiction. Hence 5 - t. Moreover, t = 196 or 343.
If the former holds, then 5

∣∣|NN (P3)|. We assert that N5 ≤ CG(P3), where N5 ∈
Syl5(N). It follows that m15 = 4 ·m3 = 1646400 since N5 EG, a contradiction.
If t = 343, then |NN (P3)|

∣∣24 · 5. Similarly, we get a contradiction. Therefore,
m3 = 6860000 and 3062 < t ≤ 12250, which yields that t = 3430 or 6860. As
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|G : NG(P3)| = 23 · 5 · 7t, t = 3430 and |NN (P3)| = 24. Similar to the statement
in the case G ∼= A7, we get a contradiction again.

Now we deal with the caseM/N ∼= A8. In this situation, we have G/N ≤ S8.
By [1], we have that n3(A8) = 280. Assume m3(G) = 274400, then 490 > t ≥
122. On the other hand, |NN (P3)|t = |N |

∣∣22 · 5 · 73 gives t = 196 or 343.
If t = 196, then |NG(P3)|

∣∣23 · 32 · 5 · 7. Since NG(P3)/CG(P3) is isomorphic
to a subgroup of Aut(P3), we have 35

∣∣|CG(P3)|, which forces C35 × P3 ≤ G
and thus m15(G) = 4 · m3(G) = 1646400, a contradiction. If t = 343, then
|NG(P3)|

∣∣25 · 32 · 5. Similarly, we also get a contradiction. Assume m3(G) =
6860000, then 12250 ≥ t > 3062. Note that |NN (P3)|t = |N |

∣∣22 · 5 · 73, we
have that t = 3430 or 6860 and |NN (P3)|

∣∣2. This final contradiction shows that
M/N ∼= S4(7). Consequently, G =M ∼= S4(7), the proof is completed.
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1. Introduction

The neutrosophic set is a more general form of mathema- tical concepts that
express uncertainty, such as fuzzy sets and intuitionistic fuzzy sets (see [17,
and 18]). In the neutrosophic set, truth-membership, indeterminacy-member
ship, and falsity-membership are represented independently. In this paper we
work with special neutrosophic set (it is called single valued neutrosophic set,
see [21]). The neutrosophic set theory is applied to many scientific fields (see
[3033]), including algebraic systems (see [4, 10, 16, 28, and 29]), it is similar to
the applications of fuzzy set and soft set theory in algebraic structures ([2, 14,
25, 27 and 34-37]).

As a generalization of dual BCK-algebra and related non-classical logic alge-
bras ([23, 24, and 26]), Hee Sik Kim and Young Hee Kim introduced the notion
of BE-algebra (see [7]). Since then, many scholars have conducted in-depth
research on BE-algebras. For examples, the concept of ideal of BE-algebra is
proposed and some characterizations are presented by the notion of upper set in
[1]; a procedure which generated a filter by a subset in a transitive BE-algebra
is established in [8]; the fuzzy filter (ideal) theory in BE-algebra is investigated
in [5, 9, 19]; the theory of pseudo BE-algebra is constructed in [3], and so on
(see [6, 11, 12, 13, 15, and 22]).

In this paper, we further study on the applications of neutrosophic sets to
BE-algebras. We introduce the new definition of neutrosophic filters in BE-
algebras, and investigate some basic properties and present relationships be-
tween neutrosophic filters and fuzzy filters. Moreover, we introduce the notion
of implicative neutrosophic filters in BE-algebras. The relation between implica-
tive neutrosophic filter and neutrosophic filter is investigated.

2. Basic concepts and properties

Definition 2.1 ([16, 17, 18]). Let X be a space of points (objects), with a
generic element in X denoted by x. A neutrosophic set A in X is characterized
by a truth-membership function TA(x), an indeterminacy-membership function
IA(x), and a falsity-membership function FA(x). The functions TA(x), IA(x),
and FA(x) are real standard or non-standard subsets of ]−0, 1+[. That is, TA(x) :
X →]−0, 1+[, IA(x) : X →]−0, 1+[, and FA(x) : X]−0, 1+[. Thus, there is no
restrictionon the sum of TA(x), IA(x), and FA(x), so

−0 ≤ supTA(x)+supIA(x)+
supFA(x) ≤ 3+.

Definition 2.2 ([21]). Let X be a space of points (objects) with generic elements
in X denoted by x. A simple valued neutrosophic set A in X is characterized by
truth-membership function TA(x), indeterminacy-membership function IA(x),
and falsity-membership function FA(x). Then, a simple valued neutrosophic set
A can be denoted by

A = {x, TA(x), IA(x), FA(x)|x ∈ X},
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where TA(x), IA(x), FA(x) ∈ [0, 1] for each point x in X. Therefore, the sum of
TA(x), IA(x), and FA(x) satisfies the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.3 ([16]). A simple valued neutrosophic set A is contained in the
other simple valued neutrosophic set B, denote A ⊆ B, if and only if TA(x) ≤
TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x) for any x in X.

Remark 2.1. About the inclusion relation of neutrosophic sets, there are two
different definitions in the literature. This article adopts the method in [16]
(original definition byFlorentin Smarandache). Another way is given in [21],
that is, A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≥ FB(x) for
any x in X.

Definition 2.4 ([16]). Two simple valued neutrosophic sets A and B are equal,
written as A = B, if and only if A ⊆ B and B ⊆ A.

For convenience, “simple valued neutrosophic set” is abbreviated to “neu-
trosophic set” later.

Definition 2.5 ([16]). The union of two neutrosophic sets A and B is a neutro-
sophic set C, written as C = A ∪ B, whose truth-membership, indeterminacy-
membership and falsity- membership functions are related to those of A and B
by

TC(x) = max(TA(x), TB(x)), IC(x) = min(IA(x), IB(x)),

FC(x) = min(FA(x), FB(x)), ∀x ∈ X.

Definition 2.6 ([16]). The intersection of two neutrosophic sets A and B
is a neutrosophic set C, written as C = A ∩ B, whose truth-membership,
indeterminacy-membership and falsity- membership functions are related to
those of A and B by

TC(x) = min(TA(x), TB(x)), IC(x) = max(IA(x), IB(x)),

FC(x) = max(FA(x), FB(x)),∀x ∈ X.

Definition 2.7 ([7]). By a BE-algebra we shall mean an algebraic structure
(X;→, 1) of type (2, 0) satisfying the following axioms:

(BE1) x→ x = 1;
(BE2) x→ 1 = 1;
(BE3) 1→ x = x;
(BE4) x→ (y → z) = y → (x→ z), for allx, y, z ∈ X.
For a BE-algebra (X;→, 1), we can define a relation ≤ on X by x ≤ y if and

only if x→ y = 1.

Proposition 2.1[5,8] If (X;→, 1) is a BE-algebra, then for all x, y ∈ X,
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(1) 1 ≤ x⇒ x = 1.
(2) x→ (y → x) = 1,or equivalently, x ≤ y → x.
(3)x→ ((x→ y)→ y) = 1,or equivalently, x ≤ (x→ y)→ y.
A BE-algebra (X;→, 1) is said to be self distributive if x→ (y → z) = (x→

y)→ (x→ z), for all x, y, z ∈ X.
A BE-algebra (X;→, 1) is said to be commutative if (x → y) → y = (y →

x)→ x, for all x, y ∈ X.
A BE-algebra (X;→, 1) is said to be transitive if for all x, y, z ∈ X, y → z ≤

(x→ y)→ (x→ z).

Proposition 2.2 ([8]). If a BE-algebra (X;→, 1) is transitive, then for all
x, y, z ∈ X,

(1) y ≤ z implies x→ y ≤ x→ z.
(2) y ≤ z implies z → x ≤ y → x.
(3) x ≤ y and y ≤ z imply x ≤ z.

Definition 2.8 ([7,8]). A subset F of BE-algebra (X;→, 1) is called a filter of
X if it satisfies:

(F1) 1 ∈ F ;
(F2) x ∈ F and x→ y ∈ F ⇒ y ∈ F .

Definition 2.9 ([7]). Let (X;→, 1) be a BE-algebra and let x, y, z ∈ X. Define
A(x, y) = {z ∈ X|x → (y → z) = 1}. We call A(x, y) an upper set of x and y.
It is easy to see that 1, x, y ∈ A(x, y), for any x, y ∈ X.

Proposition 2.3 ([7]). Let F be a non-empty subset of a BE- algebra (X;→, 1).
Then F is a filter of X if and only if A(x, y) ⊆ F , for all x, y ∈ F .

Definition 2.10 ([15]). A non-empty subset F of BE-algebra (X;→, 1) is called
an implicative filter if satisfies the following conditions:

(IF1) 1 ∈ F ;
(IF2) x → (y → z) ∈ F andx → y ∈ F imply that x → z ∈ F , for all

x, y, z ∈ X.

Definition 2.11 ([5,6,9]). A fuzzy set µ in BE-algebra (X;→, 1) is called a
fuzzy filter of X if it satisfies:

(FF1) µ(1) ≥ µ(x);
(FF2)µ(y) ≥ min{µ(x), µ(x→ y)} for all x, y ∈ X.

Proposition 2.4 ([5,9]). Let µ be a fuzzy filter of a BE-algebra (X;→, 1).
Then, for any x, y ∈ X, if x ≤ y, then µ(x) ≤ µ(y).

Proposition 2.5 ([5,9]). Let µ be a fuzzy set of a BE-algebra (X;→, 1).. Then
the following conditions are equivalent.

(1) µ is a fuzzy filter in X;
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(2) for all x ∈ X,µ(1) ≥ µ(x); and, for all x, y, z ∈ X,x → (y → z) = 1
implies µ(z) ≥ min{µ(x), µ(y)};

(3) for each α ∈ [0, 1], the level subset U(µ;α) = {x ∈ X : µ(x) ≥ α} is a
filter of X, when U(µ;α) ̸= ∅.

3. Deficiencies of original definition of neutrosophic filter

In 2015, A. Rezaei, A. B. Saeid, and F. Smarandache [10] introduced the notion
of neutrosophic filter in BE-algebras, and discussed some properties of neutro-
sophic filters.

Definition 3.1 (Definition 3.1 in [10]). A neutrosophic set A in a BE-algebra
X is called a neutrosophic filter in X if satisfies the following conditions:

(NF1) TA(x) ≤ TA(1), IA(x) ≥ IA(1) and FA(x) ≥ FA(1);
(NF2) min{TA(x), TA(x → y)} ≤ TA(y),min{IA(x), IA(x → y)} ≥ IA(y)

and min{FA(x), FA(x → y)} ≥ FA(y),for all x, y ∈ X.

Proposition 3.1 (Theorem 3.4 in [10]). Let A be a neutrosophic set of X.
Then the following are equivalent:

(i) A is a neutrosophic filter in X;
(ii) (∀t ∈ [0, 1])U(A; t) = {x ∈ X : t ≤ TA(x), IA(x) ≤ t, FA(x) ≤ t} ̸= ∅

imply U(A; t) is a filter of X.
Now, we give some counterexamples to show that Theorem 3.4 in [10] is not

true and the original definition of neutrosophic filter in BE-algebras (Definition
3.1 in [10]) is not well-defined.

Example 3.1. Let X = {1, a, b, c, d} be a set with the following operation
table:

→ 1 a b c d

1 1 a b c d

a 1 1 b c b

b 1 a 1 b a

c 1 a 1 1 a

d 1 1 1 b 1

Then (X; , 1) is a BE-algebra. Define a neutrosophic set A in X as follows:

TA(x) = 0.79, for all x ∈ X;

IA(x) =

{
0.17, ifx = 1, a

0.79, otherwise.
, FA(x) =

{
0.17, ifx = 1, a

0.79, otherwise.

Then we can verify that (∀t ∈ [0, 1])U(A; t) = {x ∈ X : t ≤ TA(x), IA(x) ≤
t, FA(x) ≤ t} ̸= ∅ imply U(A; t) is a filter of X. But A is not a neutrosophic
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filter in X, since

min{IA(a), IA(a→ d)} = min{0.17, 0.79} = 0.17 � IA(d) = 0.79,

min{FA(a), FA(a→ d)} = min{0.17, 0.79} = 0.17 � FA(d) = 0.79.

Example 3.2. Let X = {1, a, b} be a set with the following operation table:

→ 1 a b

1 1 a b

a 1 1 a

b 1 a 1

Then (X; , 1) is a BE-algebra. Define a neutrosophic set A in X as follows:
TA(1) = 0.9, TA(a) = TA(b) = 0.5; IA(1) = 0.2, IA(a) = IA(b) = 0.35;FA(1) =

0.1, FA(a) = FA(b) = 0.
In [10], the authors said that A is a neutrosophic filter in X (see Example

3.1 in [10]). This is a mistake, since min{IA(a), IA(a→ a)} = min{0.35, 0.2} =
0.2 � IA(a) = 0.35,min{FA(b), FA(b→ b)} = min{0, 0.1} = 0 � FA(1) = 0.1.

Proposition 3.2. Assume that the concept of neutrosophic filters in a BE-
algebra X is defined by Definition 3.1. Let A be a neutrosophic filter in a
BE-algebra X. Then:

(i) IA(x) = IA(1) for all x ∈ X;
(ii) FA(x) = FA(1) for all x ∈ X.

Proof. For all x ∈ X, by Definition 3.1 (NF2) we have

IA(1) ≥ min{IA(1), IA(x)} = min{IA(1), IA(1→ x)} ≥ IA(x).

That is, IA(x) ≤ IA(1). On the other hand, using (NF1) we have IA(x) ≥ IA(1).
Hence IA(x) = IA(1).

Similarly, we can get that FA(x) = FA(1) for all x ∈ X.
By Proposition 3.2 we know that IA(x) and FA(x) are two constant valued

functions for neutrosophic filter (it is defined by Definition 3.1 in [10]) in BE-
algebras. Moreover, by Example 3.1 we know that a neutrosophic filter cannot
be completely determined by its level subsets. All of these are inconsistent with
the properties of the traditional fuzzy filter, so it is necessary to redefine the
concept of neutrosophic filter in BE-algebras.

4. New definition of neutrosophic filters in BE-algebras

Definition 4.1. A neutrosophic set A in a BE-algebra X is called a neutrosophic
filter in X if it satisfies:

(NSF1)∀x ∈ X,TA(x) ≤ TA(1), IA(x) ≥ IA(1) and FA(x) ≥ FA(1);



164 XIAOHONG ZHANG, PENG YU, F. SMARANDACHE and CHOONKIL PARK

(NSF2) ∀x, y ∈ X,min{TA(x), TA(x → y)} ≤ TA(y),max{IA(x), IA(x →
y)} ≥ IA(y) and max{FA(x), FA(x→ y)} ≥ FA(y);

Proposition 4.1 Let A be a neutrosophic filter in BE- algebra X. Then:
(NSF3) ∀x, y ∈ X,x ≤ y ⇒ TA(x) ≤ TA(y), IA(x) ≥ IA(y) and maxFA(x) ≥

FA(y).
Proof. If x ≤ y, then x→ y = 1. It follows that TA(x→ y) = TA(1). From

this, using Definition 4.1 (NSF1) and (NSF2) we get

TA(x) = min{TA(x), TA(1)} = min{TA(x), TA(x→ y)} ≤ TA(y).

That is,x ≤ y ⇒ TA(x) ≤ TA(y).
Similarly, we can get that x ≤ y ⇒ IA(x) ≥ IA(y) and x ≤ y ⇒ FA(x) ≥

FA(y).

It is easy to verify that the following proposition is true.

Proposition 4.2. If A and B are two neutrosophic filters in a BE-algebra X,
then A ∩B is also a neutrosophic filter in X.

Example 4.1. Let (X;→, 1) be the BE-algebra in Example 3.1. Define a
neutrosophic set A in X as follows:

TA(x) =

{
0.86, ifx = 1, a

0.13, otherwise
, IA(x) =

{
0.15, ifx = 1, a

0.82, otherwise
,

FA(x) =

{
0.15, ifx = 1, a

0.82, otherwise.

Then A is a neutrosophic filter in X.
Moreover, we can verify that (∀t ∈ [0, 1])U(A; t) = {x ∈ X : t ≤ TA(x),

IA(x) ≤ t, FA(x) ≤ t} ̸= ∅ imply U(A; t) is a filter of X. This is a general result
for every neutrosophic filter, it is proved as follows.

Proposition 4.3. Let X be a BE-algebra, A be a neutrosophic filter in X.
Then (∀t ∈ [0, 1])U(A; t) = {x ∈ X : t ≤ TA(x), IA(x) ≤ t, FA(x) ≤ t} ̸= ∅ imply
U(A; t) is a filter of X.

Proof. Assume that A is neutrosophic filter in X and let t ∈ [0, 1] such that
U(A; t) ̸= ∅. Then there exists x0 ∈ X such that t ≤ TA(x0), IA(x0) ≤ t, and
FA(x0) ≤ t. By applying Definition 4.1 (NSF1) we have

t ≤ TA(x0) ≤ TA(1), IA(1) ≤ IA(x0) ≤ t and FA(1) ≤ FA(x0) ≤ t.

This means that 1 ∈ U(A; t). Let x, y ∈ X,x→ y ∈ U(A; t) and x ∈ U(A; t).
Then t ≤ TA(x → y), IA(x → y) ≤ t and FA(x → y) ≤ t, t ≤ TA(x), IA(x) ≤
t, and FA(x) ≤ t. From these, using Definition 4.1 (NSF2) we have

t ≤ min{TA(x), TA(x→ y)} ≤ TA(y), IA(y) ≤ max{IA(x), IA(x→ y)} ≤ t,
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FA(y) ≤ max{FA(x), FA(x→ y)} ≤ t.

This means that y ∈ U(A; t). By Definition 2.8 we know that U(A; t) is a
filter of X.

The following example shows that the inverse of Proposition 4.3 is not true
in general.

Example 4.2. Let (X;→, 1) be the BE-algebra in Example 3.1. Define a
neutrosophic set B in X as follows:

TB(x) =

{
0.82, ifx = 1, a

0.16, otherwise
, IB(x) =

{
0.16, ifx = 1, a

0.82, otherwise
,

FB(x) =

{
0.11, ifx = 1, a, b

0.82, otherwise.

Then we can get that:
If t > 0.82, U(B; t) = ∅;
If 0.82 ≥ t > 0.16, U(B; t) = {1, a};
If 0.16 ≥ t > 0.11, U(B; t) = ∅ ;
If 0.11 ≥ t, U(B; t) = ∅.
This means that (∀t ∈ [0, 1])U(B; t) = {x ∈ X : t ≤ TB(x), IB(x) ≤

t, FB(x) ≤ t} ̸= ∅ imply U(B; t) is a filter of X. But B is not a neutrosophic
filter in X, since max{FB(b), FB(b→ d)} = 0.11 � 0.82 = FB(d).

Theorem 4.1. Let A be a neutrosophic set in a BE-algebra X. Then A is a
neutrosophic filter in X if and only if A satisfies:

(i) TA is a fuzzy filter of X;
(ii) 1− IA is a fuzzy filter of X, where (1− IA)(x) = 1− IA(x), x ∈ X;
(iii) 1− FA is a fuzzy filter ofX, where (1− FA)(x) = 1− FA(x), x ∈ X.

Proof. Suppose that A is a neutrosophic filter in X. Then TA is a fuzzy set on
X; and using Definition 4.1 we have ∀x, y ∈ X,TA(x) ≤ TA(1),min{TA(x), TA(x→
y)} ≤ TA(y). By Definition 2.11 we know that TA is a fuzzy filter of X.

Moreover, it is easy to verify that 1 − IA is a fuzzy set on X; and using
Definition 4.1 we have: ∀x, y ∈ X,

(1− IA)(x) = 1− IA(x) ≤ 1− IA(1) = (1− IA)(1);

min{(1 − IA)(x), (1 − IA)(x → y)} = min{1 − IA(x), 1 − IA(x → y)} =
1−max{IA(x), IA(x→ y)} ≤ 1− IA(y) = (1− IA)(y).

By Definition 2.11 we know that 1− IA is a fuzzy filter of X. Similarly, we
can get that 1− FA is a fuzzy filter of X.

Conversely, suppose that neutrosophic set A satisfies the conditions (i), (ii)
and (iii).Then by Definition 2.11 we have (∀x, y ∈ X),

TA(x) ≤ TA(1),min{TA(x), TA(x→ y)} ≤ TA(y);



166 XIAOHONG ZHANG, PENG YU, F. SMARANDACHE and CHOONKIL PARK

(1− IA)(x) ≤ (1− IA)(1),min{(1− IA)(x), (1− IA)(x→ y)} ≤ (1− IA)(y);

(1− FA)(x) ≤ (1− FA)(1),min{(1− FA)(x), (1− FA)(x→ y)} ≤ (1− FA)(y).

It follows that, ∀x, y ∈ X,

TA(x) ≤ TA(1),
IA(x) = 1− (1− IA)(x) ≥ 1− (1− IA)(1) = IA(1),

FA(x) = 1− (1− FA)(x) ≥ 1− (1− FA)(1) = FA(1),

min{TA(x), TA(x→ y)} ≤ TA(y),
max{IA(x), IA(x→ y)} = 1−min{(1− IA)(x), (1− IA)(x→ y)}
≥ 1− (1− IA)(y) = IA(y),

max{FA(x), FA(x→ y)} = 1−min{(1− FA)(x), (1− FA)(x→ y)}
≥ 1− (1− FA)(y) = FA(y).

From this, by Definition 4.1 we get that A is a neutrosophic filter in X.

Applying Theorem 4.1 and Proposition 2.5 (3) we can get:

Corollary 4.1. Let A be a neutrosophic filter in a BE-algebra X. Then:
(1) for any t ∈ [0, 1], U(TA; t) = {x ∈ X|TA(x) ≥ t} is a filter of X when

U(TA; t) ̸= ∅;
(2) for any t ∈ [0, 1], U(1 − IA; t) = {x ∈ X|1 − IA(x) ≥ t} is a filter of X

when U(1− IA; t) ̸= ∅;
(3) for any t ∈ [0, 1], U(1− FA; t) = {x ∈ X|1− FA(x) ≥ t} is a filter of X

when U(1− FA; t) ̸= ∅.

Definition 4.2 ([20]). Let A be a neutrosophic set in X and α, β, γ ∈ [0, 1]
with 0 ≤ α+β+γ ≤ 3 and (α, β, γ)-level set of A denoted by A(α,β,γ) is defined
as:

A(α,β,γ) = {x ∈ X|TA(x) ≥ α, IA(x) ≤ β, FA(x) ≤ γ}.

Remark 4.1. In fact, the original definition of (α, β, γ)-level set in [20] is as
follows:

A(α,β,γ) = {x ∈ X|TA(x) ≥ α, IA(x) ≥ β, FA(x) ≤ γ}.

In this paper, level set is defined as above in order to match the order relations
of the neutrosophic set. Since this paper uses another ordering relationship (see
Remark 2.1), the corresponding (α, β, γ)-level set uses the above Definition 4.2.

Theorem 4.2. Let X be a BE-algebra, A be a neutrosophic set in X. Then A
is a neutrosophic filter in X if and only if all of (α, β, γ)-level set A(α,β,γ) are
filters of X when α, β, γ ∈ [0, 1] such that A(α,β,γ) ̸= ∅.

Proof. Assume that A is a neutrosophic filter in X and let α, β, γ ∈ [0, 1] such
thatA(α,β,γ) ̸= ∅. By Definition 4.2, we have U(TA;α) ̸= ∅, U(1− IA; 1−β) ̸= ∅,
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and U(1− FA; 1− γ) ̸= ∅ . Applying Theorem 4.1 and Proposition 2.5 (3), we
get that U(TA;α), U(1− IA; 1− β), and U(1− FA; 1− γ) are filters of X. Thus
U(TA;α) ∩ U(1− IA; 1− β) ∩ U(1− FA; 1− γ) is also filter of X. Moreover, by
Definition 4.2, it is easy to verify that

A(α,β,γ) = U(TA;α) ∩ U(1− IA; 1− β) ∩ U(1− FA; 1− γ).

Hence,(α, β, γ)-level set A(α,β,γ) is a filter of X.

Conversely, assume that all of (α, β, γ)-level sets A(α,β,γ) are filters of X
when α, β, γ ∈ [0, 1]such that A(α,β,γ) ̸= ∅. For any t ∈ [0, 1], if U(TA; t) = {x ∈
X|TA(x) ≥ t} ≠ ∅, then there exists x0 ∈ X such that TA(x0) ≥ t. Obviously,
IA(x0) ≤ 1, FA(x0) ≤ 1. It follows that x0 ∈ A(t,1,1), that is, A(t,1,1) = {x ∈ X :
t ≤ TA(x), IA(x) ≤ 1, FA(x) ≤ 1} = {x ∈ X|TA(x) ≥ t} = U(TA; t ̸= ∅).

Hence, by the assumption U(TA; t) = A(t,1,1) is a filter of X. Applying
Proposition 2.5 we know thatTA is a fuzzy filter of X. Moreover, for any t ∈
[0, 1], if U(1−IA; t) = {x ∈ X|1−IA(x) ≥ t} ̸= ∅, then there exists x0 ∈ X such
that 1− IA(x0) ≥ t, that is, IA(x0) ≤ 1− t. Obviously, TA(x0) ≥ 0, FA(x0) ≤ 1.
It follows that x0 ∈ A(0,1−t,1), that is, A(0,1−t,1) = {x ∈ X : 0 ≤ TA(x), IA(x) ≤
1− t, FA(x) ≤ 1} = {x ∈ X|IA(x) ≤ 1− t} = U(1− IA; t) ̸= ∅.

Hence, by the assumption U(1− IA; t) = A(0,1−t,1) is a filter of X. Applying
Proposition 2.5 we know that1− TA is a fuzzy filter of X.

Similarly, we can get that 1−FA is a fuzzy filter of X. Combining the above
results, using Theorem 4.1, we know that A is a neutrosophic filter in X.

Applying Theorem 4.2 we can get

Corollary 4.2. Let A be a neutrosophic filter in a BE-algebra X, we denote
that:

(1) AT = {x ∈ X|TA(x) = TA(1)};
(2) AI = {x ∈ X|IA(x) = IA(1)};
(3) AF = {x ∈ X|FA(x) = FA(1)}.
Then AT , IT and FT are are filters of X.

Corollary 4.3. Let A be a neutrosophic filter in a BE-algebra X, we denote

Ab = {x ∈ X|TA(x) ≥ TA(b), IA(x) ≤ IA(b), FA(x) ≤ FA(b)}, b ∈ X.

Then Ab is a filter of X for every b ∈ X.

Theorem 4.3. Let X be a BE-algebra, A be a neutrosophic set in X. Then A
is a neutrosophic filter in X if and only if it satisfies (NSF1) and

(NSF4) ∀x, y, z ∈ X, if x→ (y → z) = 1, then min{TA(x), TA(y)} ≤ TA(z),
max{IA(x), IA(y)} ≥ IA(z), and max{FA(x), FA(y)} ≥ FA(z).
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Proof. Let A be a neutrosophic filter in X and let x, y, z ∈ X. Suppose that
x→ (y → z) = 1. Applying Definition 4.1 we have

TA(y → z) ≥ min{TA(x), TA(x→ (y → z))} = min{TA(x), TA(1)} = TA(x),

TA(z) ≥ min{TA(y → z), TA(y)} ≥ min{TA(x), TA(y)};
IA(y → z) ≤ max{IA(x), IA(x→ (y → z))} = max{IA(x), IA(1)} = IA(x),

IA(z) ≤ max{IA(y → z), IA(y)} ≤ max{IA(x), IA(y)};
FA(y → z) ≤ max{FA(x), FA(x→ (y → z))} = max{FA(x), FA(1)} = FA(x),

FA(z) ≤ max{FA(y → z), FA(y)} ≤ max{FA(x), FA(y)}.

That is, (NSF4) holds.

Conversely, let A satisfies (NSF1) and (NSF4). From Definition 2.7 (BE1)
we have (x→ y)→ (x→ y) = 1. By (NSF4),

min{TA(x → y), TA(x)} ≤ TA(y),max{IA(x → y), IA(x)} ≥ IA(y), and
max{FA(x→ y), FA(x)} ≥ FA(y).

This means that A satisfy (NSF2). Using Definition 4.1 we get that Ais a
neutrosophic filter in X.

5. Implicative neutrosophic filters

Definition 5.1. A neutrosophic set A in a BE-algebraX is called an implicative
neutrosophic filter if it satisfies:∀x, y, z ∈ X,

(1) TA(x) ≤ TA(1), IA(x) ≥ IA(1) and FA(x) ≥ FA(1);
(2) min{TA(x → (y → z)), TA(x → y)} ≤ TA(x → z),max{IA(x → (y →

z)), IA(x → y)} ≥ IA(x → z), and max{FA(x → (y → z)), FA(x → y)} ≥
FA(x→ z).

Example 5.1. Let X = {a, b, c, 1} be a BE-algebra with a binary operation
given by the following table

→ a b c 1

a a b c 1

b 1 b b 1

c a 1 a 1

1 a b c 1

Define neutrosophic set A in X as following:

TA(x) =


0.87, ifx = 1

0.69, ifx = b

0.11, otherwise

, IA(x) =


0.09, ifx = 1

0.15, ifx = b

0.84, otherwise

,
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FA(x) =


0.05, ifx = 1

0.14, ifx = b

0.79, otherwise.

We can verify that A is an implicative neutrosophic filter.

When x = 1 in Definition 5.1 (2), we can get (NSF2) in Definition 4.1, this
means that the following proposition is true.

Proposition 5.1. Let A be an implicative neutrosophic filter in a BE-algebra
X. Then A is a neutrosophic filter in X.

The following example shows that the converse of Proposition 5.1 is not true
in general.

Example 5.2. Let (X;→, 1) be the BE-algebra in Example 3.1, and A be
the neutrosophic filter in Example 4.1. Then we can verify that A is not an
implicative neutrosophic filter inX, since

min{TA(b→ (d→ c)), TA(b→ d)} = min{TA(1), TA(a)} = min{0.86, 0.86} =
0.86 � 0.13 = TA(b) = TA(b→ c).

Proposition 5.2. Let A be an implicative neutrosophic filter in a BE-algebra
X. Then A satisfies the following conditions:

(i) ∀x, y ∈ X,TA(x→ y) = TA(x→ (x→ y));

(ii) ∀x, y ∈ X, IA(x→ y) = IA(x→ (x→ y));

(iii) ∀x, y ∈ X,FA(x→ y) = FA(x→ (x→ y)).

Proof. Putting y = x and z = y in Definition 5.1 (2), we can get that

min{TA(x → (x → y)), TA(x → x)} ≤ TA(x → y),max{IA(x → (x →
y)), IA(x → x)} ≥ IA(x → y), and max{FA(x → (x → y)), FA(x → x)} ≥
FA(x→ y).

Applying Definition 2.7 (BE1) and Definition 5.1 (1) we have TA(x→ (x→
y)) = min{TA(x → (x → y)), TA(1)} = min{TA(x → (x → y)), TA(x → x)} ≤
TA(x → y), IA(x → (x → y)) = max{IA(x → (x → y)), IA(1)} = max{IA(x →
(x → y)), IA(x → x)} ≥ IA(x → y), and FA(x → (x → y)) = min{FA(x →
(x→ y)), FA(1)} = min{FA(x→ (x→ y)), FA(x→ x)} ≥ FA(x→ y).

On the other hand, by Proposition 2.1 (2),we have x → y ≤ x → (x → y).
Using Proposition 4.1, TA(x → y) ≤ TA(x → (x → y)), IA(x → y) ≥ IA(x →
(x→ y)), FA(x→ y) ≥ FA(x→ (x→ y)).

Combining the above two hands, we get that TA(x → y) = TA(x → (x →
y)), IA(x→ y) = IA(x→ (x→ y)), FA(x→ y) = FA(x→ (x→ y)).

Theorem 5.1. Let A be a neutrosophic filter in a transitive BE-algebra X.
Then A is an implicative neutrosophic filter in X if and only if it satisfies:

(i) ∀x, y ∈ X,TA(x→ y) = TA(x→ (x→ y));

(ii) ∀x, y ∈ X, IA(x→ y) = IA(x→ (x→ y));
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(iii) ∀x, y ∈ X,FA(x→ y) = FA(x→ (x→ y)).

Proof. If A is an implicative neutrosophic filter in X, then by Proposition 5.2
we know that the conditions (i), (ii) and (iii) hold.

Conversely, suppose that A satisfies the conditions (i), (ii) and (iii). For any
x, y, z ∈ X, by the definition of a transitive BE-algebra and Definition 2.7 we
have

x→ y ≤ (y → z)→ (x→ z) ≤ (x→ (y → z))→ (x→ (x→ z)),

(x→ y)→ ((x→ (y → z))→ (x→ (x→ z))) = 1,

(x→ (y → z))→ ((x→ y)→ (x→ (x→ z))) = 1.

Applying Theorem 4.3 (NSF4) we have

min{TA(x→ (y → z)), TA(x→ y)} ≤ TA(x→ (x→ z)),

min{IA(x→ (y → z)), IA(x→ y)} ≥ IA(x→ (x→ z)),

min{FA(x→ (y → z)), FA(x→ y)} ≥ FA(x→ (x→ z)).

From these, by (i), (ii) and (iii) we get

min{TA(x→ (y → z)), TA(x→ y)} ≤ TA(x→ (x→ z)) = TA(x→ z),

max{IA(x→ (y → z)), IA(x→ y)} ≥ IA(x→ (x→ z)) = IA(x→ z),

max{FA(x→ (y → z)), FA(x→ y)} ≥ FA(x→ (x→ z)) = FA(x→ z),

Hence, by Definition 5.1 we know that A is an implicative neutrosophic filter
in X.

Theorem 5.2. Let X be a self distributive BE-algebra. Then every neutrosophic
filter in X is an implicative neutrosophic filter in X.

Proof. Let A be a neutrosophic filter in X. Then

∀x ∈ X,TA(x) ≤ TA(1), IA(x) ≥ IA(1)andFA(x) ≥ FA(1).

For any x, y, z ∈ X, by the definition of a self distributive BE-algebra, x→
(y → z) = (x→ y)→ (x→ z). By applying (NSF2) in Definition 4.1 we have:

min{TA(x→ (y → z)), TA(x→ y)}
= min{TA((x→ y)→ (x→ z)), TA(x→ y)} ≤ TA(x→ z),

max{IA(x→ (y → z)), IA(x→ y)}
= max{IA((x→ y)→ (x→ z)), IA(x→ y)} ≥ IA(x→ z),



REDEFINED NEUTROSOPHIC FILTERS IN BE-ALGEBRAS 171

max{FA(x→ (y → z)), FA(x→ y)}
= max{FA((x→ y)→ (x→ z)), FA(x→ y)} ≥ FA(x→ z).

By Definition 5.1 we know that A is an implicative neutrosophic filter in X.

Theorem 5.3. Let X be a self distributive BE-algebra and A be a neutrosophic
filter in X. Then the following conditions are equivalent:

(1) A is an implicative neutrosophic filter in X;
(2) ∀x, y ∈ X,TA(x → (x → y)) ≤ TA(x → y), IA(x → (x → y)) ≥ IA(x →

y), FA(x→ (x→ y)) ≥ FA(x→ y);
(3) ∀x, y, z ∈ X,min{TA(z → (x→ (x→ y))), TA(z)} ≤ TA(x→ y),

max{IA(z → (x → (x → y))), IA(z)} ≥ IA(x → y), and max{FA(z → (x →
(x→ y))), FA(z)} ≥ FA(x→ y).

Proof. (1) ⇒ (2).∀x, y ∈ X, by Definition 5.1 (2), we have

min{TA(x→ (x→ y)), TA(x→ x)} ≤ TA(x→ y),

max{IA(x→ (x→ y)), IA(x→ x)} ≥ TA(x→ y),

max{FA(x→ (x→ y)), FA(x→ x)} ≥ FA(x→ y).

Applying Definition 2.7 (BE1) and Definition 5.1 (1) we have TA(x→ (x→
y)) = min{TA(x → (x → y)), TA(1)} = min{TA(x → (x → y)), TA(x → x)} ≤
TA(x → y), IA(x → (x → y)) = max{IA(x → (x → y)), IA(1)} = max{TA(x →
(x → y)), IA(x → x)} ≤ IA(x → y), and FA(x → (x → y)) = max{FA(x →
(x→ y)), FA(1)} = max{TA(x→ (x→ y)), FA(x→ x)} ≤ FA(x→ y).

Hence, (2) holds.
(2) ⇒ (3). ∀x, y, z ∈ X, by Definition 4.1 (NSF2), we have:

min{TA(z → (x→ (x→ y))), TA(z)} ≤ TA(x→ (x→ y)),

max{IA(z → (x→ (x→ y))), IA(z)} ≥ IA(x→ (x→ y)),

max{FA(z → (x→ (x→ y))), FA(z)} ≥ FA(x→ (x→ y)).

From these, using (2) we get

min{TA(z → (x→ (x→ y))), TA(z)} ≤ TA(x→ y),

max{IA(z → (x→ (x→ y))), IA(z)} ≥ IA(x→ y),

max{FA(z → (x→ (x→ y))), FA(z)} ≥ FA(x→ y).

Therefore, (3) holds.
(3) ⇒ (1).∀x, y, z ∈ X, by the definition of a self distributive BE-algebra

and Definition 2.7, we have

x→ (y → z) = y → (x→ z) ≤ (x→ y)→ (x→ (x→ z)).
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By applying Proposition 4.1,

TA(x→ (y → z)) ≤ TA((x→ y)→ (x→ (x→ z))),

IA(x→ (y → z)) ≥ IA((x→ y)→ (x→ (x→ z))),

FA(x→ (y → z)) ≥ FA((x→ y)→ (x→ (x→ z))).

From these, using (3) we get min{TA(x→ (y → z)), TA(x→ y)} ≤ min{TA((x→
y) → (x → (x → z))), TA(x → y)} ≤ TA(x → z), max{IA(x → (y →
z)), IA(x → y)} ≥ max{IA((x → y) → (x → (x → z))), IA(x → y)} ≥ IA(x →
z), max{FA(x → (y → z)), FA(x → y)} ≥ max{FA((x → y) → (x → (x →
z))), FA(x→ y)} ≥ TA(x→ z).

Hence, by Definition 5.1 we know that A is an implicative neutrosophic filter
in X.

Definition 5.2. A fuzzy set µ in a BE-algebra X is called an implicative fuzzy
filter if it satisfies:x, y, z ∈ X,

(1) µ(x) ≤ µ(1);
(2) min{µ(x→ (y → z)), µ(x→ y)} ≤ µ(x→ z).

It is similar to Theorem 3.6 in [5] we can get the following theorem (the
proof is omitted).

Theorem 5.4. Let µ be a fuzzy set of a BE-algebra X. Then the following
conditions are equivalent:

(1) µ is an implicative fuzzy filter in X;

(2) for each α ∈ [0, 1], the level subset U(µ;α) = {x ∈ X : µ(x) ≥ α} is an
implicative filter of X, whenU(µ;α) ̸= ∅.

It is similar to Theorem 4.1 we can get the following theorem (the proof is
omitted).

Theorem 5.5. Let A be a neutrosophic set in a BE-algebra X. Then A is an
implicative neutrosophic filter in X if and only if A satisfies:

(i) TA is a fuzzy implicative filter of X;

(ii) 1−IA is a fuzzy implicative filter of X, where (1−IA)(x) = 1−IA(x), x ∈
X;

(iii) 1 − FA is a fuzzy implicative filter of X, where (1 − FA)(x) = 1 −
FA(x), x ∈ X.

It is similar to Theorem 4.2 we can get the following theorem (the proof is
omitted).

Theorem 5.6. Let X be a BE-algebra, A be a neutrosophic set in X. Then A
is an implicative neutrosophic filter in X if and only if all of (α, β, γ)-level set
A(α,β,γ) are implicative filters of X when α, β, γ ∈ [0, 1]such that A(α,β,γ) ̸= ∅.
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6. Conclusion

This paper further studied the application of neutrosophic set theory to BE-
algebras. First of all, we analyzed the defects of the original definition of neu-
trosophic filter in a BE-algebra, by using some examples we pointed out the
following facts:

(1) An example of neutrosophic filter (Example 3.1 in [10]) is wrong;

(2) A theorem on neutrosophic filters (Theorem 3.4 in [10]) is wrong;

(3) The original definition of neutrosophic filter in BE- algebra is not normal,
since the indeterminacy-membership function and falsity-membership function
are constants for any neutrosophic filter (see Proposition 3.2).

In order to solve the above problems, we given a reasonable new definition of
neutrosophic filter in BE- algebras, and through in-depth study its properties,
we know that the new definition is good and overcomes the shortcomings of
the original definition. Especially, some necessary and sufficient conditions are
given, and an important fact is shown: a neutrosophic filter in BE-algebra can
be completely determined by its (alpha, beta, gamma)- level sets. Moreover,
the relationships between fuzzy filters and neutrosophic filters are investigated.
Finally, the new concept of implicative neutrosophic filter in BE-algebra is in-
troduced, and some necessary and sufficient conditions for a neutrosophic filter
to be implicative neutrosophic filter are given. All these results are new and
important, which can be used for reference to other research on non-classical
logic algebra systems.
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Abstract. We study a recent general space of countably compact space called almost
countably compact. A topological space X is almost countably compact space if for
every countable open cover {Un : n ∈ N} of X, there is a finite subfamily {Uni}

m
i=1,

where m ∈ N such that X =
∪m

i=1 Cl(Uni). In particular, we investigate this new class
of spaces and some other properties in the view of regular cover notion and semiregu-
larization topology.

Keywords: regularly open sets, regularly closed sets, nearly countably compact,
semiregularization topology.

1 Introduction

Compactness has come to be one of the most important concepts in advanced
mathematics. In the 19th century, many mathematical properties were used
that would be later seen as consequences of compactness. This notion that
arises from topology and metric spaces is very useful in analysis and so in ap-
plied mathematics. A generalization of compact spaces, the countable compact
spaces arise in different study fields. For metrizable spaces, the countable com-
pactness, sequential compactness, limit point compactness and compactness are
all equivalent.

Not only compactness, but among various covering properties of topological
spaces a lot of attention has been made to those covers involving regularly open
sets and regularly closed sets. In 1959, weakly Lindelöf spaces were introduced
by Frolik [5]. After that and as an analogous work on Lindelöfness; nearly com-
pact spaces were defined in by Singal and Mathur in 1969 [8] as a generalization
of compact spaces. By the definition, a topological space is nearly compact if for
every open cover {Uα : α ∈ ∆} of X, there is a finite subfamily {Uαi}

m
i=1 where

m ∈ N and X =
∪m
i=1 Int(Cl(Uαi)). Further, nearly Lindelöf spaces are defined

in by Balasubramanianin 1982 [2]. In the other way around, some generaliza-
tions as almost countbly compact and nearly countably compact of countably
compact spaces are presented by different authors as Song and Zhao 2012 [11],
and Altawallbeh and Al-Momani in their paper [1]. In addition to the men-
tioned references, the reader may take a look at [3] and [10]. By the definition,
a topological space X is said to be nearly countably compact space if for every
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countable (regularly) open cover {Un : n ∈ N} of X, there is a finite subfamily
{Uni}

m
i=1, where m ∈ N such that X =

∪m
i=1 Int(Cl(Uni)) (X =

∪m
i=1 Uni). It is

clear that every nearly countably compact spaceX is almost countably compact.
We know that a compact space is countably compact. In this paper, we

investigate one more general space, called almost countably compact. In par-
ticular, we study some properties of almost countably compact spaces by using
regularly open (closed) sets and semiregularization topology. Porter and Thom-
son [7] have shown the importance of semiregularization topologies in the study
of H-closed and minimal Hausdorff spaces.

Throughout this paper, a space X stands for a topological space (X, τ).
The interior and closure of a subset A in a space X are denoted by Int(A) and
Cl(A), respectively. Regularly open sets are defined by Stone [12] in 1937 and
investigated with more interesting results about the topic. A subset A is said
to be regularly open if and only if A = Int(Cl(A)). It is obvious that every
regularly open set is an open set. The complement of a regularly open set is
called regularly closed set. In addition, we denote the set of all regularly open
and closed sets in a space X by RO(X) and RC(X), respectively. In 1985 [6],
Mršević, Rielly, and Vamanamurthy have been studied the topology of a spaceX
whose base is the set of all regularly open sets in the space (X, τ) which is called
semiregularization topology and denoted by τ∗. If τ = τ∗, then the space X is
called semiregular. Furthermore, Cameron [4] has called a topological property
ρ semiregular provided that the space (X, τ) has the property ρ. Moreover, a
space X is called extremally disconnected if the closure of every open set in it
is open.

The following lemma is well known and it is easily can be proved. In its
results, it contains some preliminaries matching the regularly open and regularly
closed sets of any topology and its semiregularization in such useful facts that
can be appear in the text later.

Lemma 1.1. For any topological space (X, τ)and its’ semiregularization (X, τ∗),
we have:

1. RO(X, τ) = RO(X, τ∗).

2. RC(X, τ) = RC(X, τ∗).

3. Intτ (F ) = Intτ∗(F ) for any F ∈ RC(X, τ).

4. Clτ (O) = Clτ∗(O) for any O ∈ τ.

2 Almost countably comapct spaces

In this section, we study a recent class of generalized spaces of the countably
compact spaces which is called the class of almost countably compact spaces. In
particular, we prove that almost countably compact property is a semiregular
property and a regularly closed subset of an almost countably compact space is
an almost countably compact.
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Definition 2.1. A topological space X is said to be almost countably compact,
if for every countable open cover {Un : n ∈ N} of X, there is a finite subfamily
{Uni}

m
i=1, where m ∈ N such that X =

∪m
i=1Cl(Uni).

It is clear that every countably compact spaceX is almost countably compact
but the converse needs not be true as it is shown in the follwoing example.

Example 1. Let X = [0,Ω] × [0, ω]/ {(Ω, ω)} be the deleted Tychonoff plank
space where Ω is the first infinite ordinal and ω is the first uncountable ordinal.
Since the set {(n, ω) : n ∈ N} is an infinite discrete closed subset ofX, we deduce
that X is not countably compact. On the other hand, it is easy to see that X
is almost countably compact because there is the subset Ω × [0, ω] which is a
dense countably compact subspace of X.

Proposition 0.1. A topological space (X, τ) is almost countably compact space
if and only if its’ semiregularization (X, τ∗) is almost countably compact.

Proof. Assume that (X, τ) is almost countably compact. Let U = {Un : n ∈ N}
be a countable open cover of (X, τ∗). Since τ∗ ⊆ τ , the cover U is an open cover
of (X, τ). From our assumption, the space (X, τ) is almost countably compact,
and so there is a finite subfamily {Uni}

m
i=1, for some natural number m, of U

such that

X =

m∪
i=1

Clτ (Uni).

By using Lemma 1.1 (4), we get

X =

m∪
i=1

Clτ∗(Uni).

This proves that (X, τ∗) is almost countably compact.

Conversely, we assume that (X, τ∗) is almost countably compact. Let V =
{Vn : n ∈ N} be a countable open cover of (X, τ). From the definition of the
topology τ∗, the family {Intτ (Clτ (Vn)) : n ∈ N} is an open cover of the space
(X, τ∗). Since (X, τ∗) is almost countably compact, there is a finite subfamily
{Intτ (Clτ (Vni))}

m
i=1 such that

X =

m∪
i=1

Clτ∗(Intτ (Clτ (Vni))).

By using Lemma 1.1 (4), we get

X =

m∪
i=1

Clτ (Intτ (Clτ (Vni))).
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Since Clτ (Intτ (Clτ (Vni))) ⊆ Clτ (Vni) for every set Vni , we have

X =
m∪
i=1

Clτ (Vni).

This proves that (X, τ) is almost countably compact space and the proof is
complete.

Corollary 2.1. Almost countably compact property is a semiregular property.

From Example 1, observe that the closed subset {(n, ω) : n ∈ N} of a Ty-
chonoff almost countably compact space X is not almost countably compact.
Thus, the closed subset of an almost countably compact space need not be al-
most countably compact. Anyway, the following proposition shows that there
is a positive result regarding that.

Proposition 0.2. Every regularly closed subset of an almost countably compact
space is almost countably compact.

Proof. Let X be an almost countably compact space and let H be a regularly
closed subset of X. Let {Un}n∈N be a countable open cover of H. So, for each
n, there is an open subset Vn of X such that Vn

∩
H = Un. Now, we get

X = (
∪
n∈N

Vn)
∪

(X/H).

It is clear that X/H is an open subset of X. Since X is almost countably
compact, we deduce that there is a finite subfamily {Un1 , Un2, ..., Unm} of the
cover {Un : n ∈ N} such that

X = (
m∪
i=1

Cl(Vni))
∪

(Cl(X/H)).

Thus,

Int(H) ⊆
m∪
i=1

Cl(Vni) = Cl(
m∪
i=1

Vni).

Since H is a regularly closed subset of X, we have H = Cl(Int(H)) ⊆
Cl(
∪m
i=1 Vni). That means

H=H
∩

(Cl(

m∪
i=1

Vni))=ClH(H
∩

(

m∪
i=1

Vni))=

m∪
i=1

ClH(Vni

∩
H)=

m∪
i=1

ClH(Uni).

That meansH is almost countably compact space and the proof is completed.
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3 Almost regular countably comapct spaces

We define one more general spaces called almost regular countably compact
spaces by using the notion of regular covers. Besides that, we prove that almost
regular countably compact property is a semiregular property with some other
related results are presented.

Definition 3.1. An open cover {Uα : α ∈ ∆} of a space X is called regular
cover if, for every α ∈ ∆ there exists a nonempty regularly closed subset Cα in
X such that Cα ⊆ Uα and X =

∪
α∈∆ Int(Cα).

In this paper and to make it clearer to the reader, we call the cover of
regularly open sets a regularly open cover which is different from the regular
cover.

Definition 3.2. [9] A space X is called almost regular if any regularly closed
set F and any singleton {x} disjoint from F , then there exist two open disjoint
sets U and V such that F ⊆ U and {x} ⊆ V .

Definition 3.3. A space X is called almost regular countably compact if and
only if for every countable regular cover {Un : n ∈ N} of X, there is a finite
subfamily {Un1 , Un2, ..., Unm} where m ∈ N of {Un : n ∈ N} such that X =∪m
i=1Cl(Uni).

It is obvious that every almost countably compact space is almost regular
countably compact.

Proposition 0.3. A topological space (X, τ) is almost regular countably compact
space if and only if (X, τ∗) is almost regular countably compact space.

Proof. Assume that (X, τ) is almost regular countably compact. Let {Un : n ∈
N} be a countable regular cover of (X, τ∗). From definition of the regular cover,
there is a nonempty regularly closed set Cn in (X, τ∗) such that Cn ⊆ Un and
X =

∪
n∈N Intτ∗(Cn). From Lemma 1.1, and the fact that τ∗ ⊆ τ , we get {Un :

n ∈ N} is a countable regular cover of (X, τ). From the assumption, (X, τ) is
almost regular countably compact, there is a finite subfamily {Un1 , Un2, ..., Unm}
of the cover {Un : n ∈ N} such that such that

X =

m∪
i=1

Clτ (Uni).

Using 4 in Lemma 1.1, we get

X =
m∪
i=1

Clτ∗(Uni).

Thus (X, τ∗) is almost regular countably compact space. Conversely, Assume
that is (X, τ∗) is almost regular countably compact and {Un : n ∈ N} is a
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countable regular cover of (X, τ). We know that for every Un ∈ τ , we have
Un ⊆ Intτ (Clτ (Un)), and by using the same lemma, we get {Intτ (Clτ (Un)) :
n ∈ N} is a countable regular cover of (X, τ∗). Since (X, τ∗) is almost regular
countably compact, there is a finite subfamily {ntτ (Clτ (Uni))}

m
i=1such that.

X =

m∪
i=1

Clτ∗(Intτ (Clτ (Uni))).

Since Intτ (Clτ (Uni)) is an open set in (X, τ) for each ni and by using 4 in
Lemma 1.1, we get

X =

m∪
i=1

Clτ (Intτ (Clτ (Uni))).

Thus, X =
∪m
i=1Clτ (Uni). This proves that (X, τ) is almost regular countably

compact space.

Corollary 3.1. Almost regular countably compact property is a semiregular
property.

The next proposition shows that nearly regular countably compact property
is a semiregular property where the proof is omitted because it is very similar
to the proof of Proposition 0.3

Proposition 0.4. A topological space (X, τ) is nearly regular countably compact
space if and only if (X, τ∗) is nearly regular countably compact space.

It is a direct result that is every nearly countably compact space is almost
countably compact, and so it is almost regular countably compact space. Each
of the following two propositions proves that the converse is true but with one
more different strong condition in each of which.

Proposition 0.5. Let X be an almost regular countably compact space and
extremally disconnected then it is nearly countably compact space.

Proof. Let {Un : n ∈ N} be a countable open cover of X. Since X is extremally
disconnected, we have {Cl(Un) : n ∈ N} is a regular cover of X. Now from the
assumption, X is almost regular countably compact and so it has a finite sub-
family {Cl(Uni)}mi=1 such that X =

∪m
i=1Cl(Uni). Again since X is extremally

disconnected, we get

X =
m∪
i=1

Int(Cl(Uni)).

This proves that X is nearly countably compact space and the proof is
done.

Proposition 0.6. Let X be an almost regular countably compact space and
almost regular then it is nearly countably compact space.
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Proof. Let {Un : n ∈ N} be a countable regularly open cover of X. That means
for each x ∈ X there is nx such that x ∈ Unx . Since X is almost regular and
by using theorem 2.2 in [9], there exists a regularly open set Hnx such that
x ∈ Hnx ⊆ Cl(Hnx) ⊆ Unx . Again, because X is almost regular and x ∈ Hnx ,
then there is another regularly open set Onx such that x ∈ Onx ⊆ Cl(Onx) ⊆
Hnx ⊆ Cl(Hnx) ⊆ Unx . It is obvious that the subset Cl(Onx) is regularly closed
subset where X =

∪
x∈X Int(Cl(Onx)) =

∪
x∈X Onx . This makes the family

{Hnx : nx ∈ N}x∈X a countable regular cover of X. Since X is almost regular
countably compact space, then there is a finite subfamily {Hnxi

: nxi ∈ N and
xi ∈ X}mi=1 for some m ∈ N such that

X =

m∪
i=1

Cl(Hnxi
).

Thus X =
∪m
i=1 Unxi

. This proves that X is nearly countably compact space
and completes the proof.
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Abstract. In this paper, we utilize the concept of simulation functions in sense of
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unify and improve many fixed point results in literature. Also, we give fixed point results
of integral type as well as we support our result by introducing an example.

Keywords: fixed point theory, nonlinear contraction, simulation function, omega
distance.

1. Introduction

The notion of Ω-distance in the sense of Saadati et al. [1] plays an important
role in nonlinear analysis to extend and improve the Banach fixed point theorem
to many directions. Saadati et al. [1] employed the notion of Ω-distance to
prove many interesting results associated to the notion of G-metric spaces in
the sense of Mustafa and Sims [2]. For some works in Ω-distance see [3]-[7] and
all references cited their.

The definition of Ω-distance is given as follows:

Definition 1.1 ([1]). Let (X,G) be a G-metric space. Then a function Ω :
X ×X ×X → [0,∞) is called an Ω-distance on X if the following conditions
satisfied:

(a) Ω(x, y, z) ≤ Ω(x, a, a) + Ω(a, y, z)∀x, y, z, a ∈ X;
(b) for any x, y ∈ X,Ω(x, y, .),Ω(x, ., y) : X → X are lower semi continuous;
(c) for each ϵ > 0, there exists a δ > 0 such that Ω(x, a, a) ≤ δ and

Ω(a, y, z) ≤ δ imply G(x, y, z) ≤ ϵ.

Definition 1.2 ([1]). Let (X,G) be a G-metric space and Ω be an Ω-distance
on X. Then we say that X is Ω-bounded if there exists M ≥ 0 such that
Ω(x, y, z) ≤M for all x, y, x ∈ X.

The following lemma plays a crucial role in the development of our results.

Lemma 1.1 ([1]). Let X be a metric space with metric G and Ω be an Ω-
distance on X. Let (xn),(yn) be sequences in X, (αn),(βn) be sequences in
[0,∞) converging to zero and let x, y, z, a ∈ X. Then we have the following:

(1) If Ω(y, xn, xn) ≤ αn and Ω(xn, y, z) ≤ βn for n ∈ IN, then G(y, y, z) < ϵ
and hence y = z;

(2) If Ω(yn, xn, xn) ≤ αn and Ω(xn, ym, z) ≤ βn for any m > n ∈ IN, then
G(yn, ym, z)→ 0 and hence yn → z;

(3) If Ω(xn, xm, xl) ≤ αn for any m,n, l ∈ IN with n ≤ m ≤ l, then (xn) is
a G-Cauchy sequence;

(4) If Ω(xn, a, a) ≤ αn for any n ∈ IN, then (xn) is a G-Cauchy sequence.

Khojasteh et al. [10] in 2015 introduced the concept of simulation mappings
in which they used it to unify several fixed point results in the literature.

Definition 1.3 ([10]). Let ζ : [0,∞) × [0,∞) → IR be a mapping. Then ζ is
called a simulation function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all s, t > 0;
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(ζ3) If tn and sn are sequences in [0,∞) such that limn→∞ tn = limn→∞ sn >
0, then lim supn→∞ ζ(tn, sn) < 0.

Hence forth, we denote by Z the set of all simulation functions.
Next, we list some examples of simulation functions, in the following ζ is

defined from [0,∞)× [0,∞) to IR.

Example 1.1 ([10]). Let h1, h2 : [0,∞) → [0,∞) be two continuous functions
such that h1(t) = h2(t) = 0 if and only if t = 0 and h2(t) < t ≤ h1(t) for all
t ∈ [0,∞) and define ζ(t, s) = h2(s) − h1(t) for all t, s ∈ [0,∞). Then ζ is a
simulation function.

Example 1.2 ([10]). Let g : [0,∞)→ [0,∞) be a continuous function such that
g(t) = 0 if and only if t=0 and define ζ(t, s) = s− g(s)− t for all t, s ∈ [0,∞).
Then ζ is a simulation function.

2. Main result

We start our work by introducing the following definition:

Definition 2.1. Let (X,G) be a G-metric space, ζ ∈ Z and Ω be an Ω-distance
on X. A self mapping f : X → X is said to be (Ω,Z)-contraction with respect
to ζ if f satisfies the following condition:

(2.1) ζ(Ω(fx, fy, fz),Ω(x, y, z)) ≥ 0 for all x, y, z ∈ X.

Lemma 2.1. Let (X,G) be a G-metric space, and Ω be an Ω-distance on X.
Let f : X → X be an (Ω,Z)-contraction with respect to ζ ∈ Z. If f has a fixed
point (say) u ∈ X, then it is unique.

Proof. Assume that there is v ∈ X such that fv = v. As f is (Ω,Z)-contraction
with respect to ζ ∈ Z, then by substituting x = y = u and z = v in 2.1 and
taking into account (ζ2), we have

0 ≤ ζ(Ω(fu, fu, fv),Ω(u, u, v))
= ζ(Ω(u, u, v),Ω(u, u, v))

< Ω(u, u, v)− Ω(u, u, v) = 0,

a contradiction. Hence u is unique.

Let (X,G) be a G-metric space, x0 ∈ X and f : X → X be a self mapping.
Then the sequence (xn) where xn = fxn−1 n ∈ IN is called a picard sequence
generated by f with initial point x0.

Lemma 2.2. Let (X,G) be a G-metric space, ζ ∈ Z and Ω be an Ω-distance
on X. If f : X → X is an (Ω,Z)-contraction with respect to ζ, then

(2.2) lim
n→∞

Ω(xn, xn+1, xn+1) = lim
n→∞

Ω(xn+1, xn, xn) = 0.

for any initial point x0 ∈ X where (xn) is the picard sequence generated by f at
x0.
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Proof. Let x0 ∈ X be any point and (xn) be the picard sequence generated by
f at x0. From 2.1 and (ζ2), we have

0 ≤ ζ(Ω(fxn−1, fxn, fxn),Ω(xn−1, xn, xn))

= ζ(Ω(xn, xn+1, xn+1),Ω(xn−1, xn, xn))

< Ω(xn−1, xn, xn)− Ω(xn, xn+1, xn+1).

Thus, (Ω(xn, xn+1, xn+1) : n ∈ IN) is a non increasing sequence in [0,∞) and
so there is L ≥ 0 such that limn→∞Ω(xn, xn+1, xn+1) = L. Suppose to the
contrary L > 0, then by 2.1 and (ζ3), we have

0 ≤ lim sup
n→∞

ζ(Ω(xn, xn+1, xn+1),Ω(xn−1, xn, xn)) < 0,

a contradiction and so limn→∞Ω(xn, xn+1, xn+1) = 0. By the same way we can
show that limn→∞Ω(xn+1, xn, xn) = 0.

Theorem 2.1. Let (X,G) be a complete G-metric space, ζ ∈ Z and Ω be an
Ω-distance on X. Suppose that f : X → X is (Ω,Z)-contraction with respect to
ζ that satisfies the following condition

(2.3) for all u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point x ∈ X.

Proof. Let x0 ∈ X and consider the picard sequence (xn) in X generated by f
at x0.

We claim that limn,m→∞Ω(xn, xm, xm) = 0 for m,n ∈ IN with m > n.
For this purpose assume to the contrary that limn→∞Ω(xn, xm, xm) ̸= 0.

Hence, there is ϵ > 0 and two subsequences (xnk
) and (xmk

) of (xn) such that
(xmk

) is chosen as the smallest index for which

(2.4) Ω(xnk
, xmk

, xmk
) ≥ ϵ, k < nk < mk.

This implies that

(2.5) Ω(xnk
, xmk−1, xmk−1) < ϵ.

Now, by using 2.4,2.5 and part (a) of the definition of Ω, we have

ϵ ≤ Ω(xnk
, xmk

, xmk
)

≤ Ω(xnk
, xmk−1, xmk−1) + Ω(xmk−1, xmk

, xmk
)

< ϵ+Ω(xmk−1, xmk
, xmk

).

Passing the limit as n→∞ and taking into account 2.2, we get

lim
n→∞

Ω(xnk
, xmk

, xmk
) = ϵ.
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Also,

ϵ ≤ Ω(xnk
, xmk

, xmk
)

≤ Ω(xnk
, xnk+1, xnk+1) + Ω(xnk+1, xmk+1, xmk+1) + Ω(xmk+1, xmk

, xmk
)

and

Ω(xnk+1, xmk+1, xmk+1)

≤ Ω(xnk+1, xnk
, xnk

) + Ω(xn, xmk
, xmk

) + Ω(xmk
, xmk+1, xmk+1).

Passing the limit as n→∞ in the above two inequalities and taking into account
2.2, we get

lim
n→∞

Ω(xnk+1, xmk+1, xmk+1) = ϵ.

Now, by letting sn = Ω(xnk
, xmk

, xmk
) and tn = Ω(xnk+1, xmk+1, xmk+1) then

(ζ3) and 2.1 yield that

0 ≤ lim sup
n→∞

ζ(Ω(xnk+1, xmk+1, xmk+1),Ω(xnk
, xmk

, xmk
)) < 0

which is a contradiction. Therefore limn,m→∞Ω(xn, xm, xm) = 0, m > n. By
the same argument we can show that limn,m→∞Ω(xn, xn, xm) = 0, m > n.

For l > m > n we have Ω(xn, xm, xl) ≤ Ω(xn, xm, xm) + Ω(xm, xm, xl).
By taking the limit as n,m, l → ∞, we get limn,m,l→∞Ω(xn, xm, xl) = 0.

Thus by Lemma 1.1 (xn) is a G-Cauchy sequence. So there exists u ∈ X such
that limn→∞ xn = u.

By the lower semi-continuity of Ω, we get

Ω(xn, xm, u) ≤ lim inf
p→∞

Ω(xn, xm, xp) ≤ ϵ, ∀m ≥ n.

Now, suppose that fu ̸= u, then we get

0 < inf{Ω(x, fx, u) : x ∈ X}
≤ inf{Ω(xn, xn+1, u) : n ∈ IN}
≤ ϵ,

for every ϵ > 0 which is a contradiction. Therefore fu = u. The uniqueness of
u follows from Lemma 2.1.

We introduce the following example to support our main result.

Example 2.1. Let X = [0, 1] and let G : X×X×X → [0,∞), Ω : X×X×X →
[0,∞), f : X → X and ζ : [0,∞)× [0,∞)→ IR be defined as follow:
G(x, y, z) = |x− y|+ |y− z|+ |x− z|, Ω(x, y, z) = |x− y|+ |x− z|, fx = ax and
ζ(t, s) = bs− t where 0 ≤ a ≤ b < 1. Then

(1) (X,G) is a complete G-metric space and Ω is an Ω-distance on X;
(2) ζ ∈ Z and f is (Ω,Z)-contraction with respect to ζ

(3) for every u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.
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Proof. We show (2) and (3)

(2) Clearly ζ ∈ Z.
To see that f is (Ω,Z)-contraction with respect to ζ let x, y, z ∈ X. Then

ζ(Ω(fx, fy, fz),Ω(x, y, z)) = bΩ(x, y, z)− Ω(fx, fy, fz)

= b(|x− y|+ |x− z|)− (|ax− ay|+ |ax− az|)
= b(|x− y|+ |x− z|)− a(|x− y|+ |x− z|)
= (b− a)(|x− y|+ |x− z|)
≥ 0

(3) If fu ̸= u, then u ̸= 0. Therefore

inf{Ω(x, fx, u) : x ∈ X} = inf{Ω(x, 1
5
x, u) : x ∈ X}

= inf{|x− ax|+ |x− u| : x ∈ X}
= inf{(1− a)|x|+ |x− u| : x ∈ X}
= (1− a)u > 0.

Thus all hypotheses of Theorem 2.1 hold true. Hence f has a unique fixed
point in X. Here the unique fixed point of f is 0. �

Now, we derive some interesting results based on our main result. To facili-
tate our work we define the following:

Φ = {ϕ : [0,∞)→ [0,∞) : ϕ is continuous function}

Ψ = {ψ : [0,∞)→ [0,∞) : ψ is lower semi continuous function},

where ϕ−1({0}) = ψ−1({0}) = {0} for all ϕ ∈ Φ and ψ ∈ Ψ.

Corollary 2.1. Let (X,G) be a complete G-metric space, Ω be an Ω-distance
on X and f : X → X be a self mapping. Assume that there are ϕ1, ϕ2 ∈ Φ where
ϕ1(t) < t ≤ ϕ2(t) ∀t > 0 such that f satisfies the following condition:

(2.6) ϕ2Ω(fx, fy, fz) ≤ ϕ1Ω(x, y, z) ∀x, y, z ∈ X.

Also, suppose that for all u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point in X.

Proof. Define ζA : [0,∞) × [0,∞) → IR by ζA(t, s) = ϕ1(s) − ϕ2(t). Clearly
ζA ∈ Z and f is (Ω,Z)-contraction with respect to ζA. Hence the result follows
from Theorem 2.1

As a consequence result from Corollary 2.1, we have the following results:
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Corollary 2.2. Let (X,G) be a complete G-metric space, Ω be an Ω-distance
on X and f : X → X be a self mapping. Assume that there is ϕ ∈ Φ where
ϕ(t) < t ∀t > 0 such that f satisfies the following condition:

(2.7) Ω(fx, fy, fz) ≤ ϕΩ(x, y, z) ∀x, y, z ∈ X.

Also, suppose that for all u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point in X.

Corollary 2.3. Let (X,G) be a complete G-metric space, Ω be an Ω-distance
on X and f : X → X be a self mapping. Assume that there is λ ∈ [0, 1) such
that f satisfies the following condition:

(2.8) Ω(fx, fy, fz) ≤ λΩ(x, y, z) ∀x, y, z ∈ X.

Also, suppose that for all u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point in X.

Corollary 2.4. Let (X,G) be a complete G-metric space, Ω be an Ω-distance
on X and Let f : X → X be a self mapping. Assume that there is ψ ∈ Ψ such
that f satisfies the following condition:

(2.9) Ω(fx, fy, fz) ≤ Ω(x, y, z)− ψΩ(x, y, z) ∀x, y, z ∈ X.

Also, suppose that for all u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point in X.

Proof. Define ζB : [0,∞) × [0,∞) → IR by ζB(t, s) = s − ψ(s) − t. Clearly
ζB ∈ Z and f is (Ω,Z)-contraction with respect to ζB. Hence the result follows
from Theorem 2.1

As a consequence result from Corollary 2.4 we have the following result:

Corollary 2.5. Let (X,G) be a complete G-metric space, Ω be an Ω-distance
on X and f : X → X be a self mapping. Assume that there are ϕ ∈ Φ and
ψ ∈ Ψ where ϕ(t) < t ∀t > 0 such that f satisfies the following conditions:

(2.10) Ω(fx, fy, fz) ≤ ϕΩ(x, y, z)− ψΩ(x, y, z) ∀x, y, z ∈ X.

Also, suppose that for all u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point in X.

Definition 2.2. The function φ : [0,∞) → [0,∞) is called a c-comparison
function if the following properties are satisfied:

(1) φ is monotone increasing;

(2)
∑∞

n=0 φ
n(t) <∞ for all t ≥ 0.
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It is clear that if φ is a c-comparison function then φ(t) < t for all t > 0 and
φ(0) = 0.

Before, we present our second main results we introduce the following defi-
nition in order to facilitate our arguments.

Definition 2.3. Let (X,G) be a G-metric space, ζ ∈ Z and Ω be an Ω-distance
on X. A self mapping f : X → X is said to be (Ω, φ,Z)-contraction with respect
to ζ if there is is a c-comparison function φ such that f satisfies the following
condition:

(2.11) ζ(2Ω(fx, f2x, fy), φΩ(x, fx, x) + φΩ(y, fy, y)) ≥ 0 ∀x, y ∈ X.

Lemma 2.3. Let (X,G) be a G-metric space,ζ ∈ Z and Ω be an Ω-distance on
X. Let f : X → X be an (Ω, φ,Z)-contraction with respect to ζ. If f has a fixed
point (say) u ∈ X, then it is unique.

Proof. First we show that for all w ∈ X if fw = w, then Ω(w,w,w) = 0.
Assume that Ω(w,w,w) > 0. From 2.11 and ζ2, we have

0 ≤ ζ(2Ω(fw, f2w, fw), φΩ(w, fw,w) + φΩ(w, fw,w))

= ζ(2Ω(w,w,w), 2φΩ(w,w,w))

< 2φΩ(w,w,w)− 2Ω(w,w,w),

< 2Ω(w,w,w)− 2Ω(w,w,w),

= 0

a contradiction. Hence Ω(w,w,w) = 0.
Now, assume that there is v ∈ X such that fv = v and Ω(u, v, v) > 0. Since

f is (Ω, φ,Z)-contraction with respect to ζ, then by substituting x = u and
y = v in 2.1 and taking into account (ζ2), we have

0 ≤ ζ(2Ω(fu, f2u, fv), φΩ(u, fu, u) + φΩ(v, fv, v))

= ζ(2Ω(u, u, v), φΩ(u, u, u) + φΩ(v, v, v))

< φΩ(u, u, u) + φΩ(v, v, v)− 2Ω(u, u, v)

< Ω(u, u, u) + Ω(v, v, v)− 2Ω(u, u, v).

Hence 2Ω(u, u, v) < Ω(u, u, u) + Ω(v, v, v) = 0 + 0 = 0 a contradiction. Hence
Ω(u, u, v) = 0. Thus by the definition of Ω-distance we have G(u, v, v) = 0 and
so u = v.

Theorem 2.2. Let (X,G) be a complete G-metric space, ζ ∈ Z and Ω be an Ω-
distance on X such that X is Ω-bounded. Suppose that there is is a c-comparison
function φ such that f : X → X is a (Ω, φ,Z)-contraction with respect to ζ that
satisfies the following condition

(2.12) ∀ u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point in X.
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Let x0 ∈ X and consider the picard sequence (xn) in X generated by f at
x0.

Consider s ≥ 0. Then by 2.11, we have for all n ∈ IN

0 ≤ ζ(2Ω(fxn−1, f
2xn−1, fxn+s−1), φΩ(xn−1, fxn−1, xn−1)

+ φΩ(xn+s−1, fxn+s−1, xn+s−1))

= ζ(2Ω(xn, xn+1, xn+s), φΩ(xn−1, xn, xn−1) + φΩ(xn+s−1, xn+s, xn+s−1)).

< φΩ(xn−1, xn, xn−1) + φΩ(xn+s−1, xn+s, xn+s−1)− 2Ω(xn, xn+1, xn+s).

Thus,

(2.13) Ω(xn, xn+1, xn+s) <
1

2
[φΩ(xn−1, xn, xn−1)+φΩ(xn+s−1, xn+s, xn+s−1)].

Now,

0 ≤ ζ(2Ω(fxn−2, f
2xn−2, fxn−2), φΩ(xn−2, fxn−2, xn−2) + φΩ(xn−2, fxn−2, xn−2))

= ζ(2Ω(xn−1, xn, xn−1), 2φΩ(xn−2, xn−1, xn−2))

< 2φΩ(xn−2, xn−1, xn−2)− 2Ω(xn−1, xn, xn−1).

So, Ω(xn−1, xn, xn−1) < φΩ(xn−2, xn−1, xn−2).
If we apply the previous steps repeatedly, we get

Ω(xn−1, xn, xn−1) ≤ φn−1Ω(x0, x1, x0).

Therefore φΩ(xn−1, xn, xn−1) ≤ φn Ω(x0, x1, x0). Since X is Ω-bounded, there
is M ≥ 0, such that Ω(x, y, z) ≤M, ∀x, y, z,∈ X. Thus,

φΩ(xn−1, xn, xn−1) ≤ φn (M).

In analogous manner, we can show that

φΩ(xn+s−1, xn+s, xn+s−1) ≤ φn (M).

Thus, (2.13) becomes

(2.14) Ω(xn, xn+1, xn+s) ≤ φn(M).

Now, by using the definition of Ω-distance and (2.14), we have for all l ≥ m ≥ n

Ω(xn, xm, xl) ≤ Ω(xn, xn+1, xn+1) + Ω(xn+1, xn+2, xn+2) + · · ·+Ω(xm−1, xm, xl)

≤ φn(M) + φn+1(M) + · · ·+ φm−1(M)

=

m−1∑
k=n

φk(M)

≤
∞∑
k=n

φk(M).
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Since φ is c-comparison function, then the sequence
(∑∞

k=n φ
k(M) : n ∈ IN

)
converges to 0. Thus for any ϵ > 0 there is N ∈ IN such that

∑∞
k=n φ

k(M) <
ϵ ∀ n ≥ N. Hence for l ≥ m ≥ n ≥ N , we have

Ω(xn, xm, xl) ≤
m−1∑
k=n

φk(M) ≤
∞∑
k=n

φk(M) < ϵ ∀n ≥ N.

By Lemma 1.1, (xn) is a G-Cauchy sequence. Therefore there is u ∈ X such
that limn→∞ xn = u.

Consider δ > 0. Then there exists r0 ∈ IN such that Ω(xn, xm, xl) ≤
δ ∀n,m, l ≥ r0. Therefore, liml→∞Ω(xn, xm, xl) ≤ liml→∞ δ = δ.

By the lower semi continuity of Ω, we have

Ω(xn, xm, u) ≤ lim inf
p→∞

Ω(xn, xm, xp) ≤ δ ∀m,n ≥ r0.

Considerm = n+1. Then Ω(xn, xn+1, u) ≤ lim infp→∞Ω(xn, xn+1, xp) ≤ δ ∀n ≥
r0.

If fu ̸= u, then (2.12) implies that

0 < inf{Ω(x, fx, u) : x ∈ X}
≤ inf{Ω(xn, xn+1, u) : n ≥ r0}
≤ δ,

for each δ > 0 which is a contradiction. Therefore fu = u. The uniqueness
follows from Lemma 2.3. �

Corollary 2.6. Let (X,G) be a complete G-metric space, Ω be an Ω-distance
on X where X is Ω bounded and f : X → X be a self mapping. Assume
that there is a c-comparison function φ and an upper semi continuous function
η : [0,∞) → [0,∞) where η(t) < t ∀t > 0 and η(0) = 0 such that f satisfies the
following condition:

(2.15) 2Ω(fx, f2x, fy) ≤ η(φΩ(x, fx, x) + φΩ(y, fy, y)) ∀x, y ∈ X.

Also, suppose that for all u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point in X.

Proof. Define ζAA : [0,∞) × [0,∞) → IR by ζAA(t, s) = η(s) − t. Clearly
ζAA ∈ Z and f is (Ω, φ,Z)-contraction with respect to ζAA. Hence the result
follows from Theorem 2.2

Now, we introduce and prove the following fixed point theorems of integra
type.
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Theorem 2.3. Let (X,G) be a complete G-metric space, Ω be an Ω-distance
on X where X is Ω bounded and f : X → X be a self mapping. Assume that
there is a function γ : [0,∞)→ [0,∞) where

∫ ϵ
0 γ(u)du exists and

∫ ϵ
0 γ(u)du > ϵ

∀ϵ > 0 such that f satisfies the following condition:

(2.16)

∫ Ω(fx,fy,fz)

0
γ(u)du ≤ Ω(x, y, z) ∀x, y, z ∈ X.

Also, suppose that for all u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point in X.

Proof. Defining ζ : [0,∞) × [0,∞) → IR via ζ(t, s) = s −
∫ t
0 γ(u)du. Clearly

ζ ∈ Z and f is (Ω,Z). Hence the results follow from Theorem 2.1.

Theorem 2.4. Let (X,G) be a complete G-metric space, Ω be an Ω-distance on
X where X is Ω bounded and f : X → X be a self mapping. Assume that there is
a c-comparison function φ and a function γ : [0,∞) → [0,∞) where

∫ ϵ
0 γ(u)du

exists and
∫ ϵ
0 γ(u)du > ϵ ∀ϵ > 0 such that f satisfies the following condition:

(2.17)

∫ 2Ω(fx,f2x,fy)

0
γ(u)du ≤ φΩ(x, fx, x) + φΩ(y, fy, y) ∀x, y ∈ X.

Also, suppose that for all u ∈ X if fu ̸= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

Then f has a unique fixed point in X.

Proof. The results follow from Theorem 2.2 by defining ζ : [0,∞)× [0,∞)→ IR
via ζ(t, s) = s−

∫ t
0 γ(u)du. and noting that ζ ∈ Z and f is (Ω, φ,Z).
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Abstract. In the present paper, we investigate and define two subclasses of meromor-
phic bi-univalent function class Σ

′
which are defined on the domain U∗ = {z ∈ C : 1

< |z| <∞}. Further, by using the well-known coefficients estimates of the Carathéodory
functions (i.e functions with positive real part) we obtain the estimates on the coeffi-
cients |b0|, |b1| and

∣∣b2 + b30
∣∣ for functions in these subclasses.

Keywords: analytic function, meromorphic function, univalent function, bi-univalent
function, meromorphic bi-univalent function.

1. Introduction

Let the class A = {f : U → C : f is analytic in U and f(0) = f
′
(0) − 1 = 0}

and its subclass S = {f : U → C : f ∈ A and also univalent in U} where
U = {z ∈ C : |z| < 1} be the open unit disk and such functions f ∈ A have the
form:

(1.1) f(z) = z +

∞∑
k=2

akz
k.

In 1972, Ozaki and Nunokawa [14] proved the following Lemma (univalence
criterion). In fact, this result is appeared in the paper by Aksentév [1] (also see
the paper by Aksentév and Avhadiev [2]).

Lemma 1.1. If for f(z) ∈ A∣∣∣∣∣z2f
′
(z)

(f(z))2
− 1

∣∣∣∣∣ < 1 (z ∈ U),

∗. Corresponding author
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then f(z) is univalent in U and hence f(z) ∈ S.

Also, a functions f(z) ∈ A is said to be in the class T (µ), (0 < µ ≤ 1) if∣∣∣∣∣z2f
′
(z)

(f(z))2
− 1

∣∣∣∣∣ < µ (z ∈ U)

and T (1) = T . Clearly, T (µ) ⊂ T ⊂ S. Further (see Kuroki et al. [10]), for
f(z) ∈ T (µ) see that:

ℜ

(
z2f

′
(z)

(f(z))2

)
> 1− µ (z ∈ U).

In particular, for initial coefficient estimates of bi-univalent function classes
TΣ(µ) and T αΣ , see the paper by Naik and Patil [12].

In 1967, Lewin [11] introduced and studied the bi-univalent function class Σ.
After which some researchers (viz. [3, 13]) found the initial coefficient estimates
for the functions in Σ. Later, Srivastava et al. [17] revived it for the subclasses
of Σ. Recently, the concept of bi-univalent functions is extend to meromorphic
bi-univalent functions.

Let S ′
denote the class of meromorphic univalent functions g of the form:

(1.2) g(z) = z +
∞∑
n=0

bn
zn
,

defined on the domain U∗ = {z : z ∈ C, 1 < |z| <∞}. Clearly, g ∈ S ′
has an

inverse say g−1, defined by:

g−1(g(z)) = z, (z ∈ U∗)

and
g(g−1(w)) = w, (0 < M < |w| <∞),

which has a series expansion of the form:

g−1(w) = h(w) = w +
∞∑
n=0

cn
wn

, (0 < M < |w| <∞).

Some simple computations using equation (1.2) shows that:

(1.3) g−1(w) = h(w) = w− b0−
b1
w
− b2 + b0b1

w2
− b3 + 2b0b2 + b20b1 + b21

w3
+ · · · .

Let Σ′ = {g ∈ S ′
: both g and g−1 are meromorphic univalent in U∗} denote

the class of all meromorphic bi-univalent functions in U∗. Recently the coeffi-
cient estimate on functions of various subclasses of Σ′ were obtained by some
researchers viz. Halim et al. [6], Hamidi et al. [7, 8], Panigrahi [15], Janani
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and Murugusundaramoorthy [9], Bulut [4], etc. In the present investigation, we
define two new subclasses of the function class Σ

′
and obtain the estimate on

|b0|, |b1| and
∣∣b2 + b30

∣∣ for the functions in these new subclasses.
We need to recall the Carathéodory lemma in the following form to prove

our main results (see [5], [16]).

Lemma 1.2. If p(z) ∈ P, the class of all functions analytic in U∗, for which

ℜ(p(z)) > 0,

then |pn| ≤ 2 for each n ∈ N := {1, 2, 3, · · · }, where

p(z) = 1 +
p1
z

+
p2
z2

+
p3
z3

+ · · · , (z ∈ U∗) .

2. Coefficient estimates

Definition 2.1. A function g(z) ∈ Σ
′
given by (1.2) is said to be in the class

TΣ′ (µ) if the following conditions are satisfied:

ℜ

(
z2g

′
(z)

(g(z))2

)
> 1− µ, (z ∈ U∗; 0 < µ ≤ 1)

and

ℜ

(
w2h

′
(w)

(h(w))2

)
> 1− µ, (w ∈ U∗; 0 < µ ≤ 1) ,

where the function h is an inverse of g given by (1.3).

Theorem 2.2. Let the function g(z) ∈ Σ
′
given by (1.2) be in the class TΣ′ (µ),

where 0 < µ ≤ 1. Then,

(2.1) |b0| ≤

{
µ;

(
0 < µ ≤ 2

3

)√
2µ
3 ;

(
2
3 ≤ µ ≤ 1

)
,

(2.2) |b1| ≤
2µ

3
,

(2.3)
∣∣b2 + b30

∣∣ ≤ µ

2
.

Proof. Let the function g(z) ∈ TΣ′ (µ). See that clearly, the conditions given in
the definition of meromorphic bi-univalent function class TΣ′ (µ) can be written
as:

(2.4)
z2g

′
(z)

(g(z))2
= (1− µ) + µ s(z)
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and

(2.5)
w2h

′
(w)

(h(w))2
= (1− µ) + µ t(w),

where s(z), t(w) ∈ P have the form:

(2.6) s(z) = 1 +
s1
z

+
s2
z2

+
s3
z3

+ · · · , (z ∈ U∗)

and

(2.7) t(w) = 1 +
t1
w

+
t2
w2

+
t3
w3

+ · · · , (w ∈ U∗) .

Hence we have:

(1− µ) + µ s(z) = 1 +
µs1
z

+
µs2
z2

+
µs3
z3

+ · · ·

and

(1− µ) + µ t(w) = 1 +
µt1
w

+
µt2
w2

+
µt3
w3

+ · · · .

Also, using (1.2) and (1.3) we obtain:

z2g
′
(z)

(g(z))2
= 1− 2b0

z
+

3
(
b20 − b1

)
z2

+
8b0b1 − 4b2 − 4b30

z3
+ · · ·

and
w2h

′
(w)

(h(w))2
= 1 +

2b0
w

+
3
(
b20 + b1

)
w2

+
12b0b1 + 4b2 + 4b30

w3
+ · · · .

Now, equating the coefficients in (2.4) and (2.5) we get:

(2.8) −2b0 = µs1,

(2.9) 3
(
b20 − b1

)
= µs2,

(2.10) 8b0b1 − 4b2 − 4b30 = µs3,

(2.11) 2b0 = µt1,

(2.12) 3
(
b20 + b1

)
= µt2,

(2.13) 12b0b1 + 4b2 + 4b30 = µt3.

Clearly, equation (2.8) and (2.11) in light of Lemma 1.2 gives:

(2.14) |b0| ≤ µ.
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Also by adding (2.9) in (2.12), we obtain:

6b20 = µ (s2 + t2)

which, by using Lemma 1.2 gives:

(2.15)
∣∣b20∣∣ ≤ 2µ

3
.

Equation (2.14) and (2.15) together yields:

|b0| ≤ min

{
µ,

√
2µ

3

}
,

which, for 0 < µ ≤ 1 gives the desired result (2.1).
Now, by subtracting (2.9) from (2.12), we get:

(2.16) 6b1 = µ (t2 − s2)

which, by using Lemma 1.2 gives:

|b1| ≤
2µ

3
.

This is the desired result (2.2).
Finally, for the last inequality subtracting (2.10) from (2.13), we get:

(2.17) 4b0b1 + 8b2 + 8b30 = µ (t3 − s3) .

Also, by adding (2.10) in (2.13), we get:

(2.18) 20b0b1 = µ (s3 + t3) .

Eliminating b0b1 from (2.17) and (2.18), we obtain:

40
(
b2 + b30

)
= µ (4t3 − 6s3)

which, in light of Lemma 1.2, yields the desired inequality (2.3).
This completes the proof of Theorem 2.2.

Definition 2.3. A function g(z) ∈ Σ
′
given by (1.2) is said to be in the class

T αΣ′ if the following conditions are satisfied:∣∣∣∣∣arg
(
z2g

′
(z)

(g(z))2

)∣∣∣∣∣ < απ

2
(z ∈ U∗; 0 < α ≤ 1)

and ∣∣∣∣∣arg
(
w2h

′
(w)

(h(w))2

)∣∣∣∣∣ < απ

2
(w ∈ U∗; 0 < α ≤ 1),

where the function h is an inverse of g given by (1.3).
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Theorem 2.4. Let the function g(z) ∈ Σ
′
given by (1.2) be in the class T αΣ′,

where 0 < α ≤ 1. Then,

(2.19) |b0| ≤
√

2

3
α,

(2.20) |b1| ≤
2

3
α2,

(2.21)
∣∣b2 + b30

∣∣ ≤ α
(
2α2 + 1

)
6

.

Proof. Since g(z) ∈ T αΣ′ ; for s(z), t(w) ∈ P the conditions given in the definition
of the function class T αΣ′ can be written as:

(2.22)
z2g

′
(z)

(g(z))2
= [s(z)]α

and

(2.23)
w2h

′
(w)

(h(w))2
= [t(w)]α ,

where s(z) and t(w) have the form as given in (2.6) and (2.7), respectively.
Clearly, we have:

[s(z)]α =1 +
αs1
z

+
1
2α (α− 1) s21 + αs2

z2
+

1
6α (α− 1) (α− 2) s31 + α (α− 1) s1s2 + αs3

z3
+ · · ·

and

[t(w)]α =1 +
αt1
w

+
1
2α (α− 1) t21 + αt2

w2
+

1
6α (α− 1) (α− 2) t31 + α (α− 1) t1t2 + αt3

w3
+ · · · .

Also, just as in proof of Theorem 2.2 we have:

z2g
′
(z)

(g(z))2
= 1− 2b0

z
+

3
(
b20 − b1

)
z2

+
8b0b1 − 4b2 − 4b30

z3
+ · · ·

and
w2h

′
(w)

(h(w))2
= 1 +

2b0
w

+
3
(
b20 + b1

)
w2

+
12b0b1 + 4b2 + 4b30

w3
+ · · · .

Now, equating the coefficients in (2.22) and (2.23) we get:

(2.24) −2b0 = αs1,
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(2.25) 3
(
b20 − b1

)
=

1

2
α (α− 1) s21 + αs2,

(2.26) 8b0b1 − 4b2 − 4b30 =
1

6
α (α− 1) (α− 2) s31 + α (α− 1) s1s2 + αs3,

(2.27) 2b0 = αt1,

(2.28) 3
(
b20 + b1

)
=

1

2
α (α− 1) t21 + αt2,

(2.29) 12b0b1 + 4b2 + 4b30 =
1

6
α (α− 1) (α− 2) t31 + α (α− 1) t1t2 + αt3.

Clearly, equation (2.24) and (2.27) in light of Lemma 1.2 gives:

(2.30) |b0| ≤ α.

Also by adding (2.25) in (2.28), we obtain:

6b20 =
1

2
α (α− 1)

(
s21 + t21

)
+ α (s2 + t2)

which, by using Lemma 1.2 gives:

(2.31)
∣∣b20∣∣ ≤ 2

3
α2.

Obviously, from (2.30) and (2.31) we can write:

|b0| ≤
√

2

3
α ≤ α; (0 < α ≤ 1).

This gives the desired result (2.19).
Now, by subtracting (2.25) from (2.28), we get:

6b1 =
1

2
α (α− 1)

(
t21 − s21

)
+ α (t2 − s2)

which, by using Lemma 1.2 gives:

|b1| ≤
2

3
α2.

This is the desired result (2.20).
Finally, subtracting (2.26) from (2.29), we get:

(2.32)
24
(
b0b1 + 2b2 + 2b30

)
=α (α− 1) (α− 2)

(
t31 − s31

)
+

6α (α− 1) (t1t2 − s1s2) + 6α (t3 − s3) .
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Also, by adding (2.26) in (2.29), we get:

(2.33) 120b0b1 = α(α−1)(α−2)(s31+ t
3
1)+6α(α−1)(s1s2+ t1t2)+6α(s3+ t3).

Eliminating b0b1 from (2.32) and (2.33), we obtain:

240
(
b2 + b30

)
=α (α− 1) (α− 2)

(
4t31 − 6s31

)
+

6α (α− 1) (4t1t2 − 6s1s2) + 6α (4t3 − 6s3)

which, in light of Lemma 1.2, yields the desired inequality (2.21).
This completes the proof of Theorem 2.4.

3. Conclusion

It is interesting that, for functions in both the subclasses TΣ′ (µ) and T αΣ′ ,
(0 < µ,α ≤ 1); all the coefficient inequalities are similar in the following sense:

max
g∈Σ′
|b0| ≤

√
2

3
,

max
g∈Σ′
|b1| ≤

2

3
,

max
g∈Σ′

∣∣b2 + b30
∣∣ ≤ 1

2
.
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Izv. Vysš. Učebn. Zaved. Matematika, 10 (1970), 12–20.

[3] D. Brannan, J. Clunie, Aspects of contemporary complex analysis,
(Proceedings of the NATO Advanced Study Institute held at the Univer-
sity of Durham, Durham; July 1-20, 1979), Academic Press, New York,
London, 1980.

[4] S. Bulut, Coefficient estimates for new subclasses of meromorphic bi-
univalent functions, Int. Sch. Research Notices, Article ID 376076 (2014),
1-5.

[5] P. Duren, Univalent functions, Grundlehren der Mathematischen Wis-
senschaften, 259, Springer, New York, 1983.

[6] S. Halim, S. Hamidi, V. Ravichandran, Coefficient estimates for meromor-
phic bi-univalent functions, arXiv:1108.4089v1 (2011), 1-9.



ON COEFFICIENT INEQUALITIES FOR CERTAIN SUBCLASSES OF MEROMORPHIC ... 205

[7] S. Hamidi, S. Halim, J. Jahangiri, Faber polynomial coefficient estimates
for meromorphic bi-starlike functions, Int. J. Math. Math. Sci., Article ID
498159 (2013), 1-4.

[8] S. Hamidi, S. Halim, J. Jahangiri, Coefficient estimates for a class of mero-
morphic bi-univalent functions, C. R. Acad. Sci. Paris Sér. I, 351 (2013),
349-352.

[9] T. Janani, G. Murugusundaramoorthy, Coefficient estimates of meromor-
phic bi-starlike functions of complex order, Int. J. Anal. and Appls., 4
(2014), 68-77.

[10] K. Kuroki, T. Hayami, N. Uyanik, S. Owa, Some properties for a certain
class concerned with univalent functions, Computers and Maths. with ap-
pls., 63 (2012), 1425-1432.

[11] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer.
Math. Soc., 18 (1967), 63-68.

[12] U. Naik, A. Patil, On initial coefficient inequalities for certain new sub-
classes of bi-univalent functions, J. Egyptian Math. Soc., 25 (2017), 291-
293.

[13] E. Netanyahu, The minimal distance of the image boundary from the origin
and the second coefficient of a univalent function in |z| < 1, Arch. Rational
Mech. Anal., 32 (1969), 100-112.

[14] S. Ozaki, M. Nunokawa, The Schwarzian derivative and univalent functions,
Proc. Amer. Math. Soc., 33 (1972), 392-394.

[15] T. Panigrahi, Coefficient bounds for certain subclasses of meromorphic and
bi-univalent functions, Bull. Korean Math. Soc., 50 (2013), 1531-1538.

[16] Ch. Pommerenke, Univalent functions, Vandenhoeck and Rupercht,
Göttingen, 1975.

[17] H. Srivastava, A. Mishra, P. Gochhayat, Certain subclasses of analytic and
bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.

Accepted: 20.01.2018



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (206–212) 206

A note on unitarily invariant norm inequalities for
accretive-dissipative operator matrices

Junjian Yang
School of Mathematical Sciences

Guizhou Normal University

Guiyang

P. R. China

and

Hainan Key Laboratory for Computational Science and Application

P. R. China

junjianyang1981@163.com

Abstract. In this paper, we present a unitarily invariant norm inequality for accretive-
dissipative operator matrices, which is similar to an inequality obtained by Zhang in [J.
Math. Anal. Appl. 412 (2014) 564-569]. Examples are provided to show that neither
Zhang’s inequality nor our inequality is uniformly better than the other.
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1. Introduction

In this note, we use the same notation as in [11, 14]. For convenience, recall
that, as usual, let B(H) be the C∗ -algebra of all bounded linear operators on a
complex Hilbert space H. For H := H⊕H and T ∈ B(H), the operator T can

be represented as a 2 × 2 operator matrix T =

(
T11 T12
T21 T22

)
with Tjk ∈ B(H),

j, k = 1, 2.

For any T ∈ B(H), we can write

T = A+ iB,(1.1)

in which A = T+T ∗

2 and B = T−T ∗

2i are Hermitian operators. This is the Carte-
sian decomposition of T . In this paper, we always represent the decomposition
of (1.1) as follows,(

T11 T12
T21 T22

)
=

(
B11 B12

B∗
12 B22

)
+ i

(
C11 C12

C∗
12 C22

)
,(1.2)

where Tjk, Ajk, Bjk ∈ B(H), j, k = 1, 2. Then A12 = A∗
21, B12 = B∗

21.

If T is a compact operator, we denote by s1(T ) ≥ s2(T ) ≥ · · · the eigenvalues
of (T ∗T )

1
2 , which are called the singular values of T . Thus, whenever we talk

about singular values, the operators are necessarily compact. We denote by
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W (A) the numerical range of A. A norm ∥ · ∥u on B(H) is unitarily invariant if
∥T∥u = ∥UTV ∥u for all unitaries U, V ∈ B(H). Every unitarily invariant norm is
defined on an ideal in B(H). It will be implicity understood that the operator T
is in this ideal when we talk of ∥T∥u. Recall that T with T = A+iB is accretive-
dissipative if both A and B are positive. For the study of accretive-dissipative
matrices in matrix theory and numerical linear algebra, the readers can refer to
[2, 3, 7, 8]. Recent works devoted to studying the accretive-dissipative operators
or matrices are in [6, 9, 10].

Zhang [14, Theorem 2] obtained the following unitarily invariant norm in-
equality.

Theorem 1. Let T ∈ B(H) be accretive-dissipative and partitioned as in (1.2).
Then

∥T∥u ≤ 2∥T11 + T22∥u(1.3)

for any unitarily invariant norm ∥ · ∥u.

However, there is a gap in the proof of Zhang [14, Theorem 2]. Since in the
proof of Theorem 2 in [14] the author proves that the last equality

2∥A11 +B11 + i(A22 +B22)∥u = 2∥T11 + T22∥u

holds, actually it is as follows:

2∥A11 +B11 + i(A22 +B22)∥u ≤ 2∥A11 +B11 +A22 +B22∥u
≤ 2
√
2∥A11 +A22 + i(B11 +B22)∥u

= 2
√
2∥A11 + iB11 +A22 + iB22∥u

= 2
√
2∥T11 + T22∥u.

The purpose of this paper is to discuss unitarily invariant norm inequali-
ties for the accretive-dissipative operator matrix (1.1), which are similar to the
inequality (1.3) . Our main result is the following theorem.

Theorem 2. Let T ∈ B(H) be accretive-dissipative and partitioned as in (1.2).
Then

∥T∥u ≤
√
2[∥T11 + T22∥u + 2∥T11∥

1
2
u ∥T22∥

1
2
u ](1.4)

for any unitarily invariant norm ∥ · ∥u. Furthermore, if 0 /∈W (B12 +C12), then

∥T∥u ≤
√
2[∥T11 + T22∥u + ∥T11∥

1
2
u ∥T22∥

1
2
u ].(1.5)
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2. Main results

Before proving the main theorem of this paper, we need a few auxiliary results.

Lemma 3 ([12]). Let A,B ∈ B(H) be positive. Then for any complex number z,

k∏
j=1

sj(A+ zB) ≤
k∏
j=1

sj(A+ |z|B)

for all k = 1, 2, . . . . As a consequence,

k∑
j=1

sj(A+ zB) ≤
k∑
j=1

sj(A+ |z|B)

for all k = 1, 2, . . ..

Lemma 4 ([4, Corollary 2.1]). If A,B,X ∈ B(H) and

(
A X
X∗ B

)
is positive,

then we have the following decomposition(
A X
X∗ B

)
= U

(A+B

2
+ ReX 0

0 0

)
U∗ + V

(
0 0

0
A+B

2
− ReX

)
V ∗

for some unitary operator matrices U, V ∈ B(H).

Lemma 5 ([13, p. 42]). The operator matrix

(
A B
B∗ C

)
is positive if and only

if both A and C are positive and there exists a contraction W such that B =
A

1
2WC

1
2 .

Lemma 6 ([14, Lemma 2]). Let Pi, Qi ∈ B(H) be positive and let Ci ∈ B(H) be
contractive, i = 1, 2, . . . ,m. Then

k∑
j=1

sj

(
m∑
i=1

PiCiQi

)
≤

k∑
j=1

sj

(
(

m∑
i=1

P 2
i )

1
2

)
sj

(
(

m∑
i=1

Q2
i )

1
2

)
,

for all k = 1, 2, . . . .

Lemma 7 ([1, Theorem 1.1]). Let A,B ∈ B(H) be positive. Then

sj(A+B) ≤
√
2sj(A+ iB)forallj = 1, 2, . . . .

Remark 8. Reverse inequality of Lemma 7 was given in [5].

Lemma 9. Let T ∈ B(H) be accretive-dissipative and partitioned as in (1.2).
Then

∥B12 + C12∥u ≤
√
2∥T11∥

1
2
u ∥T22∥

1
2
u .
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Proof. Compute

∥B12 + C12∥u =
k∑
j=1

αjsj(B12 + C12)

=

∞∑
j=1

αjsj(B
1
2
11W1B

1
2
22 + C

1
2
11W2C

1
2
22) (by Lemma 5)

≤
∞∑
j=1

αjsj((B11 + C11)
1
2 )sj((A22 +B22)

1
2 ) (by Lemma 6)

=

∞∑
j=1

αj(sj(B11 + C11))
1
2 (sj(A22 +B22))

1
2

≤
∞∑
j=1

αj [
√
2sj(B11 + iC11)]

1
2 [
√
2sj(B22 + iC22)]

1
2 (by Lemma 7)

≤
√
2

∞∑
j=1

αj [sj(T11)]
1
2 [sj(T22)]

1
2

≤
√
2(

∞∑
j=1

αjsj(T11))
1
2 (

∞∑
j=1

αjsj(T22))
1
2 (by Cauchy-Schwarz inequality)

=
√
2∥T11∥

1
2
u ∥T22∥

1
2
u .

Thus,

∥B12 + C12∥u ≤
√
2∥T11∥

1
2
u ∥T22∥

1
2
u .

This completes the proof. �

Lemma 10 ([4, Corollary 2.6]). If A,B,X ∈ B(H) and

(
A X
X∗ B

)
is positive,

then for 0 /∈W (X) we have∥∥∥∥( A X
X∗ B

)∥∥∥∥
u

≤ ∥A+B∥u + ∥X∥u

for any unitarily invariant norm.

Proof of Theorem 2. Compute

∥B + iC∥u ≤ ∥B + C∥u (by Lemma 3)

≤
∥∥∥∥B11 + C11 +B22 + C22

2
+ Re(B12 + C12)

∥∥∥∥
u

+

∥∥∥∥B11 + C11 +B22 + C22

2
− Re(B12 + C12)

∥∥∥∥
u
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(by Lemma 4 and triangle inequality)

≤ 2

∥∥∥∥B11 + C11 +B22 + C22

2

∥∥∥∥
u

+ 2 ∥Re(B12 + C12)∥u (by triangle inequality)

≤
√
2∥B11 +B22 + i(C11 + C22)∥u + 2∥Re(B12 + C12)∥u (by Lemma 7)

≤
√
2∥T11 + T22∥u + 2

√
2∥T11∥

1
2
u ∥T22∥

1
2
u (by Lemma 9)

≤
√
2[∥T11 + T22∥u + 2∥T11∥

1
2
u ∥T22∥

1
2
u ].

Thus,

∥B + iC∥ ≤
√
2

[
∥T11 + T22∥u + 2 ∥T11∥

1
2
u ∥T22∥

1
2
u

]
.

Furthermore, if 0 /∈W (B12 + C12), then we have

∥B + iC∥u ≤ ∥B + C∥u (by Lemma 3)

≤ ∥B11 + C11 +B22 + C22∥u + ∥B12 + C12∥u (by Lemma 10)

≤
√
2∥B11 +B22 + i(C11 + C22)∥u + ∥B12 + C12∥u (by Lemma 7)

=
√
2∥T11 + T22∥u + ∥B12 + C12∥u

≤
√
2∥T11 + T22∥u +

√
2∥T11∥

1
2
u ∥T22∥

1
2
u (by Lemma 9)

=
√
2[∥T11 + T22∥u + ∥T11∥

1
2
u ∥T22∥

1
2
u ].

This completes the proof. �
The following examples show that neither (1.3) nor (1.4) is uniformly better

than the other.

Example 1. Let

T = B + iC

=

(
0.001 0
0 2

)
+ i

(
0.001 0
0 1

)
=

(
0.001 + 0.001i 0

0 2 + 1i

)
,

then T11 = 0.001 + 0.001i, T22 = 2 + i.

For the right side of (1.3), 2∥T11+T22∥u = 6.3283. For the right side of (1.4),
√
2[∥T11+T22∥u+2∥T11∥

1
2
u ∥T22∥

1
2
u ] = 3.3232. This shows that (1.4) is better than

(1.3) in some cases.
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Example 2. If

T = B + iC

=


1 −1 0 0
−1 1 0 0
0 0 1 1
0 0 1 1

+ i


0.001 0 0 0
0 0.001 0 0
0 0 0.001 0
0 0 0 0.001



=


1 + i ∗ 0.001 −1 0 0

−1 1 + i ∗ 0.001 0 0
0 0 1 + i ∗ 0.001 1
0 0 1 1 + i ∗ 0.001

 ,

then

T11 =

(
1 + 0.001i −1
−1 1 + 0.001i

)
and

T22 =

(
1 + 0.001i 1

1 1 + 0.001i

)
.

For the right side of (1.3), 2
√
2∥T11 + T22∥2 = 5.6583. For the right side of

(1.4),
√
2[∥T11 + T22∥u + 2∥T11∥

1
2
2 ∥T22∥

1
2
u ] = 8.4860. This implies that (1.4) is

weaker than (1.3) in some cases.
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Abstract. In this paper we find that for infinite order entire functions, the ray
where it takes infinite radial order is a common limiting directions of Julia sets of their
derivatives and their primitives. Applying this result to the solutions of some complex
differential equations, we obtain the lower bound of the measure of sets of common
limiting directions of Julia sets of the derivatives and integral primitives of any non-
trivial solution of these equations, which give alternative proofs of previous results.
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1. Introduction and main results

In this paper, we assume the reader is familiar with standard notations and basic
results of Nevanlinna theory in the complex plane C and in an angle domain;
see [5, 9, 19]. We use σ(g) and µ(g) to denote the order and lower order of
meromorphic function g in the complex plane respectively; see [19, p.10] for the
definitions. Following [5], we give the notations of Nevanlinna theory in the
angle. Set

Ω(α, β) = {z ∈ C : α < arg z < β}, Ω(α, β, r) = {z : z ∈ Ω(α, β), |z| < r}

and denote by Ω(α, β) the closure of Ω(α, β). Let g(z) be meromorphic on the
closed angle Ω(α, β), where β − α ∈ (0, 2π]. Define

Aα,β(r, g) =
ω

π

∫ r

1

(
1

tω
− tω

r2ω

)
{log+ |g(teiα)|+ log+ |g(teiβ)|}dt

t
;

Bα,β(r, g) =
2ω

πrω

∫ β

α
log+ |g(reiθ)| sinω(θ − α)dθ;

Cα,β(r, g) = 2
∑

1<|bn|<r

(
1

|bn|ω
− |bn|

ω

r2ω

)
sinω(βn − α),

where ω = π/(β − α), and bn = |bn|eiβn are poles of g(z) in Ω(α, β) appearing
according to their multiplicities. Thus, the Nevanlinna angular characteristic is
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defined as
Sα,β(r, g) = Aα,β(r, g) +Bα,β(r, g) + Cα,β(r, g).

Moreover, the order of Sα,β(r, g) is defined by

ρα,β(g) = lim sup
r→∞

logSα,β(r, g)

log r
.

In addition, if g(z) is analytic on the angle Ω(α, β), we define the order of g
on Ω(α, β) by

σα,β(g) = lim sup
r→∞

log+ log+M(r,Ω(α, β), g)

log r
,

where M(r,Ω(α, β), g) = supα≤θ≤β |g(reiθ)|. If g(z) is analytic on C, the order
σ(g) of g satisfies σ(g) ≥ σα,β(g). Moreover, the sectorial order σθ,ε(g) and the
radial order σθ(g) are defined by

σθ,ε(g) = lim sup
r→∞

log+ log+M(r,Ω(θ − ε, θ + ε), g)

log r
, σθ(g) = lim

ε→0
σθ,ε(g).

Similarly, the sectorial, respectively radial, exponent of convergence for zeros of
g(z) are defined by

λθ,ε(g) = lim sup
r→∞

log+ n(r,Ω(θ − ε, θ + ε), g = 0)

log r
, λθ(g) = lim

ε→0
λθ,ε(g),

where n(r,Ω(θ − ε, θ + ε), g = 0) stands for the number of zeros of g(z) in
Ω(θ − ε, θ + ε, r) counting multiplicity.

Definition 1.1 Let f(z) be a transcendental meromorphic function of order σ.
The ray arg z = θ is called a Borel direction of f if for any ε > 0, λθ,ε(f−a) = σ
with at most two exceptional value a ∈ C ∪ {∞}.

Some basic knowledge of complex dynamics of meromorphic functions is
also needed; see [3, 22]. We define fn, n ∈ N denote the nth iterate of f . The
Fatou set F (f) of transcendental meromorphic function f is the subset of the
plane C where the iterates fn of f form a normal family. The complement
of F (f) in C is called the Julia set J(f) of f . It is well known that F (f) is
open and completely invariant under f , J(f) is closed and non-empty. Given
θ ∈ [0, 2π), if Ω(θ − ε, θ + ε) ∩ J(f) is unbounded for any ε > 0, then we call
the ray arg z = θ the radial distribution of J(f). Define meas∆(f) is the linear
measure of θ ∈ [0, 2π) such that J(f) has the radial distribution with respect to
arg z = θ.

Baker [2] first proved that the Julia set of a transcendental entire function
can not lie in finite many rays emanating from the original point. Later, Qiao
[11] proved the measure of limiting direction of Julia set of finite lower order
transcendental entire function f satisfiesmeas∆(f) ≥ min{2π, π

µ(f)}. Moreover,
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for a transcendental entire function of finite lower order, Qiao [12] also found
out the lower bounded of the measure of the common limiting direction of Julia
set of its derivatives and its primitive. There are also some other papers related
to this aspect; see [10, 12, 13, 16].

For transcendental meromorphic function, Zheng [23] has given significant
results. Recent years, many results about the measure of limiting directions
of Julia sets of solutions of complex linear differential equations have been ap-
peared; see [6, 7, 15, 20, 21].

For a transcendental entire function f(z) of infinite order, it is easy to see
that there exist some angular domains Ω(α, β) such that σα,β(f) = ∞. But,
σ(f) =∞ cannot guarantee σα,β(f) =∞ for any angular domain Ω(α, β). For
example, it’s known that σ(exp{exp z}) = ∞, while σπ

2
, 3π
2
(exp{exp z}) = 0.

We know that a main study content about the complex differential equations
is the estimation of the order of their solutions. There has many results about
the infinite order of the solutions to complex differential equations under various
conditions. Naturally, a question that how wide are the angular domains Ω(α, β)
such that σθ(f) =∞ for any ray θ = arg z ∈ Ω(α, β) is raised. For convenience
of the following, set I(f) = {θ ∈ [0, 2π) : σθ(f) = ∞} for infinite order entire
function f . By the idea of study the measure of Julia set of solution of complex
differential equations, Huang and Wang [8] obtained the lower bound of I(f) of
the non-trivial solutions of second order linear differential equations. In order
to give subsequent results, we firstly give the following theorem about the high
order differential equation.

Theorem 1.1. Let Ai(z)(i = 0, 1, . . . , n− 1) be entire functions of finite lower
order such that A0 is transcendental and T (r,Ai) = o(T (r,A0)), (i = 1, 2, . . . , n−
1) as r →∞. Then every non-trivial solution f of the equation

(1.1) f (n) +An−1f
(n−1) + . . .+A0f = 0

satisfies measI(f) ≥ min{2π, π/µ(A0)}. Moreover, if σ(Ai) < σ(A0), (i =
1, 2, · · · , n − 1), then there exist a closed interval I0 ⊆ I(f) with meas(I0) ≥
min{2π, π/µ(A0)} .

Comparing the proof of [8, Theorem 1.3] and that of [7, Theorem 1.1], we can
see that the method of finding the lower bound ofmeasI(f) andmeas∆(f) of the
solutions of complex differential equations is similar in some sense. Therefore,
there may has special relations between the infinite radial order and limiting
direction of Julia set for infinite order entire function f . Indeed, we find the
following relationship.

Theorem 1.2 Suppose that f is an entire function of infinite order, then for
any θ ∈ I(f), the ray arg z = θ is a common limiting direction of Julia sets of
f (n), where f (n) denotes the n-th derivative or the n-th integral primitive of f ,
for n ≥ 0 or n < 0, respectively.
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Then by the above Theorems 1.1 and 1.2, we obtain the following result,
which has been proved by Chen and Wang [15]. Our method is different from
that in [15].

Corollary 1.3 Suppose f is any non-trivial solution of (1.1) in Theorem 1.1,
then the measure of set of common limiting direction of Julia sets of f (n) satisfies
meas(

∩
n∈z∆(f (n))) ≥ min{2π, π/µ(A0)}.

In [15], the authors also proved that every solution of a second order linear
differential equation, the coefficient of which has finite deficient value, is of
infinite lower order, see the following.

Theorem 1.4 Suppose that A0 is a transcendental entire function and T (r,A0) ∼
logM(r,A0) as r → ∞ outside a set of finite logarithmic measure, A1(z) is a
finite order entire function and has a finite deficient value a, i.e. δ(a,A1) > 0,
then every non-trivial solution f of

f ′′ +A1(z)f
′ +A0(z)f = 0(1.2)

satisfies µ(f) =∞.
Together the proof of above theorem with the proof of [8, Theorem 1.3], we

can obtain the lower bound of measI(f) for the non-trivial solution of equation
(1.2).

Theorem 1.5 Suppose that f is a non-trivial solution of (1.2), where A0(z)
and A1(z) satisfy the conditions in Theorem 1.4, then

measI(f) ≥ min

{
2π,

4

µ(A1)
arcsin

√
δ(a,A1)

2

}
.

Combining the above theorem and Theorem 1.2, we can obtain the following
result easily, which is proved in [15] by another method.

Theorem 1.6 Under the hypotheses of Theorem 1.4, the measure of set of
common limiting direction of Julia sets of f (n) satisfies

meas(
∩
n∈z

∆(f (n))) ≥ min

{
2π,

4

µ(A1)
arcsin

√
δ(a,A1)

2

}
.

2. Preliminary lemmas

We call W is a hyperbolic domain if C\W contains at least three points, where
C is the extended complex plane. For an a ∈ C\W , define

CW (a) = inf{λW (z)|z − a| : ∀z ∈W},

where λW (z) is the hyperbolic density on W . It’s well known that, if every
component of W is simply connected, then CW (a) ≥ 1/2; see [23].



LIMITING DIRECTION OF JULIA SETS AND INFINITE RADIAL ORDER ... 217

Lemma 2.1 ([23, Lemma 2.2]). Let f(z) be analytic in Ω(r0, θ1, θ2), U be a hy-
perbolic domain, and f : Ω(r0, θ1, θ2)→ U . If there exists a point a ∈ ∂U\{∞}
such that CU (a) > 0, then there exists a constant d > 0 such that, for sufficiently
small ε > 0, we have

|f(z)| = O(|z|d), z →∞, z ∈ Ω(r0, θ1 + ε, θ2 − ε).

The next lemma shows some estimates for the logarithmic derivative of func-
tions being analytic in an angle. Before this, we recall the definition of R-set;
for reference, see [9]. Set B(zn, rn) = {z : |z − zn| < rn}. If

∑∞
n=1 rn < ∞

and zn →∞, then
∪∞
n=1B(zn, rn) is called an R-set. Clearly, the set {|z| : z ∈∪∞

n=1B(zn, rn)} is of finite linear measure.

Lemma 2.2 ([7, Lemma 2.2]). Let z = reiψ, r0 + 1 < r and α ≤ ψ ≤ β, where
0 < β − α ≤ 2π. Suppose that n(≥ 2) is an integer, and that g(z) is analytic
in Ω(r0, α, β) with ρα,β(g) < ∞. Choose α < α1 < β1 < β. Then, for every
εj ∈ (0, (βj−αj)/2)(j = 1, 2, . . . , n−1) outside a set of linear measure zero with

αj = α+

j−1∑
s=1

εs, βj = β −
j−1∑
s=1

εs, j = 2, 3, . . . , n− 1,

there exists K>0 andM>0 only depending on g, ε1, . . . , εn−1 and Ω(αn−1, βn−1),
and not depending on z, such that∣∣∣∣g′(z)g(z)

∣∣∣∣ ≤ KrM (sin k(ψ − α))−2

and ∣∣∣∣∣g(n)(z)g(z)

∣∣∣∣∣ ≤ KrM
sin k(ψ − α)

n−1∏
j=1

sin kεj (ψ − αj)

−2

,

for all z ∈ Ω(αn−1, βn−1) outside an R-set D, where k = π/(β − α) and kεj =
π/(βj − αj)(j = 1, 2, . . . , n− 1).

Lemma 2.3 ([18, 22]). Let f(z) be a transcendental meromorphic function with
lower order µ(f) <∞ and order 0 < σ(f) ≤ ∞. Then, for any positive number
λ with µ(f) ≤ λ ≤ σ(f) and any set H of finite measure, there exists a sequence
{rn} satisfies:

(1) rn ̸∈ H, limn→∞ rn/n =∞;
(2) lim infn→∞ log T (rn, f)/ log rn ≥ λ;
(3) T (r, f) < (1 + o(1))(2t/rn)

λT (rn/2, f), t ∈ [rn/n, nrn];
(4) t−λ−εnT (t, f) ≤ 2λ+1r−λ−εnn T (rn, f), 1 ≤ t ≤ nrn, εn = (log n)−2.

Such {rn} is called a sequence of Pólya peaks of order λ outside H. The
following lemma, which related to Pólya peaks, is called the spread relation; see
[1].
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Lemma 2.4 ([1]). Let f(z) be a transcendental meromorphic function with
positive order and finite lower order, and has a deficient value a ∈ C. Then, for
any sequence of Pólya peaks {rn} of order λ > 0, µ(f) ≤ λ ≤ σ(f), and any
positive functionΥ(r)→ 0 as rn →∞, we have

lim inf
rn→∞

measDΥ(rn, a) ≥ min

{
2π,

4

λ
arcsin

√
δ(a, f)

2

}
,

where

DΥ(r, a) =

{
θ ∈ [0, 2π) : log+

1

|f(reiθ)− a|
> Υ(r)T (r, f)

}
, a ∈ C

and

DΥ(r,∞) =
{
θ ∈ [0, 2π) : log+ |f(reiθ)| > Υ(r)T (r, f)

}
.

For the Borel directions of entire functions with infinite order, Sun [14] ob-
tained the following lemma.

Lemma 2.5 ([14]). Let g be an entire function of infinite order, then the ray
arg z = θ is a Borel direction of infinite order for g if and only if arg z = θ is a
Borel direction of infinite order for g′.

The following lemma is a weaker version of Chuang’s result.

Lemma 2.6 ([4]). Let f be a meromorphic function of infinite order, then the
ray arg z = θ is one Borel direction of infinite order of f if and only if f satisfies
the equality

lim sup
r→∞

logSθ−ε,θ+ε(r, f)

log r
=∞,

for any ε ∈ (0, π/2).

Lemma 2.7 ([21]). Let f(z) be a transcendental entire function. If σθ(f) =
σ(f), then the ray arg z = θ is a radial distribution of the Julia set of f .

Lemma 2.8 ([17, Corollary 2.3.6]). If g(z) is an entire function with 0 < σ(g) <
∞, then there exists an angular domain Ω(θ1, θ2) with θ2 − θ1 ≥ π/σ(g) such
that

lim sup
r→∞

log+ log+ |g(reiθ)|
log r

= σ(g),

for any θ ∈ (θ1, θ2).
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3. Proof of Theorems

Proof of Theorem 1.1
Suppose that f is a non-trivial solution of equation (1.1) under the hypothe-

ses of this theorem. From [7, p.479] we know that σ(f) ≥ µ(f) =∞. We assume
that measI(f) < ν := min{2π, π/µ(A0)}, so ζ := ν −measI(f) > 0. Clearly
S = (0, 2π)\I(f) is open, so it consists of at most countably many open intervals.
We can choose finitely many open intervals Ii := (αi, βi), i = 1, 2, · · · ,m satis-
fying [αi, βi] ⊂ S and meas(S\

∪m
i=1 Ii) <

ζ
4 . For the angular domain Ω(αi, βi),

it is easy to see

Ω(αi, βi) ∩ I(f) = ∅.

This implies that for each i = 1, 2, · · · ,m, we have σαi,βi(f) < ∞, and from
the definition of ραi,βi(f) and [22, Corollary 2.2.2], we have ραi,βi(f) < ∞.
Therefore, by Lemma 2.7, for sufficiently small ε > 0, there exist two constants
M > 0 and K > 0 such that∣∣∣∣∣f (s)(z)f(z)

∣∣∣∣∣ ≤ KrM , s = 1, 2, · · · , n,(3.1)

for all z ∈
∪m
i=1Ω(αi + 2ε, βi − 2ε), outside an R-set H.

Applying Lemma 2.3 to A0(z), there exist a sequence of Pólya peak {rn} of
order µ(A0) such that rn ̸∈ {|z|, z ∈ H}, and for sufficiently large n,

meas{DΥ(rn,∞)} ≥ ν − ζ

4
,(3.2)

where we take the function Υ(r) as

Υ(r) = max

{√
log r

T (r,A0)
,

√
T (r,A1)

T (r,A0)
, · · · ,

√
T (r,An−1)

T (r,A0)

}
.

Without loss of generality, we assume that (3.2) holds for all n, and simplified
denote D(rn) = DΥ(rn,∞). Obviously,

meas(D(rn) ∩ S) = meas(D(rn)\(I(f) ∩D(rn)))

≥ measD(rn)−measI(f) >
3ζ

4
.(3.3)

Then, for each n we have

meas((

m∪
i=1

Ii) ∩D(rn)) = meas(S ∩D(rn))−meas((S\
m∪
i=1

Ii) ∩D(rn))

>
3ζ

4
− ζ

4
=
ζ

2
> 0.(3.4)
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This means there exist at least one open interval Ii0=(α, β) of Ii, (i = 1, 2, · · · ,m)
such that for infinitely many j,

meas(D(rj) ∩ (α, β)) >
ζ

2m
> 0.(3.5)

Set Gj = D(rj) ∩ (α + 2ε, β − 2ε), it follows from the definition of D(rj) in
Lemma 2.4, T (r,A0) = m(r,A0) and (3.5) that

(3.6)

∫
Gj

log+ |A0(rje
iθ)|dθ ≥ meas(Gj)Υ(rj)m(rj , A0) ≥

ζ

4m
Υ(rj)m(rj , A0).

We rewrite (1.1) as

A0 = −

(
f (n)

f
+An−1

f (n−1)

f
+ · · ·+A1

f ′

f

)
.(3.7)

Substituting (3.1) into (3.7) yields

∫
Gj

log+ |A0(rje
iθ)|dθ ≤

∫
Gj

(
n−1∑
i=1

log+
∣∣∣Ai(rjeiθ)∣∣∣) dθ +O(log rj)

≤
n−1∑
i=1

m(rj , Ai) +O(log rj).(3.8)

This and (3.6) give out

ζ

4m
Υ(rj)m(rj , A0) ≤

n−1∑
i=1

m(rj , Ai) +O(log rj)(3.9)

which is impossible since A0 is transcendental and T (r,Ai) = o(T (r,A0))(i =
1, 2, · · · , n−1) as r →∞. Thus, we deduce thatmeasI(f) ≥ min{2π, π/µ(A0)}.

In the following, we consider the case σ(Ai) < σ(A0)(i = 1, 2, · · · , n − 1).
By Lemma 2.8, there exists an interval (a, b) with b− a ≥ min{2π, π

σ(A0)
} such

that, for θ ∈ (a, b),

lim sup
r→∞

log+ log+ |A0(re
iθ)|

log r
= σ(A0).(3.10)

We shall prove [a, b] ⊂ I(f). Assume that [a, b] ̸⊂ I(f), then (a, b) \ I(f) is
bounded and open, so there must have (α, β) ⊂ (a, b) such that σα,β(f) < +∞.
Thus, (3.1) still holds for z ∈ Ω(α+ ε, β − ε) outside an R-set H for sufficiently
small ε. Since {r = |z| : z = reiθ ∈ H} is a set of finite linear measure, then
the set of θ, where the ray θ = arg z meets R-set H infinitely many times, is
of measure zero. Thus, we can find θ0 ∈ (α + ε, β − ε) ∈ (a, b) such that the
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ray arg z = θ0 meets H finitely many times. Furthermore, combining (3.1) and
(3.7) yields, for sufficiently large r,

log+ |A0(re
iθ0)| ≤

n∑
i=1

log+

∣∣∣∣∣f (i)(reiθ0)f(reiθ0)

∣∣∣∣∣+
n−1∑
i=1

log+
∣∣∣Ai(reiθ0)∣∣∣+O(1)

=
n−1∑
i=1

log+
∣∣∣Ai(reiθ0)∣∣∣+O(log r)

≤ rσ(A0)−ε(3.11)

which contradicts with (3.10). Hence, we prove that [a, b] ∈ I(f). Thus, we
complete the proof.

Proof of Theorem 1.2

Following Lemma 2.7, we can get that, for any θ ∈ I(f), the ray arg z = θ
must be a limiting direction of Julia set of f . Moreover, by Lemma 2.6, for
any θ ∈ I(f), the ray arg z = θ must be one infinite order Borel direction of f .
Then, by Lemma 2.5, the ray arg z = θ is also a Borel direction of infinite order
for f ′ and F , setting which a primitive function of f . Applying Lemma 2.6 to
f ′ and F , we obtain that the radial order of f ′ and F at arg z = θ is infinity.
Finally, by Lemma 2.7, we deduce that the ray arg z = θ is not only a limiting
direction of Julia sets of f ′, but also a limiting direction of Julia sets of F .

Repeating the above arguments infinitely many times, we can obtain that
arg z = θ is a common limiting direction of Julia set of f (n), where f (n) denotes
the n-th derivative or the n-th integral primitive of f for n ≥ 0 or n < 0,
respectively.

Proof of theorem 1.5

We shall prove the conclusion by reduction to absurdity. We firstly assume

thatmeasI(f) < ν := min{2π, 4
µ(A1)

arcsin

√
δ(a,A1)

2 }, then ζ := ν−measI(f) >
0. For given 0 < c < 1, set Ic(r) = {θ ∈ [0, 2π) : log |A0(re

iθ)| < c logM(r,A0)}.
The definition of proximity function yields that

T (r,A0) = m(r,A0) ≤
(
1− measIc(r)

2π

)
logM(r,A0)

+ c

(
measIc(r)

2π

)
logM(r,A0).

Since T (r,A0) ∼ logM(r,A0) outside a set F of finite linear measure, we have
measIc(r) → 0 as r ̸∈ F → ∞. By Lemma 2.4, we can take an increasing and
unbounded sequence {rk} such that measD(rk) ≥ ν − ζ

4 , where D(r) = {θ ∈
[0, 2π) : log |A1(re

iθ)−a| < 1}, all rj ̸∈ {|z| : z ∈ H}∪F withH being an R− set.
Clearly, |A1(rke

iθ)| ≤ e+ |a| for θ ∈ D(rk). Similarly as in the proof of Theorem
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1.1, there always exists an open interval Ii0 = (α, β) of Ii, (i = 1, 2, · · · ,m) such
that for infinitely many j,

meas(D(rj) ∩ (α, β)) >
ζ

2m
> 0,(3.12)

and (3.1) still holds in Ω(r, α+ ε, β − ε). Hence, substituting (3.1) into

|A0(z)| ≤
∣∣∣∣f ′′(z)f(z)

∣∣∣∣+ |A1(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣(3.13)

yields
M(rk, A0)

c ≤ |A0(rke
iθ)| ≤ (|a|+ e+ 1)KrMk ,

for θ ∈ (D(rk) ∩ I0) \ Ic(rk). It is impossible since A0 is transcendental. Then
we complete the proof.
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Abstract. In this paper, we initiate the concept of intuitionistic fuzzy ideals on rough
sets. Using a new relation we discuss some of the algebraic nature of intuitionistic fuzzy
ideals of a ring.
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1. Introduction

Rough set theory, proposed by Pawlak [25] is a new mathematical tool that
supports uncertainty reasoning. It may be seen as an extension of classical set
theory and has been successfully applied to machine learning, intelligent sys-
tems, inductive reasoning, pattern recognition, image processing, signal analysis,
knowledge discovery, decision analysis, expert systems and many other fields.
The basic structure of rough set theory is an approximation space. Based on
it, lower and upper approximation spaces are induced. Using this approxima-
tion knowledge hidden information may be revealed and expressed in the form
of decision rules. A key notion in Pawlak rough set model is an equivalence
relation. Atanassov [2] presented intuitionistic fuzzy sets in 1986 which is very
effective to deal with vagueness. As a generalization of fuzzy set the concept of
intuitionistic fuzzy set has played an important role in analysis of uncertainty of
data. Various notions of intuitionistic fuzzy rough set were explored to extend
rough set theory in the intuitionistic fuzzy environment. This paper concerns
a relationship between rough sets, intuitionistic fuzzy sets and ring theory. We
consider a ring as a universal set and assume the knowledge about objects is

∗. Corresponding author



INTUITIONISTIC FUZZY IDEALS ON APPROXIMATION SYSTEMS 225

restricted by an intuitionistic fuzzy ideal. In fact, we apply the notion of intu-
itionistic fuzzy ideal of a ring for definitions of lower and upper approximations
in a ring. Some of its characterizations are discussed.

2. Preliminaries

Definition 2.1 ([2]). An intuitionistic fuzzy set (IFS in short) A in X is an
object having the form A = {⟨x, µA(x), νA(x)/x ∈ X⟩} where the function µA :
X → [0, 1] and νA : X → [0, 1] denote the degree of membership (namely µA(x))
and the degree of non membership (namely νA(x)) of each element x ∈ X to
the set A, respectively and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X. Denote by
IFS(X) the set of all intuitionistic fuzzy set in X.

Definition 2.2 ([2]). Let A and B be IFS’s of the form A = {⟨x, µA(x), νA(x)/x ∈
X⟩} and B = {⟨x, µB(x), νB(x)/x ∈ X⟩}. Then

1. A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for all x ∈ X.

2. A = B if and only if A ⊆ B and B ⊆ A.

3. A = {⟨x, νA(x), µA(x)/x ∈ X⟩} .(Complement of A)

4. A ∩B = {⟨x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)/x ∈ X⟩} .

5. A ∪B = {⟨x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)/x ∈ X⟩} .

For the sake of simplicity we use the notion A = ⟨x, µA, νA⟩ instead of A =
{⟨x, µA(x), νA(x)/x ∈ X⟩} .

The intuitionistic fuzzy set 0 ∼= {⟨x, 0 ∼, 1 ∼⟩/x ∈ X} and 1 ∼= {⟨x, 1 ∼,
0 ∼⟩/x ∈ X} are respectively the empty set and the whole set of X.

Definition 2.3 ([4]). Let A = (µA, νA) and B = (µB, νB) be any two IFS of R.
Then their sum A+B is defined by

A+B = (µA + µB, νA + νB)),

where (µA+µB)(x) =
∨
x=y+z[µA(y)∧µB(z)] and (νA+νB)(x) =

∧
x=y+z[νA(y)∨

νB(z)] for all x ∈ R

Definition 2.4 ([4]). An IFS A = (µA, νA) is called an intuitionistic fuzzy ideal
of R if for all x, y, i ∈ R

(IF1) µA(x− y) ≥ µA(x) ∧ µA(y) and νA(x− y) ≤ νA(x) ∨ νA(y);

(IF2) µA(xy) ≥ µA(y) and νA(xy) ≤ νA(y).

Definition 2.5 ([14]). For an approximation space (U, θ) by a rough approxi-
mation in (U, θ) we mean a mapping (U, θ,−) : P (U) → P (U) × P (U) defined
for every X ∈ P (U) by (U, θ,X) = ((U, θ,X), (U, θ,X)) where (U, θ,X) =
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{x ∈ U |[x]θ ⊆ X}, (U, θ,X) = {x ∈ U |[x]θ ∩ X ̸= ϕ} where (U, θ,X) is
called a lower rough approximation of X in (U, θ) , whereas (U, θ,X) is called
an upper approximation of X in (U, θ). Given an approximation space (U, θ),
a pair (A,B) ∈ P (U) × P (U) is called a rough set in (U, θ) if and only if
(A,B) = (U, θ,X) for some X ∈ P (U) . Let (U, θ) be an approximation space
and X a non-empty subset of U:

(i) If (U, θ,X) = (U, θ,X) , then X is called definable.

(ii) If (U, θ,X) = ϕ then X is called empty interior.

(iii) If (U, θ,X) = U , then X is called empty interior.

The lower approximation of X in (U, θ) is the greatest definable set in U con-
tained in X. The upper approximation of X in is the least definable set in U
containing X. Therefore we have

(U, θ,X) =
∪
{S|S ⊆ X,S is definable}

(U, θ,X) =
∩
{S|X ⊆ S,S is definable}

A rough set of X is the family of all subsets of U having the same upper approx-
imation of X.

3. Intuitionistic fuzzy ideals and congruence relations

Theorem 3.1. For an intuitionistic fuzzy ideal A of a ring R we have the
following

(i) µA(0) ≥ µA(x) and νA(0) ≤ νA(x),

(ii) µA(−x) = µA(x) and νA(−x) = νA(x) for all x ∈ R.

Proof. (i) For any x ∈ R we have µA(0) = µA(x − x) ≥ µA(x) ∧ µA(x) =
µA(x), νA(0) = νA(x− x) ≤ νA(x) ∨ νA(x) = νA(x).

(ii) By using (i) we get µA(−x) = µA(0 − x) ≥ µA(0) ∧ µA(x) = µA(x),
νA(−x) = νA(0− x) ≤ νA(0) ∨ νA(x) = νA(x).

Since x is arbitrary we conclude that µA(−x) = µA(x) and νA(−x) = νA(x).

Theorem 3.2. If an intuitioistic fuzzy set A = (µA, νA) in R satisfies (IFI)
then:

(i) µA(x− y) = µA(0)⇒ µA(x) = µA(y),

(ii) νA(x− y) = νA(0)⇒ νA(x) = νA(y) for all x, y ∈ R.

Proof. Let x, y ∈ R such that µA(x−y) = µA(0). Then µA(x) = µA(x−y+y) ≥
µA(x− y)∧µA(y) = µA(0)∧ µA(y) = µA(y). Similarly νA(y) = νA(x− x+ y) =
νA(x− (x− y)) ≤ νA(x) ∨ νA(x− y) = µA(x). So µA(x) = µA(y).
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(ii) νA(x−y) = νA(0) for all x, y ∈ R then νA(x) = νA(x−y+y) ≤ νA(x)∨νA(y) ≤
νA(0) ∨ νA(y) = νA(y).Similarly νA(x) ≤ νA(y) and so νA(x) = νA(y).

Definition 3.3. Let A = (µA, νA) be an intuitionistic fuzzy set on R and let
α, β ∈ [0, 1] such that α + β ≤ 1. Then the set Aα,β = {x ∈ R|µA(x) ≥
α, νA(x) ≤ β} is called a (α, β)-level subset of A. The set of all (α, β) ∈
Im(µA) × Im(νA) such that α + β ≤ 1 is called the image of A = (µA, νA)
denoted by Im(A).

Definition 3.4. Let A be an intuitionistic fuzzy ideal of R for each α, β ∈ [0, 1]
with α+ β ≤ 1 the set

U(A(α,β)) = {(a, b) ∈ R×R|µA(a− b) ≥ α, νA(a− b) ≤ β}.

is called a (α, β)-level relation on A. An equivalence relation θ on a ring R is
called a congruence relation if (a, b) ∈ θ ⇒ (a+ x, b+ x) ∈ θ, (x+ a, x+ b) ∈ θ
for all x ∈ R.

Theorem 3.5. Let A be an intuitionistic fuzzy ideal of R and let α, β ∈ [0, 1]
with α+ β ≤ 1 then U(A(α,β)) is a congruence relation on R.

Proof. For any element a ∈ R,µA(a−a) = µA(0) ≥ α and νA(a−a) = νA(0) ≤
β and so (a, a) ∈ U(A(α,β)) then µA(a−b) ≥ α and νA(a−b) ≤ β implies (a, b) ∈
U(A(α,β)). Since A is an ideal of R µA(b− a) = µA(−(a− b)) = µA(a− b) ≥ α.
And νA(b− a) = νA(−(a− b)) = νA(a− b) ≤ β. Which yields (b, a) ∈ U(A(α,β)).
If (a, b) ∈ U(A(α,β)) and (b, c) ∈ U(A(α,β)) then since A is an intuitionistic fuzzy
ideal of R

µA(a−c)=µA((a−b)+(b−c))≥min{µA((a−b), µA(b−c))}≥min{α, α}=α,
νA(a−c) = νA((a−b)+(b−c))≤max{νA((a−b), νA(b−c))}≤max{β, β}=β.

And hence (a, c) ∈ U(A(α,β)). Therefore U(A(α,β)) is an equivalence relation
on R. Now let (a, b) ∈ U(A(α,β)) and x be an element of R. Then since µA(a−
b) ≥ α, νA(a − b) ≤ β, µA((a + x) − (b + x)) = µA((a + x) + (−x − b)) =
µA(a + (x − x) − b) = µA(a + 0 − b) = µA(a − b) ≥ α, νA((a + x) − (b + x)) =
νA((a+ x) + (−x− b)) = νA(a+ (x− x)− b) = νA(a+ 0− b) = νA(a− b) ≤ β
and so (a + x, b + x) ∈ U(A(α, β)). Since (R,+) is an abelian group, we have
(x+ a, x+ b) ∈ U(A(α,β)). Therefore U(A(α,β)) is a congruence relation.

We denote [x]A(α,β)
the equivalence class of U(A(α,β)) containing x of R.

Lemma 3.6. Let A be an intuitionistic fuzzy ideal of R. If a, b ∈ R and α, β ∈
[0, 1] with α+ β ≤ 1 then:

(i) [a]A(α,β)
+ [b]A(α,β)

= [a+ b]A(α,β)
;

(ii) [−a]A(α,β)
= −([a]A(α,β)

).
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Proof. (i) Suppose x ∈ [a]A(α,β)
+[b]A(α,β)

. Then there exists an y ∈ [a]A(α,β)
and

[z] ∈ [b]A(α,β)
such that x = y+z. Since (a, y) ∈ U(A(α,β)) and (b, z) ∈ U(A(α,β))

we have (a+b, y+z) ∈ U(A(α,β)) or (a+b, x) ∈ U(A(α,β)) and so x ∈ [a+b]A(α,β)
.

Conversely let x ∈ [a+b]A(α,β)
then (x, a+b) ∈ U(A(α,β)). Hence (x−b, a) ∈

U(A(α,β))and so x− b ∈ U(A(α,β)) or x ∈ [a]A(α,β)
+[b]⇒ x ∈ [a]A(α,β)

+[b]A(α,β)
.

(ii) We have x ∈ [−a]]A(α,β)
⇔ (x,−a) ∈ U(A(α,β))⇔ (0,−a−x) ∈ U(A(α,β))

⇔ (a,−x) ∈ U(A(α,β)) ⇔ −x ∈ [a]A(α,β)
⇔ x ∈ −([a]A(α,β)

.

Lemma 3.7. Let A and B be two intuitionistic fuzzy ideals of a ring R and let
α, β ∈ [0, 1] with α+ β ≤ 1 then U((A ∩B)(α,β)) = U(A(α,β)) ∩ U(B(α,β)).

Lemma 3.8. Let A be an intuitionistic fuzzy ideal of a ring R and let α, β ∈
[0, 1] with α+ β ≤ 1. For any a ∈ R we have a+ [0]A(α,β)

= [a]A(α,β)
.

Proof. Assume that a ∈ R then we have x ∈ a+ [0]A(α,β)
⇔ x− a ∈ [0]A(α,β)

⇔
(x− a, 0) ∈ U(A(α,β))⇔ (x− a) ∈ U(A(α,β))⇔ x ∈ [a]A(α,β)

Lemma 3.9. Let A and B be two intuitionistic fuzzy ideal of R such that B ⊆ A
and α, β ∈ [0, 1] with α+ β ≤ 1. Then [x]B(α,β)

⊆ [x]A(α,β)
for every x ∈ R.

Proof. We have y ∈ [x]A(α,β)
⇒ (x, y) ∈ U(B(α,β)) ⇒ µB(x − y) ≥ α and

νB(x − y) ≤ β ⇒ µA(x − y) ≥ α and νA(x − y) ≤ β ⇒ (x, y) ∈ U(A(α,β))
⇒ y ∈ [x]A(α,β)

.

Definition 3.10. Let A and B be two intuitionistic fuzzy ideals of a ring R.
Then the composition of the congruence relation U(A(α,β)) and U(B(α,β)) is
defined by

U(A(α,β)) ◦ U(B(α,β)) = {(a, b) ∈ R×R|∃y ∈ R

such that (a, c) ∈ U(A(α,β)), (c, b) ∈ U(B(α,β))}.
We have U(A(α,β)) ◦U(B(α,β)) is also a congruence relation. We denote the

congruence relation by U((A ◦B)(α,β))

Lemma 3.11. Let A and B be two intuitionistic fuzzy ideals of a ring R and
let α, β ∈ [0, 1] with α+ β ≤ 1. Then U((A ◦B)(α,β)) ⊆ U((A+B)(α,β)).

Proof. Assume that (a, b) be an arbitrary element of U((A ◦ B)(α,β)). Then
there exist an element c ∈ R such that (a, c) ∈ U(A(α,β))) and (c, b) ∈ U(B(α,β))).
Therefore we have µA(a− c) ≥ α, νA(a− c) ≤ β, µB(c − b) ≥ α, νB(c− b) ≤ β.
Then µA+µB(a−b) =

∨
u+v=a−b(µA(u)∧µB(v)) = µA(a−c)∧µB(c−b) ≥ α∧α =

α, (νA+νB)(a−b) =
∧
u+v=a−b(νA(u)∨νB(v)) = νA(a−c)∨νB(c−b) ≥ β∨β = β

and so U((A+B)(α,β)).

Lemma 3.12. Let A and B be two intuitionistic fuzzy ideals of a ring R with
finite images and let α, β ∈ [0, 1] with α + β ≤ 1. Then U((A ◦ B)(α,β)) =
U((A+B)(α,β)).
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Proof. Assume that (a, b) ∈ U((A◦B)(α,β)). Then (µA+µB)(a− b) ≥ α, (νA+
νB)(a−b) ≤ β. Thus we have

∨
a−b=x+y(µA(x)∧µB(y)) ≥ α,

∧
a−b=x+y(νA(u)∨

νB(v)) ≤ β. Since ImµA and ImµB are finite µA(x0) ∧ µB(y0) ≥ α for some
x0, y0 ∈ R such that a− b = x0 + y0. Thus

(1) µA(x0) ≥ α and µA(y0) ≥ α⇒ µA(x0 − 0) ≥ α and µA(a− b− x0) ≥ α

and νA(x0) ∨ νB(y0) ≤ β for some x0, y0 ∈ R. Thus

(2) νA(x0) ≤ β and νB(y0) ≤ β ⇒ νA(x0 − 0) ≤ β and νA(a− b− x0) ≤ β.

From (i) and (ii) (x0, 0) ∈ U(A(α,β))) and (a − b, x0) ∈ U(B(α,β)). Therefore
(a− b, 0) ∈ U((A ◦B)(α,β). Since U((A ◦B)(α,β) is a congruence relation we get
(a, b) ∈ U((A ◦ B)(α,β). Thus U((A ◦ B)(α,β) = U((A + B)(α,β), if ImµA and
ImµB are finite.

4. Approximation based on intuitionistic fuzzy ideals

Let A be an intuitionistic fuzzy ideal of a ring R and let α, β ∈ [0, 1] with
α+ β ≤ 1. Since U(A(α,β)) is an equivalence(congruence) relation on R we use
(R,A(α,β)) instead of the approximation space (U, θ) where U = R and θ is the
above equivalence relation.

Definition 4.1. Let A be an intuitionistic fuzzy ideal of a ring R and U(A(α,β))
be an (α, β)-level congruence relation of A on R. Let X be a non-empty subset
of R. Then the sets

U(A(α,β), X) = {x ∈ R|[x]A(α,β)
⊆ X},

U(A(α,β), X) = {x ∈ R|[x]A(α,β)
∩X ̸= ϕ}.

are respectively the lower and upper approximation of the set X with respect to
U(A(α,β)).

Proposition 4.2. For every approximation space (R,A(α,β)) and every subset
A,B of R, we have:

(i) U(A(α,β), B) ⊆ B ⊆ U(A(α,β), B);

(ii) U(A(α,β), ϕ) = ϕ = U(A(α,β), ϕ);

(iii) U(A(α,β), R) = R = U(A(α,β), B);

(iv) If B ⊂ C, then U(A(α,β), B) ⊆ U(A(α,β), C);U(A(α,β), B) ⊆ U(A(α,β), C)

(v) U(A(α,β), U(A(α,β), B)) = U(A(α,β), B);

(vi) U(A(α,β), U(A(α,β), B)) = U(A(α,β), B);
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(vii) U(A(α,β), U(A(α,β), B)) = U(A(α,β), B);

(viii) U(A(α,β), U(A(α,β), B)) = U(A(α,β), B);

(ix) U(A(α,β), B) = U(A(α,β), B
c)c;

(x) U(A(α,β), B) = U(A(α,β), B
c)c;

(xi) U(A(α,β), B ∩ C) = U(A(α,β), B) ∩ U(A(α,β), C);

(xii) U(A(α,β), B ∩ C) ⊆ U(A(α,β), B) ∩ U(A(α,β), C);

(xiii) U(A(α,β), B ∪ C) ⊇ U(A(α,β), B) ∪ U(A(α,β), C);

(xiv) U(A(α,β), B ∪ C) = U(A(α,β), B) ∪ U(A(α,β), C);

(xv) U(A(α,β), [x]A(α,β)
) = U(A(α,β), [x]A(α,β)

) for all x ∈ R.

Proof. The proof is obvious.

The converse of (xii) and (xiii) in proposition 4.2 need not be true seen from
the following example.

Example 4.3. Let R = {0, x, y, z} be a set with binary operations as follows:

+ 0 x y z
0 0 x y z
x x 0 z y
y y z 0 x
z z y x 0

. 0 x y z
0 0 0 0 0
x 0 x y z
y 0 x y z
z 0 0 0 0

Then clearly R is a ring with x = −x, y = −y and z = −z. Now let µA(0) =
α0, ν0 = β0, µA(z) = α1, νA(z) = β1, µA(x) = µA(y) = α2, νA(x) = νA(y) = β2,
where α1, β1 ∈ [0, 1], i = 0, 1, 2 and α2 < α1 < α0 and β0 < β1 < β2. We
have A(α0,β0) = {(0, 0), (x, x), (y, y), (z, z)} A(α1,β1) = {(0, 0), (x, x), (y, y), (z, z),
(x, y), (y, x), (0, z), (z, 0)} A(α2,β2) = R×R.

Now letB={0, x} and C={0, y, z}. Then U(A(α1,β1), B) = R;U(A(α1,β1), C) =

R;U(A(α1,β1), (B ∩ C) = {0, z}; and U(A(α1,β1), B) = ϕ;U(A(α1,β1), C) = {0, c};
U(A(α1,β1), (B∪C) = R. Thus U(A(α1,β1), B)∩U(A(α1,β1), C) * U(A(α1,β1), (B∩
C); and U(A(α1,β1), (B ∪ C)) * U(A(α1,β1), B) ∪ U(A(α1,β1), C);

Proposition 4.4. Let A and B be intuitionistic fuzzy ideals of a ring R and
let α, β ∈ [0, 1] with α + β ≤ 1. If X is a non-empty subset of R, then U((A ∩
B)A(α,β)

, X) ⊆ U(A(α,β), X) ∩ U(A(α,β), X).

Proof. Let x ∈ overline((A ∩ B)A(α,β)
, X), ⇒ [x](A∩B)(α,β)

) ∩ X ̸= ϕ, ⇒ a ∈
[x](A∩B)(α,β)

) ∩X ⇒ (a, x) ∈ U(A ∩B)A(α,β)
and a ∈ X. ⇒ (µA ∩ µB)(a− x) ≥

α, (νA ∪ νB) ≤ β and a ∈ X. ⇒ min{µA(a − x), µB(a − x)} ≥ α,max{νA(a −
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x), νB(a−x)} ≤ β and a ∈ X. ⇒ µA(a−x) ≥ α, νA(a−x) ≤ β and µB(a−x) ≥
α, νB(a − x) ≤ β and a ∈ X, ⇒ (a, x) ∈ U(A(α,β)) and (a, x) ∈ U(B(α,β)) and
a ∈ X. ⇒ (a, x) ∈ U(A(α,β)), a ∈ X and (a, x) ∈ U(B(α,β)), a ∈ X. ⇒ a ∈
[x]A(α,β)

∩X and a ∈ [x]B(α,β)
∩X, ⇒ x ∈ U(A(α,β), X) and x ∈ U(B(α,β), X).

The converse of the above proposition need not be true seen from the following
example.

Example 4.5. Let R = Z6(the ring of integers modulo 6). Let B = Z6 → [0, 1]
and C : Z6 → [0, 1] with µB(0) = νB(0) = α0, µB(1) = µB(2) = µB(4) = µB =
α3, νB(1) = νB(2) = νB(4) = νB(5) = β3, µB(3) = α2, νB(3) = β2;

µC = α1, νc(0) = β1;µC(1) = µC(3) = µC(5) = α4, νC(1) = νC(2) =
νC(5) = β4, µC(2) = µC(4) = α2, νC(2) = νC(4) = β2 where α1, β1 ∈ [0, 1], i =
0, 1, 2, 3, 4 and α4 < α3 < α2 < α1 < α0 and β0 < β1 < β2 < β3 < β4. We have
(µB∩µC)(2) = (µB∩µC)(4) = α3; (µB∩µC)(1) = (µB∩µC)(3) = (µB∩µC)(5) =
α4; (µB ∩ µC)(0) = α1; (νB ∪ νC)(2) = (νB ∪ νC)(4) = β3; (νB ∪ νC)(1) =
(νB ∪ νC)(3) = (νB ∪ νC)(5) = β4; (νB ∩ νC)(0) = β1;

AlsoB(α0,β0)={(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)};B(α2,β2)={(0, 0), (1, 1),
(2, 2), (3, 3), (4, 4), (5, 5), (5, 2), (2, 5), (4, 1)(1, 4), (0, 3), (3, 0)}; B(α3,β3) = Z6 ×
Z6; C(α0,β0) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}; C(α2,β2) = {(0, 0), (1, 1),
(2, 2), (3, 3), (4, 4), (5, 5), (5, 3), (3, 5), (4, 2), (2, 4), (1, 3), (3, 1), (0, 2), (2, 0), (5, 1),
(1, 5), (0, 4), (4, 0)}; C(α4,β4) = Z6×Z6; (B∩C)(α0,β0)={(0, 0), (1, 1), (2, 2), (3, 3),
(4, 4), (5, 5)}; (B∩C)(α3,β3)={(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (5, 3), (3, 5),
(4, 2), (2, 4), (1, 3), (3, 1), (0, 2), (2, 0), (5, 1), (1, 5), (0, 4), (4, 0)}; (B ∩ C)(α4,β4) =
Z6 × Z6.

Now letX = {1, 2, 3}, then U(B(α2,β2), X) = Z6;U(C(α2,β2), X) = Z6;U((B∩
C)(α2,β2), X) = {1, 2, 3}; and U((B∩C)(α,β), X) = ̸= U(B(α,β), X)∩U(C(α,β), X)

Proposition 4.6. Let A and B be intuitionistic fuzzy ideals of a ring R and let
α, β ∈ [0, 1] with α+β ≤ 1. If X is a non-empty subset of R, then U(A(α,β), X)∩
U(B(α,β), X) = U((A ∩B)(α,β), X).

Proof. Let x ∈ U(A(α,β), X) ∩ U(B(α,β), X), ⇒ x ∈ U(A(α,β), X) and x ∈
U(B(α,β), X), ⇒ [x]A(α,β)

⊆ X and [x]B(α,β)
⊆ X, ⇒ [x](A∩B)(α,β)

⊆ X, ⇒ x ∈
U((A ∩B)(α,β), X).

Proposition 4.7. Let A be an intuitionistic fuzzy ideal of a ring R and let
α, β ∈ [0, 1] with α + β ≤ 1. If A is an ideal of R, then A is an upper rough
ideal of R.

Proof. Let a, b ∈ U(A(α,β)) and r ∈ R, then [a]A(α,β)
∩B ̸= ϕ and [b]A(α,β)

∩B ̸=
ϕ so there exists x ∈ [a]A(α,β)

∩B and y ∈ [y]B(α,β)
∩B. Since B is an ideal of R

we have x− y ∈ B and rx ∈ B. Thus x− y ∈ [a]A(α,β)
− [b]A(α,β)

= [a− b]A(α,β)
.

Hence [a− b](A∩B)(α,β)
∩B ̸= ϕ this implies a− b ∈ U(A(α,β), B). Since (x, a) ∈
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U(A)(α,β), then µA(x− a) ≥ α, νA(x− a) ≤ β. Now we have

µA(rx− ra) = µA(r(x− a)) ≥ max{µA(r), µA(x− a)} ≥ µA(x− a) ≥ α,
νA(rx− ra) = νA(r(x− a)) ≤ min{νA(r), νA(x− a)} ≤ νA(x− a) ≤ β.

Hence (rx, ra) ∈ U(A(α,β)) or rx ∈ [ra]A(α,β)
, thus rx ∈ [ra]A(α,β)

∩ B ⇒
[ra]A(α,β)

∩ B ̸= ϕ Therefore ra ∈ U(A(α,β)), B). Likewise ar ∈ U(A(α,β)), B).

Therefore U(A(α,β)), B) is an ideal of R.

Lemma 4.8. Let A be an intuitionistic fuzzy ideal of a ring R and let α, β ∈
[0, 1] with α+ β ≤ 1.If U(A(α,β), B) is a non-empty set, then [0]A(α,β)

⊆ B.

Proof. Let U(A(α,β), B) ̸= 0 then there exists x ∈ U(A(α,β), B) or [x]A(α,β)
⊆ B.

So [x]A(α,β)
⊆ B. So −([x]A(α,β)

) ⊆ −B = {−a|a ∈ B} = B.

[0]A(α,β)
= [x+(−x)]A(α,β)

; = [x]A(α,β)
+[−x]A(α,β)

; = [x]A(α,β)
+(−[x]A(α,β)

) ⊆
B +B = B.

Proposition 4.9. Let A be an intuitionistic fuzzy ideal of a ring R and let
α, β ∈ [0, 1] with α + β ≤ 1.Let B be an intuitionistic fuzzy ideal of R. If
U(A(α,β), B) is a non-empty set then it is equal to B.

Proof. We know U(A(α,β), B) ⊆ B. Assume tha t a is an arbitrary element of
B. Since [0]A(α,β)

⊆ B. Since A is an ideal of R, we have a+[0]A(α,β)
⊆ a+B ⊆ B;

⇒ [a]A(α,β)
⊆ B. ⇒ a ∈ U(A(α,β), B).

Corollary 4.10. Let A be an intuitionistic fuzzy ideal of a ring R and let
α, β ∈ [0, 1] with α+β ≤ 1.If B is an ideal of R, then (U(A(α,β), B), U(A(α,β), B)
is a rough ideal of R.

Proposition 4.11. Let A and B be intuitionistic fuzzy ideals of a ring R and
let α, β ∈ [0, 1] with α+ β ≤ 1.If C is a non-empty subset of R, then

(i) U(B(α,β), C) ⊆ U(A(α,β), C);

(ii) U(A(α,β), C) ⊆ U(B(α,β), C).

Proof. (i) Let x be an arbitrary element of U(B(α,β), C) then [x]B(α,β)
∩ C ̸=

ϕ, since [x]B(α,β)
⊆ [x]A(α,β)

, we have [x]A(α,β)
∩ C ̸= ϕ, which implies x ∈

U(A(α,β), C).

(ii) Let x ∈ U(A(α,β), C), then [x]A(α,β)
⊆ C ⇒ [x]B(α,β)

⊆ C thus x ∈
U(B(α,β), C).

Proposition 4.12. Let A and B be intuitionistic fuzzy ideals of a ring R and
let α, β ∈ [0, 1] with α+ β ≤ 1.Let X be a non-empty subset of R.If U(B(α,β)) ⊆
U(A(α,β)) then
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(i) U(B(α,β), X) ⊆ U(A(α,β), X);

(ii) U(A(α,β), X) ⊆ U(B(α,β), X).

Proof. (i) Let x be an arbitrary element of U(B(α,β), X) then there exists a ∈
[x]B(α,β)

∩ C. Then a ∈ X and (a, x) ∈ U(B(α,β), X) ⊆ U(A(α,β)). Therefore

a ∈ [x]A(α,β)
∩Xand so x ∈ U(A(α,β), X).

(ii) Let x be an arbitrary element of U(A(α,β), X), then [x]A(α,β)
⊆ X. Since

[x]B(α,β)
⊆ [x]A(α,β)

we get [x]B(α,β)
⊆ X implies x ∈ U(A(α,β), X).

Proposition 4.13. Let A and B be intuitionistic fuzzy ideals of a ring R and
let α, β ∈ [0, 1] with α+ β ≤ 1. Let X be a non-empty subset of R then

(i) U((A ◦B)(α,β), X) ⊆ U((A+B)(α,β), X);

(ii) U((A+B)(α,β), X) ⊆ U((A ◦B)(α,β), X).

Proposition 4.14. Let A and B be an intuitionistic fuzzy ideal of a ring R,
with finite images and let α, β ∈ [0, 1] with α + β ≤ 1. If X is a non-empty
subset of R, then

(i) U((A ◦B)(α,β), X) ⊆ U((A+B)(α,β), X);

(ii) U((A+B)(α,β), X) ⊆ U((A ◦B)(α,β), X).

If A and B are non-empty subsets of R. Let A.B denote the set of all finite sums
{a1b1 + a2b2 + . . .+ anbn, n ∈ N, ai ∈ A, bi ∈ B}.

Proposition 4.15. Let A and B be intuitionistic fuzzy ideals of a ring R and
α, β ∈ [0, 1] with α+β ≤ 1. If A is an ideal of R, then U(A(α,β), C).U(B(α,β), C) ⊆
U((A ◦B)(α,β), C)

Proof. Suppose that z be any element of U(A(α,β), C).U(B(α,β), C). Then z =∑n
i=1 aibi for some ai ∈ U(A(α,β), C) and bi ∈ U(B(α,β), C). Thus [ai]A(α,β)

∩
C ̸= ϕ and [bi]B(α,β)

∩ C ̸= ϕ for i = 1, 2, 3 . . . n. Since C is ideal of R then∑n
i=1 xiyi ∈ C. Since (xi, ai) ∈ U(A(α,β)) and (yi, bi) ∈ U(B(α,β)) we have

µA(xi − ai) ≥ α, νA(xi − ai) ≤ β and µB(yi − bi) ≥ α, nuA(yi − bi ≤ β. Then
µA(xibi−aibi) = µA((xi−ai)bi) ≥ max{µA(xi−ai), µA(bi)} ≥ µA(xi−ai) ≥ α,
νA(xibi − aibi) = νA((xi − ai)bi) ≤ min{νA(xi − ai), νA(bi)} ≤ νA(xi − ai) ≤ β,
µB(xiyi−xibi) = µB((xi(yi−bi)) ≥ max{µB(xi), µB(yi−bi)} ≥ µB(yi−bi) ≥ α,
νB(xiyi − xibi) = νB((xi(yi − bi) ≤ min{νB(xi), νB(yi − bi)} ≤ νB(yi − bi) ≤ β.
Hence (xibi, aibi) ∈ U(Aα,β) and (xiyi, xibi) ∈ U(B)α,β and so (xiyi, aibi) ∈
U(A◦B)α,β for all i = 1, 2, ...n. Since U(A◦B)α,β is a congruence relation we get
[
∑n

i=1 xiyi,
∑n

i=1 aibi] ∈ U(A ◦ B)(α,β) and so
∑n

i=1 xiyi ∈ [
∑n

i=1 aibi](A◦B)(α,β)
.

Therefore [
∑n

i=1 aibi](A◦B)(α,β)
∩ C ̸= ϕ⇒

∑n
i=1 aibi ∈ U(A ◦B)(α,β).
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Corollary 4.16. Let A and B be intuitionistic fuzzy ideal of a ring R and α, β ∈
[0, 1] with α + β ≤ 1. If A is an ideal of R, then U(A(α,β), C).U(B(α,β), C) ⊆
U((A+B)(α,β), C)

5. Conclusion

In this paper we considered the concept of intuitionistic fuzzy ideals on rough
sets. The lower and upper approximation of rough sets were defined and a new
definition is defined such that the approximation space satisfies the condition
of the ideal. Using this new relation we have discussed some of the algebraic
nature of intuitionistic fuzzy ideals of a ring.In future the authors may extend
this paper to neutrosophic ideals in approximation systems.
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Abstract. In this paper, a sufficient condition for a submatroid of a loopless matroid
to be a modular flat is given. Moreover, it is shown that if the injective pushout of two
loopless matroids relative to a common submatroid exists, then the join of the given
matroids exists and is isomorphic to the indicated pushout.
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1. Background

We follow the terminology of White [17] and Lawvere and Schanuel [18]. In
particular, the ground set of a matroid M , the rank of M and the closure of
a subset A ⊆ E(M) are denoted by E(M), r(M), Ā, respectively. A loopless
matroid is a matroid which has no single element set with rank zero. Let A
and B be flats of M. Then (A,B) is a modular pair of flats if r(A) + r(B) =
r(A ∪B) + r(A ∩B). If F is a flat of M such that (F,A) is a modular pair for
all flats A, then F is a modular flat of M.

By a join of two matroids M and N relative to a common submatroid S,
we mean a matroid on the point set consisting of the disjoint union of M − S,
N − S and S, the flats of which are all subsets F such that F ∩M is a flat of
M and F ∩N is a flat of N.

By an injective pushout of two matroids M and N relative to a common
submatroid S, we mean a colimit for the diagram in Figure 1 where iM and iN
are non-rank-decreasing injective strong maps. We will show the existence of
the injective pushout guarantees the existence of the join. In fact, the join is
isomorphic to the injective pushout.

M

S

iM

>>}}}}}}}}

iN   A
AA

AA
AA

A

N

Fig. 1 Injective pushout of M and N relative to S.
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For a complete background on the previous notions and the following ones,
the reader is referred to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

2. Joins of matroids

We begin this section by recalling the following result which is needed to prove
Theorem 1:

Lemma 1 ([16]). Let F be a flat of a matroid M.Then F is a modular flat if
and only if r(F ) + r(A) = r(M) for all complements A of F.

Theorem 1. Let M be a loopless matroid with a submatroid S and suppose that
r(S) + r(X) ≤ r(M) for all flats X of M disjoint from S. Then S is a modular
flat.

Proof. If S̄ ̸= S, then there exists a point c ∈ S̄ − S. Let X be a subset of M
satisfying X ∩ S̄ = {c} and X ∪ S̄ = M. Then by the semimodularity of the
rank and as r(S) + r(X) = r(S̄) + r(X),

(1) r(S) + r(X) ≥ r(X ∪ S̄) + r(X ∩ S̄) = r(M) + r(c) > r(M),

and S ∩X = ∅, which is a contradiction to the assumption. Hence S is a flat.
By the semimodularity of the rank for every complement X of S,

r(S) + r(X) ≥ r(S ∪X) + r(S ∩X) = r(S ∪X) = r(M),

and then by assumption r(S) + r(X) = r(M). Hence S is modular by Lemma
1.

Next, we recall the following two results from [16]:

Lemma 2. Suppose that T is a modular flat of Mand every non-loop element
of T − T is parallel to some element of T.Then T is fully embedded in M.

Lemma 3. Let M be a matroid on a set E and suppose that, for some subset
T of E, the matroid M/T = M1 ⊕M2. If T is a modular flat of the simple
matroid associated with M \ (E(M2), then

M = PM |T (M \ (E(M2),M \ (E(M1)).

Next, we look at some sufficient conditions for a join to be exist. The proofs
of the first two theorems follow from Lemma 2 and Lemma 3 combined with
Theorem 1.

Theorem 2. Let M1 be a loopless matroid, M2 be a matroid and T be the

intersection of the ground sets ofM1 andM2. If

M1

T satisfies the rank property

in Theorem 1 and every loop element of
M1

T− T is parallel to some element of
T, then the join of M1 and M2 relative to M1 |T exists, termed the generalized
parallel connection P

M1 |T (M1 ,M2).
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Theorem 3. Let M be a matroid on a set E and suppose that, for some sub-
set T of E, the matroid M/T = M1 ⊕ M2 , T̃ be the simple matroid associ-

ated with M1 |T and ˜M\E(M2) the simple matroid associated with M\E(M2). If

r(T̃ ) + r(X) ≤ r( ˜M\E(M2)) for all flats X of ˜M\E(M2) disjoint from T̃ , then
P

M1 |T (M\E(M2),M\E(M1)) exists, termed the matroid M.

Injective pushouts of matroids M and N relative to a common submatroid
S have been known to exist for S equal to the empty set in which case it is the
direct sum; and for S equal to a point in which case it is the parallel connection.
Let S be the rank zero matroid with the points consisting of the disjoint union
ofM−S, N−S and S. Then the identity maps fromM and N into S are strong,
so that by the unique existence of the colimit map P −→ S, the points of an
injective pushout when it exists can be identified with the point set consisting of
the disjoint union ofM −S, N −S and S so that it is a combinatorial geometry.
Now we are ready to prove our main theorem which is an extremal matroid
result, that the existence of the injective pushout guarantees the existence of
the join.

Theorem 4. If P is an injective pushout of matroids M and N relative to a
common submatroid S, then the join of M and N relative to S exists and is
isomorphic to P.

Proof. By assumption there are strong maps jM :M −→ P and jN : N −→ P
such that jM iM = jN iN . Also if I is a matroid and g : M −→ I and h : N −→
I are strong maps for which giM = hiN , then there exists a unique strong
map f : P −→ I which make the diagram in Figure 2 commutative. By the
paragraph preceding this theorem, jM and jN are injective and the point set
of P is consisting of the disjoint union of M − S, N − S and S. Let K ⊆ P
and assume j−1

M
(K ∩M) and j−1

N
(K ∩ N) are flats of M and N, respectively.

We need only show K is a flat of P since then P is the join of submatroids
isomorphic to M and N relative to a common submatroid isomorphic to S. Let
I be the matroid with a single loop y and (P −K) parallel elements. Define a
strong map g :M −→ I by g(z) = z when z ∈M − j−1

M
(K), and g(z) = y when

z ∈ j−1
M

(K). Define a strong map h : N −→ I similarly. For the strong map
f : P −→ I, which makes the diagram in Figure 2 commutative, we find that
f(z) = z when z ∈ P −K and f(z) = y when z ∈ K. It follows that K = f−1(y)
is a flat, which was to be proved.

S
iM //

iN
��

M

g

��0
00
00
00
00
00
00
0

jM
��

N

h
''PP

PPP
PPP

PPP
PPP

P
jN // P

f
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@@

@
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Abstract. This research article, is concerned with the numerical solutions of frac-
tional boundary value problems by using Chebyshev Wavelet Method (CWM). Simula-
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1. Introduction

Fractional calculus is the subject that dealing with the study of fractional order
differential equations. Fractional order differential equations are the general-
ization of classical integer order differential equations. Gemant and Scot-Blair
started the study of fractional calculus by proposing a fractional derivative mod-
els for viscoelasticity, anomalous stress and strain [1, 2]. Other applications of
fractional calculus while modeling physical phenomena, such as nonlinear os-
cillation of earth quake [3], signal Processing [4], control theory [5] and fluid
dynamics traffic [6] have made this area important for mathematicians and re-
searchers.
The exact and numerical solutions are important to describe and analyze frac-
tional order differential equations. Therefore a number of efficient techniques
have been used to obtain the solution of fractional differential equation such as
Adomian Decomposition Method (ADM) [7], the Variational Iteration Method
(VIM) [8], Homotopy Analysis Method (HAM) [9], Homotopy Perturbation
Method (HPM) [10, 11], Differential Transformation Method (DTM) [12], the
Fractional Sub Equation Method (FSEM) [13], the First Integral Method [FIM]
[14], Reproducing Kernel Hilbert Space Method (RKHSM) [15, 16], shifted Ja-
cobi Polynomials Method [17], shifted Legendre polynomials [18, 19] and the
Ex-Function Method (EFM) [20].

Recently, most of the researchers have shown great interest in wavelet theory
[21, 22, 23, 24, 25, 26, 27, 28] The most relevant methods based on wavelets are
Haar wavelet [25], Legendre wavelet [24] and Chebyshev wavelet [21, 23, 27].
Harmonic wavelet method [22]. CAS wavelet [26].

In the current work, we have used a numerical method based on Chebyshev
Wavelets for the numerical solution of some fractional higher order differential
equations. The numerical solution by (CWM) are compared with the results
obtained by (OHAM), (MOHAM), (VIM) and exact solution of the problems.
The numerical results have suggested that (CWM) has the higher degree of
accuracy than other methods.

The organization of this paper is in the following manner. The definition
and properties of fractional calculus will be given in Section 2 while in Section 3,
we give some properties of the Chebyshev Wavelets. In section 4, we introduce
the Chebyshev Wavelet Method (CWM). In Section 5, we give four numerical
examples and finally in Section 6, we give the conclusion.

2. Preliminaries and definitions

In this section some of the important definitions and preliminary concepts are
discussed for the continuation of the current work.
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Definition 2.1. The Riemann fractional integral operator I of order µ on the
usual Lebesgue space L1[a, b] is given by

(Iµg)(t) =
1

Γ(µ)

∫ t

0
(t− ξ)µ−1g(ξ)dξ, µ > 0, (I0g)(t) = g(t),

This integral operator has the following properties

(a) IµIη = Iµ+η,

(b) IµIη = IηIµ,

(c) Iµ(t− a)ν =
Γ(ν + 1)

Γ(µ+ ν + 1)
(t− a)µ+ν

Where µ, η > 0, ν > −1.

Definition 2.2. The Riemann fractional derivative of order γ > 0 is defined as

(Dγg)(t) =
( d
dt

)n(
I(n−γ)g)(t)

)
, n− 1 < γ ≤ n,

where n is an integer.

However the Riemann fractional derivative has certain disadvantages and
therefore Caputo introduced a modified differential operator.

Definition 2.3. The Caputo definition of fractional differential operator is given
by

(Dµg)(t) =
1

Γ(n− µ)

∫ t

0
(t− ξ)n−µ−1g(n)(ξ)dξ, n− 1 < µ < n.

Where t > 0, n is an integer.

3. Properties of the Chebyshev wavelets

Wavelets consist of family of functions generated from the dilation a and trans-
lation b of a single function ψ(x) called the mother wavelet. When the dilation
a and translation parameter b change continuously, we get the following contin-
uous family of Wavelet [27]

ψa,b(x) = |a|
1
2ψ(

x− b
a

), a, b ∈ R, a ̸= 0.

If we restrict the parameters a and b to discrete values as

a = a−k0 , b = nb0a
−k
0 , a0 > 1, b0 > 0,

where n, k are positive integers.
Then the following family of discrete wavelets is obtained

ψk,n(x) = |a|
k
2ψ(ak0x− nb0), k, n ∈ Z.
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Especially when a0 = 2 and b0 = 1, then ψk,n(x) forms an orthogonal basis.
The second kind of Chebyshev wavelets is constituted of four parameters,

ψn,m(x) = ψ(k, n,m, x), where n = 1, 2, ..., 2k−1, k is any nonnegative integer,
m is the degree of the second Chebyshev polynomial. The Chebyshev wavelets
are defined on the interval 0 ≤ x < 1 as

ψn,m =

{
2

k
2 T̃m(2

kx− 2n+ 1), n−1
2k−1 ≤ x ≤ n

2k−1

0, otherwise

Where T̃m(x) =

√
2

π
Tm(x),m = 0, 1, 2...,M − 1.

Here Tm(x) are second Chebyshev polynomials of degree m with respect to

the weight function w(x) =
√

1− x2 on the interval [−1, 1], and satisfying the
following recursive formula

T0(x) = 1, T1(x) = 2x, Tm+1(x) = 2xTm(x)− Tm−1(x),m = 1, 2, 3, . . .

Lemma 3.1. If the Chebyshev Wavelet expansion of a continuous function f(x)
converges uniformly, then the Chebyshev Wavelet expansion converges to the
function f(x).

Proof. See [29].

Theorem 3.2. A function f(x) ∈ L2[0, 1], with bounded second derivative, say
|f ′′(x)| ≤ N , can be expanded as an infinite sum of Chebyshev wavelets, and the
series converges uniformly to f(x), that is,

f(x) =
∞∑
n=1

∞∑
m=0

cnmψnm(x).

Proof. See [29].

4. Chebyshev Wavelet Method (CWM)

In the present paper we consider the fractional boundary value of the form

Dαy(x) = g(x) + f(y), a < x ≤ b, 9 < α ≤ 10,(4.1)

with the boundary conditions given by y(a) = α0, y
(2)(a) = α1, y

(4)(a) =
α2, y

(6)(a) = α3, y
(8)(a) = α4, y(b) = β0, y

(2)(b) = β1, y
(4)(b) = β2, y

(6)(b) =
β3, y

(8)(b) = β4, where g(x) is a source function, f(y) is linear or nonlinear
continuous function and αi and βi are real valued constants.

The solution to equation (4.1) can be extended by Chebyshev Wavelets series
as

y(x) =

∞∑
n=1

∞∑
m=0

cn,mψn,m(x)(4.2)
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The series in equation (4.2) is truncated to finite number of terms that is

yk,M (x) =

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x)(4.3)

This shows that there are 2k−1M conditions to determine 2k−1M coefficients
which are ci,j .

Since, we have eighth boundary conditions; therefore eight conditions are
obtained by these boundary conditions.

The conditions are

(4.4)



yk,m =

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(a) = α0,

d2

dx2
yk,M (a) =

d2

dx2

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(a) = α1,

d4

dx4
yk,M (a) =

d4

dx4

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(a) = α2,

d6

dx6
yk,M (a) =

d6

dx6

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(a) = α3,

d8

dx8
yk,M (a) =

d8

dx8

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(a) = α4,

yk,M (b) =

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(b) = β0,

d2

dx2
yk,M (b) =

d2

dx2

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(b) = β1,

d4

dx4
yk,M (b) =

d4

dx4

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(b) = β2,

d6

dx6
yk,M (b) =

d6

dx6

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(b) = β3,

d8

dx8
yk,M (b) =

d8

dx8

2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(b) = β4.

The remaining 2k−1M−10 conditions can be obtained by substituting equa-
tion (4.4) in equation (4.3), we get
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dα

dxα

2k−1∑
n=1

M−11∑
m=0

cn,mψn,m(x) = f(x) +
2k−1∑
n=1

M−11∑
m=0

cn,mψn,m(x)(4.5)

Assume that equation (4.5) is exact at 2k−1M − 10 points, which we call it xi,
then

dα

dxα

2k−1∑
n=1

M−11∑
m=0

cn,mψn,m(xi) = f(xi) +

2k−1∑
n=1

M−11∑
m=0

cn,mψn,m(xi)(4.6)

The xi are obtain by using the following formula xi =
i−0.5
2k−1M

, i = 1, 2, 3,

..., 2k−1M − 10. The combination of equations (4.5) and (4.6) form the linear
system of 2k−1M linear equations. The solution of this linear system of equations
determine the unknown coefficients ci,j .

The same procedure can be repeated for other fractional boundary value
problems of any order.

5. Method implementation

Example 5.1. Consider the following fractional order nonlinear boundary value
problem

dα

dxα
y(x) =

d3

dx3
y(x) + 2exy2, 0 ≤ x ≤ 1, 9 < α ≤ 10.

Subject to the boundary conditions y(0) = 1, y(1) = 1
e , y

(2)(1) = 1
e , y

(4)(0) =

1, y(4)(1) = 1
e , y

(6)(0) = 1, y(6)(1) = 1
e , y

(8)(0) = 1, y(8)(1) = 1
e . The exact solu-

tion of this problem is y(x) = e−x.

Table 1 shows the comparison of the absolute error between exact solutions
and approximate solutions for α = 10, when M = 20 and k = 1. Here yexact
and y10 represent the exact solution and approximate solution of the problem at
α = 10. The numerical results given by the present method are also compared
with (OHAM) solutions. From the table it is obvious that the results of the
current method are far better than (OHAM) method.

Table 2 displays the approximate solutions y9.25, y9.5, y9.75 and y9.95 for differ-
ent values of α = 9.25, 9.50, 9.75 and 9.95 respectively. Error(y9.25), Error(y9.5),
Error(y9.75) and Error(y10) are the errors obtain for different values of α =
9.25, 9.5, 9.75 and 9.95 respectively, comparing with the exact solutions of the
given problem. The error associated with different fractional order differential
equations shows that the error in each fractional order decreases as the order of
the fractional order differential equation approaches to integer order. This phe-
nomena shows the consistency and reliability of the fractional order solutions.
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Table 1: Numerical results for Example 5.1 for α = 10
xi yexact y10 Error Error

(CWM) (CWM) (OHAM)

0.0 1.000000000000000000 0.999999999999999999 1.00E-21 1.10E-11

0.1 0.904837418035959573 0.904837418035960081 5.07E-16 8.39E-7

0.2 0.81873075307798185 0.818730753077982824 9.65E-16 1.59E-6

0.3 0.74081822068171786 0.740818220681719194 1.32E-15 2.19E-6

0.4 0.670320046035639300 0.670320046035640860 1.55E-15 2.58E-6

0.5 0.606530659712633423 0.606530659712635061 1.63E-15 2.71E-6

0.6 0.548811636094026432 0.54881163609402798 1.56E-15 2.58E-6

0.7 0.496585303791409514 0.496585303791410837 1.32E-15 2.20E-6

0.8 0.449328964117221591 0.449328964117222551 9.59E-16 1.60E-6

0.9 0.406569659740599111 0.406569659740599616 5.04E-16 8.41E-7

1.0 0.367879441171442321 0.367879441171442321 4.00E-16 4.85E-11

Table 2: Numerical results for Example 5.1 for different fractional order
xi y9.25 Error y9.5 Error y9.75 Error y9.95 Error

(y9.25) (y9.5) (y9.75) (y9.95)
0.0 1.000000 0.0 0.9999999 2.0E-20 0.99999999 3.0E-20 1.00000000 0.0
0.1 0.904839 2.05E-6 0.9048383 8.97E-7 0.90483767 2.59E-7 0.90483744 2.80E-8
0.2 0.818734 3.91E-6 0.8187324 1.70E-6 0.81873124 4.94E-7 0.81873080 5.34E-8
0.3 0.740823 5.39E-6 0.7408205 2.35E-6 0.74081890 6.80E-7 0.74081829 7.36E-8
0.4 0.670326 6.34E-6 0.6703228 2.76E-6 0.67032084 8.01E-7 0.67032013 8.68E-8
0.5 0.606537 6.67E-6 0.6065337 2.91E-6 0.60653150 8.43E-7 0.60653075 9.15E-8
0.6 0.548817 6.35E-6 0.5488144 2.77E-6 0.54881243 8.03E-7 0.54881172 8.72E-8
0.7 0.496590 5.40E-6 0.4965876 2.35E-6 0.49658530 6.84E-7 0.49658537 7.43E-8
0.8 0.449333 3.92E-6 0.4493306 1.17E-6 0.44932946 4.97E-7 0.44932896 5.41E-8
0.9 0.406571 2.06E-6 0.4065705 9.01E-7 0.40656992 2.61E-7 0.40656965 2.84E-8
1.0 0.367879 1.0E-20 0.3678794 4.0E-20 0.36787944 1.0E-20 0.36787944 5.0E-20

Example 5.2. Consider the following fractional order nonlinear boundary value
problem

dα

dxα
y(x) = y(x)− 15ex − 10xex, 0 ≤ x ≤ 1, 4 < α ≤ 5.

Subject to the boundary conditions

y(0) = 0, y(1) = 0, y′(0) = 1, y′(1) = −e, y′′(0) = 0.

The analytic solution of this problem is y(x) = x(1− x)ex.

Table 3 illustrates the comparison of the absolute error between the present
method and other numerical methods such as (MOHPM), (OHAM) and (VIM).
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Figure 1: The solution graph, of example 5.1 for different fractional order α =
10, 9.95, 9.75, 9.5, 9.25

Table 3: Numerical results for Example 5.2 for α = 5
xi yexact y5 Error Error Error Error

(CWM) (CWM) (MOHAM) (OHAM) (VIM)

0.0 0.000000000000000000 0.000000000000000002 2.53E-20 0.0000 0.00000 0.0000

0.1 0.099465382626808286 0.099465382626808625 3.39E-16 5.4E-14 9.00E-11 1.0E-9

0.2 0.195424441305627173 0.195424441305628649 1.47E-15 3.3E-13 4.00E-10 2.0E-9

0.3 0.283470349590960651 0.283470349590963518 2.86E-15 1.0E-13 5.00E-10 1.0E-9

0.4 0.358037927433904876 0.358037927433908857 3.98E-15 1.9E-12 2.00E-11 2.0E-9

0.5 0.412180317675032036 0.412180317675036519 4.48E-15 2.7E-12 1.00E-9 3.1E-8

0.6 0.437308512093722153 0.437308512093726389 4.23E-15 3.0E-12 2.00E-9 3.7E-8

0.7 0.422888068568800069 0.422888068568803370 3.30E-15 2.1E-12 2.00E-9 4.1E-8

0.8 0.356086548558794816 0.356086548558796758 1.94E-15 3.7E-12 1.00E-9 3.1E-8

0.9 0.221364280004125469 0.221364280004126090 6.20E-16 -3.2E-11 4.0E-10 1.4E-8

1.0 0.000000000000000000 0.000000000000000004 4.58E-20 -1.6E-10 0.00000 0.0000

The results reveal that the present method has higher accuracy than any other
method given the table. Here we have used M = 17 and k = 1, to obtain these
results given in Table 3. yexact and y5 are the exact and approximate solution
of example 5.2 at α = 5. Error y5, Error (MOHPM), Error (OHAM ) and
Error (VIM) are the corresponding errors in the present method, (MOHPM),
(OHAM) and (VIM) respectively.
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Table 4: Numerical results for Example 5.2 for different fractional order
xi y4.25 Error y4.5 Error y4.75 Error y4.95 Error

(y4.25) (y4.5) (y4.75) (y4.95)

0.0 0.999999 1.6E-19 0.0000000 7.2E-21 0.00000000 8.5E-21 0.00000000 1.87E-9

0.1 0.099502 4.54E-6 0.0994459 1.94E-5 0.09945966 4.08E-5 0.09943453 3.08E-5

0.2 0.195751 2.50E-5 0.1953345 7.91E-5 0. 19534526 2.50E-4 0.19522367 2.00E-4

0.3 0.284518 5.81E-5 0.2833612 1.09E-4 0.28336120 6.29E-4 0.28347034 5.34E-4

0.4 0.360170 9.26E-5 0.3579946 4.32E-5 0.35799467 1.07E-3 0.35707949 9.58E-4

0.5 0.415450 1.16E-4 0.4123023 1.22E-4 0.41230239 1.43E-3 0.41084175 1.33E-3

0.6 0.441314 1.20E-4 0.4376282 3.19E-4 0.43762826 1.56E-3 0.43578474 152E-3

0.7 0.426794 1.01E-4 0.4233281 4.40E-4 0.42332813 1.37E-3 0.42148765 1.40E-3

0.8 0.358885 6.39E-5 0.3564752 3.88E-4 0.35647526 9.04E-4 0.35513104 9.55E-3

0.9 0.222431 2.17E-5 0.2213553 1.71E-4 0.22153538 3.19E-4 0.22101464 3.49E-4

1.0 0.000000 0.0000 0.0000000 3.7E-20 0.00000000 2.2E-19 0.00000000 1.8E-9

Table 4 represents the solution of fractional order differential equations for differ-
ent values of α = 4.25, 4.50, 4.75 and 4.95. The solutions y4.25, y4.5, y4.75 and y4.95
and Error (y4.25), Error (y4.5), Error (y4.75) and Error (y4.95) are the correspond-
ing errors of fractional order differential equations at α = 4.25, 4.50, 4.75, 4.95
respectively.

Figure 2: The exact solution is represented by y(exact), while y5, y4.95, y4.75 and
y4.5 show (CWM) solutions at α = 5, 4.95, 4.75 and 4.5 respectively.

Example 5.3. Consider the following fractional order nonlinear boundary value
problem

dα

dxα
y(x)− y2e−x = 0, 0 ≤ x ≤ 1, 4 < α ≤ 5.
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Subject to the boundary conditions

y(0) = 1, y(1) = e, y′(0) = 1, y′(1) = e, y′′(0) = 1,

The exact solution of this problem is y(x) = ex.

Table 5: Numerical results for Example 5.3 for α = 5
xi yexact y5 Error Error Error Error

(CWM) (CWM) (MOHPM) (OHAM) (VIM)

0.0 1.000000000000000000 1.0000000000000000001 1.00E-19 0.00000 0.000000 0.0000

0.1 1.1051709180756476248 1.1051709180756476237 1.10E-18 3.1E-15 1.9E-10 -8.0E-3

0.2 1.2214027581601698339 1.2214027581601698286 5.30E-18 1.9E-14 4.00E-9 -1.2E-3

0.3 1.3498588075760031040 1.3498588075760030936 1.04E-17 5.4E-14 5.00E-9 -5.0E-3

0.4 1.4918246976412703178 1.4918246976412703033 1.45E-17 1.0E-13 2.00E-9 3.0E-3

0.5 1.6487212707001281468 1.6487212707001281305 1.63E-17 1.4E-13 1.00E-9 8.0E-3

0.6 1.8221188003905089749 1.8221188003905089595 1.54E-17 1.6E-13 2.00E-8 6.0E-3

0.7 2.0137527074704765216 2.0137527074704765096 1.20E-17 1.5E-13 2.00E-8 1.0E-4

0.8 2.2255409284924676046 2.2255409284924675976 7.00E-18 9.9E-14 1.00E-9 9.0E-3

0.9 2.4596031111569496638 2.4596031111569496617 2.10E-18 1.1E-14 4.00E-9 -9.0E-3

1.0 2.7182818284590452354 2.7182818284590452354 0.000000 1.0E-13 0.00000 0.0000

In Table 5, we have presented yexact the exact solution and y5 the approximate
solution for example 5.3. Here we useM = 17 and k = 1 for the implementation
of the current method. The accuracy is compared with other methods such as
(MOHPM), (OHAM) and (VIM). This table reveals that the present method
have the highest degree of accuracy than other methods. The exact and approx-
imate solutions at α = 5 are represented by yexact and y5 respectively. Error
(y5), Error (MOHPM), Error (OHAM) and Error (VIM) are the corresponding
errors in the present method, (MOHPM), (OHAM) and (VIM) respectively.

Table 6: Numerical results for Example 5.3 for different fractional order
xi y4.25 Error y4.5 Error y4.75 Error y4.95 Error

(y4.25) (y4.5) (y4.75) (y4.95)

0.0 0.999999 1.6E-19 0.0000000 1.0E-19 0.00000000 1.0E-19 0.00000000 1.0E-19

0.1 1.105175 4.54E-6 1.1051747 3.84E-6 1.10517300 2.08E-6 1.10517133 4.20E-7

0.2 1.221427 2.50E-5 1.2214251 2.23E-5 1.22141525 1.24E-5 1.22140531 2.55E-6

0.3 1.349916 5.80E-5 1.3499128 1.09E-5 1.34988964 3.08E-5 1.34986520 6.39E-6

0.4 1.491917 9.26E-5 1.4919134 8.87E-5 1.49187625 5.15E-5 1.49183549 1.08E-5

0.5 1.648837 1.16E-4 1.6488356 1.14E-4 1.64872127 6.74E-5 1.64873551 1.42E-5

0.6 1.822239 1.20E-4 1.8222396 1.20E-4 1.82219088 7.20E-5 1.82213415 153E-5

0.7 2.013854 1.01E-4 2.0138561 1.03E-4 2.01381513 6.24E-5 2.01376610 1.33E-5

0.8 2.225604 6.39E-5 2.2256069 6.60E-5 2.22558116 4.02E-5 2.22554961 8.68E-6

0.9 2.459624 2.17E-5 2.4596257 2.26E-5 2.45961705 1.39E-5 2.45960661 3.02E-6

1.0 2.718281 0.0000 2.7182818 2.0E-19 2.71628182 1.0E-19 2.71828182 1.0E-19
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Table 6 represents the solution of fractional order differential equations for dif-
ferent values of α = 4.25, 4.5, 4.75, 4.95. The solutions y4.25, y4.5, y4.75 and y4.95
and Error (y4.25), Error (y4.5), Error (y4.75) and Error (y4.95) the correspond-
ing errors of fractional order differential equations at α = 4.25, 4.5, 4.75, 4.95
respectively.

Figure 3: The exact solution yexact, while y5, y4.95, y4.75, y4.5 and y4.25 show
(CWM) solutions α = 5, 4.95, 4.75, 4.5 and 4.25 respectively.

6. Conclusion

In this research paper, we have attempted to find the numerical solutions of
fractional order boundary value problems by using Chebyshev Wavelet method.
Three problems of different fractional order α such that 9 < α ≤ 10 and 4 <
α ≤ 5 were considered for numerical treatment. The numerical simulation has
shown that (CWM) has better accuracy than other methods which are under
discussion.
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Abstract. In this paper zero suffix method with element-wise operations of fuzzy
numbers is proposed to solve fully fuzzy transportation problem. The proposed method
assures the optimality, feasibility and positivity conditions of the fuzzy solution. The
proposed method is easy to understand since it follows zero suffix algorithm and easy to
compute since it considers the fuzzy numbers as ordered pairs as it uses the element-wise
operations.

Keywords: fuzzy number, triangular fuzzy number, trapezoidal fuzzy number, fuzzy
arithmetic operations, fuzzy transportation problems, fuzzy optimal solution.

1. Introduction

Transportation problem (TP) plays predominant role in supply chain manage-
ment for reducing the transporting cost. The primary task of the algorithm is to
optimize the transportation cost of commodity while transporting the commod-
ity from sources to sinks. Hitchcock [20] constructed the transportation prob-
lem. Dantzig and Thapa [22] applied the simplex method to solve transportation
problem. Charnes and Cooper [21] developed the stepping stone method as an
alternative to the simplex method. The decision variables in the transporta-

∗. Corresponding author
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tion problem such as availability, requirement and the transportation cost per
unit should be crisp to get a solution. Due to some unmanageable environment,
these decision variables may not be precise. The unpredictability in determining
the data may be designed using fuzzy variables which was introduced by Zadeh
[1, 2] in the year 1965. If the variables are represented by fuzzy numbers in a
TP, then the TP is called as a Fully Fuzzy TP or TP with fuzzy environment.
Several authors proposed several approaches to solve a fuzzy TP. Chanas et al.,
[4, 5] applied parametric programming technique to solve fuzzy TP and also
solved the given problem by converting the given problem into a bi-criterial TP
with a crisp objective function. Liu Kao [3] used the extension principle for
solving fuzzy TP. Verma et al., [10] solved the fuzzy TP with hyperbolic and
exponential membership function by appling the fuzzy programming technique.
Liang et al., [23], [11] proposed possibilistic linear programming technique for
fuzzy TP and solved interactive multi objective transportation planning decision
problems by using fuzzy linear programming. Nagoorgani et al., [6] approached
a two stage cost minimizing fuzzy transportation problem by parametric tech-
nique. Pandian et al., [7] proposed fuzzy zero point method to solve fuzzy TP.
Amit Kumar et al., [14] fuzzified least cost method, north west corner rule and
VAM to solve fuzzy TP with generalized fuzzy numbers. Many authors [24],
[25], [26], [27] used zero suffix method for solving transportation problem with
crisp values and fuzzy values. All the existing methods transform the given
problem in to crisp problem then implemented the zero suffix method. In this
paper fuzzified version of zero suffix method and to order the fuzzy numbers
Yager’s ranking technique [8] is used. In the proposed method, the fuzzy zero
suffix method is applied with element-wise addition, subtraction [9], [17], [18]
and element-wise division to get the solution. In this paper, Section 2 deals
with fuzzy preliminaries followed by Section 3 in which the proposed algorithm
is given in detail. In Section 4, the implementation of the algorithm through
example is explained. Finally,the conclusion is given in Section 5.

2. Preliminaries

Definition 1. A fuzzy set can be obtained by mapping each possible individual
in the universe of discourse to a value represented by its grade of membership.

Definition 2. A fuzzy number Ã is a fuzzy set whose membership function is
piecewise continuous, convex and normal.

Definition 3. A fuzzy number Ã = (a, b, c) with membership function of the
form

µÃ(x) =



x− a

b− a
, a ≤ x ≤ b

1, x = b
c− x

c− b
, b ≤ x ≤ c

0, otherwise
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is called a triangular fuzzy number and a fuzzy number Ã = (a, b, c, d) with
membership function of the form

µÃ(x) =



x− a

b− a
, a ≤ x ≤ b

1, b ≤ x ≤ c
d− x

d− c
, c ≤ x ≤ d

0, otherwise

is called a trapezoidal fuzzy number.

Definition 4. Fuzzy Addition:

(a1, b1, c1, d1) + (a2, b2, c2, d2) = (a1 + a2, b1 + b2, c1 + c2, d1 + d2)

(a1, b1, c1) + (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2)

Fuzzy Subtraction:

(a1, b1, c1, d1) − (a2, b2, c2, d2) = (a1 − d2, b1 − c2, c1 − b2, d1 − a2)

(a1, b1, c1) − (a2, b2, c2) = (a1 − c2, b1 − b2, c1 − a2)

Definition 5. Element-wise Addition:
(a1, b1, c1, d1) + (a2, b2, c2, d2) = (a1 + a2, b1 + b2, c1 + c2, d1 + d2)
(a1, b1, c1) + (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2)
Element-wise Subtraction:
(a1, b1, c1, d1) − (a2, b2, c2, d2) = (a1 − a2, b1 − b2, c1 − c2, d1 − d2)
(a1, b1, c1) − (a2, b2, c2) = (a1 − a2, b1 − b2, c1 − c2)
Element-wise Multiplication:
(a1, b1, c1, d1) ∗ (a2, b2, c2, d2) = (a1 ∗ a2, b1 ∗ b2, c1 ∗ c2, d1 ∗ d2)
(a1, b1, c1) ∗ (a2, b2, c2) = (a1 ∗ a2, b1 ∗ b2, c1 ∗ c2)
Element-wise Division:
(a1, b1, c1, d1)/(a2, b2, c2, d2) = (a1/a2, b1/b2, c1/c2, d1/d2)
(a1, b1, c1)/(a2, b2, c2) = (a1/a2, b1/b2, c1/c2)

Definition 6. The Yager’s ranking of a fuzzy number ã is given by

Y (ã) =

∫ 1

0
(0.5)(aαU + aαL)dα,

where aαL = Lower α- level cut and aαU = Upper α- level cut.If Y (s̃) ≤ Y (̃i) then
s̃ ≤ ĩ.
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Definition 7. A Fully Fuzzy transportation problem is defined by

min Z̃ ≈
m∑
i=1

n∑
j=1

c̃ij x̃ij

subject to
n∑
j=1

x̃ij ≈ s̃i for i = 1, 2, 3 . . .m,

m∑
i=1

x̃ij ≈ d̃j for j = 1, 2, 3 . . . n.

for all x̃ij � 0̃, where i = 1, 2, 3 . . .m and j = 1, 2, 3 . . . n.

Here x̃ij is the number of units to be transported from ith source to jth desti-
nation, c̃ij is the cost of transporting one unit from ith source to jth destination,
s̃i is the number of units available in the ith source and d̃j is the number of units
required in the jth destination.

The matrix form of fuzzy transportation problem is given as follows

A B C · · · E Supply

1

c̃11 c̃12 c̃13 · · · c̃1n

s̃1

2

c̃21 c̃22 c̃23 · · · c̃2n

s̃2

3

c̃31 c̃32 c̃33 · · · c̃3n

s̃3

· · ·

· · · · · · · · · · · · · · ·

· · ·

m

c̃m1 c̃m2 c̃m3 · · · c̃mn

s̃m

Demand d̃1 d̃2 d̃3 · · · d̃n

3. Fuzzy zero suffix method

Step 1. Construct the fuzzy transportation table for the given fuzzy transportation
problem and then,convert it into a balanced one, if it is not.Subtract each
row entries of the fuzzy transportation table from the row minimum. Do
the same for columns also.

Step 2. In the reduced cost matrix there will be at least one fuzzy zero in each row
and column. Find fuzzy suffix value S̃ of all the fuzzy zeros in the reduced
cost matrix by the ratio of addition fuzzy costs of nearest adjacent sides
of fuzzy zeros which are greater than fuzzy zero to the number of fuzzy
values added. Here we should take the denominator as fuzzy values. i.e.,
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if the number of values is 3, we should take that as fuzzy number (3, 3, 3).
S̃ = Addition of the fuzzy costs of adjacent sides of fuzzy zero which are
greater than fuzzy zero/number of fuzzy values added.

Step 3. Select the maximum of S̃, and supply to that fuzzy demand corresponding
to that cell. If it has more equal fuzzy values then select any one and supply
to that fuzzy demand maximum possible.

Step 4. After the above step, the exhausted fuzzy demands or fuzzy supplies to
be trimmed. The resultant fuzzy matrix posses at least one fuzzy zero in
each row and column else repeat Step 1.

Step 5. Repeat Step 3 to Step 4 until the optimal solution is obtained.

4. Numerical examples

4.1 Example
Consider the fully fuzzy transportation problem with triangular numbers given
as follows

Solution:
Since the total supply (4, 15, 27) is equal to the total demand (4, 15, 27), this is
a balanced fuzzy TP.

A B C D Supply

1 (-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4) (0,3,6)

2 (4 9 16) (4 8 12) (2,5,8) (1,4,7) (2,7,13)

3 (2,7,13) (0,5,10) (0,5,10) (4,8,12) (2,5,8)

Demand (1,4,7) (0,3,5) (1,4,7) (2,4,8) (4,15,27)

The given transportation problem rewritten as assignment problem.

A B C D

1 (-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4)

2 (4,9,16) (4,8,12) (2,5,8) (1,4,7)

3 (2,7,13) (0,5,10) (0,5,10) (4,8,12)

The fuzzy costs and fuzzy units of fuzzy transportation table are given with
their crisp values in the following table.

A B C D

1 (-2,3,8)(3) (-2,3,8)(3) (-2,3,8)(3) (-1,1,4)(1.33)

2 (4,9,16)(9.667) (4,8,12)(8) (2,5,8)(5) (1,4,7)(4)

3 (2,7,13)(7.33) (0,5,10)(5) (0,5,10)(5) (4,8,12)(8)
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Choose the smallest fuzzy number in each and every row and subtract it with
the other elements in the corresponding row. Repeat the same for the columns
also. It is noted that the reduced matrix has at least one fuzzy zero in each row
and column. The reduced matrix is given in

A B C D

1 (0,0,0) (-1,2,4) (-1,2,4) (0,0,0)

2 (4,3,5) (3,4,5 ) (1,1,1 ) (0,0,0)

3 (3,0,-1) (0,0,0) (0,0,0 (4,3,2)

The fuzzy zeros are in the position (1, 1), (1, 4), (2, 4), (3, 2), (3, 3) of the reduced
matrix. If we take the fuzzy zero in the (1, 1), the adjacent values (−1, 2, 4)
and (4, 3, 5) which are greater than fuzzy zero. So the fuzzy suffix value for

that position (1, 1) is given by ((−1,2,4)+(4,3,5))
(2,2,2) = (1.5, 2.5, 4.5), where the fuzzy

number (2, 2, 2) is the fuzzy value of the number of adjacent values which are
greater than fuzzy zero added. Similarly find the fuzzy suffix value for all other
fuzzy zeros. The values are given below : for the position (1, 4) is (−1, 2, 4),
for the position (2, 4) is (2.5, 2, 1.5), for the position (3, 2) is (3, 2, 2) and for
the position (3, 3) is (2.5, 2, 1.5). Out of all these fuzzy suffix value, the fuzzy
suffix value of fuzzy zero in the position (1, 1) is maximum. Therefore allocate
the corresponding fuzzy supply or fuzzy demand whichever is less to that (1, 1)
position. From the problem it is noted that in that position the corresponding
fuzzy supply (0, 3, 6) is minimum. So allocate the corresponding fuzzy supply
(0, 3, 6) to that position and delete the corresponding row. This is given as fol-
lows.

A B C D Supply

1

(0,3,6)

(-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4)

2 (4 9 16) (4 8 12) (2,5,8) (1,4,7) (2,7,13)

3 (2,7,13) (0,5,10) (0,5,10) (4,8,12) (2,5,8)

Demand (1,1,1) (0,3,5) (1,4,7) (2,4,8) (4,15,27)

After deleting the first row the reduced matrix is given as follows.

A B C D

2 (4,3,5) (3,4,5) (1,1,1) (0,0,0)

3 (3,0,-1) (0,0,0) (0,0,0) (4,3,2)

Again apply the first step the resultant reduced matrix is given as follows.

A B C D

2 (1,3,6) (3,4,5 ) (1,1,1) (0,0,0)

3 (0,0,0) (0,0,0) (0,0,0) (4,3,2)
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The fuzzy zeros are in the position (2, 4), (3, 1), (3, 2), (3, 3) of the reduced ma-
trix. If we take the fuzzy zero in the (2, 4), the adjacent values (1, 1, 1) and
(4, 3, 2) which are greater than fuzzy zero. So the fuzzy suffix value for that

position (2, 4) is given by ((−1,1,1)+(4,3,2))
(2,2,2) = (2.5, 2, 1.5), where the fuzzy number

(2, 2, 2) is the fuzzy value of the number of adjacent values which are greater
than fuzzy zero added. Similarly find the fuzzy suffix value for all other fuzzy
zeros. The values are given below : for the position (3, 1) is (1, 3, 6), for the
position (3, 2) is (3, 4, 5) and for the position (3, 3) is (2.5, 2, 1.5). Out of all
these fuzzy suffix value, the fuzzy suffix value of fuzzy zero in the position (3, 2)
is maximum. Therefore allocate the corresponding fuzzy supply or demand
whichever is less to that (3, 2) position. From the problem it is noted that in
that position the corresponding fuzzy demand (0, 3, 5) is minimum. So allocate
the corresponding fuzzy demand (0, 3, 5) to that position and delete the corre-
sponding column. The matrix is given as follows.

A B C D Supply

1

(0,3,6)

(-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4)

2 (4 9 16) (4 8 12) (2,5,8) (1,4,7) (2,7,13)

3 (2,7,13)

(0,3,5)

(0,5,10) (0,5,10) (4,8,12) (2,2,3)

Demand (1,1,1) (1,4,7) (2,4,8) (4,15,27)

After deleting the second column, the reduced matrix is given as follows

A C D

2 (1,3,6) (1,1,1 ) (0,0,0)

3 (0,0,0) (0,0,0) (4,3,2)

The fuzzy zeros are in the position (2, 4), (3, 1), (3, 3) of the reduced matrix. If
we take the fuzzy zero in the (2, 4), the adjacent values (1, 1, 1) and (4, 3, 2)
which are greater than fuzzy zero. So the fuzzy suffix value for that position
(2, 4) is given by ((−1,1,1)+(4,3,2))

(2,2,2) = (2.5, 2, 1.5), where the fuzzy number (2, 2, 2)
is the fuzzy value of the number of adjacent values which are greater than fuzzy
zero added. Similarly find the suffix value for all other fuzzy zeros. The values
are given below : for the position (3, 1) is (1, 3, 6), and for the position (3, 3) is
(2.5, 2, 1.5). Out of all these fuzzy suffix value, the fuzzy suffix value of fuzzy
zero in the position (3, 1) is maximum. Therefore allocate the corresponding
fuzzy supply or demand whichever is less to that (3, 1) position. From the prob-
lem it is noted that in that position the corresponding fuzzy demand (1, 1, 1) is
minimum. So allocate the corresponding fuzzy demand (1, 1, 1) to that position
and delete the corresponding column. This is given in the following table
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A B C D Supply

1

(0,3,6)

(-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4)

2 (4,9,16) (4 8 12) (2,5,8) (1,4,7) (2,7,13)

3

(1,1,1)

(2,7,13)

(0,3,5)

(0,5,10) (0,5,10) (4,8,12) (1,1,2)

Demand (1,4,7) (2,4,8) (4,15,27)

After deleting the first column , the reduced matrix is given in the following
table.

C D

2 (1,1,1 ) (0,0,0)

3 (0,0,0) (4,3,2)

The fuzzy zeros are in the position (2, 4), (3, 3) of the reduced matrix. If we
take the fuzzy zero in the (2, 4), the adjacent values (1, 1, 1) and (4, 3, 2) which
are greater than fuzzy zero. So the fuzzy suffix value for that position (2, 4)

is given by ((−1,1,1)+(4,3,2))
(2,2,2) = (2.5, 2, 1.5), where the fuzzy number (2, 2, 2) is

the fuzzy value of the number of adjacent values which are greater than fuzzy
zero added. Similarly find the fuzzy suffix value for all other fuzzy zeros. The
values are given below : for the position (3, 3) is (2.5, 2, 1.5). Both the fuzzy
suffix values are same, So we can take any position for allocation. Here we
choose (2, 4) for allocation. Therefore allocate the corresponding fuzzy supply
or demand whichever is less to that (2, 4) position. From the problem it is noted
that in that position the corresponding fuzzy demand (2, 4, 8) is minimum. So
allocate the corresponding fuzzy demand (2, 4, 8) to that position and delete the
corresponding column. This is given as follows

A B C D Supply

1

(0,3,6)

(-2,3,8) (-2,3,8) (-2,3,8) (-1,1,4)

2 (4,9,16) (4 8 12) (2,5,8)

(2,4,8)

(1,4,7) (0,3,5)

3

(1,1,1)

(2,7,13)

(0,3,5)

(0,5,10) (0,5,10) (4,8,12) (1,1,2)

Demand (1,4,7) (4,15,27)

After deleting the fourth column , the reduced matrix is given as follows

C

2 (1,1,1 )

3 (0,0,0)

Applying the above mentioned procedure we get the optimal table which is given
as follows.
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A B C D Supply

1 (-2,3,8) (-2,3,8) (-2,3,8)

(0,3,6)

(-1,1,4) (0,3,6)

2

(-1,2,4)

(4,9,16) (4,8,12)

(1,4,7)

(2,5,8)

(2,1,2)

(1,4,7) (2,7,13)

3

(2,2,3)

(2,7,13)

(0,3,5)

(0,5,10) (0,5,10) (4,8,12) (2,5 ,8)

Demand (1,4,7) (0,3,5) (1,4,7) (2,4,8) (4,15,27)

Fuzzy T.C ≈ (-2,3,8) * (0,3,6) + (2,5,8) * (0,3,5) + (0,5,10) * (0,3,5) +
(0,5,10 ) * (1,1,2) + (1,4,7) * (2,4,8) + (2,7,13) * (1,1,1)≈ (4,67,227)

The membership function for the obtained result is

4 67 227 x

µ

0

1

• According to the decision maker the minimum transportation cost will lie
between 4 and 227

• The overall level of satisfaction of the decision maker about the statement
that the minimum transportation cost will be 67 dollars is 100 percent.

• The overall level of satisfaction of the decision maker for the remaining
values of minimum transportation cost can be obtained as follows:Let x0
represents the minimum transportation cost then the overall level of sat-
isfaction of the decision maker for x0 is µÃ(x0) × 100
where

µÃ(x) =



x− 4

63
, 4 ≤ x ≤ 67

1, x = 67
227 − x

160
, 67 ≤ x ≤ 227

0, otherwise.

5. Conclusions

In this paper, an efficient method called Fuzzy zero suffix algorithm is proposed
to solve fully fuzzy transportation problem with element-wise subtraction and
element-wise division. The solution obtained by using the fuzzy zero suffix
method satisfies the feasibility, optimality conditions and the positive values in
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all the allocated cells. An advantage of the proposed method is that it follows
the zero suffix method which is easy to understand and to apply. It can also
be used to solve special type of fuzzy transportation problem like unbalanced
transportation problems and transportation problem with Degeneracy.
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Pricing European call options with default risk under a
jump-diffusion model via FFT transform
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Abstract. This paper considers the pricing of European call options with default risk
within the framework of reduced-form model. We model the stock price and the default
intensity by two dependent jump-diffusion models with common jumps. By using a
Girsanov theorem, we give the explicit expression for the Fourier transform of the price
of call options with default risk.

Keywords: vulnerable option, reduced-form model, jump-diffusion, FFT

1. Introduction

Vulnerable option is a kind of option with credit risk. Credit risk is the risk that
the counterparty to a financial contract will default prior to the expiration of the
contract and will not make all the payments required by the contract. There are
two primary approaches for pricing credit derivatives, the structural approach
and the reduced-form approach. Structural models, initially proposed by Black
and Scholes (1973) and Merton (1974), could give an intuitive understanding for
the credit risk by specifying a firm value process. Reduced-form models, intro-
duced by Jarrow and Turnbull (1995), Duffie and Singleton (1999), and others,
focus directly on the modeling of the default probability. This methodology does
not intend to explain the default of a firm by means of an economic construction.
Instead, the time of default is defined as the first jump time of a point process.
Comparing with structural models, reduced-form models are more flexible and
tractable in the real market. For more information on reduced-form models, we
refer the interested reader to Bielecki and Rutkowski (2004) and Dong et al.
(2014).

Extending the corporate bond default model of Merton (1974), Johnson and
Stulz (1987) firstly proposed the conception of vulnerable option and investi-
gated the option pricing with credit risk based on a structural model. Hull and
White (1995) derived the price of vulnerable option by adopting a reduced-form

∗. Corresponding author
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approach under the assumption that the underlying asset and the counterparty
asset were independent of each other. Extending Hull and White (1995), Klein
(1996) relaxed the assumption of independence condition and deduced option
pricing via a martingale method. By generalizing the results of Klein (1996),
Klein and Inglis (2001) considered the stochastic default boundary which de-
pends on options and counterparty debts for the discussion of option pricing.
Wu and Dong (2019) investigated the pricing of European vulnerable option
under a correlated diffusion process.

Most of the literature on vulnerable options assume that the dynamics of
the assets follow the log-normal diffusion process. However, this assumption
ignores sudden shocks in price due to the arrival of important new information.
The purpose of this study is to provide a new pricing model for vulnerable
options, where the dynamics of the underlying asset and the default intensity
follow jump-diffusion processes with common jumps. The paper is organized as
follows. In Section 2, we present the pricing model. In Section 3, we derive the
price of the vulnerable options. Section 4 presents some numerical analysis by
using FFT. Section 5 concludes.

2. The model

Consider a continuous-time model with a finite time horizon T = [0, T ] with
T <∞. Let {Ω,ℑ, {ℑt}0≤t≤T , Q} be a filtered complete probability space, where
Q is the risk neutral measure such that the discounted asset price processes
are martingales, and {ℑt}0≤t≤T is a filtration satisfying the usual conditions.
Throughout the paper, it is assumed that all random variables are well defined
on this probability space and ℑT−measurable.

Assume that the dynamics of the process Bt for the bank account are de-
scribed by

dBt = rtBtdt, B0 = 1,

where the interest rate rt is given by

drt = κ(θ − rt)dt+ σ1dW1(t).(2.1)

Here, κ > 0, θ > 0, σ1 > 0 are constants; {W1(t), t ≥ 0} is a standard Brownian
motion. From (2.1), we have∫ T

t
rsds = θ(T − t) + (rt − θ)D(t, T ) +

∫ T

t
σ1D(s, T )dW1(s),(2.2)

where D(t, T ) = 1−e−κ(T−t)

κ .
Let St be the value of the asset at time t. Let τ denote the default time

of the writer of the option with default intensity process λt. Suppose that the
dynamics of the stock price St and default intensity λt follow

dSt
St−

= (rt − (ρ1 + ρ2)ξ)dt+ σ2dW2(t) + d

(N1(t)+N2(t)∑
i=1

(eYi − 1)

)
,(2.3)
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and

dλt = a(b− λt)dt+ σ3dW3(t) + d

N1(t)+N3(t)∑
i=1

Zi,(2.4)

where a, b, σ2, σ3 are all positive constants; {W2(t), t ≥ 0} and {W3(t), t ≥ 0} are
two standard Brownian motions; {N1(t), t ≥ 0}, {N2(t), t ≥ 0} and {N3(t), t ≥
0} are three mutually independent Poisson processes with arrival rates ρ1, ρ2 and
ρ3, respectively; {Yi, i ≥ 1} is a sequence of independent identically distributed
random variables with common density function given by fy and ξ = E(eY1);
{Zi, i ≥ 1} is also a sequence of independent identically distributed random
variables with common density function given by fz. Moreover, we suppose
that {N1(t), t ≥ 0},{N2(t), t ≥ 0},{N3(t), t ≥ 0},{Zi, i ≥ 1} and {Yi, i ≥ 1} are
mutually independent. Finally, we assume that the covariance matrix of the
Brownian motion (W1(t),W2(t),W3(t)) is 1 ρ12 ρ13

ρ12 1 ρ23
ρ13 ρ23 1

 t

This model assumes that the firm value and the default intensity have common
jumps, which describe the sudden changes in stock prices and default intensity
due to the revealing of important new information which has a large effect on
them. Note that, the default intensity λt can take negative values with positive
probability. However, in practical applications, due to the low volatility, the
probability λt takes negative values can be considered negligible.

We now specify the information structure of our model. Let ℑt = Gt ∨ Ht,
where Gt = ℑst ∨ ℑrt ∨ ℑλt with ℑst = σ(Ss, s ≤ t),ℑrt = σ(rs, s ≤ t),ℑλt =
σ(λs, s ≤ t) and Ht = σ(1{τ≤s}, s ≤ t).

Let J(t) =
∑N1(t)+N3(t)

i=1 Zi. Then from (2.3) and (2.4), we can obtain

ST = Ste
∫ T
t (rs−(ρ1+ρ2)ξ− 1

2
σ2
2)ds+

∫ T
t σ2dW2(s)+

∑N1(T )+N2(T )

i=N1(t)+N2(t)
Yi ,(2.5)

and ∫ T

t
λsds = b(T − t) + (λt − b)D1(t, T ) +

∫ T

t
σ3D1(s, T )dW3(s)(2.6)

+

∫ T

t
D1(s, T )dJ(s),

where D1(t, T ) =
1−e−a(T−t)

a .

3. Pricing options with credit risk

In this section we consider the pricing of the European style option with credit
risk. Assume that the recovery rate is a constant ω. When the writer of the
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European option defaults, the payoff is given by ω times the payoff of the default-
free option at maturity. By risk-neutral pricing theorem, the valuation of the
vulnerable European call option at time t,with strike price K and maturity T
is given by

C(t, T,K) = E

[
e−

∫ T
t rsds

(
ω(ST −K)+1{τ≤T} + (ST −K)+1{τ>T}

)∣∣∣∣ℑt]
Then from Corollary 5.1.1 of Bielecki and Rutkowski (2004), we obtain the

following expression:

C(t, T,K) = ωE

[
e−

∫ T
t rsds(ST −K)+

∣∣∣∣Gt]
+(1− ω)1{τ>t}E

[
e−

∫ T
t (rs+λs)ds(ST −K)+

∣∣∣∣Gt]
.
= ωC1(t, T,K) + 1{τ>t}(1− ω)C2(t, T,K)

where

C1(t, T,K) = E

[
e−

∫ T
t rsds(ST −K)+|Gt

]
,

C2(t, T,K) = E

[
e−

∫ T
t (rs+λs)ds(ST −K)+|Gt

]
.

Since it is difficult to compute C1(t, T,K) and C2(t, T,K), we will investigate
the Fourier transform of the option price. We adopt the Fourier methods, in-
troduced in Carr and Madan (1999), to investigate the option price. Following
the notation in Carr and Madan (1999), we write k = ln(K). For a > 0, define

c(t, T, k) = eakC(t, T,K)
.
= ωc1(t, T, k) + 1{τ>t}(1− ω)c2(t, T, k),

where
c1(t, T, k) = eakC1(t, T,K), c2(t, T, k) = eakC2(t, T,K).

Define

ζ(u, t, T ) =

∫ +∞

−∞
eiukc(t, T, k)dk

.
= ωζ1(u, t, T ) + 1{τ>t}(1− ω)ζ2(u, t, T ),

where

ζ1(u, t, T ) =

∫ +∞

−∞
eiukc1(t, T, k)dk, ζ2(u, t, T ) =

∫ +∞

−∞
eiukc2(t, T, k)dk.

Proposition 3.1. For a > 0, we have

ζ1(u, t, T ) =
P (t, T )ηT (u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
,
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where

P (t, T ) = E

[
e−

∫ T
t rsds

∣∣∣∣ℑt] = exp(−rtD(t, T ) +A(t, T )),

with A(t, T ) = (θ − σ2
1

2κ2
)(D(t, T )− (T − t))− σ2

1
4κD

2(t, T ) , and

ηT (v, t, T ) = eiv(st+∧(t,T )−
∫ T
t ρ12σ1σ2D(u,T )du−

∫ T
t σ2

1D
2(u,T )du)

×e−
∫ T
t (

σ2
2v

2

2
+

σ2
1D

2(u,T )

2
+ivρ12σ1σ2D(u,T ))due(ρ1+ρ2)(T−t)(E[eivY1 ]−1),

with st = lnSt and ∧(t, T ) = θ(T − t)+(rt−θ)D(t, T )− (
σ2
2
2 +(ρ1+ρ2)ξ)(T − t).

Proof. In the presence of a stochastic interest rate, we will define the forward-
neutral measure QT equivalent to the risk-neutral measure Q by

dQT

dQ
=

P (T, T )

P (0, T )BT
=
e−

∫ T
0 rsds

P (0, T )
.

where P (t, T ) denotes the value at time t of a T -maturity zero coupon bond
whose face value is 1. It is well known that

P (t, T ) = exp(−rtD(t, T ) +A(t, T ))

and P (t, T ) satisfies

dP (t, T ) = rtP (t, T )dt− σ1D(t, T )P (t, T )dW1(t).

So, the Radon-Nikodym derivative is given by

dQT

dQ
= e−

∫ T
0 σ1D(t,T )dW1(t)− 1

2

∫ T
0 σ2

1D
2(t,T )dt.

Girsanov’s theorem implies that

W T
1 (t) =W1(t) +

∫ t

0
σ1D(u, T )du; W T

2 (t) =W2(t) +

∫ t

0
ρ12σ1D(u, T )du

are two standard Brownian motions under QT with the correlation coefficient
ρ12.

Therefore,

ST = St exp(∧(t, T ) +
∫ T

t
σ2dW

T
2 (u) +

∫ T

t
σ1D(u, T )dW T

1 (u)

−
∫ T

t
ρ12σ1σ2D(u, T )du−

∫ T

t
σ21D

2(u, T )du+

N1(T )+N2(T )∑
i=N1(t)+N2(t)

Yi).
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Moving to the forward measure yields

C1(t, T,K) = P (t, T )ET
[
(ST −K)+|Gt

]
.

In order to derive the formula for ζ1(u, t, T ), we first derive the expression for
the characteristic function of sT conditional on Gt. Let fT (s) be the density
function conditional on st under Q

T , then we have

ηT (v, t, T ) = ET

[
eivsT

∣∣∣∣Gt]
= eiv(st+∧(t,T )−

∫ T
t ρ12σ1σ2D(u,T )du−

∫ T
t σ2

1D
2(u,T )du)

×ET
[
e
iv(

∫ T
t σ2dWT

2 (u)+
∫ T
t σ1D(u,T )dWT

1 (u)+
∑N1(T )+N2(T )

j=N1(t)+N2(t)
Yj)
∣∣∣∣Gt]

= eiv(st+∧(t,T )−
∫ T
t ρ12σ1σ2D(u,T )du−

∫ T
t σ2

1D
2(u,T )du)

×e−
∫ T
t (

σ2
2v

2

2
+

σ2
1D

2(u,T )

2
+ivρ12σ1σ2D(u,T ))du × e(ρ1+ρ2)(T−t)(E[eivY1 ]−1)

Hence,

ζ1(u, t, T ) =

∫ +∞

−∞
eiukc1(t, T,K)dk

=

∫ +∞

−∞

∫ +∞

k
e(iu+a)kP (t, T )(es − ek)fT (s)dsdk

=
P (t, T )ηT (u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
.

Proposition 3.2. For a > 0, we have

ζ2(u, t, T ) =
P λ(t, T )ηλ(u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
,

where

P λ(t, T ) = e−(θ+b)(T−t)−(r(t)−θ)D(t,T )−(λ(t)−b)D1(t,T )

×e(ρ1+ρ3)
∫ T
t

∫+∞
−∞ (e−D1(u,T )−1)fz(z)dzdu

×e−
1
2

∫ T
t (σ2

1D
2(u,T )+2ρ13σ1σ3D(u,T )D1(u,T )+σ2

3D
2
1(u,T ))du

and

ηλ(v, t, T ) = eiv(st+∧(t,T )−
∫ T
t (ρ12σ2M1(u)+ρ13σ2M2(u)+σ1D(u,T )M1(u))du)

×e−
v2

2
σ2
2(T−t)−

∫ T
t

σ2
1
2
v2D(u,T )du+

∫ T
t ivσ1σ2D(u,T )du

×e
∫ T
t (ρλ1 (s)+ρ2)(E[eivY1 ]−1)ds
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with

M1(t) = σ1D(t, T ) + ρ13σ3D1(t, T ), M2(t) = σ3D1(t, T ) + ρ23σ1D(t, T ).

Proof. Define

dQλ

dQ
=

e−
∫ T
0 (λs+rs)ds

E[e−
∫ T
0 (λs+rs)ds]

From Eqs. (2.5)-(2.6) and some calculations, we can have

P λ(t, T ) = E

[
e−

∫ T
t (rs+λs)ds

∣∣∣∣Gt]
= e−(θ+b)(T−t)−(r(t)−θ)D(t,T )−(λ(t)−b)D1(t,T )

×e(ρ1+ρ3)
∫ T
t

∫+∞
−∞ (e−D1(u,T )−1)fz(z)dzdu

×e−
1
2

∫ T
t (σ2

1D
2(u,T )+2ρ13σ1σ3D(u,T )D1(u,T )+σ2

3D
2
1(u,T ))du.

Then

dQλ

dQ
= e−

∫ T
0 σ1D(u,T )dW1(u)−

∫ T
0 σ3D1(u,T )dW3(u)− 1

2

∫ T
0 σ2

1D
2(u,T )du

×e−
1
2

∫ T
0 σ2

3D
2
1(u,T )du−ρ13

∫ T
0 σ1σ3D(u,T )D1(u,T )du

×e−
∫ T
0 D1(u,T )dJ(u)−(ρ1+ρ3)

∫ T
0

∫+∞
−∞ (e−D1(u,T )−1)fZ(z)dzdu

and Girsanov’s theorem implies that

W λ
1 (t) =W1(t) +

∫ t

0
σ1D(u, T )du+

∫ t

0
ρ13σ3D1(u, T )du

and

W λ
3 (t) =W3(t) +

∫ t

0
σ3D1(u, T )du+

∫ t

0
ρ13σ1D(u, T )du

are standard Brownian motions under Qλ, and the intensity of the jump pro-
cess Nλ

1 (t) is given by ρλ1(t) = ρ1
∫ +∞
−∞ e−zD1(t,T )fZ(z)dz. Therefore, under the

measure Qλ,

ST = Ste
∧(t,T )+

∫ T
t σ2D(u,T )dWλ

2 (u)+
∫ T
t σ1D(u,T )dWλ

1 (u)−
∫ T
t ρ12σ2M1(u)du

×e
−

∫ T
t ρ23σ2M2(u)du−

∫ T
t σ1D(u,T )M1(u)du+

∑Nλ
1 (T )+N2(T )

j=Nλ
1 (t)+N2(t)

Yj
.

Similar to deriving ηT (v, t, T ), we have that the characteristic function of sT
under Qλ is given by

ηλ(v, t, T ) = eiv(st+∧(t,T )−
∫ T
t ρ12σ2M1(u)du−

∫ T
t ρ23σ2M2(u)du−

∫ T
t σ1D(u,T )M1(u)du)

×e−
v2

2
σ2
2(T−t)−

∫ T
t

σ2
1
2
v2D(u,T )du+

∫ T
t ivσ1σ2D(u,T )du

×e
∫ T
t (ρλ1 (s)+ρ2)(E[eivY1 ]−1)ds.
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Therefore,

ζ2(u, t, T ) =

∫ +∞

−∞
eiukc2(t, T,K)dk

= P λ(t, T )

∫ +∞

−∞

∫ s

−∞
e(iu+a)k(es − ek)fλ(s)dkds

=
P λ(t, T )ηλ(u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
,

where fλ(s) is the density function conditional of st under Q
λ.

From Propositions 3.1, 3.2, we can directly obtain the following result.

Corollary 3.1. For a > 0, we have

ζ(u, t, T ) = ωζ1(u, t, T ) + 1{τ>t}(1− ω)ζ2(u, t, T )

= ω
P (t, T )ηT (u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u

+1{τ>t}(1− ω)
P λ(t, T )ηλ(u− i(a+ 1), t, T )

a2 + a− u2 + i(2a+ 1)u
.

4. FFT for vulnerable European option pricing

In this section, we shall carry out some numerical calculations for the pricing
of options. An approach based on the fast Fourier transform (FFT) is widely
used to numerically evaluate a price of a European-style call option. The main
advantage of the FFT approach is that it computes the discrete Fourier trans-
form (DFT) faster than other approaches. For the details of the fast Fourier
transform, we refer to Carr and Madan (1999).

Let uj = η(j − 1). Following Carr and Madan (1999), an approximation for
C(0, T, k) is

C(0, T, k) ≈ e−ak

π

(
ω

N∑
j=1

e−iujkζ1(uj)ηP (0, T )

+(1− ω)
N∑
j=1

e−iujkζ2(uj)ηP
λ(0, T )

)
.

The FFT returns N values of modified logarithmic strike k given as follows:
kv = −b+ h(v − 1), v = 1, · · · , N, where b = 1

2Nh.

In order to apply FFT, we let ηh = 2π
N . To obtain an accurate integration

with larger values of η, we incorporate Simpson’s rule weightings into our sum-
mation. From Simpson’s rule weightings , we obtain European call option prices
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as

C(0, T, kv) ≈
e−akv

π

(
ω

N∑
j=1

e−
2πi(j−1)(i−1)

N eibuj
η

3
[3 + (−1)j − wj−1]P (0, T )

+ (1− ω)
N∑
j=1

e−
2πi(j−1)(i−1)

N eibuj
η

3
[3 + (−1)j − wj−1]P

λ(0, T )

)
,

where wn is the Kronecker delta function that is unity for n = 0 and zero
otherwise. The above summation is an exact application of the FFT.

In what follows, we give a numerical example. Assume the parameters are
as follows: ω = 0.4, κ = 0.3, θ = 0.05, r0 = 0.02, a = 0.2, b = 0.02, λ0 = 0.5, σ1 =
0.2, σ2 = 0.15, σ3 = 0.25, ρ1 = ρ2 = ρ3 = 0.25, ρ12 = 0.7, ρ13 = 0.5, ρ23 =
0.6, S0 = 100, T = 1, the densities fy and fz are given by fy(y) = 10e−20y1{y>0}+
10e−20y1{y<0}, fz(z) = 5e−5z, z > 0. The numerical results for the option prices
are presented in Tables 1, 2. From them we can see that the convergence rate
of the FFT is comparatively fast.

Table 1 presents the relationship between the option price and K. From it
we can see that the option price decreases with the strike K. This is because a
high value of K leads to a decreasing probability that ST is larger than K.

Table 1: Prices calculated by FFT

K N = 512 N = 1024 N = 2048 N = 4096

90 8.2413 8.2415 8.2415 8.2415

95 6.5219 6.5221 6.5222 6.5223

100 5.2344 5.2346 5.2346 5.2346

105 4.4651 4.4652 4.4652 4.4652

110 3.5442 3.5343 3.5343 3.5343

Table 2 represents the impact of the jump intensity of the common jumps
on the option price. From it we can observe that the price increases with λ0.
This is because a high value of λ0 leads to an increasing volatility of St and λt,
and St is more sensitive to λ0.

Table 2: Impact of jump intensity of option prices for K = 100

λ0 N = 512 N = 1024 N = 2048 N = 4096

0.4 4.4154 4.4155 4.4156 4.4156

0.5 4.8732 4.8733 4.8733 4.8733

0.6 5.2344 5.2346 5.2346 5.2346

0.7 5.7612 5.7613 5.7613 5.7613

0.8 6.1507 6.1508 6.1509 6.1509
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5. Conclusions

In this paper, we consider a jump-diffusion model to analyze a vulnerable Eu-
ropean call option within the reduced-form framework. We assume the default
intensity and the stock price are modelled by two jump-diffusion processes with
common jumps. The jump components describe the impact of macro-economy
on the asset price and the default intensity. We adopt the measure of change and
the fast Fourier transform (FFT) method to value options. Numerical examples
illustrate the practicality of the method.
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Abstract. This paper is concerned with the parameter estimation problem for a sta-
tionary ergodic diffusion process with drift coefficient a(Xt, θ) and diffusion coefficient
b(Xt) under the case of continuous-time observations. Firstly, we find a closed interval
on which the likelihood function is continuous and does not attain the maximum at
two endpoints of this interval. Secondly, we prove that the maximum likelihood esti-
mator exists in the interval when the sample size is large enough. Finally, the strong
consistency of the estimator and the asymptotic normality of the error of estimation
are proved. All of the results are obtained by applying the maximal inequality for
martingales, Borel-Cantelli lemma and uniform ergodic theorem.

Keywords: maximum likelihood estimation, ergodic diffusion processes, strong con-
sistency, asymptotic normality.

1. Introduction

Diffusion processes have been widely used for model building in demographic
theory, safety science, computer science and management science. Moreover,
diffusion processes are the essential stochastic modeling tools in the modern
financial theories and applications. Recently, diffusion models are applied to
describe the dynamics of a financial asset, such as Black-Scholes-Merton option
pricing formula (see e.g. [6, 21]), and Vasicek and Cox-Ingersoll-Ross pricing
formulas for the zero coupon bond (see e.g. [25, 7, 8]). Statistical inference for
diffusion processes is very important to the stochastic theories as well as to the
applications in model building. In the stochastic models describing the actual
systems, part or all of the parameters are always unknown, but the observed val-
ues are known. Therefore, parameter estimation becomes an important problem
needed to be solved depending on observed values. Parameters in the stochastic
models have to be estimated either from continuous-time observation if contin-
uous observation is possible, or from discrete sampled data set for the process
if the process is not observed continuously. As far as we know, it is of great
importance for the special stochastic model to estimate the parameters for the
purpose of obtaining a proper structure of the model no matter which method
is used.
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In earlier works, some methods such as maximum likelihood estimation,
Bayes estimation and least-squares estimation have been employed to solve the
parameter estimation problem for the diffusion processes and the asymptotic
properties of the estimators have been discussed as well. In previous literatures,
numerical approximation schemes have been employed together with the esti-
mation methods to estimate the parameters based on discrete observations. For
example, by applying Euler method to discrete the original continuous-time pro-
cesses and employing least squares estimation (see e.g. [12, 11, 19]), generalized
method of moments (see e.g. [10]), and maximum likelihood estimation (see e.g.
[1, 14]), or by using Itô sum and Riemann sum to approximate the integrals
in the continuous-time likelihood function and applying maximum likelihood
estimation (see e.g. [28]), martingale estimation (see e.g. [4]), and estimation
based on eigenfunctions (see e.g. [5]). When the process is observed partially,
both the parameter estimation method and the state estimation method such
as extended Kalman filter are employed to solve the estimation problem (see
e.g. [13, 23, 18]). However, numerical approximation schemes have some dis-
advantages. For example, the discretized processes may not converge to the
original continuous-time processes and the estimators obtained may not con-
sistent when the time between observations is bounded away from zero. As a
consequence, it is of great importance to estimate parameters for the original
continuous-time diffusion processes based on continuous observations. In previ-
ous literatures, some methods have been employed to solve the estimation prob-
lem for continuous-time diffusion processes described by stochastic differential
equations. For example, estimation of the drift parameter for a linear stochastic
differential equation (see e.g. [22]), maximum likelihood estimation in the scalar
parameter case and vector parameter case for a nonlinear stochastic differential
equation (see e.g. [24, 2]), and other methods such as Moment estimation (see
e.g. [17]), M-estimation method (see e.g. [27]), and minimum distance method
(see e.g. [15, 9]). Moreover, Kutoyants([16]) and Wei ([26]) used likelihood ra-
tio process and maximum likelihood estimation respectively to investigate the
parameter estimation in probability for ergodic diffusion processes.

Although the parameter estimation has been studied by some authors, the
almost sure convergence of the parameter estimator has not been discussed. In
this paper, the parameter estimation problem for a class of stationary ergodic
diffusion processes is investigated by applying maximum likelihood estimation
under the case of continuous-time observations. The idea of solving the esti-
mation problem for ergodic diffusion processes in this article is different from
that in Kutoyants([16]) and Wei ([26]). In ([16]) and ([26]), only the weak con-
vergence of the estimator has been considered, but in this paper, the strong
convergence, namely the almost sure convergence of the estimator is considered.
For the purpose of proving the existence of the maximum likelihood estimator,
we find a compact set on which the likelihood function is continuous and does
not attain the maximum at two endpoints of this compact set when the sam-
ple size is large enough. Hence, the likelihood function has a local maximum
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in this compact set and the existence of the maximum likelihood estimator is
proved. The strong consistency of the parameter and the asymptotic normal-
ity of the error of estimation are proved by applying maximal inequality for
martingale, Borel-Cantelli lemma, the dominated convergence theorem and the
uniform ergodic theorem.

This paper is organized as follows. In Section 2, some assumptions are pro-
vided and the likelihood function is given based on the Girsanov theorem. The
main results are given in Section 3 where the existence and strong consistency of
the maximum likelihood estimator are proved and the limit distribution of the
error of estimation is obtained. An example is given to verify the effectiveness
of the estimator in Section 4. The conclusion is given in Section 5.

2. Problem formulation and preliminaries

In this paper, the one-dimensional stationary ergodic diffusion processes de-
scribed by the following class of stochastic differential equation will be studied:{

dXt = a(Xt, θ)dt+ b(Xt)dWt

X0 = x0,
(1)

where θ ∈ Θ a open subset of R is the unknown one-dimensional parameter.
Suppose (1) satisfies the conditions that ensure the existence and uniqueness

of the solution, (see e.g. [20]). The process is observed over [0, T ]. x0 is dis-
tributed according to the stationary distribution of the process. The drift and
diffusion coefficients are supposed to be known and do not depend on the time
t. (Wt, t ≥ 0) is a standard Wiener process defined on a complete probability
space (Ω,F ,P). Now the Girsanov theorem is introduced below.

Lemma 1 ([3]). Let Y (t) be an Itô process of the form

dY (t) = a(t, ω)dt+ dB(t); t ≤ T,

where T ≤ ∞ is a given constant and B(t) is Brownian motion. Put

Mt = exp(−
∫ t

0
a(s, ω)dBs −

1

2

∫ t

0
a2(s, ω)ds); t ≤ T.

Assume that a(s, ω) satisfies Novikov’s condition

E[exp(
1

2

∫ T

0
a2(s, ω)ds)] <∞,

where E is the expectation with respect to P . Define the measure Q on (Ω,FT )
by

dQ(ω) =MTdP (ω).

Then Y (t) is a Brownian motion with respect to the probability law Q, for
t ≤ T .
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From now on we shall work under the assumptions below.

Assumption 1. Pθ1 ̸= Pθ for θ1 ̸= θ in Θ where θ denotes the true parameter.

Assumption 2. |a(x, s)| ≤ M(x) and |a′(x, s)| ≤ Q(x) for all s ∈ I(θ) where
I(θ) is a closed interval containing θ and a′ denotes the differential with respect

to θ. Moreover, Eθ[M(X0)
b(X0)

]2 <∞ and Eθ[Q(X0)
b(X0)

]2 <∞.

Assumption 3.

Eθ[
∫ T

0
(
a(Xt, θ)

b(Xt)
)2dt] <∞,

Eθ[
∫ T

0
(
a′(Xt, θ)

b(Xt)
)2dt] <∞

and

Eθ[
∫ T

0
(
a′′(Xt, θ)

b(Xt)
)2dt] <∞,

which ensure the existence of the stochastic integrals
∫ T
0

a(Xt,θ)
b(Xt)

dWt,
∫ T
0

a′(Xt,θ)
b(Xt)

dWt

and
∫ T
0

a′′(Xt,θ)
b(Xt)

dWt.

Remark 1. Assumption 1 means that the value the likelihood function takes at
the true parameter is not equal to the value at other parameters. Assumptions 2
and 3 play a key role in applying the Borel-Cantelli lemma and uniform ergodic
theorem.

Let P Tθ be the probability measure generated by the process {Xt, 0 ≤ t ≤ T}
and P TW be the probability measure induced by the standard Wiener process.
Then, by applying the Girsanov theorem, the log likelihood function is described
as follows:

(2) ℓT (θ) = log
dP Tθ
dP TW

=

∫ T

0

a(Xt, θ)

b2(Xt)
dXt −

1

2

∫ T

0

a2(Xt, θ)

b2(Xt)
dt.

Assume that ℓT (θ) is continuous and differentiable with respect to θ.
In the next section two problems will be solved. One is that the existence and

strong consistency of the maximum likelihood estimator at which the likelihood
function attains a local maximum will be proved, the other one is that the limit
distribution of the error of estimation will be discussed.

3. Main results and proofs

In the following theorem, the existence and strong consistency of the maximum
likelihood estimator are proved by applying the maximal inequality for martin-
gale, Borel-Cantelli lemma and the uniform ergodic theorem. In this case, the
likelihood function attains a maximum on a compact set, which means that the
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likelihood function has a local maximum. The process of finding the compact
set in which the likelihood function has a maximum plays a key role in the proof
of this theorem.

Theorem 1. Under Assumptions 1–3, there exists a solution of the equation
ℓ′T (θ) = 0 which is strongly consistent for θ as T →∞.

Proof. Suppose θ denotes the true value of the parameter. According to the
expression of the likelihood function, for any σ > 0 such that θ ± σ ∈ Θ, it is
easy to check that

ℓT (θ ± σ)− ℓT (θ)

=

∫ T

0

(a(Xt, θ ± σ)− a(Xt, θ))

b2(Xt)
dXt −

1

2

∫ T

0

(a2(Xt, θ ± σ)− a2(Xt, θ))

b2(Xt)
dt

=

∫ T

0

(a(Xt, θ ± σ)− a(Xt, θ))

b(Xt)
dWt −

1

2

∫ T

0

(a(Xt, θ ± σ)− a(Xt, θ))
2

b2(Xt)
dt.

First of all, we will prove that 1
T

∫ T
0

a(Xt,s)
b(Xt)

dWt
a.s.→ 0 as T → ∞ where

s ∈ I(θ).
By applying maximal inequality for martingale and the stationarity of the

process, it follows that

Pθ( sup
0<T≤T0

|
∫ T

0

a(Xt, s)

b(Xt)
dWt| > ε) ≤

Eθ(
∫ T0
0

a(Xt,s)
b(Xt)

dWt)
2

ε2

=
T0Eθ(a(X0,s)

b(X0)
)2

ε2
.

Let

(3) Bn = { sup
2n−1<T<2n

sup
s
|
∫ T

0

a(Xt, s)

b(Xt)
dWt| > 2

n
2 nα},

where n ≥ 1 and α > 1
2 . Then

Pθ(Bn) = Pθ( sup
0<T<2n−1

sup
s
|
∫ T

0

a(Xt, s)

b(Xt)
dWt| > 2

n
2 nα)

≤
2n−1Eθ(a(X0,s)

b(X0)
)2

2nn2α
=

Eθ(a(X0,s)
b(X0)

)2

2

1

n2α
.

It can be obtained that

(4)

∞∑
n=1

Pθ(Bn) <∞.
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According to Borel-Cantelli lemma, it follows that

(5) Pθ(lim sup
n→∞

Bn) = 0.

Therefore,

(6) lim sup
T→∞

sup
s

|
∫ T
0

a(Xt,s)
b(Xt)

dWt|

T
1
2 (lnT )α

≤ 2
1
2 (

1

ln 2
)α a.s.

Hence, for large T ,

(7) sup
s
| 1
T

∫ T

0

a(Xt, s)

b(Xt)
dWt| ≤

(lnT )α

T
1
2

2
1
2 (

1

ln 2
)α,

with probability one.
It is easy to check that

(8) sup
s
| 1
T

∫ T

0

a(Xt, s)

b(Xt)
dWt|

a.s.→ 0,

as T →∞.
Since

(9) | 1
T

∫ T

0

a(Xt, s)

b(Xt)
dWt| ≤ sup

s
| 1
T

∫ T

0

a(Xt, s)

b(Xt)
dWt|,

it follows that

(10)
1

T

∫ T

0

a(Xt, s)

b(Xt)
dWt

a.s.→ 0.

As a result, one has

(11)
1

T

∫ T

0

(a(Xt, θ ± σ)− a(Xt, θ))

b(Xt)
dWt

a.s.→ 0,

as T →∞.
According to the uniform ergodic theorem (see e.g. [24]), it can be checked

that

(12)
1

T

∫ T

0

(a(Xt, θ ± σ)− a(Xt, θ))
2

b2(Xt)
dt

a.s.→ Eθ[
(a(X0, θ ± σ)− a(X0, θ))

2

b2(X0)
],

as T →∞.
We assume that Eθ[ (a(X0,θ±σ)−a(X0,θ))2

b2(X0)
] > 0.

Therefore,

(13)
1

T
(ℓT (θ ± σ)− ℓT (θ))

a.s.→ −1

2
Eθ[

(a(X0, θ ± σ)− a(X0, θ))
2

b2(X0)
] < 0,
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as T →∞.
Hence, for almost every ω ∈ Ω, σ and θ, there exists T0 such that for T ≥ T0,

(14) ℓT (θ ± σ) < ℓT (θ).

Since ℓT (θ) is continuous on the interval [θ−σ, θ+σ], there exists an element
θT ∈ (θ − σ, θ + σ) such that ℓT (θ) reaches the maximum at this element, that
is to say, ℓ′T (θT ) = 0. As |θT − θ| < σ, it leads to the relation

(15) θT
a.s.→ θ,

as T →∞.
The proof is complete.

In the following theorem, the limit distribution of the error of estimation
is obtained by applying the maximal inequality for martingale, Borel-Cantelli
lemma and uniform ergodic theorem.

Theorem 2. Under Assumptions 1–3,
√
T (θT − θ)

d→ N(0, 1

Eθ[
a′(X0,θ)
b(X0)

]2
), (T →

∞).

Proof. Expanding ℓ′T (θ) about θT , it follows that

(16) ℓ′T (θ) = ℓ′T (θT ) + ℓ′′T (θT + λ(θ − θT ))(θ − θT ),

where 0 < λ < 1.
In view of Theorem 1, it is known that ℓ′T (θT ) = 0, then

(17) ℓ′T (θ) = ℓ′′T (θT + λ(θ − θT ))(θ − θT ).

Since θ is the true value of the parameter,

ℓ′T (θ) =

∫ T

0

a′(Xt, θ)

b2(Xt)
dXt −

∫ T

0

a(Xt, θ)a
′(Xt, θ)

b2(Xt)
dt

=

∫ T

0

a′(Xt, θ)

b(Xt)
dWt,

with the stationarity of the process, it can be checked that

(18) Eθ[ℓ′T (θ)] = 0,

and

(19) Eθ[ℓ′T (θ)]2 = TEθ[
a′(X0, θ)

b(X0)
]2.

From the central limit theorem for stochastic integrals, one has

(20) T− 1
2 ℓ′T (θ)

d→ N(0,Eθ[
a′(X0, θ)

b(X0)
]2).
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As

1

T
ℓ′′T (θ) =

1

T
(

∫ T

0

a′′(Xt, θ)

b2(Xt)
dXt

−
∫ T

0

(a′2(Xt, θ) + a(Xt, θ)a
′′(Xt, θ))

b2(Xt)
dt)

=
1

T
(

∫ T

0

a′′(Xt, θ)

b(Xt)
dWt −

∫ T

0

a′2(Xt, θ)

b2(Xt)
dt).

By applying the same method used in Theorem 1, it follows that

(21)
1

T

∫ T

0

a′′(Xt, θ)

b(Xt)
dWt

a.s.→ 0,

as T →∞.

By employing the uniform ergodic theorem, it can be obtained that

(22)
1

T

∫ T

0

a′2(Xt, θ)

b2(Xt)
dt

a.s.→ Eθ[
a′(X0, θ)

b(X0)
]2,

as T →∞.

From the above analysis, one has

(23)
1

T
ℓ′′T (θ)

a.s.→ Eθ[
a′(X0, θ)

b(X0)
]2,

as T →∞.

Since

1

T
(ℓ′′T (θT + λ(θ − θT ))− ℓ′′T (θ))

=
1

T
(

∫ T

0

(a′′(Xt, θT + λ(θ − θT ))− a′′(Xt, θ))

b2(Xt)
dXt

+

∫ T

0

a′2(Xt, θ)− a′2(Xt, θT + λ(θ − θT )) + a(Xt, θ)a
′′(Xt, θ)

b2(Xt)
dt

−
∫ T

0

a(Xt, θT + λ(θ − θT ))a′′(Xt, θT + λ(θ − θT ))
b2(Xt)

dt)

=
1

T
(

∫ T

0

(a′′(Xt, θT + λ(θ − θT ))− a′′(Xt, θ))

b(Xt)
dWt

+

∫ T

0

a′2(Xt, θ)− a′2(Xt, θT + λ(θ − θT ))
b2(Xt)

dt

+

∫ T

0

a′′(Xt, θT + λ(θ − θT ))(a(Xt, θ)− a(Xt, θT + λ(θ − θT )))
b2(Xt)

dt),
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by applying the uniform ergodic theorem, the dominated convergence theorem
together with θT

a.s.→ θ and (21), it follows that

(24)
1

T
(ℓ′′T (θ + λ(θ − θT ))− ℓ′′T (θ))

a.s.→ 0,

as T →∞.
Therefore,

(25)
1

T
(ℓ′′T (θ + λ(θ − θT )))

a.s.→ Eθ[
a′(X0, θ)

b(X0)
]2,

as T →∞.
From the above analysis, we have

(26)
√
T (θT − θ)

d→ N(0,
1

Eθ[a
′(X0,θ)
b(X0)

]2
),

as T →∞.
The proof is complete.

4. Example

We consider the diffusion process described by the following stochastic differen-
tial equation: {

dXt = −θXt[1 +
1
2 sin(Xt)]dt+ σdWt

X0 ∼ uθ,
(27)

where θ > 0,σ > 0, uθ is the invariant measure.
It is easy to check that the likelihood function has the following expression

(28) ℓT (θ) =

∫ T

0

−θXt[1 +
1
2 sin(Xt)]

σ2
dXt −

1

2

∫ T

0

θ2X2
t [1 +

1
2 sin(Xt)]

2

σ2
dt.

Then, we obtain the estimator

(29) θ̂T =
−
∫ T
0 Xt[1 +

1
2 sin(Xt)]dXt∫ T

0 X2
t [1 +

1
2 sin(Xt)]2dt

.

Thus, the estimation error is

(30) θ̂T − θ =
−σ
∫ T
0 Xt[1 +

1
2 sin(Xt)]dWt∫ T

0 X2
t [1 +

1
2 sin(Xt)]2dt

.

Since X2
t [1 + 1

2 sin(Xt)]
2 ≤ 9

4X
2
t and E[X0]

2 < ∞, it is obviously that this
process satisfy the Assumptions 1–3. Then, we have

(31) θ̂T
a.s.→ θ,

and

(32)
√
T (θ̂T − θ)

d→ N(0,
σ2

E[X2
0 [1 +

1
2 sin(X0)]2]

).
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5. Conclusion

In this paper, the existence and strong consistency of the maximum likelihood
estimator and the asymptotic normality of the error of estimation have been
proved with the help of the maximal inequality for martingale, Borel-Cantelli
lemma and uniform ergodic theorem. In this paper, the likelihood function has
attained a local maximum at the maximum likelihood estimator in a compact
set. This paper has considered a class of processes driven by Brown Motion,
one of the further research topics will study the parameter estimation for the
processes driven by fractional Brown Motion or small Lévy noises.
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Abstract. The eigenvalues, eigenvectors and fixed points of matrices have many appli-
cations in various branches of science and many mathematical disciplines. In this paper
first we introduce the concept of tropical fixed points, then we calculate the tropical
eigenvalues and tropical eigenvectors of GL(2,R). Furthermore we give relationships
between tropical eigenvectors and tropical fixed points of GL(2,R).
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1. Introduction

The tropical semiring is the set R ∪ {∞} denoted by T, with the two new
operations ⊕ and ⊙. The operation ⊙ is defined as the classical + and ⊕ is
defined to be the minimum of two elements of T. That is for all a, b ∈T,

a⊕ b = min{a, b}, a⊙ b = a+ b.

Following examples explain the tropical operations.

Example 1.1.1. Let 3, 7 ∈T, 3⊕ 7 = min{3, 7} = 3, and 3⊙ 7 = 3 + 7 = 10.

∗. Corresponding author
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Example 1.1.2. The elements ∞, 0 ∈T, are identities under the tropical oper-
ations ⊕ and ⊙ respectively, as for any a ∈T,

a⊕∞ = min{a,∞} = a = min{∞, a} =∞⊕ a,
a⊙ 0 = a+ 0 = a = 0 + a = 0⊙ a.

It is easy to verify that many of classical axioms remains true in tropical linear
algebra, see page 10 of [2].

Definition 1.1. [2] Let X = [xij ] ∈ Rn×r, Y = [yij ] ∈ Rr×m be tropical
matrices, the tropical product of X and Y is defined as X ⊙ Y = [zij ] where
zij =

⊕
(xik ⊙ ykj), where k = 1, 2, ..., r.

Example 1.1. Let X =

[
3 5
8 6

]
and Y =

[
−1 5
4 1

]
be the tropical matrices in

R2×2 then

X ⊙ Y =

[
3 5
8 6

]
⊙
[
−1 5
4 1

]
=

[
3⊙−1⊕ 5⊙ 4 3⊙ 5⊕ 5⊙ 1
8⊙−1⊕ 6⊙ 4 8⊙ 5⊕ 6⊙ 1

]
=

[
3 + (−1)⊕ 5 + 4 3 + 5⊕ 5 + 1
8 + (−1)⊕ 6 + 4 8 + 5⊕ 6 + 1

]
=

[
min(2, 9) min(8, 6)
min(7, 10) min(13, 7)

]
=

[
2 6
7 7

]

Definition 1.2. [2] Let X = [xij ] ∈ Rn×r, be a tropical matrix, and r ∈ R, the
tropical scalar product is component wise just like the classical scalar product,
that is r ⊙X = r ⊙ [xij ] = [r ⊙ xij ].

Example 1.2. Let X =

[
7 5 1
8 6 5

]
be a tropical matrix in R2×3 then

3⊙X = 3⊙
[
7 5 1
8 6 5

]
=

[
3⊙ 7 3⊙ 5 3⊙ 1
3⊙ 8 3⊙ 6 3⊙ 5

]
=

[
10 8 4
11 9 8

]

Definition 1.3. [2] Let A be an n×n-matrix with entries in the tropical semiring
(R∪{∞},⊕,⊙). An eigenvalue of A is a real number λ such that A⊙ v = λ⊙ v,
for some v ∈ Rn. We say that v is an eigenvector of the tropical matrix A .

Example 1.3. Consider

(
2 4
13 7

)
∈ R2×2,

(
2 4
13 7

)
⊙
(
2
13

)
=

(
4
15

)
= 2⊙

(
2
13

)
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The scalar 2 is tropical eigenvalue of

(
2 4
13 7

)
, while

(
2
13

)
is corresponding

tropical eigenvector.

Definition 1.4 ([3]). A graph G consists of two finite sets, V (G) the set of
vertices and E(G) the set of edges. The edges connect the different vertices in
a graph. A graph is said to be strongly connected if every vertex is reachable
from every other vertex.

Theorem 1.1 ([2]). Let A be a tropical n × n-matrix whose graph G(A) is
strongly connected. Then A has precisely one eigenvalue λ. That eigenvalue
equals the minimal normalized length of any directed cycle in G(A).

The power algorithm ([3]). Let A be a tropical matrix of order n × n, with
tropical eigenvalue λ and v be the corresponding tropical eigenvector then we
calculate λ and v as:

(1) Choose x(0) ∈ Tn such that x(0) contains at least one finite entry.
(2) Compute x(k + 1) = A⊙ x(k), until a positive integer k is reached such

that x(k + p) = q ⊙ x(k) for some p ∈ N and q ∈ R.
(3) Calculate λ = q

p .

(4) Calculate v = min(λ⊙(p−j) ⊙ x(k + j − 1)) for j = 1, 2, ..., p.

Remarks. If p = 1 then v = x(k), if p = 2 then v = x(k+1)⊕ λ⊙ x(k). Many
authors have studied the eigenvalues, eigenvectors and fixed points of matrix
groups, see for example [1,4].

2. Main results

Definition 2.1. Let A ∈ GL(2,R), a vector X =

(
x1
x2

)
∈ T2 is called tropical

fixed point of A if A⊙X = X.

Theorem 2.1. Let A =

(
a b
c d

)
∈ GL(2,R), if 2a ≤ b+ c and a ≤ d then a is

the tropical eigenvalue and

(
a
c

)
is the corresponding tropical eigenvector of A.

Proof. Let x(0) =

(
0
∞

)
, we calculate x(k + 1) = A ⊙ x(k), until we get

x(k + p) = q ⊙ x(k), where q is a real number and p is a natural number.
Now,

x(1) = A⊙ x(0) =
(
a b
c d

)
⊙
(
0
∞

)
=

(
a⊙ 0⊕ b⊙∞
c⊙ 0⊕ d⊙∞

)
=

(
min(a,∞)
min(c,∞)

)
=

(
a
c

)
,

x(2) = A⊙ x(1) =
(
a b
c d

)
⊙
(
a
c

)
=

(
min(2a, b+ c)

min(c+ a, c+ d)

)
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since 2a ≤ b+ c and a ≤ d therefore

x(2) =

(
2a
c+ a

)
= a⊙

(
a
c

)
,

this implies x(2) = x(1 + 1) = a ⊙ x(1), here k = 1, q = a, p = 1, so tropical

eigenvalue = q
p = a

1 = a and tropical eigenvector=

(
a
c

)
.

Example 2.1. Let A =

(
3 5
4 7

)
, then tropical eigenvalue of A is λ = 3, and

v =

(
3
4

)
is the tropical eigenvector.

Verification. A ⊙ v =

(
3 5
4 7

)
⊙
(
3
4

)
=

(
6
7

)
= 3 ⊙

(
3
4

)
. This implies

A⊙ v = λ⊙ v.

Corollary 2.1. If in Theorem 2.1 a = 0, then tropical eigenvalue of A is zero,

and

(
0
c

)
is the tropical eigenvector moreover any tropical scalar multiple of this

vector is the tropical fixed point of A.

Proof. Here a = 0, 0 ≤ b+ c and 0 ≤ d, so matrix A becomes

(
0 b
c d

)
, then by

Theorem 2.1 tropical eigenvalue is zero and tropical eigenvector is

(
0
c

)
. Now

we show that X = r ⊙ v =

(
r

r + c

)
is the fixed point of A,

A⊙X =

(
0 b
c d

)
⊙
(

r
r + c

)
=

(
min(0 + r, b+ r + c)
min(r + c, r + c+ d)

)
=

(
r

r + c

)
= X.

Hence the required result.

Theorem 2.2. Let A =

(
a b
c d

)
∈ GL(2,R), if b+c2 ≤ a and b+c

2 ≤ d then b+c
2 is

the tropical eigenvalue and

(
b+ c
b+c
2 + c

)
is the corresponding tropical eigenvector

of A.

Proof. Let x(0) =

(
0
∞

)
, we calculate x(k + 1) = A ⊙ x(k), until we get

x(k + p) = q ⊙ x(k), where q is a real number and p is a natural number. Now

x(1) = A⊙ x(0) =
(
a b
c d

)
⊙
(
0
∞

)
=

(
a
c

)



RELATIONSHIPS BETWEEN TROPICAL EIGENVECTORS AND TROPICAL FIXED ... 295

x(2) = A⊙ x(1) =
(
a b
c d

)
⊙
(
a
c

)
=

(
min(2a, b+ c)

min(c+ a, c+ d)

)
,

here b+ c ≤ 2a, for min(c+ a, c+ d) two cases arise:

Case I. If c+ a ≤ c+ d this implies a ≤ d then we have x(2) =

(
b+ c
a+ c

)
,

x(3) = A⊙ x(2) =
(
a b
c d

)
⊙
(
b+ c
a+ c

)
=

(
min(a+ b+ c, a+ b+ c)
min(b+ 2c, a+ c+ d)

)
,

if a + c + d < b + 2c this implies a + d < b + c this means 2a < b + c (since
a ≤ d), which is not true therefore b+ 2c ≤ a+ c+ d, and we have

x(3) =

(
a+ b+ c
b+ 2c

)

x(3) = (b+ c)⊙
(
a
c

)
,

this implies x(3) = x(1 + 2) = (b+ c)⊙ x(1), here k = 1, q = b+ c, p = 2, so

tropical eigenvalue = λ =
q

p
=
b+ c

2

and

tropical eigenvector = x(2)⊕ λ⊙ x(1) =
(
b+ c
a+ c

)
⊕
(
a+ b+c

2

c+ b+c
2

)
=

(
min(b+ c, a+ b+c

2 )

min(a+ c, c+ b+c
2 )

)
,

if a+ b+c
2 < b+c this means a < b+c

2 , which is not true. Therefore b+c ≤ a+ b+c
2 .

If a + c < c + b+c
2 then again we get a < b+c

2 so c + b+c
2 ≤ a + c. Hence

v =

(
b+ c

c+ b+c
2

)
.

Case II. If c+ d ≤ c+ a this implies d ≤ a then we have x(2) =

(
b+ c
c+ d

)
,

x(3) = A⊙ x(2) =
(
a b
c d

)
⊙
(
b+ c
c+ d

)
=

(
min(a+ b+ c, b+ c+ d)
min(b+ c+ c, c+ d+ d)

)
,

if a+ b+ c < b+ c+ d this implies a < d, which is not true therefore b+ c+ d ≤
a+ b+ c, if c+ d+ d < b+ c+ c then we have 2d < b+ c, which is not true so

b+ c+ c ≤ c+ d+ d and we get x(3) =

(
b+ c+ d
b+ 2c

)
,

x(4) = A⊙ x(3) =
(
a b
c d

)
⊙
(
b+ c+ d
c+ 2c

)
=

(
min(a+ b+ c+ d, 2b+ 2c)
min(b+ 2c+ d, b+ 2c+ d)

)
,
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if a+ b+ c+ d < 2b+2c this implies a+ d < b+ c, this means 2d < b+ c (since

d ≤ a) which is not true so 2b+2c ≤ a+b+c+d, we have x(4) =
(

2b+ 2c
b+ 2c+ d

)
,

x(5) = A⊙ x(4) =
(
a b
c d

)
⊙
(

2b+ 2c
b+ 2c+ d

)
=

(
min(a+ 2b+ 2c, 2b+ 2c+ d)
min(2b+ 3c, b+ 2c+ 2d)

)
if a + 2b + 2c < 2b + 2c + d this means a < d, which is not true (since d ≤ a)
therefore 2b+ 2c+ d ≤ a+ 2b+ 2c, if b+ 2c+ d < 2b+ 3c this implies d < b+ c
which is not true, so 2b+ 3c ≤ b+ 2c+ d, hence we get

x(5) =

(
2b+ 2c+ d
2b+ 3c

)
= (b+ c)⊙

(
b+ c+ d
b+ 2c

)
this implies x(5) = x(3 + 2) = (b+ c)⊙ x(3), here k = 3, q = b+ c, p = 2, so

tropical eigenvalue = λ =
q

p
=
b+ c

2

and

tropical eigenvector = x(2)⊕ λ⊙ x(1) =
(
b+ c
c+ d

)
⊕
(
a+ b+c

2

c+ b+c
2

)
=

(
min(b+ c, a+ b+c

2 )

min(a+ c, c+ b+c
2 )

)
,

if a+ b+c
2 < b+c this means a < b+c

2 , which is not true, therefore b+c ≤ a+ b+c
2 . If

a+c < c+ b+c
2 then again we get a < b+c

2 so c+ b+c
2 ≤ a+c. Hence v =

(
b+ c

c+ b+c
2

)
.

Example 2.2.1 (case I). Let A =

(
5
3

−1
2

2
3 2

)
, then tropical eigenvalue of A is

λ = b+c
2 = 1

12 , and v =

((
b+ c

c+ b+c
2

))
=

(
1
6
3
4

)
is the tropical eigenvector.

Verification.

A⊙ v=
(

5
3

−1
2

2
3 2

)
⊙
(

1
6
3
4

)
=

(
1
4
5
6

)
,

and

λ⊙ v= 1
12 ⊙

(
1
6
3
4

)
=

(
1
4
5
6

)
.

This implies A⊙ v = λ⊙ v.

Example 2.2.2 (case II). Let A=

(
5 −1
3 2

)
, then tropical eigenvalue of A is

λ = b+c
2 = 1, and v =

(
2
4

)
is the tropical eigenvector.
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Corollary 2.2. If in above theorem b+ c = 0, then tropical eigenvalue of A is

zero, and

(
0
c

)
is the tropical eigenvector, moreover any tropical scalar multiple

of this vector is the tropical fixed point of A.

Proof. Here b+ c = 0 implies c = −b, also b + c ≤ a and b+ c ≤ d, so matrix

A becomes

(
a b
−b d

)
, then by Theorem 2.2 tropical eigenvalue b + c is 0 and

tropical eigenvector

(
0
−b

)
. Now, we show that X = r ⊙ v =

(
r

r − b

)
is the

fixed point of A,

A⊙X=

(
a b
−b d

)
⊙
(

r
r − b

)
=

(
min(a+ r, b+ r − b)
min(r − b, r − b+ d)

)
=

(
r

r − b

)
=X.

Hence the required result.

Theorem 2.3. Let A =

(
a b
c d

)
∈ GL(2,R), if 2d ≤ b + c and d ≤ a then d is

the tropical eigenvalue and

(
b+ c+ (n− 2)d
c+ (n− 1)d

)
where n is a natural number, is

the corresponding tropical eigenvector of A (here n = k, where k is from Power
Algorithm).

Proof. Let x(0) =

(
0
∞

)
, we calculate x(k + 1) = A ⊙ x(k), until we get

x(k + p) = q ⊙ x(k), where q is a real number and p is a natural number. Now

x(1) = A⊙ x(0) =
(
a b
c d

)
⊙
(
0
∞

)
=

(
a
c

)
,

x(2) = A⊙ x(1) =
(
a b
c d

)
⊙
(
a
c

)
=

(
min(2a, b+ c)

min(c+ a, c+ d)

)
,

here c+ a ≤ c+ d, for min(2a, b+ c) two cases arise.
Case I. If b+ c ≤ 2a this implies

x(2) =

(
b+ c
c+ d

)
,

x(3) = A⊙ x(2) =
(
a b
c d

)
⊙
(
b+ c
c+ d

)
=

(
min(a+ b+ c, b+ c+ d)

min(b+ 2c, c+ 2d)

)
,

if a + b + c < b + c + d this implies a < d, which is not true (since d ≤ a), so
b+ c+ d ≤ a+ b+ c, if b+ 2c < c+ 2d this means b+ c < 2d, which is not true
(since 2d ≤ b+ c), therefore c+ 2d ≤ b+ 2c, and we get

x(3) =

(
b+ c+ d
c+ 2d

)
,
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x(3) = d⊙
(
b+ c
c+ d

)
,

this implies x(3) = x(2 + 1) = d⊙ x(2), here k = 2, q = d, p = 1, so

tropical eigenvalue = λ =
q

p
=
d

1
= d

and

tropical eigenvector =

(
b+ c
c+ d

)
.

Case II. If 2a ≤ b+ c then

x(2) =

(
2a
c+ d

)
,

x(3) = A⊙ x(2) =
(
a b
c d

)
⊙
(

2a
c+ d

)
=

(
min(a+ 2a, b+ c+ d)
min(c+ 2a, c+ 2d)

)
here if we take 3a < b+ c+ d this implies

x(3) =

(
3a

c+ 2d

)
,

x(4) = A⊙ x(3) =
(
a b
c d

)
⊙
(

3a
c+ 2d

)
=

(
min(a+ 3a, b+ c+ 2d)
min(c+ 3a, c+ 3d)

)
,

since d ≤ a so proceeding as above we get some natural number n such that
b+ c+ (n− 2)d ≤ na. Therefore, we have

x(n) =

(
b+ c+ (n− 2)d)
c+ (n− 1)d)

)
x(n+ 1) = A⊙ x(n) =

(
a b
c d

)
⊙
(
b+ c+ (n− 2)d)
c+ (n− 1)d)

)
=

(
min(a+ b+ c+ (n− 2)d, b+ c+ (n− 1)d)
min(b+ c+ c+ (n− 2)d, c+ (n− 1)d) + d

)
,

if a + b + c + (n − 2)d < b + c + (n − 1)d this implies a + b + c + (n − 2)d <
b+ c+ (n− 2)d+ d, this means a < d which is not true (since d ≤ a), therefore
b+ c+ (n− 1)d ≤ a+ b+ c+ (n− 2)d, if b+ c+ c+ (n− 2)d < c+ (n− 1)d+ d
this implies b+ c+ (n− 2)d < (n− 2)d+2d, this means b+ c < 2d which is not
true, so c+ (n− 1)d+ d ≤ b+ c+ c+ (n− 2)d, hence we have

x(n+ 1) =

(
b+ c+ (n− 1)d)
c+ (n− 1)d+ d

)
= d⊙

(
b+ c+ (n− 2)d)
c+ (n− 1)d

)
,

this implies x(n+ 1) = d⊙ x(n), here k = n, q = d, p = 1, so

tropical eigenvalue = λ =
q

p
=
d

1
= d
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and

tropical eigenvector =

(
b+ c+ (n− 2)d)
c+ (n− 1)d

)
.

Example 2.3.1 (case I). Let A =

(
11
2

6
5

9
2 2

)
, then tropical eigenvalue of A is

λ = d = 2, and v =

(
b+ c
c+ d

)
=

(
57
10
13
2

)
is the tropical eigenvector.

Example 2.3.2 (case II). Let A=

(
5 9
7 3

)
, then tropical eigenvalue of A is

λ = d = 3, here b + c + (n − 2)d ≤ na implies 9 + 7 + (n − 2)3 ≤ 5n, solving

this we get 5 ≤ n, let us take n = 5, therefore v =

(
b+ c+ 3d
c+ 4d

)
=

(
25
19

)
is the

tropical eigenvector.

Corollary 2.3. If in Theorem 2.3 d = 0, then tropical eigenvalue of A is zero,

and

(
b+ c
c

)
is the tropical eigenvector, moreover any tropical scalar multiple

of this vector is the tropical fixed point of A.

Proof. Here d = 0, 0 ≤ b + c and 0 ≤ a, so matrix A becomes

(
a b
c 0

)
, then

by Theorem 2.3 tropical eigenvalue is zero and tropical eigenvector is

(
b+ c
c

)
.

Now we show that X = r ⊙ v =

(
r + b+ c
r + c

)
is the fixed point of A,

A⊙X =

(
a b
c 0

)
⊙
(
r + b+ c
r + c

)
=

(
min(a+ r + b+ c, b+ r + c)

min(r + b+ 2c, r + c)

)
=

(
b+ r + c
r + c

)
= X.

Hence the required result.

3. Conclusion

In this paper we first calculate the tropical eigenvalues and tropical eigenvectors
of the group GL(2,R). Then we show that if the tropical eigenvalue is zero then
the tropical fixed points of elements of GL(2,R) are the tropical scalar multiple
of the tropical eigenvectors.
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1. Introduction

In this paper, we are concerned with the numerical approximation in the L∞

norm for the following problem: find u such that

(1.1)



∂u

∂t
+ max

1≤i≤J

(
Aiu− f i

)
= 0 in QT := Ω× ]0, T [ ,

u
∣∣∣
t=0

= u0, in Ω,

u = 0 in
∑

T := ]0, T [× Γ,

u ≥ 0,

where Ω is a smooth bounded domain of Rd, d ≥ 1, with smooth boundary
Γ, Ai are J-second-order, uniformly elliptic operators of the form

(1.2) Ai =
d∑

j,k=1

aijk(x)
∂2

∂xj∂xk
+

d∑
j=1

bij (x)
∂

∂xj
+ ai0 (x) ,

f is a regular function satisfies

(1.3) f ∈ L2 (0, T, L∞ (Ω)) ∩ C1
(
0, T,H−1 (Ω)

)
.

It is known (see. [3-5], [9-12]) that the problem (1.1) can be approximated by
the following weakly coupled system of parabolic quasi-variational inequalities

(QVIs): find a vector U =
(
u1, u2, ..., uJ

)
∈
(
L2
(
0, T ; H1

0 (Ω)
))J

such that

(1.4)



∂

∂t
(ui(t), v − ui(t)) + ai(ui(t), v − ui(t)) ≥ (f i, v − ui(t)),

∀v ∈ H1
0 (Ω),

ui ≤ (MU)i, v ≤ (MU)i, i = 1, 2, ..., J,

ui ≥ 0,

where ai (., .) are J-elliptic continuous and noncoercive bilinear forms associated
Ai defined as:

(1.5) ai (u, v) =

∫
Ω

 d∑
j,k=1

aijk(x)
∂ u

∂ xj

∂ v

∂ xk
+

d∑
k=1

bik (x)
∂u

∂xk
v + ai0 (x)uv

 dx,

where ∀i = 1, ..., J, aijk (.) , b
i
j (.) , a

i
0 (.) ∈ C2

(
Ω̄
)
, x ∈ Ω̄, 1 ≤ j, k ≤ d are

sufficiently smooth coefficients and satisfy the following conditions:

(1.6)

{
aijk(x) = aikj(x),

ai0(x) ≥ β > 0, β is a constant
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and

(1.7)
n∑

j,k=1

aijk(x)ξjξk ≥ γ|ξ|2; ξ ∈ Rd, γ > 0, x ∈ Ω̄.

In the case studied here, (MU)i represents a “cost function” and the proto-
type encountered is

(1.8) (MU)i = ρ+ inf
µ̸=i

uµ, i = 1, ..., J.

In (1.8), ρ represents the switching cost. It is positive when the unit is
“turned on” and equal to zero when the unit is “turned off”. Note also that
operator M provides the coupling between the unknowns u1, . . . , uJ (see. e.g.
[1], [2] and the references therein).

In the stationary case M. Boulbrachen in [7] studied a particular class of
problems related to the management of energy production problems and pre-
sented a study of the complete numerical analysis; his approach is based on the
concept of subsolutions.

The aim of the present paper is to study the corresponding evolution case
and to obtain a quasi-optimal L∞-asymptotic behavior for a finite element ap-
proximation to parabolic quasi-variational inequalities.

The rest of the manuscript is structured as follows. In Section 2, we present
the continuous problem. The discrete problem is proposed in Section 3. Then,
in Section 4, we prove an error estimate on the uniform norm of the presented
problem.

2. Statement of the continuous problem

2.1 The continuous system

2.1.1 Full discretization

In order to obtain a full discretization of (1.4), we consider a uniform mesh for
the time variable t and define

(2.1) tn = n ∆t, n = 0, 1, ...,N ,

∆t > 0 being the time-step, and N =
[
T
∆t

]
, the integral part of T

∆t .

Next, we replace the time derivative by means of suitable difference quo-
tients, thus constructing a sequence ui,n ∈ H1

0 (Ω) that approaches u
i (tn, x) .

For simplicity, we confine ourselves to the so-called semi-implicit scheme,
which consists of replacing (1.4) by the following scheme: find a vector Un =
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(
u1,n, ..., uJ,n

)
∈
(
H1

0 (Ω)
)J

such that

(2.2)



1

△t
(ui,n − ui,n−1, v − ui,n) + ai(ui,n, v − ui,n) ≥ (f i,n, v − ui,n),

∀v ∈ H1
0 (Ω),

ui,n ≤ ρ+ inf
µ ̸=i

uµ,n, v ≤ ρ+ inf
µ̸=i

uµ,n, n = 1, ...,N−1,

ui(0) = ui0,

where

△t = T

N
.

By adding (u
i,n−1

△t , v − ui,n) to both parties of the scheme (2.3), we get

(2.3)



ai
(
ui,n, v − ui,n

)
+

1

△t
(
ui,n, v − ui,n

)
≥
(
f i,n +

1

△t
ui,n−1, v − ui,n

)
,

ui,n ≤ ρ+ inf
µ ̸=i

uµ,n, v ≤ ρ+ inf
µ̸=i

uµ,n,

ui (0) = ui0.

The bilinear form ai (., .) , is a noncoercive in H1
0 (Ω) , and satisfies the

following condition: for all φ ∈ H1
0 (Ω) there exists γ > 0, such that

(2.4) ai (φ, φ) + λ ∥φ∥2L2(Ω) ≥ γ ∥φ∥
2
H1

0 (Ω) .

Set

(2.5) bi (u, v) = ai (u, v) + λ (u, v) .

Thanks to [7] the bilinear bi (., .) is strongly coercive and (2.3) can be trans-
formed into the following continuous system of elliptic quasi-variational inequal-

ities (QVIs): find a vector Un =
(
u1,n, ..., uJ,n

)
∈
(
H1

0 (Ω)
)J

such that

(2.6)

b
i
(
ui,n, v − ui,n

)
≥
(
f i,n + λui,n−1, v − ui,n

)
, ∀v ∈ H1

0 (Ω) ,

ui,n ≤ ρ+ inf
µ ̸=i

uµ,n, v ≤ ρ+ inf
µ̸=i

uµ,n, n = 1, ...,N−1,

where

(2.7)

b
i
(
ui,n, v − ui,n

)
= ai

(
ui,n, v − ui,n

)
+ λ

(
ui,n, v − ui,n

)
,

λ =
1

∆t
> 0.
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2.2 Existence and uniqueness

Next, using the preceding assumptions, we shall prove the existence and unique-
ness of a continuous solution for problem (2.6) by means of Banach’s fixed point
theorem.

Let H+ =
∏J
i=1 L

∞
+ (Ω) = {W = (w1, ..., wJ) such that wi ∈ L∞

+ (Ω)},
equipped with the norm

(2.8) ∥W∥∞ = max
1≤i≤J

∥∥wi∥∥
L∞(Ω)

,

where L∞
+ (Ω) is the positive cone of L∞ (Ω) .

2.2.1 A fixed point mapping associated with the system (2.6)

We consider the following mapping:

T : H+ −→ H+,(2.9)

W → TW = ζn =
(
ζ1,n, ..., ζJ,n

)
,

where ζi,n = ∂
(
f i,n, ρ

)
∈ H1

0 (Ω) is a solution to following continuous QVIs:

(2.10)

b
i
(
ζi,n, v − ζi,n

)
≥
(
f i + λwi, v − ζi,n

)
,

ζi,n ≤ ρ+ inf
µ̸=i

ζµ,n, v ≤ ρ+ inf
µ̸=i

ζµ,n, n = 1, ...,N−1.

The problem (2.10) being a coercive QVIs, thanks to [6], [13] has one and
only one solution.

Theorem 1. Under the preceding hypotheses and notations, the mapping T is
a contraction in H+ with a contraction constant 1

β∆t+1 . Therefore, T admits a
unique fixed point which coincides with the solution of problem (2.6).

Proof. We adapt [4].

The mapping T generates the following continuous algorithm.

2.3 A continuous algorithm

Starting from U0 = U0 =
(
u10, ..., u

J
)
the solution of the following equation:

(2.11) bi
(
ui0, v

)
=
(
f i + λui0, v

)
, ∀v ∈ H1

0 (Ω) .

we define

(2.12) ui,n = Tui,n−1, n = 1, ...,N−1,

where ui,n is solution to (2.6).
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Proposition 1. Under the conditions of Theorem 1, we have:

(2.13) max
1≤i≤J

∥∥ui,n − ui,∞∥∥∞ ≤ ( 1

β∆t+ 1

)n
max
1≤i≤J

∥∥ui0 − ui,∞∥∥∞ ,

where ui,∞ is the asymptotic solution of the continuous system of QVIs: find a

vector U∞ =
(
u1,∞, ..., uJ,∞

)
∈
(
H1

0 (Ω)
)J

such that

(23)

b
i
(
ui,∞, v − ui,∞

)
≥
(
f i + λui,∞, v − ui,∞

)
,

ui,∞ ≤ ρ+ inf
µ ̸=i

uµ,∞, v ≤ ρ+ inf
µ ̸=i

uµ,∞.

Proof. We adapt [4].

3. Statement of the discrete problem

Let Ω be decomposed into triangles and let τh denote the set of all those elements;
h > 0 is the mesh size. We assume that the family τh is regular and quasi-
uniform. We consider ϕl, l = 1, 2, ...,m (h) , the usual basis of affine functions
defined by ϕl (Ms) = δl, s where Ms is a vertex of the considered triangulation.

Let us Vh denote the standard piecewise linear finite element space such that

(3.1) Vh =

{
vh ∈ C0

(
Ω̄
)
, vh = 0 on ∂Ω such that:

vh |Ki ∈ P1, K ∈ τh, vh ≤ rhψ, vh (., 0) = v0h in Ω.

}

Let also rh be the usual interpolation operator defined by

(3.2) vh ∈ L2
(
[0, T ] ; H1

0 (Ω)
)
∩C

(
[0, T ] ; H1

0

(
Ω̄
))
, rhvh =

m(h)∑
l=1

v (Ml)ϕl (x) ,

and Bi, 1 ≤ i ≤ J be the matrix with generic entries

(3.3)
(
Bi
)
l, s

= bi (ϕl, ϕs) = ai (ϕl, ϕs) + λ

∫
Ω

ϕl ϕs dx, 1 ≤ l, s ≤ m (h) .

In the sequel of the paper, we shall use the discrete maximum assumption
(d.m.p.). In other words, we shall assume that the matrix Bi, 1 ≤ i ≤ J is an
M-matrix (cf. [14]).

Remark 1. Under the d.m.p., we shall achieve a similar study to that devoted
to the continuous problem, therefore the qualitative properties and results stated
in the continuous case are conserved in the discrete case.
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3.1 The discrete system

As in the continuous situation, one can tackle the discrete system by considering
the equivalent formulation: find a vector Unh = (u1,nh , ..., uJ,nh ) ∈ (Vh)J such that

(3.4)


bi
(
ui,nh , vh − ui,nh

)
≥
(
f i,n + λui,nh , vh − ui,nh

)
, for all vh ∈ Vh,

ui,nh ≤ rh
(
ρ+ inf

µ̸=i
uµ,nh

)
, vh ≤ rh

(
ρ+ inf

µ̸=i
uµ,nh

)
, n = 1, ...,N−1.

Existence and uniqueness of a solution of system (3.5) can be shown simi-
lar to that of the continuous case provided the discrete maximum principle is
satisfied.

3.2 Existence and uniqueness

3.2.1 A fixed point mapping associated with discrete problem (3.5)

We consider the following mapping:

Th : H+ −→ (Vh)J ,(3.5)

W 7→ ThW = ζnh =
(
ζ1,nh , ..., ζJ,nh

)
,

where ζi,nh = ∂h
(
f i,n, ρ

)
∈ Vh is a solution to following discrete coercive QVIs:

(3.6)


bi
(
ζi,nh , vh − ζi,nh

)
≥
(
f i,n + λwi, vh − ζi,nh

)
, vh ∈ Vh,

ζi,nh ≤ rh
(
ρ+ inf

µ ̸=i
ζµ,nh

)
, v ≤ rh

(
ρ+ inf

µ̸=i
ζµ,nh

)
.

Theorem 2. Under the d.m.p and the preceding hypotheses and notation, the
mapping Th is a contraction in H+ with a contraction constant ρ = 1

β∆t+1 .
Therefore, Th admits a unique fixed point which coincides with the solution of
system (3.5).

As in the continuous situation, one can define the following discrete iterative
scheme.

3.3 A discrete algorithm

Starting from U0
h = U0h =

(
u10h, ..., u

J
0h

)
solution of the following equation:

(3.7) bi
(
ui0h, v

)
=
(
f i + λui0h, v

)
, ∀vh ∈ Vh.

we define the sequences

(3.8) ui,nh = Thui,n−1
h , n = 1, ...,N−1,

where ui,nh is solution to (3.3).
Using the above result, we are able to establish the following geometric

convergence of sequence Unh .
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Proposition 2. Under the d.m.p and Theorem 2, we have

(3.9) max
1≤i≤J

∥∥∥ui,nh − ui,∞h ∥∥∥
∞
≤
(

1

β∆t+ 1

)n
max
1≤i≤J

∥∥∥ui,0h − ui,∞h ∥∥∥
∞
.

where ui,∞h is the asymptotic solution of the discrete system of QVIs: find a

vector U∞
h =

(
u1,∞h , ..., uJ,∞h

)
∈ (Vh)J such that

(3.10)


bi
(
ui,∞h , vh − ui,∞h

)
≥
(
f i,n + λui,∞h , vh − ui,∞h

)
,

ui,∞h ≤ rh
(
ρ+ inf

µ̸=i
uµ,∞h

)
, vh ≤ rh

(
ρ+ inf

µ ̸=i
uµ,∞h

)
.

4. L∞-asymptotic behavior

This section is devoted to estimating the error in the L∞-norm between Uh (T, .)
the discrete solution calculated at the moment T = n∆t and U∞ the asymptotic
solution of the continuous system of QVIs (2.14). To this end, we first recall
some known L∞-error estimates results, introduce an auxiliary discrete sequence
and prove a fundamental Theorem.

Theorem 3 ([15, 16]). Let ui0 (respectively, ui0,h), be the solution of problem
(2.11), (respectively (3.7)). Then, there exists a constant C independent of h,
△t and n such that

(4.1) max
1≤i≤J

∥∥ui0,h − ui0∥∥∞ ≤ Ch2 |log h|32 .
We introduce the following auxiliary discrete sequences

(4.2) ũi,nh = Thui,n−1, n = 1, ...,N−1,

with ui0,h is defined in (3.7) and for any n = 1, ...,N−1, ũi,nh is a solution to
following discrete system of variational inequality (V.I.):

(4.3)


bi
(
ũi,nh , v − ũi,nh

)
≥
(
f i,n + λui,n−1, v − ũi,nh

)
, v ∈ H1

0 (Ω) ,

ũi,nh ≤ rh
(
ρ+ inf

µ ̸=i
uµ,n−1

)
, v ≤ rh

(
ρ+ inf

µ̸=i
uµ,n−1

)
,

Un =
(
u1,n, ..., uJ,n

)
is the solution of the continuous problem (2.6).

Remark 2. We notice that ũi,nh represents the standard finite element approx-
imation of ui,n.

Therefore, adapting [13], we have the following

Proposition 3. There exists a constant C independent of h, △t and n such
that

(4.4) max
1≤i≤J

∥∥∥ũi,nh − ui,n∥∥∥∞ ≤ Ch2 |log h|2 .
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Next, by using the above result, we introduce the following:

Lemma 1 ([8]).

(4.5) max
1≤i≤J

∥∥∥ui,nh − ui,n∥∥∥∞ ≤
n∑
p=0

max
1≤i≤J

∥∥∥ũi,ph − ui,p∥∥∥∞ .

Remark 3. Lemma 1 given above plays a crucial role in proving the following
Theorem.

Theorem 4. There exists a constant C independent of h, △t and n such that

(4.6) max
1≤i≤J

∥∥∥ui,∞h − ui,∞
∥∥∥
∞
≤ Ch2 |log h|3 .

Proof. By combining estimates (2.13), (3.9), and (4.5), we get∥∥∥ui,∞h − ui,∞
∥∥∥
∞

=
∥∥∥ui,∞h − ui,n + ui,n − ui,∞

∥∥∥
∞

≤
∥∥∥ui,∞h − ui,n

∥∥∥
∞

+
∥∥ui,n − ui,∞∥∥∞

≤
∥∥∥ui,∞h − ui,nh + ui,nh − u

i,n
∥∥∥
∞

+
∥∥∥ui,n − ui,nh + ui,nh − u

i,∞
∥∥∥
∞

≤
∥∥∥ui,∞h − ui,nh

∥∥∥
∞

+
∥∥∥ui,nh − ui,n∥∥∥∞ +

∥∥∥ui,n − ui,nh ∥∥∥∞ +
∥∥∥ui,nh − ui,∞∥∥∥∞

≤
∥∥∥ui,∞h − ui,nh

∥∥∥
∞

+ 2
∥∥∥ui,nh − ui,n∥∥∥∞ +

∥∥∥ui,nh − ui,n + ui,n − ui,∞
∥∥∥
∞

≤
∥∥∥ui,∞h − ui,nh

∥∥∥
∞

+ 3
∥∥∥ui,nh − ui,n∥∥∥∞ +

∥∥ui,n − ui,∞∥∥∞ .

Applying the previous results of Propositions 1, 2, Theorem 3 and Lemma 1,
we get∥∥∥ui,∞h − ui,∞

∥∥∥
∞
≤
∥∥∥ui,∞h − ui,nh

∥∥∥
∞

+ 3
∥∥∥ui,nh − ui,n∥∥∥∞ +

∥∥ui,n − ui,∞∥∥∞
≤
(

1

β∆t+ 1

)n ∥∥ui,∞ − ui0∥∥∞ +

(
1

β∆t+ 1

)n ∥∥∥ui,∞h − uih0
∥∥∥
∞

+ 3
n∑
p=0

∥∥∥ūi,ph − ui,p∥∥∥∞
≤
(

1

β∆t+ 1

)n ∥∥ui,∞ − ui0∥∥∞ +

(
1

β∆t+ 1

)n ∥∥∥ui,∞h − uih0
∥∥∥
∞

+ 3

∥∥∥ūi,0h − ui,0∥∥∥∞ +

n∑
p=1

∥∥∥ūi,ph − ui,p∥∥∥∞


≤
(

1

β∆t+ 1

)n ∥∥ui,∞ − ui0∥∥∞ +

(
1

β∆t+ 1

)n ∥∥∥ui,∞h − uih0
∥∥∥
∞

+ Ch2 |log h|
3
2 + nCh2 |log h|2 .
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Finally, taking h2 = ( 1
β∆t+1)

n, we obtain

max
1≤i≤J

∥∥∥ui,∞h − ui,∞
∥∥∥
∞
≤ Ch2 |log h|3 ,

which completes the proof.

Remark 4. It should be noted that the same result was obtained in [8].

Now guided by Propositions 2, Theorem 4, we are in a position to prove the
main result.

Theorem 5. There exists a constant C independent of h, △t and n such that

(4.7) ∥Uh (T, .)− U∞ (.)∥∞ ≤ C

(
h2 |log h|3 +

(
1

β∆t+ 1

)N)
.

Proof. We have

ui,nh (x) = uih (t, x) for all t ∈ ](n− 1) .∆t, n.∆t[ ,

thus

ui,Nh (x) = uih (T, x)

So,∥∥uih (T, x)− ui,∞ (x)
∥∥
∞ =

∥∥∥ui,Nh (x)− ui,∞ (x)
∥∥∥
∞

≤
∥∥∥ui,Nh − ui,∞h

∥∥∥
∞

+
∥∥∥ui,∞h − ui,∞

∥∥∥
∞
.

Applying the previous results of Propositions 2 and Theorem 4, we get

∥∥uih (T, .)− ui,∞∥∥∞ ≤
(

1

β∆t+ 1

)N ∥∥∥ui,∞h − uih0
∥∥∥
∞

+ Ch2 |log h|3

≤ C

(
h2 |log h|3 +

(
1

β∆t+ 1

)N)
,

which completes the proof.
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Abstract. In this article, we prove that if the central idempotents lattice of a Baer
ring and the projection lattice of a ∗-Baer ring center and the set of all saturated subsets
of a Noetherian regular ring are q′-compact, then they are strongly algebraically closed
lattice. Also, for a commutative ring R, it is shown that if the set of idempotents of a
Specker R-algebra is q′-compact, then it is a strongly algebraically closed lattice.

Keywords: strongly algebraically closed lattices, equationally Noetherian lattice,
∗-Baer rings, projection lattice.

1. Introduction

Universal algebraic geometry is a branch of mathematics and it deals with the
solutions of systems of equations over an arbitrary algebraic structure (algebra
for short). The main part of the investigations in this area are due to E. Dani-
yarova, A. Miasnikov, V. Remeslennikov, and the obtained results can be ap-
plied to algebraic geometry over an arbitrary algebra ([6]-[9]). In this paper, for
a commutative ring R, we find some relationship among strongly algebraically
closed lattices, Baer and ∗-Baer rings, and Specker R-algebra.

In section 2, we recall some basic notations and definitions from universal
algebraic geometry. In section 3, it is proved that if central idempotents of a
Baer ring and projection lattice of a ∗-Baer ring center are q′-compact, then
the central idempotents and the projection lattice are strongly algebraically
closed lattice. In addition, it is shown that the set of all saturated subsets of a
Noetherian regular ring is also true. Finally, in section 4, we prove that if the set
of idempotents of a Baer ring S is q′-compact, then it is a strongly algebraically
closed lattice, which S is a Specker R-algebra.

2. Strongly algebraically closed lattices

Let S be a system of equations in an algebra A. The set of all logical conse-
quences of S over A is the radical RadA(S), which VA(S) is the sets of solutions
of S in A. In other words, RadA(S) is the set of all lattice equations f ≈ g such
that VA(S) ⊆ VA(f ≈ g).
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Definition 2.1. We say that two lattices A and B are geometrically equivalent,
if for any system S, we have RadA(S) = RadB(S). A lattice A is q′-compact, if
it is geometrically equivalent to any of its elementary extensions.

The problem of geometric equivalence was posed in [15]. In [13] this problem
was solved for equationally Noetherian groups. Now, in this section of paper we
provide examples of geometric equivalence and q′-compact.

Example 2.2. For the first example of geometric equivalence, we have that
two irreducible and faithful representations of finite groups over the same field
are geometrically equivalent if and only if they are isomorphic. For the second
example of geometric equivalence, we know that if two algebras are logically
Noetherian, then they are geometrically equivalent if and only if they have the
same quasi-identities. Also, consider a field and two its extensions F1 and F2. If
both F1 and F2 are algebraically closed, then they are geometrically equivalent.
Then they have the same equational theories. Actually, it is known that even
their elementary theories coincide. Therefore, if two algebras are geometrically
equivalent in universal logic, then they have the same universal theory.

Example 2.3. For example of q′-compact, it is clear that nontrivial lattices are
geometrically equivalent. It is sufficient to prove that any nontrivial lattice L is
geometrically equivalent to the two-element lattice {0, 1} and finite lattice has
no proper elementary extension.

By a Boolean lattice, we mean a complemented distributive lattice. By a
Boolean algebra, we mean a Boolean lattice together with the unary operation
of complementation (see [4]).

A lattice A is called algebraically closed, if any finite consistent system of
equations with coefficients from A, has a solution in A. A system S with coef-
ficients in A is called consistent, if there is an extension B, such that S has a
solution in B.

Definition 2.4. A lattice A in a class of lattices is said to be strongly alge-
braically closed if every system (not necessarily finite) of equations with pa-
rameters in A which has a solution in some extension B of A in the class, has
already a solution in A.

A lattice A is called equationally Noetherian, if any system of equations
with coefficient in A is equivalent with a finite subsystem. If any system of
equations over A is equivalent with a finite system then it is said weakly equa-
tionally Noetherian. Recall that, equationally and weak equationally Noethe-
rian Boolean algebras (with coefficients) are characterized by Shevlyakov in [17].
Suppose L is an algebraic language and A is an algebra of type L. If we attach
the elements of A as constants to L, then the new language will be denoted
by L(A). We say that the algebra A is finitary equational Noetherian, if every
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finitary system of equations in the language L(A) is reducible over A to a finite
system. A Boolean algebra A is complete if every subset B of A has a least
upper bound

∨
B and a greatest lower bound

∧
B. Here, we state the following

theorem:

Theorem 2.5 ([14]). Let A be a complete Boolean lattice which is q′-compact.
Then A is strongly algebraically closed in the class of distributive lattices.

3. Baer and ∗-Baer rings

In this section, we present some basic notations and definitions that we use
in this paper. For more detailed information, we refer the reader to [1] and
[10]. Recall that the study of Baer rings has its roots in functional analysis and
various authors have investigated properties of the star order (introduced by
Drazin in 1978) on algebras of matrices and of bounded linear operators on a
Hilbert space.

Definition 3.1. A commutative ring R is a Baer ring if the annihilator ideal of
each subset of R is a principal ideal generated by an idempotent.

Theorem 3.2. Let B be central idempotents of a Baer ring R. If B is q′-
compact, then B is a strongly algebraically closed lattice.

Proof. Let x and y be arbitrary elements of the idempotents of the center of
R. We have that

x ∩ y = xy, x ∪ y = x+ y + xy, x′ = 1− x,

form a Boolean algebra, which x ≤ y is defined by xy = x. Thus, B is Baer
ring and Boolean algebra. Now, we prove that the center idempotents of a Baer
ring form a complete lattice. For doing this work, assume that S = {xi | i ∈ I}
subset of B and

Sr = {x ∈ R | ∀s ∈ S (xs = 0)}.

Since the center of a Baer ring is a Baer ring. So, there exists a central idempo-
tent y ∈ B such that Sr = yR. We set z = 1−y and claim that z is a supremum
of the xi. Suppose i ∈ I and t ∈ R. If xit = 0, then t ∈ yR, yt = t, zt = 0. Now,
assume that e is an arbitrary element of R that is idempotent, then xi(1−e) = 0
and we conclude z ≤ e. We observe that z = supxi. For infimum suffices we
set 1− sup(1− xi). So, B is a complete Boolean algebra. By applying theorem
2.3, since B is q′-compact and a complete Boolean algebra, then B a strongly
algebraically closed lattice (see [1]).

Kaplansky’s axiomatic approach for studying simultaneously the classical
equivalence relations on projection lattices is developed in detail, culminating
in the construction of a dimension function in that context.
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Definition 3.3. An element p of a ∗-ring is called a projection if p is a self-
adjoint (p∗ = p) idempotent (p2 = p).

An associative unital ring R is a ∗-ring (or ring with involution) if there
exists an operation ∗ : R −→ R such that (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗,
and (x∗)∗ = x for all x, y ∈ R.

Definition 3.4. A ∗-ring is called Baer ∗-ring if the right annihilator of every
nonempty subset is generated by a projection.

Obviously, 0 and 1 are projections of any ∗-ring. Projection lattices naturally
arise in the context of lattice packings. Now let us recall the following definition
of Rickart ∗-ring of [3].

Definition 3.5. A Rickart ∗-ring is a ∗-ring such that the right annihilator of
each element is the principal right ideal generated by a projection (a self-adjoint
idempotent).

Theorem 3.6. Let P (Z) be the projection lattice of the center of a ∗-Baer ring.
If P (Z) is q′-compact, then P (Z) is a strongly algebraically closed lattice.

Proof. It is not hard to verify that any any Baer ∗-ring is a Rickart ∗-ring and
a Baer ring. Recall that the projections of a Rickart ∗-ring form a lattice, with
e ∪ f = f + RP [e(1 − f)], e ∩ f = e − LP [e(1 − f)] (see [12], Lemma 5.3).
We observe that in a Rickart ∗-ring, every central idempotent is a projection.
Because if u is a arbitrary idempotent element of center of R, then u∗ = u. By
([11], Prop. 2.1), uf = fR with a projection f , whence u = fu = uf = f .
Since, we saw in Theorem 3.2, the central idempotents of a Baer ring form a
complete Boolean algebra. So, the projection lattice of the center of ∗-Baer ring
is a complete Boolean algebra. Here, P (Z) is q′-compact. By theorem 2.1, P (Z)
is a strongly algebraically closed lattice (see [1]).

A non empty subset F of a commutative ring R with identity is said to be
saturated if for any x and y of R we have

xy ∈ F ⇐⇒ x, y ∈ F.

Now in the following Corollary we consider relationship between Noetherian
regular rings and strongly algebraically closed lattices.

Corollary 3.7. Suppose that S(R) is the set of all saturated subsets of a Noethe-
rian regular ring R. If S(R) is q′-compact, then S(R) is a strongly algebraically
closed lattice.

Proof. We know that if R is a Noetherian regular ring, then R is a direct sum
of fields and will have

R = F1 ⊕ . . .⊕ Fn.
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Also, the prime ideals are

Pj = Πi̸=jFi, j = 1, 2, . . . , n

and S(R) is isomorphic to the Boolean algebra of subsets of {1, 2, . . . ,n}. Thus,
S(R) is a Boolean algebra. On the other hand, it is clear that the set of all
saturated subsets of a commutative ring with identity form a complete lattice.
Hence, S(R) is a complete Boolean algebra and q′-compact. From theorem 2.3,
we immediately obtain that is a strongly algebraically closed lattice.

4. Specker R-algebra of a commutative ring

Throughout this section, R will be a commutative ring with 1. A R-algebra
is a ring with identity together with a ring homomorphism f : R −→ A such
that the subring f(R) of A is contained within the center of A. Let S be a
commutative R-algebra and Id(S) be the set of idempotents of S. We call a
nonzero idempotent e of S faithful if for each a ∈ R, whenever ae = 0, then
a = 0. Let B be a Boolean subalgebra of Id(S) that generates S. We say
that B is a faithful generating algebra of idempotents of S if each nonzero
e ∈ B is faithful. We recall that an R-algebra S is Specker R-algebra if S is a
commutative R-algebra that has a faithful generating algebra of idempotents [5].
To build Specker R-algebras from Boolean algebras we introduce a construction
which has its roots in the work of Bergman [2] and Rota [16].

Theorem 4.1. Let S be a Specker R-algebra. If S is Baer and Id(S) is q′-
compact, then Id(S) is a strongly algebraically closed lattice.

Proof. We know that if S is a commutative R-algebra, then S is a commutative
ring with 1, it is well known that the set Id(S) of idempotents of S is a Boolean
algebra via the operations

e ∨ f = e+ f − ef, e ∧ f = ef, ¬e = 1− e.

In order to prove that Id(S) is a strongly algebraically closed lattice, it remains
to show that Id(S) is a complete lattice. In the other words, we show that
for every subset E = {ei | i ∈ I} of idempotents of S has a largest element.
One can easily prove that if K = {1 − ei | i ∈ I}, then annS(1 − ei) = eiS and
annS(K) = ∩eiS.We have S is Baer, so that annS(K) = eS for some e ∈ Id(S).
Now, we will prove e = ∧ei. It is easy to see e ∈ annS(K), we have eei = e
and then e ≤ ei. But this says e is a lower bound of the ei. First note that if
f ∈ Id(S) be a lower bound of the ei, then fei = f , as a result (1 − ei)f = 0.
Therefore, f ∈ annS(K) = eS. This shows that fe = f , so f ≤ e. Thus,
e = ∧iei. It can be observe that, Id(S) is a complete Boolean algebra and is
q′-compact. By theorem 2.3, Id(S) is a strongly algebraically closed lattice (see
[1]).
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Corollary 4.2. Let R be indecomposable and S be a Specker R-algebra. If S
is Baer and Id(S) is q′-compact, then Id(S) is a strongly algebraically closed
lattice.
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Abstract. We extend the fuzzy approach of algebraic hyperstructures to the context
of complete fuzzy hypergroups. In this paper we introduce the classes of n∗− complete
fuzzy hypergroups and γ∗n− complete fuzzy hypergroups which they are generalizations
of two important classes of hypergroups, also we find some properties of them. Finally,
we study 2∗− complete fuzzy hypergroups and give some properties and examples in
this regard.

Keywords: fuzzy hypergroup, n∗− complete fuzzy hypergroup, γ∗n− complete fuzzy
hypergroup.

1. Introduction

The study of fuzzy hyperstructures is an interesting research topic for fuzzy sets.
There are many works on the connections between fuzzy sets and hyperstruc-
tures [3, 10]. In this paper we introduce two types of fuzzy hypergroups: n∗−
complete fuzzy hypergroups and γ∗n− complete fuzzy hypergroups. They are
generalizations of two important classes of hypergroups: n∗− complete hyper-
groups [4] and γ∗n− complete hypergroups [5]. Notice in a fuzzy hypergroup the
elements are combined by a fuzzy hyperoperations, while in a hypergroup, the
elements are combined by a crisp hyperoperations. This idea was continuated

∗. Corresponding author
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by Sen, Ameri and Chowdhury in [10] where fuzzy semihypergroups are intro-
duced. The fundamental relations are one of the most important and interesting
concepts in fuzzy hyperstructures that ordinary algebraic structures are derived
from fuzzy hyperstructures by them. Fundamental relations α∗ and γ∗ on fuzzy
hypersemigroups are studied in [1] and [9]. In this paper, by using this relations,
we introduce and study two types of fuzzy hypergroups and we present some
properties of them. In the last section, we study in particular the 2∗− complete
fuzzy hypergroups and we show that some classes of fuzzy hypergroups (fuzzy
complete hypergroups, fuzzy join spaces, fuzzy canonical hypergroups, fuzzy
steiner hypergroups) are 2∗− complete.

2. Preliminaries

Recall that for a non-empty set S, a fuzzy subset µ of S is a function from S
into the real unite interval [0, 1] and Supp(µ) = {x ∈ S : µ(x) > 0}.We denote
the set of all nonzero fuzzy subsets of S by F ∗(S). Also for fuzzy subsets µ1 and
µ2 of S, then µ1 is smaller than µ2 and write µ1 ≤ µ2 iff for all x ∈ S, we have
µ1(x) ≤ µ2(x). Define µ1 ∨ µ2 and µ1 ∧ µ2 as follows: ∀x ∈ S, (µ1 ∨ µ2)(x) =
max{µ1(x), µ2(x)} and (µ1 ∧ µ2)(x) = min{µ1(x), µ2(x)}.

A fuzzy hyperoperation on S is a mapping ◦ : S × S 7→ F ∗(S) written as
(a, b) 7→ a ◦ b = ab. The couple (S, ◦) is called a fuzzy hypergroupoid.

Definition 2.1 ([10]). A fuzzy hypergroupoid (S, ◦) is called a fuzzy hypersemi-
group if for all a, b, c ∈ S, (a ◦ b) ◦ c = a ◦ (b ◦ c), where for any fuzzy subset µ of
S and all r ∈ S

(a ◦ µ)(r) =


∨
t∈S

((a ◦ t)(r) ∧ µ(t)), µ ̸= 0

0, µ = 0

(µ ◦ a)(r) =


∨
t∈S

(µ(t) ∧ (t ◦ a)(r)), µ ̸= 0

0, µ = 0

Definition 2.2. Let µ, ν be two fuzzy subsets of a fuzzy hypergroupoid (S, ◦).
Then we define µ◦ν by (µ◦ν)(t) =

∨
p,q∈S(µ(p)∧ (p◦ q)(t)∧ν(q)), for all t ∈ S.

Definition 2.3 ([10]). A fuzzy hypersemigroup (S, ◦) is called fuzzy hypergroup
if x ◦ S = S ◦ x = χS , for all x ∈ S, where χS is characteristic function of S.

Example 2.4. Consider a fuzzy hyperoperation ◦ on a non-empty set S by
a ◦ b = χ{a,b}, for all a, b ∈ S,. Then (S, ◦) is a fuzzy hypersemigroup and fuzzy
hypergroup as well.

Definition 2.5 ([10]). Let ρ be an equivalence relation on a fuzzy hyper-
semigroup (S, ◦), we define two relations ρ and ρ on F ∗(S) as follows: for
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µ, ν ∈ F ∗(S); µρν if µ(a) > 0 then there exists b ∈ S such that ν(b) > 0
and aρb, also if ν(x) > 0 then there exists y ∈ S, such that µ(y) > 0 and xρy.
µρν if for all x ∈ S such that µ(x) > 0 and for all y ∈ S such that ν(y) > 0 ,
xρy.

Definition 2.6. An equivalence relation ρ on a fuzzy hypersemigroup (S, ◦) is
said to be (strongly) fuzzy regular if aρb, a′ρb′ implies a ◦ a′ ρb ◦ b′(a ◦ a′ ρ b ◦ b′).

Definition 2.7 ([1]). Let (S, ◦) be a fuzzy hypergroup. We define the relation
α on S in the following way: α = ∪n≥1αn, where α1 = {(x, x) | x ∈ S} and for
every n > 1 and (a, b) ∈ S2

aαnb⇐⇒ ∃x1, ..., xn ∈ S(n ∈ N): (x1◦...◦xn)(a) > 0 and (x1◦...◦xn)(b) > 0.
It is clear that α is symetric and reflexive. We take α∗ to be the transitive

closure of α. Then α∗ is an equivalence relation on S.

Theorem 2.8 ([1]). The relation α∗ is the smallest equivalence relation on a
fuzzy hypergroup (S, ◦) such that S/α∗ is a group.

Definition 2.9 ([9]). Let (S, ◦) be a fuzzy hypergroup. The commutative fun-
damental relation on (S, ◦) is the smallest equivalence relation ρ on S such that
the quotient structure (S/ρ,⊕) is a commutative group.

Let (S, ◦) be a fuzzy hypersemigroup. We define the relation γ on S in
the following way, γ =

∪
n≥1 γn where γ1 = {(s, s) : s ∈ S} and for every

n ≥ 2, aγnb if ∃x1, ..., xn ∈ S(n ∈ N), ∃σ ∈ Sn: (x1 ◦ . . . ◦ xn)(a) > 0 and
(xσ1 ◦ . . . ◦ xσn)(b) > 0.

It is clear that γ is symetric and reflexive. We take γ∗ to be the transitive
closure of γ. Then γ∗ is an equivalence relation on S.

Proposition 2.10 ([9]). The relation γ∗ is a strongly fuzzy regular relation.

Corollary 2.11 ([9]). Let S be a fuzzy hypersemigroup. Then the quotient S/γ∗

is a commutative semigroup.

3. n∗− and γ∗n− complete fuzzy hypergroups

For every n ∈ N we will write α∗
n and γ∗n to denote the transitive closure of the

relations αn and γn.

Definition 3.1. A fuzzy hypergroup S is said to be n− complete if for every
z1, ..., zn, s, t ∈ S, we have the following condition:

t ∈ Supp(
n∏
i=1

zi), tαs⇒ s ∈ Supp(
n∏
i=1

zi).

Proposition 3.2. (i) αn ⊆ αn+1,∀n ∈ N;
(ii) α∗

n ⊆ α∗
n+1, ∀n ∈ N.
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Proof. (i) ∀(x, y) ∈ S2, xαny ⇒ ∃(z1, ..., zn) ∈ Sn :

(

n∏
i=1

zi)(x) > 0 and (

n∏
i=1

zi)(y) > 0.

Since

0 < (

n∏
i=1

zi)(x) =
∨
r∈S

[(z1...zn−1)(r) ∧ (rzn)(x)],

there exists r ∈ S such that (z1...zn−1)(r) > 0 and (rzn)(x) > 0. Also since S is
a fuzzy hypergroup ∃(t1, t2) ∈ S2 such that (t1t2)(zn) > 0. Now

(z1....zn−1t1t2)(x) =
∨
p,q∈S

[(

n−1∏
i=1

zi)(p) ∧ (t1t2)(q) ∧ (pq)(x)].

Let p = r and q = zn, then (z1....zn−1t1t2)(x) > 0. In the similar way, we can
show (z1....zn−1t1t2)(y) > 0, Therefore xαn+1y and αn ⊆ αn+1.

(ii) It follows from (i).

Proposition 3.3. ∀(a, b, x) ∈ S3, aα∗
nb⇒ (ax)α∗

n+1(bx), (xa)α
∗
n+1(xb).

Proof. If aα∗
nb, then ∃(z1, ..., zm) ∈ Sm : a = z0αnz1αn....zmαnzm+1 = b. Thus

∀j, 0 ≤ j ≤ m, ∃(αj1, α
j
2, ..., α

j
n) ∈ Sn : {zj , zj+1} ⊆ Supp(

∏n
i=1 α

j
i ). There-

fore ∀j ∈ {0, 1, ...,m}, ∀t ∈ S such that (zjx)(t) > 0, since (αj1...α
j
nx)(t) =∨

p∈S [(
∏n
i=1 α

j
i )(p) ∧ (px)(t)], we let p = zj and obtain t ∈ Supp(αj1...α

j
nx).

Also for every s ∈ S, if (zj+1x)(s) > 0, then s ∈ Supp(αj1...α
j
nx). Therefore

(zjx)αn+1(zj+1x) and so (ax)α∗
n+1(bx). In a analogous way, we can prove the

rest.

Proposition 3.4. α∗
n = α∗

n+1 ⇒ α∗
n+1 = α∗

n+2.

Proof. It is sufficient to prove that αn+2 ⊆ α∗
n+1.

If {x, y} ⊆ Supp(
∏n+2
i=1 zi), then there exist {t1, t2} ⊆ Supp(

∏n+1
i=1 zi) such

that (t1zn+2)(x) > 0 and (t2zn+2)(y) > 0. Obviously t1αn+1t2 and t1α
∗
nt2. Thus

from 3.3, (t1zn+2)α∗
n+1(t2zn+2). It implies that xα∗

n+1y.

Proposition 3.5. If there exists n ∈ N such that α∗
n = α∗

n+1 then α = α∗
n.

Proof. It follows from 3.4 and Definition of the relation α.

Definition 3.6. A fuzzy hypergroup S is said to be n∗− complete if there exists
n ∈ N such that α∗

n = α and α∗
n ̸= α∗

n−1.

Remark 1. A fuzzy hypergroup S is n∗− complete if and only if αn+1 ⊆ α∗
n ̸=

α∗
n−1.
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Remark 2. S is n∗− complete if and only if n is the minimum integer such
that S/α∗

n is a group.

Proposition 3.7. Every finite fuzzy hypergroup is n∗− complete.

Proof. It follows from α∗
1 ⊆ α∗

2 ⊆ ... ⊆ α∗
n ⊆ ....

Remark 3. For every finite fuzzy hypergroup, there exists m ∈ N such that
α = αm.

Proposition 3.8. If S is n-complete fuzzy hypergroup then ∃m ≤ n such that
S is m∗− complete.

Definition 3.9. A fuzzy hypergroup S is said to be γn− complete if for every
z1, ..., zn, s, t ∈ S, and every σ ∈ Sn the following condition holds:

t ∈ Supp(
n∏
i=1

zσ(i)), tγs⇒ s ∈ Supp(
n∏
i=1

zi).

Proposition 3.10. (i) γn ⊆ γn+1, ∀n ∈ N;
(ii) γ∗n ⊆ γ∗n+1,∀n ∈ N.

Proof. (i) If xγny, then ∃(z1, ..., zn) ∈ Sn, ∃σ ∈ Sn :

(
n∏
i=1

zi)(x) > 0 and (
n∏
i=1

zσ(i))(y) > 0.

Since S is a fuzzy hypergroup, so ∃(t1, t2) ∈ S2 such that (t1t2)(zn) > 0. Let
zi′ = zi, for 1 ≤ i ≤ n− 1 and zn′ = t1, zn+1′ = t2. Thus (

∏n+1
i=1 zi′)(x) > 0. Let

σ(k) = n, now since (zσ(1)...zσ(k)zσ(k+1)...zσ(n))(y) =
∨
p,q∈S [(zσ(1)...zσ(k))(p) ∧

(zσ(k+1)...zσ(n))(q)∧ (pq)(y)], there exist p, q ∈ S such that (zσ(1)...zσ(k))(p) > 0,
(zσ(k+1)...zσ(n))(q) > 0 and (pq)(y) > 0. But (zσ(1)...zσ(k))(p) > 0 implies
that there exists r ∈ S such that (zσ(1)...zσ(k−1))(r) > 0 and (rzn)(p) > 0.
Now, (zσ(1)...zσ(k−1)t1t2zσ(k+1)...zσ(n))(y) =

∨
p′,q′∈S [(zσ(1)...zσ(k−1)t1t2)(p

′) ∧
(zσ(k+1)...zσ(n))(q

′) ∧ (p′q′)(y)].
Let p′ = p and q′ = q. Since

(zσ(1)...zσ(k−1)t1t2)(p) =
∨

r′,s′∈S
[(zσ(1)...zσ(k−1))(r

′) ∧ (t1t2)(s
′) ∧ (r′s′)(p)].

Let r′ = r and s′ = zn. Therefore (zσ(1)...zσ(k−1)t1t2zσ(k+1)...zσ(n))(y) > 0
and xγn+1y.

(ii) It follows from (i).

Proposition 3.11. ∀(a, b, x) ∈ S3,

aγ∗nb⇒ (ax)γ∗n+1(bx) and (xa)γ∗n+1(xb).



ON THE n∗− AND γ∗n− COMPLETE FUZZY HYPERGROUPS 325

Definition 3.12. A fuzzy hypergroup S is said to be γ∗n− complete if there
exists n ∈ N and n is the smallest integer such that γ∗n = γ and γ∗n ̸= γ∗n−1.

We know α∗ = γ∗ in commutative fuzzy hypergroups, thus we obtain the
following:

Proposition 3.13. A commutative fuzzy hypergroup S is γ∗n− complete if and
only if S is n∗− complete fyzzy hypergroup.

Proposition 3.14. S is γ∗n− complete fuzzy hypergroup if and only if S/γ∗n is
an abelian group.

Proposition 3.15. If S is γn− complete fuzzy hypergroup then ∃m ≤ n such
that S is γ∗m− complete.

Proof. If S is γn− complete, then γn = γ, so γ∗n = γ and there exists m ≤ n
such that γ∗m = γ and γ∗m−1 ̸= γ∗m.

Proposition 3.16. Every finite fuzzy hypergroup is γ∗n− complete.

Let ϕ : S → S/α∗ be the canonical projection, then we denote ωS =
ϕ−1(1S/α∗).

Proposition 3.17. We have:
(i) If ∀(v, w) ∈ ω2

S , vαnw then α = αn+1;
(ii) If ∀(v, w) ∈ ω2

S , vα
∗
nw then α = α∗

n+1.

Proof. (i) If xαy then ∃(v, w) ∈ ω2
S such that (xv)(y) > 0 and (xw)(x) > 0.

But for the hypothesis vαnw and so (xv)αn+1(xw), whence xαn+1y, therefore
α ⊆ αn+1.

(ii) It follows from (i) and 3.3.

Remark 4. Both of two parts of last proposition are verifiable, when we use γ
instead of α.

Corollary 3.18. If ∀(u,w) ∈ ω2
S, uα

∗
nw and ∃(u′

, w
′
) ∈ ω2

S such that u
′
/∈

α∗
n−1(w

′
), then S is n∗-complete or (n+ 1)∗-complete.

Remark 5. Both of the two possibilities of corollary are verifiable, as the fol-
lowing examples:

Example 3.19. Let (S, ◦) be a fuzzy hypergroup, where is defined by:

(a ◦ a)(a) = 0.3, (b ◦ a)(b) = (a ◦ b)(b) = 0.1,

(a ◦ c)(c) = (c ◦ a)(c) = (c ◦ b)(c) = 0.2,

(b ◦ b)(a) = (b ◦ b)(b) = (b ◦ c)(c) = 0.4, (c ◦ c)(a) = (c ◦ c)(b) = 0.5

The remaining binary products are zero. In this case it is easy to verify that
S is n∗-complete.
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Example 3.20. Let (S′ = {a, b, c, d}, ◦) be a fuzzy hypergroup with the hyper-
operation is defined by:

(a ◦ a)(a) = (a ◦ b)(b) = (a ◦ c)(c) = (a ◦ d)(d) = 0.1 = (b ◦ a)(b)
= (c ◦ a)(c) = (d ◦ a)(d),

(b ◦ b)(a) = (b ◦ c)(d) = (b ◦ d)(c) = 0.2,

(c ◦ c)(a) = (c ◦ c)(b) = (c ◦ d)(a) = 0.4,

(c ◦ d)(b) = (c ◦ b)(d) = (d ◦ b)(c) = 0.3,

(d ◦ c)(a) = (d ◦ c)(b) = (d ◦ d)(a) = (d ◦ d)(b) = 0.5.

It is easy to verify that S′ is (n+ 1)∗-complete.

4. On 2∗-complete fuzzy hypergroup

Lemma 4.1. If A denotes the family of the fuzzy hyperproducts of two elements
of S and there exists a family M = {M1,M2, . . . ,Mp} ⊆ A such that Mi ∧
Mi+1 ̸= 0 (i ∈ {1, 2, . . . , p − 1}) and

∨p
i=1Mi = χS then S is 2∗-complete and

ωS = S.

Proof. It is sufficient to prove that α3 ⊆ α∗
2. If xα3y, then ∃(z1, z2, z3) ∈ S3 such

that (
∏3
i=1 zi)(x) > 0 and (

∏3
i=1 zi)(y) > 0 since (x, y) ∈ S2 and χS =

∨p
i=1Mi.

Thus:

A: ∃Mi such that Mi(x) > 0 and Mi(y) > 0 then xα∗
2y.

B: ∃Mi such that Mi(x) > 0 and ∃Mi+1 such that Mi+1(y) > 0, since
Mi ∧Mi+1 ̸= 0 → ∃t ∈ S such that Mi(t) > 0 and Mi+1(t) > 0 thus xα2t and
tα2y then xα∗

2y.

C: ∃Mi such thatMi(x) > 0 and ∃Mj (j ̸= i, j ̸= i+1) such thatMj(y) > 0
since Mi∧Mi+1 ̸= 0 then there exists t1 ∈ S; Mi(t1) > 0 and Mi+1(t1) > 0 then
xα2t1 and since Mi+1 ∧Mi+2 ̸= 0 thus there exists t2 ∈ S; Mi+1(t2) > 0 and
Mi+2(t2) > 0 then t1α2t2. So as a consequence one obtains tjα2y and so xα∗

2y.
�

Definition 4.2. An equivalence relation R on a fuzzy hypergroup S is called
fuzzy feebly regular to the right if for every x, y ∈ S and ∀a ∈ S, ∃(u, v) ∈ S2

such that (x ◦ a)(u) > 0 and (y ◦ a)(v) > 0 and uRv. Analogously, we define the
fuzzy feebly regularity to the left. An equivalence fuzzy feebly regular to the
right and to the left is called fuzzy feebly regular.

Proposition 4.3. Let S = (S, ◦) be a fuzzy hypergroup. The following state-
ments are equivalent:

(i) S is 2∗-complete;
(ii) α∗

2 is fuzzy strongly regular;
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(iii) α∗
2 is fuzzy regular;

(iv) α∗
2 is fuzzy feebly regular;

(v) ∀(x, y) ∈ S2, xα∗
2y =⇒ ∀a ∈ S, [α∗

2(x ◦ a) ∩ α∗
2(y ◦ a) ̸= ∅] and [α∗

2(a ◦
x) ∩ α∗

2(a ◦ y) ̸= ∅].

Proof. (i)⇒ (ii)⇒ (iii)⇒ (iv) are immediate.
We show that (iv) ⇒ (v). Since ∃α ∈ S; (x ◦ a)(α) > 0 and ∃γ ∈ S;

(y ◦a)(γ) > 0 and αα∗
2γ, it follows that α

∗
2(α) ⊆ α∗

2(x◦a) and α∗
2(γ) ⊆ α∗

2(y ◦a).
But β∗2(α) = β∗2(γ) then we obtain the implication.

We prove now (v)⇒ (ii). Let xα∗
2y, certainly ∀a ∈ S, ∃α ∈ S; (x◦a)(α) > 0

and ∃γ ∈ S; (y ◦ a)(γ) > 0 and αα∗
2γ. Thus it follows that α

∗
2(x ◦ a) = α∗

2(α) =
α∗
2(γ) = α∗

2(y ◦ a) whence ∀z ∈ S; (x ◦ a)(z) > 0 and ∀t ∈ S; (y ◦ a)(t) > 0,
zα∗

2t. It shows that fuzzy strong regularity to the right. Similarly it proves fuzzy
strong regularity to the left.

Finally, we prove that (ii)⇒ (i), being α∗
2 ⊆ α and considering that α is the

smallest fuzzy strongly regular equivalence on a fuzzy hypergroup S. �

Corollary 4.4. In every fuzzy hypergroup S, the following conditions, are equiv-
alent:

(i) S is 2∗-complete;
(ii) (S/α∗

2,⊗) is a group;
(iii) (S/α∗

2,⊗) is a hypergroup.

Proposition 4.5. In every fuzzy hypergroup S = (S, ◦) we have

α∗
2 = α⇐⇒ ∀(x, y) ∈ S2, ∃z ∈ S;α∗

2(x) ◦ α∗
2(y) ⊆ α∗

2(z).

Proof. Let C(a) be the complete closure of a in S [1]. The right implication
is a consequence of the fact that ∀a ∈ S, α∗

2(a) = C(a). Now we prove that
α∗
2 is fuzzy strongly regular. If xα∗

2y then α∗
2(x) = α∗

2(y) and so ∀a ∈ S,
α∗
2(x) ◦α∗

2(a) = α∗
2(y) ◦α∗

2(a). For the hypothesis, there exists an element z ∈ S
such that α∗

2(x) ◦ α∗
2(a) = α∗

2(y) ◦ α∗
2(a) ⊆ α∗

2(z). Thus ∀t ∈ S; (x ◦ a)(t) > 0
and ∀u ∈ S; (y ◦ a)(u) > 0. We obtain {t, u} ⊆ α∗

2(z) and finally tα∗
2u. In the

analogous way we can prove the strong regularity to the left. �

Definition 4.6. A fuzzy hypergroup S = (S, ◦) is called 1-fuzzy hypergroups if
wS is a singleton.

Proposition 4.7. If S is 1-fuzzy hypergroup, then S is 2∗-complete.

Proof. Let wS be a singleton {e}, we have that the classes modulo α are the
fuzzy hyperproducts e ◦ a, ∀a ∈ S. It follows at once that α = α2 = α∗

2. �

Definition 4.8. A fuzzy hypergroup S is called fuzzy steiner hypergroup if
∀(x, y) ∈ S2: (x ◦ y)(x) > 0 and (x ◦ y)(y) > 0.

Proposition 4.9. Every fuzzy steiner hypergroup is 2∗-complete.
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Proof. Since in such fuzzy hypergroup ∀(x, y) ∈ S2, we have (x◦ y)(x) > 0 and
(x ◦ y)(y) > 0, thus xα2y. Therefore α = α2 = α∗

2. �

Definition 4.10 ([7]). If ◦ : S×S −→ F ∗(S) is a fuzzy hypercomposition, then
S is called mimic fuzzy hypergroup (fuzzyM -hypergroup), if the following two
axioms are valid:

i. (a ◦ b) ◦ c = a ◦ (b ◦ c), ∀(a, b, c) ∈ S3 (associativity)

ii. a/b ̸= 0H and a \ b ̸= 0H , (a, b) ∈ S2.

Proposition 4.11 ([7]). In a fuzzyM -hypergroup S, it holds that a ◦ b ̸= 0S
(∀(a, b) ∈ S2).

Example 4.12. Every fuzzyM -hypergroup S is a fuzzy steiner hypergroup.
Thus S is 2∗-complete.

Definition 4.13. A commutative fuzzy hypergroup S is called a fuzzy join
space if ∀(a, b, c, d) ∈ S4,

a/b ∧ c/d ̸= 0 =⇒ (a ◦ d) ∧ (b ◦ c) ̸= 0.

Proposition 4.14. Every fuzzy join space S is 2∗-complete.

Proof. Suppose S = (S, ◦) is a fuzzy join space which is not group. We prove
that α3 ⊆ α∗

2. If tα3u then ∃(z1, z2, z3) ∈ S3 such that (z1 ◦ z2 ◦ z3)(t) > 0 and
(z1◦z2◦z3)(u) > 0 and z1◦z2◦z3 = z1◦z3◦z2. It follows that ∃(a1, a2) ∈ S2, such
that (z1 ◦ z2)(a1) > 0 and (z1 ◦ z2)(a2) > 0 and ∃(b1, b2) ∈ S2; (z1 ◦ z3)(b1) > 0
and (z1 ◦ z3)(b2) > 0. Therefore (a1 ◦ z3)(t) > 0 and (b1 ◦ z2)(t) > 0 too
(a2 ◦ z3)(u) > 0 and (b2 ◦ z2)(u) > 0. Therefore a1/z2 ∧ b2/z3 ̸= 0 and since S is
a fuzzy join space, one obtains that (a1 ◦ z3)∧ (b2 ◦ z2) ̸= 0. Therefore, ∃w ∈ S,
such that (a1 ◦ z3)(w) > 0 and (b2 ◦ z2)(w) > 0 and since (a1 ◦ z3)(t) > 0 and
(b2 ◦ z2)(u) > 0 whence tα∗

2u. �

Definition 4.15. A fuzzy hypergroup S is fuzzy regular if it has at least one
identity and every elements has at least one inverse.

Definition 4.16. A fuzzy regular hypergroup is said to be fuzzy reversible if,
denoting ∀x ∈ S with i(x) the set of the inverses of x, one has ∀(a, b, x) ∈ S3

(b ◦ x)(a) > 0 =⇒ ∃x′ ∈ i(x); (a ◦ x′
)(b) > 0, (x ◦ b)(a) > 0

=⇒ ∃x′′ ∈ i(x); (x′′ ◦ a)(b) > 0.

Definition 4.17. A fuzzy commutative reversible hypergroup is called canonical
if it has a scalar identity and ∀x, i(x) is a singleton.

Corollary 4.18. Canonical fuzzy hypergroups are 2∗-complete.
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Example 4.19. We give now a fuzzy commutative regular hypergroup S with
scalar identity which is not reversible so is not 2∗-complete.

(d ◦ d)(b) = (a ◦ a)(a) = (a ◦ b)(b) = (a ◦ c)(c) = (a ◦ d)(d) = 0.1

(d ◦ c)(d) = (b ◦ a)(b) = (c ◦ a)(c) = (d ◦ a)(d) = (b ◦ b)(a) = 0.2

(d ◦ c)(a) = (b ◦ c)(d) = (b ◦ d)(c) = (c ◦ b)(d) = (d ◦ b)(c) = 0.3

(d ◦ d)(c) = (c ◦ c)(b) = (c ◦ c)(c) = 0.4

(c ◦ d)(a) = (c ◦ d)(d) = 0.5.

The remaining binary products are zero. S is not reversible, since (c ◦ d)(d) > 0
and (d ◦ d−1)(c) = 0, (i(d) = {a, d}), one has α∗

2(a) = {a, d}, α∗
2(b) = {b, c} and

so α∗
2 ̸= α. Thus S is not 2∗-complete.

Conclusions. We introduced the concepts of n∗− complete fuzzy hypergroups
and γ∗n− complete fuzzy hypergroups by using fundamental relation and com-
mutative fundamental relation of a fuzzy hypergroup and we determined some
properties of them. We will study about these topics in fuzzy hyperrings.
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Abstract. We study the topological type of the level sets of generalized two-fixed
center problem. Furthermore, all generic bifurcation of the level sets are presented. We
determine the families of periodic solutions by giving the solution in terms of Jacobi’s
elliptic functions. Finally, the phase portrait is studied, and the singular points are
classified.
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1. Introduction

The first one who investigated the problem of two fixed centers was Euler [11].
From that time, many authors were interested in studying the extensions and
generalization of this problem. Lagrange [21] has extended the Euler’s solution
to the three-dimensional case of motion and made some generalization. Jacobi
[15] generalized the three-dimensional problem of two fixed centers to the case
of arbitrary number of additional attracting centers located at equal distances
from each other on a single straight line with two basic centers of attraction, as
well as to the case of presence of an additional force of arbitrary nature acting
parallel to this straight line. He has also demonstrated the integrability of the
problem under his generalizations.

Thereafter, a large number of papers have been written to generalize Euler
problem such as Liouville [22] and Hiltebeitel [14]. In their papers, the inte-
grable cases were determined in the restricted three-body problem with neglect-
ing centrifugal and Coriolis forces in various combinations. In 1901 Darboux [7]
presented another generalization of the Eulers problem in the case of a planar
motion by introducing complex-conjugated masses and an imaginary distance

∗. Corresponding author
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between them. The potential of attraction always assumes real values in this
case, and the solution of a problem is also reduced to quadratures. The gener-
alized problem of two fixed centers has achieved a large amount of applications
as follows, in [23], a brief of publications on the problem of two fixed centers
was given, included its generalizations and astronomical applications. Darboux
model was studied by Aksensov et al. [1] and they proved that with a conve-
nient selection of free parameters, such a model can be used for constructing
an analytical theory of satellite motion in the gravitational field of an oblate
planet. The motion of a star in the stationary stellar system with an axisym-
metric nucleus was studied by Kaisin for testing the motion of a spacecraft in
the field of an oblate planet with regard to the thrust force of an engine, and
to find the solutions to some other problems of astrodynamics [16, 17]. Koman
[19, 20] applied the asymmetrical version of the three-dimensional problem of
two fixed centers with real masses for studying the motion of artificial satellites
of the Moon. Moreover, the model of three Newtonian fixed attracting cen-
ters with material masses was used by Arazov to approximate the gravitational
potential of Jupiter [4]. Maciejewski and Maria Przybylska [24] studied the
non-integrability of the generalized two fixed centers problem. The integrable
spherical of the Darboux potential in the planar motion of a particle in the
field of two and four fixed Newtonian centers was studied in [3]. Moreover, all
results can be applied in theory of artificial Earth satellites. In [33], the bifur-
cation diagrams for planar motion were analyzed. The motion in 3-dimensions
with arbitrary values of the angular motion was studied. Bifurcations in the
topology of energy surfaces were discussed in terms of relative equilibria. They
also calculated the monodromy matrices from an attempt to construct smooth
actions from the natural ones. The quantum version of the two center prob-
lem was discussed in symmetric and asymmetric cases. New applications of the
generalized two-fixed center problem are introduced in [18]. Thereafter, they
used a symmetric version of the problem and the external field of gravitation
is approximated. Varvoglis et al. [26] determined the trajectories according to
an exhaustive scheme, comprising both periodic and quasi-periodic ones. They
also identified the collision orbits and found that collision orbits are of complete
measure in a 3-D sub manifold of the phase space while asymptotically collision
orbits are of complete measure in the 4-D phase space.

The study of the bifurcation for the problem of two fixed centers was pre-
sented by [27],[28], [29]. She constructed the bifurcation set on the plane of
values of integrals of motion, classification of domains of possible motion on
the configurational space in spaces of constant curvature on a sphere and in
Lobachevsky’s space, while [30] studied the topological analysis of the two-center
problem on the two-dimensional sphere. In [31],[32] the topology of isoenergy
surfaces in the integrable problems of celestial mechanics in spaces of constant
curvature was introduced, the topological invariants were constructed. El-Sabaa
et al. [10] studied the complete description of the real phase topology of a two-
fixed center problem.
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We will give in this article the qualitative analysis of the generalized problem
of two fixed centers by describing the bifurcation of the problem. To describe
the real phase, we review the Liouville- Arnold theorem [5] which was stated
that the phase space trajectories of a Hamiltonian system with n-degrees of free-
dom and possessing n-integrals of motion lie on n-dimensional manifold which
is topologically equivalent to an n-torus and the regular tori (foliate) the bulk of
2n-dimensional phase space and its 2n−1 dimensional energy surface. Fomenko
[12] proposed a new approach in the qualitative theory of integrable Hamiltonian
system, given the separation of the system, the determination of critical values
of the energy momentum map boils down to the analysis of the discriminant
surface of a polynomial. Moreover, the hypersurfaces of the constant of energy
in the space of the variables of separation can be determined and geometrically
represented tori. In quantum mechanics the problem explains non-electron mov-
ing in the electric field of two nuclei may have the same charges (symmetric case)
or different charges (an asymmetric case) [25].

The current paper is organized as follows, a short summary of the problem
is given in Section 2. In Section 3, the topological analysis of the real invariant
manifold of the system was studied by using Fomenko’s theory [6]. Moreover, the
bifurcation diagram of the problem is determined and the complete description
of the topology of the level sets of the first integrals was given. The aim of
Section 4 is to give the families of periodic solutions, this solution is given in
terms of Jacobi’s elliptic functions and when the bifurcations of Liouville tori
take place, the level set becomes degenerate. The phase portrait is given in
Section 5. A concluding remark is given in the last section.

2. Separation of the problem

The classical problem of two fixed centers consists as is known, in the study of
the motion of a mass point under the attraction of two fixed mass points P1 and
P2. Let the coordinate system be Oxyz whose origin is at the center of mass P1

and P2 where the line P1P2 lies on the z-axis as shown in Figure 1. Then, the
equations of motion of the mass points can be written in the form

d2x

dt2
=
∂V

∂x
,

d2y

dt2
=
∂V

∂y
,

d2z

dt2
=
∂V

∂z
,(1)

where the generalized potential function V is defined by

(2) V = f(
M1

r1
+
M2

r2
),

where
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r1 =
√
x2 + y2 + (z − a1)2, r2 =

√
x2 + y2 + (z − a2)2,

M1 and M2 are the masses of P1 and P2, a1 and a2 are the distances of these
points from the coordinate origin.

Introducing the quantity a which is represented the distance between P1 and
P2 such that

a1 =
aM2

M1 +M2
,

a2 = − aM1

M1 +M2
.

(3)

The inverse distances can be expanded in series of Legendre polynomials:

1

r1
=

1

r

∞∑
n=0

(
a1
r

)nPn(
z

r
),

1

r2
=

1

r

∞∑
n=0

(
a2
r

)nPn(
z

r
),

(4)

where

r =
√
x2 + y2 + z2.

Then, the potential function become

(5) V =
fM

r
[1 +

∞∑
n=0

γn
rn
Pn(

z

r
)],

where

γn =
M1a

n
1 +M2a

n
2

M
,M = M1 +M2.

In order to, the potential function V which is given by (5) to be real, it is
sufficient for the quantities M and γn to be real for any value of n. The function
V is real in two case [2]:

1. In the first case: M1,M2, a1 and a2 are pairs of complex conjugate quan-
tities, i.e.

M1 =
M

2
(1 + iσ),

M2 =
M

2
(1− iσ),

a1 = c(σ + i),

a2 = c(σ − i),

(6)

where σ and c are real constants
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2. In the second case: the constants M1,M2, a1 and a2 are real, i.e.

M1 = M(1− γ),

M2 = Mγ,

a1 = aγ,

a2 = −a(1− γ),

(7)

where γ is the ratio of M2 to the total mass M .

We study the generalized problem of two fixed-center in the first case, so the
potential function V has the form

(8) V =
fM

2
[
1 + iσ

r1
+

1− iσ
r2

],

where

r1 =
√
x2 + y2 + [z − c(σ + i)]2,

r2 =
√
x2 + y2 + [z − c(σ − i)]2.

(9)

Expanding V in a series in Legendre polynomial,

(10) V =
fM

r
[1 +

∞∑
k=2

γk
rk
Pk(

z

2
)],

where

(11) γk =
ck

2
[(1 + iσ)(σ + i)k + (1− iσ)(σ − i)k].

Introducing the new coordinates λ, µ, and ω such that

x = c
√

(1 + λ2)(1− µ2) cosw,

y = c
√

(1 + λ2)(1− µ2) sinw,

z = cσ + cλµ,

(12)

then equation (8) became

(13) V =
fM

c
[
λ− σµ
λ2 + µ2

].

The kinetic energy can be written as

(14) T =
c2

2
[(

λ̇2

1 + λ2
+

µ̇2

1− µ2
)I + ẇ2(1 + λ2)(1− µ2)]

where

(15) I = λ2 + µ2,
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then, the lagrange equations are given by

d

dt
(

Iλ̇

1 + λ2
)− 2λ(1− µ2)ω̇2 = − 1

c2
∂V

∂λ
;

d

dt
(

Iµ̇

1 + µ2
) + 2µ(1 + λ2)ω̇2 = − 1

c2
∂V

∂µ
;

d

dt
[ẇ(1 + λ2)(1− µ2)] = 0.

(16)

The area integral is got from the last equation in the system (16)

(17) ẇ(1 + λ2)(1− µ2) = c1.

The Hamiltonian function takes the form

(18) H=
1

2c2
[
λ2+1

λ2+µ2
p2λ+

1−µ2

λ2+µ2
p2µ]− c2c21

2(λ2+1)(1−µ2)
+
fM

c
(
λ−σµ
λ2 + µ2

)=h,

and from (18) we have

(19) F = (λ2 + 1)p2λ + 2fMcλ+
c4c21

1 + λ2
− 2c2λ2h,

(20) F = (1− µ2)p2µ − 2fMcσµ− c4c21
1− µ2

− 2c2µ2h.

Now, by using Hamilton Jacobi method we have

1

2c2
[(1 + λ2)(

∂W

∂λ
)2 + (1− µ2)(∂W

∂µ
)2] + h(λ2 + µ2)

+
fM

c
(λ− σµ)− c2c21

2
(

1

1− µ2
− 1

1 + λ2
) = 0.(21)

The complete integral of this equation is

(22) W = W1(λ) +W2(µ).

Therefore, the Hamilton-Jacobi equation (21) is satisfied if

(23) (λ2 + 1)(
dW1

dλ
)2 =

2h

c2
λ4 +

2fM

c3
λ3 + 2(c2 +

h

c2
)λ2 +

2fM

c3
λ+ (2c2 + c21),

(24) (1−µ2)(dW2

dµ
)2 = −2h

c2
µ4+

2fMσ

c3
µ3+2(c2+

h

c2
)µ2− 2fMσ

c3
µ−(2c2+c21),

this yields that W takes the form

(25) W =

∫ √
L(λ)

λ2 + 1
dλ+

∫ √
M(µ)

1− µ2
dµ,
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where,

(26) L(λ) =
2h

c2
(λ2 + 1)(λ2 + aλ+ c2c

2),

(27) M(µ) =
2h

c2
(1− µ2)(µ2 − aσµ− c2c2),

where a = fM
c , σ is a constant and c2 is a constant of separation. Then,

(28)
∂W

∂c2
= β,

∂W

∂h
= t− t0,

where β is a new arbitrary constant, then we have from (28) the following
equations: ∫

dλ√
L(λ)

+
dµ√
M(µ)

= β,∫
λ2dλ√
L(λ)

+
µ2dµ√
M(µ)

= c2(t− t0).
(29)

Introducing a new time defined by

(30) dτ = (λ2 + µ2)dt.

Therefore, the differential equations satisfied by λ and µ are:∫
dλ√
L(λ)

= τ − τ0,∫
dµ√
M(µ)

= τ − τ0.
(31)

3. Topological analysis

First, we give the following definitions as in [8]:

1. The smooth mapping
F : M2n → Rn,

where F (x) = (f1(x), ..., fn(x)) is said to be the momentum mapping,
M2n is a simplistic manifold in the integrable Hamiltonian system, and
f1, f2, ..., fn its independent integrals.

2. If rank dF (x) < n, and its image F (x) in Rn is a critical value, then the
point x ∈M is a critical point of the momentum mapping.

3. If K is the set of all critical points of the momentum mapping such that
K ⊂ M , then the set Σ = F (k) ⊂ Rn is the bifurcation diagram, where
the whole of Σ is the union of several pieces Σk.
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The topology of the level sets is introduced as

(32) LS = (x, y, ẋ, ẏ) ∈ R4 : H = h, F = c2 ⊂ R4.

The energy-momentum mapping is determined by getting the set of critical
point

(x, y, ẋ, ẏ)→ (H, F )

this means the bifurcation diagram Σ, where Σ is the discriminant of the poly-
nomials L(λ) and M(µ):

(33) Σ=Σ1∪Σ2=[(h, c2)∈R2/disc(L(λ))=0]∪[(h, c2)∈R2/disc(M(µ))=0].

On the point (h, c2), the topological type of LS can be change. The set
R2/Σ consists of 8 connected parts as shown in Figure 2. So, in each connected
portion of the set R2/Σ, the topological type of LS is similar.

The Arnold-Liouville’s theorem [5] state that, for noncritical values of H
and F the level set Ls is a limited union of low dimensional tori, whose num-
ber depends only on the number and the location of the allowed ovals on the
Riemann surface connected to the elliptic curve Γ1 and Γ2 where

Γ1 : ω1 =
√
L(λ) andΓ2 : ω2 =

√
M(µ).

In order to obtain the ovals of of Γ1 and Γ2 (see Table 2), the real roots of
the polynomials L(λ) and M(µ) must be studied which shown in Table 1.

The topological type of LS is either a torus, two-tori 2T , or empty as shown
in Table 2 (see [13]).

For getting the generic bifurcations of the system (1) (see Table 3), we must
use the bifurcation of the roots of the polynomials L(λ) and M(µ) as shown in
Figures (3−4).

4. The solution of the problem

In this section, the elliptic functions and the Jacobi elliptic function of motion
are used. Through the study of topology on the problem, we found that there is
a periodic solution on the curve C2 where 1− 4hc2 = 0, the torus T contracted
to one axial circle S and then disappeared as shown in Figure 4. It found that
λ1,2 = b where b is a constant and the µ parameter takes values in the period
[−1, µ1].

Returning to the second equation of (31), the function M(µ) is a polynomial
of fourth degree with four real roots 1, −1, µ1 and µ2 as shown in Table 4, such
that

(34) M(µ) = (µ+ 1)(µ− 1)(µ1 − µ)(µ− µ2).

If h < 0 and c2 < 0 the real motion is bounded where (−1 ≤ µ ≤ µ1),
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let

(35) µ =
−(1− µ1) + (1 + µ1) sin2 φ

(1− µ1) + (1 + µ1) sin2 φ
, sin2φ =

1− µ1
1 + µ1

µ+ 1

1− µ
,

and

(36) dµ =
4(1− µ1)(1 + µ1) sinφ cosφ

[(1− µ1) + (1 + µ1) sin2 φ]2
dφ.

By substituting from (34-36) in the second equation of (31), we have

(37) t− t0 =
1

d

∫ φ

0

dφ√
1− k21 sin2 φ

,

then, the solution is

(38) µ(τ) =
−(1− µ1) + (1 + µ1)sn

2[d(τ − τ0), k1]
(1− µ1) + (1 + µ1)sn2[d(τ − τ0), k1]

,

and the period T of µ(τ) is

(39) T =
1

d
sn−1(1, k1) =

1

d
K(k1),

where,

(40) d =

√
(1 + µ2)(1− µ1)

2
, k21 =

(µ1 + 1)(1− µ2)
(1 + µ2)(µ1 − 1)

.

Similarly, we get the periodic solution on the curve C3 where 1 + 4hc2 = 0,
µ1,2 = e and the λ parameter takes values on the interval [0, λ2]. By solving the
first equation of (31) the function L(λ) is a polynomial of fourth degree with
two real roots λ1 and λ2 and two complex roots i, −i such that

(41) L(λ) = (λ2 + 1)(λ− λ1)(λ2 − λ).

If h < 0 and c2 > 0 the real motion is bounded where (λ1 ≤ λ ≤ λ2),
let

(42) λ = (
λ2 + λ1

2
− λ2 − λ1

2
)(
n− cosφ

1− n cosφ
), tan2 φ

2
= (

cosσ1
cosσ2

)(
λ2 − λ
λ− λ1

),

where

tanσ1 = λ2,

tanσ2 = λ1,

n = tan
σ1 − σ2

2
tan

σ1 + σ2
2

,

(43)
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and

(44) dλ = −(λ2 − λ1)[1− (λ22 − λ21)2]
[1− (λ22 − λ21) cosφ]2

sinφdφ.

By substituting from (41, 42, 44) in the first equation of (31), we have

(45) t− t0 =
1

g

∫ φ

0

dφ√
1− k21 sin2 φ

,

then, the solution is

(46) λ(τ) =
λ1 + λ2

2
− λ1 − λ2

2

n cn[g(τ − τ0), k2]
1− n cn[g(τ − τ0), k2]

,

where

n = λ22 − λ21, g = −[(1 + λ21)(1 + λ22)]
1
4 ,

k2 =
1

2
[1− 1− λ1λ2√

(1 + λ21)(1 + λ22)
],

(47)

and the period T of λ(τ) is

(48) T =
1

g
sn−1(1, k2) =

1

g
K(k2).

5. Phase portrait of the separated functions

In this section, we use the phase portrait to find the topological translation
of the path. El-Sabaa found the singular points and its types for separated
functions of Kovaleveskaya top by using Kolsoff variables [9].

Consider the function

(49) F1 = h(q21 − q41) +
1

2c2
(1− 2q21 + q41)p21 − k3(q21 − q31)− αq21 − k2,

where k2 = 2c2 + c21, α = c2 and k3 = 2fM
c3

.
To construct the lines of constant F1, we first study the singular points of

F1. These points can be found from the equations

(50)
∂F1

∂p1
=

1

c2
(1− 2q21 + q41)p1 = 0,

(51)
∂F1

∂q1
= 2h(q1 − 2q31) +

2

c2
p21(q

3
1 − q1)− k3(1− 3q21)− 2αq1 = 0,

and hence we have the following where p = 0 we get

(52) −4hq31 + 3q21k3 + 2(h− α)q1 − k3 = 0,
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then from (50) we have q1 = ±1,
we get the two equations

k3 − h− α = 0,

k3 + h+ α = 0.
(53)

The positive regions of the functions

f1 = 128h4 + 36h2k23 + 108k43 − 384h3α

− 504k23α+ 384h2α2 + 36k23α
2 − 128hα3,

f2 = k3 − h− α,
f3 = k3 + h+ α.

(54)

are shown in Figure (5).
It is clear that the curve f1 is tangent to the curves f2 and f3 at the points

1
2 and −12 .

We study the motion in domain Di(i = 1, 2, 3, ..., 8)
1. The first region D1: f1 < 0, f2 < 0, f3 > 0.
At p1 = 0 we have one point with q1 coordinate

q∗1 = k3
4h+

−9k23−24h(h−α)

[6×2
2
3 h(216h2k3−54k33+216hk3α+

√
4(−9k23−24h(h−α))3+(216h2k3−54k23+216hk3α)2)]

1
3

− (216h2k3−54k33+216hk3α+
√

4(−9k23−24h(h−α))3+(216h2k3−54k23+216hk3α)2)
1
3

12×2
1
3 h

.

Then, to get the type of this point, we put

(55) q1 = q∗1 + y, p1 = x,

in the function F1

F1 = [14 + 23
512h4

− 5
16h3

+ 23
96h2

+ 1
3h −

ρ
6912h4

+ 1115

2
2
3 u

4
3

+ 81

128×2
2
3 h4u

4
3
− 27

2
2
3 h3u

4
3

+

27

4×2
2
3 h2u

4
3

+ 54×2
1
3

h2u
4
3
− 246×2

1
3

hu
4
3
− 656×2

1
3 h

u
4
3

+ 408×2
1
3 h2

u
4
3

− 128×2
1
3h3

u
4
3

+ 16×2
1
3h4

u
4
3

+ 105
u +

27
64h4u

− 27
4h3u

+ 315
8h2u

+ 100
hu + 48h

u −
8h2

u −
3

2
4
3 u

2
3

+ 45

128×2
1
3 u

2
3
− 9

2×2
1
3 h3u

2
3

+ 9

8×2
1
3 h2u

2
3

+

9×2
2
3

h2u
2
3
− 41×2

2
3

3hu
2
3

+ 8×2
2
3 h

u
2
3
− 8×2

2
3 h2

3u
2
3

+ 1

2
2
3 u

1
3
− 3

16×2
2
3 h4u

1
3

+ 7

4×2
2
3 h3u

1
3
− 1

8×2
2
3 h2u

1
3
− 2

4
3

h2u
1
3
−

17u
1
3

1536×2
1
3 h4

+ 3u
1
3

64×2
1
3 h3

+ 3u
1
3

128×2
1
3 h2

+ ρu
1
3

82944×2
1
3 h4

+ 5u
2
3

2304×2
2
3 h4
− u

2
3

216×2
2
3 h3
− u

2
3

216×2
2
3 h2

]x2+

[+2− 3
8h−h+ 36×2

2
3

u
2
3
− 27

4×2
1
3 hu

2
3
− 114×2

2
3 h

u
2
3

+ 96×2
2
3 h2

u
2
3
− 24×2

2
3 h3

u
2
3
− u

2
3

24×22/3h ]y2+A0

where A0 contains the zeros terms of x and y,
[
√

4(−9− 24(−2 + h)h)3 + (−54 + 432h+ 216h2)2] = ρ and [(−54 + 432h +
216h2) +

√
4(−9− 24(−2 + h)h)3 + (−54 + 432h+ 216h2)2] = u.

The singular point is hyperbolic point, where

(56)

 ∂2f

∂x2
∂2f
∂x∂y

∂2f

∂x∂y
∂2f
∂y2


x=y=0

< 0.
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In the same manner, we get the type of points in the domains Di where,
i = 1, ..., 8.

Table 5 shows the points and its types for all domains.

6. Summary-conclusions

In the current paper, the generalized two-fixed center problem provided us to
get a complete picture of the dynamics of its potential:

1. The complete characterization of the real phase topology.

2. The periodic solution, where the variables of motion can be described
through the Jacobi elliptic function which is a periodic function, the solu-
tion with Jacobi elliptic function has been explained in details in [30, 31].

3. Phase portrait: the singular points of the separated functions were deter-
mined. The type of these points is either elliptic or hyperbolic point. The
elliptic points in the figures were stable while the hyperbolic points were
unstable.

Table 1: Topological type of LS and real roots of the polynomials L(λ) and
M(µ) for (h, c2) ∈ R2/Σ .

Domain Roots of L(λ) Roots of M(µ)

1 λ2 < λ1 < 0 −1 < µ2 < 0 < µ1 < 1

2 λ2 < 0 < λ1 −1 < 0 < µ2 < µ1 < 1

3 0 < λ2 < λ1 −1 < µ1 < 0 < µ2 < 1

4 λ1 < 0 < λ2 −1 < µ2 < µ1 < 0 < 1

5 0 −1 < µ2 < 0 < µ1 < 1

6 λ2 < 0 < λ1 0

7 0 −1 < µ1 < 0 < µ2 < 1

8 λ1 < 0 < λ2 0

Table 2: Admissible ovals on diagram Σ.
Domain λ− plane 41 µ− plane 42 Topological type

1 ∅ [−1, µ2] ∅
2 [0, λ1] [−1, 0] T

3 [λ2, λ1] [−1, µ1] T

4 [0, λ2] [µ2, µ1] ∪ [−1, 0] 2T

5 ∅ [−1, µ2] ∅
6 [0, λ1] ∅ ∅
7 ∅ [−1, µ1] ∅
8 [0, λ2] ∅ ∅
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Table 3: Generic bifurcations of the level set LS passing from domain i to do-
main j.

2→ 5 4→ 5 2→ 3 4→ 2

2→ 1 4→ 1 4→ 3

2→ 6 4→ 6

2→ 7 4→ 7

2→ 8 4→ 8

3→ 1

3→ 5

3→ 6

3→ 7

3→ 8

T → ∅ 2T → ∅ T → T 2T → T

Table 4: Topological type of LS for (h, c2) ∈ Σ.

Domain λ− plane 41 µ− plane 42 Topological type

C1 [λ2, λ1] [−1, 0] S

C2 [λ2 = λ1] [−1, µ1] S

C3 [0, λ2] [−1, µ2 = µ1] 2S

C4 [λ1 = 0] [−1, µ2 = 0] S

C5 [0, λ2] [−1, µ1] S × (S ∧ S)

Table 5: The type of points in the domains Di
Domain The points Types of points Figures

D1 : f1 < 0, f2 < 0, f3 > 0 (q∗1 , 0) One-hyperbolic point Figure 6

D2 : f1 > 0, f2 < 0, f3 > 0 (q∗1 , 0) One-hyperbolic point Figure 7

D3 : f1 > 0, f2 < 0, f3 < 0 (q∗1 , 0) One-hyperbolic point Figure 8

D4 : f1 > 0, f2 < 0, f3 > 0 (q∗1 , 0) One-elliptic point Figure 9

D5 : f1 < 0, f2 < 0, f3 > 0 (q∗1 , 0) One-elliptic point Figure 10

D6 : f1 > 0, f2 < 0, f3 > 0 (q∗1 , 0) One-elliptic point Figure 11

D7 : f1 < 0, f2 < 0, f3 > 0 (q∗1 , 0) One-elliptic point Figure 12

D8 : f1 > 0, f2 > 0, f3 < 0 (q∗1 , 0) One-hyperbolic point Figure 13
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Figure 1: The description of the problem.

Figure 2: Diagram of bifurcation Σ = Σ1 ∪ Σ2.



BIFURCATIONS OF LIOUVILLE TORI OF GENERALIZED TWO-FIXED CENTER ... 345

Figure 3: The bifurcation of liouvile tori, where a torus spirals twice around a
torus and become twice, as a result, it is created S × (S ∧ S) which
is a circle and two other circles that are above each other but not in
the same level and have one common point.
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Figure 4: Correspondence between bifurcation of roots of polynomials
L(λ) and M(µ) and bifurcation of invariant Liouville tori.
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Figure 5: The regions Di of the real motion on the (h,α) plane.

Figure 6: The one-hyperbolic point in domain D1.



348 F.M. EL-SABAA, M. HOSNY and S.K. ZAKRIA

Figure 7: The one-hyperbolic point in domain D2.

Figure 8: The one-hyperbolic point in domain D3.

Figure 9: The one-elliptic point in domain D4.
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Figure 10: The one-elliptic point in domain D5.

Figure 11: The one-elliptic point in domain D6.

Figure 12: The one-hyperbolic point in domain D7.
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Figure 13: The one-hyperbolic point in domain D8.
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centres fixes, Auc. Mem. de Turin, 4 (1769), 67-121.

[22] J. Liouville, Sur quelques cas particuliers où les équations du mouvement
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Optimization technique for solving fuzzy partial differential
equations under strongly generalized differentiability
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Abstract. In this article, we develop and analyze the use of the combined Laplace
transform-homotopy perturbation method C(LT-HPM) to find the exact and approxi-
mate solutions for fuzzy partial differential equations under strongly generalized differ-
entiability. The C(LT-HPM) allows the solution of the fuzzy partial differential equation
to be calculated in the form of an infinite series in which the components can be easily
computed. The method is tested on some linear and nonlinear fuzzy partial differential
equations with fuzzy initial conditions to show the effectiveness and accuracy of this
method.

Keywords: fuzzy partial differential equation, fuzzy derivative, strongly generalized
differentiability.

1. Introduction

The study of fuzzy partial differential equations (FPDEs) in both theoretical
and numerical calculations of view has been growing in recent years. Generally,
FPDEs in the fuzzy setting are a natural way to model dynamical systems
when information about its behavior is inadequate. Some problems that lead to
FPDEs are found in many applications of which some are mentioned in fields of
physics and engineering where often have to solving those as numerical methods.
Moreover, some researches present applications of FPDEs with fuzzy parameters
that were obtained through fuzzy rule-based system, such as in [1] and [2]. Since
L. Zadeh introduced the concept of fuzzy sets in [3] a great amount of research
has been developed, including the studies on FPDEs as well as fuzzy set theory.
The concept of FPDE was first introduced and investigated by J. Buckley and
T. Feuring in [4].

The numerical solutions of FPDEs have been studied by several authors using
different approaches. In [5] the author have used an explicit finite difference
method (FDM) to solve linear FPDEs based on Seikkala derivative. In [6] also,
the authors have developed optimal homotopy asymptotic method (OHAM) to
find the approximate-analytical solution for linear partial differential equation
involving a fuzzy heat equation based on Seikkala derivative. These approaches
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have drawbacks; it solves only linear FPDEs but does not discuss the nonlinear
FPDEs. Hence, the fuzzy solution becomes fuzzier as time goes by [7, 8], and
it behaves quite differently from the crisp solution. The strongly generalized
differentiability was first introduced in [9] and studied in [7, 10, 11, 12, 16, 17,
33, 34]. This concept permits us to resolve the above-mentioned drawbacks.
Indeed, the strongly generalized differentiability is defined for a larger class of
fuzzy-valued functions which is a generalization of the Hukuhara derivative.
The purpose of this article is to establish the approximate-analytical solutions
for linear and nonlinear FPDE using the C(LT-HPM) under the assumption of
strongly generalized differentiability which is as follows:

(1) φ (Dtu(x, t)) = Φ(Dxu(x, t)) +Nu(x, t), 0 < x < l, t > 0,

subject to the fuzzy initial conditions

(2) u(x, 0) = f(x;α), ut(x, 0) = g(x;α), 0 ≤ x ≤ l,

for all α ∈ [0, 1], where the operators φ (Dt) will be a polynomial with a constant
coefficient in Dt, Φ(Dx) is a polynomial with a constant coefficient in Dx, N is
the nonlinear operator, f , g : [0, l]→ RF are continuous fuzzy-valued functions
and u : [0, l] × (0,∞) → RF is a continuous fuzzy-valued function which is
unknown function of independent variables x and t to be determined such that
RF is the set of fuzzy real numbers on R.

Calculation of the solution of FPDEs is usually very difficult. We can find
the exact solution only in a few extraordinary cases. When we are studying
in fields of physics and engineering, we often meet the problems of FPDEs.
Anyway, by using the parametric form of fuzzy numbers, we employ the C(LT-
HPM) to find the exact and approximate solutions for FPDE (1)-(2). The
C(LT-HPM) has the following characteristics; first, it is somewhat different from
other approximate-analytical methods in that it gives extremely good results
for even a large domain with minimal terms of the approximate series solution.
The second advantage of this method is its ability to solve other mathematical,
physical and engineering issues. Third, it is the first attempt in solving nonlinear
FPDEs. Fourth, it is the first attempt gives two locally solutions under strongly
generalized differentiability for linear and nonlinear FPDEs. More specifically,
we investigate the solution of different types of FPDEs using C(LT-HPM).

This article is organized in six sections including the introduction. In Sec-
tion 2, we present a few fundamental definitions and preliminary results from
the fuzzy calculus theory, including concepts like fuzzy derivative and fuzzy so-
lution. The procedure for converting fuzzy partial differential equation (1)-(2)
under strongly generalized differentiability into two systems of crisp partial dif-
ferential equations is presented in Section 3. In Section 4, the combined Laplace
transform-homotopy perturbation technique is built and introduce. The numer-
ical results are reported to illustrate the ability and superiority of the proposed
method by considering three numerical examples in Section 5. Finally, the con-
clusion is drawn in Section 6 with a few concluding comments.
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2. Preliminaries

This section present some basic definitions in fuzzy mathematics and intro-
duce the necessary notations which can be used throughout the paper. Here-
after, we adopt strongly generalized differentiability which is a modification of
the Hukuhara differentiability and has the advantage of dealing properly with
FPDEs.

Definition 2.1 (see [18]). A mapping w : R −→ [0, 1] is called a fuzzy number
if the following properties are satisfied:

i) w (λs+ (1− λ)t) ≥ min{w(s), w(t)} for each s, t ∈ R and λ ∈ [0, 1], which
is called a convex property.

ii) ∃s ∈ R such that w(s) = 1, which is called a normal property.

iii) the set {s ∈ R | w(s) > α} is closed for each α ∈ [0, 1], which is called an
upper semicontinuous property.

iv) the set {s ∈ R | w(s) > 0} is compact, where {·} is the closure of {·}.

For 0 < α ≤ 1, put [w]α = {s ∈ R | w(s) ≥ α}, [w]0 = {s ∈ R | w(s) > 0},
and [w]1 ̸= ϕ (see [15]). Thus, if w is a fuzzy number, then [w]α = [w(α), w(α)],
where w(α) = min{s | s ∈ [w]α} and w(α) = max{s | s ∈ [w]α} for each α ∈
[0, 1]. Hence, the notation [w]α is called the α-cut representation or parametric
form of a fuzzy number w.

Theorem 2.2 (see [15]). A mapping w : R −→ [0, 1] is a fuzzy number with
α-cut representation [w(α), w(α)] if and only if the following conditions are sat-
isfied:

i) the function w : [0, 1]→ R is a bounded increasing.

ii) the function w : [0, 1]→ R is a bounded decreasing.

iii) for each r ∈ (0, 1], limα→r− w(α) = w(r) and limα→r− w(α) = w(r).

iv) for each r ∈ (0, 1], limα→r+ w(α) = w(r) and limα→r+ w(α) = w(r).

v) w(α) ≤ w(α) for all α ∈ [0, 1].

Definition 2.3 (see [32]). Let Hd : RF × RF −→ R+ ∪ {0}. The Hausdorff
metric Hd is a function defined by

Hd(w, z) = sup
α∈[0,1]

max{|w(α)− z(α)| , |w(α)− z(α)|}

for each w, z ∈ RF .

Theorem 2.4 (see [32]). (RF ,Hd) is a complete fuzzy metric space.
In what follows, we define some arithmetic operations in fuzzy mathematics

as follows:



356 GHALEB GUMAH

1. [w]α+[z]α = [w(α)+z(α), w(α)+z(α)] for each w, z ∈ RF and 0 ≤ α ≤ 1.

2. [w]α⊖ [z]α = [w(α)− z(α), w(α)− z(α)], which is called the H-difference
(Hukuhara difference) of w and z.

3. λ∗[w]α = [min{λ∗w(α), λ∗w(α)},max{λ∗w(α), λ∗w(α)}] for each λ∗ ∈ R.

Definition 2.5 (see [14]). Let u : [a, b] −→ RF be a fuzzy-valued function and
t0 ∈ [a, b]. We say u is strongly generalized differentiability at t0, if there exists
an element u′(t0) ∈ RF such that either:

i) for all h > 0 sufficiently near to 0, the H-differences u(t0 + h) ⊖ u(t0),
u(t0)⊖ u(t0 − h) exist and

u′(t0) = lim
h−→0+

u(t0 + h)⊖ u(t0)

h
= lim

h−→0+

u(t0)⊖ u(t0 − h)
h

.

In this part of the definition, we denote u′(t0) by D
1
1u(t0), or

ii) for all h < 0 sufficiently near to 0, the H-differences u(t0 + h) ⊖ u(t0),
u(t0)⊖ u(t0 − h) exist and

u′(t0) = lim
h−→0−

u(t0 + h)⊖ u(t0)

h
= lim

h−→0−

u(t0)⊖ u(t0 − h)
h

.

In this part of the definition, we denote u′(t0) by D
1
2u(t0).

Definition 2.6 (see [10]). Let u : [a, b] −→ RF be a fuzzy-valued function. We
say that u is (1)-differentiable on [a, b] if u is differentiable in the first form (i)
of Definition (2.5). Similarly, we say that u is (2)-differentiable on [a, b] if u is
differentiable in the second form (ii) of Definition (2.5).

Theorem 2.7 (see [11]). Let u : [a, b] −→ RF be a fuzzy-valued function, where
[u(t)]α = [u(t;α), u(t;α)] for each α ∈ [0, 1].

i) if u is (1)-differentiable, then u and u are differentiable functions and
[D1

1u(t)]α = [u′(t;α), u′(t;α)].

ii) if u is (2)-differentiable, then u and u are differentiable functions and
[D1

2u(t)]α = [u′(t;α), u′(t;α)].

Theorem 2.8 (see [13]). Let D1
1u : [a, b] −→ Rz or D1

2u : [a, b] −→ Rz be
fuzzy-valued functions, where [u(t)]α = [u(t;α), u(t;α)] for each α ∈ [0, 1].

i) if D1
1u is (1)-differentiable, then u′ and u′ are differentiable functions and

[u′′(t)]α = [u′′(t;α), u′′(t;α)].

ii) if D1
1u is (2)-differentiable, then u′ and u′ are differentiable functions and

[u′′(t)]α = [u′′(t;α), u′′(t;α)].
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iii) if D1
2u is (1)-differentiable, then u′ and u′ are differentiable functions and

[u′′(t)]α = [u′′(t;α), u′′(t;α)].

iv) if D1
2u is (2)-differentiable, then u′ and u′ are differentiable functions and

[u′′(t)]α = [u′′(t;α), u′′(t;α)].

According to Theorem (2.8) that is showing us the way to translate FPDE
(1)-(2) into two systems of crisp partial differential equations (PDEs), we might
use the numerical method directly on the obtained crisp partial differential sys-
tems instead of rewriting this method for PDEs in a fuzzy setting as in the next
Section.

3. The fuzzy partial differential equations

It is well known that all researchers in fuzzy mathematics transfer any fuzzy
problem in mathematics to the system of PDEs or ODEs because there is no
method to solve it without convert it to the system. Now, we study the FPDEs
using the concept of a fuzzy derivative under strongly generalized differentiabil-
ity in each step of differentiation.

Let u : [0, l] × (0,∞) −→ RF be a continuous fuzzy-valued function such
that [u(x, t)]α = [u(x, t;α), u(x, t;α)], and consequently the fuzzy functions f
and g in Eq. (2) can be obtained via the Zadeh extension principle. If u satisfy
FPDE (1)-(2), then we say that u is a fuzzy solution of FPDE (1)-(2). Now from
Section 2 the defuzzification of FPDE (1)-(2) for all α ∈ [0, 1] and to determine
the lower and upper functions of the solution of FPDE (1)-(2), we discuss the
following two cases:

Case 1. If we consider µ (Dx, Dt)u(x, t) by using the derivative in (1)-differen-
tiable, then we have

(3) [µ (Dx, Dt)u(x, t)]α = [µ (Dx, Dt)u(x, t;α), µ (Dx, Dt)u(x, t;α)],

where µ is a polynomial with a constant coefficient in Dx and Dt, and we should
solve the system of crisp PDEs

φ (Dtu(x, t)) = Φ(Dxu(x, t)) +Nu(x, t;α), 0 < x < l, t > 0,(4)

φ (Dtu(x, t)) = Φ(Dxu(x, t)) +Nu(x, t;α), 0 < x < l, t > 0,(5)

u(x, 0;α) = f(x;α), ut(x, 0;α) = g(x;α), 0 ≤ x ≤ l,(6)

u(x, 0;α) = f(x;α), ut(x, 0;α) = g(x;α), 0 ≤ x ≤ l.(7)

Case 2. If we consider µ (Dx, Dt)u(x, t) by using the derivative in (2)-differen-
tiable, then we have

(8) [µ (Dx, Dt)u(x, t)]α = [µ (Dx, Dt)u(x, t;α), µ (Dx, Dt)u(x, t;α)],
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and we should solve the system of crisp PDEs

φ (Dtu(x, t)) = Φ(Dxu(x, t)) +Nu(x, t;α), 0 < x < l, t > 0,(9)

φ (Dtu(x, t)) = Φ(Dxu(x, t)) +Nu(x, t;α), 0 < x < l, t > 0,(10)

u(x, 0;α) = f(x;α), ut(x, 0;α) = g(x;α), 0 ≤ x ≤ l,(11)

u(x, 0;α) = f(x;α), ut(x, 0;α) = g(x;α), 0 ≤ x ≤ l.(12)

Consequently, we use the strongly generalized differentiability in the present
work. Under fitting conditions, the FPDE (1)-(2) under this interpretation has
locally two solutions.

4. Analysis of the method

To illustrate the essential thoughts of the new method for solving linear and
nonlinear FPDEs, we take the Laplace transform L on both sides of all equations
in cases (1) and (2) as follows:
first system

L{φ (Dtu(x, t))} = L{Φ(Dxu(x, t)) +Nu(x, t;α)} , 0 < x < l, t > 0,(13)

L{φ (Dtu(x, t))} = L{Φ(Dxu(x, t)) +Nu(x, t;α)} , 0 < x < l, t > 0,(14)

second system

L{φ (Dtu(x, t))} = L{Φ(Dxu(x, t)) +Nu(x, t;α)} , 0 < x < l, t > 0,(15)

L{φ (Dtu(x, t))} = L{Φ(Dxu(x, t)) +Nu(x, t;α)} , 0 < x < l, t > 0.(16)

Using the differentiation rule of the Laplace transform, we have U(x, s, f , g,

Φ(Dxu) , Nu) and U(x, s, f , g,Φ(Dxu) , Nu) in the first system (13)-(14), and
U(x, s, f , g,Φ(Dxu) , Nu) and U(x, s, f , g,Φ(Dxu) , Nu) in the second system
(15)-(16). After that, taking the Laplace inverse L−1 on both sides gives:

(17) u(x, t;α) = L−1
{
U(x, s, f(x;α), g(x;α),Φ(Dxu(x, s;α)) , Nu(x, s;α))

}
,

(18) u(x, t;α) = L−1
{
U
(
x, s, f(x;α), g(x;α),Φ(Dxu(x, s;α)) , Nu(x, s;α)

)}
,

in the first system (13)-(14), and

u(x, t;α) = L−1
{
U
(
x, s, f(x;α), g(x;α),Φ(Dxu(x, s;α)) , Nu(x, s;α)

)}
,(19)

u(x, t;α) = L−1
{
U
(
x, s, f(x;α), g(x;α),Φ(Dxu(x, s;α)) , Nu(x, s;α)

)}
,(20)

in the second system (15)-(16). Now, we construct a HPM to obtain approximate-
analytical solutions of FPDE (1)-(2). Obviously, from Eqs. (3) and (8) we
consider Eq. (1) as:

L(v) = v −N(v) = 0,(21)

L(v) = v −N(v) = 0,(22)



OPTIMIZATION TECHNIQUE FOR SOLVING FUZZY PARTIAL DIFFERENTIAL ... 359

where L is a linear operator and N is a nonlinear operator with solutions u
and u, respectively. By the homotopy technique (see [20, 21, 22, 23, 25]), we
construct a homotopy Ĥ : [0, l]× (0,∞)× [0, 1]→ RF which satisfies

Ĥ(v, λ) = (1− λ)(L(v)− L(u0)) + λL(v) = 0,(23)

Ĥ(v, λ) = (1− λ)(L(v)− L(u0)) + λL(v) = 0,(24)

where λ ∈ [0, 1] is an embedding parameter, u0 and u0 are initial approximations
of Eqs. (21) and (22) which satisfies the fuzzy initial conditions. It is obvious
that

Ĥ(v, 0) = L(v)− L(u0) = 0,(25)

Ĥ(v, 0) = L(v)− L(u0) = 0,(26)

Ĥ(v, 1) = L(v) = 0,(27)

Ĥ(v, 1) = L(v) = 0,(28)

the changing process of λ from zero to unity is just that of Ĥ(v, λ) and Ĥ(v, λ)
from u0(x, t;α), u0(x, t;α) to u(x, t;α), u(x, t;α), respectively. The embedding
parameter λ ∈ [0, 1] can be considered as an expanding parameter (see [19, 20,
26]), and assume that the solutions of Eqs. (21) and (22) can be written as a
power series in λ:

v(x, t;α) =
∞∑
n=0

λnvn(x, t;α),(29)

v(x, t;α) =

∞∑
n=0

λnvn(x, t;α).(30)

Definition 4.1 (see [21]). The He polynomials is defined as follows:

Hn(v0, v1, ..., vn) =
1

n!

∂n

∂λn
N

(
n∑
k=0

λkvk

)
, n = 0, 1, 2, ... .

If the terms Nv(x, t;α) and Nv(x, t;α) are nonlinear functions, then they can
be decomposed as:

Nv(x, t;α) =
∞∑
n=0

λnHn (v(x, t;α)) ,(31)

Nv(x, t;α) =
∞∑
n=0

λnHn (v(x, t;α)) ,(32)

where the Hn are He’s polynomials and are calculated by the last definition.



360 GHALEB GUMAH

Theorem 4.2. Suppose thatN is an increasing nonlinear fuzzy-valued function,
and v = [

∑∞
k=0 λ

kvk,
∑∞

k=0 λ
kvk], then for an embedding parameter λ ∈ [0, 1]

we have

(33)
∂n

∂λn
N (v)|λ=0

=

 ∂n

∂λn
N

(
n∑
k=0

λkvk

)
|
λ=0

,
∂n

∂λn
N

(
n∑
k=0

λkvk

)
|
λ=0

 .
Proof. Since N is an increasing function, then

N(v) =

[
N

( ∞∑
k=0

λkvk

)
, N

( ∞∑
k=0

λkvk

)]

=

[
N

(
n∑
k=0

λkvk +

∞∑
k=n+1

λkvk

)
, N

(
n∑
k=0

λkvk +

∞∑
k=n+1

λkvk

)]
,

by using the derivative in (1)-differentiable, we have such result as following:

∂n

∂λn
N (v)|λ=0

=

 ∂n

∂λn
N

( ∞∑
k=0

λkvk

)
|λ=0

,
∂n

∂λn
N

( ∞∑
k=0

λkvk

)
|λ=0


=

 ∂n

∂λn
N

(
n∑
k=0

λkvk +

∞∑
k=n+1

λkvk

)
|λ=0

,
∂n

∂λn
N

(
n∑
k=0

λkvk +

∞∑
k=n+1

λkvk

)
|λ=0


=

 ∂n

∂λn
N

(
n∑
k=0

λkvk

)
|λ=0

,
∂n

∂λn
N

(
n∑
k=0

λkvk

)
|λ=0

 .
So, the proof of the theorem is complete.

Dependence on Theorem (4.2), if N is a decreasing nonlinear fuzzy-valued func-
tion, then

(34)
∂n

∂λn
N (v)|λ=0

=

 ∂n

∂λn
N

(
n∑
k=0

λkvk

)
|
λ=0

,
∂n

∂λn
N

(
n∑
k=0

λkvk

)
|
λ=0

 .
Now, substituting Eqs. (29), (31) in (17) and (30), (32) in (18) respectively, we
get the solution of the first system (13)-(14) as:

∞∑
n=0

λnvn(x, t;α) = L−1
{
U(x, s, f(x;α), g(x;α),(35)

λΦ(Dx

∞∑
n=0

λnvn(x, s;α)), λ
∞∑
n=0

λnHn(v(x, s;α)))

}
,
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∞∑
n=0

λnvn(x, t;α) = L−1
{
U(x, s, f(x;α), g(x;α),(36)

λΦ(Dx

∞∑
n=0

λnvn(x, s;α)), λ

∞∑
n=0

λnHn(v(x, s;α)))

}
.

Similarly, substituting Eqs. (29), (30) and (32) in (19) and (29), (30) and (31)
in (20) respectively, we get the solution of the second system (15)-(16) as:

∞∑
n=0

λnvn(x, t;α) = L−1
{
U(x, s, f(x;α), g(x;α),(37)

λΦ(Dx

∞∑
n=0

λnvn(x, s;α)), λ
∞∑
n=0

λnHn(v(x, s;α)))

}
,

∞∑
n=0

λnvn(x, t;α) = L−1
{
U(x, s, f(x;α), g(x;α),(38)

λΦ(Dx

∞∑
n=0

λnvn(x, s;α)), λ

∞∑
n=0

λnHn(v(x, s;α)))

}
,

which is the combination of the Laplace transform and the homotopy perturba-
tion method using He’s polynomials. Comparing the coefficient of like powers
of λ, the following approximations in Eqs. (35) and (36) are obtained

λ0 : v0 = L−1
{
U(x, s, f(x;α), g(x;α))

}
,

v0 = L−1
{
U(x, s, f(x;α), g(x;α))

}
,

λ1 : v1 = L−1 {U(Φ(Dxv0(x, s;α)),H0(v(x, s;α)))} ,
v1 = L−1

{
U(Φ(Dxv0(x, s;α)),H0(v(x, s;α)))

}
,

λ2 : v2 = L−1 {U(Φ(Dxv1(x, s;α)),H1(v(x, s;α)))} ,
v2 = L−1

{
U(Φ(Dxv1(x, s;α)),H1(v(x, s;α)))

}
,

λ3 : v3 = L−1 {U(Φ(Dxv2(x, s;α)),H2(v(x, s;α)))} ,
v3 = L−1

{
U(Φ(Dxv2(x, s;α)),H2(v(x, s;α)))

}
,

...

Furthermore, the following approximations in Eqs. (37) and (38) are obtained

λ0 : v0 = L−1
{
U(x, s, f(x;α), g(x;α))

}
,

v0 = L−1
{
U(x, s, f(x;α), g(x;α))

}
,
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λ1 : v1 = L−1 {U(Φ(Dxv0(x, s;α)),H0(v(x, s;α)))} ,
v1 = L−1

{
U(Φ(Dxv0(x, s;α)),H0(v(x, s;α)))

}
,

λ2 : v2 = L−1 {U(Φ(Dxv1(x, s;α)),H1(v(x, s;α)))} ,
v2 = L−1

{
U(Φ(Dxv1(x, s;α)),H1(v(x, s;α)))

}
,

λ3 : v3 = L−1 {U(Φ(Dxv2(x, s;α)),H2(v(x, s;α)))} ,
v3 = L−1

{
U(Φ(Dxv2(x, s;α)),H2(v(x, s;α)))

}
,

...

When λ → 1, Eqs. (23) and (24) corresponds to Eqs. (21) and (22), and also
Eqs. (29) and (30) becomes the approximate solutions of Eqs. (21) and (22),
i.e.,

u(x, t;α) = lim
λ→1

v(x, t;α) =

∞∑
n=0

vn(x, t;α),(39)

u(x, t;α) = lim
λ→1

v(x, t;α) =

∞∑
n=0

vn(x, t;α).(40)

The series (39) and (40) are convergent for most cases, and as well the rate
of convergence depends on L(v) and L(v) (see [23]). Now will be discuss the
convergence on nonlinear operator N .

Theorem 4.3. Suppose that (RF ,Hd) be a Banach space and N : RF → RF is
a contraction nonlinear mapping with a contractivity ρ ∈ (0, 1), that is

Hd (N(v), N(v∗)) ≤ ρHd (v, v
∗) ,

for all v = [v, v], v∗ = [v∗, v∗] ∈ RF . The sequence generated by the homotopy
perturbation method will be regarded as

Vn = N(Vn−1), Vn−1 =

n−1∑
i=0

ui, n = 1, 2, 3, ...,

and suppose that V0 = v0 = u0 ∈ Br(u) = {u∗ ∈ RF | Hd (u, u
∗) < r}, then we

have the following statements:

(i) Hd (Vn, u) ≤ ρnHd (v0, u).

(ii) Vn ∈ Br(u).

(iii) lim
n→∞

Vn = u.

Proof. (i) Since (RF ,Hd) is a complete metric space and N is a contraction
on (RF ,Hd), then according to Banach’s fixed point theorem the mapping N
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has precisely one fixed point u = [u, u] ∈ RF such that N(u) = u, that is,
[N(u), N(u)] = [u, u]. Now by the induction method, if n = 1 we have

Hd (V1, u) = Hd (N(V0), N(u)) = Hd (N(v0), N(u)) ≤ ρHd (v0, u) .

Again, if n = 2 we have

Hd (V2, u) = Hd (N(V1), N(u)) ≤ ρHd (V1, u) ≤ ρ2Hd (v0, u) .

Assume that Hd (Vn−1, u) ≤ ρn−1Hd (v0, u). In the same way, it is easy to see
that

Hd (Vn, u) = Hd (N(Vn−1), N(u)) ≤ ρHd (Vn−1, u) ≤ ρnHd (v0, u) .

(ii) Since 0 < ρ < 1 and from (i), we have

Hd (Vn, u) ≤ ρnHd (v0, u) < ρnr < r.

(iii) We know limn→∞ ρn = 0. Using (i), we have limn→∞Hd (Vn, u) = 0, that
is, lim

n→∞
Vn = u. So, the proof of the theorem is complete.

5. Numerical experiments

In this section, we provide three numerical examples to demonstrate the appli-
cation of the C(LT-HPM) for solving the FPDEs. More precisely, in Examples
(5.1) and (5.2), we give two locally solutions under strongly generalized differ-
entiability for linear FPDEs unlike the previous papers (see [5, 6 ]) which give
only one locally solution under Seikkala derivative. To test the C(LT-HPM)
upon nonlinear FPDEs, we initially apply this method on two linear FPDEs.

Example 5.1. Consider the following linear fuzzy partial differential equation

(41)
∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
, 0 < x < 1, t > 0,

subject to the fuzzy initial condition

(42) u(x, 0) = K(α) sin(πx), 0 ≤ x ≤ 1,

where K(α) = [α− 1, 1− α] for all α ∈ [0, 1].
According to Section 3, the FPDE (41)-(42) is equivalent to the following

systems of crisp partial differential equations:
first system

∂u(x, t;α)

∂t
=
∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,(43)

∂u(x, t;α)

∂t
=
∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,(44)
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subject to the initial conditions

u(x, 0;α) = (α− 1) sin(πx), 0 ≤ x ≤ 1,(45)

u(x, 0;α) = (1− α) sin(πx), 0 ≤ x ≤ 1,(46)

second system

∂u(x, t;α)

∂t
=
∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,(47)

∂u(x, t;α)

∂t
=
∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,(48)

subject to the initial conditions

u(x, 0;α) = (α− 1) sin(πx), 0 ≤ x ≤ 1,(49)

u(x, 0;α) = (1− α) sin(πx), 0 ≤ x ≤ 1.(50)

Firstly, we take the Laplace transform L on both sides of Eqs. (43) and (44):

U(x, s;α) =
(α− 1) sin(πx)

s
+

1

s
L
{
∂2u(x, t;α)

∂x2

}
, 0 < x < 1,(51)

U(x, s;α) =
(1− α) sin(πx)

s
+

1

s
L
{
∂2u(x, t;α)

∂x2

}
, 0 < x < 1.(52)

Taking the Laplace inverse L−1 on both sides of Eqs. (51) and (52) gives

u(x, t;α) = (α− 1) sin(πx) + L−1

{
1

s
L
{
∂2u(x, t;α)

∂x2

}}
,(53)

0 < x < 1, t > 0,

u(x, t;α) = (1− α) sin(πx) + L−1

{
1

s
L
{
∂2u(x, t;α)

∂x2

}}
,(54)

0 < x < 1, t > 0.

Now, applying the HPM method

∞∑
n=0

λnvn(x, t;α) = (α− 1) sin(πx)

+ λL−1

{
1

s
L

{
∂2

∂x2

( ∞∑
n=0

λnvn(x, t;α)

)}}
,(55)

∞∑
n=0

λnvn(x, t;α) = (1− α) sin(πx)

+ λL−1

{
1

s
L

{
∂2

∂x2

( ∞∑
n=0

λnvn(x, t;α)

)}}
.(56)
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Comparing the coefficient of like powers of λ, the following approximations are
obtained

λ0 : v0(x, t;α) = (α− 1) sin(πx), v0(x, t;α) = (1− α) sin(πx),

λ1 : v1(x, t;α) = L−1

{
1

s
L
{
∂2v0(x, t;α)

∂x2

}}
= −π2(α− 1)t sin(πx),

v1(x, t;α) = L−1

{
1

s
L
{
∂2v0(x, t;α)

∂x2

}}
= −π2(1− α)t sin(πx),

λ2 : v2(x, t;α) = L−1

{
1

s
L
{
∂2v1(x, t;α)

∂x2

}}
=
π4(α− 1)t2

2!
sin(πx),

v2(x, t;α) = L−1

{
1

s
L
{
∂2v1(x, t;α)

∂x2

}}
=
π4(1− α)t2

2!
sin(πx),

λ3 : v3(x, t;α) = L−1

{
1

s
L
{
∂2v2(x, t;α)

∂x2

}}
=
−π6(α− 1)t3

3!
sin(πx),

v3(x, t;α) = L−1

{
1

s
L
{
∂2v2(x, t;α)

∂x2

}}
=
−π6(1− α)t3

3!
sin(πx),

...

From Eqs. (39) and (40), the approximate solution of the first system is given
by

u(x, t;α) = (α− 1) sin(πx)− π2(α− 1)t sin(πx) +
π4(α− 1)t2

2!
sin(πx)− ...

= (α− 1) sin(πx)

(
1− π2t+ π4t2

2!
− π6t3

3!
+ ...

)
,

u(x, t;α) = (1− α) sin(πx)− π2(1− α)t sin(πx) + π4(1− α)t2

2!
sin(πx)− ...

= (1− α) sin(πx)
(
1− π2t+ π4t2

2!
− π6t3

3!
+ ...

)
.

These series have the closed form as n → ∞. Therefore, the exact solution of
the first system is given by

u(x, t) =
[
(α− 1)e−π

2t sin(πx), (1− α)e−π2t sin(πx)
]
.

Secondly, we take the Laplace transform L on both sides of Eqs. (47) and (48):

(57) U(x, s;α) =
(α− 1) sin(πx)

s
+

1

s
L
{
∂2u(x, t;α)

∂x2

}
, 0 < x < 1,

(58) U(x, s;α) =
(1− α) sin(πx)

s
+

1

s
L
{
∂2u(x, t;α)

∂x2

}
, 0 < x < 1.



366 GHALEB GUMAH

Taking the Laplace inverse L−1 on both sides of Eqs. (57) and (58) gives

u(x, t;α) = (α− 1) sin(πx)

+ L−1

{
1

s
L
{
∂2u(x, t;α)

∂x2

}}
, 0 < x < 1, t > 0,(59)

u(x, t;α) = (1− α) sin(πx)

+ L−1

{
1

s
L
{
∂2u(x, t;α)

∂x2

}}
, 0 < x < 1, t > 0.(60)

Now, applying the HPM method

∞∑
n=0

λnvn(x, t;α) = (α− 1) sin(πx)

+ λL−1

{
1

s
L

{
∂2

∂x2

( ∞∑
n=0

λnvn(x, t;α)

)}}
,(61)

∞∑
n=0

λnvn(x, t;α) = (1− α) sin(πx)

+ λL−1

{
1

s
L

{
∂2

∂x2

( ∞∑
n=0

λnvn(x, t;α)

)}}
.(62)

Comparing the coefficient of like powers of λ, the following approximations are
obtained

λ0 : v0(x, t;α) = (α− 1) sin(πx), v0(x, t;α) = (1− α) sin(πx),

λ1 : v1(x, t;α) = L−1

{
1

s
L
{
∂2v0(x, t;α)

∂x2

}}
= −π2(1− α)t sin(πx),

v1(x, t;α) = L−1

{
1

s
L
{
∂2v0(x, t;α)

∂x2

}}
= −π2(α− 1)t sin(πx),

λ2 : v2(x, t;α) = L−1

{
1

s
L
{
∂2v1(x, t;α)

∂x2

}}
=
π4(α− 1)t2

2!
sin(πx),

v2(x, t;α) = L−1

{
1

s
L
{
∂2v1(x, t;α)

∂x2

}}
=
π4(1− α)t2

2!
sin(πx),

λ3 : v3(x, t;α) = L−1

{
1

s
L
{
∂2v2(x, t;α)

∂x2

}}
=
−π6(1− α)t3

3!
sin(πx),

v3(x, t;α) = L−1

{
1

s
L
{
∂2v2(x, t;α)

∂x2

}}
=
−π6(α− 1)t3

3!
sin(πx),

...
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From Eqs. (39) and (40), the approximate solution of the second system is given
by

u(x, t;α) = (α− 1) sin(πx)− π2(1− α)t sin(πx) + π4(α− 1)t2

2!
sin(πx)− ...

= (α− 1) sin(πx)

(
1 + π2t+

π4t2

2!
+
π6t3

3!
+ ...

)
,

u(x, t;α) = (1− α) sin(πx)− π2(α− 1)t sin(πx) +
π4(1− α)t2

2!
sin(πx)− ...

= (1− α) sin(πx)
(
1 + π2t+

π4t2

2!
+
π6t3

3!
+ ...

)
.

These series have the closed form as n → ∞. Therefore, the exact solution of
the second system is given by

u(x, t) =
[
(α− 1)eπ

2t sin(πx), (1− α)eπ2t sin(πx)
]
.

Example 5.2. Consider the following linear fuzzy partial differential equation

(63)
∂2u(x, t)

∂t2
= 4

∂2u(x, t)

∂x2
, 0 < x < 1, t > 0,

subject to the fuzzy initial conditions

(64) u(x, 0) = K(α) sin(πx), ut(x, 0) = 0, 0 ≤ x ≤ 1,

where K(α) = [0.75 + 0.25α, 1.25− 0.25α] for all α ∈ [0, 1].
According to Section 3, the FPDE (63)-(64) is equivalent to the following

systems of crisp partial differential equations:
first system

(65)
∂2u(x, t;α)

∂t2
= 4

∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,

(66)
∂2u(x, t;α)

∂t2
= 4

∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,

subject to the initial conditions

(67) u(x, 0;α) = (0.75 + 0.25α) sin(πx), ut(x, 0;α) = 0, 0 ≤ x ≤ 1,

(68) u(x, 0;α) = (1.25− 0.25α) sin(πx), ut(x, 0;α) = 0, 0 ≤ x ≤ 1,

second system

(69)
∂2u(x, t;α)

∂t2
= 4

∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,
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(70)
∂2u(x, t;α)

∂t2
= 4

∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,

subject to the initial conditions

(71) u(x, 0;α) = (0.75 + 0.25α) sin(πx), ut(x, 0;α) = 0, 0 ≤ x ≤ 1,

(72) u(x, 0;α) = (1.25− 0.25α) sin(πx), ut(x, 0;α) = 0, 0 ≤ x ≤ 1.

Again, by using the same procedure as mentioned in Section 4, the first few
components in the first system are given by

λ0 : v0(x, t;α) = (0.75 + 0.25α) sin(πx),

v0(x, t;α) = (1.25− 0.25α) sin(πx),

λ1 : v1(x, t;α) = −2π2(0.75 + 0.25α)t2 sin(πx),

v1(x, t;α) = −2π2(1.25− 0.25α)t2 sin(πx),

λ2 : v2(x, t;α) =
16π4(0.75 + 0.25α)t4

4!
sin(πx),

v2(x, t;α) =
16π4(1.25− 0.25α)t4

4!
sin(πx),

λ3 : v3(x, t;α) =
−64π6(0.75 + 0.25α)t6

6!
sin(πx),

v3(x, t;α) =
−64π6(1.25− 0.25α)t6

6!
sin(πx),

...

From Eqs. (39) and (40), the approximate solution of the first system is given
by

u(x, t;α) = (0.75 + 0.25α) sin(πx)

(
1− (2πt)2

2!
+

(2πt)4

4!
− (2πt)6

6!
+ ...

)
,

u(x, t;α) = (1.25− 0.25α) sin(πx)

(
1− (2πt)2

2!
+

(2πt)4

4!
− (2πt)6

6!
+ ...

)
.

These series have the closed form as n → ∞. Therefore, the exact solution of
the first system is given by

u(x, t) = [(0.75 + 0.25α) sin(πx) cos(2πt), (1.25− 0.25α) sin(πx) cos(2πt)] .
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After that, the first few components in the second system are given by

λ0 : v0(x, t;α) = (0.75 + 0.25α) sin(πx),

v0(x, t;α) = (1.25− 0.25α) sin(πx),

λ1 : v1(x, t;α) = −2(πt)2(1.25− 0.25α) sin(πx),

v1(x, t;α) = −2(πt)2(0.75 + 0.25α) sin(πx),

λ2 : v2(x, t;α) =
16(πt)4(0.75 + 0.25α)

4!
sin(πx),

v2(x, t;α) =
16(πt)4(1.25− 0.25α)

4!
sin(πx),

λ3 : v3(x, t;α) =
−64(πt)6(1.25− 0.25α)

6!
sin(πx),

v3(x, t;α) =
−64(πt)6(0.75 + 0.25α)

6!
sin(πx),

λ4 : v4(x, t;α) =
256(πt)8(0.75 + 0.25α)

8!
sin(πx),

v4(x, t;α) =
256(πt)8(1.25− 0.25α)

8!
sin(πx),

λ5 : v5(x, t;α) =
−1024(πt)10(1.25− 0.25α)

10!
sin(πx),

v5(x, t;α) =
−1024(πt)10(0.75 + 0.25α)

10!
sin(πx),

λ6 : v6(x, t;α) =
4096(πt)12(0.75 + 0.25α)

12!
sin(πx),

v6(x, t;α) =
4096(πt)12(1.25− 0.25α)

12!
sin(πx),

λ7 : v7(x, t;α) =
−16 384(πt)14(1.25− 0.25α)

14!
sin(πx),

v7(x, t;α) =
−16 384(πt)14(0.75 + 0.25α)

14!
sin(πx),

...

Therefore, the approximate solution of the second system is given by

u(x, t;α) = (0.75 + 0.25α) sin(πx)

(
1 +

(2πt)4

4!
+

(2πt)8

8!
+

(2πt)12

12!
+ ...

)
− (1.25− 0.25α) sin(πx)

(
(2πt)2

2!
+

(2πt)6

6!
+

(2πt)10

10!
+

(2πt)14

14!
+ ...

)
=

(
(0.75 + 0.25α)

∞∑
n=0

(2πt)4n

(4n)!
− (1.25− 0.25α)

∞∑
n=0

(2πt)4n+2

(4n+ 2)!

)
sin(πx),
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u(x, t;α) = (1.25− 0.25α) sin(πx)

(
1 +

(2πt)4

4!
+

(2πt)8

8!
+

(2πt)12

12!
+ ...

)
− (0.75 + 0.25α) sin(πx)

(
(2πt)2

2!
+

(2πt)6

6!
+

(2πt)10

10!
+

(2πt)14

14!
+ ...

)
=

(
(1.25− 0.25α)

∞∑
n=0

(2πt)4n

(4n)!
− (0.75 + 0.25α)

∞∑
n=0

(2πt)4n+2

(4n+ 2)!

)
sin(πx).

By the ratio test, the series
∑∞

n=0
(2πt)4n

(4n)! and
∑∞

n=0
(2πt)4n+2

(4n+2)! are convergent for

all t ∈ (0,∞).
To allow a clear overview of our work and to demonstrate the discussed

method, we present the first attempt to solve nonlinear FPDEs under strongly
generalized differentiability.

Example 5.3. Consider the following nonlinear fuzzy partial differential equa-
tion

(73)
∂2u(x, t)

∂t2
+ sin(u(x, t)) =

∂2u(x, t)

∂x2
, 0 < x < 1, t > 0,

subject to the fuzzy initial conditions

(74) u(x, 0) = 0, ut(x, 0) = K(α)sechx, 0 ≤ x ≤ 1,

where K(α) = [α, 2− α] for all α ∈ [0, 1].
It is noted here that sinx is a continuous increasing function on (0, 1). By us-

ing Zadeh’s extension principle, we get [sin(u(x, t))]α = [sin(u(x, t)), sin(u(x, t))]
for all α ∈ [0, 1]. According to Section 3, the FPDE (73)-(74) is equivalent to
the following systems of crisp partial differential equations:
first system

(75)
∂2u(x, t;α)

∂t2
+ sin(u(x, t)) =

∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,

(76)
∂2u(x, t;α)

∂t2
+ sin(u(x, t)) =

∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,

subject to the initial conditions

(77) u(x, 0;α) = 0, ut(x, 0;α) = αsechx, 0 ≤ x ≤ 1,

(78) u(x, 0;α) = 0, ut(x, 0;α) = (2− α)sechx, 0 ≤ x ≤ 1,

second system

(79)
∂2u(x, t;α)

∂t2
+ sin(u(x, t)) =

∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,
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(80)
∂2u(x, t;α)

∂t2
+ sin(u(x, t)) =

∂2u(x, t;α)

∂x2
, 0 < x < 1, t > 0,

subject to the initial conditions

(81) u(x, 0;α) = 0, ut(x, 0;α) = αsechx, 0 ≤ x ≤ 1,

(82) u(x, 0;α) = 0, ut(x, 0;α) = (2− α)sechx, 0 ≤ x ≤ 1.

Firstly, we take the Laplace transform L on both sides of Eqs. (75) and (76):

(83) U(x, s;α) =
αsechx

s2
+

1

s2
L
{
∂2u(x, t;α)

∂x2
− sin(u(x, t))

}
, 0 < x < 1,

(84) U(x, s;α)=
(2− α)sechx

s2
+

1

s2
L
{
∂2u(x, t;α)

∂x2
− sin(u(x, t))

}
, 0<x<1.

Taking the Laplace inverse L−1 on both sides of Eqs. (83) and (84) gives

(85) u(x, t;α) = αtsechx+ L−1

{
1

s2
L
{
∂2u(x, t;α)

∂x2
− sin(u(x, t))

}}
,

(86) u(x, t;α) = (2− α)tsechx+ L−1

{
1

s2
L
{
∂2u(x, t;α)

∂x2
− sin(u(x, t))

}}
.

Since

sin(u(x, t)) = u(x, t)− (u(x, t))3

3!
+ ...+

(−1)n

(2n+ 1)!
(u(x, t))2n+1 + ...

=
∞∑
n=0

λnun(x, t)−
1

3!

( ∞∑
n=0

λnun(x, t)

)3

+
1

5!

( ∞∑
n=0

λnun(x, t)

)5

− ...

=
∞∑
n=0

λnun(x, t)−
1

3!

∞∑
n=0

λnAn(u(x, t)) +
1

5!

∞∑
n=0

λnBn(u(x, t))− ...

=

∞∑
n=0

λnHn(u(x, t)),(87)

where An, Bn are Adomain polynomials (see [23, 24]) and Hn are He’s polyno-
mials. From Section 4, then Eqs. (85) and (86) becomes

∞∑
n=0

λnvn(x, t;α) = αtsechx

+ λL−1

{
1

s2
L

{
∂2

∂x2

( ∞∑
n=0

λnvn(x, t;α)

)
−

∞∑
n=0

λnHn(v(x, t;α))

}}
,(88)
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∞∑
n=0

λnvn(x, t;α) = (2− α)tsechx

+ λL−1

{
1

s2
L

{
∂2

∂x2

( ∞∑
n=0

λnvn(x, t;α)

)
−

∞∑
n=0

λnHn(v(x, t;α))

}}
.(89)

From Theorem (4.2) and Eq. (87), we have

∂n

∂λn
(A0 + λA1 + ...+ λnAn)|λ=0

=
∂n

∂λn
(u0(x, t) + λu1(x, t) + ...+ λnun(x, t))

3
|λ=0

,(90)

∂n

∂λn
(B0 + λB1 + ...+ λnBn)|λ=0

=
∂n

∂λn
(u0(x, t) + λu1(x, t) + ...+ λnun(x, t))

5
|λ=0

.(91)

Now, if n = 0, we get

(92) A0 = u30(x, t), B0 = u50(x, t),

if n = 1, we get

(93) A1 = 3u20(x, t)u1(x, t), B1 = 5u40(x, t)u1(x, t),

if n = 2, we get

A2 = 3u20(x, t)u2(x, t) + 3u21(x, t)u0(x, t),

B2 = 5u40(x, t)u2(x, t) + 10u30(x, t)u
2
1(x, t),(94)

...

From Eqs. (87), (92), (93) and (94), we have

H0(u(x, t)) = u0(x, t)−
u30(x, t)

3!
+
u50(x, t)

5!
− ...,(95)

H1(u(x, t)) = u1(x, t)−
3u20(x, t)u1(x, t)

3!
+

5u40(x, t)u1(x, t)

5!
− ...,(96)

H2(u(x, t)) = u2(x, t)−
3u20(x, t)u2(x, t) + 3u21(x, t)u0(x, t)

3!

+
5u40(x, t)u2(x, t) + 10u30(x, t)u

2
1(x, t)

5!
− ...,(97)

...
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Similarly, we find H0(u(x, t)), H1(u(x, t)), H2(u(x, t)),... . The first few compo-
nents in the first system are given by

λ0 : v0(x, t;α) = αtsechx,

v0(x, t;α) = (2− α)tsechx,

λ1 : v1(x, t;α) = L−1

{
1

s2
L
{
∂2v0(x, t;α)

∂x2
−H0(u(x, t))

}}
=
−αt3sechx tanhx

3!
− αt3sechx

3!
+

(αsechx)3t5

5!
− (αsechx)5t7

7!
+ ...,

v1(x, t;α) = L−1

{
1

s2
L
{
∂2v0(x, t;α)

∂x2
−H0(u(x, t))

}}
=
−(2− α)t3sechx tanhx

3!
− (2− α)t3sechx

3!

+
((2− α)sechx)3t5

5!
− ((2− α)sechx)5t7

7!
+ ...,

λ2 : v2(x, t;α) = L−1

{
1

s2
L
{
∂2v1(x, t;α)

∂x2
−H1(u(x, t))

}}
=

330(αsechx)9t13

13!
− 162(αsechx)7t11

11!

+
(αsechx)5t9

9!
(35 tanhx+ 62− 30 tanh2 x)

+
(αsechx)3t7

7!
(12 tanh2 x− 14− 10 tanhx)

+
(αsechx)t5

5!
(2− 6 tanh3 x− 2 tanh2 x+ 6 tanhx) + ...,

v2(x, t;α) = L−1

{
1

s2
L
{
∂2v1(x, t;α)

∂x2
−H1(u(x, t))

}}
=

330((2− α)sechx)9t13

13!
− 162((2− α)sechx)7t11

11!

+
((2− α)sechx)5t9

9!
(35 tanhx+ 62− 30 tanh2 x)

+
((2− α)sechx)3t7

7!
(12 tanh2 x− 14− 10 tanhx)

+
((2− α)sechx)t5

5!
(2− 6 tanh3 x− 2 tanh2 x+ 6 tanhx) + ...,

...

Therefore, the approximate solution of the first system is given by

u(x, t) = αtsechx− αt3sechx tanhx

3!
− αt3sechx

3!
+

(αsechx)3t5

5!

−(αsechx)5t7

7!
+

330(αsechx)9t13

13!
− 162(αsechx)7t11

11!
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+
(αsechx)5t9

9!
(35 tanhx+ 62− 30 tanh2 x)

+
(αsechx)3t7

7!
(12 tanh2 x− 14− 10 tanhx)

+
(αsechx)t5

5!
(2− 6 tanh3 x− 2 tanh2 x+ 6 tanhx) + ...,

u(x, t) = (2− α)tsechx− (2− α)t3sechx tanhx
3!

− (2− α)t3sechx
3!

+
((2− α)sechx)3t5

5!
− ((2− α)sechx)5t7

7!
+

330((2− α)sechx)9t13

13!

− 162((2− α)sechx)7t11

11!
+
((2−α)sechx)5t9

9!
(35 tanhx+62−30 tanh2 x)

+
((2− α)sechx)3t7

7!
(12 tanh2 x− 14− 10 tanhx)

+
((2− α)sechx)t5

5!
(2− 6 tanh3 x− 2 tanh2 x+ 6 tanhx) + ... .

The approximate fuzzy solution to the first system in parametric form for α
= 0.5, various x in [0, 1] and various t in [0, 5] is given in Figure 1. It is clear
from the Figure 1 that, the numerical results obtained by C(LT-HPM) satisfy
the convex symmetric triangular fuzzy number. Here, we use the first four terms
in u(x, t) and u(x, t) to sketch the approximate fuzzy solution.

Secondly, we take the Laplace transform L on both sides of Eqs. (79) and (80):

(98) U(x, s;α) =
αsechx

s2
+

1

s2
L
{
∂2u(x, t;α)

∂x2
− sin(u(x, t))

}
, 0 < x < 1,

(99) U(x, s;α)=
(2−α)sechx

s2
+

1

s2
L
{
∂2u(x, t;α)

∂x2
− sin(u(x, t))

}
, 0<x<1.

Taking the Laplace inverse L−1 on both sides of Eqs. (98) and (99) gives

(100) u(x, t;α) = αtsechx+ L−1

{
1

s2
L
{
∂2u(x, t;α)

∂x2
− sin(u(x, t))

}}
,
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(101) u(x, t;α) = (2− α)tsechx+ L−1

{
1

s2
L
{
∂2u(x, t;α)

∂x2
− sin(u(x, t))

}}
.

Again, using the same procedure in Section 4, the first few components in the
second system are given by

λ0 : v0(x, t;α) = αtsechx,

v0(x, t;α) = (2− α)tsechx,

λ1 : v1(x, t;α) =
−2(2− α)t3sech3x

3!
+

(2− α)3t5sech3x
5!

−(2− α)5t7sech5x
7!

+ ...,

v1(x, t;α) =
−2αt3sech3x

3!
+
α3t5sech3x

5!
− α5t7sech5x

7!
+ ...,

λ2 : v2(x, t;α) =

(
αt5

15
− α3t7

1260

)
sech3x+

α5t9sech5x

60 480

+

(
α3t7

420
− αt5

5

)
tanh2 xsech3x

−α
5t9 tanh2 xsech5x

12 096
+

1

10 080

(
7α3(α− 2)2t9

12
− 40α(α− 2)2t7

)
sech5x

−α
5(α− 2)4t13sech9x

18 869 760

+

(
α3(α− 2)4t11

316 800
− α(α− 2)4t9

5184
− α5(α− 2)2t11

1108 800

)
sech7x+ ...,

v2(x, t;α) =

(
(2− α) t5

15
− (2− α)3 t7

1260

)
sech3x+

(2− α)5 t9sech5x
60 480

+

(
(2− α)3 t7

420
− (2− α) t5

5

)
tanh2 xsech3x− (2− α)5 t9 tanh2 xsech5x

12 096

+
1

10 080

(
7α2 (2−α)3 t9

12
−40α2 (2−α) t7

)
sech5x−α

4 (2− α)5 t13sech9x
18 869 760

+

(
α4 (2− α)3 t11

316 800
− α4 (2− α) t9

5184
− α2 (2− α)5 t11

1108 800

)
sech7x+ ...,

...

Therefore, the approximate solution of the second system is given by

u(x, t) = αtsechx− 2(2− α)
3!

t3sech3x+
(2− α)3

5!
t5sech3x

− (2− α)5

7!
t7sech5x+

(
α

15
t5 − α3

1260
t7
)
sech3x+

α5

60 480
t9sech5x
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+

(
α3

420
t7 − α

5
t5
)
tanh2 xsech3x− α5

12 096
t9 tanh2 xsech5x

+
1

10 080
(
7

12
α3 (α− 2)2 t9 − 40α (α− 2)2 t7)sech5x− α5 (α− 2)4

18 869 760
t13sech9x

+

(
α3 (α− 2)4

316 800
t11 − α (α− 2)4

5184
t9 − α5 (α− 2)2

1108 800
t11

)
sech7x+ ... .

u(x, t) = (2− α)tsechx− 2α

3!
t3sech3x+

α3

5!
t5sech3x− α5

7!
t7sech5x

+

(
(2− α)

15
t5 − (2− α)3

1260
t7
)
sech3x+

(2− α)5

60 480
t9sech5x

+

(
(2− α)3

420
t7 − (2− α)

5
t5
)
tanh2 xsech3x− (2− α)5

12 096
t9 tanh2 xsech5x

+
1

10 080
(
7

12
α2(2− α)3t9 − 40α2(2− α)t7)sech5x− α4(2− α)5

18 869 760
t13sech9x

+

(
α4(2− α)3

316 800
t11 − α4(2− α)

5184
t9 − α2(2− α)5

1108 800
t11
)
sech7x+ ...,

The approximate fuzzy solution to the second system in parametric form
for α = 0.2, various x in [0, 1] and various t in [0, 5] is given in Figure 2. It
is clear from the Figure 2 that, the numerical results obtained by C(LT-HPM)
satisfy the fuzzy numbers properties by taking the triangular fuzzy numbers
shape. Here, we use the first seven terms in u(x, t) and u(x, t) to sketch the
approximate fuzzy solution.

6. Conclusion

The primary objective of this paper is to determine an approximate-analytical
solutions for the fuzzy partial differential equations. We have accomplished this
objective by applying C(LT-HPM). The results are very encouraging, demon-
strating the unwavering quality and proficiency of the proposed strategy with



OPTIMIZATION TECHNIQUE FOR SOLVING FUZZY PARTIAL DIFFERENTIAL ... 377

less computational work and time. This strategy is based on the definition of
strongly generalized differentiability.
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1. Introduction

Let T denoted to class of function of the form

(1.1) f(z) = z −
∞∑
k=2

akz
k (ak ≥ 0),

which are analytic function in the open disc U = {z ∈ C : |z| < 1}.
We denote by T ∗(α) and C(α) the subclasses of starlike functions of order α,

and convex functions of order α, respectively. Theses two subclases are defined
by Silverman [11] as following:

(1.2) T ∗(α) =

{
f ∈ T : ℜ

{
zf

′
(z)

f(z)

}
> α (0 ≤ α < 1; z ∈ U)

}
,

and

(1.3) C(α) =

{
f ∈ T : ℜ

{
1 +

zf
′′
(z)

f ′(z)

}
> α (0 ≤ α < 1; z ∈ U)

}
.

For µ > 0 and a, c ∈ C, are such that ℜ{c− a} ≥ 0, Raina and Sharma [9] (see
also [3], [4]) defined the integral operator Ja,cµ : T −→ T , as following:

∗. Corresponding author
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(i) for ℜ{c− a} > 0 and ℜ{a} > −µ by

(1.4) Ja,cµ f(z) =
Γ(c+ µ)

Γ(a+ µ)Γ(c− a)

1∫
0

(1− t)c−a−1 ta−1f(ztµ)dt;

(ii) for a = c by

(1.5) Ja,aµ f(z) = f(z),

where Γ stands for Euler’s Gamma function (which is valid for all complex
numbers except the non-positive integers).

For f(z) defined by (1.1), it is easily from (1.4) and (1.5) that:
(1.6)

Ja,cµ f(z) = z − Γ(c+ µ)

Γ(a+ µ)

∞∑
k=2

Γ(a+ kµ)

Γ(c+ kµ)
akz

k (µ > 0,ℜ{c} ≥ ℜ{a} > −µ).

Let Ma,c
µ (α;A,B) be the subclass of functions f ∈ T for which:

(1.7)
z(Ja,cµ f(z))

′

Ja,cµ f(z)
≺ (1− α) 1 +Az

1 +Bz
+ α (−1 ≤ B < A ≤ 1, 0 ≤ α < 1),

that is, that

(1.8) Ma,c
µ (α;A,B) =

f ∈ T :

∣∣∣∣∣∣
z(Ja,c

µ f(z))′

Ja,c
µ f(z)

−1

B
z(Ja,c

µ f(z))′

Ja,c
µ f(z)

−[B+(A−B)(1−α)]

∣∣∣∣∣∣ < 1, z ∈ U

 .

Also, let Na,c
µ (α;A,B) be the subclass of functions f ∈ T for which:

1 +
z(Ja,cµ f(z))

′′

(Ja,cµ f(z))′
≺ (1− α) 1 +Az

1 +Bz
+ α,

form (1.7) and (1.8), it is clear that

(1.9) f(z) ∈ Na,c
µ (α;A,B) ⇐⇒ zf

′
(z) ∈Ma,c

µ (α;A,B).

It is easily to see that:
(i)Ma,a

µ (α;A,B) = T ∗(A,B, α) and Na,c
µ (α;A,B) = C(A,B, α), see [2, with

p = 1];
(ii) Ma,a

µ (α;β,−β) = T ∗(α, β) and Na,a
µ (α;β,−β) = C(α, β) the subclasses

of starlike and convex of order 0 ≤ α < 1 and type 0 < β ≤ 1, see [6];
(iii) Ma,a

µ (α; 1,−1) = T ∗(α) and Na,a
µ (α; 1,−1) = C(α) the subclasses of

starlike and convex of order 0 ≤ α < 1, see [11].
The object of the present paper is to determine the neighborhood properties

for each of the subclasses Ma,c
µ (α;A,B) and Na,c

µ (α;A,B). Moreover, investi-
gate integral means inequalities, and some results concerning partial sums for
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functions belonging to the subclass Ma,c
µ (α;A,B). We will make use of the fol-

lowing lemmas, also otherwise mentioned, we assume in the reminder of this
paper that, 0 ≤ α < 1,−1 ≤ B < A ≤ 1, µ > 0, a, c ∈ R, c > a > −µ and z ∈ U .

Lemma 1 ([8]). Let the function f(z) be given by (1.1). Then f ∈Ma,c
µ (α;A,B),

if and only if

∞∑
k=2

[(1−B)(k − 1) + (A−B)(1− α)] Γ(a+ kµ)

Γ(c+ kµ)
ak

≤ (A−B)(1− α)Γ(a+ µ)

Γ(c+ µ)
.(1.10)

Lemma 2 ([8]). Let the function f(z) be given by (1.1). Then f ∈ Na,c
µ (α;A,B),

if and only if

∞∑
k=2

[(1−B)(k − 1) + (A−B)(1− α)] Γ(a+ kµ)

Γ(c+ kµ)
kak

≤ (A−B)(1− α)Γ(a+ µ)

Γ(c+ µ)
.(1.11)

2. Neighborhood results

Following the earlier investigations of Goodman [5] and Ruscheweyh [10], the
δ− neighborhood is defined as following:

(2.1) Nδ(f) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k,

∞∑
k=2

k |ak − bk| ≤ δ

}
.

For the identity function e(z) = z, we immediately have

(2.2) Nδ(e) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k,

∞∑
k=2

k |bk| ≤ δ

}
,

where the function f is given by (1.1).

Theorem 1. If the function f(z) defined by (1.1) is in the subclass Ma,c
µ (α;A,B).

Then Ma,c
µ (α;A,B) ⊂ Nδ(e), where

(2.3) δ =
2Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)
.

Proof. Since f ∈Ma,c
µ (α;A,B), by using Lemma 1 and from (1.10), we find

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)

2Γ(a+ µ)Γ(c+ 2µ)

∞∑
k=2

kak ≤
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∞∑
k=2

[(1−B)(k − 1) + (A−B)(1− α)] Γ(a+ kµ)

Γ(c+ kµ)
ak ≤ (A−B)(1− α).

It is clear

∞∑
k=2

kak ≤
2Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)
= δ.

Corollary 1. If f ∈ T is in the class T ∗(A,B, α). Then

T ∗(A,B, α) ⊂ N(e),

where

δ =
2(A−B)(1− α)

(1−B) + (A−B)(1− α)
.

Corollary 2. If f ∈ T is in the class T ∗(α, β). Then

T ∗(α, β) ⊂ N(e),

where

δ =
4β(1− α)

1 + 2β(2− α)
.

Corollary 3. If f ∈ T is in the class T ∗(α). Then

T ∗(α) ⊂ N(e),

where

δ =
2(1− α)
2− α

.

by similarly applying Lemma 2 instead of Lemma1, we can prove following.

Theorem 2. If the function f(z) defined by (1.1) is in the subclass Na,c
µ (α;A,B).

Then Na,c
µ (α;A,B) ⊂ Nδ(e), where

(2.4) δ =
Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)
.

Corollary 4. If f ∈ T is in the class C(A,B, α). Then

C(A,B, α) ⊂ N(e),

where

δ =
(A−B)(1− α)

(1−B) + (A−B)(1− α)
.
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Corollary 5. If f ∈ T is in the class C(α, β). Then

C(α, β) ⊂ N(e),

where

δ =
2β(1− α)

(1 + β) + 2β(1− α)
.

Corollary 6. If f ∈ T is in the class C(α). Then

C(α) ⊂ N(e),

where

δ =
1− α
2− α

.

We will determine the neighborhood properties for each of the following
(slightly modified) function subclass Ma,c,ρ

µ (α;A,B).
A functions f ∈ T is said to be in the class Ma,c,ρ

µ (α;A,B) if there exists a
function g ∈Ma,c

µ (α;A,B) such that

(2.5)

∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ < 1− ρ (z ∈ U ; 0 ≤ ρ < 1).

The proofs of the following results involving the neighborhood properties for
the subclass Ma,c,ρ

µ (α;A,B), is similar to those given in [1].

Theorem 3. If g ∈Ma,c
µ (α;A,B). Suppose also that

(2.6) ρ = 1− δΓ(c+µ)[(1−B)+(A−B)(1−α)]Γ(a+2µ)
2[Γ(c+µ)[(1−B)+(A−B)(1−α)]Γ(a+2µ)−Γ(a+µ)(A−B)(1−α)Γ(c+2µ)] ,

then
Nδ(g) ⊂Ma,c,ρ

µ (α;A,B).

Proof. let f(z) be in Nδ(g). We then find from the definition (2.1) that

(2.7)
∞∑
k=2

k |ak − bk| ≤ δ,

since g ∈Ma,c
µ (α;A,B), we have

∞∑
k=2

bk ≤
Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)

so that∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ <

∞∑
k=2

|ak−bk|

1−
∞∑

k=2
bk

≤ δ

2
Γ(c+µ)[(1−B)+(A−B)(1−α)]Γ(a+2µ)

Γ(c+µ)[(1−B)+(A−B)(1−α)]Γ(a+2µ)−Γ(a+µ)(A−B)(1−α)Γ(c+2µ)

= 1− ρ,
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provided that ρ is given precisely by (2.6). Thus, by definition, f ∈ Ma,c,ρ
µ (α;

A,B) for ρ given by (2.6). This evidently completes our proof of Theorem 3.

A function f ∈ T is said to be in the class Ha,c
µ (α, ϕ;A,B) if it satisfies the

following non-homogeneous Cauchy-Euler differential equation:

(2.8) z2
d2f

dz2
+ 2(ϕ+ 1)z

df(z)

dz
+ ϕ(ϕ+ 1)f(z) = (1 + ϕ)(2 + ϕ)g(z)

(
g ∈Ma,c

µ (α;A,B);ϕ > −1
)

Theorem 4. If f ∈ T is in the class Ha,c
µ (α, ϕ;A,B) then

(2.9) Ha,c
µ (α, ϕ;A,B) ⊂ Nδ(g),

where

(2.10) δ =
4Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)

(
2 + ϕ

3 + ϕ

)
Proof. Suppose that f ∈ Ha,c

µ (α, ϕ;A,B) and f is given by (1.1). From (2.8)

ak =
(1 + ϕ)(2 + ϕ)

(k + ϕ)(k + ϕ+ 1)
bk (k ≥ 2),

∞∑
k=2

k |bk − ak| ≤
∞∑
k=2

kbk +

∞∑
k=2

kak (ak ≥ 0, bk ≥ 0),

we obtain

(2.11)
∞∑
k=2

k |bk − ak| ≤
∞∑
k=2

kbk +
∞∑
k=2

(1 + ϕ)(2 + ϕ)

(k + ϕ)(k + ϕ+ 1)
kbk.

Next, since g ∈Ma,c
µ (α;A,B), from (1.10) of the Lemma 1 yields

(2.12)

∞∑
k=2

kbk ≤
2Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)
.

Finally, by making use of (2.11) on the right-hand side of (2.12), we find that

∞∑
k=2

k |bk − ak| ≤
2Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)

(
1 +

(1 + ϕ)

(3 + ϕ)

)
=

2Γ(a+ µ)(A−B)(1− α)Γ(c+ 2µ)

Γ(c+ µ) [(1−B) + (A−B)(1− α)] Γ(a+ 2µ)

(
2(2 + ϕ)

3 + ϕ

)
= δ.

Thus, by definition (2.1) with g(z) interchanged by f(z), f ∈ Nδ(g).This, evi-
dently, completes the proof of Theorem 4.
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3. Integral means inequalities

We shall need the concept of subordination theorem of Littlewood [7] in our
investigation.

Lemma 3. (Littlewood’s theory [7]). If the functions f(z) and g(z) are analytic
in U with g(z) ≺ f(z) then

(3.1)

∫ 2π

0

∣∣∣g(reiθ)∣∣∣τ dθ ≤ ∫ 2π

0

∣∣∣f(reiθ)∣∣∣τ dθ (τ > 0; 0 < r < 1).

Theorem 5. Let f ∈Ma,c
µ (α;A,B) and suppose that

(3.2) f2(z) = z − Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)
Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)

z2,

then for τ > 0, z = reiθ(0 < r < 1),

(3.3)

∫ 2π

0

∣∣∣f(reiθ)∣∣∣τ dθ ≤ ∫ 2π

0

∣∣∣f2(reiθ)∣∣∣τ dθ
Proof. From (3.1), it would suffice to show that

1−
∞∑
k=2

akz
k−1 ≺ 1− Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)
z.

By setting

1−
∞∑
k=2

akz
k−1 = 1− Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)
w(z),

we find that

|w(z)| =

∣∣∣∣∣
∞∑
k=2

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)

Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)
akz

k−1

∣∣∣∣∣(3.4)

≤ |z|
∞∑
k=2

Γ(c+ µ)[(1−B) + (A−B)(1− α)]Γ(a+ 2µ)

Γ(a+ µ)Γ(c+ 2µ)(A−B)(1− α)
ak

≤ |z| ≤ 1,

by using (1.10). Hence f(z) ≺ g(z) which readily yields the integral means
inequality (3.3).
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4. Partial sums

In this section we will study the ratio of a function of the form (1.1) to its
sequence of partial sums defined by fm(z) = z and fm(z) = z−

∑m
k=2 akz

k, when
the coefficients of f(z) are sufficiently small to satisfy the condition (1.9). We

will determine sharp lower bounds, for ℜ
∫
( f(z)
fm(z)

∫
),ℜ

∫
(fm(z)
f(z)

∫
),ℜ

∫
( f

′
(z)

f ′m(z)

∫
)

and ℜ
∫
(f

′
m(z)

f ′ (z)

∫
).

In what follows, we will use the well known result

ℜ
(
1− w(z)
1 + w(z)

)
(z ∈ U) ,

if and only if

w(z) =
∞∑
k=1

Dkz
k,

satisfies the inequality |w(z)| ≤ |z| .

Theorem 6. Let f ∈Ma,c
µ (α;A,B), then

(4.1) ℜ
(
f(z)

fm(z)

)
≥ 1− 1

Dm+1
(z ∈ U,m ∈ N) ,

and

(4.2) ℜ
(
fm(z)

f(z)

)
≥ Dm+1

1 +Dm+1
(z ∈ U,m ∈ N) ,

where

(4.3) Dk =
Γ(c+ µ)[(1−B)(k − 1) + (A−B)(1− α)]Γ(a+ kµ)

Γ(a+ µ)Γ(c+ kµ)(A−B)(1− α)
.

The estimates in (4.1) and (4.2) are sharp.

Proof. Employing the same technique used by Silverman [12]. The function
f ∈ Ma,c

µ (α;A,B) if and only if
∑∞

k=1Dkz
k ≤ 1. It is easy to verify that

Dk+1 > Dk > 1. Thus

(4.4)

m∑
k=1

ak +Dm+1

∞∑
k=m+1

ak ≤
∞∑
k=2

Dkak < 1.

Now, setting

Dm+1

{
f(z)

fm(z)
−
(
1− 1

Dm+1

)}

=

1−
m∑
k=2

akz
k−1 −Dm+1

∞∑
k=m+1

akz
k−1

1−
m∑
k=1

akzk−1

=
1 + E(z)

1 + Y (z)
,
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and 1+E(z)
1+Y (z) =

1−w(z)
1+w(z) , then we have

w(z) =
Y (z)− E(z)

2 + E(z) + Y (z)
=

Dm+1

∞∑
k=m+1

akz
k−1

2− 2
m∑
k=2

akzk−1 −Dm+1

∞∑
k=m+1

akzk−1

which implies

|w(z)| ≤
Dm+1

∞∑
k=m+1

ak

2− 2
m∑
k=2

ak −Dm+1

∞∑
k=m+1

ak

.

Hence |w(z)| ≤ 1 if and only if

m∑
k=2

ak +Dm+1

∞∑
k=m+1

ak ≤ 1

which is true by (4.4). This readily yields (4.1).
Now consider the function

(4.5) f(z) = 1− zm+1

Dm+1

Thus f(z)
fm(z) = 1− zm

Dm+1
. Letting z −→ 1−, then f(z) = 1− 1

Dm+1
. So f(z) given

by (4.5) satisfies the sharp result in (4.1). This shows that the bounds in (4.1)
are best possible for each m ∈ N.

Similarly, setting

(1 +Dm+1)

{
fm(z)

f(z)
− Dm+1

1 +Dm+1

}
=

1−
m∑
k=2

akz
k−1 +Dm+1

∞∑
k=m+1

akz
k−1

1−
m∑
k=2

akzk−1

≡ 1− w(z)
1 + w(z)

,

where

|w(z)| ≤
(1 +Dm+1)

∞∑
k=m+1

ak

2− 2
m∑
k=2

ak + (1−Dm+1)
∞∑

k=m+1

ak

.

Now |w(z)| ≤ 1 if and only if

m∑
k=2

ak +Dm+1

∞∑
k=m+1

ak ≤ 1,
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which readily implies the assertion (4.2). The estimate in (4.2) is sharp with the
extremal function f(z) given by (4.5). This completes the proof of the theorem.

Following similar steps to that followed in Theorem 6, we can state the
following theorem

Theorem 7. Let f ∈Ma,c
µ (α;A,B), then

(4.6) ℜ

(
f

′
(z)

f ′
m(z)

)
≥ 1− m+ 1

Dm+1
(z ∈ U,m ∈ N) ,

and

(4.7) ℜ

(
f

′
m(z)

f ′(z)

)
≥ Dm+1

m+ 1 +Dm+1
(z ∈ U,m ∈ N) ,

where Dk, k ∈ N is given by (4.3). The estimates in (4.6) and (4.7) are sharp
with the extremal function f(z) is as defined in (4.5).
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Abstract. Let R be a multiplicative hyperring. In this paper, we introduce the con-
cepts of uniformly primary hyperideal and uniformly 2- absorbing primary hyperideal
of R, which impose a certain boundedness condition on the usual notions of primary
hyperideal and 2- absorbing primary hyperideal, respectively. We will show some prop-
erties of them.

Keywords: 2-absorbing primary hyperideal, uniformly primary hyperideal, uniformly
2-absorbing primary hyperideal, Noether strongly 2-absorbing primary hyperideal, spe-
cial 2-absorbing primary hyperideal.

1. Introduction

The theory of algebraic hyperstructures was introduced in 1934 by Marty [8]
during the 8th Congress of Scandinavian Mathematicians. Marty introduced
hypergroups as a generalization of groups. He published some notes on hyper-
groups, using them in different contexts as algebraic functions, rational fractions,
non commutative groups. Later on, many researchers have observed that the
theory of hyperstructures also have many applications in both pure and applied
sciences. A comprehensive review of this theory can be found in [3],[6],[9], [4]
and [11]. The notion of multiplicative hyperring was introduced by R. Rota [10]
in 1982. For example, applications of hyperstructures in chemistry and physics
can be studied in Chapter 8, [6].

A triple (R,+, ◦) is called a multiplicative hyperring if
(1)(R,+) is an abelian group;
(2)(R, ◦) is semihypergroup;
(3) for all a, b, c ∈ R, we have a◦(b+c) ⊆ a◦b+a◦c and (b+c)◦a ⊆ b◦a+c◦a;
(4) for all a, b ∈ R, we have a ◦ (−b) = (−a) ◦ b = −(a ◦ b).
For any two nonempty subsets A and B of R and x ∈ R, we define

A ◦B =
∪

a∈A, b∈B
a ◦ b, A ◦ x = A ◦ {x}

A non empty subset I of a multiplicative hyperring R is a hyperideal if
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(1) If a, b ∈ I, then a− b ∈ I;
(2) If x ∈ I and r ∈ R, then r ◦ x ⊆ I.
The concept of 2-absorbing hyperideal was introduced in [7]. Really, it is a

generalization of prime hyperideal. Precisely, a nonzero proper hyperideal I of
a multiplicative hyperring R is called to be 2-absorbing if x ◦ y ◦ z ⊆ I where
x, y, z ∈ R, then x ◦ y ⊆ I or y ◦ z ⊆ I or x ◦ z ⊆ I.

In this paper, we introduce the concepts of uniformly primary hyperideal and
uniformly 2-absorbing primary hyperideal of R, which impose a certain bound-
edness condition on the usual notions of primary hyperideal and 2- absorbing
primary hyperideal, respectively.

Among many results in this paper, it is shown (Theorem 3.6) that hyperideal
Q of R is a uniformly P-primary hyperideal if and only if:

(1) Q is a P-primary hyperideal of R, and

(2) there exists a positive integer n such that P = {x ∈ R | xn ⊆ Q}.
Moreover, ordH(Q) = k if and only if k is the smallest positive integer for

which condition (2) holds. It is shown (Theorem 4.9) that if R1 and R2 be
multiplicative hyperrings and ϕ : R1 −→ R2 be a good homomorphism. Then
the following statements hold:

(1) If Q2 is a uniformly 2-absorbing primary hyperideal of R2, then ϕ
−1(Q2)

is a uniformly 2-absorbing primary hyperideal of R1 with 2 ordHR1
(ϕ−1(Q2)) ≤

2 ordHR2
(Q2).

(2) If ϕ is an epimorphism and Q1 is a uniformly 2-absorbing primary hyper-
ideal of R1 containing ker(ϕ), then ϕ(Q1) is a uniformly 2-absorbing primary
hyperideal of R2 with 2 ordHR2

(ϕ(Q1)) ≤ 2 ordHR1
(Q1).

It is shown (Theorem 5.5) that ifQ is a Noether strongly 2-absorbing primary
hyperideal of R, then Q is a uniformly 2-absorbing primary hyperideal of R and
2 ordH(Q) ≤ 2 eH(Q).

2. Preliminaries

Definition 2.1 ([5]). A nonzero proper hyperideal P of R is called a prime
hyperideal if x◦y ⊆ P for x, y ∈ R implies that x ∈ P or y ∈ P . The intersection
of all prime hyperideals of R containing I is called the prime radical of I, being
denoted by r(I). If the multiplicative hyperring R does not have any prime
hyperideal containing I, we define r(I) = R.

Definition 2.2 ([5]). Let C be the class of all finite products of elements of R
i.e. C = {r1 ◦ r2 ◦ ... ◦ rn : ri ∈ R,n ∈ N} ⊆ P ∗(R). A hyperideal I of R is said
to be a C-hyperideal of R if for any A ∈ C, A ∩ I ̸= ∅⇒ A ⊆ I.

Theorem 2.3 ([5], Proposition 3.2). Let I be a hyperideal of R. Then, D ⊆ r(I)
where D = {r ∈ R : rn ⊆ I for some n ∈ N}. The equality holds when I is a
C-hyperideal of R.

In this paper, we assume that all hyperideals are C-hyperideal.
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Definition 2.4 ([5]). A nonzero proper hyperideal Q of R is called a primary
hyperideal if for any x, y ∈ R, x◦y ⊆ Q and x /∈ Q, then yn ⊆ Q for some n ∈ N.

Since r(Q) = P is a prime hyperideal of R by Propodition 3.6 in [5], Q is
referred to as a P-primary hyperideal of R.

Definition 2.5 ([1]). A nonzero proper hyperideal I of R is called 2-absorbing
primary hyperideal of R if x ◦ y ◦ z ⊆ I for some x, y, z ∈ R, then x ◦ y ⊆ I or
x ◦ z ⊆ r(I) or y ◦ z ⊆ r(I).

Theorem 2.6 ([1], Theorem 4.2). Let I be a 2-absorbing primary hyperideal of
R. Then P = r(I) is a 2-absorbing hyperideal. We say that I is a P-2-absorbing
primary hyperideal of R.

Definition 2.7. Let (R1,+1, ◦1) and (R2,+2, ◦2) be multiplicative hyperrings.
A mapping from R1 into R2 is said to be a good homomorphism if for all x, y ∈
R1, ϕ(x+1 y) = ϕ(x) +2 ϕ(y) and ϕ(x ◦1 y) = ϕ(x) ◦2 ϕ(y).

Definition 2.8. For x ∈ R, we define (I :R x) = {r ∈ R | r ◦ x ⊆ I}.

3. Uniformly primary hyperideals

Definition 3.1. Let Q be a proper hyperideal of R. Q is a uniformly primary
hyperideal of R if there exists a positive integer n such that whenever x, y ∈ R
satisfy x◦y ⊆ Q and x /∈ Q then yn ⊆ Q. If k is the smallest positive integer for
which the above property holds ,then it is denoted by ordHR

(Q) = k, or simply
ordH(Q) = k.

Definition 3.2. P-primary hyperideal Q of R is said to be a Noether strongly
primary hyperideal if Pn ⊆ Q for some positive integer n. If k is the small-
est positive integer for which the above property holds ,then it is denoted by
eHR

(Q) = k, or simply eH(Q) = k.

Example 3.3. Let (Z,+, ·) be the ring of integers. We define the hyperopera-
tion a ◦ b = {2ab, 4ab}, for all a, b ∈ Z. The hyperideal 3Z = {3n | n ∈ Z} of the
multiplicative hyperring (Z,+, ·) is a Noether strongly primary hyperideal.

Theorem 3.4. If Q is a Noether strongly P-primary hyperideal of R then Q is
a uniformly P-primary hyperideal of R. Also, ordH(Q) ≤ eH(Q).

Proof. Assume that Q is a Noether strongly P-primary hyperideal of R. Let
x ◦ y ⊆ Q for some x, y ∈ R such that x /∈ Q. Thus y ∈ P and so yeH(Q) ⊆
P eH(Q) ⊆ Q. Hence, Q is a uniformly P-primary hyperideal of R such that
ordH(Q) ≤ eH(Q).

Example 3.5. In Example 3.3, the hyperideal 3Z = {3n | n ∈ Z} of the
multiplicative hyperring (Z,+, ·) is a uniformly primary hyperideal.
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Theorem 3.6. Hyperideal Q of R is a uniformly P-primary hyperideal if and
only if:

(1) Q is a P-primary hyperideal of R.

(2) there exists a positive integer n such that P = {x ∈ R | xn ⊆ Q}.
Moreover, ordH(Q) = k if and only if k is the smallest positive integer for

which condition (2) holds.

Proof. =⇒ Let Q be a uniformly P-primary hyperideal of R with ordH(Q) = k.
Thus we have condition (1) clearly. Suppose that x ∈ P . So there exists some
positive integer t with xt−1◦x = xt ⊆ Q such that xt−1 * Q. Since ordH(Q) = k,
we have xk ⊆ Q. Thus the proof is completed.

⇐= Assume that x◦y ⊆ Q for some x, y ∈ R such that x /∈ Q. Then we have
y ∈ P . On the other hand, by (2), there exists a positive integer n with yn ⊆ Q
such that n is independent of y. Thus, Q is a uniformly primary hyperideal of
R.

The ”moreover” statement follows from the definition of ordH(Q).

Theorem 3.7. Let Q1 ⊆ Q2 be uniformly P-primary hyperideals of R. Then
ordH(Q1) ≥ ordH(Q2).

Proof. Put k1 = ord(Q1) and k2 = ordH(Q2). Then there exist elements
x, y ∈ R with x ◦ y ∈ Q2 such that x /∈ Q2, y

n ⊆ Q2, and yn−1 * Q2. Thus,
we have y ∈ P = r(Q1) and so yk1 ⊆ Q1 ⊆ Q2. Hence, k1 > k2 − 1, and then
k1 ≥ k2.

Theorem 3.8. Let {Qi}i∈I be a collection of uniformly P-primary hyperideals
of R such that maxi∈I{ordH(Qi)} = n, where n is a positive integer. Then
Q =

∩
i∈I Qi is a uniformly P-primary hyperideal of R with ordH(Q) = n.

Proof. By Proposition 3.3 in [5], we have r(Q) = r(
∩
i∈I Qi) =

∩
i∈I r(Qi) = P .

Assume that x ◦ y ⊆ Q for some x, y ∈ R such that x /∈ Q. Thus there exists
some j ∈ I such that x ◦ y ⊆ Qj and x /∈ Qj . It means y ∈ P and hence
yn ⊆ Q. Thus Q is a uniformly P-primary hyperideal of R with ordH(Qj) ≤ n.
Assume that Qt ∈ {Qi}i∈I be a uniformly P-primary hyperideal of R with
ordH(Q) = n. Hence, by Theorem 3.6, n is the smallest positive integer with
P = {x ∈ R | xn ⊆ Qt}. Hence, there exists x ∈ P but xn−1 * Qt, and so
xn−1 * Q. Consequently ordH(Q) = n.

Theorem 3.9. Let R1 and R2 be multiplicative hyperrings and ϕ : R1 −→ R2

be a good homomorphism. If Q2 is a uniformly P-primary hyperideal of R2, then
ϕ−1(Q2) is a uniformly ϕ−1(P )-primary hyperideal of R1 with ordHR1

(ϕ−1(Q2)) ≤
ordHR2

(Q2).

Proof. The proof of the first statement is easy. Let Q2 be a uniformly P-
primary hyperideal of R2 with k = ordHR2

(Q2). By Theorem 3.6, we have

P = {y ∈ R2 | yk ⊆ Q2}. Hence, ϕ−1(P ) = {x ∈ R1 | xk ⊆ ϕ−1(Q2)}.Therefore,
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we conclude that ϕ−1(Q2) is a uniformly ϕ−1(P )-primary hyperideal of R such
that ordHR1

(ϕ−1(Q2)) ≤ ordHR2
(Q2).

Corollary 3.10. Let I and Q be hyperideals of R such that I ⊆ Q. Then Q is
a uniformly P-primary hyperideal of R with ordHR

(Q) = k if and only if Q/I is
a uniformly P/I -primary hyperideal of R/I with ordHR/I

(Q/I) = k.

Proof. =⇒ It is straightforward.

⇐= Assume that Q/I is a uniformly P/I -primary hyperideal of R/I with
ordHR/I

(Q/I) = k. By Theorem 3.9, Q is a uniformly P-primary hyperideal
of R with ordHR

(Q) ≤ k. By Theorem 3.6, there exists x + I ∈ P/I but
(x+ I)k−1 * Q/I . Hence, x ∈ P and xk−1 * Q. Thus ordHR

(Q) = k.

4. Uniformly 2-absorbing primary hyperideals

Definition 4.1. LetQ be a proper hyperideal of R. Q is a uniformly 2-absorbing
primary hyperideal of R if there exists a positive integer n such that whenever
x, y, z ∈ R satisfy x ◦ y ◦ z ⊆ Q, x ◦ y * Q and x ◦ z * r(Q), then (y ◦ z)n ⊆ Q.
If k is the smallest positive integer for which the above property holds ,then it
is denoted by 2 ordHR

(Q) = k, or simply 2 ordH(Q) = k.

Theorem 4.2. If Q is a 2-absorbing hyperideal of R, then Q is a uniformly
2-absorbing primary hyperideal with 2 ordH(Q) = 1.

Proof. It is obvious.

Example 4.3. Let (Z,+, ·) be the ring of integers. Corresponding to every
subset A ∈ P ∗(Z) = P (R)\{∅} (|A| ≥ 2), there exists a multiplicative hyperring
(ZA,+, ◦) where ZA = Z and for any x, y ∈ ZA, x ◦ y = {x · a · y | a ∈ A} [5].
In the multiplicative hyperring of integers ZA with A = {5, 7}, the principal
hyperideals < 2 > and < 3 > are prime hyperideals by Proposition 4.3 in
[5]. Hence, hyperideal < 2 > ∩ < 3 > is a 2-absorbing hyperideal and so
< 2 > ∩ < 3 > is a uniformly 2-absorbing primary hyperideal.

Theorem 4.4. If Q is a uniformly 2-absorbing primary hyperideal of R, then
Q is a 2-absorbing primary hyperideal of R with 2 ordH(Q) = 1.

Proof. It is clear.

Theorem 4.5. Let Q be a proper hyperideal of R. If Q is a uniformly 2-
absorbing primary hyperideal of R, then one of the following conditions must
hold:

(1) r(Q) = P is a prime hyperideal.

(2) r(Q) = P1 ∩P2, where P1 and P2 are the only distinct prime hyperideals
of R that are minimal over Q.

Proof. Apply Theorem 4.5 in [1].
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Theorem 4.6. Let Q be a proper hyperideal of R. Then the following conditions
are equivalent:

(1) Q is uniformly 2-absorbing primary hyperideal.

(2) There exists a positive integer n such that for every x, y ∈ R either
(xoy)n ⊆ Q or (Q :R x ◦ y) ⊆ (Q :R x) ∪ (r(Q) :R y).

(3) There exists a positive integer n such that for every x, y ∈ R either
(x ◦ y)n ⊆ Q or (Q :R x ◦ y) = (Q :R x)or(Q :R x ◦ y) ⊆ (r(Q) :R y).

(4) There exists a positive integer n such that for every x, y ∈ R and every
hyperideal I of R, x ◦ y ◦ I ⊆ Q implies that either x ◦ I ⊆ Q or y ◦ I ⊆ r(Q) or
(x ◦ y)n ⊆ Q.

Proof. (1) ⇒ (2)Let Q be a uniformly 2-absorbing primary hyperideal of R
such that 2 ordH(Q) = n. Suppose that (x ◦ y)n * Q for some x, y ∈ R.
Let a ∈ (Q :R x ◦ y). Hence aoy ⊆ Q. Therefore we have a ◦ x ⊆ Q or
a ◦ y ⊆ r(Q). It means a ∈ (Q :R x) or a ∈ (r(Q) :R y). This implies that
(Q :R x ◦ y) ⊆ (Q :R x) ∪ (r(Q) :R y).

(2)⇒ (3)If an hyperideal is a subset of the union of two hyperideals, then it
is a subset of one of them.

(3)⇒ (4) Assume that n is a positive number such that for every x, y ∈ R
either (x ◦ y)n ⊆ Q or (Q :R x ◦ y) = (Q :R x)or(Q :R x ◦ y) ⊆ (r(Q) :R y).
Assume that I is a hyperideal of R with x ◦ y ◦ I ⊆ Q for some x, y ∈ R such
that (x ◦ y)n * Q. Therefore I ⊆ (Q :R x ◦ y). Hence we have I ⊆ (Q :R x) or
I ⊆ (r(Q) :R y). Thus xoI ⊆ Q or y ◦ I ⊆ r(Q).

(4)⇒ (1) Straightforward.

Theorem 4.7. Let Q1 be a uniformly P-primary hyperideal of R and Q2 be
a uniformly P-2-absorbing primary hyperideal of R such that Q1 ⊆ Q2. Then
2 ordH(Q2) ≤ ordH(Q1).

Proof. Assume that ordH(Q1) = k1 and 2 ordH(Q2) = k2. Thus there are
x, y, z ∈ R with x◦y ◦z ⊆ Q2 such that x◦y * Q2, x◦z * r(Q2), (y ◦z)k2 ⊆ Q2

and (y ◦ z)k2−1 * Q2. Hence y ◦ z ⊆ r(Q2) = r(Q1). Thus (y ◦ z)k1 ⊆ Q1 ⊆ Q2

by Theorem 3.6. Thus k2 > k1 − 1. Then k2 ≥ k1.

Theorem 4.8. Let {Qi}i∈I be a chain of uniformly P-2-absorbing primary hy-
perideals of R such that maxi∈I{2 ordH(Qi)} = n, where n is a positive integer.
Then Q =

∩
i∈I Qi is a uniformly P-2-absorbing primary hyperideal of R with

2 ordH(Q) ≤ n.

Proof. By Proposition 3.3 in [5], we have r(Q) = r(
∩
i∈I Qi) =

∩
i∈I r(Qi) = P .

Assume that x ◦ y ◦ z ⊆ Q for some x, y, z ∈ R such that x ◦ y * Q and
(y ◦ z)n * Q. Since {Qi}i∈I is a chain, there exists some j ∈ I such that
xoy * Qj and (y ◦ z)n * Qj . Since Qj is a uniformly 2-absorbing primary
hyperideal of R with 2 ord(Qj) ≤ n, then xoz ⊆ r(Qi) = r(Q). Thus Q is a
uniformly 2-absorbing primary hyperideal of R with 2 ordH(Q) ≤ n.
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Theorem 4.9. Let R1 and R2 be multiplicative hyperrings and ϕ : R1 −→ R2

be a good homomorphism. Then the following statements hold:
(1) If Q2 is a uniformly 2-absorbing primary hyperideal of R2, then ϕ

−1(Q2)
is a uniformly 2-absorbing primary hyperideal of R1 with 2 ordHR1

(ϕ−1(Q2)) ≤
2 ordHR2

(Q2).
(2) If ϕ is an epimorphism and Q1 is a uniformly 2-absorbing primary hy-

perideal of R1 containing ker(ϕ), then ϕ(Q1) is a uniformly 2-absorbing primary
hyperideal of R2 with 2 ordHR2

(ϕ(Q1)) ≤ 2 ordHR1
(Q1).

Proof. (1) Let k = 2 ordHR2
(Q2) and x ◦ y ◦ z ⊆ ϕ−1(Q2) for some x, y, z ∈

R1 such that x ◦ y * ϕ−1(Q2) and x ◦ z * r(ϕ−1(Q2)). This implies that
ϕ(x ◦ y ◦ z) = ϕ(z) ◦ ϕ(y) ◦ ϕ(z) ⊆ Q2 such that ϕ(x ◦ y) = ϕ(x) ◦ ϕ(y) * Q2

and ϕ(x ◦ z) = ϕ(x) ◦ ϕ(z) * r(Q2). Since Q2 is a uniformly 2-absorbing
primary hyperideal of R2, we have ϕk(y ◦ z) ⊆ Q2. Thus ϕ((y ◦ z)k) ⊆ Q2. It
means (y ◦ z)k ⊆ ϕ−1(Q2). Hence ϕ−1(Q2) is a uniformly 2-absorbing primary
hyperideal of R1 such that 2 ordHR1

(ϕ−1(Q2)) ≤ k = 2 ordHR2
(Q2).

(2) Let k = 2 ordHR1
(Q1) and x ◦ y ◦ z ⊆ ϕ(Q1) for some x, y, z ∈ R2 such

that x ◦ y * ϕ(Q1) and x ◦ z * r(ϕ(Q1)). Since ϕ is an epimorphism, then there
exist a, b, c ∈ R1 with ϕ(a) = x, ϕ(b) = y and ϕ(c) = z. Thus ϕ(a ◦ b ◦ c) =
x◦y◦z ⊆ ϕ(Q1) such that ϕ(a◦b) = x◦y * ϕ(Q1) and ϕ(a◦c) = x◦z * r(ϕ(Q1)).
Now take any u ∈ a ◦ b ◦ c. Then we get ϕ(u) ∈ ϕ(a ◦ b ◦ c) ⊆ ϕ(Q1) and so
ϕ(u) = ϕ(w) for some w ∈ Q1. This implies that ϕ(u − w) = 0 ∈ (0), that is,
u − w ∈ ker(ϕ) ⊆ Q1 and so u ∈ Q1. Since Q1 is a C-hyperideal of R1, then
we conclude that a ◦ b ◦ c ⊆ Q1. Since ϕ(r(Q1)) ⊆ r(ϕ(Q1)), then a ◦ b * Q1,
and a ◦ c * r(Q1), . Since Q1 is a uniformly 2-absorbing primary hyperideal of
R1, then we have (b ◦ c)k ⊆ Q1. Thus ϕ((b ◦ c)k) = (ϕ(b) ◦ ϕ(c))k = (y ◦ z)k ⊆
ϕ(Q1). Hence ϕ(Q1) is a uniformly 2-absorbing primary hyperideal of R2. Also,
2 ordHR2

(ϕ(Q1)) ≤ k = 2 ordHR1
(Q1).

Corollary 4.10. Let Q be a hyperideal of R.
(1) If S is a subhyperring of R and Q is a uniformly 2-absorbing primary

hyperideal of R, then Q∩ S is a uniformly 2-absorbing primary hyperideal of S
with 2 ordS(Q ∩ S) ≤ 2 ordR(Q).

(2) Let I be a hyperideal of R such that I ⊆ Q. Then Q is a uniformly 2-
absorbing primary hyperideal of R if and only if Q/I is a uniformly 2-absorbing
primary hyperideal of R/I.

Proof. It follows from Theorem 4.9.

5. Noether strongly 2-absorbing primary hyperideals

Definition 5.1. P-2-absorbing primary hyperidealQ ofR is said to be a Noether
strongly 2-absorbing primary hyperideal if Pn ⊆ Q for some positive integer n.
If k be the smallest positive integer for which the above property holds ,then it
is denoted by 2 eHR

(Q) = k, or simply 2 eH(Q) = k.
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Example 5.2. Consider the ring ({0̄, 1̄, 2̄, 3̄, 4̄, 5̄} = Z6,⊕,⊙) that for all x̄, ȳ ∈
Z6, x̄⊕ ȳ and x̄⊙ ȳ are the remainder of x+y6 and x·y

6 , respectively, which + and ·
are ordinary addition and multiplication. We define the hyperoperation x ∗ y =
{xy, 2xy, 3xy, 4xy, 5xy}, for all x̄, ȳ ∈ Z6. The hyperideal {0̄} of commutative
multiplicative hyperring (Z6,⊕,⊙) is a Noether strongly 2-absorbing primary
hyperideal.

Theorem 5.3. Let Q1 and Q2 be Noether strongly primary hyperideals of R.
Then, Q1∩Q2 and Q1◦Q2 are Noether strongly 2-absorbing primary hyperideals
of R.

Proof. Assume that Q1 and Q2 be primary hyperideals of R. By Theorem 4.6
in [1], Q1 ∩Q2 and Q1 ◦Q2 are 2-absorbing primary ideals of R, .

Theorem 5.4. If Q is a 2-absorbing hyperideal of R, then Q is a Noether
strongly 2-absorbing primary hyperideal with 2 eH(Q) ≤ 2.

Proof. Since Q is a 2-absorbing hyperideal, we conclude that it is a 2-absorbing
primary hyperideal and r(Q)2 ⊆ Q by Theorem 4 in [7].

Theorem 5.5. If Q is a Noether strongly 2-absorbing primary hyperideal of R,
then Q is a uniformly 2-absorbing primary hyperideal of R and 2 ordH(Q) ≤
2 eH(Q).

Proof. Assume that Q be a Noether strongly 2-absorbing primary hyperideal
of R. Let x◦y ◦z ⊆ Q for some x, y, z ∈ R such that x◦y * Q and x◦z * r(Q).
Since Q is a 2-absorbing primary hyperideal of R, we have y ◦ z ⊆ r(Q). Hence
(y ◦ z)2 eH(Q) ⊆ (r(Q))2 eH(Q) ⊆ Q. Thus Q is a uniformly 2-absorbing primary
hyperideal of R and 2 ordH(Q) ≤ 2 eH(Q).

Theorem 5.6. Let Q be a proper hyperideal of R. Then the following conditions
are equivalent:

(1) r(Q) is a 2-absorbing hyperideal of R.
(2) For every x, y, z ∈ R, x◦y◦x ⊆ Q implies that xoy ⊆ r(Q) or x◦z ⊆ r(Q)

or y ◦ z ⊆ r(Q).
(3) r(Q) is a 2-absorbing primary hyperideal of R.
(4) r(Q) is a Noether 2-absorbing primary hyperideal of R with 2 eH(r(Q)) =

1.
(5) r(Q) is a uniformly 2-absorbing primary hyperideal of R.

Proof. (1)=⇒(2) It is evident. (2)⇐=(1) Assume that a ◦ b ◦ c ⊆ r(Q) for
some a, b, c ∈ R. Thus, there exists a positive integer n such that (a ◦ b ◦
c)n = an ◦ bn ◦ cn ⊆ Q. Then, we have an ◦ bn ⊆ r(Q) or an ◦ cn ⊆ r(Q) or
bn ◦ cn ⊆ r(Q), by the hypothesis in (2). Thus a ◦ b ⊆ r(Q) or a ◦ c ⊆ r(Q)
or b ◦ c ⊆ r(Q). Therefore r(Q) is a 2-absorbing hyperideal. (3)⇐⇒(4) and
(1)⇐⇒(3) are obvious. (5)=⇒(3) Is straightforward. (4)=⇒(5) It follows by
Theorem 5.5.
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6. Special 2-absorbing primary hyperideals

Definition 6.1. Hyperideal Q of R is said to be a special 2-absorbing primary
hyperideal if it is uniformly 2-absorbing primary hyperideal with 2 ordH(Q) = 1.

Example 6.2. In Example 5.2, the hyperideal {0̄} of commutative multiplica-
tive hyperring (Z6,⊕,⊙) is a a special 2-absorbing primary hyperideal.

Theorem 6.3. Assume that Q is a proper hyperideal of R. Then the following
conditions are equivalent:

(1) Q is special 2-absorbing primary hyperideal.

(2) For every x, y ∈ R either x ◦ y ⊆ Q or (Q :R x ◦ y) = (Q :R x) or
(Q :R x ◦ y) ⊆ (r(Q) :R y).

(3) For every x, y ∈ R and every hyperideal I of R, x ◦ y ◦ I ⊆ Q implies
that either x ◦ y ⊆ Q or x ◦ I ⊆ Q or y ◦ I ⊆ r(Q).

(4) For every x ∈ R and every hyperideal I of R either x ◦ I ⊆ Q or (Q :R
x ◦ I) ⊆ (Q :R x) ∪ (r(Q) :R I).

(5) For every a ∈ R and every hyperideal I of R either x ◦ I ⊆ Q or (Q :R
x ◦ I) = (Q :R x) or (Q :R x ◦ I) ⊆ (r(Q) :R I).

(6) For every x ∈ R and every hyperideals I, J of R, x ◦ I ◦ J ⊆ Q implies
that either x ◦ I ⊆ Q or I ◦ J ⊆ r(Q) or x ◦ J ⊆ Q.

(7) For every hyperideals I, J of R either I ◦ J ⊆ r(Q) or (Q :R I ◦ J) ⊆
(Q :R I) ∪ (Q :R J).

(8) For every hyperideals I, J of R either I ◦ J ⊆ r(Q) or (Q :R I ◦ J) =
(Q :R I) or (Q :R I ◦ J) = (Q :R J).

(9) For every hyperideals I, J,K of R, I ◦ J ◦ K ⊆ Q implies that either
I ◦ J ⊆ r(Q) or I ◦K ⊆ Q or J ◦K ⊆ Q.

Proof. (1)⇐⇒(2)⇐⇒(3) This follows by Theorem 4.6.

(3)⇐⇒(4) Suppose that I be a hyperideal of R and x ∈ R such that x◦I * Q.
Assume that a ∈ (Q :R x ◦ I). we have x ◦ a ◦ I ⊆ Q, and therefore a ∈ (Q :R x)
or a ∈ (r(Q) :R I). Hence (Q :R x ◦ I) ⊆ (Q :R x) ∪ (r(Q) :R I).

The proof of other cases are straightforward.

Theorem 6.4. Let Q be a special 2-absorbing primary hyperideal of R and
a ∈ R \ r(Q). The following conditions hold:

(1) (Q :R a) = (Q :R a
n) for every n ≥ 2;

(2) (r(Q) :R a) = r(Q :R a).

(3) (Q :R a) is a special 2-absorbing primary hyperideal of R.

Proof. (1) It is clear that (Q :R a) ⊆ (Q :R an) for all n ≥ 2. By induction
on n, we show (Q :R an) ⊆ (Q :R a). First, let n = 2 and s ∈ (Q :R a2). We
have s ◦ a2 ⊆ Q, and then either s ◦ a ⊆ Q or a2 ⊆ r(Q). The second case
implies that a ∈ r(Q) which is a contradiction. Hence s ◦ a ⊆ Q which means
s ∈ (Q :R a). Thus (Q :R a) = (Q :R a2). Now, let n > 2. Assume that
(Q :R a) = (Q :R an−1). Take s ∈ (Q :R an). We have s ◦ an ⊆ Q. Since
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a /∈ r(Q), we conclude that either s ◦ an−1 ⊆ Q or s ◦ a ⊆ Q. Both of them
implies that s ∈ (Q :R a). Hence (Q :R a) = (Q :R a

n).

(2) Clearly, r(Q :R x) ⊆ (r(Q) :R a). Assume that s ∈ (r(Q) :R a). Thus
there exists a positive integer t such that (s ◦ a)t ⊆ Q. Hence st ⊆ (Q :R a), by
part (1). Therefore s ∈ r(Q :R a). Consequently (r(Q) :R a) = r(Q :R a).

(3) Assume that x◦y◦z ⊆ (Q :R a) for some x, y, z ∈ R. Thus x◦a◦(y◦z) ⊆ Q
and then x ◦ a ⊆ Q or x ◦ y ◦ z ⊆ Q or y ◦ z ◦ a ⊆ r(Q). If x ◦ a ⊆ Q, then we
have x ◦ y ⊆ (Q :R a). If x ◦ y ◦ z ⊆ Q, then we have either x ◦ y ⊆ Q ⊆ (Q :R a)
or x ◦ z ⊆ Q ⊆ (Q :R a) or y ◦ z ⊆ r(Q) ⊆ r(Q :R a). If y ◦ z ◦ a ⊆ r(Q), then
by part (2) we get y ◦ z ⊆ (r(Q) :R a) = r(Q :R a) . Hence (Q :R a) is a special
2-absorbing primary hyperideal of R.

Theorem 6.5. Let Q be a special 2-absorbing primary hyperideal of R and
P, P1, P2 be distinct prime hyperideals of R and Ea = (Q :R a).

(1) If r(Q) = P , then {Ea | a ∈ R \ P} is a totally ordered set.

(2) If r(Q) = P1 ∪ P2, then {Ea | a ∈ R \ P1 ∪ P2} is a totally ordered set.

Proof. (1) Assume that a, b ∈ R\P . We have a◦ b ⊆ R\P . Clearly, Ea∪Eb ⊆
Ea◦b. Let s ∈ Ea◦b. Thus s ◦ a ◦ b ⊆ Q. Since a ◦ b * r(Q) we have s ◦ a ⊆ Q
or s ◦ b ⊆ Q. Hence Ea◦b = Ea ∪ Eb. Therefore, we have either Ea◦b = Ea or
Ea◦b = Eb. Then either Eb ⊆ Ea or Ea ⊆ Eb.

(2) It follows by using an argument to that in the proof of (1).

Theorem 6.6. Let R1 and R2 be multiplicative hyperrings and ϕ : R1 −→ R2

be a good homomorphism. Then the following statements hold:

(1) If Q2 is a special 2-absorbing primary hyperideal of R2, then ϕ
−1(Q2) is

a special 2-absorbing primary hyperideal of R1.

(2) If ϕ is an epimorphism and Q1 is a special 2-absorbing primary hyperideal
of R1 containing ker(ϕ), then ϕ(Q1) is a special 2-absorbing primary hyperideal
of R2.

Proof. It is similar to the proof of Theorem 4.9.
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Abstract. In this paper, some new definitions for weighted classes of analytic func-
tions are introduced. Moreover, certain properties are presented for functions belonging
to the defined classes in the unit disk. Besides, a class of weighted tent functions is also
considered. Furthermore, some properties for identity operator are studied for the new
tent function spaces.
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1. Introduction and preliminaries

Let ∆ = {z ∈ C : |z| < 1} be the open unit disk in C. Assume that H(∆) is the
class of all holomorphic functions f on ∆.

An interesting class of analytic functions, which called Bloch space (see
[10, 12]) and it is defined by:

B = {f : f analytic in ∆ and sup
z∈∆

(1− |z|2)|f ′(z)| <∞}.

For more discussions on Bloch-type classes in C, we may refer to [10,12,20,27,28,29]
and the cited references therein.

Analytic Qp-spaces are introduced by Aulaskari and Lappan (see [12]) as
follows:

Qp =

{
f : f analytic in ∆ and sup

a∈∆

∫
∆

∣∣f ′(z)∣∣2gp(z, a)dA(z) <∞},
∗. Corresponding author
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where 0 < p < ∞ and dA(z) = dxdy. Also, the function g(z, a) = log
∣∣1−āz
a−z

∣∣
defines the Green’s function in ∆. For more details on analytic Qp spaces, we
can refer to [22, 29].

In [30] Zhao defined F (p, q, s) and F0(p, q, s) classes as follows:

Definition 1.1. Let f ∈ H(∆). Assume that 0 < p < ∞, −2 < q < ∞ and
0 < s <∞. If

∥f∥pF (p,q,s) = sup
a∈∆

∫
∆
|f ′(z)|p(1− |z|2)qgs(z, a)dA(z) <∞,

then f ∈ F (p, q, s). Moreover, if

lim
|a|→1

∫
∆
|f ′(z)|p(1− |z|2)qgs(z, a)dA(z) = 0,

then f ∈ F0(p, q, s).

The classes F (p, q, s) were discussed by Zhao in [30] and Rättyä in [24]. From
([30], Theorem 2.10), it is clear that, for p ≥ 1, the classes F (p, q, s) are Banach
spaces using the norm

∥f∥ = ∥f∥F (p,q,s) + |f(0)|.

The important various studies on F (p, q, s) classes can be found in [20, 21, 30].

In the present article, ω stands for a reasonable function, which means that
an analytic function satisfying some natural conditions.

Definition 1.2 ([25, 26]). Let ω : (0, 1] → (0,∞) and let 0 < α < ∞. Suppose
that f ∈ H(∆), then f is said to belong to the α, ω-Bloch class Bαω if

Bαω(f) = ∥f∥Bα
ω
= sup

z∈∆

(1− |z|)α

ω(1− |z|)
|f ′(z)| <∞.

Definition 1.3 ([25, 26]). Let ω : (0, 1]→ (0,∞). Suppose that 0 < q <∞ and
0 < p <∞. Suppose that f ∈ H(∆), then

f ∈ Bp,q
ω ⇐⇒ Bp,q

ω (f) = ∥f∥q
Bp,q

ω

= sup
a∈∆

∫
∆

∣∣f ′(z)∣∣q(1− |z|2)q−p (1− |φa(z)|2)p
ωq(1− |z|)

dA(z) <∞.

In the next definition, we clear one of the motivations for the present article.

Definition 1.4. Let ω : (0, 1] → (0,∞). Suppose that 0 < q < ∞ and 0 < p <
∞. The function f ∈ H(∆) is said to belong to the Bq(p, ω, φ)-class if

∥f∥qBq(p,ω,φ) = sup
a∈∆

∫
∆
|f ′(z)|q (1− |φa(z)|

2)p

ωq(1− |z|)
dA(z) <∞.
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For some results in this article, we will use the following:

(1)
(
1− |φa(z)|2

)
=

(
1− |a|2

)(
1− |z|2

)
|1− āz|2

,

and

(2) 1− |z| ≤ |1− āz| ≤ 1 + |z| and also 1− |a| ≤ |1− āz| ≤ 1 + |a|.

Two equivalent quantities Lf and Mf , which are depending on f ∈ H(∆),
and we write Lf ≈Mf , is we get a constant C > 0, such that

1

C
Mf ≤ Lf ≤ CMf .

The symbole A . B can be used instead of the inequality A ≤ C1B, where C1

is a constant and C1 > 0.

2. Some weighted analytic functions

Certain important properties of analytic Bp,q
ω classes in ∆ will be considered in

this section. Essential relations connecting between mixed norms of weighted
Bp,q
ω -type classes and the norms of weighted Qp,ω-type classes are considered.

Proposition 2.1. f ∈ H(∆) and let f ∈ Bω. Then for 0 ≤ p < ∞ and
0 < q <∞ with 0 ≤ q−2

2 <∞ and q
2 − 1 < p, we have that∫

∆

∣∣f ′(z)∣∣q(1− |z|2)q−p (1− |φa(z)|2)p
ωq(1− |z|)

dA(z) ≤ 4πλBqω(f).

Proof. Since (see [25]),

(1− |z|2
)

ω(1− |z|)
∣∣f ′(z)∣∣ ≤ Bω(f).

Then, ∫
∆

∣∣f ′(z)∣∣q(1− |z|2)q−p (1− |φa(z)|2)p
ωq(1− |z|)

dA(z)

≤ Bp,qω (f)

∫
∆

(
1− |z|2

)−p(
1− |φa(z)|2

)p
dA(z)

= Bp,qω (f)

∫
∆

(
1− |φa(z)|2

)−p(
1− |z|2

)p (1− |a|2)2
|1− āz|4

dA(z),

where, the Jacobian determinant is

(3) J1 =

(
1− |a|2

)2
|1− āz|4
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stands for Jacobian determinant. For 0 ≤ p < 2, applying equality (1), we
obtain that, ∫

∆

∣∣f ′(z)∣∣q(1− |z|2)q−p (1− |φa(z)|2)p
ωq(1− |z|)

dA(z)

≤ Bqω(f)
∫
∆

(
1− |a|2

)(2−p)
|1− āry|2(2−p)

dΓ = 4πλBqω(f).

When 2 ≤ p <∞, we can prove the Proposition 2.1, in view of the inequality

1− |a| ≤ |1− ār| ≤ 1 + |a|.

Hence, Proposition 2.1 is completely proved.

Now, in view of Proposition 2.1, we can give the following corollary:

Corollary 2.1. For 0 ≤ p <∞ and 0 < q <∞, we have

Bω ⊂ Bp,q
ω .

Relationships between weighted Qp1,ω classes and Bp,q
ω classes are described

in the following result.

Theorem 2.1. Let 0 < q < 2 and 2 < p1 < 4− q. Then,

∪p1Qp1,ω ⊂ ∩p,qBp,q
ω .

Proof. Let f ∈ Qp1,ω for 2 < p1 < 4− q and 0 < q < 2. By Hölder’s inequality,
we deduce ∫

∆

∣∣f ′(z)∣∣q(1− |z|2)q−p (1− |φa(z)|2)p
ωq(1− |z|)

dA(z)

≤
{∫

∆

[ ∣∣f ′(z)∣∣q
ωq(1− |z|)

(
1− |φa(z)|2

) qp1
2

] 2
q

dA(z)

} q
2

×
{∫

∆

[(
1− |z|2

)q−p(
1− |φa(z)|2

)p− qp1
2

] 2
2−q

dA(z)

} 2−q
2

=

{∫
∆

∣∣f ′(z)∣∣2 (1− |φa(z)|2)p1
ω2(1− |z|)

dA(z)

} q
2

×
{∫

∆

(
1− |z|2

) 2(q−p)
2−q

(
1− |φa(z)|2

) 2p−qp1
2−q dA(z)

} 2−q
2

(4)

Because,

f ∈ Qp1,ω ⇐⇒ sup
a∈∆

∫
∆

∣∣f ′(z)∣∣2 (1− |φa(z)|2)p1
ω2(1− |z|)

dA(z) <∞ (see [25]).
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Then, by equality (1) and change z by φa(z), we get∫
∆

∣∣f ′(z)∣∣q(1− |z|2)q−p (1− |φa(z)|2)p
ωq(1− |z|)

dA(z)

≤ k∥f∥
q
2
Qp1,ω

{∫
∆

(
1− |a|2

)2( q−p
2−q

+1)(
1− |z|2

)2( q−p
2−q

)

|1− āz|4+4
(

q−p
2−q

) dA(z)

} 2−q
2

≤ k∥f∥
q
2
Qp1,ω

{(
1− |a|2

)( 4−2p
2−q

)
∞∑
n=0

Γ(n+ 4−2p
2−q )

n! Γ(4−2p
2−q )

|a|2n
} 2−q

2

= k∥f∥
q
2
Qp1,ω

{
2− q

q − 2p+ 1

} 2−q
2

,(5)

where the constant k > 0. Hence,

∥f∥
q
2
Qp1,ω

=

∫
∆

∣∣f ′(z)∣∣2 (1− |φa(z)|2)p1
ω2(1− |z|)

dA(z).

=⇒
∫
∆

∣∣f ′(z)∣∣q(1− |z|2)q−p (1− |φa(z)|2)p
ωq(1− |z|)

dA(z) ≤ k1∥f∥
q
2
Qp1,ω

,

where the the constant k1 > 0. Then,

∥ f ∥Bp,q
ω
≤ ∥ f ∥Qp1,ω

<∞.

Therefore f ∈ Bp,q
ω , where 0 < q < 2 and 2 < p1 < 4 − q. The proof of the

theorem is therefore established.

3. Mixed norms

The mixed norm space Hp,q,γ(∆), 0 < p, q < ∞ and −1 < γ < ∞, consists of
all f ∈ H(∆) such that (see [18, 21])

∥f∥qp,q,γ =

∫ 1

0
M q
p (f, r)(1− r)γdr <∞,

where

Mp(f, r) =

(
1

2π

∫ 2π

0
|f(reiθ)|pdθ

) 1
p

.

Now, let p, q, α > 0, f ∈ H(∆), then

f ∈ H(p, q, α)⇐⇒ ∥f∥qp,q,α =
1

2π

∫ 1

0
(1− r)αq−1

(∫ 2π

0
|f(reiθ)|pdθ

) q
p

dr <∞

The above definition appeared in (see [19]). H(p, q, α) class was studied and
discussed by Flett (see [16, 17]). It should be mentioned that the class H(p, q, α)
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an interesting class of functions, which contains some known classes such analytic
Hardy and analytic Bergman type classes.

One of our main aims in the present article is to introduce the following defi-
nition for the weighted mixed norm spaces, then we study some of its important
properties.

Definition 3.1. Suppose that ω : (0, 1] → (0,∞) and 0 < p, q, α < ∞, and
f ∈ H(∆), then

f ∈ H(p, q, α, ω)⇔ ∥f∥qp,q,α,ω=
1

2π

∫ 1

0

(1− r)αq−1

ω(1− r)

(∫ 2π

0
|f(reiθ)|pdθ

) q
p

dr <∞.

Theorem 3.1. Let 0 < q < ∞ and 0 ≤ p < ∞, f ∈ H(∆). Suppose that
f ′(φa(w)) is a nondecreasing function. Let ω : (0, 1]→ (0,∞), then

f ∈ Bp,q
ω ⇔ sup

a∈∆

∫
∆
|f ′(z)|q(1− |z|2)q−p

(
g(z, a)

)p
ωq(1− |z|)

dA(z)<∞.

Proof. Let us consider the equivalence∫
∆
|f ′(z)|q(1− |z|2)q−p (1− |φa(z)|

2)p

ωq(1− |z|)
dA(z)dA(z)

≈
∫
∆
|f ′(z)|q(1− |z|2)q−p

(
g(z, a)

)p
ωq(1− |z|)

dA(z),

The change of variables w = φa(z), resulting that∫
∆
|f ′(φa(w))|q(1− |φa(w)|2)q−p

(1− |w|2)p

ωq(1− |φa(w)|)

(
1− |a|2

|1− āw|2

)2

dA(w)

≈
∫
∆
|f ′(φa(w))|q(1− |φa(w)|2)q−p

log
(

1
|w|
)

ωq(1− |φa(w)|)

(
1− |a|2

|1− āw|2

)2

dA(w).

Therefore,∫
∆
|f ′(φa(w))|q

(1− |w|2)q(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

≈
∫
∆
|f ′(φa(w))|q

log
(

1
|w|
)
(1− |w|2)q−p(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w),

we aim to evaluate constants C1(p) and C2(p) with

C1(p)

∫
∆
|f ′(φa(w))|q

log
(

1
|w|
)
(1− |w|2)q−p(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

≤
∫
∆
|f ′(φa(w))|q

(1− |w|2)q(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

≤ C2(p)

∫
∆
|f ′(φa(w))|q

log
(

1
|w|
)
(1− |w|2)q−p(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w).
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Case 1. Let C2(p) = 2p. Using,

1− |a| ≤ |1− āw| ≤ 1 + |a| and 1− |w| ≤ |1− āw| ≤ 1 + |w|,(6)

we obtain,∫
∆
|f ′(φa(w))|q

(1− |w|2)q(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

−2p
∫
∆
|f ′(φa(w))|q

log
(

1
|w|
)
(1− |w|2)q−p(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

= (1− |a|2)2−p
∫
∆
|f ′(φa(w))|q

(1− |w|2)q(1− |a|2)q L(log, |w|, p, q)
|1− āw|2qωq(1− |φa(w)|)

dA(w),

where

L(log, |w|, p, q) = |1− āw|
2q(1− |w|2)−p

|1− āw|q−p+4

[
(1− |w|2)−p − 2p log

( 1

|w|
)]
.

hence, after some simple computation, we deduce∫
∆
|f ′(φa(w))|q

(1− |w|2)q(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

−2p
∫
∆
|f ′(φa(w))|q

log
(

1
|w|
)
(1− |w|2)q−p(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

≤ 25+q−pπ∥f∥qBω
(1− |a|2)2−p

∫ 1

0
(1− r)−(p+q)

[
(1− r)2−p + 2p log r

]
rdr

since, the last integral exists for all 0 ≤ q−2
2 <∞ and q

2 − 1 < p.

Also, f ∈ Bω, then∫
∆
|f ′(φa(w))|q

(1− |w|2)q(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

≤ C1(p)

∫
∆
|f ′(φa(w))|q

log
(

1
|w|
)
(1− |w|2)q−p(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w).

Case 2. Let C1(p) =
(

11
100

)p
. Then,

I2 =

∫
∆
|f ′(φa(w))|q

(1− |w|2)q(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

−C2(p)

∫
∆
|f ′(φa(w))|q

log
(

1
|w|
)
(1− |w|2)q−p(1− |a|2)q−p+2

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w),
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which implies that

I2 =

∫
∆
|f ′(φa(w))|q

(1− |w|2)q(1− |a|2)q−p+2G(log, |w|, p)dA(w)
|1− āw|q−p+4ωq(1− |φa(w)|)

=

∫
∆ 1

10

|f ′(φa(w))|q
(1− |w|2)q(1− |a|2)q−p+2G(log, |w|, p)dA(w)

|1− āw|q−p+4ωq(1− |φa(w)|)

+

∫
∆\∆ 1

10

|f ′(φa(w))|q
(1− |w|2)q(1− |a|2)q−p+2G(log, |w|, p)dA(w)

|1− āw|q−p+4ωq(1− |φa(w)|)

= J1 + J2.

where

G(log, |w|, p) =
{
(1− |w|2)−p +

(
11

100

)p( log |w|
(1− |w|2)

)p}
.

Since G(log, |w|, p) ≤ 0; ∀|w| ∈ [0, 1
10 ], then using (2), we obtain that

J1 =

∫
∆ 1

10

|f ′(φa(w))|q
(1− |w|2)q(1− |a|2)q−p+2G(log, |w|, p)
|1− āw|q−p+4ωq(1− |φa(w)|)

dA(w)

≥ k2 (1− |a|2)q−p+4

∫
∆ 1

10

|f ′(φa(w))|q
(1− |w|2)qG(log, |w|, p) dA(w)
|1− āw|q−p+4ωq(1− |φa(w)|)

and

J2 = (1− |a|2)q−p+2

∫
∆\∆ 1

10

|f ′(φa(w))|q
(1− |w|2)qG(log, |w|, p)

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)

≥ k3(1− |a|2)q−p+4

∫ 1

1
10

|f ′(φa(w))|q
(1− |w|2)qG(log, |w|, p)

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w),

where the constants k2 and k3 are positive.
Since,

∣∣f ′(φa(w))|q ≥ 0; and G(log, |w|, p) ≤ 0; ∀|w| = r ∈ [0, 1
10 ].

Now, we want to compare the integral

k2(1− |a|2)q−p+2

∫ 1
10

0
|f ′(φa(w))|q

(1− |w|2)qG(log, |w|, p)
|1− āw|q−p+4ωq(1− |φa(w)|)

dA(w),

and the integral k3(1− |a|2)q−p+4
∫ 6

10
5
10

|f ′(φa(w))|q (1−|w|2)qG(log,|w|,p)
|1−āw|q−p+4ωq(1−|φa(w)|)dA(w).

After simple calculation, we can obtain that

k2(1− |a|2)q−p+2

∫ 1
10

0
|f ′(φa(w))|q

(1− |w|2)qG(log, |w|, p)
|1− āw|q−p+4ωq(1− |φa(w)|)

dA(w),

< k3(1− |a|2)q−p+4

∫ 6
10

5
10

|f ′(φa(w))|q
(1− |w|2)qG(log, |w|, p)

|1− āw|q−p+4ωq(1− |φa(w)|)
dA(w)



410 A. EL-SAYED AHMED and M.Y. YOUSSIF

Since from the assumptions, we have that, f ′(φa(w)) is a nondecreasing function,
∀0 ≤ |w| < 1. Thus,

I2 = J1 + J2 ≥ 0.

The proof of Theorem 3.1 is finished.

Theorem 3.2. Let f ∈ H(∆). Suppose that ω : (0, 1]→ (0,∞). Let 0 < p ≤ ∞,
and 0 < α, q <∞. Then, the function

f(z) =
ω(1− |z|)
(1− |z|)γ

belongs to the weighted mixed norm space

H(p, q, α, ω)⇐⇒ γ < 1 + α

and

f ∈ H(p,∞, α, ω)⇐⇒ γ ≤ 1

p
+ α.

Proof. Using similar steps to the corresponding result in [11], with some simple
modifications, we can easily establish the proof of Theorem 3.2.

4. Logarithmic tent spaces

In this section, we introduce weighted (p, q; ln, ω)-Carleson measures on the unit
disk ∆. Then we study (p, q; ln, ω)-Carleson measures for the weighted classes of
Bloch-type and Bq(p, ln, ω, φ) type-spaces. Moreover, we define the conformally
invariant Bloch space and the modified Möbius-invariant seminorms. Bounded-
ness (resp., compactness) for the Bq(p, ln, ω, φ) classes, which contained in the
weighted tent-type space T ∞

p (µln,ω,p,q, q) are also discussed.

For more studies about tent spaces, we refer to [14,15,23].

Definition 4.1. For 0 ≤ p < ∞, 0 < q < ∞. Let ω : (0, 1] → (0,∞), we will
call that the weighted positive measure µ defined on ∆ is a bounded weighted
(p, q; ln, ω)-Carleson measure provided,

(7) µln,ω,p,q(S(I, ω)) = O

(
| I |p ln(1 + |I|)

ωq(|I|)

)
,

for all subarcs I of ∂∆ where, | I | denotes the arc length of I ⊂ ∂∆ and S(I)
defines the Carleson box, which is based on I, that is,

S(I) = {z ∈ ∆ : z/|z| ∈ I, 1− |z| ≤ |I|/2π}.

Remark 4.1. When p = 1, ω ≡ 1 and |I| = e − 1, then the usual standard
definition of Carleson measure is obtained.

If ω ≡ 1 and |I| = e−1, then the p-Carleson measure concept is also deduced.
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Definition 4.2. In Definition 4.1, if the right side of (7) becomes o( |I|
pln(1+|I|)
ωq(|I|) )

as |I| → 0, then we get the definition of weighted compact (p, q; ln, ω)-Carleson
measure.

Let Bq(p, ln, ω, φ) be a class of all analytic functions f on ∆ satisfying

∥f∥qBq(p,ln,ω,φ) = sup
a∈∆

∫
∆
|f ′(z)|q (1− |φa(z)|

2)p ln(2− |z|)
ωq(1− |z|)

dA(z) <∞,

where 0 < p < ∞ and 0 < q < ∞. Meanwhile, T ∞
p (q, µln,ω,p,q) denotes the

weighted tent-type class of all µln,ω,p,q-measurable functions f on ∆ satisfying

∥f∥qT ∞
p (µln,ω,p,q)

= sup
S(I)⊆∆

|I|−1

∫
S(I)
|f |q dµln,ω,p,q < ∞ ;

where

|I| = (2π)−1

∫
I
|dξ| and S(I) = {rξ ∈ ∆ : 1− |I| ≤ r < 1 , ξ ∈ I}

are the normalized length of the subarc I of the unit circle T = {z ∈ C : |z| = 1}
and the Carleson square in ∆ respectively. The norm of f ∈ Bq(p, ln, ω, φ) is
given by:

sup
S(I)⊆∆

|I|−p
∫
S(I)
|f ′(z)|q (1− |z|

2)p ln(2− |z|)
ωq(1− |z|)

dA(z).

Now, we give the following results:

Theorem 4.1. Let µln,ω,p,q be a nonnegative Borel measure on ∆. Then the
identity operator I : Bq(p, ln, ω, φ) −→ T ∞

p (q, µln,ω,p,q) is bounded ⇐⇒

∥µln,ω,p,q∥qLCMp
= sup

S(I)⊆∆

µln,ω,p,q(S(I))

|I|p(log 2
|I|)

−q < ∞.

Proof. Necessity. Given a subarc I of T. If fa,ln,ω(z) =
(1−āz) ln(2−|z|)

ωq(1−|z|) where

a = (1− |I|)ξ and ξ is the center of I, then

|fa,ln,ω(z)| ≈
ln(2|I|−p) ln(1 + |I|

ωq(|I|−p)
, z ∈ S(I)

and

|I|−p
∫
S(I)
|fa,ln,ω|q dµln,ω,p,q ≤ ∥fa,ln,ω∥qBq(p,ln,ω,φ) . 1.

Accordingly, ∥µln,ω,p,q∥LCMp . 1.
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Sufficiency. Assume that a nonnegative Borel measure µln,ω,p,q on ∆ is
said to be weighted (p, q; ln, ω)-Carleson measures on the unit disk ∆ for the
weighted class Bq(p, ln, ω, φ) of all f ∈ ∆ which satisfying

∥f∥qBq(p,ln,ω,φ) =

∫
∆
|f ′(z)|q (1− |z|

2)p ln(2− |z|)
ωq(1− |z|)

dA(z) < ∞,

provided ∫
∆
|f |q dµln,ω,p,q . ∥f∥qBq(p,ln,ω,φ).

This completes the proof.

Corollary 4.1. Let µln,ω,p,q be a nonnegative Borel measure on ∆. Then the
identity operator I1 : B

q(p, ln, ω, φ) −→ T ∞
p (q, µln,ω,p,q)⇐⇒

lim
|I|−→0

µln,ω,p,q(S(I))

|I|p(log 2
|I|)

−q = 0.

Remark 4.2. An interesting and important question can be stated as follows:
Is the concept of analytic Tent function can be generalized using quaternion-

functions?
For more information on several studied and various discussions using Clif-

ford analysis, we can refer to the citations [1, 2, 3, 4, 5, 6, 7, 8, 9, 13] and
others.

5. Conclusion

This paper starts with a concise overview of weighted function spaces in the
sense of analytic functions.

New tools are used in studying some new weighted function spaces in ∆.
Properties of weighted mixed normed spaces, which are generalizations of the
so-called mixed normed spaces are introduced. Several inclusion/comparison
results among these spaces are presented. Also we dealt with some properties of
certain Carleson measures (which have introduced) and their relation with the
Bloch-type spaces.
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Abstract. In this paper, a reliable numerical technique is proposed for solving a class
of singular fractional differential equations involving Fredholm and Volterra operators
subjected to suitable three-point boundary conditions. The solution methodology is
presented based on reproducing-kernel method (RKM), which is used directly without
employing linearization and perturbation. However, a favorable Hilbert spaces are
construcred, and then the orthonormal function system is generated by using Gram-
Schmidt orthogonalization process. Error analysis is given in Sobolev space. Numerical
example is tested to multipoint singular fractional differential problems with Fredholm
and Volterra operators to show the theoretical statements of the RKHS method. The
results obtained indicate that the RKHS method is easy to implement, reliability and
capability with a great potential of such singular problems.

Keywords: singular integral operator, fractional differential equation, reproducing-
kernel method, Caputo fractional derivative, Gram-Schmidt process.

1. Introduction

The multipoint singular boundary value problems (BVPs) arise in a variety
of differential applied mathematics and physics such as gas dynamics, nuclear
physics, chemical reaction, studies of atomic structures, and atomic calculations.
For instance, the vibrations of a guy wire of uniform cross-section and composed
of N parts of different densities can be set up as a multipoint singular BVP as
in [1]. Many problems in the theory of elastic stability can be handled using
multipoint singular BVPs as in [2]. In optimal bridge design, large size bridges
are sometimes contrived with multipoint supports, which corresponds to a mul-

∗. Corresponding author
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tipoint singular BVP as in [3]. Therefore, it appears to be very important to
develop numerical or analytical methods for solving such problems.

Most scientific problems and phenomenons in different fields of sciences and
engineering occur nonlinearly with a set of finite singularity. To be more pre-
cisely, most of them can not be handled analytically. So these nonlinear singular
equations should be solved using numerical methods or other analytical meth-
ods. Anyhow, when we use multipoint singular BVPs, the obtained numerical
solutions could be not that required accurate outcomes or may even fail to con-
verge due to singularity problem [4, 5, 6]; whilst analytical methods commonly
used to solve nonlinear singular differential equations are very restricted and
numerical techniques involving discretization of the variables on the other hand
gives rise to rounding off errors. Thus, it is expected to have some restrictions
to handle these kind of problems; because of two difficulties presenting in both
nonlinearity of equations and the singularity case of BVPs.

In this paper, we aim to use appropriate theory for building the Hilbert
spaces to develop IRKM algorithm for handling second-order singular ordinary
differential equations with three-point boundary conditions. In particular, we
provide the analytical-numerical solutions for the following singular differential-
operator equation:

(1)

D2αu (x) + P (x)Dα (x) +Q(x)u (x) = F (x, Su (x) , Tu (x)) , x ∈ [0, 1],

Su (x) = λ1
∫ 1
0 k1 (x, ξ)u (ξ) dξ,

Tu (x) = λ2
∫ x
0 k2 (x, ξ)u (ξ) dξ,

with the boundary conditions

(2)
u (0) = 0,

u (1)− αu (η) = 0, 0 < η < 1, α > 0, αη < 1,

where 0 < α ≤ 1, λ1 and λ2 are constant parameters, Dα (x) is indicated
to fractional derivative in the Caputo sense, k1 (x, t) , k2 (x, t) are continuous
arbitrary kernel functions over 0 < ξ < x < 1, F (x,w1, w2) is continuous
terms in W 1

2 [0, 1] as wi = wi (x) ∈ W 3
2 [0, 1], −∞ < wi < ∞, i = 1, 2, P (x)

and Q (x) are continuous real-valued functions and may be equal to zero at
some {xi}mi=1 ∈ [0, 1], u(x) is an unknown analytical function in W 3

2 [0, 1] to
be determined, and W 1

2 [0, 1] ,W 3
2 [0, 1] are reproducing-kernel spaces. Here, we

assume that Eq. (1) with conditions (2) has a unique smooth solution. Further,
the Caputo fractional derivative of order m−1 < α ≤ m,m ∈ N , can be defined
as follows

Dαu (x) =
1

Γ(m− α)

∫ x

0
(x− t)m−α−1u(m)(t)dt, 0 < t < x,

Many authors have studied different kind of analysis about solvability of
second-order, three point singular BVPs. In order to get more information about
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the properties and the applications have been studied, the reader can refer to
[7, 8, 9, 10]. On the other hand, there is a few research papers about investi-
gating second-order, three point singular BVPs restricted by Fredholm-Volterra
operators numerically. Reproducing kernel theory has many applications in com-
plex analysis, harmoni analysis, and quantum mechanics [11, 12, 13, 14, 15, 16].
Recently, a lot of research work has been carried out to apply of the RKHS algo-
rithm for wide classes of stochastic and deterministic problems involving opera-
tor equations, differential equations, integral equations, and integro-differential
equations. The RKHS algorithm was successfully used by many authors to in-
vestigate many scientific applications side by side with their theories. To under-
stand the properties and the fundamentals of reproducing kernel Hilbert spaces,
the reader can return to the references [17, 18, 19, 20, 21, 22, 23, 24, 25, 26].
Fractional DEs are a type of differential equations that involving an unknown
function with fractional derivatives. These types of equations are used to for-
mulate problems involving functions of single or several variables and to aid a
solution of many physical phenomena in terms of fractional DEs. The Caputo’s
definition will be used, taking the feature of Caputo’s approach that the initial
conditions of fractional DEs with Caputo’s derivatives take the traditional form.
For more details, we refer to [27, 28, 29, 30, 31, 32].

The outline of the paper is as follows. In section 2, two appropriate inner
product spaces are constructed to apply RKHS method to solve the presented
BVP with Fredholm Volterra operator. In section 3, Gram-Schmidt orthog-
onalization process is used to obtain the orthonormal basis. Meanwhile, the
efficiency of the method is proposed in section 3 by proving that the numeri-
cal solution converges to the analytical solution uniformly. After all, numerical
algorithm with numerical example are presented to show how the process does
work in section 4. Finally, we summarize up the process with some concluding
remarks in section 5.

2. Toward to reproducing-kernel function

In this section, a method for constructing a reproducing kernel function that
satisfying the two-point boundary conditions v (0) = 0 and v (1) = 0 is pre-
sented. By applying some good properties of the reproducing kernel space, a
very simple numerical method is provided for obtaining approximation to the
solution of Eqs. (1) and (2). Here, L2 [0, 1] = {v |

∫ 1
0 v

2 (x) dx < ∞} and

l2 = {A |
∑∞

i=1 (Ai)
2 <∞}.

Definition 2.1 ([33]). Let Π be a Hilbert space of function θ : Ω→ Π on a set Ω.
A function Γ : Ω×Ω→ C is a reproducing kernel of Π if the following conditions
are satisfied. Firstly, Γ (·, x) ∈ Π for each x ∈ Ω. Secondly, ⟨θ (·) ,Γ (·, x)⟩ =
θ (x) for each θ ∈ Π and each x ∈ Ω.

To solve Eqs. (1) and (2) using RKHS algorithm, we first define and con-
struct a reproducing kernel space W 3

2 [0, 1] in which every function satisfies the
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two-point boundary conditions v (0) = 0 and v (1) = 0. After that, we utilize a
reproducing kernel space W 1

2 [0, 1].

Definition 2.2. The space W 3
2 [0, 1] is defined as W 3

2 [0, 1] = {v | v, v′, v′′ are
absolutely continuous on [0, 1], v, v′, v′′, v′′′ ∈ L2 [0, 1], and v (0) = 0, v (1) = 0}.
On the other hand, the inner product and the norm in W 3

2 [0, 1] are defined,
respectively, by

(3) ⟨v(x), w(x)⟩W 3
2
=

2∑
i=0

v(i) (0)w(i) (0) +

∫ 1

0
v′′′(x)w′′′(x)dx,

and ||v||W 3
2
=
√
⟨v (x) , v (x)⟩W 3

2
, where v, w ∈W 3

2 [0, 1].

It is easy to see that ⟨u(x), v(x)⟩W 3
2

satisfies all the requirements of the

inner product as follows; first, ⟨u(x), u(x)⟩W 3
2
≥ 0; second, ⟨u(x), v(x)⟩W 3

2
=

⟨v(x), u(x)⟩W 3
2
; third, ⟨γu(x), v(x)⟩W 3

2
= γ⟨u(x), v(x)⟩W 3

2
; fourth, ⟨u(x) + w(x),

v(x)⟩W 3
2
= ⟨u(x), v(x)⟩W 3

2
+ ⟨w(x), v(x)⟩W 3

2
, where u, v, w ∈W 3

2 [0, 1]. Indeed, it

is obvious that when u(x) = 0, then ⟨u(x), u(x)⟩W 3
2
= 0, while on the other

aspect as well, if ⟨u(x), u(x)⟩W 3
2

= 0, then by Eq. (3); ⟨u(x), u(x)⟩W 3
2

=∑2
i=0(u

(i)(0))2 +
∫ 1
0 (u

′′′(x))2dx = 0, therefore, u(0) = u′(0) = u′′(0) = 0 and
u′′′(x) = 0. Thus, one can obtain u(x) = 0.

The Hilbert spaceW 3
2 [0, 1] is called a reproducing kernel if for each fixed x ∈

[0, 1], there existR{1}(x, y)∈W 3
2 [0, 1] (simplyR

{1}
x (y)) such that ⟨v(y), R{1}

x (y)⟩W 3
2

= v(x) for any v(y) ∈W 3
2 [0, 1] and y ∈ [0, 1].

Theorem 2.1 ([34]). The Hilbert space W 3
2 [0, 1] is a complete reproducing ker-

nel with reproducing kernel function

(4) R{1}
x (y) =


a1(x) + a2(x)y + a3(x)y

2 + a4(x)y
3

+a5(x)y
4 + a6(x)y

5, y ≤ x,
b1(x) + b2(x)y + b3(x)y

2 + b4(x)y
3

+b5(x)y
4 + b6(x)y

5, y > x,

where ai(x) and bi(x), i = 1, 2, ..., 6, are unknown coefficients of R
{1}
x (y) and

are given as

ai’s coefficients bi’s coefficients

a1 (x) = 0, b1 (x) =
1

120
x5,

a2(x) = − 1
156

x(−36 + 30x+ 10x2 − 5x3 + x4), b2(x) = − 1
312

x(−72 + 60x+ 20x2 + 3x3 + 2x4),

a3(x) = − 1
624

x(120− 126x+ 10x2 − 5x3 + x4), b3(x) = − 1
624

x(120− 126x− 42x2 − 5x3 + x4),

a4(x) = − 1
1872

x(120− 126x+ 10x2 − 5x3 + x4), b4(x) = − 1
1872

x(120 + 30x+ 10x2 − 5x3 + x4),

a5(x) =
1

3744
x(−36 + 30x+ 10x2 − 5x3 + x4), b5(x) =

1
3744

x(120 + 30x+ 10x2 − 5x3 + x4),

a6(x) =
1

18720
(156− 120x− 30x2 − 10x3 + 5x4 − x5), b6(x) = − 1

18720
x(120 + 30x+ 10x2 − 5x3 + x4).
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Definition 2.3 ([17]). The space W 1
2 [0, 1] is defined as W 1

2 [0, 1] = {v | v is
absolutely continuous on [0, 1] and v′ ∈ L2 [0, 1]}. On the other hand, the inner
product and the norm in W 1

2 [0, 1] are defined, respectively, by

⟨v(x), w(x)⟩W 1
2
= v (0)w (0) +

∫ 1

0
v′(x)w′(x)dx,

and ||v||W 1
2
=
√
⟨v (x) , v (x)⟩W 1

2
, where v, w ∈W 1

2 [0, 1].

Theorem 2.2 ([17]). The Hilbert space W 1
2 [0, 1] is a complete reproducing ker-

nel with reproducing kernel function

R{2}
x (y) =

{
1 + y, y ≤ x,

1 + x, y > x.

3. Structure of the method

Here, the formulation of a differential linear operator is presented in W 3
2 [0, 1].

After that, we use the Gram-Schmidt orthogonalization process on the orthonor-
mal system

{
ψi (x)

}∞
i=1

and normalizing them onW 3
2 [0, 1] to obtain the required

orthogonalization coefficients in order to obtain the analytical-numerical solu-
tions of Eqs. (1) and (2) using RKHS algorithm.

Let us consider the differential operator L : W 3
2 [0, 1] → W 1

2 [0, 1] such that
Lv (x) = D2αv (x) + P (x)Dαv (x) + Q (x) v (x), v (x) = u (x) − ϕ (x) , where
ϕ (x) satisfies ϕ (0) = 0 and ϕ (1) = γ, that is, ϕ (x) = γx and v (x) = u (x)−γx.
Thus, Eqs. (1) and (2) can be equivalently converted into the form:

(5) Lv (x) = F (x, (v + ϕ) (x) , S (v + ϕ) (x) , T (v + ϕ) (x))−
(
ϕ′P + ϕQ

)
(x) ,

with respect to the two-point boundary conditions

(6) v (0) = 0, v (1) = 0.

Theorem 3.1. The operator L :W 3
2 [0, 1]→W 1

2 [0, 1] is bounded and linear.

Proof. Clearly, ∥Lv∥2
W 1

2
≤ M∥v∥2

W 3
2
, where M > 0. From the definition of

W 1
2 [0, 1], we have ∥Lv∥2

W 1
2
= ⟨Lv(x), Lv(x)⟩W 1

2
= [(Lv)(0)]2 +

∫ 1
0 [(Lv)

′(x)]2dx.

By the Schwarz inequality and reproducing properties v(x) = ⟨v(y), R{1}
x (y)⟩W 3

2
,

(Lv)(x) = ⟨v(y), (LR{1}
x )(y)⟩W 3

2
, and (Lv)′(x) = ⟨v(y), (LR{1}

x )′(y)⟩W 3
2
, we get

|(Lv)(x)| =
∣∣∣∣⟨v (x) , (LR{1}

x ) (x)
⟩
W 3

2

∣∣∣∣ ≤ ∥∥∥LR{1}
x

∥∥∥
W 3

2

∥v∥W 3
2
=M1 ∥v∥W 3

2
,

∣∣(Lv)′(x)∣∣ = ∣∣∣∣⟨v (x) , (LR{1}
x )′ (x)

⟩
W 3

2

∣∣∣∣ ≤ ∥∥∥(LR{1}
x )′

∥∥∥
W 3

2

∥v∥W 3
2
=M2 ∥v∥W 3

2
,

where Mi > 0, i = 1, 2. Thus, ∥Lv∥2
W 1

2
= [(Lv)(0)]2 +

∫ 1
0 [(Lv)

′(x)]2dx ≤
(M2

1 +M2
2 )∥v∥2W 3

2
. The linearity part is obvious.
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To construct an orthogonal function system ofW 3
2 [0, 1]; put φi (x) = R

{2}
xi (x)

and ψi (x) = L∗φi (x), where {xi}∞i=1 is dense on [0, 1] and L∗ is the ad-
joint operator of L. In other words, ⟨v (x) , ψi (x)⟩W 3

2
= ⟨v (x) , L∗φi (x)⟩W 3

2
=

⟨Lv (x) , φi (x)⟩W 1
2

= Lv(xi), i = 1, 2, .... The orthonormal function system{
ψi (x)

}∞
i=1

can be derived from the Gram-Schmidt orthogonalization process
of {ψi (x)}∞i=1 as

(7) ψ̄i (x) =

i∑
k=1

βikψk (x) ,

where βij = 1
∥ψ1∥W3

2

for i = j = 1, βij = 1√
∥ψi∥2

W3
2

−
∑i−1

k=1(⟨ψi(x),ψk(x)⟩W3
2
)2

for

i = j ̸= 1, and βij = − 1√
∥ψi∥2

W3
2

−
∑i−1

k=1(cik)
2
×
∑i−1

k=j⟨ψi(x), ψk(x)⟩W 3
2
βkj for

i > j.

Theorem 3.2. If {xi}∞i=1 is dense on [0, 1], then {ψi (x)}∞i=1 is a complete
function system of the space W 3

2 [0, 1].

Proof. Clearly, ψi(x)=L
∗φi(x) = ⟨L∗φi(x), R

{1}
x (y)⟩W 3

2
=⟨φi(x), LyR{1}

x (y)⟩W 1
2

= LyR
{1}
x (y)|y=xi ∈ W 3

2 [0, 1], so, ψi(x) = .LyR
{1}
x (y)|y=xi . For each fixed v ∈

W 3
2 [0, 1], let ⟨v(x), ψi(x)⟩W 3

2
= 0, so, ⟨v(x), ψi(x)⟩W 3

2
= ⟨v(x), L∗φi(x)⟩W 3

2
=

⟨Lv(x), φi(x)⟩W 1
2
= Lv(xi) = 0. But since {xi}∞i=1 is dense on [0, 1], therefore

Lv(x) = 0. It follows that v(x) = 0 from the existence of L−1.

Theorem 3.3. For each v ∈W 3
2 [0, 1],

∑∞
i=1

⟨
v (x) , ψ̄i (x)

⟩
ψ̄i (x) is convergent

in the sense of the norm of W 3
2 [0, 1]. On the other hand, if {xi}∞i=1 is dense on

[0, 1], then the analytical solution of Eqs. (5) and (6) is

v(x) =

∞∑
i=1

i∑
k=1

βik[F (xk, (v + ϕ)(xk), S(v + ϕ)(xk), T (v + ϕ)(xk))

− (ϕ′P + ϕQ)(xk)]ψ̄i(x).(8)

Proof. Using Eq. (7), it easy to see that

v(x) = L−1F (x, (v + ϕ)(x), S(v + ϕ)(xk), T (v + ϕ)(x))− (ϕ′P + ϕQ)(x)

=
∞∑
i=1

⟨v(x), ψ̄i(x)⟩W 3
2
ψ̄i(x) =

∞∑
i=1

i∑
k=1

βik⟨v(x), ψk(x)⟩W 3
2
ψ̄i(x)

=

∞∑
i=1

i∑
k=1

βik⟨v(x), L∗φk(x)⟩W 3
2
ψ̄i(x) =

∞∑
i=1

i∑
k=1

βik⟨Lv(x), φk(x)⟩W 1
2
ψ̄i(x)

=
∞∑
i=1

i∑
k=1

βik⟨F (x, (v + ϕ)(x), S(v + ϕ)(x), T (v + ϕ)(x))

− (ϕ′P + ϕQ)(x), φk(x)⟩W 1
2
ψ̄i(x)
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=

∞∑
i=1

i∑
k=1

βik[F (xk, (v + ϕ)(xk), S(v + ϕ)(xk), T (v + ϕ)(xk))

− (ϕ′P + ϕQ)(xk)]ψ̄i(x).

Hence, Eq. (8) is the analytical solution of Eqs. (5) and (6).

Let
{
ψi (x)

}∞
i=1

be the normal orthogonal system derived from the Gram-
Schmidt orthogonalization process of {ψi (x)}∞i=1, then according to Eq. (8), the
analytical solution of Eqs. (5) and (6) can be denoted by

(9) v (x) =
∞∑
i=1

Biψ̄i (x) ,

where Bi =
∑i

k=1 βik[F (xk, (vk−1+ϕ)(xk), S(vk−1+ϕ)(xk), T (vk−1+ϕ)(xk))−
(ϕ′P + ϕQ)(xk)]. In fact, Bi in Eq. (9) are unknown, we will approximate Bi
using known Ai. For a numerical computations, we define the initial function
v0(x1) = 0, put v0(x1) = v(x1), and define the n-term approximation vn(x) to
v(x) as

vn (x) =

n∑
i=1

Aiψ̄i (x) ,(10)

Ai =

i∑
k=1

βik
[
F (xk, (vk−1 + ϕ)(xk), S(vk−1 + ϕ)(xk), T (vk−1 + ϕ)(xk))

− (ϕ′P + ϕQ)(xk)
]
.(11)

Theorem 3.4. If ||vn||W 3
2
is bounded and {xi}∞i=1 is dense on [0, 1], then the

n-term numerical solution vn (x) in the iterative formula of Eq. (10) converges
to the analytical solution v (x) of Eqs. (5) and (6) in the space W 3

2 [0, 1] and
v (x) =

∑∞
i=1Aiψ̄i (x), where Ai is given by Eq. (11).

Proof. The proof is straightforward.

If δn = ||v − vn||W 3
2
, where v(x) and vn(x) are given by Eqs. (9) and

(10), respectively, then δ2n = ∥
∑∞

i=n+1Aiψ̄i∥2W 3
2

=
∑∞

i=n+1(Ai)
2 and δ2n−1 =

∥
∑∞

i=nAiψ̄i∥2W 3
2
=
∑∞

i=n(Ai)
2. Thus, δn−1 ≥ δn, and consequently {δn} are

monotone decreasing in the sense of ∥ · ∥W 3
2
. By Theorem 3.3,

∑∞
i=1Aiψ̄i(x) is

convergent, so, δ2n =
∑∞

i=n+1(Ai)
2 → 0 or δn → 0 as n→∞.

4. Numerical example

In order to solve multipoint singular BVPs restricted by Fredholm-Volterra oper-
ators numerically and to show behavior, properties, efficiency, and applicability
of the present RKHS algorithm, four multipoint singular BVPs restricted by
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Fredholm-Volterra operators will be solved numerically in this section. Here, all
the symbolic and numerical computations were performed by using MAPLE 13
software package.

Using RKHS algorithm, taking xi =
i−1
n−1 , i = 1, 2, ..., n, applying R

{1}
x (y)

and R
{2}
x (y) on [0, 1]. Some tabulate data are presented and discussed quantita-

tively at some selected grid points on [0, 1] to illustrate the numerical solutions
for the following multipoint singular BVPs restricted by the given Fredholm-
Volterra operators.

Example 1. Consider the singularities at two endpoint of [0, 1]:

D2αu(x) +
1

sin (x)
Dαu (x)− 1

x (x− 1)
u (x) = [Tu] (x) + f (x) ,

[Tu] (x) =

∫ 1

0
x2tu(t)dt+

∫ x

0
(x+ 1)tu(t)dt,

subject to the three-point boundary conditions

u (0) = 0,

u (1)− 4u
(
1
9

)
= 0,

where 0 < t < x < 1. The analytical solution at α = 1 is u(x) = x(x − 1)(x −
1
9) cos(x).

Example 2. Consider the singularities at two endpoint of [0, 1]:

D2αu(x)− 1

x2 (1− x)2
Dαu (x) +

1

sinh (x)
u (x)

= u2 (x) + sinh−1 (u (x)) + [Tu] (x) + f (x) ,

[Tu] (x) =

∫ 1

0
xtu3 (t) dt+

∫ x

0
(x− t)u2 (t) dt,

subject to the three-point boundary conditions

u (0) = 0,

u (1)− u
(
1
2

)
= 0,

where 0 < t < x < 1. The analytical solution at α = 1 is u(x) = (x − 1
2)

2(x −
1)2 sinh(x).

Our next goal is to illustrate some numerical results of the RKHS solutions of
the aforementioned examples in numeric values. In fact, results from numerical
analysis are an approximation, in general, which can be made as accurate as
desired. Because a computer has a finite word length, only a fixed number of
digits are stored and used during computations. Next, the agreement between
the analytical-numerical solutions is investigated for Examples 1 and 2 at α = 1



424 SHATHA HASAN and MONA SAKKIJHA

and various x in [0, 1] by computing the absolute errors and the relative errors
of numerically approximating their analytical solutions for the corresponding
equivalent equations as shown in Table 1, and Table 2, respectively. Anyhow,
it is clear from the tables that, the numerical solutions are in close agreement
with the analytical solutions for all examples, while the accuracy is in advanced
by using only few tens of the RKHS iterations. Indeed, we can conclude that
higher accuracy can be achieved by computing further RKHS iterations.

Table 1. The analytical-numerical solutions and errors at α = 1 for Example 1.
x Exact solution Numerical solution Absolute error Relative error

0.16 −0.00648674140330012 −0.00648836153953347 1.62014× 10−6 2.49761× 10−4

0.32 −0.04314675763472329 −0.04314611857352801 6.39061× 10−7 1.48113× 10−5

0.48 −0.08166976184992833 −0.08166610925390749 3.65260× 10−6 4.47240× 10−5

0.64 −0.09774018067274835 −0.09773862645916864 1.55421× 10−6 1.59015× 10−5

0.80 −0.07679256174137644 −0.07679374066742663 1.17893× 10−6 1.53521× 10−5

0.96 −0.01869522215933257 −0.01869699234994678 1.77019× 10−6 9.46868× 10−5

Table 2. The analytical-numerical solutions and errors at α = 1 for Example 2.
x Exact solution Numerical solution Absolute error Relative error

0.16 0.01310653223586577 0.01310629969713650 2.32539× 10−7 1.77422× 10−5

0.32 0.00487640352847436 0.00487621848205233 1.85046× 10−7 3.79473× 10−5

0.48 0.00005393349784172 0.00005386640494187 6.70929× 10−8 1.24399× 10−3

0.64 0.00173897887325904 0.00173902449076913 4.56175× 10−8 2.62324× 10−5

0.80 0.00319718153587544 0.00319727450018004 9.29643× 10−8 2.90770× 10−5

0.96 0.00037729187128320 0.00037738952445887 9.76532× 10−8 2.58827× 10−4

5. Concluding remarks

In this work, we have used the reproducing kernel algorithm for solving linear
and nonlinear second-order, three-point singular BVPs restricted by Fredholm-
Volterra operators. In the meantime, we employed our algorithm and its con-
jugate operator to construct the complete orthonormal basis in the reproduc-
ing kernel space W 3

2 [0, 1]. By separating the multipoint boundary conditions
and adding the initial and boundary conditions to the reproducing kernel space
that satisfying these points, we obtain the analytical-numerical solutions of the
problem. The algorithm is applied in a direct way without using linearization,
perturbation, or any restrictive assumptions. It may be concluded that RKHS
algorithm is very powerful and efficient in finding the analytical-numerical so-
lutions for a wide class of multipoint singular BVPs. It is worth mentioning
here that the algorithm is capable of reducing the volume of the computational
work and complexity while still maintaining the high accuracy of the numerical
results.
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Abstract. Let H be an infinite dimensional complex Hilbert space and A be a
standard operator algebra on H which is closed under the adjoint operation. For
A,B ∈ A, define by ∗[A,B] = AB − B∗A the left ∗-Lie product of A and B. In
this paper, we prove that a mapping ϕ : A → B(H) satisfies ϕ(∗[A, ∗[B,C]]) =

∗[ϕ(A), ∗[B,C]] + ∗[A, ∗[ϕ(B), C]] + ∗[A, ∗[B,ϕ(C)]], for all A,B,C ∈ A is auto-
matically linear. Moreover, ϕ is an inner ∗-derivation.
Keywords: left ∗-Lie triple product, derivation, standard operator algebras.

1. Introduction

Let A be an algebra. A mapping ϕ : A → A is called a nonlinear Lie deriva-
tion if ϕ([A,B]) = [ϕ(A), B] + [A, ϕ(B)] holds true for all A,B ∈ A, where
[A,B] = AB − BA is the usual Lie product. Furthermore, if A is an algebra
with involution, a mapping ϕ : A → A is called a nonlinear ∗-Lie derivation if for
any A,B ∈ A, ϕ([A,B]∗) = [ϕ(A), B]∗ + [A,ϕ(B)]∗, where [A,B]∗ = AB −BA∗

is the skew Lie product of A and B. Note that for both cases no additiv-
ity is assumed on ϕ. A linear mapping ϕ : A → A is called a derivation if
ϕ(AB) = ϕ(A)B + Aϕ(B), for all A,B ∈ A. ϕ is a ∗-derivation provided that

∗. Corresponding author
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ϕ(A∗) = ϕ(A)∗, for all A ∈ A. A derivation on A is inner if there exists T ∈ A
such that ϕ(A) = AT − TA. A linear mapping ϕ : A → A is called a Jor-
dan derivation if ϕ(A2) = ϕ(A)A + Aϕ(A), for all A ∈ A. A linear mapping
ϕ : A → A is called a Jordan left ∗-derivation if ϕ(A2) = ϕ(A)A+A∗ϕ(A) holds
true for any A ∈ A.

Concerning Lie product, Lu and Liu [6] proved that every Lie derivation on
B(X ) can be expressed as the sum of an additive derivation of B(X ) into itself
and a central mapping on B(X ) vanishing on each commutator. This result
was generalized to the case of Lie derivation on prime rings in [3]. The skew
Lie product is found playing an important role in the problem of representing
quadratic functionals with sesquilinear functionals (see, for example, [8, 9, 10])
and in the problem of characterizing ideals (see, for example, [1, 7]). In [13]
Yu and Zhang showed that every nonlinear ∗-Lie derivation from a factor von
Neumann algebra on an infinite dimensional complex Hilbert space into itself is
an additive ∗-derivation. In [5], Li, Lu and Fang arrived the same conclusion
on von Neumann algebra without central abelian projections. Recently, Jing
[4] proved that every nonlinear ∗-Lie derivation of standard operator algebra on
complex Hilbert space is an inner ∗-derivation.

In this paper, we define left ∗-Lie product by ∗[A,B] = AB − B∗A, for all
A,B ∈ A, in fact, it have a close relationship to Jordan left ∗-derivation [11].
And we call a nonlinear mapping ϕ is a nonlinear left ∗-Lie triple mapping if it
satisfying ϕ(∗[A, ∗[B,C]]) = ∗[ϕ(A), ∗[B,C]]+∗[A, ∗[ϕ(B), C]]+∗[A, ∗[B,ϕ(C)]]
for all A,B,C ∈ A. We shall show every nonlinear left ∗-Lie triple mapping of
standard operator algebras which are closed under adjoint operation on infinite
dimensional complex Hilbert space is automatically linear. Moreover it is an
inner ∗-derivation.

Throughout this paper, R and C denote respectively the real field and com-
plex field, B(H) will represent the algebra of all bounded linear operators on a
complex Hilbert space H. We will denote by F(H) ⊆ B(H) the subalgebra of
all bounded finite rank operators. We call a subalgebra A of B(H) a standard
operator algebra if it contain F(H). Note that, different from von Neumann
algebra which are always weakly closed, a standard operator algebra is not nec-
essarily closed. Recall that an algebra A is prime if AAB = {0} for A,B ∈ A
implies either A = 0 or B = 0. An operator P ∈ B(H) is said to be a projection
provided P ∗ = P and P 2 = P . It is well known that every standard operator
algebra is prime and its commutant is CI.

2. The main result and its proof

The main result in this paper is as follows.

Theorem 2.1. Let H be an infinite dimensional complex Hilbert space and A
be a standard operator algebra on H containing the identity operator I. If A is
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closed under the adjoint operation and ϕ : A → B(H) satisfies

ϕ(∗[A, ∗[B,C]]) = ∗[ϕ(A), ∗[B,C]] + ∗[A, ∗[ϕ(B), C]] + ∗[A, ∗[B,ϕ(C)]],

for all A,B,C ∈ A, then ϕ is a linear ∗-derivation. Moreover, there exists an
operator T ∈ B(H) satisfying T + T ∗ = 0 such that ϕ(A) = AT − TA, for all
A ∈ A, that is, ϕ is inner.

To complete the proof of the main theorem, we begin with the following
lemmas.

Lemma 2.1. Let A be a standard operator algebra containing identity I on a
complex Hilbert space which is closed under adjoint operation. If AB = B∗A
holds true for all A ∈ A, then B ∈ RI.

Proof. In fact, take A = I, then B = B∗. Thus the condition becomes AB =
BA. It follows that B ∈ CI, the center of A, and so B ∈ RI.

Lemma 2.2. ϕ(0) = 0.

Proof. It follows from the following:

ϕ(0) = ϕ(∗[0, ∗[0, 0]]) = ∗[ϕ(0), ∗[0, 0]] +∗ [0, ∗[ϕ(0), 0]] + ∗[0, ∗[0, ϕ(0)]] = 0.

Lemma 2.3. ϕ(RI) ⊆ RI, ϕ(CI) ⊆ CI. For any A ∈ A with A = A∗, ϕ(A∗) =
ϕ(A)∗.

Proof. For any λ ∈ R, we consider

0 = ϕ(∗[I, ∗[A, λI]])

= ∗[ϕ(I), ∗[A, λI]] + ∗[I, ∗[ϕ(A), λI]] + ∗[I, ∗[A,ϕ(λI)]]

= ∗[I, ∗[A,ϕ(λI)]]

= (A+A∗)ϕ(λI)− ϕ(λI)∗(A+A∗).

This gives us (A+A∗)ϕ(λI) = ϕ(λI)∗(A+A∗) holds true for all A ∈ A. That is,
Bϕ(λI) = ϕ(λI)∗B holds true for all B = B∗ ∈ A. Since every element in A is a
linear span of two self-adjoint operators, it follows that Bϕ(λI) = ϕ(λI)∗B holds
true for all B ∈ A. By Lemma 2.1, we have ϕ(λI) ∈ RI. Hence ϕ(RI) ⊆ RI.
Let A = A∗ ∈ A. Since ϕ(I) ∈ RI, we have that

0 = ϕ(∗[I, ∗[I, A]])

= ∗[ϕ(I), ∗[I,A]] + ∗[I, ∗[ϕ(I), A]] + ∗[I, ∗[I, ϕ(A)]]

= ∗[I, ∗[I, ϕ(A)]]

= 2ϕ(A)− 2Φ(A)∗.
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Hence ϕ(A) = ϕ(A)∗. For any λ ∈ C and A ∈ A with A = A∗ ∈ A, applying
above results, we see that

0 = ϕ(∗[C, ∗[λI,A]])

= ∗[ϕ(C), ∗[λI,A]] + ∗[C, ∗[ϕ(λI), A]] + ∗[C, ∗[λI, ϕ(A)]]

= ∗[C, ∗[ϕ(λI), A]]

holds true for all C ∈ A. It follows from Lemma 2.1 that ∗[ϕ(λI), A] ∈ RI. This
yields that [ϕ(λI), A] ∈ RI, for all A ∈ A with A = A∗. By the Kleinecke-
Shirokov theorem (cf. [2, Problem 230]) , we get [ϕ(λI), A] = 0, that is,
ϕ(λI)A = Aϕ(λI), for all A ∈ A with A = A∗. It follows that ϕ(λI)A = Aϕ(λI)
for any A ∈ A, and so ϕ(λI) ∈ CI. Therefore, ϕ(CI) ⊆ CI.

Lemma 2.4. ϕ(12I) = ϕ(12 iI) = 0 and ϕ(iA) = iϕ(A), for all A ∈ A, where i is
the imaginary unit.

Proof. We compute

0 = ϕ(∗[−
1

2
I, ∗[−

1

2
iI,−1

2
iI]])

= ∗[ϕ(−
1

2
I), ∗[−

1

2
iI,−1

2
iI]] + ∗[−

1

2
I, ∗[ϕ(−

1

2
iI),−1

2
iI]]

+ ∗[−
1

2
I, ∗[−

1

2
iI, ϕ(−1

2
iI)]]

= ∗[ϕ(−
1

2
I),−1

2
I] + ∗[−

1

2
I,−iϕ(−1

2
iI)] + ∗[−

1

2
I,−1

2
i(ϕ(−1

2
iI)− ϕ(−1

2
iI)∗)]

= iϕ(−1

2
iI)− iϕ(−1

2
iI)∗.

It follows that ϕ(−1
2 iI)=−ϕ(−

1
2 iI)

∗. Similarly, by the equality 0=∗[
1
2I, ∗[

1
2 iI,

1
2 iI]],

we can get ϕ(12 iI) = −ϕ(
1
2 iI)

∗. We may also compute

ϕ(−1

2
iI) = ϕ(∗[−

1

2
I, ∗[−

1

2
I,−1

2
iI]])

= ∗[ϕ(−
1

2
I),−1

2
iI] + ∗[−

1

2
I,−iϕ(1

2
iI)] + ∗[−

1

2
I,−ϕ(−1

2
iI)]

= 2iϕ(−1

2
I) + ϕ(−1

2
iI).

It follows that ϕ(−1
2I) = 0. The equality −1

2I = ∗[
1
2 iI, ∗[−1

2I,−
1
2 iI]] implies

0 = ϕ(−1

2
I) = ϕ(∗[

1

2
iI, ∗[−

1

2
I,−1

2
iI]])

= ∗[ϕ(
1

2
iI), ∗[−

1

2
I,−1

2
iI]] + 0 + ∗[

1

2
iI, ∗[−

1

2
I, ϕ(−1

2
iI)]]

= iϕ(
1

2
iI)− iϕ(−1

2
iI).
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Hence

ϕ(
1

2
iI) = ϕ(−1

2
iI).(1)

Since the equality 1
2 iI = ∗[

1
2I, ∗[−1

2I,−
1
2 iI]] hold true, we have

ϕ(
1

2
iI) = ϕ(∗[

1

2
I, ∗[−

1

2
I,−1

2
iI]])

= ∗[ϕ(
1

2
I), ∗[−

1

2
I,−1

2
iI]] + 0 + ∗[

1

2
I, ∗[−

1

2
I, ϕ(−1

2
iI)]]

= ∗[ϕ(
1

2
I),

1

2
iI] + ∗[

1

2
I,−ϕ(−1

2
iI)]

= iϕ(
1

2
I)− ϕ(−1

2
iI).

It follows that

ϕ(
1

2
iI) + ϕ(−1

2
iI) = iϕ(

1

2
I).(2)

Finally, by the equality 1
2I = ∗[−1

2 iI, ∗[−1
2I,−

1
2 iI]], we can get

ϕ(
1

2
I) = ϕ(∗[−

1

2
iI, ∗[−

1

2
I,

1

2
iI]])

= ∗[ϕ(−
1

2
iI), ∗[−

1

2
I,

1

2
iI]] + 0 + ∗[−

1

2
iI, ∗[−

1

2
I, ϕ(

1

2
iI)]]

= ∗[ϕ(−
1

2
iI),

1

2
I] + ∗[−

1

2
iI,−ϕ(−1

2
iI)]

= iϕ(−1

2
iI) + iϕ(−1

2
iI) = 2iϕ(−1

2
iI).

It follows that

2ϕ(−1

2
iI) = −iϕ(1

2
I).(3)

Hence by Eq. (1), Eq. (2) and Eq. (3), we have ϕ(12 iI) = ϕ(−1
2 iI) = 0. For

every A ∈ A, it follows from iA = ∗[A, ∗[
1
2I,

1
2 iI]] that

ϕ(iA) = ϕ(∗[A, ∗[
1
2I,

1
2 iI, ]]) = ∗[ϕ(A), ∗[

1
2I,

1
2 iI]] = iϕ(A).

We now choose a nontrivial projection P1 ∈ A and let P2 = I − P1. Denote
Aij = PiAPj , i, j = 1, 2,. Then we have the Peirce decomposition of A as
A =

∑2
i,j=1Aij . Note that any operator A ∈ A can be expressed as A =

A11 +A12 +A21 +A22, and A
∗
ij ∈ Aji for any Aij ∈ Aij .

Lemma 2.5. For any A ∈ A,
(1) ∗[A, ∗[I, i(P2 − P1)]] = 0 implies A11 = A22 = 0,
(2) ∗[I, ∗[P1, A]] = 0 implies A12 = 0,
(3) ∗[I, ∗[P2, A]] = 0 implies A21 = 0,
(4) ∗[A, ∗[I, iP1]] = 0 implies A11 = A12 = A21 = 0,
(5) ∗[A, ∗[I, iP2]] = 0 implies A22 = A12 = A21 = 0.
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Proof. We only show (1). The proofs of (2), (3), (4) and (5) go similarly. We
compute

0 = ∗[A, ∗[I, i(P2 − P1)]] = ∗[A, 2i(P2 − P1)]

= 2i(A(P2 − P1) + (P2 − P1)A)

= 4i(A22 −A11),

which leads to A22 = A11 = 0.

Lemma 2.6. For any A12 ∈ A12 and B21 ∈ A21, we have

ϕ(A12 +B21) = ϕ(A12) + Φ(B21).

Proof. Let M = ϕ(A12 + B21)− ϕ(A12)− ϕ(B21). We now show that M = 0.
On one hand, since ∗[A12, ∗[I, i(P2 − P1)]] = ∗[B21, ∗[I, i(P2 − P1)]] = 0, we
have

0 = ϕ(∗[A12 +B21, ∗[I, i(P2 − P1)]])

= ∗[ϕ(A12 +B21), ∗[I, i(P2 − P1]] + ∗[A12 +B21, ∗[ϕ(I), i(P2 − P1)]]

+ ∗[A12 +B21, ∗[I, ϕ(i(P2 − P1))]].

On the other hand,

0 = ϕ(∗[A12, ∗[I, i(P2 − P1)]]) + ϕ(∗[B21, ∗[I, i(P2 − P1)]])

= ∗[ϕ(A12) + ϕ(B21), ∗[I, i(i(P2 − P1))]] + ∗[A12 +B21, ∗[ϕ(I), i(P2 − P1)]]

+ ∗[A12 +B21, ∗[I, ϕ(i(P2 − P1))]].

Comparing the above two equalities, we arrive at ∗[M, ∗[I, i(P2 − P1)]] = 0. It
follows from Lemma 2.5 (1), that M11 =M22 = 0.

Since ∗[I, ∗[P1, B21]] = 0, we have that

∗[ϕ(I), ∗[P1, A12 +B21]] + ∗[I, ∗[ϕ(P1), A12 +B21]] + ∗[I, ∗[P1, ϕ(A12 +B21)]]

= ϕ(∗[I, ∗[P1, A12 +B21]])

= ϕ(∗[I, ∗[P1, A12]]) + ϕ(∗[I, ∗[P1, B21]])

= ∗[ϕ(I), ∗[P1, A12 +B21]] + ∗[I, ∗[ϕ(P1), A12 +B21]] + ∗[I, ∗[P1, ϕ(A12 +B21)]].

Hence ∗[I, ∗[P1,M ]] = 0. By Lemma 2.5 (2), we get that M12 = 0. Similarly, by
using the fact ∗[I, ∗[P2, A12]] = 0, one can show M21 = 0.

Lemma 2.7. For any A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, and D22 ∈ A22,
(1) ϕ(A11 +B12 + C21) = ϕ(A11) + ϕ(B12) + ϕ(C21).
(2) ϕ(B12 + C21 +D22) = ϕ(B12) + ϕ(C21) + ϕ(D22).
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Proof. (1) Since ∗[A11, ∗[I, iP2]] = 0, by Lemma 2.6, we obtain

∗[ϕ(A11 +B12 + C21), ∗[I, iP2]] + ∗[A11 +B12 + C21, ∗[ϕ(I), iP2]]

+ ∗[A11 +B12 + C21, ∗[I, ϕ(iP2)]]

= ϕ(∗[A11 +B12 + C21, ∗[I, iP2)]])

= ϕ(∗[A11, ∗[I, iP2]]) + ϕ(∗[B12 + C21, ∗[I, P2]])

= ∗[ϕ(A11) + ϕ(B12) + ϕ(C21), ∗[I, iP2]] + ∗[A11 +B12 + C21, ∗[ϕ(I), iP2]]

+ ∗[A11 +B12 + C21, ∗[I, iϕ(P2)]].

LettingM = ϕ(A11+B12+C21)−ϕ(A11)−ϕ(B12)−ϕ(C21), we get ∗[M, ∗[I, iP2]] =
0. It follows from Lemma 2.5 (5) that M12 =M21 =M22 = 0.

We now show thatM11 = 0. By noting ∗[B12, [I, ∗i(P2−P1)]] = ∗[C21, ∗[I, i(P2−
P1)]] = 0, we have

ϕ(∗[A11 +B12 + C21, ∗[I, i(P2 − P1)]])

= ϕ(∗[A11, ∗[I, i(P2 − P1), I]]) + ϕ(∗[B12, ∗[I, i(P2 − P1)]])

+ ϕ(∗[C21, ∗[I, i(P2 − P1)]]).

By using the similar argument, we can get ∗[M, ∗[I, i(P2−P1)]] = 0. Therefore,
M11 = 0 by Lemma 2.5 (3).

(2) Considering ∗[ϕ(A11) + ϕ(B12) + ϕ(C21), ∗[I, iP1]] and ϕ(∗[A11 + B12 +
C21, ∗[I, i(P2 − P1)]]), with the same argument as in (1), one can get ϕ(B12 +
C21 +D22) = ϕ(B12) + ϕ(C21) + ϕ(D22).

Lemma 2.8. For any A11 ∈ A11, B12 ∈ A12, C21 ∈ A21, and D22 ∈ A22,

ϕ(A11 +B12 + C21 +D22) = ϕ(A11) + ϕ(B12) + ϕ(C21) + ϕ(D22).

Proof. Let M = ϕ(A11+B12+C21+D22)−ϕ(A11−ϕ(B12)−ϕ(C21)−ϕ(D22).
Noticing that ∗[D22, ∗[I, iP1]] = 0 and applying (1) in Lemma 2.7, we have

∗[ϕ(A11 +B12 + C21 +D22), ∗[I, iP1]] + ∗[A11 +B12 + C21 +D22, ∗[ϕ(I), iP1]]

+ ∗[A11 +B12 + C21 +D22, ∗[I, ϕ(iP1)]]

= ϕ(∗[A11 +B12 + C21 +D22, ∗[I, iP1]])

= ϕ(∗[A11 +B12 + C21, ∗[I, iP1]]) + ϕ(∗[D22, ∗[I, iP1]])

= ∗[ϕ(A11) + ϕ(B12) + ϕ(C21) + ϕ(D22), ∗[I, iP1]]

+ ∗[A11 +B12 + C21 +D22, ∗[ϕ(I), iP1]]

+ ∗[A11 +B12 + C21 +D22, ∗[I, ϕ(iP1)]].

It follows that ∗[M, ∗[I, iP1]] = 0, so M11 = M12 = M21 = 0 by Lemma 2.5.
Using the fact that ∗[A11, ∗[I, iP2]] = 0 and the similar argument above, we can
get ∗[M, ∗[I, iP2]] = 0 which leads M22 = 0, completing the proof.
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Lemma 2.9. For any Ajk, Bjk ∈ Ajk, where 1 ≤ j ̸= k ≤ 2, we have

ϕ(Ajk +Bjk) = ϕ(Ajk) + ϕ(Bjk).

Proof. On one hand, by Lemma 2.7,

ϕ(iAjk + iBjk + iA∗
jk + iA∗

jkBjk) = ϕ(iAjk + iBjk) + ϕ(i(A∗
jk) + ϕ(i(A∗

jkBjk).

On the other hand, since

∗[Pj +Bjk, ∗[Pk +Ajk,
i

2
I]] = i(Ajk +Bjk) + i(A∗

jk) + i(A∗
jkBjk),

using Lemma2.8 again,

ϕ(iAjk + iBjk + iA∗
jk + iA∗

jkBjk)

= ϕ(∗[Pj +Bjk, ∗[Pk +Ajk,
i

2
I]])

= ∗[ϕ(Pj +Bjk), ∗[Pk +Ajk,
i

2
I]] + ∗[Pj +Bjk, ∗[ϕ(Pk +Ajk),

i

2
I]]

+ ∗[Pj +Bjk, ∗[Pk +Ajk, ϕ(
i

2
I)]]

= ∗[ϕ(Pj) + ϕ(Bjk), ∗[Pk +Ajk,
i

2
I]] + ∗[Pj +Bjk, ∗[ϕ(Pk) + ϕ(Ajk),

i

2
I]]

+ ∗[Pj +Bjk, ∗[Pk +Ajk, ϕ(
i

2
I)]]

= ϕ(∗[Pj , ∗[Pk,
i

2
I]]) + ϕ(∗[Bjk, ∗[Pj ,

i

2
I]]) + ϕ(∗[Pj , ∗[Ajk,

i

2
I]])

+ ϕ(∗[Bjk, ∗[Ajk,
i

2
I]])

= ϕ(iBjk) + ϕ(iAjk + iA∗
jk) + ϕ(iA∗

jkBjk)

= ϕ(iBjk) + ϕ(iAjk) + ϕ(iA∗
jk) + ϕ(iA∗

jkBjk).

Note that in the last identity above, we are using Lemma 2.6. We now can
conclude that ϕ(Ajk +Bjk) = ϕ(Ajk) + ϕ(Bjk) by Lemma 2.4.

Lemma 2.10. For any Ajj , Bjj ∈ Ajj, where 1 ≤ j ≤ 2, we have

ϕ(Ajj +Bjj) = ϕ(Ajj) + ϕ(Bjj).

Proof. Let k ∈ {1, 2}, with k ̸= j. We compute

∗[ϕ(Ajj +Bjj), ∗[I, iPk]] + ∗[Ajj +Bjj , ∗[ϕ(I), iPk]] + ∗[Ajj +Bjj , ∗[I, ϕ(iPk)]]

= ϕ(∗[Ajj +Bjj , ∗[I, iPk]]) = 0

= ϕ(∗[Ajj , ∗[I, ϕ(iPk)]]) + ϕ(∗[Bjj , [I, ∗ϕ(iPk)]])

= ∗[ϕ(Ajj) + ϕ(Bjj), ∗[I, iPk]] + ∗[Ajj +Bjj , ∗[ϕ(I), iPk]]

+ ∗[Ajj +Bjj , ∗[I, ϕ(iPk)]].
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Write M = ϕ(Ajj +Bjj)−ϕ(Ajj)−ϕ(Bjj). The above computation yields that

∗[M, ∗[I, iPk]] = 0. By Lemma 2.4, we have Mjk = Mkj = Mkk = 0. We now
show that Mjj = 0. For any Cjk ∈ Ajk, by Lemma 2.7,

∗[ϕ(Cjk), ∗[Ajj +Bjj ,
1

2
iPj)]] + ∗[Cjk, ∗[ϕ(Ajj +Bjj),

1

2
iPj ]]

+ ∗[Cjk, ∗[Ajj +Bjj , ϕ(
1

2
iPj)]] = ϕ(∗[Cjk, ∗[Ajj +Bjj ,

1

2
iPj ]])

= ϕ(∗[Cjk, ∗[Ajj ,
1

2
iPj ]]) + ϕ(∗[Cjk, ∗[Bjj ,

1

2
iPj ]])

= ∗[ϕ(Cjk), ∗[Ajj +Bjj ,
1

2
iPj)]] + ∗[Cjk, ∗[ϕ(Ajj +Bjj),

1

2
iPj ]]

+ ∗[Cjk, ∗[Ajj +Bjj , ϕ(
1

2
iPj)]].

Therefore, ∗[Cjk, ∗[M, 12 iPj ]] = 0 which leads to M∗
jjCjk = 0, for all Cjk ∈ Ajk.

Since A is prime, we see that Mjj = 0.

Lemma 2.11. ϕ is an additive derivation with ϕ(A∗) = ϕ(A)∗, for all A ∈ A.

Proof. We first show that ϕ is additive. For arbitrary A,B ∈ A, we write
A =

∑2
i,j=1Aij and B =

∑2
i,j=1Bij . By Lemma 2.8, Lemma 2.9 and Lemma

2.10, we obtain

ϕ(A+B) = ϕ(

2∑
i,j=1

Aij +

2∑
i,j=1

Bij) =

2∑
i,j=1

Φ(Aij +Bij)

=
2∑

i,j=1

ϕ(Aij) +
2∑

i,j=1

ϕ(Bij) = ϕ(
2∑

i,j=1

Aij) + ϕ(
2∑

i,j=1

Bij)

= ϕ(A) + ϕ(B).

We now show ϕ(A∗) = ϕ(A)∗. For every A ∈ A, we write A = A1 + iA2,
where A1 =

A+A∗

2 and A2 =
A−A∗

2i are self-adjoint elements. By Lemma 2.3 and
Lemma 2.4, we have

ϕ(A∗) = ϕ(A1 − iA2) = ϕ(A1)− ϕ(iA2)

= ϕ(A1)− iϕ(A2) = ϕ(A1)
∗ − iϕ(A2)

∗

= ϕ(A1)
∗ + (iϕ(A2))

∗ = ϕ(A1 + iA2)
∗ = ϕ(A)∗.

To complete the proof, we need to show that ϕ is a derivation. By the additivity
of ϕ and Lemma 2.5, we have ϕ(iI) = 2ϕ(12 iI) = 0. Note that ∗[A, ∗[B, iI]] =
2i(AB +B∗A). We compute

2iϕ(AB +B∗A) = ϕ(2i(AB +B∗A))

= ϕ(∗[A, ∗[B, iI]])

= ∗[ϕ(A), ∗[B, iI]] + ∗[A, ∗[ϕ(B), iI]] + ∗[A, ∗[B,ϕ(iI)]]

= 2i(ϕ(A)B +B∗ϕ(A)) +Aϕ(B) + ϕ(B)∗A).
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It follows that

ϕ(AB +B∗A) = ϕ(A)B +B∗ϕ(A) +Aϕ(B) + ϕ(B)∗A.

Replacing B by iB in the above equality, we get

ϕ(AB −B∗A) = ϕ(A)B −B∗ϕ(A) +Aϕ(B)− ϕ(B)∗A.

Thus ϕ(AB) = ϕ(A)B +Aϕ(B), it is a derivation.

The proof of the main theorem. By Lemma 2.11, we see that ϕ is an
additive derivation with ϕ(A∗) = ϕ(A)∗. It follows from [12, Theorem 2.3] that
ϕ is an linear inner derivation, that is, there exists an operator A ∈ B(H) such
that ϕ(A) = AS − SA, for all A ∈ A. Since ϕ(A∗) = ϕ(A)∗, we have

A∗S − SA∗ = ϕ(A∗) = ϕ(A)∗ = S∗A∗ −A∗S∗

for any A ∈ A. This leads to A∗(S + S∗) = (S + S∗)A∗. Hence, S + S∗ = λI
for some λ ∈ R. Letting T = S − 1

2λI, one can check that T + T ∗ = 0 and
ϕ(A) = AT − TA, for all A ∈ A.

Corollary 2.1. Let H be an infinite dimensional complex Hilbert space and
ϕ : B(H) → B(H) is nonlinear left ∗-Lie triple mapping, then ϕ is an inner
∗-derivation, that is, there exists an operator T ∈ B(H) satisfying T + T ∗ = 0
such that ϕ(A) = AT − TA, for all A ∈ A.
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Abstract. In this paper, we prove a common fixed point theorem for four mappings
under the condition of weak compatibility on a closed subset of a uniformly convex
Banach space without taking under consideration the continuity of mappings. We
provide an example in support of our result.
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1. Introduction

Imdad et al. [3] obtained some results on common fixed points for three map-
pings defined on a closed subset of a uniformly convex Banach space. Their
results extended and refined some results of Husain and Sehgal [2] and Khan
and Imdad [10]. Rashwan [11] extended results of Imdad et al. [3] by employing
four compatible mappings of type (A) instead of three weakly commuting map-
pings and by using one continuous mapping as opposed to two. In this paper,
we improve the result of Rashwan[11] by removing the condition of continuity
and using weak compatible mappings. For preliminaries and definitions we refer
to ([1], [4], [5], [6],[7],[8],[9],[12]).

2. Preliminaries

Throughout the paper, X stands for a uniformly convex Banach space. Let R+

denote the set of all non negative real numbers and F be the family of mappings
f from (R+)5 into R+ such that f is upper semicontinuous, non-decreasing in
each coordinate variable. The modulus of convexity of X is a function δ from
(0, 2] into (0, 1] defined by

δ(ϵ) = inf{1− 1

2
∥x− y∥ , x, y ∈ X, ∥x∥ = ∥y∥ = 1, ∥x− y∥ ≥ ϵ}.

Moreover, if X is uniformly convex, then δ is strictly increasing, δ(ϵ) → 0 as
ϵ→ 0, δ(2) = 1, η(t) < 2 when t < 1 and η is the inverse of δ.

For our main theorem we need the following lemma:
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Lemma 2.1 ([1]). Let X be uniformly convex Banach space and Br, the closed
ball X centred at the origin with radius r > 0. If x1, x2, x3 ∈ Br satisfy

∥x1 − x2∥ ≥ ∥x2 − x3∥ ≥ d > 0 and if ∥x2∥ ≥
(
1− 1

2
δ

(
d

l

))
l,

then

∥x1 − x3∥ ≤ η
(
1− 1

2
δ

(
d

l

))
∥x1 − x2∥ .

Now, we shall give some definitions;

Definition 2.1 ([12]). Let S and T be self commuting on X. Then {S, T} is
called a weakly commuting pair on X if ∥STx− TSx∥ ≥ ∥Sx− Tx∥ for all
x ∈ X.

Definition 2.2 ([4]). Let S, T : X → X be mappings. S and T are said to
be compatible if limn→∞ ∥STxn − TSxn∥ = 0, whenever {xn} is sequence in X
such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

Clearly, commuting maps are weakly commuting and weakly commuting maps
are compatible. On the other hand, examples are given in [4], [5], [6], and [12]
to show neither of the above implications are reversible.

Definition 2.3 ([8]). A pair of mappings S and T is called weakly compatible
pair in fuzzy metric space if they commute at coincidence points; i.e. if Tu = Su
for some u ∈ X, then TSu = STu. It is easy to see that if S and T are compatible
, then they are weakly compatible and the converse is not true in general.

Definition 2.4 ([9]). Let S, T : X → X be mappings. S and T are said to be
compatible of type (A) if

lim
n→∞

∥STxn − SSxn∥ = 0, lim
n→∞

∥STxn − TTxn∥ = 0.

Whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t
for some t ∈ X.

Imdad et al. [3] proved the following:

Theorem 2.1. Let X be uniformly convex Banach space and K a non empty
closed subset of X. Let A,S and T be three self mappings of K satisfying the
following conditions:

(2.1) S andT are continuous, AK ⊂ SK ∩ TK,

(2.2) {A,S} and {A, T} areweakly commuting pairs onK,
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there exists a function f ∈ F such that for every x, y ∈ K:

∥Ax−Ay∥ ≤ f(∥Sx− Ty∥ , ∥Sx−Ax∥ , ∥Sx−Ay∥ ,
∥Ty −Ax∥ , ∥Ty −Ay∥),(2.3)

where f has the additional requirements:

for t > 0, f(t, t, 0, αt, t) ≤ βt and f(t, t, αt, 0, t) ≤ βt
being β < 1 for α < 2(2.4)

andβ = 1 for α = 2, α, β ∈ R+,

(2.5) f(t, 0, t, t, 0) < t for t > 0;

Then, there exists a point u in K such that:

(i) u is the common fixed point of A,S andT.

(ii) For any x0 ∈ K, the sequence {Axn} defined by

Tx2n = Ax2n−1, Sx2n+1 = Ax2n, n = 0, 1, 2, ...,

converges strongly to u.

Rashwan [11] proved a following common fixed point theorem for four com-
patible mappings of type (A) which extends and improves Theorem (2.1).

Theorem 2.2. Let X and K be as in Theorem (2.1). Let A, B, S and T be four
self mappings of K satisfying the following conditions:

(2.6) One of A,B, S andT are continuous andAK ⊆ TK andBK ⊆ SK,

(2.7) {A,S} and {B, T} are compatible of type (A),

there exists a function f ∈ F such that for every x, y ∈ K:

∥Ax−By∥ ≤ f(∥Sx− Ty∥ , ∥Sx−Ax∥ ,
∥Sx−By∥ , ∥Ty −Ax∥ , ∥Ty −By∥),(2.8)

where f satisfies the condition (2.4) and (2.5) as in Theorem (2.1).

Then there exists a point u in K such that:

(i) u is the common fixed point of A,B, S, and T ;

(ii) For any x0 ∈ K, the sequence {yn} defined by

y2n = Sx2n = Bx2n−1, y2n+1 = Tx2n+1 = Ax2n, n = 0, 1, 2, ...

converges strongly to u.
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3. Main results

Theorem 3.1. Let X be uniformly convex Banach space and K a non empty
closed subset of X. Let A,B, S, and T be four mappings of K satisfying the
following conditions:

(3.1) AK ⊂ TK andBK ⊂ SK,

(3.2) {A,S} and {B, T} areweakly compatible,

there exists a function f ∈ F such that for every x, y ∈ K:

∥Ax−By∥ ≤ f(∥Sx− Ty∥ , ∥Sx−Ax∥ , ∥Sx−By∥ ,
∥Ty −Ax∥ , ∥Ty −By∥),(3.3)

where f has the additional requirements:

for t > 0, f(t, t, 0, αt, t) ≤ βt and f(t, t, αt, 0, t)
≤ βt being β < 1 forα < 2(3.4)

andβ = 1 for α = 2, α, β ∈ R+,

(3.5) f(t, 0, t, t, 0) < t for t > 0,

Then there exists a point z in K such that:
(i) z is the common fixed point of A,B, S, and T.
(ii) For any x0 ∈ K, the sequence {yn} defined by

y2n = Sx2n = Bx2n−1, y2n+1 = Tx2n+1 = Ax2n, n = 0, 1, 2, ...,

converges strongly to z.

Proof. Let x0 ∈ K. Since AK ⊂ TK ,BK ⊂ SK we can always define a
sequence {yn} as y2n = Sx2n = Bx2n−1, y2n+1 = Tx2n+1 = Ax2n, n = 0, 1, 2, ...
converges strongly to z..

Let dn = ∥yn − yn+1∥ , n = 0, 1, 2, ... limn→∞ dn = 0. Now, for any even
integer n, we have

dn = ∥yn − yn+1∥ = ∥AXn −BXn−1∥
≤ f

(
∥Sxn − Txn−1∥ , ∥Sxn −Axn∥ , ∥Sxn −Bxn−1∥ ,(3.6)

∥Txn−1 −Axn∥ , ∥Txn−1 −Bxn−1∥
)
,

which implies dn = f(dn−1, dn, 0, dn−1 + dn, dn−1).
Similarly for an odd n, we obtain

dn = ∥yn − yn+1∥ = ∥AXn −BXn−1∥

≤ f
[
∥Sxn − Txn−1∥ , ∥Sxn −Axn∥ , ∥Sxn −Bxn−1∥ ,(3.7)

∥Txn−1 −Axn∥ , ∥Txn−1 −Bxn−1∥
]
,
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which gives dn = f(dn−1, dn−1, 0, dn−1 + dn, dn). If dn > dn−1 for some n ≥ 1,
then dn−1 + dn = αdn with α < 2, α ∈ R.

Since f is non decreasing in each coordinate variable.

dn =

{
f(dn, dn, 0, αdn, dn), ifn is even,

f(dn, dn, αdn, 0, dn), ifn is odd.

In both cases , by (3.4), we get dn ≤ βdn < dn, for some β < 1, β ∈ R+, a
contradiction. Thus dn ≤ dn−1 for n = 1, 2, 3, ... Suppose d > 0. Without loss
of generality, we can pastulate that the origin of X ∈ K,

lim
n→∞

sup ∥yn∥ = l′ > 0.

Let l ∈ R+ be chosen in such a way that l′ < 1 and η[1 − (12)δ(
d
l )] < l′, then

there exists a sequence {n(k)}, k = 0, 1, 2, ..., n(0) > 1 of positive integers such
that

∥∥yn(k)∥∥ ≥ [(1 − 1
2)δ(

d
l ))], where as it is ∥yn∥ ≤ l for any n ≥ n(0). Since

dn(k)−1 ≥ dn(k) ≥ d > 0, k = 0, 1, 2, ... . From Lemma (2.1) it follows that

(3.8)
∥∥yn(k)−1 − yn(k)+1

∥∥ ≤ η( l′
l
)dn(k)−1.

where η( l
′

l ) < 2 being ( l
′

l ) < 1. Then by (3.6),(3.7) and (3.8), we have

dn(k) =

{
f(dn(k)−1, dn(k)−1, 0, η(

l′

l )dn(k)−1, dn(k)−1), ifn is even,

f(dn(k)−1, dn(k)−1, 0, η(
l′

l )dn(k)−1, dn(k)−1), ifn is odd,

In both cases, (3.4) implies dn(k) ≤ βdn(k)−1, for some β < 1. Observing that β
does not depend on K, the foregoing inequality gives as n→∞ that d ≤ βd < d,
a contradiction. This means that d = 0. Now, we’ll prove that {yn} is a cauchy
sequence. Since limn→∞ dn = 0 , it is sufficient to show that the sequence
{y2n} is a cauchy sequence. If not, then there is an ϵ > 0 such that for every
even integer 2k, k=0,1,2,..., there exists two sequences {2n(k)}, {2m(k)} with
2k ≤ 2n(k) ≤ 2m(k) for which

(3.9)
∥∥yn(k) − ym(k)

∥∥ > ϵ,

for each even integer 2k, let 2m(k) be the least even integer exceeding n(k) and
satisfying (3.9) . Then

∥∥y2n(k) − y2m(k)−2

∥∥ ≤ ϵ and
∥∥y2n(k) − y2m(k)

∥∥ > ϵ, for
each k=0,1,2,..., we have

ϵ ≤
∥∥y2n(k) − y2m(k)

∥∥
≤ ϵ

∥∥y2n(k) − y2m(k)−2

∥∥+ ∥∥y2m(k−2) − y2m(k)−1

∥∥+ ∥∥y2m(k)−1 − y2m(k)

∥∥
≤ ϵ+ d2m(k)−2 + d2m(k)−1,

which implies

(3.10) lim
k→∞

∥∥y2n(k) − y2m(k)

∥∥ = ϵ
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Further, from triangular inequality , it follows that

|
∥∥y2n(k) − y2m(k)−1

∥∥− ∥∥y2n(k) − y2m(k)

∥∥ |≤ d2m(k)−1

and

|
∥∥y2n(k)+1 − y2m(k)−1

∥∥− ∥∥y2n(k) − y2m(k)

∥∥ |≤ d2m(k)−1 + d2n(k).

Hence for k →∞, we find by (3.10) that

(3.11)
∥∥y2n(k) − y2m(k)−1

∥∥→ ϵ and
∥∥y2n(k) − y2m(k)−1

∥∥→ ϵ.

On the other hand ,using (3.3) we deduce that∥∥y2n(k) − y2m(k)

∥∥ ≤ d2n(k) + ∥∥y2n(k)+1 − y2m(k)

∥∥
≤ d2n(k) + f

(∥∥y2m(k)−1 − y2n(k)
∥∥ , d2n(k),(3.12) ∥∥y2m(k)−1 − y2n(k)+1

∥∥ , ∥∥y2n(k) − y2m(k)

∥∥ , d2n(k))
by (3.10), (3.11), the upper-semicontinuity and non-decreasing properties of f,
and condition (3.5), we have from (3.12) for k →∞, ϵ ≤ f(ϵ, 0, ϵ, ϵ, 0) ≤ ϵ, which
is a contradiction. Therefore {y2n} is a cauchy sequence in K and so is {yn.}

But K is a closed subset of Banach space X, therefore {yn} converges to a
point z in K. On the other hand , the subsequences {Ax2n}, {Bx2n+1}, {Sx2n}
and {Tx2n+1} of {yn} also converges to z. Since BK ⊂ SK, there exists a point
u in K such that Su = z.

By using (3.3) we write ∥Au−Bx2n+1∥ ≤ f(∥Su− Tx2n+1∥ , ∥Su−Au∥ ,
∥Su−Bx2n+1∥ , ∥Tx2n+1 −Au∥ , ∥Tx2n+1 −Bx2n+1∥).

Taking n tends to ∞ , we get ∥Au− z∥ ≤ f(∥z − z∥ , ∥z −Au∥ , ∥z − z∥ ,
∥z −Au∥ , ∥z − z∥).

This gives ∥Au− z∥ ≤ f(∥Au− z∥), which is a contradiction. Therefore
we have z = Au. Thus Au = Su = z. Since AK ⊂ TK, there exists a
point v ∈ K such thst Tv = z. Then using (3.8), we have ∥Ax2n −Bv∥ ≤
f(∥Sx2n − Tv∥ , ∥Sx2n −Ax2n∥ , ∥Sx2n −Bv∥ , ∥Tv −Ax2n∥ , ∥Tv −Bv∥). Let-
ting n tends to ∞, we get

∥z −Bv∥ ≤ f(∥z − Tv∥ , ∥z − z∥ , ∥z −Bv∥ , ∥Tv − z∥ , ∥Tv −Bv∥),
∥z −Bv∥ ≤ f(∥z − z∥ , ∥z − z∥ , ∥z −Bv∥ , ∥z − z∥ , ∥z −Bv∥).

This yields ∥z −Bv∥ ≤ f(∥z −Bv∥). which is a contradiction. Thus z = Bv.
Therefore z = Bv = Tv. Hence Au = Su = Bv = Tv = z. Since A and S are
weakly compatible, therefore A and S commute at their coincidence points i.e.
ASu = SAu or Az =Sz. Similarly BTv = TBv or Bz = Tz.

Now we prove Az = z by using (3.8), we have

∥Az −Bx2n+1∥ ≤ f(∥Sz − Tx2n+1∥ , ∥Sz −Az∥ , ∥Sz −Bx2n+1∥ ,
∥Tx2n+1 −Az∥ , ∥Tx2n+1 −Bx2n+1∥).
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Letting n tends to ∞, we have ∥Az − z∥ ≤ f(∥Sz − z∥ , ∥Sz −Az∥ , ∥Sz − z∥ ,
∥z −Az∥ , ∥z − z∥), ∥Az − z∥ ≤ f(∥Az − z∥ , ∥Az −Az∥ , ∥Az − z∥ , ∥z −Az∥ ,
∥z − z∥). This yields ∥Az − z∥ ≤ f(∥Az − z∥), which is a contradiction. Thus
Az = z. Therefore Az = Sz = z. Similarly, we can show that Bz = Tz = z.
This means that z is a fixed point of A,B, S and T .

For uniqueness of common fixed point , let w ̸= z be another common fixed
point of A,B, S, and T. Then by (3.8), we have ∥Az −Bw∥ ≤ f(∥Sz − Tw∥ ,
∥Sz −Az∥ , ∥Sz −Bw∥ , ∥Tw −Az∥ , ∥Tw −Bw∥), ∥z − w∥≤f(∥z−w∥ , ∥z−z∥ ,
∥z − w∥ , ∥w − z∥ , ∥w − w∥).

This gives ∥z − w∥ ≤ f(∥z − w∥), which is a contradiction. This z = w.

This completes the proof of the theorem.

Example 3.1. Let X = K = [0, 2] with the Euclidean norm ∥.∥ . Define
A,B, S, T : K → K by

Ax =

{
0, ifx = 0,

0.15, if x > 0.

Bx =

{
0, ifx = 0,

0.35, ifx > 0.

Sx =


0, ifx = 0,

0.35, if 0 < x < 0.5,

x− 0.35, ifx ≥ 0.5.

Tx =


0, ifx = 0,

0.15, if 0 < x < 0.5,

x− 0.15, ifx ≥ 0.5.

We see that A,B, S and T satisfy all the conditions of Theorem (3.1) and have
a unique common fixed point of 0 ∈ X. It may be noted in this example that
the mappings A and S commute at coincidence point 0 ∈ X. So A and S are
weakly compatible maps. Similarly B and T are weakly compatible maps. To
see the pairs {A,S} and {B, T} are non compatible, let us consider a decreasing
sequence {xn} such that xn → 0.5. Then {Axn} → 0.15, {Sxn} → 0.15, but
limn→∞ ∥ASxn − SAxn∥ ̸= 0. So the pair {A,S} is noncompatible. Also Bxn →
0.35, Txn → 0.35, but limn→∞ ∥BTxn − TBxn∥ ̸= 0. So the pair {B,T} is non
compatible. All the mappings involved in this example are discontinuous at the
common fixed point.
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1. Introduction

The algebraic hyperstructure is a natural generalization of the classical alge-
braic structures which was first introduced by Marty [18] in 1934. In a classical
algebraic structure, the composition of two elements is an element, while in an
algebraic hyperstructure, the composition of two elements is a set. After the
pioneering work of Marty, algebraic hyperstructures have been intensively stud-
ied, both from the theoretical point of view and especially for their applications
in other fields such as Euclidean and non-Euclidean geometries, graphs and
hypergraphs, fuzzy sets, automata, cryptography, artificial intelligence, codes,
probabilities, lattices and so on (see [4]). Recently, algebraic hyperstructures
have been developed by many researchers. A lot of papers and several books
have been written on algebraic hyperstructure theory, see [7, 8, 10, 14, 19, 20].
There are some books on the general theory of algebraic hyperstructures: one
by Corsini [3] on the basic theory of hypergroups, another by Vougiouklis [27],
mostly on representations of hypergroups and on Hv-structures, which are hy-
perstructures satisfying conditions weaker than the classic ones.

Semihypergroups have been found useful for dealing with problems in differ-
ent areas of algebraic hyperstructures. Many authors studied different aspects
of semihypergroups, for instance, Anvariyeh et al. [1], Davvaz [5], Davvaz and
Poursalavati [9], Hasankhani [12], Hila and Abdullah [15] and Leoreanu [17],
also see [11, 21, 31]. It is now natural to investigate the existing subsystems
of other algebraic hyperstructures. In mathematics, an ordered semigroup is a
semigroup together with a partial order that is compatible with the semigroup
operation. Ordered semigroups have several applications in the theory of se-
quential machines, formal languages, computer arithmetics and error-correcting
codes. There are several results which have been added to the theory of ordered
semigroups by Kehayopulu, Davvaz, Satyanarayana, Xie, and many other re-
searchers. For more details, the reader is referred to [16, 23, 28, 29]. A theory
of hyperstructures on ordered semigroups can be developed. In [13], Heidari
and Davvaz applied the theory of hyperstructures to ordered semigroups and
introduced the concept of ordered semihypergroups, which is a generalization of
the concept of ordered semigroups. In particular, they defined and studied the
hyperideals of an ordered semihypergroup. Also see [2, 6, 24]. In [30], Yaqoob et
al. also defined the partially ordered left almost semihypergroups, and studied
related properties.

It is well known that hyperideals of a semihypergroup with special proper-
ties always play an important role in the study of semihypergroups structure.
Motivated by the study of hyperideals in hyperrings and semihypergroups, and
also motivated by Davvaz’s works in ordered hyperstructures, we attempt in the
present paper to study hyperideals of ordered semihypergroups in detail. The
rest of this paper is organized as follows. After an introduction, in Section 2 we
recall some basic definitions and results of ordered semihypergroups which will
be used throughout this paper. In Section 3, we introduce the concepts of prime,
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weakly prime and semiprime hyperideals in ordered semihypergroups, and give
some characterizations of them. In Section 4, we consider the extensions of
hyperideals in commutative ordered semihypergroups. In addition, we define
n-prime hyperideals and n-semiprime hyperideals of ordered semihypergroups,
and investigate their related properties. In particular, we show that for any
positive integer n ≥ 2, n-prime hyperideals of an ordered semihypergroup are
a generalization of prime hyperideals. We also prove that every (n − 1)-prime
hyperideal of ordered semihypergroups is n-prime for any positive integer n ≥ 3.
Moreover, we investigate the relationship between extensions of hyperideals and
n-prime hyperideals, and prove that a hyperideal I of a commutative ordered
semihypergroup is n-prime if and only if any extension of I is (n − 1)-prime
(n ≥ 3). Especially, we prove that a semiprime, n-prime hyperideal (n ≥ 3) of a
commutative ordered semihypergroup S can be expressed as the intersection of
all (n− 1)-prime hyperideals of S containing it. As an application of the results
of this paper, the corresponding results in ordinary semihypergroups can be also
obtained by moderate modification.

2. Preliminaries and some notations

Recall that a hypergroupoid (S, ◦) is a nonempty set S together with a hyper-
operation, that is a map ◦ : S × S → P ∗(S), where P ∗(S) denotes the set
of all the nonempty subsets of S. The image of the pair (x, y) is denoted by
x ◦ y. If x ∈ S and A,B are nonempty subsets of S, then A ◦ B is defined by
A ◦ B =

∪
a∈A,b∈B a ◦ b. Also A ◦ x is used for A ◦ {x} and x ◦ A for {x} ◦ A.

A hypergroupoid (S, ◦) is called a semihypergroup if (x ◦ y) ◦ z = x ◦ (y ◦ z) for
all x, y, z ∈ S (see [3]). A semihypergroup (S, ◦) is called a hypersemilattice if
x ∈ x ◦ x and x ◦ y = y ◦ x for all x, y ∈ S (see [22]).

As we know, an ordered semigroup (S, ·,≤) is a semigroup (S, ·) with an
order relation “ ≤ ” such that a ≤ b implies xa ≤ xb and ax ≤ bx for any x ∈ S.
In the following, we shall extend the concept of ordered semigroups to the hyper
version, and introduce the concept of ordered semihypergroups from [13].

Definition 2.1. An algebraic hyperstructure (S, ◦,≤) is called an ordered
semihypergroup (also called po-semihypergroup in [13]) if (S, ◦) is a semihyper-
group and (S,≤) is a partially ordered set such that: for any x, y, a ∈ S, x ≤ y
implies a ◦ x ≼ a ◦ y and x ◦ a ≼ y ◦ a. Here, if A,B ∈ P ∗(S), then we say that
A ≼ B if for every a ∈ A there exists b ∈ B such that a ≤ b. In particular, if
A = {a}, then we write a ≼ B instead of {a} ≼ B.

Definition 2.2. An element e in an ordered semihypergroup (S, ◦,≤) is called
identity if a ∈ a ◦ e ∩ e ◦ a for any a ∈ S.

Definition 2.3. Let (S, ◦,≤) be ordered semihypergroup. Then S is called
commutative if a ◦ b = b ◦ a for any a, b ∈ S.
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Clearly, every ordered semigroup can be regarded as an ordered semihyper-
group. In the following we give two examples of ordered semihypergroups.

Example 2.4. Let (S,≤) be a partially ordered set. If for every x, y ∈ S, we
define x ◦ y = {x, y}, then (S, ◦,≤) is a commutative ordered semihypergroup.

Example 2.5 ([13]). Let (S, ·,≤) be an ordered semigroup. If for every x, y ∈ S,
we define x ◦ y =< x, y >, where < x, y > is the ideal of S generated by {x, y},
then (S, ◦,≤) is an ordered semihypergroup.

Let S be an ordered semihypergroup. For ∅ ̸= H ⊆ S, we define

(H] := {t ∈ S | t ≤ h for some h ∈ H}.

For H = {a}, we write (a] instead of ({a}].
By a subsemihypergroup of an ordered semihypergroup S we mean a nonempty

subset A of S such that A◦A ⊆ A. A nonempty subset A of an ordered semihy-
pergroup S is called a left (resp. right) hyperideal of S if (1) S ◦A ⊆ A (resp. A◦
S ⊆ A) and (2) If a ∈ A and S ∋ b ≤ a, then b ∈ A. If A is both a left and a right
hyperideal of S, then it is called a (two-sided) hyperideal of S (see [13]). We
denote by L(A) (resp. R(A), I(A)) the left (resp. right, two-sided) hyperideal
of S generated by A (∅ ̸= A ⊆ S). One can easily prove that L(A) = (A∪S ◦A],
R(A) = (A ∪ A ◦ S] and I(A) = (A ∪ S ◦ A ∪ A ◦ S ∪ S ◦ A ◦ S]. In particular,
if A = {a}, then we write L(a), R(a), I(a) instead of L({a}), R({a}), I({a}),
respectively. If S is commutative, then I(a) = (a ∪ S ◦ a] = (a ∪ a ◦ S].

Lemma 2.6. Let S be an ordered semihypergroup. Then the following state-
ments hold:

(1) A ⊆ (A], ∀A ⊆ S.
(2) If A ⊆ B ⊆ S, then (A] ⊆ (B].
(3) (A] ◦ (B] ⊆ (A ◦B] and ((A] ◦ (B]] = (A ◦B], ∀A,B ⊆ S.
(4) ((A]] = (A], ∀A ⊆ S.
(5) For every hyperideal T of S, we have (T ] = T.
(6) If A, B are hyperideals of S, then (A ◦B] is a hyperideal of S.
(7) For every a ∈ S, (S ◦ a ◦ S] is a hyperideal of S.
(8) If T is a hyperideal of S and A,B are two nonempty subsets of S such

that A ≼ B ⊆ T, then A ⊆ T.
(9) For any two nonempty subsets A,B of S such that A ≼ B, we have

C ◦A ≼ C ◦B and A ◦ C ≼ B ◦ C for any nonempty subset C of S.

Proof. Straightforward.

Lemma 2.7. Let S be an ordered semihypergroup and {Ai | i ∈ I} a family
of hyperideals of S. Then

∪
i∈I Ai is a hyperideal of S and

∩
i∈I Ai is also a

hyperideal of S if
∩
i∈I Ai ̸= ∅.

Proof. Straightforward.
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For the sake of simplicity, throughout this paper, we denoteAn = A◦A◦· · ·◦A
(n-copies).

Lemma 2.8. Let S be an ordered semihypergroup. Then the following state-
ments are equivalent:

(1) (A2] = A for every hyperideal A of S.

(2) A ∩B = (A ◦B] for all hyperideals A,B of S.

(3) I(a) ∩ I(b) = (I(a) ◦ I(b)] for any a, b ∈ S.
(4) I(a) = ((I(a))2] for all a ∈ S.
(5) a ∈ (S ◦ a ◦ S ◦ a ◦ S] for all a ∈ S.

Proof. (1) =⇒ (2). Let A and B be hyperideals of S. Then, by Lemma 2.6,
(A ◦ B] ⊆ (A ◦ S] ⊆ (A] = A and (A ◦ B] ⊆ (S ◦ B] ⊆ (B] = B, from which we
can conclude that (A ◦ B] ⊆ A ∩ B. On the other hand, by Lemma 2.7, A ∩ B
is a hyperideal of S. Then, by (1), we have

A ∩B = ((A ∩B)2] = ((A ∩B) ◦ (A ∩B)] ⊆ (A ◦B].

Thus A ∩B = (A ◦B].

(2) =⇒ (3) and (3) =⇒ (4) are clear.

(4) =⇒ (5). Let a ∈ S. By hypothesis and Lemma 2.6, we have

(I(a))2 = ((I(a))2] ◦ I(a) = ((I(a))2] ◦ (I(a)] ⊆ ((I(a))3].

Then, we have

(I(a))3 = (I(a))2 ◦ I(a) = (I(a))2 ◦ (I(a)] ⊆ ((I(a))3] ◦ (I(a)] ⊆ ((I(a))4].

Further, it can be shown that (I(a))4 ⊆ ((I(a))5]. Thus

I(a) = ((I(a))2] ⊆ (((I(a))3]] = ((I(a))3] ⊆ (((I(a))4]] = ((I(a))4]

⊆ (((I(a))5]] = ((I(a))5] ⊆ (S ◦ I(a)] ⊆ (I(a)] = I(a),

which implies that I(a) = ((I(a))5]. On the other hand, we have

(I(a))3 = (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S]3

⊆ ((a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S)2] ◦ (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S]
⊆ (S ◦ a ∪ S ◦ a ◦ S] ◦ (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S]
⊆ ((S ◦ a ∪ S ◦ a ◦ S) ◦ (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S)] ⊆ (S ◦ a ◦ S].

Then,

(I(a))4 ⊆ (S ◦ a ◦ S] ◦ (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S]
⊆ (S ◦ a ◦ S ◦ a ∪ S ◦ a ◦ S ◦ a ◦ S],



452 JIAN TANG, ZE GU and XIANGYUN XIE

and we have

(I(a))5 ⊆ (S ◦ a ◦ S ◦ a ∪ S ◦ a ◦ S ◦ a ◦ S] ◦ (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S]
⊆ (S ◦ a ◦ S ◦ a ◦ S].

Therefore, a ∈ I(a) = ((I(a))5] ⊆ ((S ◦ a ◦ S ◦ a ◦ S]] = (S ◦ a ◦ S ◦ a ◦ S].
(5) =⇒ (1). Let A be a hyperideal of S. Then (A2] = (A ◦ A] ⊆ (A ◦ S] ⊆

(A] = A. Conversely, let x ∈ A. Then, by (5) and Lemma 2.6, we have

x ∈ (S ◦ x ◦ S ◦ x ◦ S] ⊆ (S ◦A ◦ S ◦A ◦ S]
= ((S ◦A) ◦ S ◦ (A ◦ S)] ⊆ (A ◦ S ◦A] ⊆ (A ◦A] = (A2],

which means that A ⊆ (A2]. This completes the proof.
The reader is referred to [4, 28] for notation and terminology not defined in

this paper.

3. Prime hyperideals of ordered semihypergroups

In this section we introduce and characterize the prime, weakly prime and
semiprime hyperideals in ordered semihypergroups. Some properties of them
are investigated.

Definition 3.1. Let T be a nonempty subset of an ordered semihypergroup S.
Then T is called prime if for all nonempty subsets A,B of S such that A◦B ⊆ T ,
we have A ⊆ T or B ⊆ T. Equivalently, if for any element a, b of S such that
a ◦ b ⊆ T, we have a ∈ T or b ∈ T.

Definition 3.2. Let T be a nonempty subset of an ordered semihypergroup
S. Then T is called weakly prime if for all hyperideals A,B of S such that
A ◦B ⊆ T , we have A ⊆ T or B ⊆ T.

Definition 3.3. Let T be a nonempty subset of an ordered semihypergroup
S. Then T is called semiprime if for any nonempty subset A of S such that
A ◦ A ⊆ T , we have A ⊆ T. Equivalently, if for any element a of S such that
a ◦ a ⊆ T, we have a ∈ T.

One can easily observe that the prime subsets of an ordered semihypergroup
are weakly prime and semiprime. However, the converse is not true, in general,
as shown in the following example.

Example 3.4. We consider a set S := {a, b, c, d, e} with the following hyperop-
eration “ ◦ ” and the order “ ≤ ”:

◦ a b c d e

a {a, b} {a, b} {a, b} {a, b} {a, b}
b {a, b} {a, b} {a, b} {a, b} {a, b}
c {a, b} {a, b} {c} {c} {e}
d {a, b} {a, b} {c} {d} {e}
e {a, b} {a, b} {c} {c} {e}
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≤ := {(a, a), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d), (b, e), (c, c),
(c, d), (c, e), (d, d), (e, e)}.

We give the covering relation “≺” and the figure of S as follows:

≺= {(a, c), (b, c), (c, d), (c, e)}.

b b

b b
b��

�
��

@
@
@

@@a

c

d

b

e

Then (S, ◦,≤) is an ordered semihypergroup ([26]), and the sets {a, b}, {a, b, c, e}
and S are all hyperideals of S. We can easily verify that the nonempty subset
{a, b, c} of S is weakly prime and semiprime, but it is not prime. In fact, since
e ◦ d = {c} ⊆ {a, b, c}, but e ̸∈ {a, b, c} and d ̸∈ {a, b, c}.

In the following we shall characterize the prime, weakly prime and semiprime
hyperideals of ordered semihypergroups.

Theorem 3.5. Let S be an ordered semihypergroup and T a hyperideal of S.
Then the following statements are equivalent:

(1) T is prime.
(2) If A is a left hyperideal, B a right hyperideal of S such that A ◦B ⊆ T,

then A ⊆ T or B ⊆ T.
(3) If a, b ∈ S such that L(a) ◦R(b) ⊆ T, then a ∈ T or b ∈ T.

Proof. (1)⇒ (2) and (2)⇒ (3) are clear.
(3)⇒ (1). Let a, b ∈ S be such that a◦b ⊆ T. Then, since T is a hyperideal of

S, we have L(a)◦R(b) = (a∪S◦a]◦(b∪b◦S] ⊆ (a◦b∪S◦a◦b∪a◦b◦S∪S◦a◦b◦S] ⊆
(T ∪ S ◦ T ∪ T ◦ S ∪ S ◦ T ◦ S] ⊆ (T ] = T. Thus, by hypothesis, a ∈ T or b ∈ T.
Hence T is prime.

Theorem 3.6. Let S be an ordered semihypergroup and T a hyperideal of S.
Then the following statements are equivalent:

(1) T is weakly prime.
(2) If a, b ∈ S such that (a ◦ S ◦ b] ⊆ T, then a ∈ T or b ∈ T.
(3) If a, b ∈ S such that I(a) ◦ I(b) ⊆ T, then a ∈ T or b ∈ T.
(4) If A,B are two right hyperideals of S such that A ◦B ⊆ T, then A ⊆ T

or B ⊆ T.
(5) If A,B are two left hyperideals of S such that A ◦ B ⊆ T, then A ⊆ T

or B ⊆ T.
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(6) If A is a right hyperideal, B a left hyperideal of S such that A ◦B ⊆ T,
then A ⊆ T or B ⊆ T.

Proof. (1) ⇒ (2). Let a, b ∈ S be such that (a ◦ S ◦ b] ⊆ T. Then, by Lemma
2.6, we have

(S ◦ a ◦ S] ◦ (S ◦ b ◦ S] = (S ◦ a ◦ S ◦ S ◦ b ◦ S] ⊆ (S ◦ (a ◦ S ◦ b) ◦ S]
⊆ (S ◦ T ◦ S] ⊆ (T ] = T.

Since (S ◦ a ◦ S], (S ◦ b ◦ S] are hyperideals of S and T is weakly prime, we have
(S ◦ a ◦ S] ⊆ T or (S ◦ b ◦ S] ⊆ T. Say (S ◦ a ◦ S] ⊆ T, then, by Lemma 2.6 and
the proof of Lemma 2.8, we have

((I(a))2] ◦ I(a) = ((I(a))2] ◦ (I(a)] ⊆ ((I(a))3]

⊆ ((S ◦ a ◦ S]] = (S ◦ a ◦ S] ⊆ (T ] = T.

Since T is weakly prime and ((I(a))2] is a hyperideal of S, we have ((I(a))2] ⊆ T
or I(a) ⊆ T. If I(a) ⊆ T, then a ∈ I(a) ⊆ T. Let ((I(a))2] ⊆ T. Then, by Lemma
2.6(1), (I(a))2 ⊆ T. Since T is weakly prime, we have I(a) ⊆ T and a ∈ T.
Similarly, say (S ◦ b ◦ S] ⊆ T, we have b ∈ T.

(2) ⇒ (3). Let a, b ∈ S be such that I(a) ◦ I(b) ⊆ T. Then, by Lemma 2.6,
we have

(a ◦ S ◦ b] ⊆ ((a] ◦ (S ◦ b]] ⊆ (I(a) ◦ I(b)] ⊆ (T ] = T.

By (2), we have a ∈ T or b ∈ T.
(3) ⇒ (4). Suppose that A,B are right hyperideals of S, A ◦ B ⊆ T and

A ̸⊆ T. Then we prove that B ⊆ T. In fact, let a ∈ A, a ̸∈ T and b ∈ B. Then,
we have:

I(a) = (a∪S ◦a∪a◦S ∪S ◦a◦S] ⊆ (A∪S ◦A∪A◦S ∪S ◦A◦S] = (A∪S ◦A],

I(b) = (b∪S ◦ b∪ b◦S ∪S ◦ b◦S] ⊆ (B∪S ◦B∪B ◦S ∪S ◦B ◦S] = (B∪S ◦B].

Thus we have

I(a) ◦ I(b) ⊆ (A ∪ S ◦A] ◦ (B ∪ S ◦B] ⊆ ((A ∪ S ◦A) ◦ (B ∪ S ◦B)]

⊆ (A ◦B ∪ S ◦A ◦B ∪A ◦ S ◦B ∪ S ◦A ◦ S ◦B]

= (A ◦B ∪ S ◦A ◦B] ⊆ (T ∪ S ◦ T ] = (T ] = T.

Since a ̸∈ T, by (3), we have b ∈ T. Hence B ⊆ T.
(3)⇒ (5). Similar to the proof of (3)⇒ (4), we omit it.
(3) ⇒ (6). Let A be a right hyperideal, B a left hyperideal of S such that

A ◦ B ⊆ T and A ̸⊆ T. Then we wish to show that B ⊆ T. To do this, let
a ∈ A, a ̸∈ T and b ∈ B. Since I(a) ⊆ (A ∪ S ◦A], I(b) ⊆ (B ∪B ◦ S], we have

I(a) ◦ I(b) ⊆ (A ∪ S ◦A] ◦ (B ∪B ◦ S] ⊆ ((A ∪ S ◦A) ◦ (B ∪B ◦ S)]
⊆ (A ◦B ∪ S ◦A ◦B ∪A ◦B ◦ S ∪ S ◦A ◦B ◦ S]
⊆ (T ∪ S ◦ T ∪ T ◦ S ∪ S ◦ T ◦ S] = (T ] = T.
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By (3), a ∈ T or b ∈ T. Since a ̸∈ T, we have b ∈ T. Thus B ⊆ T.
(4)⇒ (1), (5)⇒ (1) and (6)⇒ (1) are clear. This completes the proof.

Theorem 3.7. Let S be an ordered semihypergroup and T a hyperideal of S.
Then T is weakly prime if and only if for all hyperideals A,B of S such that
(A ◦B] ∩ (B ◦A] ⊆ T, we have A ⊆ T or B ⊆ T.

Proof. Let T be weakly prime, A,B hyperideals of S and (A◦B]∩ (B ◦A] ⊆ T.
By Lemma 2.6(6), (A ◦B] and (B ◦A] are hyperideals of S, and we have

(A ◦B] ◦ (B ◦A] ⊆ (A ◦B] ∩ (B ◦A] ⊆ T,

Since T is weakly prime, we have (A ◦B] ⊆ T or (B ◦A] ⊆ T. Say (A ◦B] ⊆ T,
then by Lemma 2.6(1) we have A◦B ⊆ T, and we deduce that A ⊆ T or B ⊆ T.
Similarly, say (B ◦A] ⊆ T, we have B ⊆ T or A ⊆ T.

Conversely, let A,B be hyperideals of S such that A◦B ⊆ T. Then (A◦B]∩
(B ◦ A] ⊆ (A ◦ B] ⊆ (T ] = T. Thus, by hypothesis, we have A ⊆ T or B ⊆ T.
Therefore, T is weakly prime.

Theorem 3.8. Let S be an ordered semihypergroup. Then the hyperideals of S
are weakly prime if and only if they form a chain under inclusion and one of
the five equivalent conditions of Lemma 2.8 holds in S.

Proof. Suppose that the hyperideals of S are weakly prime. Let A,B be hyper-
ideals of S. Then, by hypothesis and Lemma 2.6(6), (A ◦ B] is a weakly prime
hyperideal of S. Since A ◦B ⊆ (A ◦B], we have

A ⊆ (A ◦B] ⊆ (S ◦B] ⊆ (B] = B

or

B ⊆ (A ◦B] ⊆ (A ◦ S] ⊆ (A] = A.

Also, since A2 ⊆ (A2] and (A2] is a hyperideal of S, we have A ⊆ (A2]. On the
other hand, by Lemma 2.6, (A2] = (A ◦A] ⊆ (A ◦S] ⊆ (A] = A. Thus (A2] = A.

Conversely, let A,B, T be hyperideals of S such that A ◦ B ⊆ T. By hy-
pothesis, we have A ⊆ B or B ⊆ A. Say A ⊆ B, then, by Lemma 2.8,
A = A ∩ B = (A ◦ B] ⊆ (T ] = T. Similarly, say B ⊆ A, we have B ⊆ T.
Therefore, T is weakly prime.

Definition 3.9. Let (S, ◦,≤) be an ordered semihypergroup. S is called intra-
regular if, for each element a of S, there exist x, y ∈ S such that a ≼ x ◦a ◦a ◦ y.
Equivalently, a ∈ (S ◦ a ◦ a ◦ S], ∀a ∈ S.
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Example 3.10. We consider a set S := {a, b, c, d} with the following hyperop-
eration “ ◦ ” and the order “ ≤ ”:

◦ a b c d

a {a} {a, b} {a, c} S
b {b} {b} {b, d} {b, d}
c {c} {c, d} {c} {c, d}
d {d} {d} {d} {d}

≤:= {(a, a), (a, b), (b, b), (c, c), (c, d), (d, d)}.

We give the covering relation “≺” and the figure of S as follows:

≺= {(a, b), (c, d)}.

b b
b b

a c

b d

Then (S, ◦,≤) is an ordered semihypergroup. Moreover, S is intra-regular. In-
deed, for any x ∈ S, we have x ∈ x2 = x4 ⊆ S ◦ x ◦ x ◦ S, which implies that
x ∈ (S ◦ x ◦ x ◦ S].

In order to characterize the prime hyperideals of an ordered semihypergroup,
we need the following lemmas.

Lemma 3.11. If the hyperideals of an ordered semihypergroup S are semiprime,
then the following statements hold:

(1) I(x) = (S ◦ x ◦ S] for any x ∈ S.
(2) For any x, y ∈ S, I(x) ∩ I(y) = I(z) for some z ∈ x ◦ y.

Proof. (1) Let x ∈ S. Since x2 ◦ x2 = x2 ◦ x ◦ x ⊆ (S ◦ x ◦ S] and (S ◦ x ◦ S] is a
hyperideal of S, by hypothesis, we have x2 ⊆ (S ◦x◦S] and x ∈ (S ◦x◦S]. Hence
I(x) ⊆ (S ◦ x ◦ S]. The reverse inclusion is immediate. Thus I(x) = (S ◦ x ◦ S].

(2) Let x, y, z ∈ S such that z ∈ x ◦ y. Then, we have

z ∈ x ◦ y ⊆ I(x) ◦ S ⊆ I(x)

and
z ∈ x ◦ y ⊆ S ◦ I(y) ⊆ I(y),

from which we can conclude that I(z) ⊆ I(x), I(z) ⊆ I(y), and we have I(z) ⊆
I(x)∩I(y). To prove the inverse inclusion, let t ∈ I(x)∩I(y). By (1), t ∈ (S◦x◦S]
and t ∈ (S ◦ y ◦ S]. Then there exist a, b, c, d ∈ S such that t ≼ a ◦ x ◦ b and
t ≼ c ◦ y ◦ d. Thus, by Lemma 2.6(9), t ◦ t ≼ c ◦ y ◦ d ◦ a ◦ x ◦ b. On the other
hand, y ◦ d ◦ a ◦ x ⊆ (S ◦ (x ◦ y) ◦ S]. Indeed, by Lemma 2.6(1) we have

(y ◦ d ◦ a ◦ x)2 = y ◦ d ◦ a ◦ x ◦ y ◦ d ◦ a ◦ x ⊆ S ◦ (x ◦ y) ◦ S ⊆ (S ◦ (x ◦ y) ◦ S].
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Since the hyperideal (S ◦ (x ◦ y) ◦ S] is semiprime, we have y ◦ d ◦ a ◦ x ⊆
(S ◦ (x ◦ y) ◦ S]. Furthermore, since (S ◦ (x ◦ y) ◦ S] is a hyperideal of S, we
have c ◦ y ◦ d ◦ a ◦ x ◦ b ⊆ (S ◦ (x ◦ y) ◦ S]. Thus, by Lemma 2.6(8), we have
t ◦ t ⊆ (S ◦ (x ◦ y) ◦ S]. Also, since (S ◦ (x ◦ y) ◦ S] is semiprime, we have
t ∈ (S ◦ (x ◦ y) ◦S], and there exists z ∈ x ◦ y such that t ∈ (S ◦ z ◦S] = I(z). It
implies that I(x)∩ I(y) ⊆ I(z). Therefore, I(x)∩ I(y) = I(z) for some z ∈ x◦y.

Lemma 3.12. Let S be an ordered semihypergroup. Then S is intra-regular if
and only if the hyperideals of S are semiprime.

Proof. Suppose that S is intra-regular. Let T be a hyperideal of S and a ∈ S
such that a ◦ a ⊆ T. Then, since S is intra-regular, we have

a ∈ (S ◦ a ◦ a ◦ S] ⊆ (S ◦ T ◦ S] ⊆ (T ] = T,

which means that T is semiprime.
Conversely, assume that the hyperideals of S are semiprime. Let a ∈ S.

We denote by I(a2) the hyperideal of S generated by a2. Since a2 ⊆ I(a2), by
hypothesis we have

a ∈ I(a2) = (a2 ∪ S ◦ a2 ∪ a2 ◦ S ∪ S ◦ a2 ◦ S].

Then a ≤ t for some t ∈ a2 ∪ S ◦ a2 ∪ a2 ◦ S ∪ S ◦ a2 ◦ S. If t ∈ a2, then
a ∈ (a2] ⊆ ((a2] ◦ (a2]] = (a4] ⊆ (S ◦ a2 ◦ S]. If t ∈ S ◦ a2, then a ∈ (S ◦ a2] ⊆
(S◦(S◦a2]◦a] ⊆ ((S]◦(S◦a2]◦(a]] = (S◦(S◦a2)◦a] ⊆ (S◦a2◦S]. If t ∈ a2◦S, then
a ∈ (a2◦S] ⊆ (a◦(a2◦S]◦S] ⊆ ((a]◦(a2◦S]◦(S]] = (a◦(a2◦S)◦S] ⊆ (S◦a2◦S].
If t ∈ S ◦ a2 ◦ S, then a ∈ (S ◦ a2 ◦ S]. Therefore, S is intra-regular.

Theorem 3.13. Let S be an ordered semihypergroup. Then the hyperideals of S
are prime if and only if they form a chain under inclusion and S is intra-regular.

Proof. Let all hyperideals of S be prime. Then they are weakly prime. By
Theorem 3.8, they form a chain with respect to the inclusion relation. By
hypothesis, the hyperideals of S are also semiprime. Thus S is intra-regular by
Lemma 3.12.

Conversely, suppose that S is an intra-regular ordered semihypergroup and
the hyperideals of S form a chain. We prove that the hyperideals of S are prime.
In fact, let T be a hyperideal of S and a, b ∈ S such that a ◦ b ⊆ T. By Lemma
3.12, the hyperideals of S are semiprime. Then, by Lemma 3.11(2), there exists
c ∈ a◦b ⊆ T such that I(a)∩I(b) = I(c). By hypothesis, we have I(a) ⊆ I(b) or
I(b) ⊆ I(a). If I(a) ⊆ I(b), then a ∈ I(a) = I(a) ∩ I(b) = I(c) ⊆ T, i.e., a ∈ T.
If I(b) ⊆ I(a), then b ∈ I(b) = I(a) ∩ I(b) = I(c) ⊆ T, i.e., b ∈ T. We have thus
shown that T is prime.

In the following we shall investigate the relationships among the prime hy-
perideals, weakly prime hyperideals and semiprime hyperideals in ordered semi-
hypergroups.
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Theorem 3.14. Let S be an ordered semihypergroup and T a hyperideal of
S. Then T is prime if and only if T is weakly prime and semiprime. In a
commutative ordered semihypergroup the prime and weakly prime hyperideals
coincide.

Proof. Let S be an ordered semihypergroup and T a prime hyperideal of S.
Clearly T is weakly prime and semiprime. Conversely, assume that T is weakly
prime and semiprime and let a, b ∈ S such that a ◦ b ⊆ T. Then, we have

(b ◦ S ◦ a] ◦ (b ◦ S ◦ a] ⊆ (b ◦ S ◦ a ◦ b ◦ S ◦ a] ⊆ (S ◦ (a ◦ b) ◦ S]
⊆ (S ◦ T ◦ S] ⊆ (T ] = T.

Since T is semiprime, we have (b ◦ S ◦ a] ⊆ T. Thus, by Lemma 2.6, we have

(S ◦ b ◦ S] ◦ (S ◦ a ◦ S] ⊆ (S ◦ b ◦ S ◦ S ◦ a ◦ S] ⊆ (S ◦ (b ◦ S ◦ a) ◦ S]
⊆ (S ◦ (b ◦ S ◦ a] ◦ S] ⊆ (S ◦ T ◦ S] ⊆ (T ] = T.

Since (S ◦ b ◦S], (S ◦ a ◦S] are hyperideals of S, and T is weakly prime, we have
(S ◦ b ◦ S] ⊆ T or (S ◦ a ◦ S] ⊆ T. Similar to the proof of (1)=⇒(2) in Theorem
3.6, we have a ∈ T or b ∈ T. Therefore, T is prime.

In particular, let S be a commutative ordered semihypergroup. Then ev-
ery weakly prime hyperideal of S is prime. Indeed, let T be a weakly prime
hyperideal of S and a, b ∈ S such that a ◦ b ⊆ T. Then, we have

I(a) ◦ I(b) ⊆ (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S] ◦ (b ∪ S ◦ b ∪ b ◦ S ∪ S ◦ b ◦ S]
⊆ ((a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S) ◦ (b ∪ S ◦ b ∪ b ◦ S ∪ S ◦ b ◦ S)]
= (a ◦ b ∪ S ◦ a ◦ b] ⊆ (T ∪ S ◦ T ] = (T ] = T.

Since T is weakly prime, by Theorem 3.6 we have a ∈ T or b ∈ T. Thus T is
prime.

Theorem 3.15. Let S be an ordered semihypergroup and {Ti | i ∈ I} a family of
prime hyperideals of S. Then

∩
i∈I Ti is a semiprime hyperideal of S if

∩
i∈I Ti ̸=

∅.

Proof. Let Ti be a prime hyperideal of S for any i ∈ I. Assume that
∩
i∈I Ti ̸= ∅.

Then, by Lemma 2.7,
∩
i∈I Ti is a hyperideal of S. Moreover, we can show that∩

i∈I Ti is semiprime. In fact, let a ∈ S be such that a ◦ a ⊆
∩
i∈I Ti. Then

a ◦ a ⊆ Ti for every i ∈ I. Hence, by hypothesis, a ∈ Ti for every i ∈ I. It thus
follows that a ∈

∩
i∈I Ti. Therefore,

∩
i∈I Ti is a semiprime hyperideal of S.

In the above theorem we have shown that every nonempty intersection
of prime hyperideals of an ordered semihypergroup S is semiprime. But the
nonempty intersection of prime hyperideals of S is not necessarily a prime hy-
perideal of S. We can illustrate it by the following example.
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Example 3.16. We consider a set S := {a, b, c, d} with the following hyperop-
eration “ ◦ ” and the order “ ≤ ”:

◦ a b c d

a {a, d} {a, d} {a, d} {a}
b {a, d} {b} {a, d} {a, d}
c {a, d} {a, d} {c} {a, d}
d {a} {a, d} {a, d} {d}

≤:= {(a, a), (a, b), (a, c), (b, b), (c, c), (d, b), (d, c), (d, d)}.

We give the covering relation “≺” and the figure of S as follows:

≺= {(a, b), (a, c), (d, b), (d, c)}.
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Then (S, ◦,≤) is an ordered semihypergroup ([25]). We can easily verify that
T1 = {a, b, d}, T2 = {a, c, d} are prime hyperideals of S. But T1 ∩ T2 = {a, d} is
not a prime hyperideal of S. In fact, since b ◦ c = {a, d} ⊆ {a, d}, but b ̸∈ {a, d}
and c ̸∈ {a, d}.

Let S be an ordered semihypergroup. A hyperideal A of S is called proper
if A ̸= S. A proper hyperideal T of S is called maximal if A is a hyperideal of S
such that T ⊂ A, we have A = S. Equivalently, if for any proper hyperideal A
of S such that T ⊆ A, we have A = T.

Theorem 3.17. If S is an ordered semihypergroup satisfying S = (S2], then
every maximal hyperideal of S is weakly prime.

Proof. Let M be a maximal hyperideal of S and A,B hyperideals of S such
that A ◦ B ⊆ M. Then A ⊆ M or B ⊆ M. Indeed, suppose that A ̸⊆ M and
B ̸⊆M. Then M ⊂M ∪A,M ⊂M ∪B. By Lemma 2.7, M ∪A and M ∪B are
two hyperideals of S. Since M is maximal, we have M ∪A = S and M ∪B = S.
Then

S = (S2] = ((M ∪A) ◦ (M ∪B)]

= (M ◦M ∪M ◦B ∪A ◦M ∪A ◦B] ⊆ (M ] =M,

from which we deduce that M = S. It contradicts the fact that M is maximal.
Thus M is weakly prime.

Corollary 3.18. If S is an intra-regular ordered semihypergroup, then every
maximal hyperideal of S is weakly prime.
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Proof. Suppose that S is an intra-regular ordered semihypergroup and a ∈ S.
Then, we have a ∈ (S ◦ a ◦ a ◦ S] ⊆ (S2]. It implies that S ⊆ (S2], and thus
S = (S2]. Consequently, by Theorem 3.17, every maximal hyperideal of S is
weakly prime.

Corollary 3.19. If S is an ordered semihypergroup with an identity, then every
maximal hyperideal of S is weakly prime.

Proof. Let S be an ordered semihypergroup containing an identity e. Then, we
have S = e◦S ⊆ S ◦S = S2 ⊆ (S2] ⊆ S, which implies that S = (S2]. Therefore,
every maximal hyperideal of S is weakly prime by Theorem 3.17.

The following is an immediate corollary of Theorem 3.14 and Corollary 3.19.

Corollary 3.20. If S is a commutative ordered semihypergroup with an identity,
then every maximal hyperideal of S is prime.

4. Hyperideal extensions of ordered semihypergroups

In the current section we consider the extensions of hyperideals in commuta-
tive ordered semihypergroups. Moreover, we define n-prime hyperideals and
n-semiprime hyperideals of ordered semihypergroups, and investigate the rela-
tionship between extensions of hyperideals and n-prime hyperideals.

Definition 4.1. Let I be a hyperideal of S, x ∈ I. The set

< x, I >:= {a ∈ S | x ◦ a ⊆ I}

is called the extension of I by x.

Proposition 4.2. Let I be a hyperideal of a commutative ordered semihyper-
group S, x ∈ S. Then the following statements hold:

(1) < x, I > is a hyperideal of S.

(2) I ⊆< x, I >⊆< y, I >, for any y ∈ x2.
(3) If x ∈ I, then < x, I >= S.

(4) I is prime if and only if < x, I >= I for any x ∈ S\I.

Proof. (1) Let a ∈< x, I >, S ∋ b ≤ a. Then b ∈< x, I > . In fact, since
x◦a ⊆ I, S ⊇ x◦b ≼ x◦a, by Lemma 2.6(8) we have x◦b ⊆ I, i.e., b ∈< x, I > .
Furthermore, let a ∈< x, I > and b ∈ S. Then x ◦ a ⊆ I, and, for any c ∈ a ◦ b,
we have

x ◦ c ⊆ x ◦ (a ◦ b) = (x ◦ a) ◦ b ⊆ I ◦ S ⊆ I.

It implies that c ∈< x, I >, and we have a ◦ b ⊆< x, I > . Hence < x, I > is a
right hyperideal of S. Since S is commutative, we obtain the requested result.
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(2) If a ∈ I, then x ◦ a ⊆ S ◦ I ⊆ I, i.e., a ∈< x, I > . It implies that
I ⊆< x, I > . Furthermore, let a ∈< x, I > . Then x ◦ a ⊆ I, and, for any
y ∈ x2, we have

y ◦ a ⊆ x2 ◦ a = x ◦ (x ◦ a) ⊆ S ◦ I ⊆ I.

Thus it can be shown that < x, I >⊆< y, I > for any y ∈ x2.
(3) Let a ∈ S, x ∈ I. Then x ◦ a ⊆ I ◦ S ⊆ I, and we have a ∈< x, I > . It

thus follows that < x, I >= S.

(4) Assume that I is a prime hyperideal of S. Let x ∈ S\I and a ∈< x, I > .
Then x ◦ a ⊆ I, and, by hypothesis, we have a ∈ I. It implies that < x, I >⊆ I.
By (2), the inverse inclusion holds. Hence < x, I >= I for any x ∈ S\I.

Conversely, let x, y ∈ S be such that x ◦ y ⊆ I. Then y ∈< x, I > . We claim
that x ∈ I or y ∈ I. If x ̸∈ I, then, by hypothesis, we have y ∈< x, I >= I.
Thus I is prime.

Proposition 4.3. Let I be a hyperideal of a commutative ordered semihyper-
group S and {Iα | α ∈ A} a family of prime hyperideal of S. If I =

∩
α∈A Iα,

then, for any x ∈ S, < x, I > is a semiprime hyperideal of S whenever I ̸= ∅.

Proof. Let x ∈ S. We first show that

< x, I >=< x,
∩
α∈A

Iα >=
∩
α∈A

< x, Iα > .

In fact,

a ∈< x,
∩
α∈A

Iα > ⇐⇒ x ◦ a ⊆
∩
α∈A

Iα

⇐⇒ x ◦ a ⊆ Iα, ∀α ∈ A
⇐⇒ a ∈< x, Iα >,∀α ∈ A
⇐⇒ a ∈

∩
α∈A

< x, Iα > .

Now we consider the following cases:

Case 1. If x ∈ Iα for any α ∈ A, then, by Proposition 4.2(3), we have
< x, Iα >= S. Then < x, I >=

∩
α∈A < x, Iα >= S, and < x, I > is a

semiprime hyperideal of S.

Case 2. Let x ∈ S\Iα for some α ∈ A. Then, by Proposition 4.2(4), <
x, Iα >= Iα. Let B := {α ∈ A | x /∈ Iα}. Then B ̸= ∅ and we have

< x, I >=
∩
α∈B

Iα.

It thus follows from Theorem 3.15 that < x, I > is semiprime.
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Proposition 4.4. Let S be a commutative ordered semihypergroup containing
an identity e, and x, y ∈ S. Then I(x) ⊆ I(y) if and only if, for any hyperideal
J of S, we have < x, J >⊇< y, J > .

Proof. Let J be a hyperideal of S and a ∈< y, J > . Then y◦a ⊆ J. Since S is a
commutative ordered semihypergroup containing an identity e and I(x) ⊆ I(y),
we have x ∈ I(y) = (y ∪ S ◦ y] ⊆ (e ◦ y ∪ S ◦ y] = (S ◦ y], that is, x ≼ z ◦ y for
some z ∈ S. Then, we have

x ◦ a ≼ (z ◦ y) ◦ a = z ◦ (y ◦ a) ⊆ S ◦ J ⊆ J.

It thus follows from Lemma 2.6(9) that x ◦ a ⊆ J. Hence a ∈< x, J > .
Conversely, since I(y) is a hyperideal of S, by hypothesis, we have< x, I(y) >

⊇< y, I(y) > . Since y ∈ I(y), by Proposition 4.2(3), < y, I(y) >= S. Then we
can deduce that < x, I(y) >= S. Hence e ∈< x, I(y) >, and x ∈ x ◦ e ⊆ I(y).
Thus it can be obtained that I(x) ⊆ I(y).

In order to characterize the hyperideal extensions of ordered semihyper-
groups, we need introduce the concept of n-prime hyperideals of ordered semi-
hypergroups.

Let n be any positive integer such that n ≥ 2. For any xi ∈ S (i =
1, 2, · · · , n), and j being a positive integer such that 2 ≤ j ≤ n − 1, we de-
fine

I1,n := x2 ◦ x3 ◦ · · · ◦ xn−1 ◦ xn,
Ij,n := x1 ◦ x2 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ · · · ◦ xn−1 ◦ xn,
In,n := x1 ◦ x2 ◦ · · · ◦ xn−2 ◦ xn−1.

Definition 4.5. Let I be a hyperideal of an ordered semihypergroup S. I is
called n-prime if for any xi ∈ S (i = 1, 2, · · · , n), x1 ◦ x2 ◦ · · · ◦ xn−1 ◦ xn ⊆ I
implies there exists a positive integer i (1 ≤ i ≤ n) such that

I1,n, I2,n, · · · , Ii−1,n, Ii+1,n, · · · , In,n ⊆ I.

Definition 4.6. Let I be a hyperideal of an ordered semihypergroup S. I is
called n-semiprime if for any x1, x2, · · · , xn ∈ S with x1 = x2 = · · · = xn,
x1 ◦ x2 ◦ · · · ◦ xn−1 ◦ xn ⊆ I implies In,n ⊆ I.

Theorem 4.7. Let S be an ordered semihypergroup. Then the following state-
ments are true :

(1) Every n-prime hyperideal of S is n-semiprime.
(2) The prime hyperideals and 2-prime hyperideals of S coincide.
(3) The semiprime hyperideals and 2-semiprime hyperideals of S coincide.

Proof. Straightforward.
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Theorem 4.8. Let S be an ordered semihypergroup. Then every (n− 1)-prime
hyperideal of S is an n-prime hyperideal of S for all positive integers n ≥ 3.

Proof. Suppose that I is an (n−1)-prime hyperideal of S. Let x1, x2, · · · , xn ∈ S
be such that x1 ◦ x2 ◦ x3 ◦ x4 ◦ · · · ◦ xn−3 ◦ xn−2 ◦ xn−1 ◦ xn ⊆ I. Then, for any
z ∈ xn−1 ◦ xn, x1 ◦ x2 ◦ x3 ◦ x4 ◦ · · · ◦ xn−3 ◦ xn−2 ◦ z ⊆ I. We define:

J1,n−1 := x2 ◦ x3 ◦ · · · ◦ xn−2 ◦ z,
J2,n−1 := x1 ◦ x3 ◦ · · · ◦ xn−2 ◦ z,
...

Jn−2,n−1 := x1 ◦ x2 ◦ · · · ◦ xn−3 ◦ z,
Jn−1,n−1 := x1 ◦ x2 ◦ · · · ◦ xn−3 ◦ xn−2.

By hypothesis, there exists a positive integer i (1 ≤ i ≤ n− 1) such that

J1,n−1, J2,n−1, · · · , Ji−1,n−1, Ji+1,n−1, · · · , Jn−1,n−1 ⊆ I.

We consider the following two cases:

Case 1. Let Jn−1,n−1 ̸⊆ I. Then J1,n−1, J2,n−1, · · · , Jn−2,n−1 ⊆ I. Thus, by
the arbitrariness of z, I1,n, I2,n, · · · , In−2,n ⊆ I. By I1,n ⊆ I, we have x2 ◦ x3 ◦
· · · ◦ xn−2 ◦ xn−1 ◦ xn ⊆ I. We define

K1,n−1 := x3 ◦ x4 ◦ · · · ◦ xn−1 ◦ xn,
K2,n−1 := x2 ◦ x4 ◦ · · · ◦ xn−1 ◦ xn,
...

Kn−1,n−1 := x2 ◦ x3 ◦ · · · ◦ xn−2 ◦ xn−1.

By hypothesis, there exists a positive integer j (1 ≤ j ≤ n− 1) such that

K1,n−1,K2,n−1, · · · ,Kj−1,n−1,Kj+1,n−1, · · · ,Kn−1,n−1 ⊆ I.

Then, we have

Kn−2,n−1 = x2 ◦ x3 ◦ · · · ◦ xn−2 ◦ xn ⊆ I

or
Kn−1,n−1 = x2 ◦ x3 ◦ · · · ◦ xn−2 ◦ xn−1 ⊆ I.

Thus, since I is a hyperideal of S, we have

In−1,n = x1 ◦Kn−2,n−1 ⊆ I

or
In,n = x1 ◦Kn−1,n−1 ⊆ I.
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Hence I1,n, I2,n, · · · , In−2,n, In−1,n ⊆ I or I1,n, I2,n, · · · , In−2,n, In,n ⊆ I.

Case 2. Let Jn−1,n−1 ⊆ I. Then there exists a positive integer k (1 ≤ k ≤
n− 2) such that

J1,n−1, J2,n−1, · · · , Jk−1,n−1, Jk+1,n−1, · · · , Jn−2,n−1 ⊆ I.

Thus, since z is an arbitrary element of xn−1 ◦ xn, we have

I1,n, I2,n, · · · , Ik−1,n, Ik+1,n, · · · , In−2,n ⊆ I.

Since I is a hyperideal of S and Jn−1,n−1 ⊆ I, we have

In−1,n = Jn−1,n−1 ◦ xn ⊆ I

and
In,n = Jn−1,n−1 ◦ xn−1 ⊆ I.

Hence, in this case, I1,n, I2,n, · · · , Ij−1,n, Ij+1,n, · · · , In−1,n, In,n ⊆ I for some
positive integer k (1 ≤ k ≤ n− 2).

Therefore, I is an n-prime hyperideal of S.
By the above theorem, we immediately obtain the following corollary:

Corollary 4.9. Let S be an ordered semihypergroup. Then every prime hyper-
ideal of S is an n-prime hyperideal of S for all positive integers n ≥ 2.

The converse of Theorem 4.8 is not true in general. We can illustrate it by
the following example:

Example 4.10. We consider a set S := {a, b, c, d} with the following hyperop-
eration “ ◦ ” and the order “ ≤ ”:

◦ a b c d

a {b, d} {b, d} {d} {d}
b {b, d} {b} {d} {d}
c {d} {d} {c} {d}
d {d} {d} {d} {d}

≤:= {(a, a), (a, b), (b, b), (c, c), (d, b), (d, c), (d, d)}.

We give the covering relation “≺” and the figure of S as follows:

≺:= {(a, b), (d, b), (d, c)}.

b
b

b
b

@
@

@
@

a

b

d

c
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Then (S, ◦,≤) is an ordered semihypergroup. One can easily show that I = {d}
is a 3-prime hyperideal of S, but it is not 2-prime. Indeed, since b◦ c = {d} ⊆ I,
but b ̸∈ I and c ̸∈ I.

Now we give a relationship between extensions of hyperideals and n-prime
hyperideals in commutative ordered semihypergroups.

Theorem 4.11. Let S be a commutative ordered semihypergroup and I a hyper-
ideal of S. Then I is n-prime if and only if any extension of I is (n− 1)-prime
for all positive integers n ≥ 3.

Proof. Let I be an n-prime hyperideal of S. For any x ∈ S, let x1, x2, · · · , xn−2,
xn−1 ∈ S be such that x1 ◦ x2 ◦ · · · ◦ xn−2 ◦ xn−1 ⊆< x, I > . Then x ◦ x1 ◦ x2 ◦
· · · ◦ xn−2 ◦ xn−1 ⊆ I. We define

J1,n := x1 ◦ x2 ◦ x3 ◦ · · · ◦ xn−2 ◦ xn−1,

J2,n := x ◦ x2 ◦ x3 ◦ · · · ◦ xn−2 ◦ xn−1,

...

Jn−1,n := x ◦ x1 ◦ x2 ◦ · · · ◦ xn−3 ◦ xn−1,

Jn,n := x ◦ x1 ◦ x2 ◦ · · · ◦ xn−3 ◦ xn−2.

Since I is an n-prime hyperideal of S, there exists a positive integer i (1 ≤ i ≤ n)
such that

J1,n, J2,n, · · · , Ji−1,n, Ji+1,n, · · · , Jn,n ⊆ I.

Thus, there exists a positive integer j (2 ≤ j ≤ n) such that

J2,n, J3,n, · · · , Jj−1,n, Jj+1,n, · · · , Jn,n ⊆ I.

It implies that there exists a positive integer k = j − 1 (1 ≤ k ≤ n − 1) such
that

x ◦ I1,n−1, x ◦ I2,n−1, · · · , x ◦ Ik−1,n−1, x ◦ Ik+1,n−1, · · · , x ◦ In−1,n−1 ⊆ I,

where

I1,n−1 := x2 ◦ x3 ◦ · · · ◦ xn−2 ◦ xn−1,

Il,n−1 := x1 ◦ x2 ◦ · · · ◦ xl−1 ◦ xl+1 ◦ · · · ◦ xn−2 ◦ xn−1 (2 ≤ l ≤ n− 2),

In−1,n−1 := x1 ◦ x2 ◦ · · · ◦ xn−3 ◦ xn−2.

Hence, it can be easily shown that I1,n−1, I2,n−1, · · · , Ik−1,n−1, Ik+1,n−1, · · · ,
In−1,n−1 ⊆< x, I > . In other words, < x, I > is indeed an (n − 1)-prime
hyperideal of S.

Conversely, suppose that any extension of I is an (n − 1)-prime hyperideal
of S. Let x1, x2, · · · , xn ∈ S be such that x1 ◦x2 ◦ · · · ◦xn−1 ◦xn ⊆ I. Then it can
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be easily shown that x1 ◦x2 ◦ · · · ◦xn−2 ◦xn−1 ⊆< xn, I > . Thus, by hypothesis,
there exists a positive integer i (1 ≤ i ≤ n− 1) such that

(∗) I1,n−1, I2,n−1, · · · , Ii−1,n−1, Ii+1,n−1, · · · , In−1,n−1 ⊆< xn, I > .

To prove that I is n-prime, we consider the following two cases:

Case 1. If Ii,n−1 ⊆< xn, I >, then we have

I1,n−1, I2,n−1, · · · , In−2,n−1, In−1,n−1 ⊆< xn, I > .

It thus follows that I1,n, I2,n, · · · , In−2,n, In−1,n ⊆ I. Consequently, I is n-prime.

Case 2. Let Ii,n−1 ̸⊆< xn, I > . Then, by (∗), we have

I1,n, I2,n, · · · , Ii−1,n, Ii+1,n, · · · , In−1,n ⊆ I.

We can prove that In,n ⊆ I. In fact, take a positive integer j such that 1 ≤ j ≤
n− 1 and j ̸= i. Since x1 ◦ x2 ◦ · · · ◦ xn−1 ◦ xn ⊆ I, we have

x1 ◦ x2 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ · · · ◦ xn−1 ◦ xn ⊆< xj , I > .

Now, we define

K1,n−1 := x2 ◦ x3 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ · · · ◦ xn−1 ◦ xn,
K2,n−1 := x1 ◦ x3 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ · · · ◦ xn−1 ◦ xn,
...

Kj−1,n−1 := x1 ◦ x2 ◦ · · · ◦ xj−2 ◦ xj+1 ◦ · · · ◦ xn−1 ◦ xn,
Kj,n−1 := x1 ◦ x2 ◦ · · · ◦ xj−1 ◦ xj+2 ◦ · · · ◦ xn−1 ◦ xn,
...

Kn−2,n−1 := x1 ◦ x2 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ · · · ◦ xn−2 ◦ xn,
Kn−1,n−1 := x1 ◦ x2 ◦ · · · ◦ xj−1 ◦ xj+1 ◦ · · · ◦ xn−2 ◦ xn−1.

By hypothesis, < xj , I > is an (n− 1)-prime hyperideal of S, and there exists a
positive integer k (1 ≤ k ≤ n− 1) such that

K1,n−1,K2,n−1, · · · ,Kk−1,n−1,Kk+1,n−1, · · · ,Kn−1,n−1 ⊆< xj , I > .

It thus follows that there exists a positive integer l (1 ≤ l ≤ n) and l ̸= j
(assume l < j) such that

I1,n, I2,n, · · · , Il−1,n, Il+1,n, · · · , Ij−1,n, Ij+1,n, · · · , In,n ⊆ I.

Since j ̸= i and j ̸= n, we have Ii,n ⊆ I or In,n ⊆ I. Again since Ii,n−1 ̸⊆<
xn, I >, we have Ii,n ̸⊆ I, and we deduce that In,n ⊆ I. Thus, in this case, we
have

I1,n, I2,n, · · · , Ii−1,n, Ii+1,n, · · · , In−1,n, In,n ⊆ I,
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and I is an n-prime hyperideal of S. This completes the proof.

Theorem 4.12. Let S be a commutative ordered semihypergroup containing an
identity e. Then the n-prime hyperideals and the (n− 1)-prime hyperideals of S
coincide for all positive integers n ≥ 3.

Proof. Let I be an n-prime hyperideal of S. By Theorem 4.11, < e, I > is an
(n − 1)-prime hyperideal of S. Let a ∈< e, I > . Then a ∈ e ◦ a ⊆ I. Thus
< e, I >⊆ I. By Proposition 4.2(2), < e, I >= I. Hence I is (n − 1)-prime.
Consequently, by Theorem 4.8, the proof is completed.

Lemma 4.13. Let S be a commutative ordered semihypergroup and I a semiprime
hyperideal of S. Then I =

∩
x∈S < x, I > .

Proof. By Proposition 4.2(2), I ⊆< x, I > for any x ∈ S. Then I ⊆
∩
x∈S <

x, I > . To prove the inverse inclusion, let a ∈
∩
x∈S < x, I > . Then a ∈< a, I >,

and we have a ◦ a ⊆ I. Since I is a semiprime hyperideal of S, we have a ∈ I.
Therefore, we obtain the requested result.

Theorem 4.14. Let I be a semiprime and n-prime hyperideal of a commutative
ordered semihypergroup S, n ≥ 3. Let

P := {T | T is an (n− 1)-prime hyperideal of S and I ⊆ T}.

Then I =
∩
T∈P T.

Proof. Obviously, I ⊆
∩
T∈P T. On the other hand, since I is a semiprime

hyperideal of S, by Lemma 4.13, I =
∩
x∈S < x, I > . Furthermore, since I is

also n-prime, by Proposition 4.2(2) and Theorem 4.11, < x, I > is an (n − 1)-
prime hyperideal of S for any x ∈ S and I ⊆< x, I > . Thus, for any x ∈ S,
< x, I >∈ P. Hence

∩
T∈P T ⊆

∩
x∈S < x, I >= I. Therefore, I =

∩
T∈P T.

The hypothesis that I is semiprime cannot be removed in the above theorem.
Otherwise, Theorem 4.14 does not hold in general. We can illustrate it by the
following example.

Example 4.15. We consider a set S := {a, b, c, d} with the following hyperop-
eration “ ◦ ” and the order “ ≤ ”:

◦ a b c d

a {a} {a} {a} {a}
b {a} {a} {a} {a}
c {a} {a} {a} {a}
d {a} {a} {a} {a, d}

≤:= {(a, a), (a, b), (a, c), (a, d), (b, b), (c, c), (d, d)}.
We give the covering relation “≺” and the figure of S as follows:

≺:= {(a, b), (a, c), (a, d)}.
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Then (S, ◦,≤) is a commutative ordered semihypergroup and {a} is a hyperideal
of S. We can easily prove that {a} is 3-prime, but it is not semiprime. In
addition, with a small amount of effort one can verify that the sets {a, b, c} and
S are all prime hyperideals of S containing a, while {a, b, c}∩S = {a, b, c} ̸= {a}.

Corollary 4.16. Let (S, ◦,≤) be an ordered semihypergroup. If (S, ◦) is a hy-
persemilattice, then every n-prime hyperideal (n ≥ 3) of S can be expressed as
the intersection of all (n− 1)-prime hyperideals of S containing it.
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Abstract. In this paper, we characterize the finite group G such that AutG(H) =
Autc(H) for every (abelian, non-abelian) subgroupH ofG, whereAutG(H) andAutc(H)
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1. Introduction

All groups considered in this paper are finite.
Let G be a group and H a subgroup of G. The automizer AutG(H) of H

in G is defined as the group of automorphisms of H induced by conjugation of
elements of NG(H),

AutG(H) ∼= NG(H)/CG(H)

and we obviously have Inn(H) ≤ AutG(H) ≤ Aut(H). AutG(H) is small if
AutG(H) = Inn(H) and large if AutG(H) = Aut(H).

Automizers of some special subgroups had the strong influence toward the
group, the best example is probably the well-known Frobenius criterion for p-
nilpotency: a finite group is p-nilpotent if and only if the automizers of all its
p-subgroups are p-groups. Brandl and Deaconescu [2] gave the structure of finite
SANS-groups (Small Automizers for Non-abelian Subgroups) in which the au-
tomizers of all non-abelian subgroups are small. Also, Deaconescu and Mazurov
obtained the finite groups with large automizers for their non-abelian subgroups
in [5], which is called LANS-groups (Large Automizers for Non-abelian Sub-
groups).
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An automorphism α of G is called a central if x−1xα ∈ Z(G) for each x ∈ G.
The set of all central automorphisms of G, denoted by Autc(G), is a normal
subgroup of Aut(G). It is easy to see that

Autc(G) = CAut(G)(Inn(G)).

There have been a number of results on the central automorphism of a finite
group, for example: Curran and McCaughan [3, 4] characterized finite p-groups
G for which Autc(G) = Inn(G) and Autc(G) = Z(Inn(G)).

From the results above, we found that automizers and central automorphisms
have good relationship with Inner automorphism in the group theory. There-
fore, it is an interesting topic to investigate the relationship between automizers
and central automorphisms in finite groups. In this paper, we focus on the fi-
nite group G such that AutG(H) = Autc(H) for every (abelian, non-abelian)
subgroup H of G.

2. Notations and lemmas

The terminology and the notation in this paper are standard as in [6]. For a
prime p, {ap|a ∈ G} will be denoted by f1(G). We use c(G) to denote the
nilpotency class of a group G. Following lemmas will be used in the sequel.

Lemma 2.1 ([3]). If G is a finite p-group, then Autc(G) = Inn(G) if and only
if G′ = Z(G) and Z(G) is cyclic.

Lemma 2.2 ([1]). If finite group G with large automizers of abelian subgroups,
then G is isomorphic to either S3, for n ≤ 3 or to Q8.

3. Main theorem

It is well-known that S3 is the non-abelian group of minimal order and Q8,
D8 are the non-abelian 2-groups of minimal order. It is easy to see that S3 =
AutS3(S3) ̸= Autc(S3) = 1 and K4

∼= AutQ8(Q8) = Autc(Q8) = Autc(D8).
However, it holds that AutG(H) = Autc(H) for every abelian subgroup H of
S3. And it is true that AutG(H) = Autc(H) for every subgroup H of Q8. But
the result above is not true for D8. Since D8 contains an elementary abelian
2-group of order 4. Let H be an elementary abelian 2-group of order 4. Then

AutD8(H) = ND8(H)/CD8(H) = CAut(H)(Inn(H)) = Aut(H) = S3,

a contradiction. Hence it is interesting to investigate the finite group G such
that AutG(H) = Autc(H) for every non-abelian subgroup H of G.

Theorem 3.1. Let G be a non-abelian group. Then AutG(H) = Autc(H) for
every non-abelian subgroup H of G if and only if

(i) G is a p-group, G′ = Z(G) and Z(G) is cyclic.
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(ii) G = P ×C2, where P is a p-group such that p ̸= 2, P ′ = Z(P ) and Z(P )
is cyclic.

Proof. It is easy to check that AutG(H) = Autc(H) for every non-abelian
subgroup H of G if G satisfying (i), (ii). Conversely, proof can proceed by
following steps.

Step 1. P ′ = Z(P ) and Z(P ) is cyclic for P ∈ Sylp(G).
It is easy to see that Inn(G) = AutG(G) = Autc(G) for non-abelian group

G, then Inn(G) is abelian and G is nilpotent group of class 2.
Since G is a non-abelian group, there exists at least one non-abelian Sylow

subgroup of G. For p ∈ π(G). Let P ∈ Sylp(G) and P is non-abelian. Since G
is nilpotent, P is normal in G. Then
(∗)
Inn(P ) = P/CP (P ) ∼= G/CG(P ) = AutG(P ) = Autc(P ) = CAut(P )(Inn(P ))

By Lemma 2.1, P ′ = Z(P ) and Z(P ) is cyclic.
Case 1. If G is a p-group, then G = P , P ′ = Z(P ) and Z(P ) is cyclic, as

required.
Case 2. If G is not a p-group, there exists prime q ̸= p ∈ π(G). Let

Q ∈ Sylq(G).
Step 2. Q is abelian.

If Q is non-abelian, then |Q| ≥ q3. There exists normal subgroup Q1 of order
q in Q, which is also normal in G. Then

Inn(P ) = P/Z(P ) ∼= (P ×Q1)/(Z(P )× Z(Q1))
∼= G/CG(P ×Q1) = AutG(P ×Q1)

= Autc(P ×Q1) = CAut(P×Q1)(Inn(P ×Q1))

= CAut(P )×Aut(Q1)(Inn(P )).

By (∗), Aut(Q1) = 1, so Q1 = C2, and Q is a 2-group.
Now we choose a normal subgroup P1 of order p in P , which is also normal

in G. We consider non-abelian group P1 ×Q, by the similar argument,

Inn(Q) = Q/Z(Q) ∼= (Q× P1)/(Z(Q)× Z(P1)) ∼= G/CG(Q× P1)

= AutG(Q× P1) = Autc(Q× P1) = CAut(Q×P1)(Inn(Q× P1))

= CAut(Q)×Aut(P1)(Inn(Q)).

By (∗), Aut(P1) = 1, so P1 = C2, and P is a 2-group, a contradiction.

Step 3. p ̸= 2, and G = P × C2.
Since Q is abelian, we consider non-abelian subgroup H = P ×Q. Hence

Inn(P ) = P/Z(P ) ∼= (P ×Q)/(Z(P )× Z(Q))
∼= G/CG(H) = AutG(H) = Autc(H)

= CAut(H)(Inn(H)) = CAut(P×Q)(Inn(P ×Q)) = CAut(P×Q)(Inn(P ))

= CAut(P )×Aut(Q)(Inn(P )).
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By (∗), Aut(Q) = 1, so Q = 1 or Q = C2.

If p = 2, then G = P , a contradiction. Hence p ̸= 2, and G = P × C2,
P ′ = Z(P ) and Z(P ) is cyclic, as required.

Zassenhaus proved in [7] that a finite group G is abelian if and only if
NG(H) = CG(H) for all abelian subgroups Hof G. Translated into automizer
terminology, the elegant result: a finite group is abelian if and only if the au-
tomizers of all its abelian subgroups are small. Later on, Bechtell, Deaconescu
and Silberberg [1] classified the finite group with large automizers of abelian
subgroups, which is called LAAS-groups.

It is easy to see that Autc(H) = Aut(H) for every abelian subgroup H of
G, that is, LAAS-groups is equivalent to AutG(H) = Aut(H) for every abelian
subgroup H of G. By Lemma 2.2, we can get the following theorem.

Theorem 3.2. Let G be a group. Then AutG(H) = Autc(H) for every abelian
subgroup H of G if and only if G = Sn, for n ≤ 3 or Q8.

Finally, we can easy to see that G = C2, or Q8 if AutG(H) = Autc(H)
for every abelian and non-abelian subgroups H of G by Theorem 3.1 and 3.2
above. Independent on the result above, we classify the finite group G such
that AutG(H) = Autc(H) for every subgroup H of G by the elementary way as
follows.

Theorem 3.3. Let G be a group. Then AutG(H) = Autc(H) for every sub-
group H of G if and only if G = C2, or Q8.

Proof. It is easy to check that AutG(H) = Autc(H) for every subgroup H of
G if G = C2, or G = Q8. Conversely, proof can proceed by following steps.

Step 1. G is nilpotent and c(G) = 2.

Since AutG(H) = Autc(H) for every subgroup H of G,

NG(H)/CG(H) = CAut(H)(Inn(H)).

Then it is clear that Inn(H) is abelian by Inn(H) ≤ AutG(H). Hence H ′ ≤
Z(H) for every subgroup H of G, so G is nilpotent and c(G) = 2.

Step 2. Z(G) = C2.

Consider H = Z(G). Then AutG(Z(G)) = Autc(Z(G)), it is easy to see that

1 = NG(Z(G))/CG(Z(G)) = CAut(Z(G))(Inn(Z(G))) = Aut(Z(G)).

Hence Z(G) = C2 by G is nilpotent.

Step 3. G′ = 1 or G′ = C2.

Let H = G′. Then AutG(G
′) = Autc(G

′), that is,

NG(G
′)/CG(G

′) = CAut(G′)(Inn(G
′)).
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Since G′ ≤ Z(G), 1 = NG(G
′)/CG(G

′) = CAut(G′)(Inn(G
′)) = Aut(G′). Hence

G′ = 1 or G′ = C2.

Step 4. G is a 2-group.
If G′ = 1, then Z(G) = C2 = G.
If G′ = C2 = Z(G), then we assume that G is not a 2-group. Let P2 ∈

Syl2(G). Since G is nilpotent, P2 is normal in G. Then G = P2 ×K, and K is
Hall 2′-subgroup of G. By G′ = P ′

2 ×K ′ = C2, then P
′
2 = C2, and K is abelian.

Then Z(G) = Z(P2)× Z(K) = Z(P2)×K. By

AutG(Z(P2)) = Autc(Z(P2)),

we have Z(P2) = C2. Then Z(G) = Z(P2) = C2, a contradiction. Hence G is a
2-group.

Step 5. If G′ = C2 = Z(G), then Φ(G) = C2 and G is a extra-special 2-group.
For any a, b ∈ G, [a2, b] = [a, b]2 = 1 by Z(G) = C2 = G′. Then a2 ∈ Z(G),

and so f1(G) ≤ Z(G). Hence Φ(G) = G′f1(G) = Z(G) = C2, and so G is a
extra-special 2-group.

Step 6. If G is a extra-special 2-group, then G = Q8.
It is well-known that G is a central product of D8’s or a central product

of D8’s and a single Q8 if G is a extra-special 2-group. It is easy to see that
Inn(D8) ≤ Aut(D8) = D8 and Inn(D8) is elementary abelian 2-group of order
4.

If G contains D8, then G contains an elementary abelian 2-group of order 4.
Let H be an elementary abelian 2-group of order 4. Then

NG(H)/CG(H) = CAut(H)(Inn(H)) = Aut(H) = S3.

It is obviously that NG(H)/CG(H) is a 2-group, a contradiction. That is, G
does not contain D8, so G = Q8, as required.

Corollary 3.4. Let G be a non-abelian group. Then AutG(H) = Autc(H) for
every subgroup H of G if and only if G = Q8.
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Abstract. In this paper, we obtain the necessary and sufficient conditions a complex
almost contact metric manifold to be normal. In addition, we give some new identities
for the Riemann curvature and the Ricci curvatures of normal complex contact metric
manifolds. Furthermore, we show that a Ricci semi-symmetric normal complex contact
metric manifold is Einstein.
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1. Introduction

Kobayashi [18] started studies on complex contact manifolds in 1959. After
this Boothby [7], [8] and Wolf [22] presented new results about complex contact
manifolds. Further research started again in the early 1980’s by Ishihara and
Konishi [15], [16] and [17]. They introduced a concept of normality which is
called IK-normality in literature [16]. But according to their normality condi-
tion complex structure is Kähler. In 1996, Foreman investigated special metrics
on complex contact manifolds by studying critical condition of various Riema-
nian functionals on particular classes of Riemanian metrics called the associated
metrics [11]. He studied on classification of three-dimensional complex homoge-
neous complex contact manifolds, strict normal complex contact manifolds and
the Boothby-Wang fibration on complex contact manifolds [12], [13], [14]. In
2000 Korkmaz gave a weaker version of normality in [19] , which must not to
be Kähler, and defined the GH−sectional curvature. Blair and present author

∗. Corresponding author



478 AYSEL TURGUT VANLI and INAN UNAL

studied energy and corrected energy of vertical distribution for normal complex
contact metric manifolds in [5], [21]. Fetcu studied an adapted connection on a
strict complex contact manifolds and harmonic maps between complex Sasakian
manifolds in [9], [10].

Blair and Molina [2] studied conformal and Bochner curvature tensor of nor-
mal complex contact metric manifolds. Korkmaz [19] proved that normality is
invariant under H-homothetic deformations and such normal complex contact
metric manifolds is called complex (κ, µ)−space. In 2012, Blair and Mihai stud-
ied on complex (κ, µ)−space and they studied on locally symmetric condition
of normal complex contact metric manifolds [3], [4].

Our paper is organized as following. In Section 2, some fundamental tools
and basic facts are given. Some results on the Riemann curvature are presented
in Section 3. Also a new theorem obtained in same section which gives the
necessary and sufficient conditions for normality, contains ∇G and ∇H. In
addition some results on the Ricci curvature are given in Section 4 and, we
proved that a Ricci semi-symmetric normal complex contact metric manifold is
Einstein.

2. Preliminaries

Let M be a complex manifold of odd complex dimension 2m+ 1 covered by an
open covering A = {Ui} consisting of coordinate neighborhoods. If there is a
holomorphic 1-form ωi in each Ui ∈ A in such a way that for any Ui,Uj ∈ A

ωi ∧ (dωj)
n ̸= 0 in Ui, and ωi = fijωj , Ui ∩ Uj ̸= ∅,

where fij is a holomorphic function on Ui∩Uj ̸= ∅ then ωi is called the complex
contact form in Ui, and (M,ωi) is called a complex contact manifold [18].

ωi = 0 defines a 2m-dimensional complex vector subspace Hx of TxM [18].
Let H be the vector bundle over M with fibres Hx and V be the line bundle
TM/H, fromWhitney sum we have TM = H⊕ V. H and V are called horizontal
subbundle and vertical subbundle, respectively.

Ishihara and Konishi [15], [16], [17] and Shibuya [20] proved existence of
complex almost contact metric structure.

Definition 2.1. Let (M,J, g) be a Hermitian manifold and A = {Ui} be open
covering ofM with coordinate neighbourhoods {Ui}. M is called a complex almost
contact metric manifold if following two conditions are satisfied:

1. In each Ui there exist 1-forms ui and vi = ui ◦ J , with dual vector fields
Ui and Vi = −JUi and (1, 1) tensor fields Gi and Hi = GiJ such that

H2
i = G2

i = −I + ui ⊗ Ui + vi ⊗ Vi,
GiJ = −JGi, GUi = 0, g(X,GiY ) = −g(GiX,Y ).

2.On Ui ∩ Uj ̸= ∅ we have

uj = aui − bvi, vj = bui + avi, Gj = aGi − bHi, Hj = bGi + aHi,
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where a and b are functions on Ui ∩ Uj with a2 + b2 = 1.

Also from the second condition on Ui ∩ Uj , we have Uj = aUi − bVi and
Vj = bUi+aVi. Since a

2+ b2 = 1 we get Ui∧Vj = U ∧V . Thus we have a global
vertical distribution V which is spanned by U and V. In general is assumed that
V is integrable.

A complex contact manifold admits a complex almost contact metric struc-
ture for which the local contact form ω is u − iv to within a non-vanishing
complex-valued function multiple and the local fields G and H are related to
du and dv by

du(W,T ) = g(W,GT ) + (σ ∧ v)(W,T ), dv(W,T ) = g(W,HT )− (σ ∧ u)(W,T )

where σ(W ) = g(∇WU, V ) [16]. With these conditions M is called a complex
almost contact metric manifold.

Ishihara and Konishi [15], [16] defined two tensor fields S and T given by

S(W,T ) = [G,G](W,T ) + 2g(W,GT )U − 2g(W,HT )V(2.1)

+2(v(T )HW − v(W )HT ) + σ(GT )HW

−σ(GW )HT + σ(W )GHT − σ(T )GHW,

T (W,T ) = [H,H](W,T )− 2g(W,GT )U + 2g(W,HT )V(2.2)

+2(u(T )GW − u(W )GT ) + σ(HW )GT

−σ(HT )GW + σ(W )GHT − σ(T )GHW.

Here [G,G] is the Nijenhuis torsion of G which is defined following:

[G,G](W,T ) = (∇GWG)T − (∇GTG)W −G(∇WG)T +G(∇TG)W .

According to Ishihara and Konishi’s definitionM is normal if S(W,T ) = T (W,T )
= 0 for arbitrary vector fields W,T on M. Such manifolds are called IK-normal
and an IK-normal complex contact manifold is Kähler. The complex Heisen-
berg group has not Kähler structure. So it is not IK-normal. For this reason
Korkmaz [19] gave an extended definition for normality;

Definition 2.2. A complex almost contact metric manifold M is called normal
if the following conditions are satisfied:

1. S(W,T ) = T (W,T ) = 0, for W,T ∈ H,
2. S (W,U) = T (W,V ) = 0, for W ∈ TM.

Korkmaz obtained some results on normal complex contact metric manifolds
which we list here. For details we refer to reader [1] and [19].
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Proposition 2.3. A complex contact metric manifold is normal if and only if

g((∇WG)Z, T ) = σ(W )g(HZ, T ) + v(W )dσ(GT,GZ)− 2v(W )g(HGZ, T )

− u(Z)g(W,T )− v(Z)g(JW, T ) + u(T )g(W,Z)(2.3)

+ v(T )g(JW,Z),

g((∇WH)Z, T ) = −σ(W )g(GZ, T )− u(W )dσ(HT,HZ)− 2u(W )g(HGZ, T )

+ u(Z)g(JW, T )− v(Z)g(W,T )− u(T )g(JW,Z)(2.4)

+ v(T )g(W,Z),

for arbitrary vector fields W,T on M.

Also from above proposition we have

g((∇WJ)Z, T ) = u(W )(dσ(T,GZ)− 2g(HZ, T ))(2.5)

+v(W )(dσ(T,HZ) + 2g(GZ, T )).

For W and T horizontal vector fields we have the followings [19];

∇WU = −GW + σ(W )V, ∇WV = −HW − σ(W )U,(2.6)

∇UU = σ(U)V,∇UV = −σ(U)U,∇V U = σ(V )V,∇V V = −σ(V )U,(2.7)

dσ(GW,GT ) = dσ(HW,HT ) = dσ(T,W )− 2u ∧ v(T,W )dσ(U, V ),(2.8)

dσ(U,W ) = v(W )dσ(U, V ), dσ(V,W ) = −u(W )dσ(U, V ).(2.9)

R(U, V, V, U) = R(V,U,U, V ) = −2dσ(U, V )(2.10)

R(W,U)U =W, R(W,V )V =W, R(U, V )W = JW(2.11)

R(W,T )U = 2(g(W,JT ) + dσ(W,T ))V(2.12)

R(W,T )V = −2(g(W,JT ) + dσ(W,T ))U(2.13)

R(W,U)V = σ(U)GW + (▽UH)W − JW(2.14)

R(W,V )U = −σ(V )HW + (∇VG)W + JW(2.15)

R(W,U)T = −g(W,T )U − g(JW, T )V + dσ(T,W )V,(2.16)

R(W,V )T = −g(W,T )V + g(JW, T )U − dσ(T,W )U(2.17)

g(R(GW,GT )GZ,GY ) = g(R(W,T )Z,W )− 2g(JZ, Y )dσ(W,T )(2.18)

+ 2g(HW,T )dσ(GZ, Y ) + 2g(JW, T )dσ(Z, Y )

− 2g(HZ,W )dσ(GY, T ),

g(R(HW,HT )HZ,HY ) = g(R(W,T )Z, Y )− 2g(JZ,W )dσ(W,T )(2.19)

− 2g(GW,T )dσ(HZ, Y ) + 2g(JW, T )dσ(Z, Y )

+ 2g(GZ, Y )dσ(HW,T ).

On the other hand, in [11] we have

(2.20) dσ(W,T ) = 2g(JW, T ) + g((▽UJ)GW,T ).

For an arbitrary vector field W on M we can write

(2.21) W =W0 + u(W )U + v(W )V, W0 ∈ H.
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3. Curvature properties and normality

In this section we obtain some results on the Riemannian curvature of normal
complex contact metric manifolds. In addition we give a new expression for
normality by covariant derivation of G and H structure tensors. Firstly we have
some useful results which are listed following.

Theorem 3.1. Let M be a normal complex contact metric manifold. For
X,Y, Z, T horizontal vector fields we have

(3.1) g(R(GX,GY )GZ,GT ) = g(R(HX,HY )HZ,HT ) = g(R(X,Y )Z, T ).

Proof. By using (2.20) in (2.18) we have

− 2g(JZ, T )dσ(X,Y ) + 2g(HX,Y )dσ(GZ, T )

+ 2g(JX, Y )dσ(Z, T )− 2g(HZ, T )dσ(GX,Y )

= −2g(JZ, T ) (2g(JX, Y ) + g((▽UJ)GX,Y ))

+ 2g(HX,Y )
(
2g(JGZ, T ) + g((▽UJ)G

2Z, T )
)

+ 2g(JX, Y ) (2g(JZ, T ) + g((▽UJ)GZ, T ))

− 2g(HZ, T )(2g(JGX, Y ) + g((▽UJ)G
2X,Y )).

Since JG = −H and for X horizontal vector field G2X = −X we have

− 2g(JZ, T )dσ(X,Y ) + 2g(HX,Y )dσ(GZ, T )

+ 2g(JX, Y )dσ(Z, T )− 2g(HZ, T )dσ(GX,Y ))

= −2g(JZ, T )g((▽UJ)GX,Y )− 2g(HX,Y )g((▽UJ)GZ, T )

+ 2g(JX, Y )g((▽UJ)GZ, T ) + 2g(HZ, T )g((▽UJ)GX,Y )).

From (2.5) and by simply computation we get

−2g(JZ, T )dσ(X,Y ) + 2g(HX,Y )dσ(GZ, T )

+2g(JX, Y )dσ(Z, T )− 2g(HZ, T )dσ(GX,Y ) = 0.

Considering (2.18 ) from last equation we obtain (3.1). By the same way we
can easily show that g(R(HX,HY )HZ,HT ) = g(R(X,Y )Z, T ). So, the proof
is completed.

Curvature identities for normal complex contact metric manifolds were com-
puted by Korkmaz [19] for horizontal vector fields. From (2.21) and by direct
computation we obtain the following Lemma which presents the curvature iden-
tities for general vector fields.

Lemma 3.2. Let M be a normal complex contact metric manifold and W,T be
two arbitrary vector fields on M. Then the Riemannian curvature of a normal
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complex contact metric manifold satisfies following equations.

R(W,U)U =W0 − 2dσ(U, V )v(W )V,(3.2)

R(W,V )V =W0 − 2dσ(U, V )u(W )U,

R(W,U)V = σ(U)GW0 + (∇UH)W0 − JW0 + 2dσ(U, V )v(W )U,(3.3)

R(W,V )U = −σ(V )HW0 + (∇VG)W0 + JW0 + 2dσ(U, V )u(W )V,(3.4)

R(U, V )W = JW0 + (u(W )V − v(W )U)2dσ(U, V ),(3.5)

R(W,T )U = −u(W )T0 + v(W )(σ(V )HT0 + (∇VG)T0 + JT0)(3.6)

+ u(T )W0 + v(T )(−σ(V )HW0 + (∇VG)W0 + JW0)

+ [2(g(W0, JT0) + dσ(W0, T0)) + 2dσ(U, V )u ∧ v(W,T )]V,
R(W,T )V = −u(W )(σ(U)GT0 + (∇UH)T0 − JT0)− v(W )T0(3.7)

u(T )(−σ(U)GW0 + (∇UH)W0 − JW0) + v(T )W0

+ [−2(g(W0, JT0) + dσ(W0, T0))− 2dσ(U, V )u ∧ v(W,T )]U,
R(W,U)T = u(T )W0 − v(W )JT0 + v(T )(σ(U)GW0 + (∇UH)W0(3.8)

− JW0) + [−g(W0, T0)− 2dσ(U, V )v(W )v(T )]U

+ [dσ(T0,W0)− g(JW0, T0)− 2dσ(U, V )v(W )u(T ))]V,

R(W,V )T = u(W )JT0 + v(T )W0 + u(T )(−σ(U)HW0 + (∇VG)W0(3.9)

+ JW0) + [−g(W0, T0) + u(W )u(T )2dσ(U, V )]V

[−dσ(T0,W0) + g(JW0, T0)− 2dσ(U, V )u(W )v(T )]U.

Proposition 3.3. Let M be a normal complex contact metric manifold . Then
for arbitrary vector fields Z and T on M we have

(3.10) dσ (Z, T ) = 2g (JZ0, T0) + g ((∇UJ)GZ0, T0) + dσ(U, V )u ∧ v(Z, T ).

Proof. For vector fields Z and T we have

2dσ (Z, T ) = Zg (∇TU, V )− Tg (∇ZU, V )− g
(
∇[Z,T ]U, V

)
= g (∇Z∇TU, V ) + g (∇TU,∇ZV )− g (∇T∇ZU, V )

−g (∇ZU,∇TV )− g
(
∇[Z,T ]U, V

)
= g(R (Z, T )U, V ) + g (∇TU,∇ZV )− g (∇ZU,∇TV )

from (2.6) and since HG = −GH = J + u⊗ V − v ⊗ U we have

2dσ (Z, T ) = g(R (Z, T )U, V ) + 2g(JZ, T ) + 2u ∧ v(Z, T ).

In addition from (3.6) we get

g(R (Z, T )U, V ) = 2 (g(Z0, JT0) + dσ(Z0, T0)) + 2dσ(U, V )u ∧ v(Z, T )

and since g (JZ, T ) = g(JZ0, T0)− u ∧ v(Z, T ) we obtain (3.10).
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Ishihara and Konishi gave an expression of covariant derivative of G and H
for IK-normal complex contact metric manifolds. Korkmaz [19] gave a weaker
definition for normality of a complex contact metric manifold and obtained
Proposition 2.1. In following theorem by using this result we give a new ex-
pression for the covariant derivative of G and H such as Ishihara and Konishi’s
result. Our result is necessary and sufficient condition for normality of complex
contact metric manifolds in the sense of Korkmaz’s definition.

Theorem 3.4. A complex contact metric manifold is normal M if and only if

(∇WG)T = σ(W )HT − 2v(W )JT − u (T )W
− v(T )JW + v(W ) (2JT0 − (∇UJ)GT0)(3.11)

+ g(W,T )U + g(JW, T )V − dσ(U, V )v(W ) (u(T )V − v(T )U) ,

and

(∇WH)T = −σ(W )GT + 2u(W )JT + u(T )JW

− v(T )W + u(W ) (−2JT0 − (∇UJ)GT0)(3.12)

− g(JW, T )U + g(W,T )V + dσ(U, V )u(W ) (u(T )V − v(T )U) .

Proof. Suppose that M is a normal complex contact metric manifold. Then
from (2.3) and (2.4) we have

g ((∇WG)T,Z) = g (σ(W )HT − 2v(W )JT − u (T )W − v (T ) JW
+g (W,T )U + g (W,JT )V, Z) + v (W ) dσ (GZ,GT ) .

Since u ∧ v(T,Z) = g (u(T )V − v(T )U,Z) and from (2.8) we get

g ((∇WG)T,Z) = g (σ(W )HT − 2v(W )JT − u (T )W − v (T ) JW
+g (W,T )U + g (W,JT )V,Z)

v (W ) [dσ(T,Z)− 2dσ (U, V ) g (u(T )V − v (T )U,Z)] .

From (3.10) we can write

dσ (T,Z) = g(2JT0 + (▽UJ)GT0 + dσ (U, V ) (u(T )V − v (T )U), Z) .

By using this equation we obtain (3.11). Similarly one can get (3.12).

Conversely suppose that (3.11) and (3.12) hold. For arbitrary vector field
W and from (2.1), (2.2) we have

S(W,U) = (∇GWG)U −G(∇WG)U +G(∇UG)W − σ (U)GHW,

T (W,V ) = (∇HWH)V −H(∇WH)V +H(∇VH)W − σ (V )GHW.

From (3.11) and (3.12) we get S(W,U) = T (W,V ) = 0.
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Now let W and T be two horizontal vector fields. Then from (2.1) and (2.2)
we have

S(W,T ) = (∇GWG)T − (∇GTG)W −G(∇WG)T +G(∇TG)W
+2g(W,GT )U − 2g(W,HT )V + σ(GT )HW

−σ(GW )HT + σ(W )GHT − σ(T )GHW,
T (W,T ) = (∇HWH)T − (∇HTH)W −H(∇WH)T +H(∇TH)W

−2g(W,GT )U + 2g(W,HT )V + σ(HW )GT

−σ(HT )GW + σ(W )GHT − σ(T )GHW.

By applying (3.11) and (3.12) we get

S(W,T ) = σ(GW )HT − σ(GT )HW − 2g(W,GT )U

+2g(W,HT )V − σ(W )GHT + σ(T )GHW

+2g(W,GT )U − 2g(W,HT )V + σ(GT )HW

−σ(GW )HT + σ(W )GHT − σ(T )GHW = 0,

T (W,T ) = −σ(HW )GT + σ(HT )GW + σ(W )HGT

−σ(T )HGW + 2g(W,GT )U − 2g(W,HT )V

−2g(W,GT )U + 2g(W,HT )V + σ(HW )GT

−σ(HT )GW + σ(W )GHT − σ(T )GHW = 0.

Therefore M is normal.

By using (2.5), (3.10), (3.11) and (3.12) following corollary is obtained.

Corollary 3.5. Let M be a normal complex contact metric manifold and W,T
be two arbitrary vector fields on M . Then we have

(∇WJ)T = −2u (W )HT + 2v(W )GT + u(W ) (2HT0 + (∇UJ)T0)
+v(W ) (−2GT0 + (∇UJ) JT0) .

4. Ricci semi-symmetric normal complex contact metric manifold

In this section we studied the Ricci curvature of normal complex contact met-
ric manifolds. We obtain some useful results for future works and apply all
curvature results to complex Heisenberg group. Finally we examine the Ricci
semi-symmetric normal complex contact metric manifolds.

Let us choose a local orthonormal basis of the form {Ei, GEi,HEi, JEi, U, V :
1 ≤ i ≤ n} for a (2n+1)− complex dimensional normal complex contact metric
manifold M . Then the Ricci curvature of M has the form

Ric(W,T ) =
n∑
i=1

[g(R(EiW )T,Ei) + g(R(GEi,W )T,GEi)(4.1)

+g(R(HWi,W )T,HEi) + g(R(JEi,W )T, JEi)]

+g(R(U,W )T,U) + g(R(V,W )T, V ).
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We obtain useful relations for Ricci curvature at the next results.

Lemma 4.1. Let M be a normal complex contact metric manifold and W,T be
horizontal vector fields on M . Then we have

Ric (GW,GT ) = Ric (HW,HT ) = Ric (W,T )

Ric (GW,T ) = −Ric (W,GT ) , Ric (HW,T ) = −Ric (W,HT ) .

Proof. By (4.1) we can write

Ric(GW,GT ) =

n∑
i=1

[g(R(EiGW )GT,Ei) + g(R(GEi, GW )GT,GEi)

+g(R(HEi, GW )GT,HEi) + g(R(JEi, GW )GT, JEi)](4.2)

+g(R(U,GW )GT,U) + g(R(V,GW )GT, V ).

From (3.1) we have

g(R(Wi,GW )GT,Ei) = g(R(GEiGGW )GGT,GEi) = (g(R(GEiW )T,GEi),

g(R(GEi, GW )GT,GEi) = g(R(Ei,W )T,Ei),

g(R(HEi, GW )GT,HEi) = g(R(GJEi, GW )GT,GJEi) = g(R(JEi,W )T, JEi),

g(R(JEi, GW )GT, JEi) = g(R(−GHEi, GW )GT,−GHEi)
= g(R(HEi,W )T,HWi).

From (2.11) we have g(R(U,GW )GT,U) = g(R(U,W )T,U), g(R(V,GW )GT, V )
= g(W,T ) = g(R(V,W )T, V ).Using these equations in (4.2) we getRic(GW,GT )
= Ric(W,T ). Similarly, it can be easily show that Ric(HW,HT ) = Ric(W,T ).
In addition from (2.11) , (3.1) and (4.1) we obtainRic (GW,T ) = −Ric (W,GT ) .
Similarly, one can show that Ric (HW,T ) = −Ric (W,HT ) .

Lemma 4.2. Let M be a normal complex contact metric manifold. For any W
horizontal vector filed on M the Ricci curvature tensor satisfies

Ric(W,U) = Ric(W,V ) = 0,(4.3)

Ric(U,U) = Ric(V, V ) = 4n− 2dσ(U, V ), Ric(U, V ) = 0.(4.4)

Proof. Since Ei,W are horizontal vector fields on M from (2.12) and (2.13) we
get

g(R(EiW )U,Ei) = g(2(g(Ei, JW ) + dσ(Ei,W ))V,Ei)

= 2(g(Ei, JW ) + dσ(Ei,W ))g(V,Ei) = 0.

By the same way, we get

g(R(GEi,W )U,GEi) = g(R(HEi,W )U,HEi) = g(R(JEi,W )U, JEi) = 0.
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On the other hand using (2.11),(2.14) and (2.15) we have

g(R(U,W )U,U) = −g(R(W,U)U,U) = −g(W,U) = 0,

g(R(V,W )U, V ) = −g(−σ(V )HW + (∇VG)W + JW, V ) = 0.

Thus from (4.1) we get (4.3) and by following same steps we obtain (4.4).

Also by using curvature properties and from (2.21) we get following corol-
laries.

Corollary 4.3. For arbitraryW vector field on a normal complex contact metric
manifold M we have

(4.5) Ric(W,U)=(4n− 2dσ(U, V ))u(W ), Ric(W,V )=(4n− 2dσ(U, V ))v(W ).

Corollary 4.4. Let M be a normal complex contact metric manifold. Assume
that W and T be two arbitrary vector fields on M provided W0 and T0 are
the horizontal part of W and T , respectively. Then the Ricci curvature tensor
satisfies

(4.6) Ric(W,T ) = Ric(W0, T0) + (4n− 2dσ(U, V ))(u(W )u(T ) + v(W )v(T )).

Corollary 4.5. Let M be a normal complex contact metric manifold and W,T
be two arbitrary vector fields on M . Then the Ricci curvature tensor satisfies

Ric(W,T ) = Ric(GW,GT ) + (4n− 2dσ(U, V )) (u(W )u(T ) + v(W )v(T )) ,

Ric(W,T ) = Ric(HW,HT ) + (4n− 2dσ(U, V )) (u(W )u(T ) + v(W )v(T )) .

Corollary 4.6. On a normal complex contact metric manifold M, for Q the
Ricci operator we have QG = GQ, QH = HQ.

The well known example of complex contact metric manifolds is Iwasawa
manifold. We compute the Riemann, Ricci and scalar curvatures of Iwasawa
manifold.

Example 4.7. The closed subgroup H C of GL(3,C) is presented by

HC =


 1 b12 b13

0 1 b23
0 0 1

 : b12, b13, b23 ∈ C

 ≃ C3

is called the complex Heisenberg group. Baikoussis, Blair and Gouli-Andreou
defined the following complex contact metric structure onHC in [6]. Let z1, z2, z3
be the coordinates on HC ≃ C3 defined by z1(B) = b23, z2(B) = b12, z3(B) = b13
for B in HC. Here HC ≃ C3 and θ = 1

2 (dz3 − z2dz1) is global, so the structure
tensors may be taken globally. With J denoting the standard almost complex
structure on C3, we may give a complex almost contact structure to HC as
follows. Since θ is holomorphic, set θ = u + iv , v = u ◦ J ; also set 4 ∂

∂z3
=
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U + iV . Then u(W ) = g(U,W ) and v(W ) = g(V,W ). Since we will work in real
coordinates, G and H are given by

G =



0 0 1 0 0 0
0 0 0 −1 0 0
−1 0 0 0 0 0
0 1 0 0 0 0
0 0 x2 y2 0 0
0 0 y2 −x2 0 0

 ,

H =



0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 −y2 x2 0 0
0 0 x2 y2 0 0

 .

Then relative to the coordinates (x1, y1, x2, y2, x3, y3) the Hermitian metric (ma-
trix) is given by

g =
1

4



1 + x22 + y22 0 0 0 x2 y2
0 1 + x22 + y22 0 0 y2 x2
0 0 1 0 0 0
0 0 0 1 0 0
x2 y2 0 0 1 0
y2 x2 0 0 0 1

 .

Let {e1; e∗1; e2; e∗2; e3; e∗3} be an orthonormal basis where

e1 = 2

(
∂

∂x1
+ x2

∂

∂x3
+ y2

∂

∂y3

)
, e∗1 = 2

(
∂

∂y1
+ y2

∂

∂x3
+ x2

∂

∂y3

)
,(4.7)

e2 = 2
∂

∂x2
, e∗2 = 2

∂

∂y2
, e3 = U = 2

∂

∂x3
, e∗3 = V = 2

∂

∂y3
.

Furthermore we have [21]

Ge1 = −e2, Ge∗1 = e∗2, Ge2 = e1, Ge
∗
2 = −e∗1,

He1 = −e∗2, He∗1 = −e2, He2 = e∗1, He
∗
2 = −e1,

Je1 = −e∗1, Je∗1 = e1, Je2 = −e∗2, Je∗2 = −e2.

Let ▽ be the Levi-Civita connection with respect to metric g. Then from (4.7)
we have

(4.8) [e1, e2] = −2e3, [e1, e
∗
2] = −2e∗3, [e∗1, e2] = −2e∗3, [e∗1, e

∗
2] = 2e3

and the other Lie brackets are zero [21]. In addition we have

2g(▽eiej , ek) = g [ei, ej ] , ek + g ([ek, ei] , ej)− g ([ej , ek] , ei)
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and from that we obtain

(4.9) ▽ejej = ▽ejej = ▽ejej∗ = ▽e∗j
e∗j = 0,

where j = 1, 2, 3. From (4.8) and (4.9) we need only list following

▽e2e3 = ▽e∗2
e∗3 = −e1, ▽e∗2

e3 = −▽e2 e
∗
3 = e∗1,

▽e1e3 = ▽e∗1
e∗3 = e2, ▽e1 e

∗
3 = −▽e∗1

e3 = e∗2,

−▽e1 e2 = ▽e∗1
e∗2 = e3, ▽e1 e

∗
2 = ▽e∗1

e2 = −e∗3.

Now, let

Γ =


 1 γ2 γ3

0 1 γ1
0 0 1

∣∣∣∣∣∣ γk = mk + ink, mk, nk ∈ Z

 .

Γ is subgroup of HC ≃ C3, the 1-form dz3−z2dz1 is invariant under the action on
Γ and with ξ = U ∧ V , hence the quotient HC/Γ is a compact complex contact
manifold with a global complex contact form. HC/Γ is known the Iwasawa
manifold.

It is known that with the help of the above results , it can be easily verified
that

R(e1, e
∗
1)e1 = 0, R(e1, e

∗
1)e

∗
1 = 0, R(e1, e

∗
1)e2 = −2e∗2, R(e1, e∗1)e∗2 = 2e2,

R(e1, e2)e1 = 3e2, R(e1, e2)e
∗
1 = −e∗2, R(e1, e2)e2 = −3e1, R(e1, e2)e∗2 = e∗1,

R(e1, e
∗
2)e1 = 3e2, R(e1, e

∗
2)e

∗
1 = 0, R(e1, e

∗
2)e2 = −e∗2, R(e1, e∗2)e∗2 = −3e1,

R(e∗1, e2)e1 = e∗2, R(e
∗
1, e2)e

∗
1 = 3e2, R(e

∗
1, e2)e2 = −3e∗1, R(e∗1, e2)e∗2 = 3e1

R(e∗1, e
∗
2)e1 = −e2, R(e∗1, e∗2)e∗1 = 3e∗2, R(e

∗
1, e

∗
2)e2 = e1, R(e

∗
1, e

∗
2)e

∗
2 = −3e∗1,

R(e2, e
∗
2)e1 = −2e∗1, R(e2, e∗2)e∗1 = 2e1, R(e2, e

∗
2)e2 = 0, R(e2, e

∗
2)e

∗
2 = 0 .

From (2.7) and since σ = 0 [19] R(e3, e
∗
3)e

∗
3 = 0 and we have R(W,U)U =W

and R(W,V )V =W for W ∈ H. Similarly from (2.14) and (2.15) we get

R(e1, e3)e
∗
3 = −e∗1, R(e∗1, e∗3)e3 = 3e1, R(e2, e3)e

∗
3 = −e∗2, R(e∗2, e∗3)e3 = e2,

R(e1, e
∗
3)e3 = e∗1, R(e

∗
1, e

∗
3)e3 = −e1, R(e2, e∗3)e3 = e∗2, R(e

∗
2, e

∗
3)e3 = −3e2,

and from (2.12), (2.13) we get

R(e1, e
∗
1)e3 = R(e1, e2)e3 = R(e1, e

∗
2)e3 = 0

R(e∗1, e2)e3 = R(e∗1, e
∗
2)e3 = R(e2, e

∗
2)e3 = 0

and
R(e1, e

∗
1)e

∗
3 = R(e1, e2)e

∗
3 = R(e1, e

∗
2)e

∗
3 = 0

R(e∗1, e2)e
∗
3 = R(e∗1, e

∗
2)e

∗
3 = R(e2, e

∗
2)e

∗
3 = 0 .
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Using these equations and from (4.3) and (4.4) the Ricci curvature is obtained

Ric (ei, ei) = Ric (e∗i , e
∗
i ) = 4, i = 1, 2 ve Ric (e3, e3) = Ric (e∗3, e

∗
3)

Ric (ei, ej) = Ric
(
e∗i , e

∗
j

)
= 0, j = 1, 2, 3.

By direct computation the scalar curvature of Iwasava manifold is obtained as
τ = −8. Furthermore from curvature equalities the sectional curvature is

k(e1, e3) = k(e∗1, e3) = k(e2, e3) = k(e∗2, e3) = 1,

k(e1, e
∗
3) = k(e∗1, e

∗
3) = k(e2, e

∗
3) = k(e∗2, e

∗
3) = 1

and since σ = 0 we get k(e3, e
∗
3) = 0. In addition can be easily verified that

k(e1, e
∗
1) = k(e1, e

∗
2) = k(e∗1, e2) = k(e2, e

∗
2) = 0

k(e1, e2) = 3 and k(e∗1, e
∗
2) = 1.

Definition 4.8. A complex contact metric manifold M is said to be Ricci semi-
symmetric if it satisfies the condition

(4.10) R(X,Y ).Ric = 0

for all X,Y vector fields on M.

Theorem 4.9. A Ricci semi-symmetric normal complex contact metric mani-
fold is Einstein.

Proof. Let us consider a semi-symmetric complex contact metric manifold.
Then for arbitrary vector fields X,Y,W and T on M and from (4.10) we have

(4.11) Ric(R(X,Y )W,T ) +Ric(W,R(X,Y )T ) = 0.

By setting Y =W = U and X = X0, T = T0 , X0, T0 ∈ H in (4.11) we have

Ric(R(X0, U)U, T0) +Ric(U,R(X0, U)T0) = 0.

From (480) and (2.16) we get

Ric(X0, T0) +Ric(U,−g(X0, T0)U − g(JX0, T0)V + dσ(T0, X0)V ) = 0

and

Ric(X0, T0)−g(X0, T0)Ric(U,U)−g(JX0, T0)Ric(U, V )+dσ(T0, X0)Ric(U, V ) = 0.

From (4.4) we obtain

(4.12) Ric(X0, T0) = (4n− 2dσ(U, V )) g(X0, T0).

By similar way taking Y =W = V and X = X0, T = T0 , X0, T0 ∈ H in (4.11)
and from (2.11) and (2.17) we have

Ric(X0, T0)−g(X0, T0)Ric(V, V )+g(JX0, T0)Ric(U, V )−dσ(T0, X0)Ric(U, V ) = 0.

By using (4.4) we get (4.12). So, the manifold is Einstein.
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Abstract. Path graphs were proposed as a generalization of line graphs. The 2-path
graph denoted by P2(G), of a graph G has vertex set the set of all paths of length
two. Two such vertices are adjacent in the new graph if their union is a path of length
three or a cycle of length three. In this paper we will introduce the path graph of the
amalgamated graph of C3 and Cn at an edge and at a vertex. Also, some new properties
of these graphs will be given such as the independence number, domination number and
matching number.

Keywords: path graphs, amalgamated graph, independence number, domination
number, matching number.

1. Introduction

For any graph G, as a generalization of the line graph Broesma and Hoede,
see [3], defind the k-path graphs of G denoted by Pk(G). They studied some
properties of these graphs.

Definition 1.1. The k-path graph of a graph G denoted by Pk(G) has a vertex
set the set of all paths of length k in G. Two such vertices are adjacent in Pk(G)
if their union is a path or a cycle of length k + 1.

In this paper, we will focus our study on the graph P2(G).

∗. Corresponding author
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A characterization of 2-path graphs has been given by Broesma, Hoede and
by Huaien Li, see [3] and [4]. Later on, Prisner gave a new characterization
of k-path graphs, see [7]. Diameters, centers and distance in path graphs were
studied in [2], [5] and [6]. Isomorphisms of path graphs were studied in [1] and
[8]. Paths of length 2 in G as well as vertices of P2(G) will be represented by
triples abc, where b is the middle vertex of the path of length 2 in G from a to
c and abc = cba.

The following two examples explain the definition of path graphs, see [3].

Example 1.1. Let G be the graph obtained from K1,3 by subdividing all of its
edges once, this graph is denoted by S(K1,3). Observe that P2(S(K1,3)) = C6.

Figure 1. The graph S(K1,3) and P2(S(K1,3))

Example 1.2. The graph S(K1,3) – s, where s is an end vertex, is denoted by
Y . Observe that P2(Y ) = P5. Figure 2 shows the graph Y and P2(Y ).

Figure 2. The graph Y and P2(Y ).
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Definition 1.2. Any two graphs G and H are said to be amalgamated at an
edge or at a vertex if G and H have exactly one edge or one vertex in common
respectively.

We need the following result about path graphs, see [3].

Theorem 1.1. For a vertex abc of P2(G), deg(abc) = deg(a) + deg(c) -2. Note
that deg(a) and deg(c) are degrees in G, wheareas deg(abc) is the degree of the
vertex abc of P2(G).

2. The path graph of the amalgamated graph of C3 and Cn at an
edge

First, we give some examples to show how the path graph of the amalgamated
graph of C3 and Ci at an edge look like, for i=3, 4, 5 . Then from these examples
we will deduce the path graph of the amalgamated graph of C3 and Cn at an
edge and some of its properties for any n.

Example 2.1. Consider the graph G1, the amalgamated graph of C3 and C3

at an edge. We represent this graph and its path graph in Figure 3.

We have V (P2(G1)) = 1, 2, 3, ..., 8 and E(P2(G1))={e1, e2, e3, ..., e12}.

Figure 3. G1 and P2(G1).

Notice that |V(G1)|=4 and |V(P2(G1)|=8. Also we can see that |E(P2(G1)|=
12.

To find the domination number of the path graph of G1. Observe that S={4,
7} is a minimum dominating set and thus γ(P2(G1))=2.
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To find the independent number, observe that the sets X={1, 3, 6, 8}, Y={2,
4} and Z= {5, 7} are maximal independent sets. The set X is a maximum
independent set. So, α(P2(G1))=|X|=4.

In the graph P2(G1), we have the following maximal matching sets, A={e1,
e3, e9}, B={e2, e6, e7, e12}, C={e5, e8, e10} and D={e2, e4, e11}. Observe that
the matching number of P2(G1) equals 4.

Notice that P2(G1) has a Hamiltonion path which is 6, 7, 8, 4, 3, 2, 1, 5.

Example 2.2. Consider the graph G2, the amalgamated graph of C3 and C4

at an edge. We represent this graph and its path graph in Figure 4. Observe
that V(P2(G2))={ 1, 2, 3, ..., 8, 9} and E(P2(G2))={e1, e2, e3, ..., e12, e13}.

Figure 4. G2 and P2(G2).

Notice that |V(G2)|=5 and |V(P2(G2))|=9. Also we can see that |E(P2(G2))|=
13.

One can easily check that the set {4, 5, 7} is a minimum dominating set and
hence γ(P2(G2))=3.

The sets X={1, 3, 8, 9}, Y={2, 4, 5, 6} and Z= {3, 7, 9} are maxi-
mal independent sets. Observe that X is a maximum independent set and so
α(P2(G1))=|X|=4.

In the graph P2(G2), we have the following maximal matching sets, A={e1,
e3, e4, e9}, B={e4, e7, e10}, C={e2, e6, e12, e13} and D={e5, e7, e8, e11}. Observe
that the matching number equals 4.

Notice that P2(G2) has a Hamiltonion path which is 6, 9, 5, 3, 2, 1, 7, 8, 4.
Example 2.3. Consider the graph G3, the amalgamated graph of C 3 and C 5

at an edge. We represent this graph and its path graph in Figure 5.



496 EMAN HUSSEIN, HASAN AL-EZEH and OMAR ABU GHNEIM

We have V(P2(G3)) = {1, 2, 3, ...., 14} and E(P2(G3)) = {e1, e2, e3, ...,
e14}.

Figure 5. G3 and P2(G3).

Notice that |V(G3)|=6 and |V(P2(G3))|=10. Also we can see that |E(P2(G3))|=
14.

One can check that S={4, 5, 7, 10} is a minimum dominating set and thus
γ(P2(G3))=4.

Observe that the sets X={1, 3, 6, 8, 10}, Y={2, 4, 9} and Z= {4, 5, 7}
are maximal independent sets. The set X is a maximum independent set. So,
α(P2(G3))=|X|=5.

In the graph P2(G3), we have the following maximal matching sets, A={e1,
e3, e4, e9}, B={e2, e6, e7, e12, e13}, C={e5, e8, e11, e14} and D={e4, e10, e14}.
Observe that the matching number of P2(G3) equals 5.

Notice that P2(G3) has a Hamiltonion path which is 6, 9, 5, 3, 2, 1, 7, 8, 4,
10.

We follow the same way as given in the last three examples to get the general
form of the path graph of the amalgamated graph of C3 and Cn. Now we give
the following theorem that gives the number of edges and vertices of the path
graph of the amalgamated graph of C3 and Cn at an edge. This graph shown
in Figure 6.

Theorem 2.1. Let G be the amalgamated graph of C3 and Cn at an edge and
|V (G)| = n+ 1. Then |V (P2(G)| = n+ 1 + 4 and |E(P2(G) |= n+ 1 + 8.

Proof. The graph G has exactly two vertices of degree three each one of them
give rise to three vertices of P2(G). The remaining (n + 1 − 2) vertices of G
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are of degree 2. Each one of these gives rise to one vertex of P2 (G). Thus
|V(P2(G)|=6 + n+ 1− 2=n +1 + 4.

The graph G has only one vertex of degree two that is adjacent to two
vertices of degree three. This gives two edges in P2(G). The graph G has two
vertices of degree three and each one of these two vertices is adjacent to two
vertices of degree two. Each one of these vertices contributes four to E(P2(G)).
There are two vertices of degree two and each one of them is adjacent to a vertex
of degree three and a vertex of degree two.This contributes three to the edges
of P2(G). The remaining (n+1 − 5) vertices of G are of degree two and each
one of them is adjacent to two vertices of degree 2. Thus every vertex of the
remaining (n+1 − 5) vertices increase |E(P2(G))| by one. Hence |E(P2(G))| =
2 + 4 + 4 + 3 + (n+ 1− 5) = n+ 1 + 8.

Figure 6. The path graph of the amalgamated graph of C3 and Cn at an edge.

Let G be the amalgamated graph of C3 and Cn for n≥6.
From the sketch of the graph P2(G), we can get the following results

1. A minimum dominating set of P2(G) is S ={4, 5, 7, 10, 12, 14, ..., n+1+3}
if n+1 is odd, and S={ 4, 5, 7, 11, 13, 15, 17, ..., n+1+3} if n+1 is even.

Hence γ(G)=|S| =⌊ |V (P2(G))|
2 ⌋ − 2.

2. P2(G) has a Hamiltonion path which is 10, 11, 12, ..., n+1+4, 4, 8, 7, 1,
2, 3, 5, 9, 6.
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3. To find the independence number of P2(G), we have two cases to consider.
If n+1 is even, then we have the following maximal Independent sets,
X={1, 3, 6, 8, 10, 12, 14, ..., n+1+2, n+1+4}, Y={2, 4, 9, 11, 13, ..., n+1-
2, n, n+1+1, n+1+3} and Z={4, 5, 7, 10, 12 14, 16, ..., n+1, n+1+2}.
The set X is a maximum independent set. So,

α(P2(G)) = |X| = ⌊
V (P2(G))

2
⌋

If n+1 is odd, then we have the following maximal independent sets, X={1,
3, 8, 9, 11, 13, ..., n+1+2, n+1+4}, Y={2, 4, 5, 6, 10, 12, 14, ..., n, n+1+1,
n+1+3} and Z={4, 5, 7, 10, 12, 14, 16, ..., n+1+1, n+1+3}. The set Y
is a maximum independent set. So,

α(P2(G)) = |Y | = ⌊
|V (P2(G))|

2
⌋.

4. In the graph P2(G), if n+1 is even we have the following maximal matching
sets, A={e1, e3, e12, e13, e15, e17, ..., en+1+3, en+1+5, en+1+7}, B={e2, e4,
e11, e14, e16, e18, ..., en+1+2, en+1+4, en+1+6, en+1+8}, C={e2,e6,e7, e8, e14,
e16, e18, ..., en+1+4, en+1+6, en+1+8} and D={e1, e5, e9, e13, e15, e17, ...,
en+1+3, en+1+5, en+1+7}.

If n+1 is odd, then we have the following maximal matching sets, A={e1,
e3, e12, e13, e15, e17, ..., en+1+4, en+1+6}, B={ e2, e4, e9, e11, e14, e16, e18, ...,
en+1+3, en+1+5, en+1+7}, C={e2, e6, e7, e8, e14, e16, e18, ..., en+1+3, en+1+5,
en+1+7} and D={e1, e5, e9, e13, e15, e17, ..., en+1+2, en+1+4, en+1+6}.

Observe that the matching number of P2(G) equals ⌈ |E(P2(G))|−10
2 ⌉+3.

3. The path graph of the amalgamated graph of C3 and Cn at a
vertex

In this section, we will introduce the path graph of the amalgamated graph of
C3 and Cn at a vertex. Then some properties of this graph will be studied.

First we give some examples to show how the path graph of the amalgamated
graph of C3 and Ci at a vertex look like, for i=3, 4 and 5.

Example 3.1. Consider the graph G∗
3, the amalgamated graph of C3 and C3

at a vertex. This graph and its path graph are represented in Figure 7.

We have V(P2(G
∗
3)) = {a, b, c, d, e, f, g, h, i, k} and E(P2(G

∗
3)) ={e1, e2,

e3, ..., e13}.
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Figure 7. The graph of G∗
3 and P2(G

∗
3) at an edge.

Notice that |V(G∗
3)|=5 and |V(P2(G

∗
3)|=10. Also we can see that |E(P2(G

∗
3)|=

14.

The set S={e, l, d} is a minimum dominating set of P2(G
∗
3) and thus

γ(P2(G
∗
3))=3.

Observe that the sets X={a, c, k, g, f, h}, Y={b, d, h} and Z= {e, l, c}
are maximal independent sets. The set X is a maximum independent set. So,
α(P2(G

∗
3))=|X|=6.

In the graph P2(G
∗
3), we have the following maximal matching sets, A={e1,

e5, e7, e11}, B={ e2, e4, e6, e8}, C={e5, e7, e9, e12} and D={e3, e10, e13}.
Observe that the matching number of P2(G

∗
3) equals 4.

Example 3.2.Consider the graph G∗
4, the amalgamated graph of C3and C4 at

a vertex. This graph and its path graph are represented in Figure 8.

We have V(P2(G
∗
4)) = {a, b, c, d, e, f, g, h, i, k, i1} and E(P2(G

∗
4)) ={e1,

e2, e3, ...,e13, é1, é2}.
Notice that |V(G∗

4)|=6 and |V(P2(G
∗
4)|=11. Also we can see that |E(P2(G

∗
4)|=

15.

The set S={e, l, d} is a minimum dominating set of P2(G
∗
4) and thus

γ(P2(G
∗
4))=3.

Observe that the sets X={a, c, k, g, f, h, i1}, Y={b, d, h} and Z= {e, l, c}
are maximal independent sets. The set X is a maximum independent set. So,
α(P2(G

∗
4))=|X|=7.

In the graph P2(G
∗
4) we have the following maximal matching sets, A={e1,

e5, e7, e11}, B={ e2, e4, e6, e8}, C={e5, e7, e9, e12} and D={e3, e10, e13}.
Observe that the matching number of P2(G

∗
4) equals 4.
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Figure 8. The graph of G∗
4 and P2(G

∗
4) at an edge.

Example 3.3. Consider the graph G∗
5, the amalgamated graph of C3and C5 at

a vertex. We represent this graph and its path graph in Figure 9.

We have V(P2(G
∗
5)) = {a, b, c, d, e, f, g, h, i, k, i1, i2} and E(P2(G

∗
5)) ={e1,

e2, e3, ...,e13, é1, é2, é3}.

Notice that |V(G∗
5)|=7 and |V(P2(G

∗
5)|=12. Also we can see that |E(P2(G

∗
5)|=

16.

The set S={ e, l, d} is a minimum dominating set of P2(G
∗
5) and thus

γ(P2(G
∗
5))=3.

Observe that the sets X={a, c, k, g, f, h, i1}, Y={b, d, h, i2} and Z= {e, l,
c, i1} are maximal independent sets. The set X is a maximum independent set.
So, α(P2(G

∗
5))=|X|=7.

In the graph P2(G
∗
5) we have the following maximal matching sets, A={e1,

é2, e5, e7, e11}, B={ e2, é2, e4, e6, e8}, C={é2, e5, e7, e9, e12} and D={é2, e3,
e10, e13}. Observe that matching number of P2(G

∗
5) equals 5.
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Figure 9. The graph of G∗
5 and P2(G

∗
5) at an edge.

We follow the same way as the last three examples to get the general form of
the amalgamated graph of C3 and Cn at a vertex. We denote the amalgamated
graph of C3 and Cn at a vertex by G∗

n. This graph is shown in Figure 10.

Notice that if |V(G∗
n)|=n+2 then, |V(P2(G

∗
n)|=n+7, also we can see that for

all n≥4, |E(P2(G
∗
i )|= n+ 11.

Figure 10. The path graph of the amalgamated graph of C3 and Cn at a
vertex.

From the sketch of the graph P2(G
∗
n), we can get the following results

A minimum dominating set of P2(G
∗
n) is S={e, l, d}∪{i3, i5, i7, ..., ik−3,

ik−1}. Hence γ(P2(G
∗
n))=3+γ(Pk−2)=3+⌈k−2

3 ⌉, (Pk−2 is the path i2, i3, ...,
ik−1).
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Now, we want to find independent number of the graph P2(Gn*). First
denote the path i1,i2,i3,...,ik by Pk. Observe that if k is odd, then the sets
X={a, c, k, g, f, h, i1, i3,..., ik}, Y={b, d, h, i2, i4,...,ik−1} and Z={e, l, c, i1, i3,
...,ik−2} are maximal independent sets. The set X is a maximum independent
set. If k is even, then the sets X={a, c, k, g, f, h, i1, i3,..., ik−1}, Y={b, d, h, i2,
i4,...,ik} and Z={e, l, c, i1, i3, ..., ik−1} are maximal independent sets. The set
X is a maximum independent set. So, α(P2(G

∗
n))=6+α(Pk) =6+⌈K2 ⌉.

In the graph P2(G
∗
n) if k is even we have the following maximal matching

sets, A={e1, e5, e11, e7, é2, é4,....,ék}, B={ e4, e2, e8, e6,é2, é4,....,ék}, C={e9,
e12, e5, e7, é2, é4, ..., ék} and D={e3, e13, e10, é2, é4, ...ék}. If k is odd, then
P2(G

∗
n) has the following maximal matching sets, A={e1, e5, e11, e7, é2, é4,....,

ék−1}, B={ e4, e2, e8, e6,é2, é4,....,ék−1}, C={e9, e12, e5, e7, é2, é4, ..., ék−1}
and D={e3, e13, e10, é2, é4, ...ék−1}}. Observe that the matching number of

P2(G
∗
n)=|A|=4+⌈k−1

3 ⌉.

References

[1] R. E. L. Aldred, M. N. Ellingham, R. Hemminger and P. Jipsen, P3-
isomorphisims for graphs, J. Graph Theory, 24 (1997), 35-51.

[2] A. Belan and P. Jurica, Diameters in path graphs, J. Acta Math. Univ.
Comenian. LXV III, (1999), 111-125.

[3] H. J. Broersma and C. Hoede, Path graphs, J. Graph Theory, 13 (1989),
427-444.

[4] Huaien Li and Xixun Lin, On the characterization of path graphs, J. Graph
Theory, 17 (1993), 463-466.

[5] M. Knor and L. Niepel, Centers in path graphs, JCISS, 24 (1999) 79-86.

[6] M. Knor and L. Niepel, Diametr in iterated path graphs, Discrete Mathe-
matics, 233 (2001), 151-161.

[7] E. Prisner, Recognizing k-path graphs, J. Discrete Applied Mathematics, 99
(2000), 169-181.

[8] X. Zhao, Isomorphisims of P4-graphs, Australasian J. of Compinatorics, 15
(1997), 135-143.

Accepted: 10.11.2018



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (503–516) 503

A characterization of some alternating group by its order and
special conjugacy class sizes

Shitian Liu∗

School of Mathematical Science and Statistics
Sichuan University of Science and Engineering
Zigong Sichuan, 643000
China
s.t.liu@yandex.com

Xianhua Li
School of Mathematical Science

Soochow University

Suzhou, Jiangsu, 251125

P. R. China

xhli@suda.edu.cn

Abstract. Let G be a group and N(G) be the set of the sizes of conjugacy class of
G. Let mp(G) be the number from N(G) which is not divisible by p and let An be
the alternating group of degree n. The alternating groups A5, A6, A7, A8, and A9 are
characterized by their orders and special conjugacy class sizes. So in generality, are
the alternating groups characterized by their orders and some special conjugacy class
size(s)? In this paper, we show that G is a finite group such that mp(G) = mp(An) and
m2(G) = m2(An) where n ∈ {p, p+ 1, p+ 2}, then G is isomorphic to An.

Keywords: element order, alternating group, Thompson’s problem, conjugacy classes
sizes.

1. Introduction

All groups in this paper are finite, and simple groups are non-abelian. For a
group G, let π(G) denote the set of prime divisors of |G|. The prime graph of
G is a graph GK(G) with vertex set π(G) and two distinct vertices q and q are
adjacent by an edge if G has an element of order pq. We denote by s(G) the
number of connected components of GK(G). Let πi = πi(G), i = 1, 2, · · · , s(G),
be the connected components of GK(G). For an even order group, let 2 ∈ π1(G).
Then |G| can be expressed as a product of m1,m2, · · · ,ms(G), where mi’s are
positive integers with π(mi) = πi. These mi’s are called the order components
of G. Obviously, mi’s are odd components of G with i ≥ 2. Using [14] and
[23], we list the order components for non-abelian finite simple groups L in
Tables 1, 2 and 3. This information is used to prove our main theorem. Let An

∗. Corresponding author
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be the alternating group of degree n. For alternating group Ap with p prime,
p ∈ {mi, i ≥ 2}. In 1987, J. G. Thompson put forward the following conjecture.

Conjecture 1 ([19, Problem 12.38]). Let G be a group with trivial center. If L
is a simple group satisfying that N(G) = N(L), then G ∼= L.

Some authors proved that Thompson’s conjecture is valid for groups: Ln(q)
[1, 5, 13], Dn(q) [2], 2Dn(q) [3], E7(q) [25], Ap+3 [18], for simple groups with
s(G) ≥ 2 [7, 8], Ap+4 [27], all almost sporadic simple groups [21], A10 [12], A22

[24], A26 [17]. Recently, G. Chen and J. Li contributed their interests on the
Thompson’s conjecture under a weak condition. They successfully characterized
some sporadic simple groups and simple K3-groups (A finite simple group G is
called a simpleKn-group if G is simple and n = |π(G)|) in [16]. Chen et al in [26]
showed that simple K4-groups are also characterized by its order and one special
conjugacy class size. For convenience, we denote by mp(G) the p

′-number from
N(G). As the development of this topic, we will prove the following.

Main Theorem 1.2. Let G be a finite group and let n ∈ {p, p+1, p+2} where
5 ≤ p is a prime. Then G ∼= An if and only if |G| = |An|, mp(G) = mp(An) and
m2(G) = m2(An).

We introduce some notation which will be needed in the proof of the main
theorem. Let a · b denote the products of an integer a by an integer b. Let G be
a group and r a prime. Then we denote the number of the Sylow r-subgroup
Gr of G by nr(G) or nr. Let Sn be the symmetric group of degree n. Let ω(G)
be the set of element orders of G. Let x ∈ ω(G). Let xG denote the conjugacy
classes of G containing x. The other symbols are standard (see [9], for instance).

2. Some preliminary results

In this section, we give some lemmas used to prove the main theorem.

Let exp(n, r) = a denote that ra | n but ra+1 - n.

Lemma 1. Let Ap+k be an alternating group of degree p + k where p + i is
composite, i = 1, · · · , k, and p is a prime. Then the following hold.

(1) exp(|Ap+k|, 2) =
∞∑
i=1

[p+k
2i

]− 1. In particular, exp(|Ap+k|, 2) ≤ p+ k − 1.

(2) exp(|Ap+k|, r) =
∞∑
i=1

[p+k
ri

] for each r ∈ π(Ap+k)\{2}. Furthermore,

exp(|Ap+k|, r) < p+k
2 , where 3 ≤ r ∈ π(Ap+k). In particular, if r > [p+k2 ],

then exp(|Ap+k|, r) = 1.

Proof. (1) By the definition of Gaussian integer function, we have that
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exp(|Ap+k|, 2) =

∞∑
i=1

[
p+ k

2i
]− 1

= ([
p+ k

2
] + [

p+ k

22
] + [

p+ k

23
] + · · · )− 1

≤ (
p+ k

2
+
p+ k

22
+
p+ k

23
+ · · · )− 1

= (p+ k)(
1

2
+

1

22
+

1

23
+ · · · )− 1

= p+ k − 1.

(2) Similarly as (1), we have that

exp(|Ap+k|, r) ≤ (p+ k)(
1

r
+

1

r2
+

1

r3
+ · · · )

=
p+ k

r − 1

≤ p+ k

2

for an odd prime r ∈ π(Ap+k). If r > [p+k2 ], exp(|Ap+k|, r) = 1.

The proof is complete.

Let G be a group whose order is divisible by prime p. The group G is called
a Cpp-group if the centralizers of a p-element are p-groups (see [4], for instance).

Lemma 2. Let An be an alternating group of degree n, where n = p, p+1, p+2.
Then the following hold.

(1) mp(An) =


(p− 1)!

2
, n = p;

(p− 1)! · (p+ 1)

2
, n = p+ 1;

(p− 1)! · (p+ 1) · (p+ 2)

2
, n = p+ 2.

(2) Let p = 4k + 1. Then m2(An) =



p!

22k · (2k)!
, n = p;

(p+ 1)!

2 · 22k · (2k)!
, n = p+ 1;

p!

22k · (2k)! · 3!
, n = p+ 2.

Let p = 4k + 3. Then m2(An) =



p!

22k3! · (2k)!
, n = p;

(p+ 1)!

2 · 22(k+1) · (2(k + 1))!
, n = p+ 1;

(p+ 2)!

22(k+1) · (2(k + 1))!
, n = p+ 2.
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Proof. We knew that An is a Cpp-group. Let’s say the cycle type has c1 1-
cycles, c2 2-cycles, and so on, up to ck k-cycles, where 1c1+2c2+ · · ·+ kck = n.
The number of permutations in the conjugacy classes described by the ci’s is

n!∏k
i=1 i

ci
∏k
i=1 ci!

.

Conjugacy classes of permutation in Sn stay the same size in An for all cycle
types except those cycle type consists of parts that are all odd and distinct.

Table 1. The order components of finite simple groups L with s(L) = 2
L Restrictions of L m1 m2
An 6 < n = p, p + 1, p + 2 n!/2p p

one of n, n − 2 is not a prime

Ap−1(q) (p, q) ̸= (3, 2), (3, 4) qp(p−1)/2 ∏p−1
i=1 (qi − 1)

(qp−1)
(q−1)(p,q−1)

Ap(q) (q − 1) | (p + 1) qp(p+1)/2(qp+1 − 1)
∏p−1

i=2 (qi − 1) qp−1
q−1

2Ap−1(q) qp(p−1)/2 ∏p−1
i=1 (qi − (−1)i)

(qp+1)
(q+1)(p,q+1)

2Ap(q) (q + 1) | (p + 1) qp(p+1)/2(qp+1 − 1)
∏p−1

i=2 (qi − 1) qp+1
q+1

(p, q) ̸= (3, 3), (5, 2)
2A3(2) 26 · 34 5

Bn(q) n = 2m ≥ 4, q odd qn
2
(qn − 1)

∏n−1
i=1 (q2i − 1) qn+1

2

Bp(3) 3p
2
(3p + 1)

∏p−1
i=1 (32i − 1) 3p−1

2

Cn(q) n = 2m ≥ 2, q odd qn
2
(qn − 1)

∏n−1
i=1 (q2i − 1) qn+1

(2,q−1)

Cp(q) q = 2, 3 qp
2
(qp + 1)

∏p−1
i=1 (q2i − 1) qp−1

(2,q−1)

Dp(q) p ≥ 5, q = 2, 3, 5 qp(p−1) ∏p−1
i=1 (q2i − 1) qp−1

q−1

Dp+1(q) q = 2, 3 qp(p+1)(qp + 1)(qp+1 − 1) qp−1
(2,q−1)∏p−1

i=1 (q2i − 1)/(2, p − 1)
2Dn(q) n = 2m ≥ 4 qn(n−1) ∏n−1

i=1 (q2i − 1) qn+1
(2,q+1)

2Dn(2) n = 2m + 1 ≥ 5 2n(n−1)(2n + 1)(2n−1 − 1) 2n−1 + 1∏n−2
i=1 (22i − 1)

2Dp(3) 5 ≤ p ̸= 2m + 1 3p(p−1) ∏p−1
i=1 (32i − 1) 3p+1

4
2Dn(3) 9 ≤ 2m + 1 ̸= p 3n(n−1)(3n + 1)(3n−1 − 1) 3n−1

2∏n−1
i=1 (32i − 1)/2

G2(q) 2 < q ≡ ϵ mod 3, ϵ = ±1 q6(q3 − ϵ)(q2 − 1)(q + ϵ) q2 − ϵq + 1
3D4(q) q12(q6 − 1)(q2 − 1)(q4 + q2 + 1) q4 − q2 = 1

F4(q) q odd q24(q8 − 1)(q6 − 1)2(q4 − 1) q4 − q2 + 1
2F4(2)

′ 211 · 33 · 52 13

E6(q) q36(q12 − 1)(q8 − 1)(q6 − 1) (q6 + q3 + 1)/(3, q − 1)

(q5 − 1)(q3 − 1)(q2 − 1)
2E6(q) q > 2 q36(q12 − 1)(q8 − 1)(q6 − 1) (q6 − q3 + 1)/(3, q + 1)

(q5 + 1)(q3 + 1)(q2 − 1)

M12 26 · 33 · 5 5

J2 27 · 33 · 52 7

Ru 214 · 33 · 53 · 7 · 13 29

He 210 · 33 · 52 · 73 17

McL 27 · 36 · 53 · 7 11

Co1 221 · 39 · 54 · 72 · 11 · 13 23

Co3 210 · 37 · 53 · 7 · 11 23

Fi22 217 · 39 · 52 · 7 · 11 13

HN 214 · 36 · 56 · 7 · 11 19

Case 1. n = p
In this case, n = p = p · 1 and so the cycle types are odd and so by [22], the

conjugacy classes of a p-element of Ap split into two classes and so mp(Ap) =
p!
2p = (p−1)!

2 .
Case 2. n = p+ 1.
In this case, n = p + 1 = 1 · 1 + p · 1 and so the cycle types are odd and so

by [22], the conjugacy classes of a p-element of Ap+1 split into two classes and

so mp(Ap+1) =
p!(p+1)

2p = (p−1)!·(p+1)
2 .

Case 3. n = p+ 2.
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Then n = p+2 = 1·2+p·1 and somp(Ap+2) =
p!(p+1)(p+2)

2p = (p−1)!·(p+1)·(p+2)
2 .

Similar as the case mp(An), we can compute the m2(An).

Lemma 3 ([11, pp. 85, Theorem 80]). For any prime p, (p− 1)! ≡ −1(mod p).

Table 2. The order components of finite simple groups L with s(L) = 3
L Restrictions of L m1 m2 m3

An 6 < n = p, p − 2 are primes n!
2n(n−2)

p p − 2

A1(q) 4 | q + 1 q + 1 q q−1
2

A1(q) 4 | q − 1 q − 1 q q+1
2

A1(q) 2 | q q q + 1 q − 1
A2(2) 8 3 7
2A5(2) 215 · 36 · 5 7 11

2Dp(3) 5 ≤ p = 2m + 1 2 · 3p(p−1)(3p−1 + 1) 3p−1

2
3p+1

4∏p−2
i=1 (32i − 1)

2Dp+1(2) n ≥ 2, p = 2m − 1 2p(p−1)(2p − 1) 2p + 1 2p+1 + 1∏p−1
i=1 (22i − 1)

G2(q) q ≡ 0 mod 3 q6(q2 − 1)3 q2 − q + 1 q2 + q + 1
2G2(q) q = 32m+1 > 3 q3(q2 − 1) q −

√
3q + 1 q +

√
3q + 1

F4(q) q even q24(q6 − 1)2(q4 − 1)2 q4 + 1 q4 − q2 + 1
2F4(q) q = 22m+1 > 2 q12(q4 − 1)(q3 + 1) q2 −

√
2q3+ q2 +

√
2q3+

q −
√
2q + 1 q +

√
2q + 1

E7(2) 236 · 311 · 52 · 73 · 11 73 127
13 · 17 · 19 · 43

E7(3) 223 · 363 · 52 · 73 · 112 757 1093

132 · 19 · 37 · 41 · 61 · 73 · 547
M11 24 · 32 5 11

M23 27 · 32 · 5 · 7 11 23

M24 210 · 33 · 5 · 7 11 13

J3 27 · 35 · 5 17 19

HS 29 · 32 · 53 7 11

Suz 213 · 37 · 52 · 7 11 13

Co2 218 · 36 · 53 · 7 11 23

Fi23 218 · 313 · 52 · 7 · 11 · 13 17 23

F3 215 · 310 · 53 · 72 · 13 19 31

F2 224 · 313 · 56 · 72· 31 47
11 · 13 · 17 · 19 · 23

Table 3. The order components of finite simple groups L with s(L) > 3
L Restrictions of L m1 m2 m3 m4 m5 m6

A2(4) 26 3 5 7
2B2(q) q = 22m+1 > 2 q2 q − 1 q −

√
2q + 1 q2 +

√
2q + 1

2E6(2) 236 · 39 · 52 · 72 · 11 13 17 19

E8(q) q ≡ 2, 3 mod 5 q120(q20 − 1)(q18 − 1) q10−q5+1

q2−q+1

q10+q5+1

q2+q+1
q8 − q4 + 1

(q14 − 1)(q12 − 1)

(q10 − 1)(q8 − 1)

(q4 + 1)(q4 + q2 + 1)

M22 27 · 32 5 7 11

J1 23 · 3 · 5 7 11 19

ON 29 · 34 · 5 · 73 11 19 31

LyS 28 · 37 · 56 · 7 · 11 31 37 67

Fi′24 221 · 316 · 52 · 73 · 11 · 13 17 23 29

F1 246 · 320 · 59 · 76 · 112 · 133 41 59 71
17 · 19 · 23 · 29 · 31 · 47

E8(q) q ≡ 0, 1, 4 mod 5 q120(q18 − 1)(q14 − 1) q10−q5+1

q2−q+1

q10+q5+1

q2+q+1
q8 − q4 + 1 q10+1

q2+1

(q12 − 1)2(q10 − 1)2

(q8 − 1)2(q4 + q2 + 1)

J4 221 · 33 · 5 · 7 · 113 23 29 31 37 43

Lemma 4 ([10, Theorem 9.3.1]). Let G be a finite solvable group and |G| = mn,
where m = pα1

1 · · · pαr
r , (m,n) = 1. Let π = {p1, · · · , pr} and hm be the number

of Hall π-subgroups of G. Then hm = qβ11 · · · q
βs
s satisfies the following conditions

for all i ∈ {1, 2, · · · , s}:
(1) qβii ≡ 1(mod pj) for some pj.

(2) The order of some chief factor of G is divided by qβii .
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Lemma 5 ([3, Lemma 1.2] and [20, Lemma 7]). Let x, y ∈ G, (|x|, |y|) = 1, and
xy = yx. Then

(1) CG(xy) = CG(x) ∩ CG(y);

(2) |xG| divides |(xy)G|;

(3) If |xG| = |(xy)G|, then CG(x) ≤ CG(y)

Lemma 6 ([15, Lemma 1]). If n ≥ 6 is a natural number, then there are at
least s(n) prime numbers pi such that n+1

2 < pi < n. Here
(1) s(n) = 6 for n ≥ 48;
(2) s(n) = 5 for 42 ≤ n ≤ 47;
(3) s(n) = 4 for 38 ≤ n ≤ 41;
(4) s(n) = 3 for 18 ≤ n ≤ 37;
(5) s(n) = 2 for 14 ≤ n ≤ 17;
(6) s(n) = 1 for 6 ≤ n ≤ 13.
In particular, for every natural number n > 6, there exists a prime p such

that n+1
2 < p < n− 1, and for every natural number n > 3, there exists an odd

prime number p such that n− p < p < n.

Lemma 7 ([15, Lemmas 3 and 6]). Let P be a finite simple group. Then the
following results hold.

(1) If GK(P ) is disconnected graph GK(P ). Then mi(P ) = 1 for 2 < i <
t(P ). Let ni stand for the only element of mi(P ) for i > 1. Then P , and mi

for 2 < i < t(P ) are such as in Tables 1-3, where p is an odd prime number.
(2) If P is not isomorphic to 2G2(q), then, for every i, there is at most one

prime number s ∈ πi(P ) such that (r + 1)/2 < s < r.
(3) If P is isomorphic to 2G2(q), then there are at most three prime numbers

s ∈ π(P ) such that (r + 1)/2 < s < r.
(4) For every prime number s satisfying the inequality (r + 1)/2 < s < r,

the order of the factor group Aut(P )/P is not divisible by s.

A finite group G is 2-Frobenius group if G has a normal series 1 ≤ H ≤
K ≤ G such that K and G/K are Frobenius groups with Kernels H and K/H,
respectively.

Lemma 8 ([23]). If G is a finite group such that t(G) ≥ 2, then G has one of
the following structures:

(1) G is a Frobenius group or 2-Frobenius group;
(2) G has a normal series 1 ≤ H ≤ K ≤ G such that π(G/K) ∪ π(H) ⊆ π1

and K/H is a non-abelian simple group. In particular, H is nilpotent, G/K .
Out(K/H) and the odd order components of G are the odd order components of
K/H.

Lemma 9 ([6]). Let G be a Frobenius group of even order with kernel K and
complement H. Then s(G) = 2, the prime graph components of G are π(H)
and π(K) and the following assertions hold:
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(1) K is nilpotent;

(2) |K| ≡ 1(mod |H|).

3. The proof of Main Theorem

In this section, we give the main theorem’s proof.

Proof of the main theorem.

Proof. By [16] and [26], the alternating groups A5, A7, A8, A9 and A10 are
valid for the main theorem. So in the following, we assume that p ≥ 11.

We will prove the theorem by the following lemmas.

Lemma 10. G is insoluble.

Proof. By Lemma 1 and hypotheses, we have that |Gp| = |An|p = p. It’s
known that p is the greatest prime divisor of |An|. Assume that G is soluble.
We consider three cases.

Case 1. n = p.

By Lemma 2, mp(Ap) =
(p−1)!

2 . On the other hand, |G| = p ·mp(G) =
p!
2 and

so G has a maximal subgroup of mp(Ap) (actually, the maximal subgroup is a

Hall π(G)\{p}-subgroup). Then by Lemma 4, (p−1)!
2 ≡ 1(mod p). On the other

hand, by Lemma 3 (p − 1)! ≡ −1(mod p). It follows that p = 3 contradicting
p ≥ 11.

Case 2. n = p+ 1.

By Lemma 2,mp(Ap+1) =
(p−1)!·(p+1)

2 . Note that |G| = p·mp(Ap+1) =
(p+1)!

2 .
So G has a maximal subgroup of order mp(Ap+1) (actually, the maximal sub-

group is a Hall π(G)\{p}-subgroup). Then by Lemma 4, (p−1)!·(p+1)
2 ≡ (p−1)!

2 ≡
1(mod p). But by Lemma 3 (p − 1)! ≡ −1(mod p). It follows that p = 3
contradicting p ≥ 11.

Case 3. n = p+ 2.

By Lemma 2, mp(Ap+2) = (p−1)!·(p+1)(p+2)
2 . Similarly as the proof of Case

1 or 2, we have (p−1)!·(p+1)(p+2)
2 ≡ (p − 1)!(p + 2) ≡ 1(mod p). It follows from

Lemma 3, that (p+ 2) ≡ −1(mod p) so p = 3, a contradiction.

Lemma 11. p is the odd component of G. In particular s(G) ≥ 2.

Proof. We knew that An with n ∈ {p, p + 1, p + 2} is Cpp-group. In fact, we
show that G is also a Cpp-group. Assume the contrary, then there exists an
element x of G of order r such that r ·p | |CG(x)|. Let y be an element of CG(x)
having order p. Then xy = yx. Since |Gp| = p, then Gp ia abellian and |yG| is a
p′-number. But by Lemma 5, |yG| | |(xy)G|. It follows that [|xG|, |yG|] | |(xy)G|.
But mp(G) is the only maximal p′-number of conjugacy classes sizes of G since
|G| = n! and |G| = p ·mp(G). Thus p divides |xG|. Hence pr ·mp(G) divides
|(xy)G| Therefore |(xy)G| ≥ prmp(G) ≥ 2|G|, a contradiction.
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By Lemma 11, s(G) ≥ 2, and so, by Lemma 8, G has one of the following
structures:

(1) G is a Frobenius group or 2-Frobenius group;

(2) G has a normal series 1 ≤ K ≤ H ≤ G such that π(G/H) ∪ π(K) ⊆ π1
and H/K is a non-abelian simple group. In particular, K is nilpotent,
G/H . Out(H/K) and the odd order components of G are the odd order
components of H/K.

So in the following, we consider case by case.

Lemma 12. G is neither a Frobenius group nor a 2-Frobenius group.

Proof. Suppose the contrary. we first consider when G is a Frobenius group
with kernel K and complement H. By Lemma 9, {π(K), π(H)} = {π((p −
1)!), {p}}. The following two cases are considered:

(1) If π(H) = {p}, then p ≥ 11 and π(K) = π((p − 1)!). By Lemma 6, there
is a prime r such that p+1

2 < r < p. Since K is nilpotent and Gr is of
order r, then Lemma 9(2) implies p = |H| | |Gr| − 1 = r − 1 < p − 1, a
contradiction.

(2) If π(K) = {p}, then π(H) = π((p−1)!). Lemma 6, there is a prime r with
that p+1

2 < r < p and |Hr| = r. Hence [K]Hr is a Frobenius group and

so, |Hr| | |K| − 1 < p− 1. It follows that r < p−1
2 , a contradiction.

Let G be a 2-Frobenius group. Then G is soluble contradicting to Lemma 10.

Lemma 13. Let G be a finite group and r ∈ π(G). If r2 - |G|, then G has
a normal series 1 ≤ K ≤ H ≤ G, such that H/K is a simple group and
r ∈ π(H/K).

Proof. Since G is a finite group, G has a chief series. So let G0 ≤ G1 ≤
G2 · · · ≤ Gl = G be a chief series of G. There exists some t, such that 1 ≤ t ≤ l
and r ∈ π(Gt) \ π(Gt−1). Let H = Gt and K = Gt−1, then 1 ≤ K ≤ H ≤
G is a normal series of G and H/K is a chief factor of G. Therefore H/K
is a minimal normal subgroup of G/K. We know that the chief factors are
characteristically simple. Also every characteristically simple group is a simple
group or a product of isomorphic simple groups. So H/K is a simple group or
a product of isomorphic simple groups. If r2 - |G|, then by Lemma 1, |Gr| = r
and r > [n2 ]. By Lemma 7(4), r - Out(H/K). So we have r | |K|. By our
assumption, p ≥ 11 and so there is a Hall {p, r}-subgroup L with p ̸= r. So L
is cyclic and hence there is an element of order p · r, contradicting Lemma 11.
It follows that r ∈ π(H/K).

Lemma 14. H/K is not isomorphic to any sporadic simple groups.
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Proof. Suppose the contrary. By Lemma 13, for any prime r such that p+1
2 <

r < p, then r ∈ π(H/K). By Tables 1, 2 and 3, H/K is not isomorphic to
one of the following groups: M12, Ru, He, McL, Co1, Co3, HN , M11, M23,
M24, J3, Co2, Fi23, F2, F3, J1, ON , LyS, Fi

′
24, F1 and J4. If K/H ∼= J2, then

|K/H| = 27 · 33 · 52 · 7, so p = 7 and hence, 52 | |H/K| - |An| contradicting
Lemma 1, If K/H is isomorphic to McL or HS, then p = 11 and hence, 53 |
|H/K| - |An|, a contradiction. If H/K is isomorphic to Szu or Fi22, then p = 13
and hence, |H/K| - 2|An|, contradiction. Finally, H/K ∼= M22, then p = 11.
Since |G| = |K||H/K||G/H|, then |H|3 = 33. By Lemma 11, 3 · p ̸∈ ω(G). It
follows that the Sylow 11-subgroup acts fixed freely on the set of elements of
order 3 and so 11 | 32 − 1, a contradiction.

Lemma 15. H/K is not isomorphic to any finite simple groups of Lie type.

Proof. By Lemma 10 G is insoluble. If r ∈ π(G) and r2 - |G|, then by Lemma
13, r | |H/K|. By Lemma 11, p is the odd component of G and so is of H/K.
By Lemma 7

(1) If P is not isomorphic to 2G2(q), then, for every i, there is at most one
prime number s ∈ πi(P ) such that (r + 1)/2 < s < r.

(2) If P is isomorphic to 2G2(q), then there are at most three prime numbers
s ∈ π(P ) such that (r + 1)/2 < s < r.

(3) s(G) ≥ 2 and p ∈ {mi} for i ≥ 2

In the following, we consider three cases.

(1) s(G) = 2.

1.1. H/K ∼= Ap′−1(q
′) with (p′, q′) ̸= (3, 2), (3, 4). We have

p =
q′p

′ − 1

(q′ − 1)(p′, q′ − 1)
.

By Lemma 6, p ≤ 13 and so (p′, q′) = (3, 3). Thus |A2(3)| = 33 · 23 · 2 · 13,
which contradicting Lemma 13.

1.2. H/K ∼= Ap′(q
′) with q′ − 1 | p′ + 1. Then p = q′p

′−1
q′−1 . By Lemma 6,

p ≤ 13 and and so (p′, q′) = (3, 3). Thus |A3(3)| = 33 · 24 · 5 · 23 · 2 · 13,
which contradicting Lemma 13.

1.3. H/K ∼=2 Ap′−1(q
′). Then

p =
q′p

′
+ 1

(q′ + 1)(q′, p′ + 1)
.

Similarly, p ≤ 13 and so q′ = 4, p′ = 3. Hence |2A2(4)| = 212 · 3 · 5 · 3 · 13.
But 11 | |H/K|, a contradiction.
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1.4. H/K ∼=2 A3(2). Then p = 5 and so 26 - 2|An| by Lemma 1, a
contradiction.

1.5. H/K ∼= Bn(q
′) with n = 2m ≥ 4, q′ odd. Then p = (q′n + 1)/2. Thus

q′ = 5 and n = 2 � 4, contradicting Lemma 1.

1.6. H/K ∼= Bp′(3). We have p = 3p
′−1
2 and so p = 3. It follows that

39 | |An|, a contradictino.

1.7. H/K ∼= Cn(q
′) with n = 2m ≥ 2, q′ odd. Then p = q′n+1

(2,q−1) and so

q′ = 5, n = 2. It follows that 54 | |An|, a contradiction.

1.8. H/K ∼= Cp′(q
′) with q′ = 2, 3. Then p = q′p

′−1
(2,q′−1) and so p′ = 3, q′ = 3.

Whence, 39 | |An|, a contradiction.

1.9. H/K ∼= Dp′(q
′) with p′ ≥ 5, q = 2, 3, 5. Then p = q′p

′−1
q′−1 and so

p′ = 3 � 5, a contradiction.

1.10. H/K ∼= Dp′+1(q
′) with q′ = 2, 3. p = q′p

′−1
(2,q′−1) and so p′ = 3, q′ = 3.

Whence, 312 | |An|, a contradiction.

1.11. H/K ∼=2 Dn(q
′) with n = 2m ≥ 4. Then p = q′n+1

(2,q′+1) . Then

p = q′n+1
(2,q′+1) and so q′ = 5, n = 2. Since |2D2(5)| = 52 · 22 · 13, then

11 - |An| contradicting Lemma 13.

1.12. H/K ∼=2 Dn(2) with n = 2m + 1 ≥ 5, H/K ∼=2 Dn(3) with 9 ≤
2m + 1 ̸= p′ and H/K ∼= F4(q

′) with q′ odd. There is no prime number

r such that 7 ≤ r = 2n−1 + 1 ≤ 13, 7 ≤ r = 3n−1+1
2 ≤ 13 and 7 ≤ r =

q′4 − q′2 + 1 ≤ 13.

1.13. H/H ∼=2 Dp(3) with 5 ≤ p′ ̸= 2m = 1. Since p = 3p
′
+1
4 , then p′ = 3.

Therefore 36 | |An|, a contradiction.

1.14. H/K ∼=3 D4(q
′). Then p = q′4−q′2+1 and so q′ = 2 since 7 ≤ p ≤ 13.

But 11 - |3D4(2)| = 212 · 32 · 7 · 3 · 3 · 7 · 13 contradicting Lemma 13.

1.15. H/K ∼= G2(q
′) with 2 < q′ ≡ ϵ mod 3, ϵ = ±1. Then p = q′2−εq′+1

and so q′ = 4, ε = 1. It follows that 224 | 2|An|, a contradiction.

1.16. H/K ∼=2 F4(2)
′. Then p = 13 and 11 | |2F4(2)

′|, a contradiction.

1.17. H/K ∼= E6(q
′). Then p = q′6+q′3+1

(3,q′−1) > 13 and so we rule out this
case.

(2) s(G) = 3.

2.1. H/K ∼= A1(q
′) with 4 | q′ + 1. By Lemmas 7(2) and 13, 7 ≤ p ≤ 13.

Thus p = q′ or p = q′−1
2 .

If the former, then p = q′ = 7 and p = q′ = 11. If p = q′ = 7, then 5 - |An|,
a contradiction. If p = q′ = 11, then 7 - |An|, a contradiction.
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If the latter, then q′ = 23 � 13, a contradiction.

2.2. H/K ∼= A1(q
′) with 4 | q − 1. Then p = q′ or p = q′+1

2 . If the
former, then p = q′ = 13 and so 7 - |An|, a contradiction. If the latter,
then p = 13, q′ = 25 and so 7, 11 - |An|, a contradiction.

2.2. H/K ∼= A1(q
′) with 2 | q′. Then p = q′ + 1 or p = q′ − 1. If the

former, there is no solution since 7 ≤ p ≤ 13. If the latter, q′ = 8 and so
5 - |An|, a contradiction.

2.3. H/K ∼= A2(2). Then p = 7 and so 5 - |A2(2)|, a contradiction.

2.4. H/K ∼= E7(2) or H/K ∼= E7(3). Then the primes are larger than 13
and so we rule out these cases.

2.5. H/K ∼=2 A5(2). Then p = 11. In this case, 215 - 2|An|, a contradic-
tion.

2.6. H/K ∼=2 Dp′(3) with 5 ≤ p′ = 2m+1. Then p = 3p
′−1+1
2 or 3p

′
+1
4 . By

Lemmas 7(2) and 13, 7 ≤ p ≤ 13. Thus the equations have no solution.
Similar, we can rule out “H/K ∼=2 Dp′+1(2) with m ≥ 2, p′ = 2m − 1”.

2.7. H/K ∼= G2(q
′) with q′ ≡ 0 mod 3. Then p = q′2 − q′ + 1 or p =

q′2 + q′ + 1 and so q′ = 3. But 5 - |An|, a contradiction.

2.8. H/K ∼=2 G2(q
′) with q′ = 32m+1 > 3. Then p = q′ −

√
3q + 1 or

p = q′+
√
3q+1. By Lemmas 7(3) and 13, p ≤ 37. It follows that q′ = 27.

Thus 11, 31 - |An|, a contradiction.

2.9. H/K ∼=2 F4(q
′) with q′ = 22m+1 > 2 and H/K ∼= F4(q

′) with q′ even.
In both cases, there is no solution.

(3) s(G) > 3.

3.1. H/K ∼= A2(4). Then |K/H| = 26 · 32 · 5 · 7 and so p = 7, m7(A2(4)) =
26 · 32 · 5.
If n = 7, then 26 | 7!, a contradiction.

If n = 8, then by [9, pp. 24], m2(A2(4)) = 32 · 5 · 7. Since in this case,
|H/K| = |A8|, then |G| = |A8|. But m2(A8) = 3 · 5 · 7, a contradiction by
Lemma 2.4 of [1].

If n = 9, then |G| = |A9| = 26 · 34 · 5 · 7 by hypotheses, and so m2(A9) =
33 · 5 · 7, m7(A9) = 26 · 34 · 5. By Lemma 8(2) and [9], A2(4) ≤ G/K ≤
Aut(A2(4)). If G/K ∼= A2(4), then |K| = 32 and Z(G) = 32. It follows
that there is an element of order 3 · 7, contradicting to Lemma 11. If
G/K ∼= Aut(A2(4)), then since |Out(A2(4))| = |2 × S3| = 22 · 3, order
consideration rules out.

3.2. H/K ∼=2 E6(2). Then p = 19 
 13, a contradiction.

3.2. H/K ∼=2 B2(q
′) with q′ = 22m+1 > 2. Then p = q′ − 1, q′ −

√
2q′ + 1

or q′ +
√
2q′ + 1 and so, q′ = 8. But 11 - |An|, a contradiction.
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3.3. H/K ∼= E8(q
′). In these cases, p > 13 and so , we rule out these

cases.

This completes the proof of the lemma.

Lemma 16. G is isomorphic to An with n ∈ {p, p+ 1, p+ 2}.

Proof. By Lemmas 12, 14 and 15, H/K ∼= An. Order consideration, we have
that n = p, p+ 1, p+ 2.

If n = p, then Ap ≤ H/K ≤ Sp. If H/K ∼= Ap, then order consideration gets
the desired results. If H/K ∼= Sp, then we rule out this case by group order.

Similarly, we can conclude that G ∼= Ap+1 if n = p+1; G ∼= Ap+2 if n = p+2.

The Lemma is proved.

This completes the proof of Main Theorem.
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Abstract. Let R be an associative ring with identity and let C(R) be the center of
a ring R and let g(x) be a fixed polynomial in C(R)[x]. We defined R to be g(x)-invo
clean if every element in R can be written as a sum of an involution and a root of g(x).
In this paper, we investigate conditions on a ring to be g(x)-invo clean ring. Some
properties and several examples are given.

Keywords: clean rings, g(x)-invo clean rings, invo clean rings.

1. Introduction

Let R be an associative ring with identity. Following [6], we define an element
r of a ring R to be clean if there is an idempotent e ∈ R and a unit u ∈ R such
that r = u+e. A clean ring is defined to be one in which every element is clean.
Clean rings were first introduced by Nicholson [6] as a class of exchange rings.

The invo-clean rings was introduced by Danchev [2]. He defined and com-
pletely described the structure of invo-clean rings having identity.

Camillo and Simon [1] , defined g(x)-clean rings. An element r ∈ R is called
g(x)-clean if r = s+u where g(s) = 0 and u is a unit of R and R is a g(x)-clean
ring if every element is g(x)-clean. The (x2 − x)-clean rings are precisely the
clean rings. In Fan and Yang [3], authors studied more properties of g(x)-clean
rings. Among many conclusions, they proved that if g(x) ∈ (x−a)(x−b)C(R)[x].
where a, b ∈ C(R) with (b − a) unit in R, then R is a clean ring if and only if
R is (x− a)(x− b)-clean. For the study of clean rings and their generalizations,
we refer to [4], [5], [7].

In this paper, we introduce the notion of g(x)-invo clean ring. A ring R is
said to be g(x)-invo clean ring if any element in R can be written as a sum of

∗. Corresponding author
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involution and a root of g(x). Clearly, invo-clean rings are (x2 − x)-invo clean
rings.

Throughout this paper, we assume that all rings are associative with identity
and all modules are unitary. As usual, U(R) denotes the set of all units of R,
Inv(R) the subset of U(R) consisting of all involutions (i.e.; v ∈ Inv(R) then
v2 = 1) of R, Id(R) the set of all idempotents of R and Nil(R) the set of all
nilpotents, C(R) denotes the center of R and g(x) be a fixed polynomial with
coefficients in C(R).

2. g(x)-Invo clean rings

In this section, we define g(x) -invo clean rings, we give some properties of
g(x)-invo clean ring and present several examples.

Definition 2.1. Let R be a ring and let g(x) be a fixed polynomial in C(R)[x].
An element r ∈ R is called g(x)-invo clean if r = v + s where g(s) = 0 and v is
an involution of R i.e., v2 = 1. We say that R is g(x)-invo clean if every element
in R is g(x)-invo clean.

Clearly, Every (x2 − x)-invo clean ring is invo clean.

Example 2.2. Z7 is ( x6 − 1 )-invo clean ring which is not invo-clean ring.

Example 2.3. The ring M2 (Z2) is
(
x3 − x

)
-invo clean ring.

Proposition 2.4. Every g (x) -invo clean ring is g (x) -clean ring.

Proof. Suppose R is a g (x) -invo clean ring and let r ∈ R. Then r = v + s
where v is involution and g (s) = 0. But every involution is unit. Thus, R is
g (x) -clean ring.
The converse of Proposition 2.4 is not true in general. For example, we can
see that M2 (Z2) is

(
x6 − 1

)
-clean ring which not

(
x6 − 1

)
-invo clean, since[

1 1
0 1

]
cannot be written as a sum of involution and a root of

(
x6 − 1

)
.

Let R and S be rings and Ψ : C(R) → C(S) be a ring epimorphism with
Ψ(1R) = 1S . For g(x) =

∑n
i=0 aix

i ∈ C(R)[x], we let g∗(x) =
∑n

i=0Ψ(ai)x
i ∈

C(S)[x]. In particular, If g (x) ∈ Z [x] , then g∗ (x) = g (x).

Proposition 2.5. Let θ : R → S be a ring epimorphism. If R is g (x) -invo
clean, then S is g∗ (x) -invo clean.

Proof. Let g(x) =
∑n

i=0 aix
i ∈ C(R)[x] and consider g∗(x) =

∑n
i=0 θ(ai)x

i ∈
C(S)[x] . For every β ∈ S, there exist r ∈ R such that θ(r) = β. Since R is
g(x) -invo clean, there exists s ∈ R and v ∈ Inv(R) such that r = v + s and
g(s) = 0. Then β = θ(r) = θ(v + s) = θ(v) + θ(s) with θ(v) ∈ Inv(S), and
g∗(θ(s)) =

∑n
i=0 θ(ai)(θ(s))

i =
∑n

i=0 θ(ai)θ(s
i) =

∑n
i=0 θ(ais

i) = θ(
∑n

i=0 ais
i)

= θ(g(s)) = θ(0) = 0. Therefore, S is g∗(x) -invo clean.
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Proposition 2.6. Let R be an g (x)-nil clean with n2 = −2n for every n ∈
Nil (R). Then R is g (x) -invo clean.

Proof. Suppose R is a g (x)-nil clean and let r ∈ R. Then r− 1 = n+ s where
n ∈ Nil (R) and g (s) = 0. Thus r = (1 + n) + s. Indeed 1 + n is an involution.
Therefore R is g (x) -invo clean.

Proposition 2.7. If R an g (x)-invo clean ring and I is an ideal of R, then
R = R/I is g∗ (x) -invo clean.

Proof. Let R be an g (x) -invo clean ring and θ : R → R/I defined by θ (r) =
r = r + I. Then θ is an epimorphism. By Proposition 2.5 R/I is g (x)-invo
clean.

Proposition 2.8. Let R1, R2, . . . , Rk be rings and g (x) ∈ Z [x]. Then R =∏k
i=1Ri is g (x)-invo clean if and only if Ri is g (x)-invo clean for all i ∈
{1, 2, . . . , n}.

Proof. ⇒) : For each i ∈ {1, 2, . . . , n} , Ri is a homomorphic image of
∏k
i=1Ri

under the projection homomorphism. Hence, Ri is g (x) -invo clean by Propo-
sition 2.5.
⇐ ) : Let (x1, x2, . . . , xk) ∈

∏k
i=1Ri. For each i, write xi = vi + si where

vi ∈ Inv (Ri), g (si) = 0. Let v = (v1, v2, . . . , vk) and s = (s1, s2, . . . , sk). Then,
it is clear that v ∈ Inv (R) and g (s) = 0. Therefore, R is g (x)-invo clean.

Theorem 2.9. Let R be a ring and let R [t] be the rings of polynomial in an
indeterminate t with coefficients in R and let f (t) = a0 + a1t + . . . + ant

n ∈
R [t]. If f (t) is an involution then a0 is an involution in R and a1, . . . , an are
nilpotents.

Proof. Assume f(t) is a unit then a0 is a unit in R and a1, . . . , an are nilpotents.
Since Inv(R) ⊆ U(R), the statement holds.

Proposition 2.10. Let R be a commutative ring, then the ring of polynomials
R [t] is not invo clean (not

(
x2 − x

)
-invo clean).

Proof. Let t be an invo clean, then we may write t = a0 + a1t+ . . .+ ant
n + e

where e ∈ Id (R [t]) = Id (R) and a0 ∈ Inv (R) , a1, . . . , an ∈ Nil (R). Hence,
1 = a1 ∈ J (R). Which a contradiction. Hence, R [t] is not invo-clean.

Let R be a commutative ring and M an R -module. The idealization R (M)
of R and M is the ring R (M) = R⊕M with multiplication (r1,m1) (r2,m2) =
(r1r2, r1m2 + r2m1). Note that if (r,m) ∈ R (M), then (r,m)k =

(
rk, krk−1m

)
for any k ∈N.

Lemma 2.11. Let R be a commutative ring with char (R) = 2 and M an R
-module. Then (v,m) is an involution in R (M) if and only if v is involution in
R.
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Proof. ⇒) : Let (v,m) ∈ R (M) then (v,m)2 =
(
v2, 2vm

)
= (1, 0). So, v2 = 1.

Thus, v is involution.
⇐) : Let v be an involution, and (v,m) ∈ R (M). Then (v,m)2 = (1, 0). Hence,
(v,m) is an involution of R (M).

We recall that R logically embeds into R (M) via r → (r, 0). Therefore any
polynomial g (x) =

∑n
i=0 aix

i ∈ R [x] can be written as g (x) =
∑n

i=0 (ai,0)x
i ∈

R (M) [x] and conversely.

Proposition 2.12. Suppose R is a commutative ring with Char (R) = 2 and
M an R -module. So the idealization R (M) of R and M is g (x)-invo clean if
and only if R is g (x)-invo clean.

Proof. ⇒) : Since R ≃ R (M) /(0 ⊕M) is a homomorphic image of R (M).
Hence R is g (x) -invo clean by Proposition 2.5.
⇐) : Let g (x) =

∑n
i=0 aix

i ∈ R [x] and r ∈ R.Write r = v+s where v ∈ Inv (R)
and g (s) = 0. Then for m ∈ M, (r,m) = (v,m) + (s, 0) where (v,m) ∈
Inv (R (M)) and

g(s, 0) = a0 (1, 0) + a1 (s, 0) + a2 (s, 0)
2 + . . .+ an (s, 0)

n

= a0 (1, 0) + a1 (s, 0) + a2
(
s2, 0

)
+ . . .+ an (s

n, 0)
=
(
a0 + a1s+ a2s

2 + . . .+ ans
n, 0
)
= (g (s) , 0) = (0, 0). Therefore, R (M)

is g (x)-invo clean.

3. (x2 + cx+ d)-invo clean rings

We consider some types of
(
x2 + cx+ d

)
-invo clean rings.

Theorem 3.1. Let R be a ring and a, b ∈ C (R) and g (x) ∈ (x− a) (x− b)
where b− a ∈ Inv (R). Then R is invo-clean if and only if R is (x− a) (x− b)-
invo clean.

Proof. ⇒) : Since R is invo-clean and r ∈ R then r−a
b−a = v + e where v ∈

Inv (R) and e ∈ Id (R) then r = v (b− a) + e (b− a) + a, b − a ∈ C (R)
and C (R) is a subring of R. Since (e (b− a) + a− a) (e (b− a) + a− b) =
(eb− ea) (eb− ea+ a− b) =

e2b2 − e2ba + eab − eb2 − e2ab + e2a2 − e2a2 − ea2 + eab = 0, it follows
e (b− a)+a is root of (x− a) (x− b). Since v (b− a) ∈ Inv (R) by (v (b− a))2 =
v (b− a) v (b− a) = v2 (b− a)2 = 1.1 = 1, it follow that v (b− a) ∈ Inv (R).
Then R is (x− a) (x− b)-invo clean.
⇐) : Let r ∈ R. Since R is (x− a) (x− b)-invo clean, r (b− a)+a = v+e where
e is root of (x− a) (x− b) and v ∈ Inv (R). Thus, r = e−a

b−a + v
b−a . Clearly,

v
b−a ∈ Inv (R) and e−a

b−a is an idempotent since
(
e−a
b−a

)2
= e−a

b−a . Hence R is

invo-clean.

Corollary 3.2. Let R be a ring. Then R is invo-clean if and only if R is(
x2 + x

)
-invo clean.



INVO-CLEAN RINGS ASSOCIATED WITH CENTRAL POLYNOMIALS 521

Proof. In the previous Theorem 3.1 but a = 0 and b = −1.

Proposition 3.3. Let R be a ring with 2 ∈ Inv (R) and k ∈ N . Then the
following are equivalent:

(1) R is invo clean

(2) R is
(
x2 − 2x

)
-invo clean

(3) R is
(
x2 + 2x

)
-invo clean

(4) R is
(
x2 − 22kx

)
-invo clean

(5) R is
(
x2 + 22kx

)
-invo clean

(6) R is
(
x2 − 1

)
-invo clean

(7) R is For every r ∈ R, r can be expressed as r = v+s with v, s ∈ Inv (R).

Proof. (1)⇒ (2) Since R is invo clean and r ∈ R, r2 = v + s with v ∈ Inv (R)
and s2 = s , then r = 2v+2s with 2v ∈ Inv (R) and (2s)2−2 (2s) = 4s2−4s = 0.
Hence, R is

(
x2 − 2x

)
-invo clean.

(2)⇒ (1) Since R is
(
x2 − 2x

)
-invo clean, 2r = v + s where v ∈ Inv (R)

and s is a root of
(
x2 − 2x

)
. Then, r = v

2 + s
2 , where v

2 is an invo of R and(
s
2

)2
= (s)(s−2+2)

(2)2
= s.2

(2)2
= s

2 . So, R is invo clean. Correspondingly, we may

prove (3)⇒ (1).

(2)⇒ (3) R is
(
x2 − 2x

)
-invo clean and let r ∈ R, −r = v + s such that

v ∈ Inv (R) and s2 − 2s = 0. Then, r = (−v) + (−s) with −v ∈ Inv (R) and
(−s)2 + 2 (−s) = s2 − 2s = 0. Thus, R is

(
x2 + 2x

)
-invo clean.

(1)⇔ (4) By Theorem 3.1, let a = 0 and b = 22k, Then, R is
(
x2 − 22kx

)
-

invo clean.

(1)⇔ (5) Can be proved by (1)⇔ (4) and (2)⇒ (3).

(1)⇒ (6) Since R is invo clean and r ∈ R then r = v+s where v, s ∈ Inv (R)
and s2 = s. Then s is a root of x2 − 1 by (7). Then

(
x2 − 1

)
-invo clean.

(7)⇒ (6) Let r ∈ R we write r = v+ s with v, s ∈ Inv (R) and s2 = 1, then
s is a root of x2 − 1 and v ∈ Inv (R). Then,

(
x2 − 1

)
is invo clean ring.

(6)⇒ (7) If R is
(
x2 − 1

)
-invo clean, then for every r ∈ R there exist v, s ∈

Inv (R) such that r = v + s.

References

[1] V.P. Camillo, J.J. Simón, The Nicholson-Varadarajan theorem on clean
linear transformations, Glasgow Math. J., 44 (2002), 365-369.

[2] P. Danchev, Invo-Clean unital rings, Communications of the Korean Math-
ematical Society, 32 (2017), 19-27.

[3] L. Fan, X. Yang, On rings whose elements are the sum of a unit and a root
of a fixed polynomial, Comm. Algebra., 36 (2008), 269-278.



522 N.R. ABED ALHALEEM and A.H. HANDAM

[4] H.A. Handam, H.A. Khashan, Rings in which elements are the sum of a
nilpotent and a root of a fixed polynomial that commute, Open mathematics,
15 (2017), 420-426.

[5] H.A. Khashan, A.H. Handam, g(x)-nil clean rings, Scienticae Mathematicae
Japonicae, 2 (2016), 145-154.

[6] W.K. Nicholson, Lifting idempotents and exchange rings, Transactions of
the American Mathematical Society, 229 (1977), 269-278.

[7] W.K. Nicholson, Y. Zhou, Endomorphisms that are the sum of a unit and
a root of a fixed polynomial, Canad. Math. Bull., 49 (2006), 265-269.

Accepted: 9.12.2018



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (523–530) 523

On developing an optimal Jarratt-like class for solving
nonlinear equations

Maryam Attary∗

Department of Mathematics
Karaj Branch
Islamic Azad University
Karaj
Iran
maryam.attari@kiau.ac.ir

Praveen Agarwal
Department of Mathematics

ANAND International College of Engineering

Jaipur-303012

India

and

Department of Mathematics

Ahi Evran University

40100 Kircontractiblesehir

Turkey

Abstract. It is attempted to derive an optimal class of methods without memory from
Ozban’s method [A. Y. Ozban, Some New Variants of Newton’s Method, Appl. Math.
Lett. 17 (2004) 677-682]. To this end, we try to introduce a weight function in the
second step of the method and to find some suitable conditions, so that the modified
method is optimal in the sense of Kung and Traub’s conjecture. Also, convergence
analysis along with numerical implementations are included to verify both theoretical
and practical aspects of the proposed optimal class of methods without memory.
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1. Introduction

The main objective of this work is to derive an optimal class of methods without
memory for approximating a simple root of a nonlinear equation. For this pur-
pose, we consider a non-optimal method without memory developed by Ozban
in [8]. Although this method is one of the most cited works in the literature,
it is not optimal in the sense of Kung and Traub’s conjecture. Based on this
conjecture, any two-step method without memory is optimal if it has conver-
gence order four using three functional evaluations per iteration [4, 12], while

∗. Corresponding author
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the pointed method uses three functional evaluations per iteration and has con-
vergence order three, see Theorem 4.1 in [8].

There are so many two-step optimal methods without memory which we
recall some of them here. To the best of our knowledge, there are three general
kinds of optimal methods without memory: Jarratt-, Ostrowski- and Steffensen-
type methods. Jarratt’s method [2] is given by:

(1.1)


yn = xn −

2

3

f(xn)

f ′(xn)
,

xn+1 = xn −
3f ′(yn) + f ′(xn)

6f ′(yn)− 2f ′(xn)

f(xn)

f ′(xn)
,

where its error equation is en+1 = (c32− c2c3+ c4
9 c)e

4
n+O(e5n), with ck =

f (k)(α)
k!f ′(α) ,

k = 2, 3, ..., and α is a simple zero of f(x) = 0, i.e., f ′(α) ̸= 0 = f(α). Jarratt’s
method (1.1) uses three functional evaluations per iteration and has convergence
order four so it is optimal. In other words, it uses functional evaluation of its
derivation in two points, say f ′(xn) and f ′(yn), and one functional evaluation
of the given function, says f(xn), in each iteration. Such methods in which, one
uses two evaluations of the derivatives of the given functions and one evaluation
of the given function are called Jarratt-type methods. Soleymani et al. [10]
suggested the following optimization of Jarratt-type method:

(1.2)


yn = xn −

2

3

f(xn)

f ′(xn)
,

xn+1 = xn − (1 + (
f(xn)

f ′(xn)
)3)(2− 7

4
s+

3

4
s2)

2f(xn)

f ′(xn) + f ′(yn)
.

Another optimal method of this type is considered by Lotfi [5]

(1.3)


yn = xn −

2

3

f(xn)

f ′(xn)
,

xn+1 = xn − (2− 7

4
s+

3

4
s2)

2f(xn)

f ′(xn) + f ′(yn)
.

Some other optimal Jarratt-type methods and different anomalies in a Jarratt
family can be found in the literature [5, 10]. Similar to Jarratt-type methods,
there is another set of methods in which they use derivative of the function
in each iteration. However, these kinds use two function evaluations and one
derivative evaluation, say f(xn), f(yn) and f

′(xn). We call these kinds of itera-
tive methods Ostrowski-type methods. Indeed, Ostrowski’s method is given by
[3]

(1.4)


yn = xn −

f(xn)

f ′(xn)
,

xn+1 = yn −
f(xn)

f(xn)− 2f(yn)

f(yn)

f ′(xn)
,
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with the following error equation en+1 = (c32 − c2c3)e4n +O(e5n).

It is worth noting that Ostrowski’s method (1.4) is a special case, b=0, of
King’s family [3] which is defined as follows

(1.5)


yn = xn −

f(xn)

f ′(xn)
,

xn+1 = yn −
f(xn) + bf(yn)

f(xn) + (b− 2)f(yn)

f(yn)

f ′(xn)
.

Also, we consider the first two-step iterative method by Kung and Traub [4] as
follows 

yn = xn −
f(xn)

f ′(xn)
,

xn+1 = yn −
f(xn)

2f(yn)

f ′(xn)(f(xn)− f(yn))2
.

There is another kind of the Ostrowski-type method which can be obtained via
Hermit-interpolation as follows

(1.6)


yn = xn −

f(xn)

f ′(xn)
,

xn+1 = yn −
f(yn)

f [xn, yn] + f [yn, xn, xn](yn − xn)
.

Finally, there is another kind of optimal two-step methods without memory
in which, one does not use derivatives. We call them Steffensen-type method.
In what follows, we recall two of them. First, we consider the first two-step
derivative-free version of Kung and Traub [4] given by

(1.7)


yn = xn −

f(xn)

f [xn, ωn]
, ωn = xn + f(xn),

xn+1 = yn −
f(yn)

f [xn, yn]

f(ωn)

(f(ωn)− f(yn))
.

Bi et al. [9] and Zheng et al. [14] simultaneously derived the following method
based on Newton interpolation

(1.8)


yn = xn −

f(xn)

f [xn, ωn]
, ωn = xn + γf(xn),

xn+1 = yn −
f(yn)

f [xn, yn] + f [yn, xn, ωn](yn − xn)
.

All of the mentioned methods can be considered as a special case of the optimal
class of two-step methods without memory. Detailed description, convergence
and analysis of these methods may be found in [1, 3, 5, 6, 7, 12] and references
therein .
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This work is organized as follows: Section 2 is devoted to extracting optimal
method from non-optimal method by Ozban [8]. Furthermore, we discuss the
convergence analysis of the developed method in this section, and also some
concrete functions are given based on the developed method. Section 3 repre-
sents numerical implimentations and comparisons. Finally, Section 4 concludes
this work. For some given methods in this work, we append their Mathematica
codes, too.

2. Method and result

In this section, we deal with developing a new optimal class of Jarratt-type
methods to approximate a simple zero of f(x) = 0. Also, we discuss a theoret-
ical aspect of the developed class, namely convergence analysis. We recall the
following method by Ozban [8]

(2.1)


yn = xn −

f(xn)

f ′(xn)
,

xn+1 = xn −
(f ′(xn) + f ′(yn))

2f ′(yn)

f(xn)

f ′(xn)
, (n = 0, 1, ...).

Theorem 4.1. in [8] considers the error analysis of this method. The follow-
ing self-explanatory Mathematica code decodes and deciphers the same results
quickly. We introduce the following abbreviations used in this program.

ck = f(k)(α)/(k!f′(α)), e = xn − α, ey1 = yn − α, ey = xn+1 − α, f[e] =
f(e), f1a = f′(α).

Program 1. Mathematica code:
f [e] = f1a(e+ c2e

2 + c3e
3 + c4e

4);

ey1 = e− Series
[
f [e]
f ′[e] , {e, 0, 3}

]
//Simplify;

ey = e− Series
[
f [e](f ′[e]+f ′[ey1])

2f ′[e]f ′[ey1] , {e, 0, 3}
]
//Simplify

Out[ey] = c3e3

2
+ O[e]4

Remark 1. As can be seen, this method is not optimal based on Kung and
Traub’s conjecture. It uses three functional evaluations per iteration while it
has convergence order three. Here, our aim is to modify method (2.1) in such a
way that it becomes optimal. More details are given in what follows.

Let us consider the following changes to (2.1). The first step of Ozban’s
method, namely Newton’s method, is exchanged with the first step of Jarratt’s
method, namely weighted Newton’s method. Then in the second step of Ozban’s
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method, we introduce a weight function, say h(t), as follows

(2.2)


yn = xn −

2

3

f(xn)

f ′(xn)
,

xn+1 = xn − h(tn)
f(xn)

f ′(xn)

(f ′(xn) + f ′(yn))

2f ′(yn)
,

where tn = f ′(yn)
f ′(xn)

. Now, it is tried to optimize this new method. To this end, we

impose some conditions on h(t) so that we achieve an optimal class of Jarratt-
type methods. Instead of using pencil-paper method to discuss the mentioned
aim, we prefer to use the Mathematica approach. We think this technique has
several advantages: it is fast, it saves space of the paper, and it avoids involving
tedious and cumbersome calculations with using many terms of Taylor’s series.

We reuse the symbols introduced before in giving the error equation for the
method (2.1), also the rest of the abbreviations used are introduced as follows

h = h(0), h1 = h′(0), h2 = h′′(0).

Program 2. Mathematica code:
f [e] = f1a(e+ c2e

2 + c3e
3 + c4e

4);

ey1 = e− Series
[
2∗f [e]
3f ′[e] , {e, 0, 8}

]
;

t = f′[ey1]
f ′[e] ;

h[t] = h+ h1t+ h2t2

2 ;

ey = e− f[e](f′[e]+f′[ey1])∗h[t]
2f’[e]f′[ey1]

//FullSimplify;

a1 = Coefficient[ey, e]//Simplify
a2 = Coefficient[ey, e2]//Simplify
a3 = Coefficient[ey, e3]//Simplify
a4 = Coefficient[ey, e4]//Simplify

Out[a1]=1-h− h1− h2
2

Out[a2] = 1
6
(2 h+10h1+ 9h2)c2

Out[a3] = 1
9
(−(2 h+42h1+ 49h2)c22 + 3 (2 h+10h1+ 9h2)c3)

Out[a4] = 1
54
((20 h+684h1+ 978h2)c32 − 3(22 h+294h1+ 347h2)c2c3

+ (58 h+266h1+ 237h2)c4))

To obtain an optimal class, the coefficients of e, e2, and e3 in the error
equation of the new class (2.1) need to vanish. By solving the above system of
equations simultaneously, equations Out[a1], Out[a2] and Out[a3], the desired
results are obtained and we have

{{
h→ 7

4
, h1→ −5

4
, h2→ 1

}}
. In other words,

to provide the fourth order of convergence of the proposed method, it is neces-
sary to choose h = 7

4 , h1 = −5
4 and h2 = 1. Therefore, we have established the

following theorem about the convergence order of the optimal class (2.2).

Theorem 1. Let α be a simple zero of f(x) = 0 and function h(t) is cho-
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sen so that the conditions h(0) = 7
4 , h

′(0) = −5
4 , and h′′(0) = 1 hold. If an

initial approximation is sufficiently close to α, then the equation (2.2) has the
order of convergence four with the following error equation

(2.3) en+1 = (
79

27
c32 − c2c3 +

c4
9
)e4n +O(e5n).

The function h(t) can take many forms satisfying the conditions of Theorem 1,
examples of which are:

h1(t) =
7

4
− 5

4
t+

1

2
t2, h2(t) =

1
4

7
+

20

49
t+

44

343
t2
, h3(t) =

7

4
− 1

2
t− 3

4
t2

1 + t
.

Accordingly, we can consider the following optimal method as a typical ex-
ample of our proposed class

(2.4)


yn = xn −

2

3

f(xn)

f ′(xn)
,

xn+1 = xn − (
7

4
− 5

4
tn +

1

2
t2n)

f(xn)

f ′(xn)

(f ′(xn) + f ′(yn))

2f ′(yn)
.

3. Numerical implimentations

To verify the applicability of the derived method (2.2) of the optimal class of
Jarratt-type methods we give two examples. Also, we report the results of the
other methods given in this work for comparison. The implementations were
ran in Mathematica. In Tables 1 and 2, the values of the computational order
of convergence are computed by the following approximate formula ( see Weer-
akoon and Fernando [13])

coc =
ln(|xn+1 − α|/|xn − α|)
ln(|xn − α|/|xn−1 − α|)

,

where |xn − α| denots absolute errors of approximations and a(−b) means
a× 10−b.

Example 1. Consider the following nonlinear equation

f(x) = e2+x−x
2 − cos(1 + x) + x3 + 1, α = −1,

with the initial approximation x0 = −0.7.

Example 2. Consider the following nonlinear equation

f(x) = ln(1 + x2) + e−3x+x2 sin(x), α = 0,

with the initial approximation x0 = 0.35.
We have reported the obtained numerical results in Table 1 and 2. These results
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Table 1: Numerical results of Example 1 in the first three iterations

Absolute Error
Two-point methods |x1 − α| |x2 − α| |x3 − α| coc

New Method (2.4) 0.2189(−3) 0.1566(−15) 0.4104(−64) 4
Method (1.4) 0.4557(−3) 0.2790(−14) 0.3925(−59) 4
Method (1.7) 0.4357(−1) 0.1170(−5) 0.5534(−23) 4
Method (1.1) 0.6543(−3) 0.1411(−13) 0.3056(−56) 4
Method (1.2) 0.6113(−2) 0.1490(−8) 0.5245(−35) 4

Table 2: Numerical results of Example 2 in the first three iterations
Absolute Error

Two-point methods |x1 − α| |x2 − α| |x3 − α| coc

New Method (2.4) 0.1965(−2) 0.2035(−9) 0.2326(−37) 4
Method (1.4) 0.5733(−2) 0.2999(−8) 0.2158(−33) 4
Method (1.7) 0.8517(−2) 0.1282(−6) 0.5757(−26) 4
Method (1.3) 0.1990(−2) 0.3071(−9) 0.1734(−36) 4
Method (1.2) 0.1948(−1) 0.3038(−5) 0.1747(−20) 4

confirm the theoretical prediction, which has been proved in the previous section.
Moreover, it can be concluded that the proposed method (2.4) generates slightly
better results in comparison with the other numerical methods mentioned in this
paper.

4. Conclusion

In this research, a new optimal fourth order method based on Ozban’s method
has been developed for solving simple roots of nonlinear equations. The pre-
sented method has the convergence order four. It supports the Kung and Traub’s
conjecture requiring only three function evaluations per iteration and it has the
efficiency index 41/3 ≈ 1.587, which is better than Ozban’s method 31/3 ≈ 1.390
( for the definition of efficiency index see [11]).
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Abstract. Let (T (t))t≥0 be a C0-semigroup on a Banach space X. In this paper, we
show that if there exists t0 > 0 such that T (t0) is a pseudo B-Fredholm operator, then
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Drazin invertible for all t ≥ 0. Also we prove that the spectral inclusion of strongly
continuous semigroup hold for pseudo Fredholm, generalized Drazin and pseudo B-
Fredholm spectra.

Keywords: C0-semigroups, direct decomposition, pseudo Fredholm spectrum, gener-
alized Drazin spectrum, pseudo B-Fredholm spectrum.

1. Introduction

Throughout, X denotes a complex Banach space, let us denote by B(X) the
algebra of bounded linear operators on X, let A be a closed linear operator on X
with domain D(A) ⊆ X, we denote by A∗, N(A), R(A), R∞(A) =

∩
n≥0R(A

n),
N∞(A) =

∪
n≥0N(An), K(A), H0(T ), ρ(A), σ(A), respectively the adjoint, the

null space, the range, the hyper-range, the hyper-kernel, the analytic core, the
quasi-nilpotent part, the resolvent set and the spectrum of A.

A closed operator A is said to be semi-regular if R(A) is closed and N(A) ⊆
R∞(A), see [11]. A closed linear operator A is said to be upper semi-Fredholm if
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R(A) is closed and dimN(A) <∞, andA is lower semi-Fredholm if codimR(A) <
∞. If dimN(A) and codimR(A) are both finite then A is called Fredholm oper-
ator.

A closed operator A admits a generalized Kato decomposition (GKD) if
there exist M,N two closed subspaces of X, A-invariant such that X =M ⊕N
and A = A|N ⊕A|M , with A|N is a quasi-nilpotent operator and A|M is a semi-
regular operator, in this case A is called a pseudo-Fredholm operator (see [9,
Definition 1]). The pseudo-Fredholm spectrum is defined by

σpF (A) = {λ ∈ C : A− λ is not pseudo-Fredholm}.

An operator A is called a pseudo B-Fredholm operator [1], if A|M is a Fredholm
operator and A|N is a quasi-nilpotent operator. If A|M is an upper semi Fred-
holm operator, A is called upper pseudo B-Fredholm. Also if A|M is a lower
semi Fredholm operator, A is called lower pseudo B-Fredholm [17].

The pseudo B-Fredholm spectrum, the upper pseudo B-Fredholm spectrum
and the lower pseudo B-Fredholm spectrum are defined respectively by:

σpBF (A) = {λ ∈ C : A− λ is not pseudo B-Fredholm},
σupBF (A) = {λ ∈ C : A− λ is not upper pseudo B-Fredholm},
σlpBF (A) = {λ ∈ C : A− λ is not lower pseudo B-Fredholm}.

The concept of generalized Drazin invertible operator has been defined by
Koliha. A closed operator A is said to be generalized Drazin invertible, if there
exists an operator S ∈ B(X), R(S) ⊂ D(A), R(I−AS) ⊂ D(A), and SA = AS,
SAS = S, σ(A(I − SA)) = {0}, this is equivalent that A = A1 ⊕ A2 where A1

is an invertible operator and A2 is a quasi-nilpotent operator [8].

Let E be a subset of X. E is said T -invariant if T (E) ⊆ E. If E and F are
two closed T -invariant subspaces of X such that X = E ⊕ F , we say that T is
completely reduced by the pair (E,F ) and it is denoted by (E,F ) ∈ Red(T ).
In this case we write T = TpE ⊕ TpF and say that T is the direct sum of TpE and
TpF .

In [3], M D. Cvetković and SČ. Živković-Zlatanović introduced and studied
a new concept of generalized Drazin invertibility of bounded operators as a
generalization of generalized Drazin invertible operators. In fact, an operator
T ∈ B(X) is said to be generalized Drazin bounded below if H0(T ) is closed
and complemented with a subspace M in X such that (M,H0(T )) ∈ Red(T )
and T (M) is closed which is equivalent to there exists (M,N) ∈ Red(T ) such
that TpM is bounded below and TpN is quasi-nilpotent, see [3, Theorem 3.6].
An operator T ∈ B(X) is said to be generalized Drazin surjective if K(T ) is
closed and complemented with a subspace N in X such that N ⊆ H0(T ) and
(K(T ), N) ∈ Red(T ) which is equivalent to there exists (M,N) ∈ Red(T ) such
that TpM is surjective and TpN is quasi-nilpotent, see [3, Theorem 3.7].
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The generalized Drazin invertible spectrum, generalized Drazin bounded be-
low and surjective of T ∈ B(X) are defined respectively by

σgD(A) = {λ ∈ C : A− λ is not generalized Drazin },
σgDM(T ) = {λ ∈ C, T − λI is not generalized Drazin bounded below};
σgDQ(T ) = {λ ∈ C, T − λI is not generalized Drazin surjective}.

We have:
σgD(T ) = σgDM(T ) ∪ σgDQ(T ).

A family (T (t))t≥0 of operators on X is called a strongly continuous semi-
group of operators if:

1. T (0) := I,

2. T (s+ t) := T (s)T (t) for all s, t ≥ 0

3. limt↓0T (t)x := x, for every x ∈ X.

The linear operator A defined in the domain:

D(A) = {x ∈ X : lim
t↓0

T (t)x− x
t

exists}

by

Ax = lim
t↓0

T (t)x− x
t

=
d+T (t)x

dt
|t=0 for x ∈ D(A)

is the infinitesimal generator of the semigroup T (t), we note that the domain of
A is dense in X and A is a closed operator.

In [2], [5] and [12], the authors proved that: etσ(A) ⊂ σ(T (t)) and etν(A) ⊆
ν(T (t)) ⊆ etν(A)∪{0} where ν ∈ {σp, σr}, point spectrum and residual spectrum.

After than Engle et al. [5] give a condition for a strongly continuous semi-
group that satisfies this equality for spectrum and approximative spectrum, they
proved that:

σap(T (t)) \ {0} = etσap(A), t ≥ 0,

and

σ(T (t)) \ {0} = etσ(A), t ≥ 0,

where T (t) is a eventually norm-continuous semigroup.
A. Elkoutri and M. A. Taoudi [4] proved that:

etν(A) ⊆ ν(T (t)), for all t ≥ 0,

where ν(.) ∈ {σγ(.);σγe(.);σπ(.);σF (.)} the semi regular spectrum, essentially
semi regular spectrum, upper semi-Fredholm and Fredholm spectrum, respec-
tively.
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In [14] we gave conditions of a strongly continuous semigroup that satisfies:

etσν(A) ⊆ σν(T (t)) ⊆ etσν(A) ∪ {0},

for σν(A) the semi regular spectrum, essentially semi regular spectrum, upper
semi-Fredholm and Fredholm spectrum and proved that the first inclusion is true
for B-Fredholm spectrum. In the same direction we proved that this inclusion is
hold for Drazin invertible spectrum and quasi-Fredholm spectrum see [15]. The
main objective of this article is to continue in the same direction and develop-
ment of spectral theory for a C0-semigroup and its generator. In section 2 we will
give some proposition for the decomposition of strongly continuous semigroup
and we prove that if there exists t0 such that T (t0) is upper pseudo B-Fredholm
(res.lower pseudo B-Fredholm, pseudo B-Fredholm) operator then T (t) is upper
pseudo B-Fredholm (resp.lower pseudo B-Fredholm, pseudo B-Fredholm) for all
t ≥ 0, same thing for left and right generalized Drazin invertible, B-Fredholm
operator and for Drazin invertible.

In section 3 we prove that the spectral inclusion of strongly continuous semi-
group hold for the pseudo-Fredholm spectrum, pseudo-B-Fredholm and gen-
eralized Drazin spectrum. Also, we will prove under the condition of a C0-
semigroup, that The following assertions are equivalents:

(i) A is pseudo-Fredholm;
(ii) A is generalized Drazin invertible;
(iii) A is pseudo B-Fredholm.

2. Decomposition of strongly continuous semigroup.

Let T (t) be a strongly continuous semigroup and A its infinitesimal generator.
In the first we will gives the following definition and some properties necessary
for proof the subsequent results.

Subspace semigroups [5]. If Y is a closed subspace ofX such that T (t)Y ⊆ Y
for all t ≥ 0, (i.e., if Y is (T (t))t≥0-invariant), then the restrictions T (t)| :=
T (t)|Y form a strongly continuous semigroup (T (t)|)t≥0, called the subspace
semigroup, on the Banach space Y .

The part of A in Y is the operator A| defined by

A|y := Ay

with domain
D(A|) := {y ∈ D(A) ∩ Y : Ay ∈ Y }.

In other words, A| is the ”maximal” operator induced by A on Y and, as will
be seen, coincides with the generator of the semigroup (T (t)|)t≥0 on Y .

Proposition 2.1 ([5]). Let (A,D(A)) be the generator of a strongly continuous
semigroup (T (t))t≥0 on X and assume that the restricted semigroup (T (t)|)t≥0

is strongly continuous on some (T (t))t≥0-invariant Banach space Y ↪→ X. Then
the generator of (T (t)|)t≥0 is the part (A|, D(A|)) of A in Y .
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Lemma 2.1 ([6, Lemma 332]). If A is a closed linear operator (X → X ′) with
β(A) <∞, then A has closed range.

It is clear that, if (T (t))t≥0 and (S(t))t≥0 two C0-semigroups with generators
A and B respectively, then for all t ≥ 0, R(t) = T (t)⊕S(t) is a C0-semigroups its
generator is R = A⊕B [16], in the following proposition we prove the converse.

Now we denote by T (t)|Xs
the restrictions of T (t) on Xs and T (t)|Xu

the
restrictions of T (t)t≥0 on Xu.

Proposition 2.2. Let(A,D(A)) be the generator of a strongly continuous semi-
group (T (t))t≥0. If there exist Xs, Xu two closed (T (t))t≥0-invariants subspaces
of X, such that X = Xs ⊕ Xu then T (t)|Xs

and T (t)|Xu
are strongly con-

tinuous semigroups, furthermore the generator of a strongly continuous semi-
group T (t) = T (t)|Xs

⊕ T (t)|Xu
is A = A|Xs∩D(A) ⊕ A|Xu∩D(A) defined in

D(A) = D(A) ∩Xs ⊕D(A) ∩Xu.

Proof. According to the definition of subspace semigroup and Xs, Xu are a
closed (T (t))t≥0-invariants subspaces of X, then Xs and Xu are a Banach spaces
therefore the strongly continuity of (T (t)|Xs

)t≥0 and (T (t)|Xu
)t≥0 are automatic.

Moreover the existence of

y = lim
t↓0

1

t
(T (t)xs − xs) ∈ X,

for some xs ∈ Xs implies that y ∈ Xs, therefore the generator of (T (t)|Xs
)t≥0 is

A|Xs∩D(A) with domain D(A)∩Xs, the same for the generator of (T (t)|Xu
)t≥0 is

A|Xu∩D(A) with domain D(A)∩Xu and A|Xs∩D(A)⊕A|Xu∩D(A) is a generator of
a strongly continuous semigroup T (t) = T (t)|Xs

⊕T (t)|Xu
with domain D(A) =

D(A) ∩Xs ⊕D(A) ∩Xu = D(A) ∩ (Xs ⊕Xu) = D(A) ∩X.

Remark 1. We recall that the C0-semigroup (T (t))t≥0 is nilpotent if there
exists t0 > 0, such that T (t) = 0 for t ≥ t0. It is clear that if there exists t0 > 0,
such that T (t0) is nilpotent operator then T (t) is nilpotent for all t ≥ 0.

Also, we recall that the C0−semigroup (T (t))t≥0 is quasi-nilpotent if {0} =
σ(T (t)), then if there exists t0 > 0, such that T (t0) is quasi-nilpotent operator
then T (t) is quasi-nilpotent for all t ≥ 0.

Now we will proof the following property that depends of the decomposition
of strongly continuous semigroup.

Proposition 2.3. Let (T (t))t≥0 be a C0-semigroup.

1. If there exists t0 > 0 such that T (t0) is upper pseudo B-Fredholm then T (t)
is upper pseudo B-Fredholm for all t ≥ 0.

2. If there exists t0 > 0 such that T (t0) is lower pseudo B-Fredholm then T (t)
is lower pseudo B-Fredholm for all t ≥ 0.
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3. If there exists t0 > 0 such that T (t0) is pseudo B-Fredholm then T (t) is
pseudo B-Fredholm for all t ≥ 0.

Proof. 1. If there exists t0 > 0 such that T (t0) is upper pseudo-B-Fredholm
then there exist two closed T (t0)-invariants subspaces X1, X2 ⊂ X such that
T (t0) = T (t0)|X1

⊕ T (t0)|X2
, T (t0)|X1

is upper semi Fredholm and T (t0)|X2
is

quasi-nilpotent. Since T (t0)|X1
is upper semi Fredholm then α(T (t0)|X1

) < ∞
and R(T (t0)|X1

) is closed. We show that α(T (t)|X1
) < ∞ and R(T (t)|X1

) is
closed for all t ≥ 0. Since α(T (t0)|X1

) < ∞ then 0 is an eigenvalue with finite
multiplicity of T (t0). As proof [12, Theorem 6.6], let x ∈ X1, x ̸= 0 be an
eigenvector associated to 0. Putting t1 = t0/2, then T (t0)x = T (t1)T (t1)x = 0,
hence 0 is an eigenvalue of T (t1). Proceeding by induction, we define a sequence
(tn)n∈N with tn → 0 as n→∞ such that 0 is an eigenvalue of T (tn), for all n ∈
N.

For n ≥ 0, we define the sets

zn = N(T (tn)|X1
)
∩
{x ∈ X1 : ||x|| = 1}.

Clearly, the inclusion N(T (s)|X1
) ⊆ N(T (t)|X1

), for s ≥ t implies that (zn)n
is a decreasing sequence (in the sense of the inclusion) of nonempty compact
subsets of X1. Thus

∩∞
n=0zn ̸= ∅. If x ∈

∩∞
n=0zn then

(**) ∥T (tn)x− x∥ = ∥x∥ = 1 for all n ≥ 1

Since tn → 0 as n→∞, (**) contradicts the strong continuity of (T (t)|X1
)t≥0.

This shows that N(T (t0)|X1
) = {0}, that is, (T (t0)|X1

) is injective and
α(T (t0)|X1

) = 0. Let 0 < t ≤ t0. The inclusionN(T (t)|X1
) ⊆ N(T (t0)|X1

) implies
that α(T (t)|X1

) = 0. Assume now that t > t0 and x ∈ N(T (t)|X1
), then there ex-

ists an integer n such that nt0 > t and therefore T (nt0)x = T (nt0− t)T (t)x = 0.
Hence, we have x = 0 and consequentlyN(T (t)|X1

) = {0} for all t > t0, therefore
(T (t)|X1

) is injective and α(T (t)|X1
) = 0 for all t ≥ 0.

It remains to show that R(T (t)|X1
) is closed for all t ≥ 0. Assume that

T (t0)|X1
is upper semi Fredholm , then α(T (t0)|X1

) < ∞ and β(T (t0)|X1
) = ∞

(if β(T (t0)|X1
) < ∞, as proof (2) then β(T (t)|X1

) < ∞ for all t ≥ 0 according
to lemma 2.1 R(T (t0)|X1

) is closed). Let T ∗(t0) be the dual operator of T (t0).
Obviously, (T ∗(t0)|X∗

1
) is lower semi Fredholm and consequently β(T ∗(t0)|X∗

1
) <

∞. Hence β(T ∗(t)|X∗
1
) < ∞ for all t ≥ 0. Now applying lemma 2.1 we infer

that R(T ∗(t)) is closed in X∗
1 , for all t ≥ 0. This together with the closed graph

theorem of Banach [19, page 205] implies that R(T (t)) is closed in X1 for all
t ≥ 0. Therefore T (t)|X1

is upper semi Fredholm for all t ≥ 0. Also we have
T (t0)|X2

is quasi-nilpotent implies that T (t)|X1
is quasi-nilpotent for all t ≥ 0,

therefore T (t) is upper pseudo B-Fredholm for all t ≥ 0.
2. To prove this item, we will proceed by duality. Let (T ∗(t))t≥0 be the

dual semigroup of (T (t))t≥0. Since β(T (t)|X1
) = α(T ∗(t)|X∗

1
), then it suffices to

show that α(T ∗(t)|X∗
1
) = 0 for all t ≥ 0. By hypothesis, we have α(T ∗(t0)|X∗

1
) <
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∞. Let x∗ be an element of N(T ∗(t0)|X∗
1
). Arguing as above, we construct a

sequence (tn)n∈N with tn → 0 as n→∞ such that 0 is an eigenvalue of T ∗(tn),
for all n ∈ N and we define the sets

kn = N(T ∗(tn)|X∗
1
)
∩
{x∗ ∈ X∗

1 : ||x∗|| ̸= 1}.

Clearly, the inclusion N(T ∗(s)|X∗
1
) ⊆ N(T ∗(t)|X∗

1
), for s ≥ t, imply that (kn)n

is a decreasing sequence (in the sense of the inclusion) of nonempty compact
subsets of X∗

1 . Thus
∞∩
n=0

kn ̸= ∅.

If x∗ ∈
∩∞
n=0 kn then

(***) | < T ∗(tn)x
∗ − x∗, x > | = | < x∗, x > | ≠ 0 ∀n ≥ 1, for all x ∈ X1.

Using the fact that (T ∗(t))t≥0 is continuous in the weak∗ topology at t = 0,
we conclude that

(****) lim
t→0
| < T ∗(tn)x

∗ − x∗, x > | = 0, for all x ∈ X1.

Combining (***) and (****), we obtain < x∗, x >= 0 for all x ∈ X1. This
shows that x∗ = 0 and therefore α(T ∗(t0)) = 0. By the same argument as above,
we show that α(T ∗(t)|X∗

1
) = 0 for all t ≥ 0.

Assume now that T (t0)|X1
is lower semi Fredholm, then β(T (t0)) < ∞ and

α(T (t0)|X1
) = ∞ (if α(T (t0)|X1

) < ∞ the proof is contained in (1)). It follows
From the above that β(T (t)|X1

) <∞ for all t ≥ 0. Again using 2.1 we see that
R(T (t)|X1

) is closed in X1 for all t ≥ 0, which completes the proof of (2).
3. It follows from (1) and (2).

The proof of the following Theorem produces directly from proof of Propo-
sition 2.3.

Note that (T (t))t≥0 is upper(lower) pseudo B-Fredholm if (T (t))t≥0 is up-
per(lower) pseudo B-Fredholm for all t ≥ 0.

Theorem 2.1. Let (T (t))t≥0 be a C0-semigroup.

1. A C0-semigroup T (t) is upper pseudo B-Fredholm if and only if T (t) is
generalized Drazin bounded below.

2. A C0-semigroup T (t) is a lower pseudo B-Fredholm if and only if T (t) is
generalized Drazin surjective.

3. A C0-semigroup T (t) is pseudo B-Fredholm if and only if T (t) is general-
ized Drazin invertible.

Proposition 2.4. Let t0 > 0 and let (T (t))t≥0 be a C0-semigroup on X.
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1. If T (t0) is a B-Fredholm operator, then T (t) is a B-Fredholm operator for
all t ≥ 0.

2. If T (t0) is Drazin invertible, then T (t) is Drazin invertible for all t ≥ 0.

3. If T (t0) is a generalized Drazin invertible operator, then T (t) is a gener-
alized Drazin invertible operator for all t ≥ 0.

Proof. 1. Suppose that T (t0) is a B-Fredholm operator, then there exist two
closed subspaces X1, X2 ⊂ X T (t)-invariants, such that

X = X1 ⊕X2, T (t0) = T (t0)|X1
⊕ T (t0)|X2

.

T (t0)|X1
is a Fredholm operator and T (t0)|X2

is nilpotent. Moreover as a C0-
semigroup T (t0)|X1

is a Fredholm operator, then according to proof (3) of Propo-
sition 2.3, we have T (t)|X1

is a Fredholm operator for all t ≥ 0 and also from
remake 1 T (t)|X2

is nilpotent for all t ≥ 0. This show that T (t) is a B-Fredholm
operator, for all t ≥ 0.

2. Suppose that T (t0) is Drazin invertible, then there exist two closed sub-
spaces X1, X2 ⊂ X T (t)-invariants, such that

X = X1 ⊕X2, T (t0) = T (t0)|X1
⊕ T (t0)|X2

.

T (t0)|X1
is an invertible operator and T (t0)|X2

is nilpotent. As a C0-semigroup
T (t0)|X1

is an invertible operator, according to [5, Proposition page 80], we have
T (t)|X1

is an invertible operator for all t ≥ 0 and also T (t)|X2
is nilpotent for all

t ≥ 0. This show that T (t) is a Drazin invertible operator, for all t ≥ 0.
3. By the same argument of (2)

3. Spectrum inclusion for C0-semigroup

To continue the development of a spectral theory for semigroups and their gen-
erators, we will give a technique to prove that the inclusion spectral is holds
for σpF , σlgD, σrgD, σgD and σpBF . For this we begin with proved the following
result which will be used to prove the following theorem.

Proposition 3.1. Let (T (t))t≥ a C0-semigroup and A its generator. If eλt−T (t)
is quasi-nilpotent for some λ ∈ C, then λ−A is quasi-nilpotent.

Proof. We have eλt−T (t) is quasi-nilpotent for some λ ∈ C, then σ(eλt−T (t)) =
{0}, since etσ(A) ⊆ σ(T (t)) = {eλt}, this implies that σ(A) ⊆ {λ} therefore
σ(λ−A) ⊆ {0}. Hence λ−A is quasi-nilpotent.

Theorem 3.1. For the generator A of a strongly continuous semigroup (T (t))t≥0

we have the spectral inclusion

etν(A) ⊆ ν(T (t)), t ≥ 0.

Where ν(.) ∈ {σpF (.);σpBF (.)}.
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Proof. Pseudo-Fredholm spectrum. Let t0 > 0 be fixed and suppose that
(eλt0 − T (t0)) is pseudo-Fredholm, for some λ ∈ C \ {0}. Then there exist two
closed (eλt0 − T (t0))-invariant subspaces X1, X2 of X such that X = X1 ⊕X2,
(eλt0−T (t0))|X1

is a semi regular operator and (eλt0−T (t0))|X2
is quasi-nilpotent.

From [4, Theorem 2.1] this implies that (λ − A)|(D(A)∩X1) is a semi regular
operator and according to proposition 3.1, we have (λ − A)|(D(A)∩X2) is quasi-
nilpotent, then (λ−A) is pseudo-Fredholm.

Pseudo B-Fredholm. Let t0 > 0 be fixed and suppose that (eλt0 − T (t0)) is
pseudo B-Fredholm, for some λ ∈ C \ {0}. Then there exist X1, X2 two closed
(eλt0 − T (t0))-invariant subspaces of X, such that

X = X1 ⊕X2, e
λt0 − T (t0) = (eλt0 − T (t0))|X1

⊕ (eλt0 − T (t0))|X2
,

(eλt0 − T (t0))|X1
is a Fredholm operator and (eλt0 − T (t0))|X2

is quasi-nilpotent.

From [13] this implies that (λ−A)|(D(A)∩X1) is a Fredholm operator and accord-
ing to proposition 3.1, we have (λ−A)|(D(A)∩X2) is quasi-nilpotent, then (λ−A)
is pseudo B- Fredholm.

By the same argument we can proof the following theorem.

Theorem 3.2. For the generator A of a strongly continuous semigroup (T (t))t≥0

we have the spectral inclusion

etν(A) ⊆ ν(T (t)), t ≥ 0.

Where ν(.) ∈ {σupBF (.);σlpBF (.)}.

Theorem 3.3. For the generator A of a strongly continuous semigroup (T (t))t≥0

we have the spectral inclusion

etν(A) ⊆ ν(T (t)), t ≥ 0.

Where ν(.) ∈ {σgDM(.);σgDQ(.);σgD(.)}.

Proof. Generalized Drazin bounded below:

Suppose that (eλt0−T (t0)) is generalized Drazin bounded below, then, there
exist (X1, X2) two closed (eλt0 − T (t0))-invariant subspaces of X, such that

X = X1 ⊕X2, e
λt0 − T (t0) = (eλt0 − (T (t0))|X1

⊕ (eλt0 − T (t0))|X2
,

(eλt0 − T (t0))|X1
is bounded below, and (eλt0 − T (t0))|X2

is quasi-nilpotent.
From [5], this implies that (λ − A)|(D(A)∩X1) is bounded below, and according
to proposition 3.1, we have (λ−A|(D(A)∩X2)) is quasi-nilpotent, then (λ−A) is
generalized Drazin bounded below.
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Generalized Drazin surjective. Suppose that (eλt0 − T (t0)) is generalized
Drazin surjective, then there exist (X1, X2) two closed (eλt0 − T (t0))-invariant
subspaces of X, such that

X = X1 ⊕X2, e
λt0 − T (t0) = (eλt0 − T (t0))|X1

⊕ (eλt0 − T (t0))|X2
,

(eλt0 − T (t0))|X1
is surjective and (eλt0 − T (t0))|X2

is quasi-nilpotent. As we
have

X1 = R(eλt0 − T (t0))|X1
) ⊆ R((λ−A)|(D(A)∩X1)),

then (λ − A)|(D(A)∩X1) is surjective. According to proposition 3.1, we have
(λ − A)|(D(A)∩X2) is quasi-nilpotent, then (λ − A) is right generalized Drazin
inverse.

Generalized Drazin inverse. Suppose that (eλt0−T (t0)) is generalized Drazin
inverse then there exist (X1, X2) two closed (eλt0 − T (t0))-invariant subspaces
of X, such that

X = X1 ⊕X2, e
λt0 − T (t0) = (eλt0 − T (t0))|X1

⊕ (eλt0 − T (t0))|X2
,

(eλt0 − T (t0))|X1
is invertible and (eλt0 − T (t0))|X2

is quasi-nilpotent.

As X1, X2 two subspaces closed of X then X1, X2 are a Banach spaces and
from [5, 18] and [12, Theorem 2.3], we have (eλt0 − T (t0))|X1

is invertible this
implies that (λ − A)|(D(A)∩X1) is invertible, and according to proposition 3.1,

(eλt0−T (t0))|X2
is quasi-nilpotent, we have (λ−A)|(D(A)∩X2) is quasi-nilpotent,

then (λ−A) is generalized Drazin inverse.

In the end of this paper we prove the following theorem.

Theorem 3.4. Let A be the generator of a C0-semigroup (T (t))t≥0.

If limt→∞
1
tn ∥T (t)∥ = 0, for some n ∈ N, the following assertions are equiv-

alents:

1. A is pseudo-Fredholm;

2. A is generalized Drazin invertible;

3. A is pseudo B-Fredholm.

Proof. (1)⇒ (2) : Since A is pseudo-Fredholm then there exist (X1∩D(A), X2∩
D(A)) two closed A-invariant subspaces of D(A), such that

D(A) = X1 ∩D(A)⊕X2 ∩D(A); A = (A|D(A)∩X1
)⊕ (A|D(A)∩X2

),

(A|(D(A)∩X2)) is quasi-nilpotent and (A|(D(A)∩X1)) is a semi regular operator.

Since A|(D(A)∩X1) is a semi regular operator, therefore R(A|(X1∩D(A))) is
closed and N(A|(X1∩D(A))) ⊆ R∞(A|(X1∩D(A))) ⊆ R∞(A).
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Let y ∈ N(A|(X1∩D(A))) then there exists x ∈ (X1 ∩D(An)) such that y =
Anx.

We integrate by parts in the formal :

T (t)x− x =

∫ t

0
T (s)Axds, for all x ∈ (X1 ∩D(An)), and for all t ≥ 0.

We obtain,

T (t)x = x+ tAx+
t2

2!
A2x+

∫ t

0

(t− s)2

2!
T (s)A3xds.

We repeat these operations we obtain:

T (t)x =
n−1∑
k=0

tk

k!
Akx+

∫ t

0

(t− s)n−1

(n− 1)!
T (s)Anxds.

Hence,

T (t)x =

n−1∑
k=0

tk

k!
Akx+ y

∫ t

0

(t− s)n−1

(n− 1)!
ds.

T (t)x =
n−1∑
k=0

tk

k!
Akx+

tn

n!
y.

Dividing by tn > 0:

1

tn
T (t)x =

1

tn

n−1∑
k=0

tk

k!
Akx+

1

n!
y.

As limt→∞
1
tn ∥T (t)∥ = 0 and limt→∞

1
tn
∑n−1

k=0
tk

k!A
kx = 0 for all 0 ≤ k ≤ n−1,

then y = 0, yields N(A|X1∩D(A)) = {0}.
On the other hand, let (T (t)′)t≥0 with generator A′ the adjoint semigroup

of (T (t))t≥0. Since A|(X1∩D(A)) is semi regular, then A′
|(X′

1∩D(A′)) is also semi

regular see [10, Proposition 1.6]. By using the formula [18, Proposition 1.2.2],

T (t)′x′−x′ = weak∗
∫ t

0
T (s)′A′x′ds, for all x′ ∈ (X ′

1∩D(A′)), and for all t ≥ 0.

In the same manner as above we can show that: N(A′
|(X′

1∩D(A′))) = {0}.
This is equivalent to R(A|(X1∩D(A))) = (X1 ∩D(A)).

Since R(A|(X1∩D(A))) is closed therefore R(A|(X1
∩
D(A))) = (X1 ∩ D(A)).

Then A|(X1∩D(A)) is surjective then A|(X1∩D(A)) invertible and as A|(X2∩D(A)) is
quasi-nilpotent consequently A is generalized Drazin invertible.

(2)⇒ (1): Obvious.
Since the class of generalized Drazin invertible operator is a subclass of

pseudo B-Fredholm operator and the class of pseudo B-Fredholm operator is a
subclass of pseudo-Fredholm operator, hence (1) and (2) and (3) are equivalent.
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Abstract. In this paper, we present an efficient and accurate numerical scheme for the
solution of a model biochemical reaction. The non–standard finite difference scheme
based on Adomian decomposition method does not need to linearized or non-locally
linearized for the nonlinear term of differential equation. The decomposition method is
adopted to construct the numerical solutions. The results demonstrate reliability and
efficiency of the algorithm developed.

Keywords: non-standard finite deference schemes, Adomian decomposition method,
Biochemical reaction model.

1. Introduction

In recent times, the non-standard finite difference schemes by Mickens [1, 2, 3, 4,
5, 6] (in short NSFD) has developed as an alternative method for solving a wide
range of problems whose mathematical models involve algebraic, differential,
biological models, chaotic systems [5]. The technique has many advantages over
the classical techniques [16], and provides an efficient numerical solution.

The well-known Michalis-Menten biochemical reaction model [14]

E +A 
 Y −→ E +X,(1)

where E is the enzyme, A the substrate, Y the intermediate complex and X the
product. The time evolution of scheme 26 can be determined from the solution

∗. Corresponding author
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of the system of coupled nonlinear ODEs[15]

dA

dt
= −k1EA+ k−1Y,(2)

dE

dt
= −k1EA+ (k−1 + k2)Y,(3)

dY

dt
= k1EA− (k−1 + k2)Y,(4)

dX

dt
= k2Y,(5)

where the initial conditions

A(0) = A0, E(0) = E0, Y (0) = 0, X(0) = 0,(6)

and the parameters k1, k−1 and k2 are positive rate constants for each reaction.
The NSFD solution [8] for such differential equation of the form

dy

dt
= f(t, y(t)),(7)

where f(t, y(t)) called the nonlinear term in the differential equation. Using
finite difference method we have

dy

dt
=

yk+1 − ψ(h)yk
ϕ(h)

,(8)

where ϕ and ψ are functions of the step size h = ∆t. The ψ and ϕ have the
following properties

ψ = 1 + o(h),(9)

ϕ(h, λ) = h+ o(h2),(10)

h → 0 and λ = fixed, the numerator function ψ is usually equal to one [13]
unless the system has dissipation.

Examples of functions ϕ(h, λ) that satisfy the previous condition are ϕ(h) =

h, sin(h), sinh(h), eh − 1, 1−e−λh

λ , etc.
Non linear terms can be in general be replaced by nonlocal discrete represen-

tations. For example, y2 ≈ ykyk+1, y
3 ≈ (

yk+1+yk−1

2 )y2k. Set h = T/N , tn = nh,
n = 0, 1, ..., N ∈ Z+. Then Eq.(7) can be discretized as follows,

(11) y(tn+1) = ψ(h)y(tn) + ϕ(h)f(tn+1, y(tn+1), y(tn)),

where f(tn, y(tn+1), y(tn)) is come from the non-locally linearized of f(tn+1,
y(tn+1)).

If we do not use the non-locally linearized the system the differential equa-
tion, a somewhat better method is chosen–the Newton iteration method–to nu-
merically solve the algebraic equation. This requires that f(t, y(t)) be smooth
and that the inverse of the derivative operator fy exists. For a system of equa-
tions, Newton method often needs a lot of time so it is not economical. Luckily,
Adomian decomposition method (ADM) [10, 11, 12] can be used to solve this
problem effectively.
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2. Adomian decomposition

Consider the general nonlinear equation [9]

u = N(u) + f,

where N is a nonlinear operator, and where f is supposed to be known. The
decomposition method consists in looking for a solution having the series form

u =
∞∑
i=0

ui.

The nonlinear operator N is decomposed as

N(u) =
∞∑
n=0

An,

where An’s are called Adomian’s polynomials. In the first approach given by
Adomian, An’s are abtaind from the following equalities

v =
∞∑
i=0

λiui,

N(v) = N

( ∞∑
i=0

λiui

)
=

∞∑
n=0

λiAn

we remark that An’s are formally obtained from the relationship

An =
1

n!

dn

dλn

[
N

( ∞∑
i=0

λiui

)]
λ=0

.

The above process leads to the equality

∞∑
i=0

ui =

∞∑
n=0

An + f,

and the Adomian method consists in identifying ui by means of the formula
below

u0 = f,

u1 = A0(u0),

u2 = A1(u0, u1),

...

un = An−1(u0, u1 · · ·un−1).

The solution u can be written as a series of functions ui i.e.,

∞∑
i=0

|ui| < +∞.
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3. The numerical scheme

Consider the nonlinear differential equation of the form

dy

dt
= f(t, y(t)),(12)

using the first derivatives of Mickens gives

yk+1 − yk
ϕ(h)

= f(tk+1, yk+1),(13)

solving Eq.13 for yk+1 gives

yk+1 = yk + ϕ(h)f(tk+1, yk+1).(14)

For the nonlinear difference algebraic equations (14) using ADM to solve this
kind of problems.

Suppose

yk+1 =

∞∑
i=0

ui,(15)

where

u0 = yk,(16)

u1 = ϕ(h)f(A0),(17)

u2 = ϕ(h)f(A1),(18)

...

un = ϕ(h)f(An−1).(19)

For the n-term of the ADM solution we have

yk+1 =

n−1∑
i=0

ui.(20)

4. Application and results

Systems (2)–(5) can be written as [15]

dx

dt
= −x+ (β − α)y + xy,(21)

dy

dt
=

1

ϵ
(x− βy − xy),(22)

subject to the initial conditions

x(0) = 1, y(0) = 0,(23)

(24)
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where α, β and ϵ are dimensionless parameters. We will illustrate the ANSFD
scheme to solve the system (21) and (22).

xk+1 − xk
ϕ(h)

= −xk+1 + (β − α)yk+1 + xk+1yk+1,(25)

yk+1 − yk
ϕ(h)

=
1

ϵ
(xk+1 − βyk+1 − xk+1yk+1),(26)

where ϕ(h) = sin(h). Solving (25) and (26) for xk+1 and yk+1 gives

xk+1 = xk + ϕ(h)(−xk+1 + (β − α)yk+1 + xk+1yk+1),(27)

yk+1 = yk +
ϕ(h)

ϵ
(xk+1 − βyk+1 − xk+1yk+1).(28)

Using the ADM to solve (27) and (28)

xk+1 =

n−1∑
i=0

vi, yk+1 =

n−1∑
i=0

ui,(29)

where

v0 = xk, u0 = yk,(30)

v1 = ϕ(h)[−v0 + (β − α)u0 + v0u0], v1 =
ϕ(h)

ϵ
[v0 − βu0 − v0u0],(31)

...

vn = ϕ(h)[−vn−1 + (β − α)un−1 +

n−1∑
i=0

vjun−1−j ],(32)

un =
ϕ(h)

ϵ
[vn−1 − βun−1 −

n−1∑
j=0

vjun−1−j ].(33)

The biochemical reaction model (21) and (22) were numerically integrated
using the ANSFD scheme is coded in the computer algebra package Maple and
we employ the Maple’s built-in fourth-order Runge-kutta procedure RK4. The
Maple environment variable Digits controlling the number of significant Digits is
set to 35 in all the calculations done in this paper we have set the dimensionless
parameters α = 0.375, β = 1.0 and ϵ = 0.1 with initial conditions x(0) = 1,
y(0) = 0. It is observed that the 4–term ANSFD solutions agree very well with
the RK4 solution for time range t ∈ [0, 20].

In Table 1 we present the absolute errors between RK4 solutions at time step
∆t = 0.01 and ANSFD solutions at time step ∆t = 0.01 and ∆t = 0.01. Fig.
1 a and b show the solution for x and y, respectively, obtained by the 4-term
ANSFD with ∆t = 0.01. It is observed that the ANSFD solutions agree very
well with the RK4 solutions for t upto t = 20.
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5. Conclusion

In this paper, we derive a reliable algorithm based on Adomian decomposition
for differential equations to solve a biochemical reaction model. The results
obtained are in excellent agreement with those by (RK4) .

Table 1: Differences between 4-term ANSFD and RK4 solutions for the bio-
chemical reaction model.

t ∆ = |RK40.001 −ANSFD0.01| ∆ = |RK40.001 −ANSFD0.001|
∆x ∆y ∆x ∆y

2 1.804E-04 6.406E-05 1.761E-05 6.249E-06
4 2.96E-04 1.493E-04 2.899E-05 1.462E-05
6 3.338E-04 2.213E-04 3.280E-05 2.174E-05
8 2.993E-04 2.4E-04 2.947E-05 2.364E-05
10 2.283E-04 2.06E-04 2.251E-05 2.032E-05
12 1.557E-04 1.502E-04 1.537E-05 1.483E-05
14 9.863E-05 9.858E-05 9.735E-06 9.731E-06
16 5.944E-05 6.050E-05 5.867E-06 5.972E-06
18 3.462E-05 3.556E-05 3.417E-06 3.510E-06
20 1.969E-05 2.032E-05 1.943E-06 2.005E-06

ANSFD

RK4

t
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Abstract. Nutrient pollution is one of most harmful environmental problems, and is
caused by surplus nitrogen in water. This nitrogen concentration occurring in water can
take several forms, such as organic nitrogen, ammonia, nitrite, nitrate, and dissolved
nitrogen gas. Pollution levels can be measured via data collection; however, this is a
rather difficult and complex process, and the results obtained widely deviate in term of
measurement. A mathematical model can be used in complicated water-quality mea-
surement. The advection-dispersion-reaction model provides a pollutant concentration
field. In this research, there are five numerical models for nitrogen pollutant concentra-
tion measurement in a stream proposed: a total nitrogen dispersion model, an organic
nitrogen dispersion model, an ammonia dispersion model, a nitrite dispersion model,
and a nitrate dispersion model. The traditional Forward Time Central Space finite
difference technique and the unconditionally explicit Saulyev technique are employed
to obtain five approximated types of organic and inorganic nitrogen pollutant concen-
trations in each time and place. This paper proposes five forms of nitrogen pollutant
measurement model for the unconditionally stable Saulyev method, so as to make it
more accurate without incurring any significant loss of computational efficiency. The
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five approximated forms of pollutant concentrations obtained indicate that all models
improve the nutrient pollution measurement process.

Keywords: numerical simulations, nitrogen compound, Saulyev technique.

1. Introduction

Water is a main factor in the survival of life on Earth. Water pollution is
a global problem caused by global population growth and economic growth.
It is an important problem affecting society and the environment. The main
causes of this problem are human settlements, industries, and agriculture. One
of the leading water pollution causes is nutrient pollution. Nutrients, such as
nitrogen and phosphorus, are chemicals that flow into natural water, such as
rivers, lakes, and coastal oceans, coming from either point or nonpoint sources.
Nutrients are necessary for aquatic and coastal ecosystems such as plant growth.
Major sources of nutrients are transportation, industry, urban activity, fertilizer,
animal wastes, plant debris, and nitrogen transported from excess or effluent
communities in soil to water sources [1].

Nitrogen is one of the essential contaminants of water. Nitrogen concen-
trations occurring in natural waters can be modified into a variety of organic
and inorganic forms, five being organic nitrogen, ammonia, nitrite, nitrate, and
dissolved nitrogen gas [2]. Due to dissolved nitrogen gas having no biological
effect, this is ignored. Excess nitrogen in the water can occur in pollution in
general, such as low oxygen concentrations in natural waters caused by nitrogen
compound oxidation, or toxic substances found in aquatic animals and affecting
human health. Nitrogen is seen as one of the key nutrients for eutrophication,
public health matters, and aquatic and the other problems.

Mathematical models are widely used in explaining environmental processes
such as chemical, biology, physical, and other processes; parabolic equations
can be reasonably explained in mathematical models [3]. The advection and
diffusion equation is a form of PDE parabolic equation which plays an impor-
tant role in describing transport processes and has that obtained popularity in
solving various problems, including environmental problems such as water qual-
ity measurement [4], [5], and [6], air quality measurement, and others. For the
measurement of water quality, many researches have used these equations to
measure concentrations occurring in natural water sources, such as rivers, and
to compare computed values with real values; their compared yields are similar
[5] and [6]. The finite difference method is one of the most efficient methods of
problem solving in advection and diffusion equations, etc. They can be classified
into two forms: explicit and implicit schemes [3]. Explicit schemes are simple to
calculate, and have been used to present stability and accuracy properties. In
[4], a water quality assessment of a non-uniform flow stream was conducted by
using the Crank-Nicolson method, and the explicit finite difference schemes were
proposed respectively. The forward Time Central Space (FTCS) and Saulyev
schemes were used to determine water quality concentration. In [7], they were
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implemented to measure air pollutant concentrations in an area under a sky
train; three dimensional advection and diffusion equations were solved by using
the explicit FTCS method, such that this method was used in two cases of wind
inflow as the x direction and the x−y directions. [8], described the measurement
of water pollutant concentration control in a connected-pond reservoir that were
connected two ponds using a hydrodynamic model and a steady-state pollutant
dispersion model through a three different finite difference scheme as backward,
forward, and central-in-space, with a steady-state pollutant dispersion model
that formed a steady-state advection-diffusion equation, which was then used
to perform water pollutant concentration level control and cost optimization.

Thus, the simple finite different methods are represented here as simple
explicit schemes in the forms of the FTCS scheme and the Saulyev scheme
[4]. Both schemes are used in calculating mathematical model as water quality
models. When compared, two comparisons have shown that the Saulyev scheme
is more efficient [4].

For implementation, we analyze nitrogen pollutant models from the advection-
dispersion-reaction equation to estimate pollutant concentrations in terms of
total nitrogen, organic nitrogen, ammonia, nitrite, and nitrate concentrations.
We take two numerical methods, the FTCS and the Saulyev methods, to com-
pare with the analytical solution that forms the governing equation. We com-
pute nitrogen pollutant models with two numerical methods to compare efficient
solvability. We solve previous models with the Saulyev method by comparing
different right boundary conditions.

2. Dispersion models

2.1 Advectiondiffusionreaction equation

In a stream water pollutant concentration measurement model, the governing
equation is a one-dimensional advection-diffusion-reaction equation. A simpli-
fied representation, averaging the equation over the depths, as shown in [6],
is

∂C

∂t
= −u∂C

∂x
+D

∂2C

∂x2
− f (C) , 0 ≤ x ≤ L, 0 < t ≤ T,(2.1)

with the initial condition :

C (x, 0) = k (x) , 0 ≤ x ≤ L,(2.2)

and the boundary conditions :

C (0, t) = g (t) , 0 < t ≤ T,
C (1, t) = h (t) , 0 < t ≤ T,

(2.3)

where C (x, t) is the concentration at the point x and at time t,D is the diffusion
coefficient of nitrogen pollution, u is the velocity component, f (C) is reaction
to a sink or source terms, and k (x) , g (t) and h (t) are given.
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2.2 Nitrogen dispersion models

We consider the nitrogen pollutant concentration models in surface water by
using a modified model for approximate concentrations of some nitrogen pollu-
tants: the general nitrogen forms, total nitrogen, organic nitrogen, ammonia,
nitrite, and nitrate which play roles in nitrogen processes are described by the
general knowledge of nitrogen [1] and [10].

ON
ammonification−−−−−−−−−→ NH3

nitrification−−−−−−−→ NO2
nitrification−−−−−−−→ NO3(2.4)

Nitrogen from wastewater is discharged from many sources, such as hu-
man, animal, industry, agriculture, and other sources. General discharged raw
wastewater contains around 40−45 % organic nitrogen; and about 55−60% am-
monia, with the sum of nitrates and nitrites making up about 0−5% of the total
nitrogen [12].

Therefore, different nitrogen pollutant concentrations are analyzed under re-
action terms using five different nitrogen dispersion models, which were estab-
lished by (2.1), and associated with (2.2) and (2.3). We consider these models
to approximate nitrogen pollutant concentration behaviors that occur in natu-
ral water sources to be total nitrogen, organic nitrogen, ammonia, nitrite, and
nitrate. These models are described by the different dispersion models, such
as the total nitrogen concentration model, the organic nitrogen concentration
model, the ammonia concentration model, the nitrite concentration model, and
the nitrate concentration model.

2.2.1 Total nitrogen dispersion model

The total nitrogen (TN) pollutant concentration measurement in a stream is
described by the one-dimensional advection-diffusion-reaction equation.

(2.5)
∂C1

∂t
= −u∂C1

∂x
+D1

∂2C1

∂x2
−R1 (C1) +Q, 0 ≤ x ≤ 1, 0 < t ≤ 1,

the initial condition

C1 (x, 0) = k1 (x) , 0 ≤ x ≤ 1,(2.6)

and the boundary conditions :

C1 (0, t) = g1 (t) , 0 < t ≤ 1,

C1 (1, t) = h1 (t) , 0 < t ≤ 1,
(2.7)

where u is water flow velocity, C1(x, t) is the total nitrogen concentration at
the point x and time t, D1 is the total nitrogen diffusion coefficient, R1 is the
reaction rate due to the degradation, Q is the inlet total nitrogen concentration
due to sources, k1(x) is the potential total nitrogen concentration function along
the stream, g1(t) is the total nitrogen concentration function at the discharge
point, and h1(t) is the rate of change of the total nitrogen concentration with
respect to distance at the end of the stream.
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2.2.2 Organic nitrogen dispersion model

Most organic nitrogen (ON) pollutants are dissolved in living and nonliving
forms from domestic wastes such as urea, uric acid, polypeptides and amino
acids [11]. This model describes the organic nitrogen pollutant concentration
behavior where the performance measurement concentration occurs under re-
action term by the degradation of the organic nitrogen concentration in water,
with consideration of the total nitrogen concentration.

The organic nitrogen (ON) pollutant concentration measurement in a stream
is described by the one-dimensional advection-diffusion-reaction equation.

(2.8)
∂C2

∂t
= −u∂C2

∂x
+D2

∂2C2

∂x2
+R2 (R1C1) , 0 ≤ x ≤ 1, 0 < t ≤ 1,

the initial condition

(2.9) C2 (x, 0) = k2 (x) , 0 ≤ x ≤ 1,

and the boundary conditions :

∂C2 (0, t)

∂t
= g2 (t) , 0 < t ≤ 1,

∂C2 (1, t)

∂t
= h2 (t) , 0 < t ≤ 1,

(2.10)

where u is water flow velocity, C2(x, t) is the organic nitrogen concentration at
the point x and time t, D2 is the organic nitrogen diffusion coefficient, R2 is the
reaction rate due to the degradation, k2(x) is the potential organic nitrogen con-
centration function along the stream, g2(t) is the organic nitrogen concentration
function at the discharge point, and h2(t) is the rate of change of the organic
nitrogen concentration with respect to distance at the end of the stream.

2.2.3 Ammonia dispersion model

Ammonia (NH3) occurs in organic nitrogen by the ammonification process,
which gives ammonia (NH3) and ammonium (NH+

4 ). The mass of ammonia
(NH3) and ammonium (NH+

4 ) are considered in terms of pH and temperature.
Ammonia (NH3) is toxic to aquatic life, whereas ammonium (NH+

4 ), supports
algae and aquatic plant growth. However, ammonia and ammonium are similar
[11]. This model describes ammonia pollutant concentration behavior where
the performance measurement concentration occurs under reaction term by the
degradation of the ammonia pollutant concentration in water, with considera-
tion of the total nitrogen concentration.

The ammonia (NH3) pollutant concentration measurement in a stream is
described by the one-dimensional advection-diffusion-reaction equation.

(2.11)
∂C3

∂t
= −u∂C3

∂x
+D3

∂2C3

∂x2
+R3 (R1C1) , 0 ≤ x ≤ 1, 0 < t ≤ 1,
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the initial condition

C3 (x, 0) = k3 (x) , 0 ≤ x ≤ 1,(2.12)

and the boundary conditions :

∂C3 (0, t)

∂t
= g3 (t) , 0 < t ≤ 1,

∂C3 (1, t)

∂t
= h3 (t) , 0 < t ≤ 1,

(2.13)

where u is water flow velocity, C3(x, t) is the ammonia concentration at the point
x and time t, D3 is the ammonia diffusion coefficient, R3 is the reaction rate
due to the degradation, k3(x) is the potential ammonia concentration function
along the stream, g3(t) is the ammonia concentration function at the discharge
point, and h3(t) is the rate of change of the ammonia concentration with respect
to distance at the end of the stream.

2.2.4 Nitrite dispersion model

The nitrite (NO2) pollutant is oxidized by the nitrification process, such as
to convert ammonia to nitrite. Nitrite is toxic to infants when at excessive
levels [11]. This model describes nitrite pollutant concentration behavior where
the performance measurement concentration occurs under reaction term by the
degradation of the nitrite pollutant concentration in water, with consideration
of the total nitrogen concentration.

The nitrite (NO2) pollutant concentration measurement in a stream is de-
scribed by the one-dimensional advection-diffusion-reaction equation.

(2.14)
∂C4

∂t
= −u∂C4

∂x
+D4

∂2C4

∂x2
+R4 (R1C1) , 0 ≤ x ≤ 1, 0 < t ≤ 1,

the initial condition

(2.15) C4 (x, 0) = k4 (x) , 0 ≤ x ≤ 1,

and the boundary conditions :

∂C4 (0, t)

∂t
= g4 (t) , 0 < t ≤ 1,

∂C4 (1, t)

∂t
= h4 (t) , 0 < t ≤ 1,

(2.16)

where u is water flow velocity, C4(x, t) is the nitrite concentration at the point
x and time t, D4 is the nitrite diffusion coefficient, R4 is the reaction rate due to
the degradation, k4(x) is the potential nitrite concentration function along the
stream, g4(t) is the nitrite concentration function at the discharge point, and
h4(t) is the rate of change of the nitrite concentration with respect to distance
at the end of the stream.
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2.2.5 Nitrate dispersion model

The nitrate (NO3) pollutant is transformed from nitrite by the nitrification pro-
cess and can convert to nitrite [11], which is toxic and hazardous to infants. This
model describes nitrate pollutant concentration behavior where the performance
measurement concentration occurs under reaction term by the degradation of
the nitrate pollutant concentration in water, with consideration of the total
nitrogen concentration.

The nitrate (NO3) pollutant concentration measurement in a stream is de-
scribed by the one-dimensional advection-diffusion-reaction equation.

(2.17)
∂C5

∂t
= −u∂C5

∂x
+D5

∂2C5

∂x2
+R5 (R1C1) , 0 ≤ x ≤ 1, 0 < t ≤ 1,

the initial condition

(2.18) C5 (x, 0) = k5 (x) , 0 ≤ x ≤ 1,

and the boundary conditions :

∂C5 (0, t)

∂t
= g5 (t) , 0 < t ≤ 1,

∂C5 (1, t)

∂t
= h5 (t) , 0 < t ≤ 1,

(2.19)

where u is water flow velocity, C5(x, t) is the nitrate concentration at the point
x and time t, D5 is the nitrate diffusion coefficient, R5 is the reaction rate due to
the degradation, k5(x) is the potential nitrate concentration function along the
stream, g5(t) is the nitrate concentration function at the discharge point, and
h5(t) is the rate of change of the nitrate concentration with respect to distance
at the end of the stream.

3. Numerical techniques for nitrogen dispersion models

This section presents the two numerical schemes of finite difference methods,
the FTCS scheme and the Saulyev scheme, which are explicit schemes.

We can solve C(xi, tn) or Cni at grid point (xi, tn) where 0 ≤ i ≤ M and
0 ≤ n ≤ N such that i and n are positive integers. Each node of xi and tn is
separated by an equal grid on the x-range and t-range as the column of space and
time, respectively, where xi = i∆x, i = 0, 1, 2, ...,M , tn = n∆t, n = 0, 1, 2, ..., N
and the values of ∆x > 0 and ∆t > 0 are the grid of space and time increments,
respectively [4].
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3.1 Forward Time Central Space technique applied to five forms of
nitrogen measurement model

The FTCS scheme can be written as the discretization of time and space deriva-
tive term as follows [4]

∂C

∂t
=
Cn+1
i − Cni

∆t
,

∂C

∂x
=
Cni+1 − C

n+1
i−1

2∆x
,

and
∂2C

∂x2
=
Cni+1 − 2Cni + Cn+1

i−1

(∆x)2
.

(3.1)

Substituting (3.1) into nitrogen dispersion models (the total nitrogen, or-
ganic nitrogen, ammonia, nitrite, and nitrate measurement models) results in
(2.5), (2.8), (2.11), (2.14), and (2.17), respectively.

Moreover, the FTCS has numerical stability that depends on the condition
of the diffusion number (λ) and the advection number (γ) , as follows

λ =
D∆t

(∆x)2
<

1

2
,

and γni =
uni ∆t

∆x
< 1.

(3.2)

These values depend on choosing a suitable grid time increment, as ∆t is
not of much high width.

3.1.1 Forward Time Central Space technique for the total nitrogen
dispersion model

Taking (3.1) into (2.5), we obtain the discretization of total nitrogen dispersion
model as

(C1)
n+1
i − (C1)

n
i

∆t
=− uni

(
(C1)

n
i+1 − (C1)

n
i−1

2∆x

)
+D1

(
(C1)

n
i+1 − 2(C1)

n
i + (C1)

n
i−1

(∆x)2

)
−R1(C1)

n
i +Q.

(3.3)

Rearranging (3.3) leads to (3.4) for the FTCS solution, represented as

(C1)
n+1
i =

(
1

2
γni + λ

)
(C1)

n
i−1 + (1−R1∆t− 2λ)(C1)

n
i

+

(
λ− 1

2
γni

)
(C1)

n
i+1 +Q∆t,(3.4)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .
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Substituting (3.1) into (2.7) and rearranging on the right-bound of the
boundary condition, which is the derivative equation, we get (3.5).

The left boundary condition; i = 0,

C1(0, t) = 1 = g1(t),

and the right boundary condition; i =M,

∂C1(M, t)

∂x
=

(C1)
n
M+1 − (C1)

n
M−1

∆x
= h1(t),

(C1)
n
M+1 = 2h1(t)∆x+ (C1)

n
M−1.

(3.5)

Substituting (3.5) into (3.4) leads to (3.6) of the right side equation, given
as

(C1)
n+1
M =2λ(C1)

n
M−1 + 2h1(t)∆x

(
λ− 1

2
γnM

)
+ (1−R1∆t− 2λ)(C1)

n
M +Q∆t.(3.6)

3.1.2 Forward Time Central Space technique for the organic
nitrogen dispersion model

Likewise, substituting (3.1) into (2.8) leads to (3.7), written as

(C2)
n+1
i − (C2)

n
i

∆t
=− uni

(
(C2)

n
i+1 − (C2)

n
i−1

2∆x

)
+D2

(
(C2)

n
i+1 − 2(C2)

n
i + (C2)

n
i−1

(∆x)2

)
+R2R1(C1)

n
i .

(3.7)

Rearranging (3.7) leads to (3.8) for the FTCS solution, represented as

(C2)
n+1
i =

(
1

2
γni + λ

)
(C2)

n
i−1 + (1− 2λ)(C2)

n
i

+

(
λ− 1

2
γni

)
(C2)

n
i+1 +R2R1(C1)

n
i ∆t,(3.8)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

Substituting (3.1) into (2.10) and rearranging on the left and right-bound
of the boundary condition of this model which are the derivative equations, we
get (3.9).

The left boundary condition; i = 0,

∂C2(0, t)

∂x
=
(C2)

n
1 − (C2)

n
−1

2∆x
= g2(t),

(C2)
n
−1 =(C2)

n
1 − 2g2(t)∆x,

and the right boundary condition; i =M,

∂C2(M, t)

∂x
=
(C2)

n
M+1 − (C2)

n
M−1

2∆x
= h2(t),(3.9)

(C2)
n
M+1 =2h2(t)∆x+ (C2)

n
M−1.
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Substituting (3.9) into (3.8) leads to the left and right side (3.10) and (3.11),
respectively, given as follows

(C2)
n+1
0 =2λ(C2)

n
1 − 2g2(t)∆x

(
λ+

1

2
γn0

)
+ (1− 2λ)(C2)

n
0

+R2R1(C1)
n
0∆t

(3.10)

and

(C2)
n+1
M =2λ(C2)

n
M−1 + 2h2(t)∆x

(
λ− 1

2
γnM

)
+ (1− 2λ)(C2)

n
M

+R2R1(C1)
n
M∆t.

(3.11)

3.1.3 Forward Time Central Space technique for the ammonia
dispersion model

Likewise, substituting (3.1) into (2.11) leads to (3.12), written as

(C3)
n+1
i − (C3)

n
i

∆t
=− uni

(
(C3)

n
i+1 − (C3)

n
i−1

2∆x

)
+D3

(
(C3)

n
i+1 − 2(C3)

n
i + (C3)

n
i−1

(∆x)2

)
+R3R1(C1)

n
i .

(3.12)

Rearranging (3.12) leads to (3.13), represented as

(C3)
n+1
i =

(
1

2
γni + λ

)
(C3)

n
i−1 + (1− 2λ)(C3)

n
i +

(
λ− 1

2
γni

)
(C3)

n
i+1

+R3R1(C1)
n
i ∆t,(3.13)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.14) for the left and right sides, as
below, from substituting (3.1) into (2.13) and rearranging these equations.

The left boundary condition; i = 0,

∂C3(0, t)

∂x
=
(C3)

n
1 − (C3)

n
−1

2∆x
= g3(t),

(C3)
n
−1 =(C3)

n
1 − 2g3(t)∆x,

and the right boundary condition; i =M,

∂C3(M, t)

∂x
=
(C3)

n
M+1 − (C3)

n
M−1

2∆x
= h3(t),(3.14)

(C3)
n
M+1 =2h3(t)∆x+ (C3)

n
M−1.

Substituting (3.14) into (3.13) which leads to the left and right side, (3.15)
and (3.16), respectively, given as follows

(C3)
n+1
0 =2λ(C3)

n
1 − 2g3(t)∆x

(
λ+

1

2
γn0

)
+ (1− 2λ)(C3)

n
0

+R3R1(C1)
n
0∆t

(3.15)
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and

(C3)
n+1
M =2λ(C3)

n
M−1 + 2h3(t)∆x

(
λ− 1

2
γnM

)
+ (1− 2λ)(C3)

n
M

+R3R1(C1)
n
M∆t.

(3.16)

3.1.4 Forward Time Central Space technique for the nitrite
dispersion model

Likewise, substituting (3.1) into (2.14) leads to (3.17), written as

(C4)
n+1
i − (C4)

n
i

∆t
=− uni

(
(C4)

n
i+1 − (C4)

n
i−1

2∆x

)
+D4

(
(C4)

n
i+1 − 2(C4)

n
i + (C4)

n
i−1

(∆x)2

)
+R4R1(C1)

n
i .

(3.17)

Rearranging (3.17) leads to (3.18), represented as

(C4)
n+1
i =

(
1

2
γni + λ

)
(C4)

n
i−1 + (1− 2λ)(C4)

n
i

+

(
λ− 1

2
γni

)
(C4)

n
i+1 +R4R1(C1)

n
i ∆t,(3.18)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.19) for the left and right sides, as
below, from substituting (3.1) into (2.16) and rearranging these equations.

The left boundary condition; i = 0,

∂C4(0, t)

∂x
=
(C4)

n
1 − (C4)

n
−1

2∆x
= g4(t),

(C4)
n
−1 =(C4)

n
1 − 2g4(t)∆x,

and the right boundary condition; i =M,

∂C4(M, t)

∂x
=
(C4)

n
M+1 − (C4)

n
M−1

2∆x
= h4(t),(3.19)

(C4)
n
M+1 =2h4(t)∆x+ (C4)

n
M−1.

Substituting (3.19) into (3.18) leads to the left and right side, (3.20) and
(3.21), respectively, given as follows

(C4)
n+1
0 =2λ(C4)

n
1 − 2g4(t)∆x

(
λ+

1

2
γn0

)
+ (1− 2λ)(C4)

n
0

+R4R1(C1)
n
0∆t

(3.20)

and

(C4)
n+1
M =2λ(C4)

n
M−1 + 2h4(t)∆x

(
λ− 1

2
γnM

)
+ (1− 2λ)(C4)

n
M

+R4R1(C1)
n
M∆t.

(3.21)
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3.1.5 Forward Time Central Space technique for the nitrate
dispersion model

Likewise, substituting (3.1) into (2.17) leads to (3.22), written as

(C5)
n+1
i − (C5)

n
i

∆t
=− uni

(
(C5)

n
i+1 − (C5)

n
i−1

2∆x

)
+D5

(
(C5)

n
i+1 − 2(C5)

n
i + (C5)

n
i−1

(∆x)2

)
+R5R1(C1)

n
i .

(3.22)

Rearranging (3.22) leads to (3.23), represented as

(C5)
n+1
i =

(
1

2
γni + λ

)
(C5)

n
i−1 + (1− 2λ)(C5)

n
i

+

(
λ− 1

2
γni

)
(C5)

n
i+1 +R5R1(C1)

n
i ∆t,(3.23)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.24) for the left and right sides, as
below, from substituting (3.1) into (2.19) and rearranging these equations.

The left boundary condition; i = 0,

∂C5(0, t)

∂x
=
(C5)

n
1 − (C5)

n
−1

2∆x
= g5(t),

(C5)
n
−1 =(C5)

n
1 − 2g5(t)∆x,

and the right boundary condition; i =M,

∂C5(M, t)

∂x
=
(C5)

n
M+1 − (C5)

n
M−1

2∆x
= h5(t),(3.24)

(C5)
n
M+1 =2h5(t)∆x+ (C5)

n
M−1.

Substituting (3.24) into (3.23) leads to the left and right side, (3.25) and
(3.26), respectively, given as follows

(C5)
n+1
0 =2λ(C5)

n
1 − 2g5(t)∆x

(
λ+

1

2
γn0

)
+ (1− 2λ)(C5)

n
0

+R5R1(C1)
n
0∆t

(3.25)

and

(C5)
n+1
M =2λ(C5)

n
M−1 + 2h5(t)∆x

(
λ− 1

2
γnM

)
+ (1− 2λ)(C5)

n
M

+R5R1(C1)
n
M∆t.

(3.26)
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3.2 Unconditionally stable Saulyev technique applied to five forms
of nitrogen dispersion measurement model

Saulyev (1964) introduced asymmetric approximations for the parabolic equa-
tions that are widely used in environmental solving, such as advection and diffu-
sion equations, etc. The solution is given to be an approximation that is explicit
and has unconditional stability [13].

The Saulyev scheme can be written as the discretization of time, and space
derivative term, as per [4]
where let C(x, t) and u denote Cni and uni then

∂C

∂t
=
Cn+1
i − Cni

∆t
,

∂C

∂x
=
Cni+1 − C

n+1
i−1

2∆x
,

and
∂2C

∂x2
=
Cni+1 − Cni − C

n+1
i + Cn+1

i−1

(∆x)2
.

(3.27)

Substituting (3.27) into nitrogen dispersion models (the total nitrogen, or-
ganic nitrogen, ammonia, nitrite, and nitrate measurement models) results in
(2.5), (2.8), (2.11), (2.14), and (2.17), respectively.

3.2.1 Saulyev technique for the total nitrogen dispersion model

Likewise, substituting (3.27) into (2.5) leads to (3.28), written as

(C1)
n+1
i − (C1)

n
i

∆t
=− uni

(
(C1)

n
i+1 − (C1)

n+1
i−1

2∆x

)

+D1

(
(C1)

n
i+1 − (C1)

n
i − (C1)

n+1
i + (C1)

n+1
i−1

(∆x)2

)
−R1(C1)

n
i +Q.

(3.28)

Rearranging (3.28) leads to (3.29), represented as

(C1)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C1)

n+1
i−1 + (1− λ−R1∆t)(C1)

n
i

+

(
λ− 1

2
γni

)
(C1)

n
i+1 +Q∆t

)
,

(3.29)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

Substituting (3.27) into (2.7) and rearranging on the right-bound of the
boundary condition, which is the derivative equation, we get (3.30).
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The left boundary condition; i = 0,

C1(0, t) =1,

and the right boundary condition; i =M ,

∂C1(M, t)

∂x
=
(C1)

n
M+1 − (C1)

n
M−1

2∆x
= h1(t),

(C1)
n
M+1 =2h1(t)∆x+ (C1)

n
M−1.

(3.30)

Substituting (3.30) into (3.29) leads to (3.31) of the right side equation, given
as

(C1)
n+1
i =

1

(1 + λ)

(
2λ(C1)

n+1
M−1 + (1− λ−R1∆t)(C1)

n
M + 2h1(t)∆x(

λ− 1

2
γnM

)
+Q∆t

)
.

(3.31)

3.2.2 Saulyev technique for the organic nitrogen dispersion model

Likewise, substituting (3.27) into (2.8) leads to (3.32), written as

(C2)
n+1
i − (C2)

n
i

∆t
=− uni

(
(C2)

n
i+1 − (C2)

n+1
i−1

2∆x

)

+D2

(
(C2)

n
i+1 − (C2)

n
i − (C2)

n+1
i + (C2)

n+1
i−1

(∆x)2

)
+R2R1(C1)

n
i .

(3.32)

Rearranging (3.32) leads to (3.33), represented as

(C2)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C2)

n+1
i−1 + (1− λ)(C2)

n
i

+

(
λ− 1

2
γni

)
(C2)

n
i+1 +R2R1(C1)

n
i ∆t

)
,

(3.33)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

Substituting (3.27) into (2.10) and rearranging on the left and right-bound
of the boundary condition of this model, which are the derivative equation, we
get (3.34).
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The left boundary condition; i = 0,

∂C2(0, t)

∂x
=
(C2)

n
1 − (C2)

n+1
−1

2∆x
= g2(t),

(C2)
n
−1 =(C2)

n+1
1 − 2g2(t)∆x,

and the right boundary condition; i =M ,

∂C2(M, t)

∂x
=
(C2)

n
M+1 − (C2)

n+1
M−1

2∆x
= h2(t),(3.34)

(C2)
n
M+1 =2h2(t)∆x+ (C2)

n+1
M−1.

Substituting (3.34) into (3.33) leads to the left and right side (3.35) and
(3.36), respectively, given as follows

(C2)
n+1
0 =

1

(1 + λ)

(
2λ(C2)

n+1
1 + (1− λ)(C2)

n
0 − 2g2(t)∆x(

λ+
1

2
γn0

)
+R2R1(C1)

n
0∆t

)(3.35)

and

(C2)
n+1
M =

1

(1 + λ)

(
(2λ(C2)

n+1
M−1 + (1− λ)(C2)

n
M + 2h2(t)∆x(

λ− 1

2
γnM

)
+R2R1(C1)

n
M∆t

)
.

(3.36)

3.2.3 Saulyev technique for the ammonia dispersion model

Likewise, substituting (3.27) into (2.11) leads to (3.37), written as

(C3)
n+1
i − (C3)

n
i

∆t
=− uni

(
(C3)

n
i+1 − (C3)

n+1
i−1

2∆x

)

+D3

(
(C3)

n
i+1 − (C3)

n
i − (C3)

n+1
i + (C3)

n+1
i−1

(∆x)2

)
+R3R1(C1)

n
i .

(3.37)

Rearranging (3.37) leads to (3.38), represented as

(C3)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C3)

n+1
i−1 + (1− λ)(C3)

n
i

+

(
λ− 1

2
γni

)
(C3)

n
i+1 +R3R1(C1)

n
i ∆t

)
,

(3.38)
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where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.39) for the left and right sides, as
below, from substituting (3.27) into (2.13) and rearranging these equations.

The left boundary condition; i = 0,

∂C3(0, t)

∂x
=
(C3)

n
1 − (C3)

n+1
−1

2∆x
= g3(t),

(C3)
n
−1 =(C3)

n+1
1 − 2g3(t)∆x,

and the right boundary condition; i =M ,

∂C3(M, t)

∂x
=
(C3)

n
M+1 − (C3)

n+1
M−1

2∆x
= h3(t),(3.39)

(C3)
n
M+1 =2h3(t)∆x+ (C3)

n+1
M−1.

Substituting (3.39) into (3.38) which leads to the left and right side (3.40)
and (3.41), respectively, given as follows

(C3)
n+1
0 =

1

(1 + λ)

(
2λ(C3)

n+1
1 + (1− λ)(C3)

n
0 − 2g3(t)∆x

(
λ+

1

2
γn0

)

+R3R1(C1)
n
0∆t

)(3.40)

and

(C3)
n+1
M =

1

(1 + λ)

(
2λ(C3)

n+1
M−1 + (1− λ)(C3)

n
M + 2h3(t)∆x

(
λ− 1

2
γnM

)

+R3R1(C1)
n
M∆t

)
.

(3.41)

3.2.4 Saulyev technique for the nitrite dispersion model

Likewise, substituting (3.27) into (2.14) leads to (3.42), written as

(C4)
n+1
i − (C4)

n
i

∆t
=− uni

(
(C4)

n
i+1 − (C4)

n+1
i−1

2∆x

)

+D4

(
(C4)

n
i+1 − (C4)

n
i − (C4)

n+1
i + (C4)

n+1
i−1

(∆x)2

)
+R4R1(C1)

n
i .

(3.42)
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Rearranging (3.42) which leads to (3.43), represented as

(C4)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C4)

n+1
i−1 + (1− λ)(C4)

n
i

+

(
λ− 1

2
γni

)
(C4)

n
i+1 +R4R1(C1)

n
i ∆t

)
,

(3.43)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.44) for the left and right sides, as
below, from substituting (3.27) into (2.16) and rearranging these equations.

The left boundary condition; i = 0,

∂C4(0, t)

∂x
=
(C4)

n
1 − (C4)

n+1
−1

2∆x
= g4(t),

(C4)
n
−1 =(C4)

n+1
1 − 2g4(t)∆x,

and the right boundary condition; i =M ,

∂C4(M, t)

∂x
=
(C4)

n
M+1 − (C4)

n+1
M−1

2∆x
= h4(t),(3.44)

(C4)
n
M+1 =2h4(t)∆x+ (C4)

n+1
M−1.

Substituting (3.44) into (3.43) leads to the left and right side (3.45) and
(3.46), respectively, given as follows

(C4)
n+1
0 =

1

(1 + λ)

(
2λ(C4)

n+1
1 + (1− λ)(C4)

n
0 − 2g4(t)∆x

(
λ+

1

2
γn0

)

+R4R1(C1)
n
0∆t

)(3.45)

and

(C4)
n+1
M =

1

(1 + λ)

(
2λ(C4)

n+1
M−1 + (1− λ)(C4)

n
M + 2h4(t)∆x

(
λ− 1

2
γnM

)

+R4R1(C1)
n
M∆t

)
.

(3.46)
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3.2.5 Saulyev technique for the nitrate dispersion model

Likewise, substituting (3.27) into (2.17) leads to (3.47), written as

(C5)
n+1
i − (C5)

n
i

∆t
=− uni

(
(C5)

n
i+1 − (C5)

n+1
i−1

2∆x

)

+D5

(
(C5)

n
i+1 − (C5)

n
i − (C5)

n+1
i + (C5)

n+1
i−1

(∆x)2

)
+R5R1(C1)

n
i .

(3.47)

Rearranging (3.47) leads to (3.48), represented as

(C5)
n+1
i =

1

(1 + λ)

((
1

2
γni + λ

)
(C5)

n+1
i−1 + (1− λ)(C5)

n
i

+

(
λ− 1

2
γni

)
(C5)

n
i+1 +R5R1(C1)

n
i ∆t

)
,

(3.48)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

The left and right-bounds of the boundary conditions of this model are the
derivative equations. Likewise, we can get (3.49) for the left and right sides, as
below, from substituting (3.27) into (2.19) and rearranging these equations.

The left boundary condition; i = 0,

∂C5(0, t)

∂x
=
(C5)

n
1 − (C5)

n+1
−1

2∆x
= g5(t),

(C5)
n
−1 =(C5)

n+1
1 − 2g5(t)∆x,

and the right boundary condition; i =M ,

∂C5(M, t)

∂x
=
(C5)

n
M+1 − (C5)

n+1
M−1

2∆x
= h5(t),(3.49)

(C5)
n
M+1 =2h5(t)∆x+ (C5)

n+1
M−1.

Substituting (3.49) into (3.48) leads to the left and right side (3.50) and
(3.51), respectively, given as follows

(C5)
n+1
0 =

1

(1 + λ)

(
2λ(C5)

n+1
1 + (1− λ)(C5)

n
0 − 2g5(t)∆x

(
λ+

1

2
γn0

)

+R5R1(C1)
n
0∆t

)(3.50)
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and

(C5)
n+1
M =

1

(1 + λ)

(
2λ(C5)

n+1
M−1 + (1− λ)(C5)

n
M + 2h5(t)∆x

(
λ− 1

2
γnM

)

+R5R1(C1)
n
M∆t

)
.

(3.51)

4. Numerical experiments

In the section, we implement analytical, FTCS, and Saulyev solutions for ap-
proximation in three experiments. The first experiment is an accuracy compar-
ison of the numerical methods with an analytical solution. The second exper-
iment is an efficiency comparison between the FTCS and Saulyev solutions of
the nitrogen dispersion models. The last part is a performance simulation of
the nitrogen dispersion models with the Saulyev method.

4.1 Numerical simulation of an ideal pollutant dispersion
measurement

We compare effective methods between the analytical method and numerical
solutions using the FTCS and Saulyev methods. We consider an analytical
solution to the simplest case of the governing equation with defined initial and
boundary conditions, taken from [9], as an example to compare with the two
numerical solutions.

We perform all three cases by computing (2.1) without the term of reactive
pollutant (f(C) = 0) with the analytical, FTCS, and Saulyev methods. All
three cases are easily solvable where it is assumed that the stream length is 1
km, the performance over the entire time interval is [0,1], the velocity component
(u) is 1 m/s, the diffusion coefficient (D) is 0.01 m2/s, and the grid step size of
space (∆x) and time (∆t) are 0.05 and 0.0025.

The initial and boundary conditions are given to follow (2.2) and (2.3), and
are, respectively [9];

C(x, 0) =k(x) = exp

(
−(x+ 0.5)2

0.00125

)
, 0 ≤ x ≤ 1,

C(0, t) =g(t) =
0.025√

0.000625 + 0.02t
exp

(
− (0.5− t)2

(0.00125 + 0.04t)

)
,(4.1)

0 < t ≤ 1,

C(1, t) =h(t) =
0.025√

0.000625 + 0.02t
exp

(
− (1.5− t)2

(0.00125 + 0.04t)

)
,

0 < t ≤ 1.
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Performing (2.1) without the term of reactive pollutant leads to (4.2) for
analytical solution, represented as follows [9]

C(x, t) =
0.025√

0.000625 + 0.02t
exp

(
− (x+ 0.5− t)2

0.00125 + 0.04t

)
,

0 ≤ x ≤ 1, 0 < t ≤ 1.

(4.2)

Conducting (2.1) without the term of reactive pollutant by using the FTCS
scheme from (3.1), we get and rearrange (4.3), which leads to (4.4)

Cn+1
i − Cni

∆t
= −uni

(
Cni+1 − Cni−1

2∆x

)
+D

(
Cni+1 − 2Cni + Cni−1

(∆x)2

)
,(4.3)

and

Cn+1
i =

(
1

2
γni + λ

)
Cni−1 + (1− 2λ)Cni +

(
λ− 1

2
γni

)
Cni+1,(4.4)

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

Performing (2.1) without the term of reactive pollutant by using the Saulyev
scheme from (3.27), we get and rearrange (4.5), which leads to (4.6).

(4.5)
Cn+1
i − Cni

∆t
= −uni

(
Cni+1 − Cni−1

2∆x

)
+D

(
Cni+1 − Cni − C

n+1
i + Cn+1

i−1

(∆x)2

)
,

and

(4.6) Cn+1
i =

1

(1 + λ)

((
λ+

1

2
γni

)
Cni−1 + (1− λ)Cni +

(
λ− 1

2
γni

)
Cni+1

)
,

where λ = D∆t
(∆x)2

and γni =
uni ∆t
∆x .

Consider that (4.2), (4.4), and (4.6) associate with the initial and boundary
condition from (4.1). We get the approximate values for all three cases as
analytical, FTCS, and Saulyev solutions, respectively.

Hence, these solutions can be shown by graph in order to compare the ac-
curacy assessment of the two numerical methods. Fig. 1 shows the result of
two numerical solutions for comparison with the analytical solution at C(0.5, t),
which describe the approximate values of two numerical solutions near fixed
points of the analytic solution, showing that the numerical solutions are best.

4.2 Numerical simulations of five forms of nitrogen pollutant
concentration measurements

We consider here the experiment for comparing two numerical methods, the
FTCS and Saulyev methods, with the application of nitrogen dispersion models
in section 2.2. It is possible to use numerical methods to solve each case of the
defined grid space (∆x) and time (∆t) increments.
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Figure 1: Comparison of concentrations (kg/m3) of analytic, FTCS and Saulyev
solutions at C(0.5, t).

Table 1: Comparison ∆x and ∆t for computing nitrogen pollutant models of
the total nitrogen with two numerical methods which are possible in the solving.

∆x ∆t λ γ FTCS SAULYEV

0.2

0.1 0.25 0.05 stable stable
0.05 0.125 0.025 stable stable
0.025 0.0625 0.0125 stable stable
0.0125 0.0313 0.00625 stable stable

0.1

0.1 1 0.1 unstable stable
0.05 0.5 0.05 stable stable
0.025 0.25 0.025 stable stable
0.0125 0.125 0.0125 stable stable

0.05

0.1 4 0.2 unstable stable
0.05 2 0.1 unstable stable
0.025 1 0.05 unstable stable
0.0125 0.5 0.025 stable stable

0.025

0.1 16 0.4 unstable stable
0.05 8 0.2 unstable stable
0.025 4 0.1 unstable stable
0.0125 2 0.05 unstable stable

For example, considering the concentration measurement of the nitrogen pol-
lutant concentration in a stream at time t of total nitrogen (C1), organic nitrogen
(C2), ammonia (C3), nitrite (C4), and nitrate (C5) concentrations, assume that
the stream reach is about 1 km, which is considered over the entire time inter-
val [0,1]. This stream is surrounded by residential components. Wastewater is
discharged into the stream, such that the wastewater contains nitrogen as the
total nitrogen concentration form, which is everywhere throughout the stream,
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is described by a interpolated function C1(x, 0) = k1(x) = 1 + x(1 − x) kg/m3

initially, this discharged pollutant concentration at the left side of the stream
(x = 0) is C1(0, t) = g1(t) = 1 kg/m3 for all time and at t = 0, and the right side
of the stream (x = 1) is the rate of change of the total nitrogen concentration

for releasing out ∂C1(1,t)
∂x = h1(t) = −0.001 for all time and at t = 0. Organic

nitrogen, ammonia, nitrite, and nitrate pollutant concentrations depend on the
total nitrogen concentration, such that they are defined by the same values as
there are pollutant concentrations everywhere throughout the stream, and are
kept at C2(x, 0) = C3(x, 0) = C4(x, 0) = C5(x, 0) = 0 kg/m3 initially, at the left
side of the stream (x = 0) is the rate of change of nitrogen pollutant concentra-

tion for releasing in as ∂C2(0,t)
∂x = ∂C3(0,t)

∂x = ∂C4(0,t)
∂x = ∂C5(0,t)

∂x = 0 for all time
and at t = 0, and the right side of the stream is the rate of change of nitro-
gen pollutant concentration for releasing out as ∂C2(1,t)

∂x = ∂C3(1,t)
∂x = ∂C4(1,t)

∂x =
∂C5(1,t)
∂x = −0.001 for all time and at t = 0. The component of velocity is a con-

stant as u = 0.1 m/s. This stream has approximate diffusion coefficients of total
nitrogen (D1), organic nitrogen (D2), ammonia (D3), nitrite (D4), and nitrate
(D5) concentrations of 0.1, 0.85D1, 0.65D1, 0.45D1, and 0.3D1 m2/s, respec-
tively. The rates of degradation of total nitrogen (R1), organic nitrogen (R2),
ammonia (R3), nitrite (R4), and nitrate (R5) concentrations are 0.1, 0.85R1,
0.65R1, 0.45R1, and 0.3R1 s−1, respectively. The inlet flow of the total nitrogen
concentration into the stream is 0.001 m2/s.

Start by computing the numerical solution equations (the FTCS and Saulyev
methods). For the FTCS method, implement solution equatios as the total
nitrogen, organic nitrogen, ammonia, nitrite, and nitrate in section 3.1, which
associate with setting parameter values. For the Saulyev method, implement
solution equations as the total nitrogen, organic nitrogen, ammonia, nitrite, and
nitrate in section 3.2, which associate with setting parameter values.

Perform both methods for each ∆x and ∆t to compare each output of the
numerical method that can be possible to measure for each case, as shown in
Table 1.

From Table 1, we observe that it is possible to use the test to solve all of the
cases for the Saulyev solutions. The FTCS solutions represent divergent yields
and cannot be used in some cases. Therefore, the Saulyev method shows that
is a consistent method for all cases under unconditional stability.

The FTCS method is impossible to compute if ∆t has such large increases
to not be satisfied for stability conditions which depend on λ and γ.

4.3 Numerical simulations of water-quality measurement in a
stream with nitrogen pollutant concentration measurement
using Saulyev method

According to the numerical computation of the nitrogen dispersion models, the
FTCS method is impossible to use for the majority of cases. In the current
section, we implement the Saulyev method with the nitrogen dispersion models.
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This presents a comparative computation of nitrogen pollutant concentration for
the different rates of change observed in them at the right boundary conditions,
in order to explain the different nitrogen pollutant concentration behaviors.

Similarly, from the previous section, the same implementation of the Saulyev
method is done with the concentration measurement of the nitrogen pollu-
tant concentration in the stream at time t as the total nitrogen(C1), organic
nitrogen(C2), ammonia (C3), nitrite (C4), and nitrate (C5). Assume that the
stream reach is about 1 km, which is considered over the entire time interval [0,1],
some stream physical characteristics, initial and boundary conditions are similar,
but some stream physical characteristics are different, such as the component of
velocity depending on distance x, described by a function u = 0.1+x(1−x)(0.1)
m/s. This stream has an approximate diffusion coefficient of the total nitrogen
concentration (D1) with a function D1 = 0.1+(1+x(1−x))(0.1) m2/s, depend-
ing on distances. Furthermore, the grid space (∆x) and time (∆t) increments
are defined by 0.00625 and 0.01, respectively.

We perform solution equations for the total nitrogen, organic nitrogen, am-
monia, nitrite, and nitrate with the Saulyev method in section 3.2, all five cases
which associate with setting parameter values above and the previous section,
by determining the different rates of change of nitrogen pollutant concentrations
at right boundary conditions of -0.001, -0.002, -0.003, -0.004 and -0.005. Table
2 and 3 show each nitrogen pollutant concentration where the rates of change
of nitrogen pollutant concentrations at the right boundary conditions of -0.001
and -0.005, respectively.

We observed that each measurement of all five cases gives each output of
concentration in the same direction of the approximated value and each output
of concentration in the cases of organic nitrogen, ammonia, nitrite, and nitrate
obtained depend on the different defined rates of change of nitrogen pollutant
concentrations at right boundary conditions.

5. Discussion

Consider that the given five graphs in Fig. 2 are examples from the nitrogen
pollutant models in the case of the rate of change of nitrogen pollutant con-
centrations at the right boundary condition of -0.001. The graphs clearly show
the effects of the increase or decrease in nitrogen pollutant concentrations in
the stream, such that the total nitrogen pollutant concentration decreased con-
tinuously in Fig.2 (a), while the organic nitrogen, ammonia, nitrite and nitrate
pollutant concentrations increased continuously in Fig. 2 (b)-(e). It can be
explained that discharged wastewater consists of nitrogen pollutant concentra-
tions, as the total nitrogen concentration, which is the origination concentration,
can measure four different nitrogen pollutant concentrations (organic nitrogen,
ammonia, nitrite, and nitrate) at many space points at various times. Fig. 3
compares each nitrogen pollutant concentration (organic nitrogen, ammonia,
nitrite, and nitrate pollutant concentrations) from the total nitrogen concentra-
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(a) (b)

(c) (d)

(e)

Figure 2: (a)The total nitrogen, (b)organic nitrogen, (c)ammonia, (d) nitrite,
and (e)nitrate (kg/m3) where the rate of change at the right boundary condition
is -0.001.

tions by considering the different rates of change of nitrogen pollutant concentra-
tions at right boundary conditions of -0.001, -0.002, -0.003, -0.004, and, -0.005,
such that the different rates of change of nitrogen pollutant concentrations at the
right boundary condition is similar, the organic nitrogen pollutant concentration
is at a higher level, and the other pollutant concentrations (ammonia, nitrite,
and nitrate) have high concentrations, respectively, following nature. Fig. 4
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(a) (b)

(c) (d)

(e)

Figure 3: The organic nitrogen, ammonia, nitrite, and nitrate concentrations
(kg/m3) from the total nitrogen concentration in cases of the rates of change
at right boundary condition of (a)-0.001, (b)-0.002, (c)-0.003, (d)-0.004, and
(e)-0.005 at C(1, t).

compares the different rates of change of nitrogen pollutant concentrations at
right boundary conditions of -0.001, -0.002, -0.003, -0.004, and -0.005 such that
they affect the pollutant concentration levels of each nitrogen pollutant con-
centration (the total nitrogen, organic nitrogen, ammonia, nitrite, and nitrate
pollutant concentrations). The difference of each nitrogen pollutant concentra-
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(a) (b)

(c) (d)

(e)

Figure 4: Comparison (a) the total nitrogen, (b) organic nitrogen, (c) ammo-
nia, (d) nitrite, and (e) nitrate (kg/m3) when the rates of change at the right
boundary condition are -0.001, -0.002, -0.003, -0.004, and -0.005 at C(1, t).

tion between the rates of change at right boundary conditions at C(1, t) have
equal pollutant concentration values, which shown in Table 4. Observe that if
the rates of change of nitrogen pollutant concentrations have low values to high
values, the nitrogen pollutant concentration levels will also have low values to
high values respectively.
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Table 2. (a) The total nitrogen, (b) organic nitrogen, (c) ammonia, (d) ni-
trite, and (e) nitrate, (kg/m3) where the rate of change at the right boundary
condition is -0.001 such that there are ∆x=0.00625 and ∆t=0.01.

6. Conclusion

In this study, the nitrogen pollutant concentration models in a stream, the
total nitrogen, organic nitrogen, ammonia, nitrite, and nitrate concentrations,
are considered. These models show that each nitrogen pollutant concentration
behavior, such as the total nitrogen concentration, affects the measurement
of various pollutant concentrations of nitrogen, such as the organic nitrogen,
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Table 3. (a) The total nitrogen, (b) organic nitrogen, (c) ammonia, (d) nitrite, and

(e) nitrate, (kg/m3) where the rate of change at the right boundary condition is -0.005

such that there are ∆x=0.00625 and ∆t=0.01.

ammonia, nitrite, and nitrate. The solution performance of these models can be
shown by using the numerical methods (the FTCS and Saulyev methods), which
are explicit schemes. Both methods are in good agreement with the analytic
solution but they have differences under conditions, such that the FTCS method
can solve problems under a stability condition, while the Saulyev method be
able to solve many scenarios without the limitation of stability conditions. The
Saulyev method gives good agreement approximated solutions without stability



580 AREERAT VONGKOK and NOPPARAT POCHAI

Table 4. Comparison each two rates of change at C(1, t) right boundary condition at

of (a) the total nitrogen, (b) organic nitrogen, (c) ammonia, (d) nitrite, and (e) nitrate

concentrations (kg/m3) such that there are ∆x=0.00625 and ∆t=0.01.

limitation. It is a good method for several realistic scenarios. In the simulation,
we can see that the total nitrogen pollutant controlling gives better overall
water-quality levels than another nitrogen pollutant compounds controlling.
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Abstract. In this paper we present some results on K-frames when K ∈ B(H) is
an injective closed range operator. Also we give a condition on K-frames {fn}n∈N
and {gn}n∈N so that {fn + gn}n∈N is again a K-frame for H. Finally, Schatten class
operators are also discussed in terms of K-frames.

Keywords: K-frames, Schatten class operators.

1. Introduction

Frames in Hilbert spaces were introduced by R.J. Duffin and A.C. Schaffer.
Later Daubechies, Grossmann and Meyer gave a strong place to frames in har-
monic analysis. Frame theory plays an important role in signal processing, sam-
pling theory, coding and communications and so on. Frames were introduced as
a better replacement to orthonormal basis. We refer [2] for an introduction to
frame theory.

K-frames were introduced by L. Gavruta, to study atomic systems with
respect to bounded linear operators. K-frames are more general than classical
frames. In K-frames the lower bound only holds for the elements in the range
of K.

Some basic definitions and results related to frames and K-frames are con-
tained in section 2. In section 3 we have included some new results on K-frames.
Section 4 contains our main results relating K-frames and operators in Schatten
classes.

Throughout this paper, H is a separable Hilbert space and we denote by
B(H), the space of all linear bounded operators on H. For K ∈ B(H), we
denote R(K) the range of K. Also, GL(H) denote the set of all bounded linear
operators which have bounded inverses.

∗. Corresponding author
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2. Preliminaries

For a separable Hilbert space H, a sequence {fn}n∈N ⊂ H is said to be a frame
([2]) for H if there exist A,B > 0 such that

A∥x∥2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 ≤ B∥x∥2,

for all x ∈ H.If A = B, we say that {fn}n∈N is a tight frame in H. Let
K ∈ B(H). We say that {fn}n∈N ⊂ H is a K-frame ([3]) for H if there exist
constants A,B > 0 such that

A∥K∗x∥2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 ≤ B∥x∥2,

for all x ∈ H.

If {fn}n∈N ⊂ H is an ordinary frame for H, then {Kfn}n∈N is a K-frame
for H ([5]). If T ∈ B(H) and {fn}n∈N is a K-frame for H, then {Tfn}n∈N is a
TK-frame for H ([5]). If {fn}n∈N ⊂ H is a K-frame for H, then {KNfn}n∈N
is a KN -frame for H where N ≥ 1 is a fixed integer ([5]). FK(H) ⊂ FM (H) if
and only if R(K) ⊃ R(M) where FK(H),FM (H) denote the set of all K-frames
and M -frames on H ([4]). Also, we use the result: T ∈ B(H) is an injective
and closed range operator if and only if there exists a constant c > 0 such that
c∥x∥2 ≤ ∥Tx∥2, for all x ∈ H ([6]),in the proof of our main results.

3. K-frames

In this section we present our results on K-frames.

Theorem 3.1. Let K ∈ B(H) be an injective and closed range operator.If
{fn}n∈N is a frame for R(K), then {K∗fn}n∈N is a frame for H and hence
{KK∗fn}n∈N is a K-frame for H.

Proof. Let {fn}n∈N be a frame for R(K).Then there exist constants A,B > 0
such that, for all x ∈ R(K),

A∥x∥2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 ≤ B∥x∥2.

Also,by our assumption, there exists c > 0 such that c∥x∥2 ≤ ∥Kx∥2, for all
x ∈ H. For x ∈ H,Kx ∈ R(K), and we get

A∥Kx∥2 ≤
n=∞∑
n=1

|⟨Kx, fn⟩|2 ≤ B∥Kx∥2.
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Therefore,

Ac∥x∥2 ≤ A∥Kx∥2 ≤
n=∞∑
n=1

|⟨Kx, fn⟩|2 ≤ B∥Kx∥2 ≤ Bα2∥x∥2,

for all x ∈ H and for some α > 0, i.e.

E∥x∥2 ≤
n=∞∑
n=1

|⟨x,K∗fn⟩|2 ≤ F∥x∥2,

for all x ∈ H where E = Ac > 0, F = Bα2 > 0. Therefore, {K∗fn}n∈N is a
frame for H and hence {KK∗fn}n∈N is a K-frame for H.

Corollary 3.2. Let K ∈ B(H) be an injective and closed range operator and
{fn}n∈N ⊂ H be such that {(K−1)∗fn}n∈N is a frame for R(K).Then {fn}n∈N
is a frame for H.

Theorem 3.3. Suppose {fn}n∈N is a K-frame for H where K∗ is an injective
and closed range operator. Then there exist constants A,B > 0 such that

A∥K∗x∥2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 ≤ B∥K∗x∥2,

for all x ∈ H.

Proof. Since {fn}n∈N is a K-frame for H, there exist constants C,D > 0 such
that

C∥K∗x∥2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 ≤ D∥x∥2,

for all x ∈ H. Since K∗ ∈ B(H) is an injective and closed range operator, there
exist d > 0 such that

d∥x∥2 ≤ ∥K∗x∥2,

for all x ∈ H. Therefore, for all x ∈ H,

C∥K∗x∥2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 ≤ D∥x∥2 ≤ (D/d)∥K∗x∥2,

for all x ∈ H there exist A = C,B = D/d > 0 such that

A∥K∗x∥2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 ≤ B∥K∗x∥2.

Corollary 3.4. Suppose {fn}n∈N is a K-frame for H where K∗ is an injective
and closed range operator. Then {fn}n∈N is a frame for H.
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Definition 3.5. A sequence {fn}n∈N ⊂ H is said to be a 2K-frame for H if
there exist A,B > 0 such that

A∥K∗x∥2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 ≤ B∥K∗x∥2,

for all x ∈ H.

Theorem 3.6. Let {fn}n∈N be a K-frame for H with bounds A1, B1 and {gn}n∈N
be a 2K-frame for H with bounds A2, B2 such that 0 < B2 < A1. Then
{fn+gn}n∈N is a K-frame for H with frame bounds A1−B2 and B1+B2∥K∗∥2.

Proof. By definition of K-frame and 2K-frame, we have

A1∥K∗x∥2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 ≤ B1∥x∥2

and

A2∥K∗x∥2 ≤
n=∞∑
n=1

|⟨x, gn⟩|2 ≤ B2∥K∗x∥2,

for all x ∈ H. Consider,

n=∞∑
n=1

|⟨x, fn + gn⟩|2 ≤
n=∞∑
n=1

|⟨x, fn⟩|2 +
n=∞∑
n=1

|⟨x, gn⟩|2(1)

≤ B1∥x∥2 +B2∥K∗x∥2(2)

≤ (B1 +B2∥K∗∥2)∥x∥2,(3)

for all x ∈ H.
Consider,

n=∞∑
n=1

|⟨x, fn⟩|2 =
n=∞∑
n=1

|⟨x, fn + gn − gn⟩|2(4)

≤
n=∞∑
n=1

|⟨x, fn + gn⟩|2 +
n=∞∑
n=1

|⟨x, gn⟩|2.(5)

This implies that,

A1∥K∗x∥2 ≤
n=∞∑
n=1

|⟨x, fn + gn⟩|2 +B2∥K∗x∥2

i.e.

n=∞∑
n=1

|⟨x, fn + gn⟩|2 ≥ (A1 −B2)∥K∗x∥2

where A1 −B2 > 0.This completes the proof.
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4. K-frames and operators in Schatten classes

Definition 4.1 ([7]). Let T be a compact operator on a separable Hilbert space
H. Given 0 < p < ∞, we define the Schatten p - class of H, denoted by
Sp(H) or simply Sp, to be the space of all compact operators T on H with its
singular value sequence {λn} belonging to lp.Sp(H) is a two sided ideal in B(H).

Following two theorems by H. Bingyang, L.H. Khoi and K. Zhu gives a
characterization for Schatten p-class operators in terms of frames.

Theorem 4.2 ([1]). Suppose T is a compact operator on H and 2 ≤ p <
∞.Then the following conditions are equivalent:

(a) T ∈ Sp;

(b) {∥Ten∥}n∈N ∈ lp for every orthonormal basis {en}n∈N in H;

(c) {∥Tfn∥}n∈N ∈ lp for every frame {fn}n∈N in H.

Theorem 4.3 ([1]). Suppose T is a compact operator on H and 0 ≤ p ≤ 2.Then
the following conditions are equivalent:

(a) T ∈ Sp;

(b) {∥Ten∥}n∈N ∈ lp for some orthonormal basis {en}n∈N in H;

(c) {∥Tfn∥}n∈N ∈ lp for some frame {fn}n∈N in H.

At first we focus on the case where 2 ≤ p <∞.

Theorem 4.4. Suppose T is a compact operator on H and K ∈ B(H). If T is
in the Schatten class Sp, then {∥Tfn∥}n∈N ∈ lp for every K-frame {fn}n∈N in
H, where 2 ≤ p <∞.

Proof. Suppose T ∈ Sp ,2 ≤ p <∞.
Let {fn}n∈N be a K-frame for H and {en}n∈N be an orthonormal basis for

H. Then {hn}n∈N = {fn}n∈N
∪
{en}n∈N is a frame for H and {∥Thn∥}n∈N ∈ lp

,2 ≤ p < ∞. Therefore {∥Tfn∥}n∈N ∈ lp ,2 ≤ p < ∞ and the result is
proved.

Theorem 4.5. Suppose T is a compact operator on H and K ∈ B(H).If
{∥Tfn∥}n∈N ∈ lp for every K-frame {fn}n∈N in H, then {∥TKen∥}n∈N ∈ lp
for every orthonormal basis {en}n∈N in H, where 2 ≤ p <∞.

Proof. Let {en}n∈N be an orthonormal basis for H. Then {Ken}n∈N is a K-
frame forH. Therefore by our assumption {∥TKen∥}n∈N ∈ lp,2 ≤ p <∞.Hence
{∥TKen∥}n∈N ∈ lp for every orthonormal basis {en}n∈N in H.

Theorem 4.6. Suppose T is a compact operator on H and K ∈ GL(H) and
2 ≤ p <∞.Then the following are equivalent:
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(a) T is in the Schatten class Sp;

(b) {∥Tfn∥}n∈N ∈ lp for every K-frame {fn}n∈N in H.

Proof. Clearly, (a) implies (b) holds by Theorem 4.4. Now suppose (b) holds.
Then {∥TKen∥}n∈N ∈ lp for every orthonormal basis {en}n∈N in H. This
implies that TK ∈ Sp. Using the fact that Sp is a two- sided ideal in B(H),
TKK−1 ∈ Sp, i.e. T ∈ Sp. This completes the proof.

Now we move onto the case where 0 < p ≤ 2.

Theorem 4.7. Let T be a compact operator on H and K ∈ B(H). Suppose
{∥Ten∥}n∈N∈lp for some orthonormal basis {en}n∈N ⊂ H. Then {∥Tfn∥}n∈N ∈
lp for some K-frame {fn}n∈N for H, where 0 < p ≤ 2.

Proof. Suppose {∥Ten∥}n∈N ∈ lp for some orthonormal basis {en}n∈N ⊂ H.
Then T ∈ Sp, which implies that TK ∈ Sp for any K ∈ B(H). By Theorem
4.3, {∥TKen∥}n∈N ∈ lp for some orthonormal basis {en}n∈N in H. Now take
fn = Ken, so that {fn}n∈N is aK-frame forH and hence the theorem holds.

Theorem 4.8. Let T be a compact operator on H and K ∈ B(H),where K∗

is an injective closed range operator. If {∥Tfn∥}n∈N ∈ lp for some K-frame
{fn}n∈N for H,then T ∈ Sp, where 0 < p ≤ 2.

Proof. By Corollary 3.4,if K∗ is an injective closed range operator,then every
K-frame is a frame and then applying Theorem 4.3, we get T ∈ Sp.

5. Acknowledgement

The first author acknowledges the financial support of University Grants Com-
mission.

References

[1] H. Bingyang, L.H. Khoi, K. Zhu, Frames and operators in Schatten classes,
Houston J.Math., 41 (2013).

[2] O. Christensen, An introduction to frames and Riesz bases, Brikhauser,
2003.

[3] L. Gavruta, Frames for operators, Applied and Computational Harmonic
Analysis, 32 (2012), 139-144.

[4] L. Gavruta, New results on frames for operators, Analele University,
Oradea, Fasc. Mathematica, 55 (2012).

[5] X. Xiao, Y. Zhu, L. Gavruta, Some properties of K-frames in Hilbert spaces,
Results. Math., 63 (2013), 1243-1255.



SOME RESULTS ON K-FRAMES 589

[6] Y. A. Abramovich, Charalambos, D. Aliprantis, An invitation to operator
theory, American Mathematical Society, 2002.

[7] K. Zhu, Operator theory in function spaces, Mathematical surveys and
monographs (2nd edn), Amer. Math. Soc., 138 (2007).

Accepted: 20.12.2018



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (590–602) 590

Analysis and implementation of kidney stones detection by
applying segmentation techniques on computerized tomography
scans

Mua’ad M Abu-Faraj∗

Faculty of Information Technology and Systems
The University of Jordan
Aqaba
Jordan
m.abufaraj@ju.edu.jo

Mohammad Zubi
Faculty of Business

Al-Balqa Applied University

Al-Salt

Jordan

mohammad.zubi81@bau.edu.jo

Abstract. Kidney stone disease is one of the risks for life throughout the world and
majority of people with stone formation in kidney at the initial stage do not notice it as
disease and it damages the organ slowly. Current estimation is that there are 30 million
people suffering by this disease. There are different imaging techniques for diagnosing
kidney diseases, such as CT images, X-rays, and Ultrasound imaging. In this study
we explored the deployment of three segmentation techniques using matlab to examine
the kidney area, and to enhance kidney stone detection. The segmentation techniques
under investigation are: threshold based segmentation, watershed based segmentation,
and edge based segmentation.

Keywords: image processing, segmentation, computerized tomography, kidney stones.

1. Introduction

There are various imaging techniques that can be used in the medical prac-
tice such as computed tomography (CT) scan, X-rays, and magnetic resonance
imaging (MRI). CT scans are one of the most widely available imaging tech-
niques. These techniques are used for diagnosis and follow-up of different kidney
abnormalities. These abnormalities comprise stone disease, kidney cysts, hy-
dronephrosis (blockage of urine), congenital anomalies, as well as urinary tract
tumors. Moreover, successful management and surgical treatment of such condi-
tions depends largely on accurate identification of such anatomical details. The
detection of kidney stones using ultrasound imaging is a highly challenging task
and is largely operator dependent as they are of low contrast and contain speckle

∗. Corresponding author
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noise. This challenge is overcome by employing other imaging techniques. In
fact, non-contrast enhanced CT scan of the urinary tract is considered the gold
standard of stone disease (Petrik, et al., 2016). The performance of CT scan
is not only superior to all other imaging modalities but also provides various
vital information that play a crucial role in patient counseling in treatment de-
cision such as stone density, structure of the stone and skin-to-stone distance
(Viswanath and Gunasundari, 2015).

The images obtained by X-ray or CT in adverse conditions may be con-
taminated with noise that can affect the detection of diseases, abnormality or
cancerous cells. A large number of image processing techniques (filters) have
been proposed to remove noise. These techniques depend on the type of noise
present in the image (Sanchez et al., 2012).

The operation of producing the estimated clean, original images out from
noisy/corrupt images is called image restoration. There are many forms of
corruption on images, such as: motion blur, camera noise, and camera misfocus
(Banham and Katsaggelos, 1996). The goal of restorative image investigation is
to procure helpful data about the body organs and the medical courses of action
needed. This can be done by utilizing outer and inside wellsprings of vitality,
kidney image analysis performed using CT scans. CT scans are preferred method
to take images of the kidney because of its straightforwardness, convenience and
cost viability (Ebrahimi and Mariano, 2015).

An important source of information for kidney imaging is the presence and
distribution of micro calcifications in the kidney, this anatomical information can
be obtained with high resolution technology using CT scans, As yet there is no
comprehensive imaging modality for all CT scan applications and needs, despite
the fact that the capacity to mechanize and examine restorative pictures gives
a capable intends to help doctors; subsequently computer projects, handling
techniques that get the information and data from medicinal imaging scanners
must be painstakingly created to save and improve the most imperative clinical
data as opposed to presenting extra curios. The ability to improve diagnostic
information from medical images can be further enhanced by designing computer
processing algorithms, application and software intelligently, that is why we
proposed an application based on matlab software to clarified boundaries for
stones in kidney (Ebrahimi and Mariano, 2015).

The compelling question is: why do physicians treat kidney stones? First of
all, this disease is usually a painful condition where pain medication is a tempo-
rary measure and a definitive measure should be undertaken i.e stone removal.
Moreover, pain medications are not effective to alleviate pain. Interesting, re-
sults from historical landmark observational studies (Blandy and Singh, 1976).
In 1970s reported a 10-year mortality rate of up to 30% in patients with large
kidney stone (staghorn stone) who were treated conservatively (without sur-
gical removal). Additionally, one quarter of these patients suffer from severe
urinary tract infections that have significant impact on kidney function. (Rous
and Turner, 1977). In this paper we aim to provide physicians with accurate
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results related to the existence of kidney stones on the CT images, using efficient
segmentation techniques.

2. Literature review

X-rays and Ultrasound imaging are considered low cost imaging techniques.
While CT are considered high cost technique. The researchers in (Vasanthsel-
vakumar, et al., 2017) has focused their studies on applying image processing
techniques on Ultrasonic images, they have applied an automatic detection and
classification of various diseases such as stone, cyst and cancer masses present
in the pelvic region of the kidney.

While other researchers have focused on analyzing the images resulted by
using MRI systems (Youngwoo, et al., 2016), and (Hamed and Fei, 2013). The
authors in (Youngwoo, et al., 2016), have developed an automated method for
segmentation and a method to provide the measurements of kidneys from mag-
netic resonance images in patients with autosomal dominant polycystic kidney
disease, the authors also assessed the performance of the automated method
with the reference manual segmentation method. In (Hamed and Fei, 2013),
the authors have provided an automatic segmentation of the kidney in 3D MR
images, by extracting texture features and statistical matching of geometrical
shape of the kidney. The researchers in (Altintas, et al., 2010) have used x-
ray images to detect kidney stones. The authors in (Tulin and Das, 2017) and
(Natarajan, et al., 2013) have applied image processing techniques on CT scan
images.

Image segmentation is the process of partitioning a digital image into multi-
ple segments. The goal of segmentation is to simplify or change the representa-
tion of an image into something that is more meaningful and easier to analyze.
Several image segmentation techniques have been developed by the researchers
in order to make images smooth and easy to evaluate. In (Tulin and Das, 2017),
the authors aim to remove the Gaussian noise from the abdominal CT scan
images and segment the kidney region from this abdominal area to make a size
measurement and to characterize the difference between healthy and diseased
kidney. In (Natarajan, et al., 2013), the authors have developed an approach
for extracting kidney in abdominal CT scan images. The images have been
divided into two stages. In the first stage a template evaluation method has
been developed for extracting the desired region in an image on the basis of
properties of an organ, which helps in processing to a confined region and is
an automated process. The second stage uses the concept of intensity values of
a pixel and separates the desired region from the original image on the basis
of a computed threshold range. In addition to this, the authors have used a
set of morphological operations for fine coarse kidney segmentation and various
filters for removing noise from an image. In (Ebrahimi and Mariano, 2015), the
authors have provided a development of a semi-automated program that used
image processing techniques and geometry principles to define the boundary,
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and segmentation of the kidney area, and to enhance kidney stone detection. It
marked detected kidney stones and provided an output that identifies the size
and location of the kidney based on pixel count. The program was tested on
standard Kidney Urine Belly (KUB) CT scan slides. The KUB CT scan slides
who were divided into two groups based on the presence and absence of kidney
stones in their hospital records.

3. Data and methodology

Figure 1: The Original Image

Matlab is a high-performance language for education and research as it in-
tegrates computation, visualization and programming in an easy-to-use envi-
ronment where problems and solutions are expressed in familiar mathematical
notation and also it has toolboxes for signal processing, neural network, image
processing, database etc. Matlab software was used to implement the algorithm,
since Matlab Image Processing Toolbox is a collection of functions that extend
the capability of the Matlab numeric-computing environment. The toolbox sup-
ports a wide range of image processing operations, such as Image analysis and
enhancement. Region of interest operations, linear filtering and filter design
(Beucher, et al., 1990). All the functions and equations used in this study are
from Matlab image processing toolbox.

The CT scan images are taken from (Kidney Stones, 2018), the original im-
age was segmented by threshold, edge-based segmentation, and watershed seg-
mentation, the original image is shown in Fig.1. There are many segmentation
techniques as shown in Fig.3. In this paper we have applied three segmenta-
tion techniques on the gray scale image after applied Gaussian filter twice on
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Figure 2: Gray Scale Image

original image shown in Fig.2. These segmentation techniques are Edge based
segmentation, Watershed segmentation, and Threshold based segmentation.

Figure 3: Image Segmentation Techniques

3.1 Edge based segmentation

All images produced in this paper were processed using matlab software. As
shown in Fig.4 illustrate steps edge based segmentation method started by read-
ing image, then detecting the entire cell, two cells are presented in this image,
but only one cell can be seen in its entirety, this cell will be detected. Another
word for object detection is segmentation. The object to be segmented differs
greatly in contrast from the background image. Changes in contrast can be
detected by operators that calculate the gradient of an image. The gradient
image can be calculated and a threshold can be applied to create a binary mask
containing the segmented cell. First, we use edge and the Sobel operator to
calculate the threshold value. We then tune the threshold value and use edge
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again to obtain a binary mask that contains the segmented cell. The next step
is to dilate the image. The binary gradient mask shows lines of high contrast in
the image. These lines do not quite delineate the outline of the object of inter-
est. Compared to the original image, you can see gaps in the lines surrounding
the object in the gradient mask. These linear gaps will disappear if the Sobel
image is dilated using linear structuring elements, which we can create with the
strel function. The binary gradient mask is dilated using the vertical structuring
element followed by the horizontal structuring element. The imdilate function
dilates the image. Filling the interior gaps is the next step. The dilated gradient
mask shows the outline of the cell quite nicely, but there are still holes in the
interior of the cell. To fill these holes, we use the imfill function. Then the
connected objects in border should be removed. The cell of interest has been
successfully segmented, but it is not the only object that has been found. Any
objects that are connected to the border of the image can be removed using the
imclearborder function. The connectivity in the imclearborder function was set
to 4 to remove diagonal connections. The next step is smoothening the object.
Finally, in order to make the segmented object look natural, we smoothen the
object by eroding the image twice with a diamond structuring element. We
create the diamond structuring element using the strel function. An alternate
method for displaying the segmented object would be to place an outline around
the segmented cell. The outline is created by the bwperim function.

Figure 4: Edge Based Segmentation
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3.2 Watershed based segmentation

There are many category watershed segmentation techniques. In this paper;
marker controlled watershed segmentation has been applied sequential steps on
the original 3D image as Illustrate in Fig.5 Watershed segmentation has been
used to separate touching objects in an image. The watershed transform finds
”catchment basins” and ”watershed ridge lines” in an image by treating it as a
surface where light pixels are high and dark pixels are low. Segmentation using
the watershed transform works better if you can identify, or ”mark,” foreground
objects and background locations. Marker-controlled watershed segmentation
follows the following procedure: compute a segmentation function; where the
image whose dark regions are the objects you are trying to segment. The next
step is to compute foreground markers, there are connected blobs of pixels within
each of the objects. Then we should compute background markers to remove the
pixels that are not part of any object. Applying the segmentation function so
that it only has minima at the foreground and background marker locations. The
last step is to compute the watershed transform of the modified segmentation
function.

Figure 5: Marker Controlled Watershed Segmentation

3.3 Threshold based segmentation

Thresholding is the simplest method of image segmentation. From a gray scale
image, thresholding can be used to create binary images. Binary images are
produced from color images by segmentation. Segmentation is the process of
assigning each pixel in the source image to two or more classes. If there are
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more than two classes, then the usual result is several binary images. In image
processing, thresholding is used to split an image into smaller segments, or
junks, using at least one color or gray scale value to define their boundary. The
advantage of obtaining first a binary image is that it reduces the complexity of
the data and simplifies the process of recognition and classification. The most
common way to convert a gray level image to a binary image is to select a single
threshold value. The input to a thresholding operation is typically a gray scale
or color image. In the simplest implementation, the output is a binary image
representing the segmentation. Black pixels correspond to background and white
pixels correspond to foreground (or vice versa). This method of segmentation
applies a single fixed criterion to all pixels in the image simultaneously. There
are three types of thresholding algorithms.

• Global thresholding

• Local thresholding

• Adaptive thresholding

4. The results

In many cases kidney CT scan images cannot give enough information to the
physicians; these information includes: the size, position of stones and other
issues. In this paper, the experiments focused on detecting and clarifying stones
in CT scan images using three methods. The first step is applying enhancement
on image as we mentioned before by using double Gaussian filter, and convert the
original image to gray scale; this approach is used in edge base segmentation and
thresholding segmentation. Segmentation methods are based on gray intensity
on image while all medical images are gray scale.

4.1 Edge based segmentation

In edge-base segmentation technique; a connected pixel that is found on the
boundary of the region is called an edge, so these pixels on the edge are known
as edge points. Edge can be calculated by finding the derivative of an image
function. Some edges are very easy to find. These are: Ramp edge, Step edge,
Roof edge, Spike edge. Step edge is an abrupt change in intensity level. Ramp
edges a gradual change in intensity. Spike edges a quick change in intensity
and after that returns immediately to an original intensity. Roof edge is not
instantaneous over a short distance. Edge based image segmentation method
falls under structural techniques. As show in in the figures below, the result from
Dilated Gradient Image and Binary Gradient Image is better than thresholding
image. Kidney stone is cleared and surrounded by edge, edge-base segmentation
is also fit for two dimension images.
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Figure 6: Dilated Gradient Image Figure 7: Binary Gradient Image

4.2 Marker-controlled watershed segmentation

Figure 8: Superimposed Image Figure 9: Gradient Magnitude Image

In watershed Segmentation technique after applying the double Gaussian
filter of the three dimension image (topography surface) and then start filling
images by water, this is done to create Dam. This technique give us notifications
about topography of images (high and low places), this technique will colored
segments with different color, its helpful for physician to detect and allocate
stones in kidney as show in Figure 13.

4.3 Threshold segmentation

In threshold based segmentation: images will change pixels color that convey
value of intensity to 1or 0 based in thresholding variable T, as given in the equa-
tion 1. As seen in Fig. 15, the result after applying thresholding segmentation
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Figure 10: Markers and Object
Boundaries Superimposed
on Original Image

Figure 11: Modified Regional Maxima
Superimposed on Original
Image

Figure 12: Gradient Magnitude Image
Figure 13: Colored Watershed Matrix

Image

technique on gray scale filter. Fig. 15 displays stones in kidney but its not
clear when its compared with other techniques. Thresholding is segmentation
technique suitable for two-dimension images.

(1) q(x, y) =

{
1, if p(x, y) > T

0, if p(x, y) ≤ T.
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Figure 14: Gray Scale Image
Figure 15: Threshold Segmentation

Image

5. Conclusions and future work

In this work we investigated the application of different segmentation techniques
in detecting kidney stones. The segmentation techniques under investigation
are: edge based segmentation, watershed based segmentation and threshold
based segmentation. Furthermore, depending on our experiments, we nominate
watershed algorithms for detecting kidney stones. Future work may focus on
applying other segmentation techniques to detect kidney stones, and improving
the quality and efficiency of a reasonable analysis algorithm. Another interesting
work is to expand the analysis region to apply different segmentation techniques
to be used for diagnosis and follow-up of different kidney abnormalities. These
abnormalities comprise stone disease, kidney cysts, hydronephrosis (blockage of
urine), congenital anomalies, as well as urinary tract tumors.
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Abstract. The aim of this article is to introduce a definition of conjugate trigonomet-
rically ρ-convex functions by using Young’s inequality which plays an important role in
linking the concept of duality between trigonometrically ρ-convex functions, rather the
definition given by Fenchel. Furthermore, we show that the integration of any increasing
function is trigonometrically ρ-convex.
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1. Introduction

In 1908, Phragmén and Lindelöf (see for example [13]) presented that if F (z)
is an analytic function inside an angle D = {z = reıθ : u < θ < v}, then the
function

h(θ) = hF (θ) = lim sup
r→∞

log |F (reiθ)|
rρ

,

is called the indicator function of F (z) with respect to the order 0 < ρ < ∞,
and has the property:

∗. Corresponding author
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If 0 < ρ(v − u) < π, and M(θ) is the function defined by,

M(θ) := A cos ρθ +B sin ρθ,

(such functions are called sinusoidal or ρ-trigonometric) which has the same
value of h(θ) at α and at β, then for u ≤ θ ≤ v. We have

h(θ) ≤M(θ).

This property is called a trigonometric ρ-convexity.

In [5], Beckenbach and Bing ([4] and [19]) introduced a generalization of the
classical convexity by replacing linear functions with another family of contin-
uous functions such that for each pair of points p1(x1, y1) and p2(x2, y2) of the
plane there exists exactly one member of the family with a graph joining these
points.

In fact, the topic of conjugate convex functions really originate in a paper of
Young [23]. This topic attracted some interests [12], [18] and [20], after the work
of Fenchel. In [9], [10] Fenchel greatly generalized the whole idea and applied it
to the programming problem. Conjugate convex functions have numerous appli-
cations mentioned in [11], [17] and [22]. More precisely, in 2014 Gardiner et al.
[11] modified an algorithm for computing the convex (Legendre-Fenchel) conju-
gate of convex piecewise linear-quadratic functions of two variables, to compute
its partial conjugate i.e. the conjugate with respect to one of the variables. The
structure of the original algorithm is preserved including its time complexity
(linear time with some approximation and log-linear time without approxima-
tion). Applying twice the partial conjugate (and a variable switching operator)
recovers the full conjugate. They presented our partial conjugate algorithm,
which was more flexible and simpler than the original full conjugate algorithm.
They emphasized the difference with the full conjugate algorithm and illustrate
results by computing partial conjugates, partial Moreau envelopes, and partial
proximal averages. In 2017, Notarnicola and Notarstefano [17] proposed that a
class of distributed optimization algorithms based on proximal gradient meth-
ods applied to the dual problem. They showed that, by choosing suitable primal
variable copies, the dual problem is itself separable when written in terms of
conjugate functions, and the dual variables can be stacked into non-overlapping
blocks associated to the computing nodes. In 2018, Rodrigues [22] proposed
that a unified optimal control framework that can be used to formulate and
solve aircraft performance problems, such as maximum endurance and maxi-
mum range, for both propeller-driven airplanes and jet-propelled aircraft. It
was proved that such problems have a common mathematical formulation and,
under strict convexity assumptions, they had a unique feedback solution for the
speed as a function of weight. The feedback solution yields an analytic expres-
sion for the optimal speed. For maximum endurance, the solution corresponds
to the minimization of the rate of fuel consumption per unit time. For maximum
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range, the rate of fuel consumption per unit distance is minimized. Moreover,
the optimal solution for maximum range was interpreted geometrically using
the concept of convex conjugate function and Legendre transformation.

In this paper, we deal with the generalized convex functions in the notion of
Beckenbach. For particular choices of the two parameter family {M(x)}, we
consider the following class of generalized convex functions {M(x) = A cos ρx+
B sin ρx}. This class is called trigonometrically ρ-convex functions (see for ex-
amples [2]-[3], [7]-[8] and [13]) which have interesting applications in the design
of cavitation-free hydrofoils ([1] and [16]) and in the extremum property [2].

The objective of the present paper is to define a conjugate trigonometrically
ρ-convex functions defined on the real line R. We shall be interested in real
finite functions on a finite or infinite interval I such that I ⊂ R and an interior
Io of I.

2. Definitions and preliminary results

In this section, we present the basic definitions and results which are used
later, see for details [2], [13]-[15] and [21].

Definition 2.1 ([14], (see for example [2], [13], [15])). A function f : I → R is
said to be Trigonometrically ρ-Convex Function if for any arbitrary closed
subinterval [u, v] of I such that 0 < ρ(v−u) < π, the graph of f(x) for x ∈ [u, v]
lies nowhere above the ρ-trigonometric function, determined by the equation

M(x) =M(x;u, v, f) = A cos ρx+B sin ρx,

where A and B are chosen such that M(u) = f(u), and M(v) = f(v).

Equivalently, if for all x ∈ [u, v]

(2.1) f(x) ≤M(x) =
f(u) sin ρ(v − x) + f(v) sin ρ(x− u)

sin ρ(v − u)
.

The trigonometrically ρ-convex functions possess a number of properties
analogous to those of convex functions.

For example: If f : I → R is trigonometrically ρ-convex function, then for
any u, v ∈ I such that 0 < ρ(v − u) < π, the inequality

f(x) ≥M(x;u, v, f),

holds outside the interval [u, v].

Definition 2.2 ([4], [5]). A function Tu(x) = A cos ρx+ B sin ρx, is said to be
supporting function for f(x) at the point u ∈ I, if

(2.2) Tu(u) = f(u), and Tu(x) ≤ f(x), ∀x ∈ I.
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Theorem 2.1 ([2]). A function f : I → R is trigonometrically ρ-convex function
on I if and only if there exists a supporting function for f(x) at each point x ∈ I.

Remark 2.1. [[2]] If f : I → R is differentiable trigonometrically ρ-convex
function, then the supporting function for f(x) at the point u ∈ I has the form

(2.3) Tu(x) = f(u) cos ρ(x− u) + f
′
(u)

ρ
sin ρ(x− u), ∀x ∈ I.

Remark 2.2. [[2]] For a trigonometrically ρ-convex function f : I→R, if f(x)
is not differentiable at the point u then the supporting function has the form

(2.4) Tu(x) = f(u) cos ρ(x− u) +Ku,f sin ρ(x− u), ∀x ∈ I,

where Ku,f ∈ [
f
′
−(u)

ρ ,
f
′
+(u)

ρ ].

Theorem 2.2 ([13]-[15]). A trigonometrically ρ-convex function f : I → R has
finite right and left derivatives f

′
+(x), f

′
−(x) at every point x ∈ I and f

′
−(x) ≤

f
′
+(x).

Theorem 2.3 ([14]). Let f : I → R be a two times continuously differentiable
function. Then f is trigonometrically ρ-convex on I if and only if f

′′
(x) +

ρ2f(x) ≥ 0, ∀x ∈ I.

Property 2.1 ([2]). A necessary and sufficient condition for the function f(x)
to be a trigonometrically ρ-convex in I is that the function

φ(x) = f
′
(x) + ρ2

∫ x

w
f(t)dt, w ∈ I

is non-decreasing in I.

Property 2.2 ([15], [21]). If a trigonometrically ρ-convex function f : I → R
is bounded, i.e, |f(x)| < k for x ∈ I, then it is a continuous function of x ∈ I,
and in each closed subinterval J of I, it satisfies a Lipschitz condition, that is

(2.5) |f(x)− f(y)| ≤ k|x− y|, for some k and ∀x, y ∈ J.

The relationship between a convex function and its conjugate is at the heart
of much recent research. The basic idea can be traced back to Young’s Inequality

Theorem 2.4 ([6], Young’s Inequality). Suppose that g : [0,∞) → [0,∞) be
strictly increasing and continuous function with g(0) = 0 and g(t) → ∞ as
t → ∞ (under these circumstances, g has an inverse function g−1, which has
the same properties as g). Then, for any x ≥ 0, y ≥ 0

(2.6) xy ≤
∫ x

0
g(t)dt+

∫ y

0
g−1(t)dt.
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We can now state the main result on the operation of conjugacy:

Theorem 2.5 ([21]). Let f : I → R be a convex and closed function, then
f∗ : I∗ → R is denote the conjugate function and defined by

f∗(y) = sup
x∈I

[xy − f(x)],

it is convex and closed with the domain I∗ = {y ∈ R : f∗(y) <∞} and

(a) xy ≤ f(x) + f∗(y) for all x ∈ I y ∈ I∗,

(b) xy = f(x) + f∗(y) if and only if y ∈ ∂f(x),

(c) ∂(f∗) = (∂f)−1,

(d) f∗∗ = f ,

where ∂f(x) = {y ∈ R; y is the slope of a support line for f at x}.

3. Main results

The purpose of the present section is to show that the integration of increasing
function is trigonometrically ρ-convex. Moreover, we show Young’s inequality in
the class of trigonometrically ρ-convex. Furthermore, we introduce a definition
of conjugate trigonometrically ρ-convex. The relationship between trigonomet-
rically ρ-convex and its conjugate is revealed through Theorem 3.2.

Theorem 3.1. Let g : I → [0,∞) be an increasing function, and c ∈ Io.
Then,

∫ x
c g(t)dt is trigonometrically ρ-convex function for all x ∈ I.

Proof. Put,

f(x) =

∫ x

c
g(t)dt

let u, v ∈ I such that 0 < ρ(v − u) < π, x = λu + µv, where λ + µ = 1 and
λ, µ ∈ [0, 1],

f(x) =

∫ x

c
g(t)dt

=
sin ρ(v − x+ x− u)

sin ρ(v − u)

∫ x

c
g(t)dt

=
sin ρ(v − x) cos ρ(x− u) + cos ρ(v − x) sin ρ(x− u)

sin ρ(v − u)

∫ x

c
g(t)dt

=
sin ρ(v−x) cos ρ(x−u)

sin ρ(v−u)

∫ x

c
g(t)dt+

cos ρ(v − x) sin ρ(x− u)
sin ρ(v − u)

∫ x

c
g(t)dt

=
sin ρ(v − x) cos ρ(x− u)

sin ρ(v − u)
[

∫ u

c
g(t)dt+

∫ x

u
g(t)dt]

+
cos ρ(v − x) sin ρ(x− u)

sin ρ(v − u)
[

∫ v

c
g(t)dt−

∫ v

x
g(t)dt].
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Since

(3.1) cos ρ(x− u) ≤ 1, cos ρ(v − x) ≤ 1,

we get that

f(x) ≤
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)

+
sin ρ(v − x) cos ρ(x− u)

sin ρ(v − u)

∫ x

u
g(t)dt− cos ρ(v − x) sin ρ(x− u)

sin ρ(v − u)

∫ v

x
g(t)dt.

Take

λ =
sin ρ(v − x) cos ρ(x− u)

sin ρ(v − u)
& µ =

cos ρ(v − x) sin ρ(x− u)
sin ρ(v − u)

.

We obtain

f(x) ≤
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)
+λ

∫ x

u
g(t)dt−µ

∫ v

x
g(t)dt.

Since g is increasing, then g(t) ≤ g(x) for all t ∈ [u, x], and −g(t) ≤ −g(x) for
all t ∈ [x, v], we conclude that

f(x) ≤
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)

+λ

∫ x

u
g(x)dt− µ

∫ v

x
g(x)dt

=
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)
+λg(x)[x− u]− µg(x)[v − x]

=
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)
+g(x)[(λ+ µ)x− (λu+ µv)]

=
sin ρ(v − x)

∫ u
c g(t)dt+ sin ρ(x− u)

∫ v
c g(t)dt

sin ρ(v − u)
.

Applying Definition 2.1, then
∫ x
c g(t)dt is trigonometrically ρ-convex function

∀x ∈ I.

Example 3.1. Let g(x) = sin ρx, ∀x ∈ [0, π2ρ ]. Then, f(x) =
∫ x
0 sin ρtdt is

trigonometrically ρ-convex function ∀x ∈ [0, π2ρ ].

As

(3.2) f(x) =

∫ x

0
sin ρtdt =

1

ρ
(1− cos ρx), ∀x ∈ [0,

π

2ρ
].
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Differentiate f(x) =
∫ x
0 sin ρtdt with respect to x, implies

f
′
(x) = sin ρx,

f
′′
(x) = ρ cos ρx.(3.3)

From equations (3.2), (3.3) implies

f
′′
(x) + ρ2f(x) = ρ cos ρx+ ρ2

1

ρ
(1− cos ρx) = ρ,

since 0 < ρ <∞, then f ′′
(x) + ρ2f(x) = ρ > 0, ∀x ∈ [0, π2ρ ]. By using Theorem

2.3, then f(x) trigonometrically ρ-convex function.

Proposition 3.1. Suppose that g : [0, π2ρ ] → [0,∞) be strictly increasing and
continuous function with g(0) = 0, g(x)→∞ as x→∞.

If we take,

(3.4) f(x) =

∫ x

0
g(t)dt, f∗(m) =

∫ m

0
g−1(t)dt.

Then f and f∗ are both trigonometrically ρ-convex functions for all x ∈ [0, π2ρ ],
m ∈ [0,∞), and satisfy

(3.5) m sin(ρx) ≤ f(x) + f∗(m), ∀x ∈ [0,
π

2ρ
].

Proof. Since g is strictly increasing and continuous function with g(0) = 0,
then g has an inverse function g−1, which has the same properties as g for all
x ∈ [0, π2ρ ], and by using Theorem 3.1, then f and f∗ are both trigonometrically
ρ-convex functions for any x ∈ [0, π2ρ ], m ∈ [0,∞).

Now, we prove the inequality (3.5).
Since sin ρx is trigonometrically ρ-convex function and from Property 2.2,

| sin ρx− sin ρ0| ≤ k|ρx− 0|. Take k = 1
ρ , then

(3.6) sin ρx ≤ x, ∀x ∈ [0,
π

2ρ
].

From inequality (3.6) and Theorem 2.4, implies

m sin ρx ≤ mx ≤
∫ x

0
g(t)dt+

∫ m

0
g−1(t)dt, ∀x ∈ [0,

π

2ρ
].

Then, m sin(ρx) ≤ f(x) + f∗(m), ∀x ∈ [0, π2ρ ].

Example 3.2. Let g(x) = sin ρx for all x ∈ [0, π2ρ ]. Then, f(x) =
∫ x
0 g(t)dt and

f∗(m) =
∫m
0 g−1(t)dt are trigonometrically ρ-convex functions, and satisfy

m sin(ρx) ≤ f(x) + f∗(m), ∀x ∈ [0,
π

2ρ
].
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As from Example 3.1, f(x) is trigonometrically ρ-convex function. Since
g(x) = sin ρx, we observe that g−1(m) = 1

ρ arcsinm, ∀m ∈ [0, 1], then

f∗(m) =
1

ρ

∫ m

0
arcsin tdt

=
1

ρ
[m arcsinm+

√
1−m2 − 1](3.7)

f∗
′
(m) =

1

ρ
arcsinm

f∗
′′
(m) =

1

ρ

1√
1− t2

,

using Theorem 2.3, we observe that

f∗
′′
(m) + ρ2f∗(m) =

1

ρ

1√
1− t2

+ ρ

∫ m

0
arcsin tdt ≥ 0,

then f∗(m) is trigonometrically ρ-convex function for all m ∈ [0, 1].
Now, we Check the inequality (3.5).

Define

h(x,m) =

∫ x

0
sin ρtdt+

∫ m

0

1

ρ
arcsin tdt− xm,

for x ∈ [0, π2ρ ] and m in [0, 1],

h(x,m)− h(x, sin ρx) =

∫ m

0

1

ρ
arcsin tdt−

∫ sin ρx

0

1

ρ
arcsin tdt− xm+ x sin ρx

=

∫ m

sin ρx
[
1

ρ
arcsin t− x]dt

=

∫ sin ρx

m
[x− 1

ρ
arcsin t]dt.

The first case is m ≥ sin ρx, we have arcsinm ≥ arcsin t ≥ arcsin sin ρx = ρx,
∀t ∈ [sin ρx,m].

Consequently,

(3.8) h(x,m)− h(x, sin ρx) =
∫ m

sin ρx
[
1

ρ
arcsin t− x]dt ≥ 0.

The second case is m ≤ sin ρx, we have arcsinm ≤ arcsin t ≤ arcsin sin ρx = ρx
∀t ∈ [m, sin ρx].
Consequently,

(3.9) h(x,m)− h(x, sin ρx) =
∫ sin ρx

m
[x− 1

ρ
arcsin t]dt ≥ 0.
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Using equations (3.2) and (3.7), we obtain that

h(x, sin ρx) =
1

ρ
[1− cos ρx] +

1

ρ
[sin ρx arcsin sin ρx+

√
1− sin2 ρx− 1]

− x sin ρx = 0.(3.10)

From equations (3.8), (3.9), (3.10) and by using inequality (3.6), we conclude
that f(x) + f∗(m) ≥ mx ≥ m sin ρx, ∀x ∈ [0, π2ρ ].

Lemma 3.1. Let fα : I → R be an arbitrary family of trigonometrically ρ-
convex functions and

(3.11) f(x) = sup
α

(fα(x))

if J = {x ∈ I : f(x) < ∞} is nonempty, then f : J → R is trigonometrically
ρ-convex function.

Proof. Let x ∈ [a, b] ⊆ J ⊆ I such that 0 < ρ(b − a) < π, since fα(x) is
trigonometrically ρ-convex function for all α and equation (3.11). Then,

f(x) = sup
α

(fα(x))

≤ sup
α

[
fα(a) sin ρ(b− x) + fα(b) sin ρ(x− a)

sin ρ(b− a)
]

≤ supα[fα(a)] sin ρ(b− x) + supα[fα(b)] sin ρ(x− a)
sin ρ(b− a)

=
f(a) sin ρ(b− x) + f(b) sin ρ(x− a)

sin ρ(b− a)
.

From Definition 2.1, implies f(x) = supα(fα(x)) is trigonometrically ρ-convex
function.

Definition 3.1. If f : [0, πρ ] → R is trigonometrically ρ-convex function, then
f∗ : I∗ → R is the conjugate of trigonometrically ρ-convex function and
defined by

(3.12) f∗(m) := sup
x
[m sin ρx− f(x)],

with domain I∗ = {m ∈ R : f∗(m) < ∞} such that m sin ρx ≥ f(x), for all m
in I∗.

Example 3.3. Let f(x) = sin ρx ∀x ∈ [0, πρ ] be trigonometrically ρ-convex
function such that m ≥ 1. Then, its conjugate f∗(m) = m− 1, is trigonometri-
cally ρ-convex function
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As from Definition 3.1,

f∗(m) = sup
x
[m sin ρx− sin ρx],= (m− 1) sup

x
[sin ρx],= m− 1,

then f∗
′
(m) = 1, f∗

′′
(m) = 0. From m ≥ 1 and 0 < ρ <∞. Then

f∗
′′
(m) + ρ2f∗(m) = ρ2(m− 1) ≥ 0.

By using Theorem 2.3, then f∗(m) = m− 1 is trigonometrically ρ-convex func-
tion.

Theorem 3.2. If f : [0, πρ ] → R is trigonometrically ρ-convex function. Its
conjugate f∗ : I∗ → R such that m sin ρx ≥ f(x), ∀m ∈ I∗. Then

(c1) f∗(m) is trigonometrically ρ-convex function.

(c2) m sin ρx ≤ f(x) + f∗(m).

(c3) If f is differentiable then
m sin ρx = f(x) + f∗(m) if and only if ρm cos ρx = f

′
(x).

(c4) For every

g : [0,
π

ρ
]→ R,m sin ρx ≥ g(x), ∀m ∈ I∗, and f ≤ g on [0,

π

ρ
],

implies f∗ ≥ g∗ on I∗.(3.13)

Proof. We first prove that I∗ ̸= ∅. For if I is single point xo, f(x) is trigono-
metrically ρ-convex function and from Theorem 2.1, Remark 2.1, then Txo(x) =
f(xo) cos ρ(x − xo) + Kxo,f sin ρ(x − xo) supports f for each Kxo,f ∈ R. Oth-
erwise, we choose any interior point xo, choose Kxo,f ∈ 1

ρ [f
′
−(xo), f

′
+(xo)], and

again from Theorem 2.1, Remark 2.2 then also Txo(x) is supporting function for
f(x) at xo. In either case then chooseKxo,f such that Txo(x) ≤ f(x), ∀x ∈ [0, πρ ],

(3.14) f(xo) cos ρ(x− xo) +Kxo,f sin ρ(x− xo) ≤ f(x),

implies

f(xo) cos ρx cos ρxo + f(xo) sin ρx sin ρxo +Kxo,f sin ρx cos ρxo

−Kxo,f cos ρx sin ρxo ≤ f(x),

hence

(Kxo,f cos ρxo + f(xo) sin ρxo) sin ρx− f(x) ≤ (Kxo,f sin ρxo

− f(xo) cos ρxo) cos ρx, ∀x ∈ [0,
π

ρ
].(3.15)
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Let m = Kxo,f cos ρxo+ f(xo) sin ρxo, A = Kxo,f sin ρxo− f(xo) cos ρxo, implies
m sin ρx− f(x) ≤ A cos ρx. If A positive, then we get

m sin ρx− f(x) ≤ A : cos ρx ≤ 1 ∀x ∈ [0,
π

ρ
].

Otherwise, if A negative, then we get

m sin ρx− f(x) ≤ −A : cos ρx ≥ −1 ∀x ∈ [0,
π

ρ
].

In either case, we have f∗(m) = supx[m sin ρx− f(x)] <∞.
Then I∗ ̸= ∅.
(c1) Let gx(m) = m sin ρx− f(x), suppose that u, v ∈ I∗ : 0 < ρ(v − u) < π

and let m ∈ (u, v), m = λu+ µv :λ+ µ = 1 and λ, µ ∈ [0, 1],

gx(m) = (λu+ µv) sin ρx− f(x)(λ+ µ)

= λ(u sin ρx− f(x)) + µ(v sin ρx− f(x)).

Take

λ =
sin ρ(v −m) cos ρ(m− u)

sin ρ(v − u)
, µ =

sin ρ(m− u) cos ρ(v −m)

sin ρ(v − u)
,

hence

gx(m) =
sin ρ(v −m) cos ρ(m− u)

sin ρ(v − u)
(u sin ρx− f(x))

+
sin ρ(m− u) cos ρ(v −m)

sin ρ(v − u)
(v sin ρx− f(x)).

Since u, v ∈ I∗ implies u sin ρx − f(x) ≥ 0 and v sin ρx − f(x) ≥ 0, and from
cos ρ(m− u) ≤ 1 and cos ρ(v −m) ≤ 1. Then

gx(m) ≤ sin ρ(v −m)

sin ρ(v − u)
(u sin ρx− f(x)) + sin ρ(m− u)

sin ρ(v − u)
(v sin ρx− f(x))

=
(u sin ρx− f(x)) sin ρ(v −m) + (v sin ρx− f(x)) sin ρ(m− u)

sin ρ(v − u)

=
gx(u) sin ρ(v −m) + gx(v) sin ρ(m− u)

sin ρ(v − u)
.

By using Definition 2.1, then gx(x) is a trigonometrically ρ-convex function,
and by the Lemma 3.1, f∗(m) = supx(gx(m)) is a trigonometrically ρ-convex
function.

(c2) Since equation (3.12), implies

(3.16) m sin ρx− f(x) ≤ f∗(m),
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then m sin ρx ≤ f(x) + f∗(m).
(c3) To prove the necessity, by differentiate m sin ρx = f(x) + f∗(m) with

respect to x implies, ρm cos ρx = f
′
(x).

The sufficiency, let

(3.17) ρm cos ρx = f
′
(x),

implies
∫ x
0 ρm cos ρtdt =

∫ x
0 f

′
(t)dt. Hence,

(3.18) m sin ρx = f(x)− f(0),

since m ∈ I∗, then

(3.19) −f(0) = m sin ρx− f(x) ≥ 0.

From Remark 2.1, then the supporting function for f(x) at the point 0 ∈ [0, πρ ],
has the form

T0(x) = f(0) cos ρx+
f

′
(0)

ρ
sin ρx ≤ f(x), ∀x ∈ [0,

π

ρ
]

from equation(3.17) at x = 0 implies m = f
′
(0)
ρ , and we get m sin ρx − f(x) ≤

−f(0) cos ρx, hence

sup
x
[m sin ρx− f(x)] ≤ −f(0) cos ρx

f∗(m) = sup
x
[m sin ρx− f(x)] ≤ −f(0) cos ρx

f∗(m) ≤ −f(0) cos ρx.(3.20)

From equation (3.19), inequality (3.20) and cos ρx ≤ 1, implies

(3.21) f∗(m) ≤ m sin ρx− f(x)

from inequalities(3.16), and(3.21), then

(3.22) m sin ρx− f(x) = f∗(m).

(c4) Since f ≤ g implies f(x) ≤ g(x), ∀x ∈ [0, πρ ], then

−g(x) ≤ −f(x)
m sin ρx− g(x) ≤ m sin ρx− f(x)

sup
x
[m sin ρx− g(x)] ≤ m sin ρx− f(x),(3.23)

from Definition 3.1, m sin ρx ≥ g(x) and inequality (3.23) implies

g∗(m) = sup
x
[m sin ρx− g(x)]

≤ m sin ρx− f(x)
≤ sup

x
[m sin ρx− f(x)],
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from Definition 3.1, and m sin ρx ≥ f(x) then

(3.24) g∗(m) ≤ f∗(m), ∀m ∈ I∗,

then f∗ ≥ g∗ on I∗.

Remark 3.1. For a trigonometrically ρ-convex function f : [0, π2ρ ] → R if
inf f(x) ̸= −∞, then the domain of its conjugate I∗ = R, where

f∗(m) = sup
x
[m sin ρx− f(x)] ≤ m− inf f(x).
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[12] C. Léonard, Convex conjugates of integeral functionals, Acta Mathematica
Hungarica, 93 (2001), 253-280.

[13] B. Ya. Levin, Lectures on entire functions, American Mathematical Society,
1996.

[14] B. Ya. Levin, Distribution of zeros of entire functions, Transl. Math. Mono-
graphs, 5, Amer. Math. Soc., Providence, RI, 1980.

[15] L. S. Maergoiz, Asymptotic characteristics of entire functions and their
applications in mathematics and biophysics, Kluwer Academic Publishers,
New York, 2003.

[16] D. V. Maklakov and F. G. Avkhadiev, Design of cavitation-free hydrofoils by
a given pressure envelope, Proceedings of the 7th International Symposium
on Cavitation, CAV2009, August 17-22, 2009, Ann Arbor, Michigan, USA,
Paper No. 76.

[17] I. Notarnicola and G. Notarstefano, Asynchronous distributed optimization
via randomized dual proximal gradient, IEEE Transactions on Automatic
Control, 62 (2017).
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Abstract. In this paper we give some results on the direct product, subalgebras
and homomorphisms of decomposable MS -algebras. We Show how direct products and
canonical projections are related. Also, we study homomorphic images of subalgebras
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1. Introduction

MS-algebras were initiated by T.S. Blyth and J.C. Varlet, see [6], as a gener-
alization of both de Morgan and Stone algebras. In [8], T.S. Blyth and J.C.
Varlet described the lattice Λ(MS) of subclasses of the class MS of all MS-
algebras. In [3], S. El-Assar and A. Badawy studied many properties of homo-
momorphisms and subalgebras of MS-algebras from the subclass K2. In [1], A.
Badawy, D. Guffova and M. Haviar introduced and characterized decomposable
MS-algebras by means of decomposable MS-triples. In [2], A. Badawy and R.
El-Fawal studied many properties of decomposable MS-algebras in terms of de-
composable MS-triples as homomorphisms and subalgebras. Also, they solved

∗. Corresponding author
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some fill in problems concerning homomorphisms and subalgebras of decompos-
able MS-algebras.

In this paper we study many properties related to the direct product and
subalgebras of decomposable MS -algebras. Also, we reveal the connection be-
tween homomorphisms and direct products. We finish with some results on
homomorphic images of subalgebras of decomposable MS-algebras.

2. Preliminaries

In this section, we present definitions and main results which are needed through
this paper. For basic facts about MS-algebras and related structures we refer
the reader to [5], [6], [7], [8], [9] and [10].

AnMS-algebra is an algebra (L;∨,∧,◦ , 0, 1) of type (2,2,1,0,0) where (L;∨,∧,
0, 1) is a bounded distributive lattice and the unary operation ◦ satisfies:

x ≤ x◦◦, (x ∧ y)◦ = x◦ ∨ y◦, 1◦ = 0.

The following theorem gives the basic properties of MS-algebras.

Theorem 2.1 ([6], [9]). For any two elements a, b of an MS-algebra L, we
have:

(1) 0◦ = 1,

(2) a ≤ b⇒ b◦ ≤ a◦,
(3) a◦◦◦ = a◦,

(4) (a ∨ b)◦ = a◦ ∧ b◦,
(5) (a ∨ b)◦◦ = a◦◦ ∨ b◦◦,
(6) (a ∧ b)◦◦ = a◦◦ ∧ b◦◦.

Lemma 2.2 ([1], [6]). Let L be an MS-algebra. Then:

(1) L◦◦ = {x ∈ L : x = x◦◦} is a de Morgan subalgebra of L,

(2) D(L) = {x ∈ L : x◦ = 0} is a filter (filter of dense elements) of L.

Definition 2.3 ([4]). Let L = (L;∨,∧, 0L, 1L) and L1 = (L1;∨,∧, 0L1 , 1L1) be
bounded lattices. The map f : L → L1 is called a (0,1)-lattice homomorphism
if:

(1) f(0L) = 0L1 and f(1L) = 1L1 ,

(2) f preserves joins, that is, f(x ∨ y) = f(x) ∨ f(y) for every x, y ∈ L,
(3) f preserves meets, that is, f(x ∧ y) = f(x) ∧ f(y) for every x, y ∈ L.

Definition 2.4 ([4]). A (0,1)-lattice homomorphism f : L → L1 of an MS-
algebra L into an MS-algebra L1 is called a homomorphism if f(x◦) = (f(x))◦

for all x ∈ L.
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Definition 2.5 ([1]). An MS-algebra L is called decomposable MS-algebra if
for every x ∈ L there exists d ∈ D(L) such that x = x◦◦ ∧ d.

Definition 2.6 ([2]). A bounded sublattice of a decomposable MS-algebra L
is called a subalgebra of L if:

(1) x◦ ∈ A,∀x ∈ A,
(2) For every x ∈ A, there exists d ∈ D(A) such that x = x◦◦ ∧ d.

Definition 2.7 ([2]). A subalgebra of a decomposable MS-algebra L is called
a K2-subalgebra of L if for every x, y ∈ A, the following holds:

(1) x ∧ x◦ = x◦ ∧ x◦◦,
(2) x ∧ x◦ 6 y ∨ y◦.

Definition 2.8 ([2]). A subalgebra of a decomposable MS-algebra L is called
a Stone subalgebra of L if for every x ∈ A, x◦ ∨ x◦◦ = 1

3. Direct products and subalgebras of decomposable MS-algebras

We begin by recalling the definition of direct product of MS-algebras.

Definition 3.1. Let {Li, i ∈ In} be a family of MS-algebras. Then, the
direct product

∏n
i=1 Li is defined as

∏n
i=1 Li = {(x1, x2, ..., xn), xi ∈ Li, i ∈ In}

where the operations ∨,∧ are defined componentwise and (x1, x2, ..., xn)
◦ =

(x◦1, x
◦
2, ..., x

◦
n).

The proof of the following lemma is straightforward.

Lemma 3.2. Let {Li, i ∈ In} be a family of MS-algebras. Then:

1. (
∏n
i=1 Li)

◦◦ =
∏n
i=1 L

◦◦
i ,

2. D(
∏n
i=1 Li) =

∏n
i=1D(Li).

Theorem 3.3. Let {Li, i ∈ In} be a family of MS-algebras. Then,
∏n
i=1 Li is

decomposable if and only if Li is decomposable for each i ∈ In.

Proof. Suppose that
∏n
i=1 Li is decomposable. Let xi ∈ Li, i ∈ In. Then,

(x1, x2, ..., xn) ∈
n∏
i=1

Li

⇒ (x1, x2, ..., xn) = (x1, x2, ..., xn)
◦◦ ∧ (d1, d2, ..., dn), di ∈ D(Li), i ∈ In

⇒ (x1, x2, ..., xn) = (x◦◦1 , x
◦◦
2 , ..., x

◦◦
n ) ∧ (d1, d2, ..., dn)

⇒ (x1, x2, ..., xn) = (x◦◦1 ∧ d1, x◦◦2 ∧ d2, ..., x◦◦n ∧ dn)
⇒ xi = x◦◦i ∧ di, di ∈ D(Li), ∀ i ∈ In,

⇒ Li is decomposable, ∀ i ∈ In.
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Conversely, suppose that Li is decomposable, ∀i ∈ In, and (x1, x2, ..., xn) ∈∏n
i=1 Li. Then,

(x1, x2, ..., xn) = (x◦◦1 ∧ d1, x◦◦2 ∧ d2, ..., x◦◦n ∧ dn), di ∈ D(Li)

= (x◦◦1 , x
◦◦
2 , ..., x

◦◦
n ) ∧ (d1, d2, ..., dn)

= (x1, x2, ..., xn)
◦◦ ∧ (d1, d2, ..., dn)

Since (d1, d2, ..., dn) ∈
∏n
i=1D(Li) = D(

∏n
i=1 Li), then

∏n
i=1 Li is decomposable.

Theorem 3.4. Let Ai be a subalgebra of a decomposable MS-algebra Li, i ∈ In.
Then,

∏n
i=1Ai is a subalgebra of

∏n
i=1 Li.

Proof. Clearly,
∏n
i=1Ai is a bounded sublattice of

∏n
i=1 Li. Let (x1, x2, ...xn) ∈∏n

i=1Ai. Then, (x1, x2, ..., xn)
◦ = (x◦1, x

◦
2, ..., x

◦
n) ∈

∏n
i=1Ai (as x

◦
i ∈ Ai). As-

suming that xi = x◦◦i ∧ di, di ∈ D(Ai), we get

(x1, x2, ..., xn) = (x◦◦1 ∧d1, x◦◦2 ∧d2, ..., x◦◦n ∧dn) = (x◦◦1 , x
◦◦
2 , ..., x

◦◦
n )∧(d1, d2, ..., dn).

Since (d1, d2, ..., dn) ∈ D(
∏n
i=1Ai), then

∏n
i=1Ai is a subalgebra of

∏n
i=1 Li.

Corollary 3.5. (
∏n
i=1 Li)

◦◦ is a subalgebra of
∏n
i=1 Li.

Proof. Since (
∏n
i=1 Li)

◦◦ =
∏n
i=1 L

◦◦
i and L◦◦

i is a subalgebra of Li, then
(
∏n
i=1 Li)

◦◦ is a subalgebra of
∏n
i=1 Li.

Lemma 3.6. Let Ai be a K2-subalgebra of a decomposable MS-algebra Li, i ∈
In. Then,

∏n
i=1Ai is a K2-subalgebra of

∏n
i=1 Li.

Proof. By Theorem 3.4,
∏n
i=1Ai is a subalgebra of

∏n
i=1 Li.

Let (x1, x2, ..., xn) ∈
∏n
i=1Ai. Then,

(x1, x2, ..., xn) ∧ (x1, x2, ..., xn)
◦ = (x1 ∧ x◦1, x2 ∧ x◦2, ..., xn ∧ x◦n)

= (x◦1 ∧ x◦◦1 , x◦2 ∧ x◦◦2 , ..., x◦n ∧ x◦◦n )

= (x1, x2, ..., xn)
◦ ∧ (x1, x2, ..., xn)

◦◦.

Moreover,

(x1, x2, ..., xn) ∧ (x1, x2, ..., xn)
◦

= (x1 ∧ x◦1, x2 ∧ x◦2, ..., xn ∧ x◦n)
≤ (y1 ∨ y◦1, y2 ∨ y◦2, ..., yn ∨ y◦n), ∀ yi ∈ Ai

= (y1, y2, ..., yn) ∨ (y1, y2, ..., yn)
◦, ∀ (y1, y2, ..., yn) ∈

n∏
i=1

Ai.

Hence,
∏n
i=1Ai is a K2-subalgebra of

∏n
i=1 Li.
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Lemma 3.7. Let Si be a Stone subalgebra of a decomposable MS-algebra Li, i ∈
In. Then,

∏n
i=1 Si is a Stone subalgebra of

∏n
i=1Ai.

Proof. We need to verify the Stone identity. Namely, z◦ ∨ z◦◦ = 1, ∀z ∈∏n
i=1 Si. Let (x1, x2, ..., xn) ∈

∏n
i=1 Si. Then,

(x1, x2, ..., xn)
◦ ∨ (x1, x2, ..., xn)

◦◦ = (x◦1 ∨ x◦◦1 , x◦2 ∨ x◦◦2 , ..., x◦n ∨ x◦◦n )

= (11, 12, ..., 1n),

where 1i is the greatest element of Si. Thus,
∏n
i=1 Si is a Stone subalgebra of∏n

i=1 Li.

The following example shows that the converse of Theorem 3.4, lemma 3.6
and lemma 3.7 is not true, respectively.

Example 3.8. Consider the following two decomposable MS-algebras:

1 = 00 1 = 00

ttt
ttt

ttt
ttt

PPP
PPP

PPP
PPP

b x

II
II

II
II

II
II z = z0 = y0

nnn
nnn

nnn
nnn

nnn

a = a0 y

0 = 10 = b0 0 = 10 = x0

L1 L2

A = {(1, 1), (0, 0)} is a subalgebra (respectively a K2-subalgebra, a Stone subalgebra)
of L1×L2 while it can not be written as a product of two subalgebras (respectively
K2-subalgebras, Stone subalgebras) of L1 and L2.

Lemma 3.9. Let {Ai, i ∈ In} be a family of subalgebras of a decomposable
MS-algebra L. Then:

1.
∩n
i=1Ai is a subalgebra of L,

2.
∪n
i=1Ai is not necessarily a subalgebra of L.

Proof. 1. Clearly,
∩n
i=1Ai is a bounded sublattice of L. Let x ∈

∩n
i=1Ai.

Then, x ∈ Ai, ∀i ∈ In. Consequently, x◦ ∈ Ai, ∀i ∈ In. Hence, x◦ ∈
∩n
i=1Ai.

Moreover, we have x = x◦◦ ∧ di, di ∈ D(Ai), i ∈ In. As di ∈ Ai, then
∨n
i=1 di ∈

Ai, ∀i ∈ In. Also, (
∨n
i=1 di)

◦ =
∧n
i=1 d

◦
i = 0. Then,

∨n
i=1 di ∈

∩n
i=1D(Ai) =

D(
∩n
i=1Ai). Now, we can write x = x◦◦ ∨ d where d =

∨n
i=1 di ∈ D(

∩n
i=1Ai).

Hence,
∩n
i=1Ai is a subalgebra of L.
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2. Consider L2 of example 3.8, we observe that A1 = {1, 0, x} and A2 =
{1, 0, z} are subalgebras of L2 while A1 ∪A2 = {1, 0, x, z} is not a subalgebra of
L2 (as x ∧ z = y ̸∈ A1 ∪A2).

4. Direct products and homomorphisms of decomposable
MS-algebras

Theorem 4.1. Let {φi : Ai → Bi, i ∈ In} be a family of homomorphisms
between MS-algebras. Define φ :

∏n
i=1Ai →

∏n
i=1Bi, by φ(a1, a2, ..., an) =

(φ1(a1), φ2(a2), ..., φn(an)). Then:

1. φ is a homomorphism,

2. φ is one to one if and only if each φi is one to one,

3. φ is onto if and only if each φi is onto,

4. kerφ =
∏n
i=1 kerφi,

5. φ(
∏n
i=1Ai) =

∏n
i=1 φi(Ai).

Proof.

(1) Let (a1, a2, ..., an), (b1, b2, ..., bn) ∈
∏n
i=1Ai. Then,

φ
(
(a1, a2, ..., an) ∨ (b1, b2, ..., bn)

)
= φ(a1 ∨ b1, a2 ∨ b2, ..., an ∨ bn)
= (φ1(a1 ∨ b1), φ2(a2 ∨ b2), ..., φn(an ∨ bn))
= (φ1(a1) ∨ φ1(b1), φ2(a2) ∨ φ2(b2), ..., φn(an) ∨ φn(bn))
= (φ1(a1), φ2(a2), ..., φn(an)) ∨ (φ1(b1), φ2(b2), ..., φn(bn))

= φ(a1, a2, ..., an) ∨ φ(b1, b2, ..., bn).

Similarly, we can show that

φ
(
(a1, a2, ..., an) ∧ (b1, b2, ..., bn)

)
= φ(a1, a2, ..., an) ∧ φ(b1, b2, ..., bn).

Moreover,

φ(a1, a2, ..., an)
◦ = φ(a◦1, a

◦
2, ..., a

◦
n)

= (φ1(a
◦
1), φ2(a

◦
2), ..., φn(a

◦
n))

= (φ1(a1)
◦, φ2(a2)

◦, ..., φn(an)
◦)

= (φ1(a1), φ2(a2), ..., φn(an))
◦

= (φ(a1, a2, ..., an))
◦.

Hence, φ is a homomorphism from
∏n
i=1Ai into

∏n
i=1Bi.
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(2) Let φ be one to one and suppose that φi(ai) = φi(bi), i ∈ In. Then,

φ(a1, a2, ..., an) = (φ1(a1), φ2(a2), ..., φn(an))

= (φ1(b1), φ2(b2), ..., φn(bn))

= φ(b1, b2, ..., bn).

This gives (a1, a2, ..., an) = (b1, b2, ..., bn). So, ai = bi, ∀i ∈ In. Hence, each φi is
one to one. Conversely, assume φi is one to one for each i and φ(a1, a2, ..., an) =
φ(b1, b2, ..., bn). Then, (φ1(a1), φ2(a2), ..., φn(an)) = (φ1(b1), φ2(b2), ..., φn(bn)).
Thus, φi(ai) = φi(bi) ∀i. Hence, φ is one to one.

(3) Let φ be onto and bi ∈ Bi, ∀i. Then, (b1, b2, ..., bn) ∈
∏n
i=1Bi. As φ is onto,

there exists (a1, a2, ..., an) ∈
∏n
i=1Ai such that φ(a1, a2, ..., an) = (b1, b2, ..., bn).

Equivalently, (φ1(a1), φ2(a2), ..., φn(an)) = (b1, b2, ..., bn). That is, φi(ai) =
bi, ∀i. Hence, each φi is onto. Conversely, let φi be onto for each i and
(b1, b2, ..., bn) ∈

∏n
i=1Bi. Since bi ∈ Bi and φi is onto, then there exists ai ∈ Ai

such that bi = φi(ai), ∀i. So, (b1, b2, ..., bn) = (φ1(a1), φ2(a2), ..., φn(an)). Con-
sequently, φ is onto.

(a1, a2, ..., an) ∈ kerφ⇔ φ(a1, a2, ..., an) = (01, 02, ..., 0n)

⇔ (φ1(a1), φ2(a2), ..., φn(an)) = (01, 02, ..., 0n)

⇔ φi(ai) = 0i, ∀i ∈ In(4)

⇔ ai ∈ kerφi ∀i ∈ In

⇔ (a1, a2, ..., an) ∈
n∏
i=1

kerφi.

(b1, b2, ..., bn) ∈ φ(
i=1∏
n

Ai)

⇔ (b1, b2, ..., bn) = φ((a1, a2, ..., an)), (a1, a2, ..., an) ∈
i=1∏
n

Ai(5)

⇔ φi(ai) = bi, ai ∈ Ai

⇔ (b1, b2, ..., bn) ∈
n∏
i=1

φi(Ai).

Theorem 4.2. Let {Ai, i ∈ In} be a family of MS-algebras. Then, the map
φk :

∏n
i=1Ai → Ak defined by φk(a1, a2, ..., ak, ..., an) = ak is an epimorphism

for each k ∈ In.

Proof. Let (a1, a2, ..., ak, ..., an) = (b1, b2, ..., bk, ..., bn). Then, ai = bi ∀i ∈ In.
Therefore, φk(a1, a2, ..., ak, ..., an) = ak = bk = φk(b1, b2, ..., bk, ..., bn). So, φk is
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well defined, ∀k ∈ In. Now, suppose that (a1, a2, ..., ak, ..., an), (b1, b2, ..., bk, ..., bn)
∈
∏n
i=1Ai. Then, φk

(
(a1, a2, ..., ak, ..., an) ∨ (b1, b2, ..., bk, ..., bn)

)
= ak ∨ bk =

φk(a1, a2, ..., ak, ..., an)∨φk(b1, b2, ..., bk, ..., bn). Similarly, φk preserves the meet
operation. Besides,

φk(a1, a2, ..., ak, ..., an)
◦ = a◦k = (φk(a1, a2, ..., ak, ..., an))

◦

Finally, if ck∈AK , then (01, 02, ..., ck, ..., 0n)∈
∏n
i=1Ai with φk(01, 02, ..., ck, ..., 0n)

= ck. Thus, φk is onto and hence φk is an epimorphism .

The previous maps (φks) are called the canonical projections of the direct
product.

Theorem 4.3. Let {Li, i ∈ In} be a family of MS-algebras. Then there exists a
unique (up to isomorphism) MS-algebra L, together with a family of homomor-
phisms {φi : L→ Li, i ∈ In}, with the following property:

For any MS-algebra M and any family of homomorphisms {fi :M → Li, i ∈
In}, there exists a unique homomorphism f : M → L such that φi ◦ f = fi,
∀i ∈ In.

Proof. Let L =
∏n
i=1 Li and {φi : L → Li, i ∈ In} be the family of canonical

projections. Define f : M → L by f(a) = (f1(a), f2(a), ..., fn(a)), ∀a ∈ M . For
any a, b ∈M , we have

f
(
a ∨ b

)
= (f1(a ∨ b), f2(a ∨ b), ..., fn(a ∨ b))
= (f1(a) ∨ f1(b), f2(a) ∨ f2(b), ..., fn(a) ∨ fn(b))
= (f1(a), f2(a), ..., fn(a)) ∨ (f1(b), f2(b), ..., fn(b))

= f(a) ∨ f(b).

Similarly, f
(
a ∧ b

)
= f(a) ∧ f(b). Also,

f(a◦) = (f1(a
◦), f2(a

◦), ..., fn(a
◦)) = ((f1(a))

◦, (f2(a))
◦, ..., (fn(a))

◦) = ((f(a))◦.

Thus, f is a homomorphism. Moreover,

(φi ◦ f)(a) = φi(f(a)) = φi(f1(a), f2(a), ..., fn(a)) = fi(a), ∀a ∈M.

Hence, φi ◦ f = fi, ∀i ∈ In. To prove the uniqueness of f , let g : M → L be
another homomorphism such that φi ◦ g = fi, ∀i ∈ In. This implies that (φi ◦
f)(a) = fi(a) = (φi ◦ g)(a), ∀a ∈ M , Assume that g(a) = (a1, a2, ..., an), ∀a ∈
M . Then,

ai = φi
(
a1, a2, ..., an) = φi(g(a))

= φi(f(a)) = φi
(
f1(a), f2(a), ..., fn(a)) = fi(a) ∀i ∈ In.

Therefore, f(a) = (a1, a2, ..., an) = g(a), ∀a ∈M . So, f = g and f is unique. It
remains to prove the uniqueness of L. Suppose that L1 is an MS-algebra which
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has the same property as L with the family of homomorphisms {ψi : L1 →
Li, i ∈ In}. Apply the property to L and L1, we get unique homomorphisms
α : L1 → L and β : L → L1 with φi ◦ α = ψi and ψi ◦ β = φi, ∀i ∈ In.
Consequently, α ◦ β : L → L1 is a unique homomorphism with φi ◦ (α ◦ β) =
φi ∀i ∈ In. Since the identity map idL : L → L is also a homomorphism with
φi ◦ idL = φi ∀i ∈ In, then α ◦β = idL. Similarly, β ◦α = idL1 . This shows that
β is an isomorphism and L is unique up to isomorphism.

Noting that the proofs of the previous three theorems do not rely on the de-
composability of theMS-algebras, we conclude that they hold for decomposable
MS-algebras.

Theorem 4.4. Let φ : L1 → L2 be a homomorphism between decomposable
MS-algebras L1 and L2. If A is a subalgebra of L1, then φ(A) is a subalgebra of
L2.

Proof. Let b1, b2 ∈ φ(A). Then, there exist a1, a2 ∈ A with φ(a1) = b1, φ(a2) =
b2. So, φ(a1 ∨ a2) = b1 ∨ b2. As a1 ∨ a2 ∈ A, then b1 ∨ b2 ∈ φ(A). A similar
argument shows that b1 ∧ b2 ∈ φ(A). Now, let b ∈ φ(A). Then, b = φ(a),
for some a ∈ A. So, b◦ = φ(a◦). Since a◦ ∈ A, then b◦ ∈ φ(A). Writing
a = a◦◦ ∧ d, d ∈ D(A), we get

b = φ(a) = φ(a◦◦ ∧ d) = φ(a◦◦) ∧ φ(d) = (φ(a))◦◦ ∧ φ(d) = b◦◦ ∧ φ(d).

We note that (φ(d))◦ = φ(d◦) = φ(01) = 02. So, φ(d) ∈ D(φ(A)). Hence, φ(A)
is a subalgebra of L2.

Theorem 4.5. Let φ : L1 → L2 be a monomorphism. If B is a subalgebra of
L2, then φ

−1(B) is a subalgebra of L1.

Proof. Let a1, a2 ∈ φ−1(B). Then, there exist b1, b2 ∈ B with φ(a1) = b1 and
φ(a2) = b2. So, φ(a1∨a2) = b1∨b2 and φ(a1∧a2) = b1∧b2. As b1∨b2, b1∧b2 ∈ B,
then a1 ∨ a2, a1 ∧ a2 ∈ φ−1(B). Now, let a ∈ φ−1(B), then a = φ−1(b) for some
b ∈ B. So, φ(a) = b. Then, φ(a◦) = b◦. As b◦ ∈ B, then a◦ ∈ φ−1(B).
Assuming that b = b◦◦ ∧ e, e ∈ D(B), we get

a = φ−1(b) = φ−1(b◦◦ ∧ e), e ∈ D(B).

= φ−1(b◦◦) ∧ φ−1(e)

= (φ−1(b))◦◦ ∧ φ−1(e)) = a◦◦ ∧ φ−1(e).

Now, we prove that φ−1(e) ∈ D(φ−1(B)). Let d = φ−1(e). Then, φ(d) = e.
This gives φ(d◦) = e◦ = 02. Therefore, d

◦ = φ−1(02) = 01. So, d ∈ D(φ−1(B)).
Hence, a = a◦◦ ∧ d, d ∈ D(φ−1(B)). Hence, φ−1(B) is a subalgebra of L1.

Theorem 4.6. Let L1 and L2 be two MS-algebras. Then, L1 can be embedded
into L1 × L2 if and only if there exists a homomorphism from L1 to L2.
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Proof. Assume that L1 can be embedded into L1 × L2. Then, there exists
a monomorphism φ : L1 → L1 × L2. Let φ(a) = (a1, a2), ∀a ∈ L1. Define
f : L1 → L2 by f(a) = a2. Then, f(a ∨ b) = a2 ∨ b2 = f(a) ∨ f(b). Similarly,
f(a∧b) = f(a)∧f(b) Also, f(a◦) = a◦2 = (f(a))◦. Hence, f is a homomorphism.

Conversely, assume that there exists a homomorphism f : L1 → L2. Define
ϕ : L1 → L1 × L2 by ϕ(a) = (a, f(a)). Then,

ϕ(a ∨ b) = (a ∨ b, f(a ∨ b)) = (a ∨ b, f(a) ∨ f(b)) = (a, f(a)) ∨ (b, f(b))

= ϕ(a) ∨ ϕ(b), ∀a, b ∈ L1.

Analogously, ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b). Also, ϕ(a◦) = (a◦, f(a◦)) = (a, f(a))◦ =
(ϕ(a))◦. Assume ϕ(a) = ϕ(b), then (a, f(a)) = (b, f(b)). This gives a = b.
Hence, ϕ is an embedding.
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Abstract. The aim of this paper is to obtain the common fuzzy fixed points of α-fuzzy
mappings satisfying generalized almost Θ-contraction in the setting of complete metric
space. In this way, we generalize several well known recent and classical results. Finally,
we provide an example to show the significance of the investigation of this paper.
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1. Introduction and preliminaries

In 1922, Banach [11] presented a revolutionary contraction principle (namely
called Banach contraction principle) in which Picard iteration process was used
for the evaluation of a fixed point. This principle guarantees the existence and
uniqueness of fixed points of certain self-mappings of metric spaces, and provides
a constructive method to find those fixed points. The Banach contraction prin-
ciple was also used to establish the existence of a unique solution for a nonlinear
integral equation [22]. For instance, it has been used to show the existence of
solutions of nonlinear Volterra integral equations, nonlinear integro-differential
equations in Banach spaces and to show the convergence of algorithms in compu-

∗. Corresponding author
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tational mathematics. Because of its importance and usefulness for mathemat-
ical theory, it has become a very popular tool in solving existence problems in
many directions. Several authors have obtained various extensions and general-
izations of Banach’s theorem by defining a variety of contractive type conditions
for self and non-self mappings on metric spaces.

In [12, 13] Berinde studied many kinds of contraction mappings and gave
the concept of almost contraction in following way.

Definition 1 ([12]). Let (X, d) be a metric space. A mapping T : X → X is
called an almost contraction if there exists a constant λ ∈ [0, 1) and some L ≥ 0
such that

d(Tx, Ty) ≤ λd(x, y) + Ld(y, Tx),

for all x, y ∈ X.

He also generalized the above almost contraction in this way.

Definition 2 ([13]). Let (X, d) be a metric space. A mapping T : X → X is
said to be generalized almost contraction if there exists a constant λ ∈ [0, 1) and
some L ≥ 0 such that

d(Tx, Ty) ≤ λd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

for all x, y ∈ X.

Very recently, Jleli and Samet [20] introduced a new type of contraction
called Θ-contraction and established some new fixed point theorems for such a
contraction in the context of generalized metric spaces.

Definition 3. Let Θ : (0,∞)→ (1,∞) be a function satisfying:

(Θ1) Θ is nondecreasing;

(Θ2) for each sequence {αn} ⊆ R+, limn→∞Θ(αn) = 1 if and only if

lim
n→∞

(αn) = 0;

(Θ3) there exists 0 < k < 1 and l ∈ (0,∞] such that limα→0+
Θ(α)−1
αk = l.

A mapping T : X → X is said to be Θ-contraction if there exist the function
Θ satisfying (Θ1)-(Θ3) and a constant k ∈ (0, 1) such that for all x, y ∈ X,

(1.1) d(Tx, Ty) ̸= 0 =⇒ Θ(d(Tx, Ty)) ≤ [Θ(d(x, y))]k.

Theorem 4 ([20]). Let (X, d) be a complete metric space and T : X → X be a
Θ-contraction, then T has a unique fixed point.
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Later on Hancer et al.[17] modified the above definitions by adding a general
condition (Θ4) which is given in this way:

(Θ4) Θ(inf A) = inf Θ(A), for all A ⊂ (0,∞) with inf A > 0.

Following Hancer et al. [17], we represent the set of all continuous functions
Θ : R+ → R satisfying (Θ1)− (Θ4) conditions by Ω.

For more details on Θ-contractions, we refer the reader to [2, 4, 19, 23, 25, 30].
Following the Banach contraction principle Nadler [24] introduced the con-

cept of multi-valued contractions using the Hausdorff metric and established that
a multi-valued contraction possesses a fixed point in a complete metric space.
In 1981, Heilpern [18] used the concept of fuzzy set to introduce a class of fuzzy
mappings, which is a generalization of the set-valued mappings, and proved a
fixed point theorem for fuzzy contraction mappings in metric linear space. It
is worth noting that the result announced by Heilpern [18] is a fuzzy extension
of the Banach contraction principle. Subsequently, several other authors have
studied existence of fixed points of fuzzy mappings, for example, Azam et [8, 9],
Bose et al. [14], Chang et al. [15], Cho et al. [16], Qiu et al. [26], Rashwan et
al. [27], Shi-sheng [29].

In the following we always suppose that (X, d) is a complete metric space.
Moreover, we shall use the following notations which have been recorded from
[1, 5, 10, 28, 31]:

Let CB(X) be the family of nonempty, closed and bounded subsets of X.
For A,B ∈ CB(X), define

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
where

d(x,A) = inf
y∈A

d(x, y).

A fuzzy set in X is a function with domain X and values in [0, 1], IX is the
collection of all fuzzy sets in X. If A is a fuzzy set and x ∈ X, then the function
values A(x) is called the grade of membership of x in A. The α -level set of A
is denoted by [A]α and is defined as follows:

[A]α = {x : A(x) ≥ α} if α ∈ (0, 1],

[A]0 = {x : A(x) > 0}.

Here B denotes the closure of the set B. Let F(X) be the collection of all
fuzzy sets in a metric space X. For A,B ∈ F(X), A ⊂ B means A(x) ≤ B(x)
for each x ∈ X. We denote the fuzzy set χ{x} by {x} unless otherwise is stated,
where χ{x} is the characteristic function of the crisp set A. If there exists an
α ∈ [0, 1] such that [A]α , [B]α ∈ CB(X), then define

pα(A,B) = inf
x∈[A]α,y∈[B]α

d(x, y),
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Dα(A,B) = H([A]α , [B]α).

If [A]α , [B]α ∈ CB(X) for each α ∈ [0, 1], then define

p(A,B) = sup
α
pα(A,B),

d∞(A,B) = sup
α
Dα(A,B).

We write p(x,B) instead of p({x}, B). A fuzzy set A in a metric linear space
V is said to be an approximate quantity if and only if [A]α is compact and
convex in V for each α ∈ [0, 1] and supx∈V A(x) = 1. The collection of all
approximate quantities in V is denoted by W (V ). Let X be an arbitrary set, Y
be a metric space. A mapping T is called fuzzy mapping if T is a mapping from
X into F(Y ). A fuzzy mapping T is a fuzzy subset on X ×Y with membership
function T (x)(y). The function T (x)(y) is the grade of membership of y in T (x).

Definition 5. Let S, T be fuzzy mappings from X into F(X). A point u ∈ X is
called an α- fuzzy fixed point of T if there exists α ∈ [0, 1] such that u ∈ [Tu]α .
The point u ∈ X is called a common α- fuzzy fixed point of S and T if there
exists α ∈ [0, 1] such that u ∈ [Su]α∩ [Tu]α . When α = 1, it is called a common
fixed point of fuzzy mappings.

For the sake of convenience, we first state some known results for subsequent
use in the next section.

Lemma 6. Let (X, d) be a metric space and A,B ∈ CB(X). Then for each
a ∈ A,

d(a,B) ≤ H(A,B).

Lemma 7 ([5]). Let V be a metric linear space, T : X → W (V ) be a fuzzy
mapping and x0 ∈ V. Then there exists x1 ∈ V such that {x1} ⊂ T (x0).

2. Main results

Theorem 8. Let (X, d) be a complete metric space and let S, T be fuzzy map-
pings from X into F(X) and for each x ∈ X, there exist αS(x), αT (x) ∈ (0, 1]
such that [Sx]αS(x)

, [Ty]αT (x) are nonempty, closed and bounded subsets of X.
Assume that there exist some Θ ∈ Ω, k ∈ (0, 1) and L ≥ 0 such that

(2.1) Θ
(
H
(
[Sx]αS(x)

, [Ty]αT (y)

))
≤ Θ(d (x, y) , )k + LM(x, y),

for all x, y ∈ X with H([Sx]αS(x), [Ty]αT (y)) > 0, where

M(x, y) = min
{
d
(
x, [Sx]αS(x)

)
, d
(
y, [Ty]αT (y)

)
, d
(
x, [Ty]αT (y)

)
,

d
(
y, [Sx]αS(x)

)}
.(2.2)

Then there exists some u ∈ X such that u ∈ [Su]αS(u)
∩ [Tu]αT (u) .
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Proof. Let x0 be an arbitrary point in X, then by hypotheses there exists
αS(x0) ∈ (0, 1] such that [Sx0]αS(x0)

is a nonempty, closed and bounded subset
of X. For convenience, we denote αS(x0) by α1. Let x1 ∈ [Sx0]αS(x0)

. For this
x1, there exists αT (x1) ∈ (0, 1] such that [Tx1]αT (x1)

is a nonempty, closed and
bounded subset of X. By Lemma 6, ( Θ1) and (2.1), we have

Θ
(
d
(
x1, [Tx1]αT (x1)

))
≤ Θ(H

(
[Sx0]αS(x0)

, [Tx1]αT (x1)

)
≤ Θ(d(x0, x1))

k + LM(x0, x1),

where

M(x0, x1) = min

 d
(
x0, [Sx0]αS(x0)

)
, d
(
x1, [Tx1]αT (x1)

)
,

d
(
x0, [Tx1]αT (x1)

)
, d
(
x1, [Sx0]αS(x0)

)  .

From ( Θ4), we know that

Θ
(
d
(
x1, [Tx1]αT (x1)

))
= inf

y∈[Tx1]αT (x1)

Θ(d(x1, y)).

Thus

inf
y∈[Tx1]αT (x1)

Θ(d(x1, y)) ≤ [Θ(d(x0, x1)]
k

+ Lmin

 d
(
x0, [Sx0]αS(x0)

)
, d
(
x1, [Tx1]αT (x1)

)
,

d
(
x0, [Tx1]αT (x1)

)
, d
(
x1, [Sx0]αS(x0)

)  .

Then, from above there exists x2 ∈ [Tx1]αT (x1)
such that

Θ(d(x1, x2)) ≤ [Θ(d(x0, x1)]
k

+ Lmin {d (x0, x1) , d (x1, x2) , d (x0, x2) , d (x1, x1)}
= [Θ(d(x0, x1)]

k.(2.3)

For this x2 there exists αS(x2) ∈ (0, 1] such that [Sx2]αS(x2)
is a nonempty,

closed and bounded subset of X. By Lemma 6, ( Θ1) and (2.1), we have

Θ
(
d
(
x2, [Sx2]αS(x2)

))
≤ Θ

(
H
(
[Tx1]αT (x1)

, [Sx2]αS(x2)

))
= Θ

(
H
(
[Sx2]αS(x2)

, [Tx1]αT (x1)

))
≤ Θ(d(x2, x1))

k ++LM(x2, x1)

where

M(x2, x1) = min

 d(x2, x1), d
(
x2, [Sx2]αS(x2)

)
, d
(
x1, [Tx1]αT (x1)

)
,

d
(
x2, [Tx1]αT (x1)

)
, d
(
x1, [Sx2]αS(x2)

)  .
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From ( Θ4), we know that

Θ
[
d
(
x2, [Sx2]αS(x2)

)]
= inf

y1∈[Sx2]αS(x2)

Θ(d(x2, y1)).

Thus

inf
y1∈[Sx2]αS(x2)

Θ(d(x2, y1)) ≤ Θ [d(x1, x2)]
k

+ Lmin

 d(x2, x1), d
(
x2, [Sx2]αS(x2)

)
, d
(
x1, [Tx1]αT (x1)

)
,

d
(
x2, [Tx1]αT (x1)

)
, d
(
x1, [Sx2]αS(x2)

)  .

Then, from above there exists x3 ∈ [Sx2]αS(x2)
such that

Θ(d(x2, x3)) ≤ [Θ(d(x1, x2)]
k

+ Lmin {d(x2, x1), d (x2, x3) , d (x1, x2) , d (x2, x2) , d (x1, x3)}
= [Θ(d(x1, x2)]

k.(2.4)

So, continuing recursively, we obtain a sequence {xn} in X such that

(2.5) x2n+1 ∈ [Sx2n]αS(x2n)
and x2n+2 ∈ [Tx2n+1]αT (x2n+1)

with

(2.6) Θ(d(x2n+1, x2n+2)) ≤ [Θ(d(x2n, x2n+1)]
k

and

(2.7) Θ(d(x2n+2, x2n+3)) ≤ [Θ(d(x2n+1, x2n+2)]
k,

for all n ∈ N. From (2.6) and (2.7), we have

(2.8) Θ(d(xn, xn+1)) ≤ [Θ(d(xn−1, xn)]
k

which further implies that

Θ(d(xn, xn+1)) ≤ [Θ(d(xn−1, xn)]
k ≤ [Θ(d(xn−2, xn−1)]

k2

≤ ... ≤ [Θ(d(x0, x1)]
kn ,(2.9)

for all n ∈ N. Since Θ ∈ Ω, by taking limit as n→∞ in (2.9) we have,

(2.10) lim
n→∞

Θ(d(xn, xn+1)) = 1

which implies that

(2.11) lim
n→∞

d(xn, xn+1) = 0
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by (Θ2). From the condition (Θ3), there exist 0 < r < 1 and l ∈ (0,∞] such
that

(2.12) lim
n→∞

Θ(d(xn, xn+1))− 1

d(xn, xn+1)r
= l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the

limit, there exists n0 ∈ N such that

|Θ(d(xn, xn+1))− 1

d(xn, xn+1)r
− l| ≤ B,

for all n > n0. This implies that

Θ(d(xn, xn+1))− 1

d(xn, xn+1)r
≥ l −B =

l

2
= B,

for all n > n0. Then

(2.13) nd(xn, xn+1)
r ≤ An[Θ(d(xn, xn+1))− 1],

for all n > n0, where A = 1
B . Now we suppose that l = ∞. Let B > 0 be an

arbitrary positive number. From the definition of the limit, there exists n0 ∈ N
such that

B ≤ Θ(d(xn, xn+1))− 1

d(xn, xn+1)r
,

for all n > n0. This implies that

nd(xn, xn+1)
r ≤ An[Θ(d(xn, xn+1))− 1],

for all n > n0, where A = 1
B . Thus, in all cases, there exist A > 0 and n0 ∈ N

such that

(2.14) nd(xn, xn+1)
r ≤ An[Θ(d(xn, xn+1))− 1],

for all n > n0. Thus by (2.9) and (2.14), we get

(2.15) nd(xn, xn+1)
r ≤ An([(Θd(x0, x1))]r

n − 1).

Letting n→∞ in the above inequality, we obtain

lim
n→∞

nd(xn, xn+1)
r = 0.

Thus, there exists n1 ∈ N such that

(2.16) d(xn, xn+1) ≤
1

n1/r
,
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for all n > n1. Now we prove that {xn} is a Cauchy sequence. For m > n > n1
we have,

(2.17) d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
m−1∑
i=n

1

i1/r
≤

∞∑
i=1

1

i1/r
.

Since, 0 < r < 1, then
∑∞

i=1
1
i1/r

converges. Therefore, d(xn, xm) → 0 as
m,n → ∞. Thus we proved that {xn} is a Cauchy sequence in (X, d). The
completeness of (X, d) ensures that there exists u ∈ X such that, limn→∞ xn →
u. Now, we prove that u ∈ [Tu]αT (u) . We suppose on the contrary that u ̸∈
[Tu]αT (u), then there exist an n0 ∈ N and a subsequence {xnk

} of {xn} such
that d(x2nk+1, [Tu]αT (u)) > 0, for all nk ≥ n0. Since d(x2nk+1, [Tu]αT (u)) > 0,
for all nk ≥ n0, so by (Θ1), we have

Θ
[
d(x2nk+1, [Tu]αT (u))

]
≤ Θ

[
H([Sx2nk

]αS(x2nk
) , [Tu]αT (u))

]
≤ [Θ(d(x2nk

, u))]k

+ Lmin

 d
(
x2nk

, [Sx2nk
]αS(x2nk

)

)
, d
(
u, [Tu]αT (u)

)
,

d
(
x2nk

, [Tu]αT (u)

)
, d
(
u, [Sx2nk

]αS(x2nk
)

) 
≤ [Θ(d(x2nk

, u))]k + Lmin

 d(x2nk
, u), d (x2nk

, x2nk+1) , d
(
u, [Tu]αT (u)

)
,

d
(
x2nk

, [Tu]αT (u)

)
, d (u, x2nk+1)

 .

Letting k →∞, in the above inequality and using the continuity of Θ, we have

Θ
[
d(u, [Tu]αT (u))

]
≤ 0.

Hence u ∈ [Tu]αT (u) . Similarly, one can easily prove that u ∈ [Su]αS(u)
. Thus

u ∈ [Su]αS(u)
∩ [Tu]αT (u) .

Corollary 9. Let (X, d) be a complete metric space and let S, T be fuzzy map-
pings from X into F(X) and for each x ∈ X, there exist αS(x), αT (x) ∈ (0, 1]
such that [Sx]αS(x)

, [Ty]αT (x) are nonempty, closed and bounded subsets of X.
Assume that there exist some Θ ∈ Ω and k ∈ (0, 1) such that

Θ
(
H
(
[Sx]αS(x)

, [Ty]αT (y)

))
≤ Θ(d (x, y))k,

for all x, y ∈ X with H([Sx]αS(x), [Ty]αT (y)) > 0. Then there exists some u ∈ X
such that u ∈ [Su]αS(u) ∩ [Tu]αT (u).

Proof. Taking L = 0 in Theorem 8.

Corollary 10. Let (X, d) be a complete metric space and let S be fuzzy mapping
from X into F(X) and for each x ∈ X, there exist αS(x), αT (x) ∈ (0, 1] such that
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[Sx]αS(x)
, [Sy]αS(y)

are nonempty, closed and bounded subsets of X. Assume
that there exist some Θ ∈ Ω, k ∈ (0, 1) and L ≥ 0 such that

Θ
(
H
(
[Sx]αS(x)

, [Sy]αS(y)

))
≤ Θ(d (x, y))k + LM(x, y)

for all x, y ∈ X with H
(
[Sx]αS(x)

, [Sy]αS(y)

)
> 0, where

M(x, y) = min
{
d
(
x, [Sx]αS(x)

)
, d
(
y, [Sy]αS(y)

)
, d
(
x, [Sy]αS(y)

)
,

d
(
y, [Sx]αS(x)

)}
.

Then there exists some u ∈ X such that u ∈ [Su]αS(u)
.

Proof. Taking S = T in Theorem 8.

Corollary 11. Let (X, d) be a complete metric space and let S be a fuzzy map-
ping from X into F(X) and for each x ∈ X, there exist αS(x), αT (y) ∈ (0, 1]
such that [Sx]αS(x)

, [Sy]αS(y)
are nonempty, closed and bounded subsets of X.

Assume that there exist some Θ ∈ Ω and k ∈ (0, 1) such that

Θ
(
H
(
[Sx]αS(x)

, [Sy]αT (y)

))
≤ Θ(d (x, y))k,

for all x, y ∈ X with H
(
[Sx]αS(x)

, [Sy]αT (y)

)
> 0. Then there exists some

u ∈ [Su]αS(u)
.

Proof. Taking S = T and L = 0 in Theorem 8.

Now we state a common fixed point result for two multivalued mappings.

Theorem 12. Let (X, d) be a complete metric space and let F,G : X → CB(X)
be multivalued mappings. Assume that there exist some Θ ∈ Ω, k ∈ (0, 1) and
L ≥ 0 such that

Θ(H (Fx,Gy)) ≤ Θ(d(x, y))k + LM(x, y),

for all x, y ∈ X with H (Fx,Gy) > 0, where

M(x, y) = min {d (x, Fx) , d (y,Gy) , d (x,Gy) , d (y, Fx)} .

Then there exists some u ∈ Fu ∩Gu.

Proof. Consider a mapping α : X → (0, 1] and a pair of fuzzy mappings S, T :
X → F(X) defined by

S(x)(t) =

{
α(x), if t ∈ Fx,
0, if t ̸∈ Fx
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and

T (x)(t) =

{
α(x), if t ∈ Gx,
0, if t ̸∈ Gx.

Then[Sx]α(x) = {t : S(x)(t) ≥ α(x)} = Fx and [Tx]α(x) = {t : T (x)(t) ≥ α(x)} =
Gx. Thus, Theorem 8 can be applied to obtain u ∈ X such that u ∈ [Su]αS(u)

∩
[Tu]αT (u) = Fu ∩Gu.

Corollary 13. Let (X, d) be a complete metric space and let F,G : X → CB(X)
be multivalued mappings. Assume that there exist some Θ ∈ Ω and k ∈ (0, 1)
such that

Θ(H (Fx,Gy)) ≤ Θ(d(x, y))k,

for all x, y ∈ X with H (Fx,Gy) > 0. Then there exists some u ∈ Fu ∩Gu.

Proof. Taking L = 0 in Theorem 12.

Corollary 14. Let (X, d) be a complete metric space and let G : X → CB(X)
be multivalued mappings. Assume that there exist some Θ ∈ Ω, k ∈ (0, 1) and
L ≥ 0 such that

Θ(H (Gx,Gy)) ≤ Θ(d(x, y))k + LM(x, y),

for all x, y ∈ X with H (Gx,Gy) > 0, where

M(x, y) = min {d (x,Gx) , d (y,Gy) , d (x,Gy) , d (y,Gx)} .

Then there exists some u ∈ X such that u ∈ Gu.

Proof. Taking F = G in Theorem 12.

Corollary 15. Let (X, d) be a complete metric space and let G : X → CB(X)
be multivalued mappings. Assume that there exist some Θ ∈ Ω and k ∈ (0, 1)
such that

Θ(H (Gx,Gy)) ≤ Θ(d(x, y))k,

for all x, y ∈ X with H (Gx,Gy) > 0. Then there exists some u ∈ X such that
u ∈ Gu.

Proof. Taking F = G and L = 0 in Theorem 12.

Theorem 16. Let (X, d) be a complete metric linear space and let S, T : X →
W (X) be fuzzy mappings. Suppose that there exist some Θ ∈ Ω, k ∈ (0, 1) and
L ≥ 0 such that

Θ(d∞ (S(x), T (y))) ≤ Θ(p(x, y))k + LM(x, y),

for all x, y ∈ X with d∞ (S(x), T (y)) > 0, where

M(x, y) = min {p (x, S(x)) , p (y, T (y)) , p (x, T (y)) , p (y, S(x))} .

Then there exists some u ∈ X such that {u} ⊂ S(u) and {u} ⊂ T (u).



COMMON FUZZY FIXED POINTS OF α-FUZZY MAPPINGS 637

Proof. Let x ∈ X, then by Lemma 6 there exists y ∈ X such that y ∈ [Sx]1.
Similarly, we can find z ∈ X such that z ∈ [Tx]1. It follows that for each
x ∈ X, [Sx]α(x), [Tx]α(x) are nonempty, closed and bounded subsets of X. As
α(x) = α(y) = 1, by the definition of a d∞-metric for fuzzy sets, we have

H
(
[Sx]α(x) , [Ty]α(x)

)
≤ d∞(S(x), T (y)),

for all x, y ∈ X. From (Θ1), we have

Θ
(
H
(
[Sx]α(x) , [Ty]α(x)

))
≤ Θ(d∞(S(x), T (y)))

≤ [Θ (p (x, y))]k + LM(x, y)

where

M(x, y) = min {p (x, S(x)) , p (y, T (y)) , p (x, T (y)) , p (y, S(x))} ,

for all x, y ∈ X. Since [Sx]1 ⊆ [Sx]α for each α ∈ (0, 1]. Therefore d(x, [Sx]α) ≤
d(x, [Sx]1) for each α ∈ (0, 1]. It implies that p(x, S(x)) ≤ d(x, [Sx]1). Similarly,
p(x, T (x)) ≤ d(x, [Tx]1). Furthermore this implies that for all x, y ∈ X,

Θ (H ([Sx]1 , [Ty]1)) ≤ [Θ (d (x, y))]k + LM(x, y)

where

M(x, y) = min {d (x, [Sx]1) , d (y, [Ty]1) , d (x, [Ty]1) , d (y, [Sx]1)} .

Now, by Theorem 8, we obtain u ∈ X such that u ∈ [Su]1 ∩ [Tu]1, i.e., {u} ⊂
T (u) and {u} ⊂ S(u).

Corollary 17. Let (X, d) be a complete metric linear space and let S, T : X →
W (X) be fuzzy mappings. Suppose that there exist some Θ ∈ Ω and k ∈ (0, 1)
such that

Θ(d∞ (S(x), T (y))) ≤ Θ(p(x, y))k,

for all x, y ∈ X with d∞ (S(x), T (y)) > 0. Then there exists some u ∈ X such
that {u} ⊂ S(u) and {u} ⊂ T (u).

In the following, we suppose that T̂ (for details, see [[28], [29]]) is the set-
valued mapping induced by fuzzy mappings T : X → F(X), i.e.,

T̂ x =

{
y : T (x)(t) = max

t∈X
T (x)(t)

}
.

Proof. Taking L = 0 in Theorem 16.
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Corollary 18. Let (X, d) be a complete metric space and let S, T : X → F(X)
be fuzzy mappings such that for all x ∈ X, Ŝ(x), T̂ (x) are nonempty, closed and
bounded subsets of X. Assume that there exist some Θ ∈ Ω, k ∈ (0, 1) and
L ≥ 0 such that

Θ
(
H
(
Ŝ(x), T̂ (y)

))
≤ Θ(d(x, y))k + LM(x, y),

for all x, y∈ X with H(Ŝ(x), T̂ (y)) > 0, where

M(x, y) = min
{
d
(
x, Ŝ(x)

)
, d
(
y, T̂ (y)

)
, d
(
x, T̂ (y)

)
, d
(
y, Ŝ(x)

)}
.

Then there exists a point x∗ ∈ X such that S(x∗)(x∗) ≥ S(x∗)(x) and T (x∗)(x∗) ≥
T (x∗)(x), for all x ∈ X.

Proof. By Theorem 12, there exists x∗ ∈ X such that x∗ ∈ Ŝx∗ ∩ T̂ x∗. Then
by Lemma 7, we have

S(x∗)(x∗) ≥ S(x∗)(x) and T (x∗)(x∗) ≥ T (x∗)(x),

for all x ∈ X.

Corollary 19. Let (X, d) be a complete metric space and let S, T : X → F(X)
be fuzzy mappings such that for all x ∈ X, Ŝ(x), T̂ (x) are nonempty, closed and
bounded subsets of X. Assume that there exist some Θ ∈ Ω and k ∈ (0, 1)such
that

Θ
(
H
(
Ŝ(x), T̂ (y)

))
≤ Θ(d(x, y))k,

for all x, y ∈ X with H(Ŝ(x), T̂ (y)) > 0. Then there exists a point x∗ ∈ X such
that S(x∗)(x∗) ≥ S(x∗)(x) and T (x∗)(x∗) ≥ T (x∗)(x) for all x ∈ X.

Proof. Taking L = 0 in Corollary 18.

Example 20. Let X = [0, 1] and define d : X ×X → R+ as follows:

d (x, y) = |x− y| .

Then (X, d) is a complete metric space. Define a pair of mappings S, T : X →
F(X), for α ∈ [0, 1] as follows:

For x ∈ X, we have

S(x)(t) =


α, if 0 ≤ t ≤ x

30 ,
α
2 , if x

30 < t ≤ x
20 ,

α
3 , if x

20 < t ≤ x
10 ,

α
5 , if x

10 < t ≤ 1

,
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and

T (x)(t) =


α, if 0 ≤ t ≤ x

15 ,
α
3 , if x

15 < t ≤ x
10 ,

α
4 , if x

10 < t ≤ x
5 ,

α
7 , if x5 < t ≤ 1

,

such that

[Tx]α =
[
0,
x

15

]
,

[Sx]α =
[
0,
x

30

]
.

Let Θ(t) = e
k√t. Then there exists some k = 1√

15
∈ (0, 1) and L = 0 such that

Θ
(
H
(
[Sx]αS(x)

, [Ty]αT (y)

))
≤ Θ(d (x, y))k + LM(x, y),

for all x, y ∈ X with H([Sx]αS(x), [Ty]αT (y)) > 0, where

M(x, y) = min
{
d
(
x, [Sx]αS(x)

)
, d
(
y, [Ty]αT (y)

)
, d
(
x, [Ty]αT (y)

)
,

d
(
y, [Sx]αS(x)

)}
is satisfied to obtain 0 ∈ [S0]α ∩ [T0]α .
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Abstract. A ring is called an almost pp− ring if the annihilator of each element of
R is generated by its idempotents. We prove that for a ring R and an Abelian group
G, if the group ring RG is an almost pp− ring then so is R, Moreover, if G is a finite
Abelian group then |G|−1 ∈ R. Then we give a counter example to the converse of this.
Also, we prove that RG is an almost pp−ring if and only if RH is an almost pp− ring
for every subgroup H of G. It is proved that the polynomial ring R [x] is an almost pp−
ring if and only if R is an almost pp− ring. Finally, we prove that the power series ring
R [[x]]is an almost pp− ring if and only if for any two countable subsets S and T of R
such that S ⊆ AnnR (T ), there exists an idempotent e ∈ AnnR (T ) such that b = be for
all b ∈ S.
Keywords: almost pp−ring, group ring, polynomial ring, power series ring.

1. Introduction

All rings considered in this paper are assumed to be commutative with unity
1 ̸= 0, and all groups are Abelian. Recall that a ring R is called a pf−ring if
every principal ideal is a flat R−module. An ideal I of a ring R is called pure if
for every a ∈ I, there exists b ∈ I such that ab = a. It is well known that a ring
R is a pf−ring if and only if AnnR (a) = {x ∈ R : xa = 0} is a pure ideal for
every a ∈ R, see [1]. There are different characterizations of pf−rings, see [7]
and [3]. A ring R is called a pp−ring if for each a ∈ R, AnnR (a) is generated by
an idempotent element in R. These rings were studied extensively in literatures,
see [5], [10], and [3]. As a generalization of pp−ring, Al-Ezeh in [4] introduced a
new class of rings called almost pp−rings. A ring R is called an almost pp−ring
if for each a ∈ R, the annihilator ideal AnnR (a) is generated by its idempotents.

∗. Corresponding author
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It is known that a ring R is an almost pp−ring if and only if for every a ∈ R
and b ∈ AnnR (a) , there exists an idempotent e ∈ AnnR (a) such that b = eb,
see [4, Theorem 1]. Some properties of almost pp−rings were investigated in [4]
and [13].

Clearly, every pp−ring is an almost pp−ring and every almost pp−ring is
a pf−ring. Every pf−ring is a reduced ring (a ring has no nonzero nilpotent
elements), see [1, Lemma 2]. Al-Ezeh in [4] gave an example of an almost pp−ring
which is not a pp−ring, and another example of a pf−ring which is not an almost
pp−ring.

Our aim in this paper to characterize when group rings RG are almost
pp−rings. Furthermore, we characterize when polynomial rings and power series
rings are almost pp−rings.

2. Almost PP−Rings

In this section, we establish general results on almost pp−rings.
Definition 2.1. Let R be a ring. Then R is said to be an almost pp−ring if for
every a ∈ R, the annihilator AnnR (a) is generated by its idempotents.

In some research, an almost pp−ring is called an ”almost weak Baer” ring.

Lemma 2.2. Let R be a Noetherian ring. Then R is an almost pp−ring if and
only if R is a pp−ring.
Proof. Clearly, if R is pp−ring, then R is an almost pp−ring.

Assume thatR is an almost pp−ring and a ∈ R. Then sinceR is a Noetherian
ring, AnnR (a) is finitely generated ideal. Also, AnnR (a) is generated by its
idempotents. Hence, AnnR (a) =

∑n
i=1 eiR = eR where 1 − e =

∏n
i=1 (1− ei).

Thus, R is a pp−ring.

Lemma 2.3. Let (Ri)i∈I be a family of commutative rings. Then R =
∏
i∈I Ri

is an almost pp−ring if and only if Ri is an almost pp−ring for all i ∈ I.
Proof. Assume that Ri is an almost pp−ring for each i ∈ I and R =

∏
i∈I Ri.

Let x = (xi)i∈I and y = (yi)i∈I be two elements of R such that y ∈ AnnR (x) .
Then, xy = (xi)i∈I (yi)i∈I = (xiyi)i∈I = 0. Since Ri is an almost pp−ring for
every i ∈ I, there exists an idempotent ei ∈ AnnRi (xi) such that yi = eiyi.

Hence, y = (yi)i∈I = (ei)i∈I (yi)i∈I , (ei)i∈I ∈ AnnR (x) and
(
(ei)i∈I

)2
=

(ei)i∈I .
Therefore, R is an almost pp−ring.
Conversely, assume that R =

∏
i∈I Ri is an almost pp−ring. Let i ∈ I and

let xi, yi be two elements of Ri such that yi ∈ AnnRi (xi) .

Consider x = (αj)j∈I , with αj =

{
xi, j = i

0, j ̸= i
and y = (βj)j∈I , with βj ={

yi, j = i

0, j ̸= i.
. So, y ∈ AnnR (x) . Since R is an almost pp−ring, then there exists
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an idempotent e = (ej)j∈I ∈ AnnR (x) such that y = ey. That is for all j ∈ I,
βj = ejβj , ej ∈ AnnRj (αj) and e

2
j = ej .

Hence, yi = eiyi, ei ∈ AnnRi (xi) and e
2
i = ei.

Thus, Ri is an almost pp−ring for all i ∈ I.

The following Lemma is well known, see for example [12, Proposition 3.2.7
and its corollary]

Lemma 2.4. Let R be a subring of a ring S both with the same identity. Suppose
that S is a free R−module with a basis G such that G is multiplicatively closed
and 1 ∈ G. Let ε : S −→ R be a map defined by

ε

(
n∑
i=0

aigi

)
=

n∑
i=0

ai.

Then ε is a ring epimorphism.

Let R and S be two rings such that R ⊆ S. Let e be an idempotent in S.
Then, e2 = e, and so, (ε (e))2 = ε

(
e2
)
= ε (e) . Hence, ε (e) is an idempotent in

R.

Suppose a ∈ R and e ∈ AnnS (a) . Then, ea = 0 in S. So, ε (e) a = 0 in R
since a ∈ R, ε (a) = a.Therefore ε (e) ∈ AnnR (a) and (ε (e))2 = ε (e) .

Theorem 2.5. Let R be a subring of a ring S both with the same identity.
Suppose that S is a free R−module with a basis G such that G is multiplicatively
closed and 1 ∈ G. If S is almost pp−ring, then so is R.

Proof. Let a, b ∈ R such that b ∈ AnnR (a) ⊆ AnnS (a) . Then, since S is an
almost pp−ring, there exists an idempotent e ∈ AnnS (a) such that b = be.
Taking ε to both sides, we get

b = ε (b) = ε (b) ε (e) = bε (e) ,

ε (e) ∈ AnnR (a) and (ε (e))2 = ε (e) .

Therefore, R is an almost pp−ring.

3. Group rings

Given a ring R and a group G, we will denote the group ring of G over R by
RG. Elements of the ring RG are just formal finite sums of the form

∑
g∈G agg

with all but a finite number of ag are 0R. We write Cn for the cyclic group of
order n, Z for the ring of integers, Zn for the ring of integers modulo n, and C
is the field of complex numbers. The imaginary unit is denoted by i.

The following facts are consequences of Theorem 2.5.



CHARACTERIZATIONS OF ALMOST PP -RING FOR THREE ... 645

Corollary 3.1. Let R be a ring and G be a group. If RG is an almost pp−ring,
then so is R.

Proof. S = RG is a free R−module with a basis G satisfying the assumptions
of Theorem 2.5.

Corollary 3.2. If RG is an almost pp−ring and H is a subgroup of G, then
RH is an almost pp−ring too.

Proof. RH is a subring of RG and RG is a free RH−module on the set
{g1, g 2, ...} , the coset representatives of H in G.

Recall that a group G is called locally finite, if every finitely generated sub-
group of G is finite.

Theorem 3.3. Let G be a locally finite group. If RH is an almost pp−ring for
all finite subgroup H of G, then RG is an almost pp−ring.

Proof. Let u =
∑n

i=1 aigi ∈ RG and v =
∑n

i=1 bigi ∈ AnnRG (u) . Let H =
⟨g1, ..., gn⟩. Then H is finite since G is locally finite. Since u, v ∈ RH, v ∈
AnnRH (u) ⊆ AnnRG (u) . But RH is an almost pp−ring by assumption. Thus
there exists an idempotent e ∈ AnnRH (u) ⊆ AnnRG (u) such that v = ev. So,
RG is an almost pp−ring.

Corollary 3.4. Let G be a locally finite group. Then RG is an almost pp−ring
if and only if for every finite subgroup H of G, RH is an almost pp−ring.

Proof. If RG is an almost pp−ring, by Corollary 3.2, RH is an almost pp−ring
for all subgroup H of G. So, in particular, for every finite subgroup H of G,
RH is an almost pp−ring. By Theorem 3.3, the other direction holds.

Using the same technique used in Theorem 3.3, we get the following:

Corollary 3.5. The group ring RG is an almost pp−ring if and only if RH is
an almost pp−ring for each subgroup H of G.

Theorem 3.6. If RG is an almost pp−ring, then R is an almost pp−ring and
the order of each finite order element g ∈ G is a unit in R.

Proof. By Corollary 3.1, R is almost pp−ring. Now let g ∈ G with |g| = n <∞.
Let H be the cyclic subgroup generated by g. Then, by Corollary 3.2, RH is an
almost pp−ring too. Now 1 + g + g2 + ...+ gn−1 ∈ AnnRH (1− g) .

Since RH is an almost pp−ring, there exists an idempotent e = a0 + a1g +
...+ an−1g

n−1 ∈ AnnRH (1− g) such that
(
1 + g + g2 + ...+ gn−1

)
e = 1 + g +

g2 + ...+ gn−1 and e (1− g) = 0.
Thus, a0 = a1 = ... = an−1 since e = eg.
So,

(
a0 + a0g + ...+ a0g

n−1
) (

1 + g + ...+ gn−1
)
= 1+ g+ ...+ gn−1. Hence,

a0n = 1.
Therefore, n is a unit in R.
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Corollary 3.7. If G is a finite group and RG is an almost pp−ring, then
|G|−1 ∈ R.

Proof. Let G be a finite group and |G| = n =
k∏
i=1
pαi
i where pi are distinct

primes and αi ≥ 1 are positive integers for all i = 1, ..., k. Then by Cauchy
Theorem, there exists gi ∈ G such that |gi| = pi, for all i = 1, ..., k.

Thus, since RG is an almost pp−ring and by Theorem 3.6, p−1
i ∈ R for all

i = 1, ..., k. But the product of units is a unit.

So,
(∏k

i=1 p
αi
i

)−1
∈ R and hence |G|−1 ∈ R.

We will see in Example 3.23 that the converse of this Corollary needs not be
true.

Example 3.8. If G is a finite group and ZprG is an almost pp−ring, p is prime
integer and r ≥ 1, then by the previous Corollary |G| is a unit in Zpr . So, p - |G|
and hence gcd (p, |G|) = 1.

Example 3.9. ZprG is not an almost pp−ring for any finite p−group G, where
p is prime integer and r ≥ 1. More generally, if p | n and G is a p−group, then
ZnG is not an almost pp−ring.

The following example shows that if R is an almost pp−ring, it is not nec-
essary that RG is an almost pp−ring.

Example 3.10. ZG is not almost pp−ring for any nontrivial finite group G.

If R is a ring and G is an Abelian group, then RG is a Noetherian ring if
and only if R is a Noetherian ring and G is a finitely generated group, see [9,
Theorem 2].

Theorem 3.11. Let G be a finite Abelian group and n be an integer with n > 1.
Then the following are equivalent:

(1) ZnG is an almost pp−ring.
(2) ZnG is a pp−ring.
(3) gcd (n, |G|) = 1 and n is square free.

Proof. (1)⇐⇒ (2) Since Zn is Noetherian ring and G is finite Abelian group,
it follows that ZnG is Noetherian ring. Then the result follows by Lemma 2.2.

(2)⇐⇒ (3) See [15, Example 1.8].

The following Lemma exists in [12, page 134]

Lemma 3.12. (R1 ×R2 × ...×Rn)G ∼=
∏n
i=1RiG
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Theorem 3.13. If R = R1 × R2 × ... × Rn, then RG is an almost pp−ring if
and only if RiG is an almost pp−ring for all i = 1, ..., n.

Proof. The proof follows from Lemma 2.3 and Lemma 3.12.

Theorem 3.14. If R [x]
/(
xn + a1x

n−1 + ...+ an
)
is an almost pp−ring, where

a1, ..., an ∈ R and n is a positive integer, then R is an almost pp−ring.

Proof. S = R [x]
/(
xn + a1x

n−1 + ...+ an
)

is free R−module with a basis{
1, x, ..., xn−1

}
satisfying the assumptions of Theorem 2.5.

The following proposition was introduced by Yi and Zhou [14].

Proposition 3.15. Let R be a ring. Then
(1) If 2−1 ∈ R, then RC2

∼= R×R and RC4
∼= R×R×

(
R [x]

/(
x2 + 1

))
(2) If R ⊆ C and 3−1 ∈ R, then RC3

∼= R×
(
R [x]

/(
x2 + x+ 1

))
.

Theorem 3.16. RC2 is almost pp−ring if and only if R is almost pp−ring and
2−1 ∈ R.

Proof. The proof follows from Corollary 3.1, Corollary 3.7 and Lemma 2.3.

Theorem 3.17. RC4 is an almost pp−ring if and only if R [x]
/(
x2 + 1

)
is an

almost pp−ring and 2−1 ∈ R.

Proof. By Proposition 3.15, if 2−1 ∈ R then RC4
∼= R×R×(R[x]/(x2+1).). So,

using Theorem 3.14, we get RC4 is an almost pp−ring if and only if R[x]/(x2+1).
is an almost pp−ring.

Theorem 3.18. If R ⊆ C, then RC3 is an almost pp−ring if and only if
R [x]

/(
x2 + x+ 1

)
is an almost pp−ring and 3−1 ∈ R.

Proof. By Proposition 3.15, if 3−1 ∈ R, then RC3
∼= R × (R[x]/(x2 + x +

1).). So, using Theorem 3.14, we get RC3 is an almost pp−ring if and only if
R[x]/(x2 + x+ 1). is an almost pp−ring.

Note that, if G = H ×K, then RG = R (H ×K) ∼= (RH)K.

Theorem 3.19. If R ⊆ C, then RC6 is an almost pp−ring if and only if 6−1 ∈ R
and R [x]

/(
x2 + x+ 1

)
is an almost pp−ring.

Proof. Since C6
∼= C3 × C2, then RC6

∼= (RC3)C2.
So, RC6 is an almost pp−ring if and only if 2−1 ∈ RC3 and RC3 is an almost

pp−ring.
Since R ⊆ C, RC3 is an almost pp−ring if and only if 3−1 ∈ R and

R [x]
/(
x2 + x+ 1

)
is an almost pp−ring.
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Hence, RC6 is an almost pp−ring if and only if 2−1 ∈ RC3, 3
−1 ∈ R and

R [x]
/(
x2 + x+ 1

)
is an almost pp−ring.

Now, 2−1 ∈ RC3 if and only if 2−1 ∈ R. To see this, assume that 2−1 ∈ RC3.

Then 2
(∑2

i=0 aig
i
)

= 1 for some ai ∈ R, i = 0, 1, 2. So, 2a0 = 1 and 2a1 =

2a2 = 0. Thus, 2−1 ∈ R. The converse is clear.
Therefore, we are done.

Theorem 3.20. Let R be a von Neumann regular ring and G be a locally finite
group. Then the following are equivalent:

(1) RG is a pp−ring.
(2) RG is an almost pp−ring.
(3) The order of every finite subgroup of G is a unit in R.

Proof. (1) =⇒ (2) Clear.
(2) =⇒ (3) Since RG is an almost pp−ring, we have RH is an almost pp−ring

for every subgroup H of G. So, if H is finite subgroup of G, then |H|−1 ∈ R.
(3) =⇒ (1) See [15, Proposition 1.9].

Lemma 3.21. Let R1 and R2 be two integral domains, and let T be a non-
integral domain subring of R = R1 × R2 containing the identity element (1, 1).
Then T is an almost pp−ring if and only if (0, 1) ∈ T.

Proof. Assume that T is an almost pp−ring. Since T is not an integral domain,
there are non-zero elements (a, b) , (c, d) ∈ T such that (a, b) . (c, d) = (0, 0) .
Since (a, b) ̸= (0, 0) , either a ̸= 0 or b ̸= 0, say a ̸= 0. Thus c = 0 and d ̸= 0.
Since (c, d) ∈ AnnT ((a, b)) , there exists an idempotent (x, y) ∈ AnnT ((a, b))
such that (c, d) (x, y) = (c, d) . So, dy = d and d ̸= 0 in R2. Thus y = 1. Since
xa = 0 and a ̸= 0 in R1, x = 0.So, (x, y) = (0, 1) ∈ T.

Now, assume that (0, 1) ∈ T . Then, (1, 1) − (0, 1) = (1, 0) ∈ T. Consider
any (0, 0) ̸= (a, b) ∈ T . If a ̸= 0, b ̸= 0, AnnT ((a, b)) = {(0, 0)} . If a = 0,
b ̸= 0, AnnT ((a, b)) = (1, 0)T and if a ̸= 0, b = 0, AnnT ((a, b)) = (0, 1)T.
Also if a = b = 0, then AnnT ((a, b)) = T So, AnnT ((a, b)) is generated by its
idempotents for all (a, b) ∈ T. Hence T is an almost pp−ring.

Theorem 3.22. Let R be an integral domain and let Q(R) denotes the quotient
field of R. Consider the polynomial x2 + a1x+ a2 ∈ R[x] with α, β are its roots
in some field extension, and α− β is a unit in R. Then R [x]

/(
x2 + a1x+ a2

)
is an almost pp−ring if and only if either α ∈ R or α /∈ Q(R).

Proof. Let T = R [x]
/(
x2 + a1x+ a2

)
and x2+a1x+a2 = (x− α) (x− β) . By

hypothesis, α ̸= β. First suppose α /∈ Q (R) . Then x2 + a1x+ a2 is irreducible
over Q (R) and hence it is irreducible over R since the polynomial is monic.
Thus, T is an integral domain. In particular T is an almost pp−ring.

If α ∈ Q (R) , then define Φ : R [x] −→ Q (R) × Q (R) by Φ (f (x)) =
(f (α) , f (β)) ∈ Q (R)×Q (R) . Then Φ is a ring homomorphisim withKer (Φ) =(
x2 + a1x+ a2

)
. Hence, T is a subring of Q (R)×Q (R) .
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Assume now that T is an almost pp−ring, and so it follows by Lemma 3.21
that (0, 1) ∈ T.

Thus there exists ax + b ∈ R [x] such that aα + b = 0 and aβ + b = 1. But
since x2 + a1x+ a2 = (x− α) (x− β) , α+ β = −a1 and αβ = a2. So,

2 (b− 1) b = 2 (−aβ) (−aα) = 2a2αβ = 2a2a2.

Also,

2 (b− 1) b = (2b− 2) b = − (1 + a(α+ β) b = − (1− aa1) b = (aa1 − 1) b.

So,
2a2a2 = (aa1 − 1) b.

Thus,
−b = 2a2a2 − aa1b.

Hence

α = − b
a
= 2aa2 − a1b ∈ R.

So, α ∈ R.
Now, assume that α ∈ R,and define p(x) =

x− α
β − α

. Then p(x) ∈ R[x], since

β − α is a unit. But Φ(p(x)) = (p(α), p(β) = (0, 1). Thus it follows by Lemma
3.21 that T is an almost pp−ring.

Example 3.23. Let S =
{
n
3k

: n, k ∈ Z, k ≥ 0
}
. Then S is a subring of Q. Set

R =
{
a+
√
3bi : a, b ∈ S

}
. Then R is a subring of C with 1

3 ∈ R. Because R is
a domain, it is certainly almost pp−ring.

Let f (x) = x2 + x+ 1 ∈ R [x] . Then α =
−1 +

√
3i

2
/∈ R.

Let r = 2
√
3i, s = −

(
3 +
√
3i
)
. Then r, s ∈ R and α =

s

r
∈ Q (R).

Since (α− β)−1 =
(√

3i
)−1

= −
√
3

3
i ∈ R, RC3

∼= R×
(
R [x]

/(
x2 + x+ 1

))
is not an almost pp−ring.

The above example shows that RC3 is not an almost pp−ring although 3 is
a unit in R and R is an almost pp−ring.

4. Polynomial rings

Let R be a reduced ring and h (x) = h0 + h1x + ... + hnx
n ∈ R [x] . Then

AnnR[x] (h (x)) = N [x] , where N is the annihilator of the ideal generated by

h0, h1, ..., hn (i.e. N = AnnR (h0, h1, ..., hn) =
n∩
i=0
AnnR (hi)). Moreover, if

f (x) = a0 + a1x+ ...+ amx
m ∈ AnnR[x] (h (x)) , then aihj = 0, ∀i = 0, 1, ...,m,

j = 0, 1, ..., n, see [6, Theorem 10].
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Theorem 4.1. If R [x] or R
[
x, x−1

]
are almost pp− rings, then so is R.

Proof. R[x] and R[x, x−1] are free R−modules with bases {xi : i = 0, 1, ...} and
{xi : i = 0,±1, ...}, respectively, satisfying the assumptions of Theorem 2.5.

Theorem 4.2. The polynomial ring R [x] is an almost pp−ring if and only if
the ring R is an almost pp−ring.

Proof. By Theorem 4.1, if R [x] is an almost pp−ring then R is an almost
pp−ring. So, let R be an almost pp−ring and f (x) = a0+a1x+...+anx

n ∈ R [x] .
Then, since R is a reduced ring, AnnR[x] (f (x)) = N [x] where N =

∩n
i=0

AnnR (ai) .
Now, let g (x) = b0+b1x+...+bmx

m ∈ AnnR[x] (f (x)) . Then, bj ∈ AnnR (ai)
for all j = 0, ...,m, i = 0, ..., n. But since R is an almost pp−ring, there is an
idempotent eji ∈ AnnR (ai) such that bjeji = bj for all j = 0, ...,m, i = 0, ..., n.
Taking ej =

∏n
i=0 eji, we have ej ∈ N and bjej = bj for all j = 0, ...,m. Taking

1 − e =
∏m
j=0 (1− ej) , we have e ∈ N is an idempotent and bje = bj for all

j = 0, ...,m.
Thus eg (x) = g (x) and e ∈ N [x] = AnnR[x] (f (x)) and hence R [x] is an

almost pp−ring.

The ring of Laurent polynomials R
[
x, x−1

]
is the localization of the poly-

nomial ring at the multiplicative set consisting of the non negative powers of x.
The ring R is an almost pp−ring if and only if for every R ⊂ S ⊂ Q (R), S is an
almost pp−ring where Q (R) is the total quotient ring of R, see [4, Theorem 3].

So, by Theorem 4.2 and Theorem 4.1, R
[
x, x−1

]
is an almost pp−ring if and

only if R is an almost pp−ring.
In fact, the Laurent polynomial ring R

[
x, x−1

]
is isomorphic to the group

ring of the group Z of integers over R. Thus, RZ is an almost pp−ring if and
only if R is an almost pp−ring.

5. Power series rings

Let R [[x]] be the power series ring over the ring R. For any reduced ring R,
it was proved in Brewer [6] that AnnR[[x]] (a0 + a1x . . .) = N [[x]] where N is
the annihilator of the ideal generated by the coefficients a0, a1, ... Moreover if
b0 + b1x + ... ∈ AnnR[[x]] (a0 + a1x . . .) , then biaj = 0 for all i = 0, 1, ...; j =
0, 1, . . .

Theorem 5.1. If R [[x]] is an almost pp−ring, then so is R.

Proof. R [[x]] is free R−module with basis
{
xi : i = 0, 1, ...

}
satisfying the as-

sumption of Theorem 2.5.

Theorem 5.2. The power series R [[x]] is an almost pp−ring if and only if
for any two countable sets S = {b0, b1, ...} and T = {a0, a1, ...} such that S ⊆
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AnnR (T ) , there exists an idempotent e ∈ AnnR (T ) such that bi = bie for all
i = 0, 1, ...

Proof. Assume that R[[x]] is an almost pp−ring.
Let {b0, b1, ...} ⊆ AnnR(a0, a1, ...). Let g(x) = b0 + b1x + ... and f(x) =

a0 + a1x . . . Then g(x) ∈ AnnR[[x]](f(x)). Therefore, there exists an idempotent
e ∈ AnnR[[x]](f(x)) ∩ R such that eg(x) = g(x). Thus e ∈ AnnR(a0, a1, ...) and
ebi = bi, for all i = 0, 1, ...

Conversely, the ring R is an almost pp−ring because for all b ∈ AnnR (a)
there exists an idempotent e ∈ AnnR (a) such that be = b, and so, R is a reduced
ring.

Let g (x) = b0 + b1x + ..., f (x) = a0 + a1x . . . ∈ R [[x]] such that g (x) ∈
AnnR[[x]] (f (x)) . Then g (x) f (x) = 0.

Thus biaj = 0 for all i = 0, 1, ...; j = 0, 1, ...
So, {b0, b1, ...} ⊆ AnnR (a0, a1, ...) . By assumption, there exists an idempo-

tent e ∈ AnnR (a0, a1, ...) such that ebi = bi for all i = 0, 1, ...
Hence eg (x) = g (x) and e ∈ AnnR[[x]] (f (x)) .
Thus R [[x]] is an almost pp−ring.

Example 5.3. Let R = Z2 ⊕ Z2 ⊕ · · · be the direct sum. Then R is an al-
most pp−ring since every element in R is an idempotent. But R[[x]] is not
an almost pp−ring, because S = {(0, 1, 0, ..), (0, 0, 1, 0, ...), (0, 0, 0, 1, 0, ...), ...} ⊆
AnnR((1, 0, 0, ...)) and there are no idempotent elements in R that can fix the
set S.

Corollary 5.4. If R has a finite number of idempotents, then R [[x]] is an
almost pp−ring if and only if R is an almost pp−ring.

Proof. If R [[x]] is an almost pp−ring, then by Theorem 5.1 R is an almost
pp−ring.

Conversely, assume that R is an almost pp−ring and let g (x) = b0+b1x+ ...,
f (x) = a0 + a1x . . . ∈ R [[x]] such that g (x) ∈ AnnR[[x]] (f (x)) . Since R is
reduced ring, then bi ∈ AnnR (aj) for all i = 0, 1, ...; j = 0, 1, . . .

So, there exists an idempotent eji ∈ AnnR (aj) such that ejibi = bi for all
i = 0, 1, ...; j = 0, 1, . . . But R has a finite number of idempotent and so, we
can find an idempotent e ∈ AnnR (aj) such that ebi = bi for all i = 0, 1, ...;
j = 0, 1, . . . Hence, eg (x) = g (x) and e ∈ AnnR[[x]] (f (x)) .

Thus, R [[x]] is an almost pp−ring.

Kim in [11] proved that if R is a Noetherian ring, then R [[x]] is a pp−ring
if and only if R is a pp−ring, see [11, Theorem 4]. We now give an analogue
result for almost pp−rings.

Corollary 5.5. If R is a Noetherian ring, then R [[x]] is an almost pp−ring if
and only if R is an almost pp−ring.
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Abstract. The purpose of our paper is to study the existence of fixed point theorems
for generalized multivalued α-ψ contraction of Ciric-Berinde type by using Hausdorff
distance in metric spaces and obtain stability of fixed point sets for such multivalued
contraction. Examples are providing to indicate the usefulness of our main result.
Moreover, an application to single value mapping is also given.
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1. Introduction and preliminaries

Stability of fixed points of set valued contractions was defined by Nadler [14]
and Markin [10]. The stability results for multivalued contractions have been
useful in the area of generalized differential equation, discrete and continuous
dynamical system. Stability of fixed points sets for multivalued mapping has
been considered in ([6], [11], [13], [15], [18]).

In 2012, Samet et al. [4] introduced the notion of α-ψ contractive mappings
and α-admissible mappings in metric space and gave sufficient condition for the
existence of fixed points for the class of mappings. Many authors discussed the
fixed point results of α-admissible mappings and gave their generalization, ex-
tensions in several works like ([1, 2, 3], [5], [12], [16], [17]). Recently, Chaudury
and Bandyopadhyay [7] defined multivalued α-admissible mappings, multival-
ued α-ψ contractions mappings and obtained some stability results for fixed
point sets associated with a sequence of multivalued mappings using Hausdorff
distance in metric space.

The purpose of this paper is to introduce the concept of generalized multival-
ued α-ψ contraction of Ciric-Berinde type and to establish fixed point theorems
for such mappings which generalizes the results of ([7], [8]). We also show that
the fixed point sets of uniformly convergent sequences for the newly defined
generalized multivalued α-ψ contraction of Ciric-Berinde type which are also
α-admissible and h-upper semicontinuous are stable under certain condition.
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Lastly, we obtain fixed point results of single valued mappings by giving appli-
cations of our main results of multivalued mappings.

Let X and Y be non-empty sets. T is said to be a multivalued mapping
from X to Y if T is a function from X to the power set of Y . We denote a
multivalued mapping by T : X → 2y. A point x ∈ X is said to be a fixed point
of multivalued mapping T if x ∈ Tx. We denote the set of fixed points of T by
Fix(T ).

The following are the concepts from set valued analysis which we shall use
in this paper. Let (X, d) be a metric space. Then

N(X) = {A : A is a non-empty subset of X},
CL(X) = {A : A is a non-empty closed subset of X},
C(X) = {A : A is a non-empty compact subset of X} and
CB(X) = {A : A is a non-empty closed and bounded subset of X}.

For A,B ∈ CB(X), define the function H : CB(X)× CB(X)→ R+ by

H(A,B) = max{δ(A,B), δ(B,A)},

where

δ(A,B) = sup{d(a,B), a ∈ A}, δ(B,A) = sup{d(b, A), b ∈ B}

and
d(a,C) = inf{d(a, x), x ∈ C}.

Note that H is called Hausdorff metric induced by the metric d.
Let α : X ×X → [0,∞) and ψ : [0,∞)→ [0,∞) be two functions such that

ψ is a continuous and non-decreasing function with Φ(t) =
∑∞

n=1 ψ
n(t) < ∞

and Φ(t) → 0 as t → 0, where ψn denotes nth iterate of the function ψ. It is
well known that ψ(t) < t for all t > 0 and ψ(0) = 0 for t = 0.

Lemma 1.1 ([14]). Let (X, d) be a metric space and A,B ∈ C(X). Let q ≥ 1.
Then for each x ∈ A, there exists y ∈ B such that d(x, y) ≤ qH(A,B).

Lemma 1.2 ([8]). Let A and B be two non-empty compact subsets of a metric
space (X, d) and T : A→ C(B) be a multivalued mapping. Let q ≥ 1. Then for
a, b ∈ A and x ∈ Ta, there exists y ∈ Tb such that d(x, y) ≤ qH(Ta, Tb).

Definition 1.1 ([7],[12]). Let X be a non-empty set. A multivalued mapping
T : X → N(X) is said to be multivalued α-admissible with respect to a function
α : X ×X → [0,∞), if for x, y ∈ X,

α(x, y) ≥ 1⇒ α(a, b) ≥ 1, for all a ∈ Tx and b ∈ Ty.(1.1)

If T : X → X, a single-valued mapping then condition (1.1) of α-admissible
reduces to α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1 for x, y ∈ X.
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Example 1.1 ([7]). LetX = R, α : R×R→ [0,∞). We define α(x, y) = x2+y2,
where x, y ∈ R. Define T : R → N(X) by Tx = {

√
|x|,−

√
|x|}. Then T is

multivalued α-admissible.

Definition 1.2 ([9]). Let (X, d) be a metric space and T : X → 2X be a
closed valued multifunction. We say that T is an α∗-ψ contractive multifunction
whenever

α∗(Tx, Ty)H(Tx, Ty) ≤ ψ(d(x, y)) for x, y ∈ X,(1.2)

where α∗(Tx, Ty) = inf{α(a, b) : a ∈ Tx, b ∈ Ty}.

Definition 1.3 ([7]). Let (X, d) be a metric space. A multivalued mapping
T : X → C(X) is called multivalued α-ψ contraction if

α(x, y)H(Tx, Ty) ≤ ψ(d(x, y)) for x, y ∈ X,(1.3)

Remark 1.1 ([7]). In (1.3) of Definition 1.3, we have α(x, y) instead of α∗(Tx, Ty)
which has been considered in (1.2) of Definition 1.2. α∗(Tx, Ty) is defined as

α∗(Tx, Ty) = inf{α(a, b) : a ∈ Tx, b ∈ Ty} for x, y ∈ X.

From the definition it is clear that α∗(Tx, Ty) is not necessarily equal to α(x, y)
and also we cannot compare α(x, y) with α∗(Tx, Ty). Therefore Definition 1.3
is independent of Definition 1.2.

Definition 1.4. Let (X, d) be a metric space. A self mapping T : X → X is
said to be h-upper semicontinuous if and only if, for each x ∈ X and {xn} ⊂ X
with limn→∞ d(xn, x) = 0, we have limn→∞ d(Txn, Tx) = 0.

Definition 1.5 ([12], [17]). Let (X, d) be a metric space. A multivalued map-
ping T : X → C(X) is said to be h-upper semicontinuous if and only if, for each
x ∈ X and {xn} ⊂ X with limn→∞ d(xn, x) = 0, we have limn→∞ δ(Txn, Tx) =
0.

2. Main results

We introduce generalized multivalued α-ψ contraction of Ciric-Berinde type
which differs from Definition 1.2 and generalization of Definition 1.3.

Definition 2.1. Let (X, d) be a metric space. A multivalued mapping T : X →
C(X) is called a generalized multivalued α-ψ contraction of Ciric-Berinde type
if

α(x, y)H(Tx, Ty) ≤ ψ(M(x, y))

+ Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}(2.1)

for all x, y ∈ X with α(x, y) ≥ 1, where L ≥ 0 and

M(x, y) = max

{
d(x, y),

d(x, Tx)d(y, Ty)

d(x, y)
,
d(x, Ty) + d(y, Tx)

2

}
.
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Theorem 2.1. Let (X, d) be a complete metric space and T : X → C(X) be
a generalized multivalued α-ψ contraction of Ciric-Berinde type. Also suppose
that the following conditions are satisfied:

(i) T is multivalued α-admissible,

(ii) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1,

(iii) T is h-upper semi continuous.

Then T has a fixed point.

Proof. By the condition (ii) there exists x0 ∈ X and x1 ∈ Tx0 such that
α(x0, x1) ≥ 1. Clearly if x0 = x1 or x1 ∈ Tx1, we find that x1 is a fixed point
of T and so, we can conclude the proof. Now, we assume that x0 ̸= x1 and
x1 /∈ Tx1 and hence d(x1, Tx1) > 0. By Lemma 1.2 for x1 ∈ Tx0 there exists
x2 ∈ Tx1 such that

d(x1, x2) ≤ α(x0, x1)H(Tx0, Tx1).

Applying (2.1) and using the monotone property of ψ, we have

d(x1, x2) ≤ α(x0, x1)H(Tx0, Tx1)

≤ ψ
(
max

{
d(x0, x1),

d(x0, Tx0)d(x1, Tx1)

d(x0, x1)
,
d(x0, Tx1) + d(x1, Tx0)

2

})
+ Lmin{d(x0, Tx0), d(x1, Tx1), d(x0, Tx1), d(x1, Tx0)}

≤ ψ
(
max

{
d(x0, x1),

d(x0, x1)d(x1, x2)

d(x0, x1)
,
d(x0, x2) + d(x1, x1)

2

})
+ Lmin{d(x0, x1), d(x1, x2), d(x0, x2), d(x1, x1)}

≤ ψ
(
max

{
d(x0, x1), d(x1, x2),

d(x0, x2)

2

})
.

Since

d(x0, x2)

2
≤ d(x0, x1) + d(x1, x2)

2
≤ max{d(x0, x1), d(x1, x2)},

it follow that
d(x1, x2) ≤ ψ(max{d(x0, x1), d(x1, x2)}),

if max{d(x0, x1), d(x1, x2)} = d(x1, x2), then we have

0 < d(x1, x2) ≤ ψ(d(x1, x2)) < d(x1, x2),

which is a contradiction. Thus max{d(x0, x1), d(x1, x2)} = d(x0, x1) and since
ψ is strictly increasing, we have

d(x1, x2) ≤ ψ(d(x0, x1)).(2.2)
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Since T is α-admissible, from condition (ii) and x2 ∈ Tx1, we have α(x1, x2) ≥ 1.
If x2 ∈ Tx2 then x2 is a fixed point. Assume that x2 /∈ Tx2, that is d(x2, Tx2) >
0. By Lemma 1.2 for x2 ∈ Tx1 there exists x3 ∈ Tx2 such that

d(x2, x3) ≤ α(x1, x2)H(Tx1, Tx2)

≤ ψ
(
max

{
d(x1, x2),

d(x1, Tx1)d(x2, Tx2)

d(x1, x2)
,
d(x1, Tx2) + d(x2, Tx1)

2

})
+ Lmin{d(x1, Tx1), d(x2, Tx2), d(x1, Tx2), d(x2, Tx1)}

≤ ψ
(
max

{
d(x1, x2),

d(x1, x2)d(x2, x3)

d(x1, x2)
,
d(x1, x3) + d(x2, x2)

2

})
+ Lmin{d(x1, x2), d(x2, x3), d(x1, x3), d(x2, x2)}

≤ ψ
(
max

{
d(x1, x2), d(x2, x3),

d(x1, x3)

2

})
.

Since

d(x1, x3)

2
≤ d(x1, x2) + d(x2, x3)

2
≤ max{d(x1, x2), d(x2, x3)},

it follow that

d(x2, x3) ≤ ψ(max{d(x1, x2), d(x2, x3)}),

if max{d(x1, x2), d(x2, x3)} = d(x2, x3), then we have

0 < d(x2, x3) ≤ ψ(d(x2, x3)) < d(x2, x3),

which is a contradiction.
Thus max{d(x1, x2), d(x2, x3)} = d(x1, x2) and since ψ is strictly increasing,

we have

d(x2, x3) ≤ ψ(d(x1, x2)) < ψ2(d(x0, x1))(2.3)

Since x2 ∈ Tx1, x3 ∈ Tx2 and α(x1, x2) ≥ 1, the α-admissibility of T implies
that α(x2, x3) ≥ 1. Continuing this process, we construct a sequence {xn} such
that for all n ≥ 0,

xn /∈ Txn, xn+1 ∈ Txn,
α(xn, xn+1) ≥ 1

and

d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)).(2.4)

By repeated application (2.4) and monotonic property of ψ, we have

d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)) ≤ ψ2(d(xn−1, xn)) ≤ · · · ≤ ψn+1(d(x0, x1)).
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Then by property of ψ, we have∑
n

d(xn, xn+1) ≤
∑
n

ψn(d(x0, x1) = Φ(d(x0, x1)) <∞ .

This shows that {xn} is a Cauchy sequence in X. Hence, there exists z ∈ X,
such that xn → z as n→∞, that is limn→∞ d(xn, z) = 0.

Consider

d(z, Tz) ≤ d(z, xn+1) + d(xn+1, T z)

≤ d(z, xn+1) + δ(Txn, T z).(2.5)

Since limn→∞ d(z, xn+1) = 0 and by using h-upper semicontinuity of T we have
limn→∞ δ(Txn, T z) = 0. By letting n → ∞ in the inequality (2.5), we obtain
d(z, Tz) = 0. Since Tz is compact and hence Tz is closed, that is, Tz = Tz,
where Tz denotes the closure of Tz. Now d(z, Tz) = 0 implies that z ∈ Tz = Tz,
that is, z is a fixed point of T .

Notice that one can relax the h-upper semicontinuity hypothesis on T , by
introducing another regularity condition as shown in next theorem.

Theorem 2.2. Let (X, d) be a complete metric space and T : X → C(X) be
a generalized multivalued α-ψ contraction of Ciric-Berinde type. Also suppose
that the following conditions are satisfied:

(i) T is multivalued α-admissible,

(ii) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1,

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n, where
xn+1 ∈ Txn and xn → x as n→∞, then α(xn, x) ≥ 1 for all n.

Then T has a fixed point.

Proof. By the condition (ii) there exists x0 ∈ X and x1 ∈ Tx0 such that
α(x0, x1) ≥ 1. Following the proof of Theorem 2.1, we obtain a sequence {xn} ⊂
X with limn→∞ d(xn, z) = 0 for some z ∈ X such that xn /∈ Txn, xn+1 ∈ Txn
and α(xn, xn+1) ≥ 1 for all n. By condition (iii), there exists a sequence {xn}
such that α(xn, z) ≥ 1 for all n. Now we prove that z ∈ Tz. We have

M(xn, z) = max

{
d(xn, z),

d(xn, Txn)d(z, Tz)

d(xn, z)
,
d(xn, T z) + d(z, Txn)

2

}
≤ max

{
d(xn, z),

d(xn, xn+1)d(z, Tz)

d(xn, z)
,
d(xn, T z) + d(z, xn+1)

2

}
≤ max

{
d(xn, z),

d(xn, xn+1)d(z, Tz)

d(xn, z)
,
[d(xn, z)+d(z, Tz)]+d(z, xn+1)

2

}
.
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From xn → z, we deduce that

lim
n→∞

M(xn, z) = d(z, Tz).

Since T is generalized multivalued α-ψ contraction of Ciric-Berinde type, for all
n we have

d(z, Tz) ≤ d(z, xn+1) + d(xn+1, T z) ≤ d(z, xn+1) +H(Txn, T z)

≤ d(z, xn+1) + ψ(M(xn, z))

+ Lmin{d(xn, Txn), d(z, Tz), d(xn, T z), d(z, Txn)}
≤ d(z, xn+1) + ψ(M(xn, z))

+ Lmin{d(xn, xn+1), d(z, Tz), d(xn, T z), d(z, xn+1)}.

Letting n→∞ in the above inequality and ψ(t) < t, we have

d(z, Tz) ≤ ψ(d(z, Tz)) < d(z, Tz)

which implies d(z, Tz) = 0. Since Tz is compact and hence Tz is closed, that is,
Tz = Tz, where Tz denotes the closure of Tz. Now d(z, Tz) = 0 implies that
z ∈ Tz = Tz, that is, z is a fixed point of T .

Remark 2.1. By taking L = 0 in Theorem 2.2, replacing M(x, y) by d(x, y),
Theorem 2.2 reduces to [7, Theorem 2.1] which is as follows:

Corollary 2.1 ([7]). Let (X, d) be a complete metric space and T : X → CL(X)
be a multivalued α-ψ contraction. Also suppose that the following conditions are
satisfied:

(i) T is multivalued α-admissible,

(ii) there exists x0 ∈ X and x1 ∈ Tx0 such that α(x0, x1) ≥ 1,

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n, where
xn+1 ∈ Txn and xn → x as n→∞, then α(xn, x) ≥ 1 for all n.

Then T has a fixed point.

Example 2.1. Let X = [0,∞) and d(x, y) = |x−y|. Let define the multivalued
mapping T : X → C(X) as

Tx =

{{
1, 1

2x

}
, if x > 1,{

0, x8
}
, if 0 ≤ x ≤ 1.

Now we define the functions α : X × X → [0,∞) and ψ : [0,∞) → [0,∞) as
follows:

α(x, y) =

{
2, if x, y ∈ (0, 1],

0, otherwise,
and ψ(t) =

1

2
t.
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Obviously, conditions (ii) of Theorem is satisfied with x0 = 1
2 and T is mul-

tivalued α-admissible. Now we show that T is generalized multivalued α-ψ
contraction of Ciric-Berinde type.

Taking for x, y ∈ [0, 1], we have

d(0, T y) = inf
{
0,
y

8

}
= 0,

d
(x
8
, T y

)
= inf

{∣∣∣0− x

8

∣∣∣ , ∣∣∣x
8
− y

8

∣∣∣} ,
d(0, Tx) = inf

{
0,
x

8

}
= 0,

d
(y
8
, Tx

)
= inf

{∣∣∣0− x

8

∣∣∣ , ∣∣∣x
8
− y

8

∣∣∣} .
Then we have

H(Tx, Ty) = max

{
sup
x∈Tx

d(x, Ty), sup
y∈Ty

d(y, Tx)

}
= max

{
inf
{∣∣∣x

8

∣∣∣ , ∣∣∣x
8
− y

8

∣∣∣} , inf {∣∣∣y
8

∣∣∣ , ∣∣∣y
8
− x

8

∣∣∣}}
=
∣∣∣x
8
− y

8

∣∣∣ .
Now,

α(x, y)H(Tx, Ty) = 2×
∣∣∣x
8
− y

8

∣∣∣
=

1

4
|x− y|

≤ 1

2
|x− y|

= ψ(d(x, y)

≤ ψ(M(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Thus condition (2.1) is satisfied.
Hence all the conditions of Theorems 2.1 and 2.2 are satisfied and T has a

fixed point at x = 0.

3. Stability of fixed point sets

Stability is a concept associated with the limiting behavior of a system. The
study of the relationship between the convergence of a sequence of mappings
and their fixed points, known as the stability of fixed points. A sequence of
fixed point sets is said to be stable when it converges to the corresponding fixed
point sets of the limiting function in the Hausdorff metric. Multivalued maps
often have more fixed points than single valued maps. Therefore, the set of fixed
points of multivalued mappings becomes larger and hence more interesting for
study of stability.
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In this section, we consider the stability of fixed point sets of the multivalued
contractions mentioned in section 2.

Theorem 3.1. Let (X, d) be a complete metric space, and F (T1), F (T2) are the
fixed point sets of T1 and T2 respectively, where Ti : X → C(X), i = 1, 2. Each
Ti is generalized multivalued α-ψ contraction of Ciric-Berinde type as defined
in Definition 2.1 with the same α, ψ and L. Also each Ti satisfies the following
conditions:

(i) each Ti is multivalued α-admissible,

(ii) each Ti is h-upper semi continuous,

(iii) for any x ∈ F (T1), we have α(x, y) ≥ 1 whenever y ∈ T2x and for any
x ∈ F (T2), we have α(x, y) ≥ 1 whenever y ∈ T1x.

Then H(F (T1), F (T2)) ≤ Φ(k), where k = supx∈X H(T1x, T2x).

Proof. From Theorem 2.1, the set of fixed points of Ti (i = 1, 2) are non-
empty, that is F (Ti) ̸= ϕ, for i = 1, 2. Let x0 ∈ F (T1), that is x0 ∈ T1x0. Then
by Lemma 1.1, there exists x1 ∈ T2x0 such that

d(x0, x1) ≤ H(T1x0, T2x0).

Since x0 ∈ F (T1) and x1 ∈ T2x0, by condition(iii) of the theorem, we have
α(x0, x1) ≥ 1. By Lemma 1.2, for x1 ∈ T2x0 there exists x2 ∈ T2x1 such that

d(x1, x2) ≤ α(x0, x1)H(T2x0, T2x1).

Then, arguing similarly as in the proof of Theorem 2.1, we construct a sequence
{xn} such that for all n ≥ 0,

xn+1 ∈ T2xn,
α(xn, xn+1) ≥ 1,

d(xn+1, xn+2) ≤ ψ(d(xn, xn+1))

and

d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)) ≤ ψ2(d(xn−1, xn)) ≤ . . . ≤ ψn+1(d(x0, x1)).

Then by property of ψ, we have∑
n

d(xn, xn+1) ≤
∑
n

ψn(d(x0, x1)) = Φ(d(x0, x1)) <∞ .

This shows that {xn} is a Cauchy sequence in X. Since (X, d) is complete, there
exists z ∈ X such that xn → z as n→∞.
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Now, we prove that z ∈ T2z. For all n ≥ 0, xn+1 ∈ T2xn. Suppose that T2
is h-upper semicontinuous. We have

d(z, T2z) ≤ d(z, xn+1) + d(xn+1, T2z)

≤ d(z, xn+1) + δ(T2xn, T2z).

Since limn→∞ d(z, xn+1) = limn→∞ δ(T2xn, T2z) = 0, by letting n → ∞ in the
above inequality, we obtain d(z, T2z) = 0. Thus z ∈ T2z, that is, z is a fixed
point of T2.

Using d(x0, x1) ≤ H(T1x0, T2x0) and the definition of k, we have

d(x0, x1) ≤ H(T1x0, T2x0) ≤ k = sup
x∈X

H(T1x, T2x).

Now using triangular inequality,

d(x0, z) ≤
n∑
i=0

(d(xi, xi+1)) + d(xn+1, z)

≤
∞∑
i=0

(d(xi, xi+1))

≤
∞∑
i=0

ψi(d(x0, x1))

≤
∞∑
i=0

ψi(k) = Φ(k).

Thus, given arbitrary x0 ∈ F (T1), we can find z ∈ F (T2) for which d(x0, z) ≤
Φ(k). Reversing the roles of T1 and T2 we also conclude that for each y0 ∈ F (T2)
there exists w ∈ F (T1) such that d(y0, w) ≤ Φ(k). Hence H(F (T1), F (T2)) ≤
Φ(k).

Theorem 3.2. Let (X, d) be a complete metric space, and F (T1), F (T2) are the
fixed point sets of T1 and T2 respectively, where Ti : X → C(X), i = 1, 2. Each
Ti is generalized multivalued α-ψ contraction of Ciric-Berinde type as defined
in Definition 2.1 with the same α, ψ and L. Also each Ti satisfies the following
conditions:

(i) for any x ∈ F (T1), we have α(x, y) ≥ 1 whenever y ∈ T2x and for any
x ∈ F (T2), we have α(x, y) ≥ 1 whenever y ∈ T1x.

(ii) each Ti is multivalued α-admissible,

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n, where
xn+1 ∈ Tixn, i = 1, 2 and xn → x as n→∞, then α(xn, x) ≥ 1 for all n.

Then H(F (T1), F (T2)) ≤ Φ(m), where m = supx∈X H(T1x, T2x).
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Proof. From Theorem 2.2, the set of fixed points of Ti (i = 1, 2) are non empty,
that is F (Ti) ̸= ϕ, for i = 1, 2. Let x0 ∈ F (T1), that is x0 ∈ T1x0. Arguing
similarly as in the proof of Theorem 3.1, we prove that {xn} is a Cauchy sequence
in X. Since (X, d) is complete, there exist z ∈ X such that xn → z as n→∞.

Now, we prove that z ∈ T2z. For all n ≥ 0, xn+1 ∈ T2xn. Therefore
d(xn+1, T2z) ≤ H(T2xn, T2z). By (iii), α(xn, z) ≥ 1 for all n. Hence we have for
all n,

d(xn+1, T2z) ≤ α(xn, z)H(T2xn, T2z).

Letting n→∞ in the above inequality and ψ(t) < t, we have

d(z, T2z) ≤ ψ(d(z, T2z)) ≤ d(z, T2z),

which implies that d(z, T2z) = 0. Thus z ∈ T2z, that is, z is a fixed point of T2.

Using d(x0, x1) ≤ H(T1x0, T2x0) and the definition of k, we have

d(x0, x1) ≤ H(T1x0, T2x0) ≤ m = sup
x∈X

H(T1x, T2x).

Now using triangular inequality,

d(x0, z) ≤
n∑
i=0

(d(xi, xi+1)) + d(xn+1, z)

≤
∞∑
i=0

(d(xi, xi+1))

≤
∞∑
i=0

ψi(d(x0, x1))

≤
∞∑
i=0

ψi(k) = Φ(m).

Thus, given arbitrary x0 ∈ F (T1), we can find z ∈ F (T2) for which
d(x0, z) ≤ Φ(m). Reversing the role of T1 and T2 we also conclude that for
each y0 ∈ F (T2) there exists w ∈ F (T1) such that d(y0, w) ≤ Φ(m). Hence
H(F (T1), F (T2)) ≤ Φ(m).

Lemma 3.1 ([7]). Let (X, d) be a complete metric space. If {Tn : X → C(X) :
n ∈ N} be a sequence of multivalued α-admissible with the same α and which
is uniformly convergent to a multivalued mapping T : X → C(X), then T is
multivalued α-admissible if the following condition is satisfied:

α(xn, yn) ≥ 1, for every n ∈ N⇒ α(a, b) ≥ 1,(3.1)

where xn → a and yn → b as n→∞.
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Proof. Let α(x, y) ≥ 1, for some x, y ∈ X. Suppose a ∈ Tx and b ∈ Ty be
arbitrary. Since Tn → T uniformly, there exist two sequences {xn} in {Tnx}
and {yn} in {Tny}, such that xn → a and yn → b as n→∞. Since α(x, y) ≥ 1
and Tn is multivalued α-admissible for each n ∈ N, it follows that α(xn, yn) ≥ 1
for each n ∈ N. Thus by (3.1), it follows that α(a, b) ≥ 1. Thus for x, y ∈ X,
we have

α(x, y) ≥ 1⇒ α(a, b) ≥ 1, where a ∈ Tx and b ∈ Ty.

Hence T is multivalued α-admissible.

Lemma 3.2. Let (X, d) be a complete metric space. If {Tn : X → C(X) : n ∈
N} be a sequence of generalized multivalued α-ψ contraction of Ciric-Berinde
type which is uniformly convergent to a multivalued mapping T : X → C(X),
then T is generalized multivalued α-ψ contraction of Ciric-Berinde type.

Proof. Since each Tn is generalized multivalued α-ψ contraction of Ciric-Berinde
type for every n ∈ N, therefore

α(x, y)H(Tnx, Tny)

≤ ψ
(
max

{
d(x, y),

d(x, Tnx)d(y, Tny)

d(x, y)
,
d(x, Tny) + d(y, Tnx)

2

})
+ Lmin{d(x, Tnx), d(y, Tny), d(x, Tny), d(y, Tnx)}.

Since the sequence {Tn} is uniformly convergent to T and ψ is continuous, taking
limit n→∞ in the above inequality, we get

α(x, y)H(Tx, Ty) ≤ ψ
(
max

{
d(x, y),

d(x, Tx)d(y, Ty)

d(x, y)
,
d(x, Ty) + d(y, Tx)

2

})
+ Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

for all x, y ∈ X. Hence T is generalized multivalued α-ψ contraction of Ciric-
Berinde type.

Lemma 3.3. Let (X, d) be a complete metric space. If {Tn : X → C(X) :
n∈N} be a sequence of h-upper semicontinuous which is uniformly convergent
to a multivalued mapping T : X → C(X), then T is h-upper semicontinuous
mapping.

Proof. Since each Tn is h-upper semicontinuous for all n ≥ 1. Then by def-
inition of h-upper semicontinuous mapping for each x ∈ X and xn ⊂ X with
limn→∞ d(xn, x)=0, we have

lim
n→∞

δ(Tn(xn), Tn(x)) = 0.

Since Tn → T uniformly, letting n → ∞, we have for each x ∈ X and xn ⊂ X
with limn→∞ d(xn, x) = 0, we have limn→∞ δ(Txn, Tx) = 0, which implies that
T is h-upper semicontinuous mapping.
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Theorem 3.3. Let (X, d) be a complete metric space. Let {Tn :X→C(X) :n∈
N} be a sequence of generalized multivalued α-ψ contraction of Ciric-Berinde
type which are also multivalued α-admissible and h-upper semicontinuous with
the same α, ψ and L is uniformly convergent to a multivalued mapping T : X →
C(X). Also suppose that the following hold:

(i) if {xn} and {yn} are two sequences in X with xn → a and yn → b as
n→∞, then α(xn, yn) ≥ 1, for every n ∈ N⇒ α(a, b) ≥ 1,

(ii) for every n ∈ N, for any x ∈ F{Tn}, we have α(x, y) ≥ 1 whenever
y ∈ Tx, and for any x ∈ F (T ), we have α(x, y) ≥ 1 whenever y ∈ Tnx.

Then H(F (Tn), F (T ))→ 0 as n→∞, that is, the fixed point of Tn are stable.

Proof. By Lammas 3.1, 3.2 and 3.3, it follows that T is generalized multivalued
α-ψ contraction of Ciric-Berinde type, multivalued α-admissible and h-upper
semicontinuous. Let kn = supx∈X H(Tnx, Tx). Since the sequence {Tn} is
uniformly convergent to T on X. Therefore

lim
n→∞

kn = lim
n→∞

sup
x∈X

H(Tnx, Tx) = 0.

Using Theorem 3.1, we get

H(F (Tn), F (T )) ≤ Φ(kn), for every n ∈ N.

Since ψ is continuous and Φ(t)→ 0 as t→ 0, we have

lim
n→∞

H(F (Tn), F (T )) ≤ lim
n→∞

Φ(kn) = 0,

that is limn→∞H(F (Tn), F (T )) = 0. Hence the proof is complete.

Theorem 3.4. Let (X, d) be a complete metric space. Let {Tn : X → C(X) :
n ∈ N} be a sequence of generalized multivalued α-ψ contraction of Ciric type
which are also multivalued α-admissible with the same α, ψ and L is uniformly
convergent to a multivalued mapping T : X → C(X). Also suppose that the
following hold:

(i) if {xn} and {yn} are two sequences in X with xn → a and yn → b as
n→∞, then α(xn, yn) ≥ 1, for every n ∈ N⇒ α(a, b) ≥ 1,

(ii) for every n ∈ N, for any x ∈ F{Tn}, we have α(x, y) ≥ 1 whenever y ∈ Tx
and for any x ∈ F (T ), we have α(x, y) ≥ 1 whenever y ∈ Tnx.

Then H(F (Tn), F (T ))→ 0 as n→∞, that is, the fixed point of Tn are stable.
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Proof. By Lammas 3.1 and 3.2, it follows that T is generalized multivalued
α-ψ contraction of Ciric-Berinde type and multivalued α-admissible.
Let mn = supx∈X H(Tnx, Tx). Since the sequence {Tn} is uniformly convergent
to T on X. Therefore

lim
n→∞

mn = lim
n→∞

sup
x∈X

H(Tnx, Tx) = 0.

Using Theorem 3.2, we get

H(F (Tn), F (T )) ≤ Φ(mn), for every n ∈ N.

Since ψ is continuous and Φ(t)→ 0 as t→ 0, we have

lim
n→∞

H(F (Tn), F (T )) ≤ lim
n→∞

Φ(mn) = 0,

that is limn→∞H(F (Tn), F (T )) = 0. Hence the proof is complete.

Example 3.1. Let X = [0,∞) and d(x, y) = |x−y|. Let define the multivalued
mappings T : X → CL(X) as

Tnx =


{
1 + 1

n ,
1
2x + 1

n

}
, if x > 1,{

1
n ,

1
n + x

8

}
, if 0 < x ≤ 1,

{0} , if x = 0.

Now we define the functions α : X × X → [0,∞) and ψ : [0,∞) → [0,∞) as
follows:

α(x, y) =

{
2, if x, y ∈ (0, 1],

0, otherwise,
and ψ(t) =

1

2
t.

Each Tn is multivalued α-admissible. Tn → T as n→∞. Then T is define by

Tx =

{{
1, 1

2x

}
, if x > 1,{

0, x8
}
, if 0 ≤ x ≤ 1.

Each Tn is generalized multivalued α-ψ contraction of Ciric-Berinde type and T
is also. Let x, y ∈ (0, 1],

H(Tnx, Tny) = max

{
sup
x∈Tx

d(x, Ty), sup
y∈Ty

d(y, Tx)

}
= max

{
inf
{∣∣∣x

8

∣∣∣ , ∣∣∣x
8
− y

8

∣∣∣} , inf {∣∣∣y
8

∣∣∣ , ∣∣∣y
8
− x

8

∣∣∣}}
=
∣∣∣x
8
− y

8

∣∣∣ .
Therefore,

α(x, y)H(Tnx, Tny) ≤ ψ(M(x, y))+Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Thus conditions of Theorem 3.3 and Theorem 3.4 are satisfied. F (T1) = {0, 1}
and F (Tn) = {0} for n ≥ 2. Hence H(F (Tn), F (T ))→ 0 as n→∞.
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4. Application to single valued mappings

In this section we obtain some fixed point results for single valued mappings by
an application of the corresponding results of section 2.

Theorem 4.1. Let (X, d) be a complete metric space and T : X → X be a
single valued mapping. Suppose that for all x, y ∈ X,

α(x, y)d(Tx, Ty) ≤ ψ
(
max

{
d(x, y),

d(x, Tx)d(y, Ty)

d(x, y)
,
d(x, Ty) + d(y, Tx)

2

})
+ Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}(4.1)

where the conditions α, ψ and L are same as in Definition 2.1. Also suppose
that the following conditions are satisfied:

(i) T is α-admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) T is h-upper semi continuous.

Then T has a fixed point.

Proof. We know that for every x ∈ X, {x} is compact in X. Now, we define
multivalued mapping F : X → C(X) as Fx = {Tx}, for x ∈ X. Let x0, y0 ∈ X
such that α(x0, y0) ≥ 1. Then by α-admissible of T , we have α(Tx0, T y0) ≥ 1,
that is, α(x1, y1) ≥ 1, where x1 ∈ Fx0 = {Tx0} and y1 ∈ Fy0 = {Ty0}.
Therefore, for x0, y0 ∈ X,

α(x0, y0) ≥ 1⇒ α(x1, y1) ≥ 1, where x1 ∈ Fx0 and y1 ∈ Fy0,

that is, F is a multivalued α-admissible mapping.
Let x, y ∈ X. Then by using (4.1), we have

α(x, y)H(Fx, Fy) = α(x, y)d(Tx, Ty)

≤ ψ
(
max

{
d(x, y),

d(x, Tx)d(y, Ty)

d(x, y)
,
d(x, Ty) + d(y, Tx)

2

})
+ Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

≤ ψ
(
max

{
d(x, y),

d(x, Fx)d(y, Fy)

d(x, y)
,
d(x, Fy) + d(y, Fx)

2

})
+ Lmin{d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)},

that is, F satisfy condition (2.1). Therefore, F is a generalized multivalued α-ψ
contraction of Ciric-Berinde type of the Theorem 2.1.

Suppose there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Let x1 ∈ Fx0 =
{Tx0}. Then α(x0, Tx0) ≥ 1 means α(x0, x1) ≥ 1. Therefore, there exists
x0 ∈ X and x1 ∈ Fx0 such that α(x0, x1) ≥ 1.
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Then by h-upper semi continuity of T for x ∈ X and {xn} ⊂ X with
limn→∞ d(xn, x) = 0, we have limn→∞ d(Txn, Tx) = 0 = limn→∞ δ(Fxn, Fx) =
0, where Fxn = {Txn}. Therefore for x ∈ X and {xn} ⊂ X with limn→∞ d(xn, x)
= 0, we have limn→∞ δ(Fxn, Fx) = 0, that is F is h-upper semi continuous. So,
all the conditions of Theorem 2.1 are satisfied and hence F has a fixed point z
in X. Then z ∈ Fz = {Tz}, that is, z = Tz. Hence z is a fixed point of T in
X.

Theorem 4.2. Let (X, d) be a complete metric space and T : X → X be a
single valued mapping. Suppose that (4.1) is satisfied, where the conditions α, ψ
and L are same as in Definition 2.1. Also suppose that the following conditions
are satisfied:

(i) T is α-admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n, where
xn+1 ∈ Txn and xn → x as n→∞, then α(xn, x) ≥ 1 for all n.

Then T has a fixed point.

Proof. Similarly as in the proof of Theorem 4.1, we define the multivalued
mapping F : X → C(X) as Fx = {Tx}, for x ∈ X and we prove that there
exists x0 ∈ X and x1 ∈ Fx0 such that α(x0, x1) ≥ 1, also prove that F is a
multivalued α-admissible mapping, which satisfies (2.1). So all the conditions
of Theorem 2.2 are satisfied and hence F has a fixed point z in X. Then
z ∈ Fz = {Tz}, that is, z = Tz. Hence z is a fixed point of T in X.

5. Conclusion

In fixed point theory, most of works have been derived for α-ψ contractions and
α-admissible conditions for different mappings defined on various spaces. A mul-
tivalued version of α-ψ contractions and α-admissible mapping was introduced
in [4]. We introduce generalized multivalued α-ψ contraction of Ciric-Berinde
type which is different from other mentioned contractions. This paper deals with
fixed point theorems and stability of fixed point sets associated with a sequence
of multivalued mappings.
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Abstract. This paper introduced a new generalization of extending modules, namely
modules in which every closed full large extension of a cyclic submodule is a direct
summand, introduced a new generalization of the concept of injective modules. In
fact, we give and study the properties of the concept of full-LE-Cy-injective modules.
Although full-LE-Cy-injective modules are far from injective modules, they are exactly
the same on some kind of rings. Then we make use of relatively full-LE-Cy-injectivity
on modules to study direct sums of two (C1-LE-Cy)-modules. We show that a direct
sum of two relatively full-LE-Cy-injective modules is a (C1-LE-Cy)-module if and only
if each one of them is a (C1-LE-Cy)-module. Examples are provided to illustrate and
delimit the theory.

Keywords: (C1-LE-Cy)-modules, full LE-Cy-modules, full-LE-Cy-injective modules

1. Introduction

all rings are associative with unity, R denotes such a ring, and all modules con-
sidered are unitary right R-modules. A module M is said to be an extending
module (or module with the condition (C1)), if every closed submodule C of
M is a direct summand of M. The notion of extending modules was generalized
recently by many authors see ([1], [7], [3] and [9]). Some of such generaliza-

∗. Corresponding author
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tions were named in [4] by principally extending modules, in [6] by generalized
extending modules.

In [8], Nicholson and Yousif have introduced and studied the structure of
principally injective rings, and have given some characterizations of such rings in
terms of the internal properties of these rings. They defined a module M over a
ringR to be principally injective if everyR-homomorphism from a principal right
ideal of R to M can be extended to R. In [4], Kamal and El-mnophy adopt the
concept of principally injective rings, in [8], and generalize it to modules. They
also introduced the concept of principally extending, (denoted by P -extending).
A module M is called a P -extending module if every cyclic submodule is large
in a direct summand of M, or equivalently, every EC-closed submodule of M is
a direct summand. A submodule N of M is called an EC-submodule of M if
there exists m in M such that mR is large in N .

The present paper studies the concept of modules with the condition that
every full LE-Cy-submodule is large in a direct summand. This new concept,
in turn, generalizes the concept of extending modules. A module M is a large
extension of cyclic (denoted by LE-Cy-module) if mR ≤L M for some m ∈M .
A module M is said to be a full large extension of cyclic module (denoted by full
LE-Cy-module) if every submodule of M is a LE-Cy-module. A full LE-Cy-
submodule N of M is said to be full LE-Cy-closed in M if N has no proper full
LE-Cy-large extensions inM . Consider the following condition on a module M:
(C1-LE-Cy): Every full LE-Cy-submodule ofM is large in a direct summand of
M . A module M which satisfies the condition (C1-LE-Cy) is called a (C1-LE-
Cy)-module, equivalently, every full LE-Cy-closed submodule of M is a direct
summand of M . Let M = M1 ⊕M2. It is well known that M1 is M2-injective
if and only if for every submodule K of M with K ∩M1 ̸= 0, there exists a
submodule L of M such that K ≤ L, and M = M1 ⊕ L. In analogue, we
introduce here the concept of full large extensions of cyclic injectivity (relative
full large extensions of cyclic injectivity) which is one of the generalizations of
the concept of injectivity (relative injectivity). This generalization is extremely
useful in analyzing the structure of direct sums of (C1-LE-Cy)-modules. We
show that if M = M1 ⊕M2, then M1 is M2-full-LE-Cy-injective if and only
if for every full LE-Cy-submodule K of M with K ∩M1 = 0, there exists a
submodule M 8 of M such that K ⊆ M 8, and M = M1 ⊕M 8. We also show
that if M = M1 ⊕ M2, Mi is Mj-full-LE-Cy-injective (i ̸= j), then M is a
(C1-LE-Cy)-module if and only if Mi is a (C1-LE-Cy)-module (i= 1, 2).

In Section 2, Example 2.1., shows that there are LE-Cy-modules, which are
not full LE-Cy-modules. We consider connections between relative full large
extensions of cyclic injectivity and relative injectivity, Theorem 2.1., gives an
equivalent condition of a module M to be full large extensions of cyclic injective
relative to a module N in module decompositions. In Section 3, we introduce
the concept of modules with the condition that every full LE-Cy-submodule is
large in a direct summand. This new concept, in turn, generalizes the concept
of extending modules. Example 3.1., shows that a (C1-LE-Cy)-module not
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necessary to be an extending module, this example also shows that a direct
sum of two (C1-LE-Cy)-modules not necessary to be a (C1-LE-Cy)-module.
In Proposition 3.3., we show that a direct sum of two relatively full-LE-Cy-
injective modules is a (C1-LE-Cy)-module if and only if each one of them is a
(C1-LE-Cy)-module.

Let R be a ring and M , N be R-modules and ϕ be an R-homomorphism
from M into N . If N ⊆M , then N ≤M , N ≤L M , N ≤c M , N ≤⊕ M , Z(M),
Z2(M) and ⟨ϕ⟩= {m+ ϕ(m) : m ∈M} denote N is a submodule of M , N is a
large submodule of M , N is a closed submodule of M , N is a direct summand
submodule of M , the singular submodule of M , the second singular submodule
of M , and the graph of a module homomorphism ϕ : M → N , respectively.

2. Full LE-Cy-injective modules

In this section, we introduce the concept of full large extensions of cyclic injec-
tivity (relative full large extension of cyclic injectivity) which is one of the gen-
eralizations of injectivity (relative injectivity). This generalization is extremely
useful in analyzing the structure of modules whose closed full large extension of
cyclic are summands.

Definition 2.1. A module M is a large extension of cyclic (denoted by LE-Cy-
module) if mR ≤L M for some m ∈ M . A module M is said to be a full large
extension of cyclic module (denoted by full LE-Cy-module) if every submodule
of M is a LE-Cy-module.

Remark 2.1. 1. Every uniform module is a full LE-Cy-module.

2. Let R be a principal right ideal ring, then RR is a full LE-Cy-module.

3. There are semisimple modules, which are full LE-Cy-modules, for example
Zn, where n = p1p2...pn (for distinct primes) as a Z-module is full LE-
Cy-module. It is clear that Zn as a Z-module for each nonzero n in Z is
a full LE-Cy-module.

4. Every non-Noetherian semisimple module is not a full LE-Cy-module.

5. There are LE-Cy-modules, which are not full LE-Cy-modules, for ex-
ample let S be the set of all functions: R → R (R is the set of real
numbers). S is a commutative ring with +,. defined by, (f + g)(r) =
f(r) + g(r), (f.g)(r) = f(r).g(r)) for all f, g ∈ S and r ∈ R. Hence SS is
an LE −Cy-module, and not full LE-Cy; for I = {f ∈ S : f(r) = 0 for all
| r |> n (for some positive integer n ∈ Z)} is not an LE-Cy-module.

Definition 2.2. LetM and N be modules. We say thatM is full large extension
of cyclic injective relative to N (for short M is N -full-LE-Cy-injective) if, for
each monomorphism α : K −→ N , with K a full LE-Cy-module, and each
homomorphism β : K −→ M , there exists a homomorphism ϕ : N −→ M such



674 M.S. MEHANY, M.H. ELBAROUDY and M.A. KAMAL

that ϕα = β. M is called a full- LE-Cy-injective module, if M is N -full-LE-
Cy-injective for every module N .

Fully cyclic large extensions injectivity is one of the generalizations of injec-
tivity. We are going to give some properties of such modules.

Lemma 2.1. Isomorphic copy of a full LE-Cy-module is a full LE-Cy-module.

Proof. LetM be a full LE-Cy-module, and α : M −→N be an R-isomorphism.
Let L be a nonzero submodule of N . Since M is a full LE-Cy-module, there
exists m in M such that mR is large in α−1(L). It is easy to check that α(m)R
is large in L. Therefore, N is a full LE-Cy-module.

Proposition 2.1. Let M and N be R-modules. Then the following are equiva-
lent:

1) M is N -full-LE-Cy-injective.

2) For each full LE-Cy-submodule K of N each homomorphism β : K −→
M can be extended to N .

Proof. 1)⇒ 2) It is clear.

2) ⇒ 1) Let K be a full LE-Cy-module, and α : K −→ N be an R-
monomorphism and β : K −→ M be an R-homomorphism. Since K ∼= α(K)
and K is an LE-Cy-module. By Lemma 2.1., we have α(K) is an LE-Cy-
module. By assumption; there exists an R-homomorphism ϕ : N −→ M such
that ϕα(x) = β(x) for all x ∈ K.

Remark 2.2. 1) N -full-LE-Cy-injectivity and N -injectivity are equivalent,
whenever N be a full LE-Cy-module.

2) Full-LE-Cy-injectivity and injectivity are the same for modules over prin-
cipal right ideal rings. In particular, injectivity and full-LE-Cy-injectivity are
the same for Z-modules.

3) Let M = M1 ⊕M2 be an R-module, and α : M1 −→ M2 is a homomor-
phism. Then the following are well known:

i) ⟨α⟩= {m1 + α(m1) : m1 ∈M1} is a complementary summand ofM2 inM .

ii) ⟨α⟩ ∼= M1.

iii) If α is an monomorphism, then ⟨α⟩ ∩ M1 = 0.

Proposition 2.2. 1. If M is N -full-LE-Cy-injective, then M is N
′
-full-LE-

Cy-injective; for each submodule N
′
of M .

2. If M is N -full-LE-Cy-injective and M
′ ≤⊕ M , then M

′
is N -full-LE-Cy-

injective.

Proof. It is clear.

Theorem 2.1. Let M1 and M2 be an R-modules and let M =M1 ⊕M2. Then
the following are equivalent:



MODULES CLOSED FULL LARGE EXTENSIONS OF CYCLIC SUBMODULE ARE ... 675

1) M1 is M2-full-LE-Cy-injective.
2) For every full LE-Cy-submodule H of M such that H ∩M1 = 0, there

exists a submodule M3 of M such that M =M1 ⊕M3, and H ≤M3.

Proof. 1)⇒ 2) Let H be a full LE-Cy-submodule ofM such that H ∩M1 = 0.
Let πi : M −→ Mi(i = 1, 2) be the projections. Observe that π2|H : H −→
M2 is an monomorphism. Since M1 is full M2-LE-Cy-injective, there exists a
R-homomorphism α : M2 −→ M1 such that α ◦π2|H = π1|H . Take M3 = ⟨α⟩,
thus, by Remark 2.1., we have M = M1 ⊕M3. Now, for all h ∈ H, h = π1(h)
+ π2(h) = α ◦ π2(h) + π2(h) ∈M3. Therefore, H ≤M3.

2) ⇒ 1) Let K be a full LE-Cy submodule of M2, g : K −→ M1 be R-
homomorphism. By Remark 2.1., we have ⟨g⟩ = {k − g(k) : k ∈ K} ∼= K. Thus,
by Lemma 2.1., ⟨g⟩ is a full LE-Cy-submodule of M . Since ⟨g⟩ ∩ M1 = 0,
there exists a submodule M3 of M such that M = M1 ⊕M3 and ⟨g⟩ ≤ M3.
Let π1 : M1 ⊕M3 −→ M1 be the projection. Then for all k ∈ K, we have
π1(k) = π1(k − g(k) + g(k)) = π1(g(k)) = g(k). Therefore, π1 extends g and
hence M1 is M2-full-LE-Cy-injective.

Corollary 2.1. If M = M1 ⊕ M2 and M1 is M2-full-LE-Cy-injective, then
M = M1 ⊕ C for every full large extension of cyclic and complement C of M1

in M .

Proof. Let C be a full large extension of cyclic and complement of M1 in M .
Since M1 is M2-full-LE-Cy-injective, there exists a submodule M3 of M such
that M =M1⊕M3 and C ≤M3. Since C⊕M1 is large submodule of M1⊕M3,
C is a large submodule of M3. Therefore, C =M3.

3. Modules with closed full LE-Cy-submodules summands

In this section, we introduce the concept of modules with the condition that
every full LE-Cy-submodule is large in a direct summand. This new concept,
in turn, generalizes the concept of extending modules.

Definition 3.1. Consider the following condition on a module M :
(C1-LE-Cy): Every full LE-Cy-submodule of M is large in a direct sum-

mand of M . A module M , which satisfies the condition (C1-LE-Cy) is called a
(C1-LE-Cy)-module.

Definition 3.2. A full LE-Cy-submodule N of M is said to be full LE-Cy-
closed in M if N has no proper full LE-Cy-large extension in M .

Lemma 3.1. Let M be a module, and K be a full LE-Cy-submodule of M .
Then L is a full LE-Cy-submodule, for each Large extension L of K in M .

Proof. Let K be a full LE-Cy-submodule of M , and L be a large extension of
K in M . Let D be a submodule of L. It follows that D∩K is large in D. Since
K is a full LE-Cy-submodule of M , we have that D ∩K is an LE-Cy-module.
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Hence D is an LE-Cy-submodule of L. Therefore, L is a full LE-Cy-submodule
of M .

Corollary 3.1. Every full LE-Cy-closed submodule of a module M is a closed
submodule of M .

Proof. Let K be a full LE-Cy-closed submodule of M and let N be a large
extension of K inM . By Lemma 3.1., we have that N is full LE-Cy-submodule
of M . Therefore, K = N .

Corollary 3.2. The following are equivalent for a module M :

1. M is a (C1-LE-Cy)-module.

2. Every full LE-Cy-closed submodule of M a direct summand of M .

3. For every full LE-Cy-submodule N of M , there exists a decomposition
M =M1 ⊕M2 such that N ≤M1 and N ⊕M2 is large in M .

Proof. 1) ⇒ 2) Let H be a full LE-Cy-closed submodule of M , then there
exists a direct summand submodule D of M such that H is large in D. By
Corollary 3.1., we have that H = D. Therefore, H is a direct summand of M .
2) ⇒ 3) Let H be a full LE-Cy-submodule of M and let M1 be a maximal
large extension of H in M , then by Lemma 3.1., M1 is full LE-Cy-closed in M .
Therefore, M =M1 ⊕M2 such that H ≤M1 and H ⊕M2 is large in M .
3)⇒ 1) It is clear.

Proposition 3.1. Let M be an indecomposable module and a full LE-Cy-
module. Then M is a (C1-LE-Cy)-module if and only if M is uniform.

Proof. Let M be a (C1-LE-Cy)-module and 0 ̸= X be submodule of M . Then
there exists a decomposition M = M1 ⊕M2 such that X ≤ M1 and X ⊕M2 is
large in M . It is clear that M2 = 0. Therefore, M is uniform.

Lemma 3.2 (Theorem 5, [5]). Let M be a torsion free reduced module over a
commutative integral domain R. If M is extending, then M is a finite direct
sum of uniform submodules.

Lemma 3.3 (Theorem 7, [5]). Let M be a torsion free reduced module over an
integral domain R with extension field K. Then the following are equivalent:

1) M is extending.
2) M = ⊕ni=1Mi, with all Mi uniform, and for all q1, q2, ..., qn ∈ K (not all

zero) there exist α1, α2, ..., αn ∈ K such that
∑n

k=1 αk = 1 and αkqiMk ⊂ qkMi

for all k, i.

Example 3.1. 1) Every extending module is a (C1-LE-Cy)-module, while there
exists (C1-LE-Cy)-modules, which are not extending, for example the Z-module
M =

⊕∞
i=1Mi, whereMi = Z for all i ∈ N. It is clear, from Lemma 3.2., thatM
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is not extending, and from Lemma 3.3, that each finite subsum ofM =
⊕∞

i=1M
is extending. Since every full LE-Cy-submodule of M is contained in a finite
subsum of M , we have that M is a (C1-LE-Cy)-module.

2) A direct sum of two (C1-LE-Cy)-modules need not be a (C1-LE-Cy)-
module, for example the Z-module M = Z ⊕ (Z/2Z) is not a (C1-LE-Cy)-
module. In fact the submodule (2, 1)Z is full-LE-Cy-closed in M , while it is not
a direct summand of M .

3) Let F be a field, then RR is not a full cyclic large extending module where,

R =

 F F F
0 F 0
0 0 F


In fact, RR contains a simple and closed submodule which is not a direct sum-
mand.

Lemma 3.4 ([8], 1.10 (4)). If K is closed in L and L is closed in M then K is
closed in M .

Lemma 3.5. Let M be a (C1-LE-Cy)-module and N be a direct summand
submodule of M . Then N is a (C1-LE-Cy)-module.

Proof. Let C be full LE-Cy-closed in N . Since N ≤⊕ M , we have, by Lemma
3.4., that C is full LE-Cy-closed inM . AsM is a (C1-LE-Cy)-module, we have
that C ≤⊕ M ; and hence C ≤⊕ N . Therefore, N is (C1-LE-Cy)-module.

Proposition 3.2. Let M1 and M2 be R-modules and let M =M1 ⊕M2. Then
the following are equivalent:

1) M is a (C1-LE-Cy)-module.
2) Every full LE-Cy-closed submodule K ofM , with K∩M1 = 0 or K∩M2 =

0 is a direct summand of M .

Proof. 1)⇒ 2). It is clear by Lemma 3.5.,.
2) ⇒ 1). Let L be a full LE-Cy-closed in M . Let X be a maximal large

extension of L ∩M2 in L. Since, by Lemma 3.1., X is full LE-Cy-closed in
M , with X ∩M1 = 0. By 2), M = X ⊕ Y for some submodule Y of M . As
L = X ⊕ (Y ∩ L), by Lemma 3.4., we have that (Y ∩ L) is a full LE-Cy-closed
submodule of M . (L ∩M2) ≤ X, then (Y ∩ L) ∩M2 = 0. Again by 2), Y ∩ L
is a direct summand of M , and hence it is a direct summand of Y . Therefore,
M = X ⊕ (Y ∩ L)⊕K = L⊕K for some submodule K of M .

Lemma 3.6. Let M and N be isomorphic R-modules. If M is a (C1-LE-Cy)-
module, then N is a (C1-LE-Cy)-module.

Proof. Let f : M −→ N be an R-isomorphism and let C be a full LE-Cy-
closed submodule of N . It is clear, by Lemma 1, that f−1(C) is a full LE-
Cy-closed submodule of M . By the condition (C1-LE-Cy) for M , f−1(C) is
a direct summand of M . Therefore, C is a direct summand of N , i.e. N is a
(C1-LE-Cy)-module.
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Proposition 3.3. Let M = M1 ⊕M2 be a module, where Mi is Mj-full-LE-
Cy-injective (i ̸= j = 1, 2). Then the following are equivalent :

1) M is a (C1-LE-Cy)-module.

2) Mi is a (C1-LE-Cy)-module, (i = 1, 2).

Proof. 1)⇒ 2) It is clear from Lemma 3.5.,.

2)⇒ 1) LetK be a full LE-Cy-closed submodule ofM , withK∩M1 = 0. By
Theorem 2.1., there exists a submodule M3 of M such that M =M1 ⊕M3 and
K ≤ M3. As M3

∼= M2 and M2 is a (C1-LE-Cy)-module, we have, by Lemma
3.6., that M3 is a (C1-LE-Cy)-module. Therefore, K is a direct summand
submodule of M3, and hence K is a direct summand submodule of M . By
proposition 3.2., we have that M is a (C1-LE-Cy)-module.

Corollary 3.3. Let M =M1 ⊕ ...⊕Mn, where Mi is Mj-full-LE-Cy-injective,
for all i ̸= j, (i, j = 1, 2, ..., n) for some positive integer n. Then the following
are equivalent :

1) M is a (C1-LE-Cy)-module.

2) Mi is a (C1-LE-Cy)-module, (i = 1, .., n).

Proof. 1)⇒ 2) It is clear from Lemma 3.5.,.

2)⇒ 1) By induction on n, it is enough to prove that M is a (C1-LE-Cy)-
module by consider in the case, when n = 2, which is shown in Proposition
3.3.,.

Corollary 3.4. Let M = Z2(M)⊕N be a module, where Z2(M) is the second
singular submodule of M . If Z2(M) and N are both (C1-LE-Cy)-modules, and
Z2(M) is N -full-LE-Cy-injective, then M is a (C1-LE-Cy)-module.

Proof. It is clear that Hom(Z2(M), N) = 0, (due to N is non-singular), and
hence N is Z2(M)-injective. By Proposition 3.3., we have that M is a (C1-LE-
Cy)-module.

Proposition 3.4. Let M be a (C1-LE-Cy)-module and Z2(M) be a full LE-
Cy-module. Then we have the following :

1) M = Z2(M)⊕N , for some submodule N of M , and both Z2(M), N are
(C1-LE-Cy)-modules.
2) Z2(M) is N -full-LE-Cy-injective.

Proof. 1) As Z2(M) is full LE-Cy-closed submodule of M , we have that M =
Z2(M)⊕N . By Lemma 3.5., we have Z2(M) and N are (C1-LE-Cy)-modules.
2) Let L be a full LE-Cy-submodule of M with L ∩ Z2(M) = 0. Let C be a
maximal large extension of L in M . By Lemma 3.1., we have that C is full
LE-Cy-closed submodule of M . By hypothesis, we have M = C ⊕ C ′ for some
submodule C ′ of M . As C ∩ Z2(M) = 0, we have that Z2(M) ≤ C ′. Thus
M = C ′ ⊕ C = Z2(M) ⊕ (N ∩ C ′) ⊕ C and L ≤ (N ∩ C ′) ⊕ C. Therefore, by
Theorem 2.1., Z2(M) is N -full-LE-Cy-injective.
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Abstract. By using a notion of soft α-open sets, we generalize the concepts of soft
compact and soft Lindelöf spaces. We define the concepts of soft α-compact, soft α-
Lindelöf, almost (approximately, mildly) soft α-compact and almost (approximately,
mildly) soft α-Lindelöf spaces. We present two new kinds of the finite intersection
property and utilize them to characterize almost soft α-compact and approximately
soft α-compact spaces. To elucidate the relationships among the introduced spaces
and to illustrate our main results, we supply several interesting examples. Also, we
point out that the initiated spaces are preserved under soft α-irresolute mappings and
we investigate certain of results which associate an extended soft topology with the
introduced soft spaces. In the end, we conclude some findings which associate the
introduced spaces with some soft topological notions such as soft α-connectedness, soft
α-T2-spaces, soft α-partition and soft subspaces.
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1. Introduction and preliminaries

In the year 1999, the Russian researcher Molodtsove [24] initiated and studied a
new mathematical approach for solving problems associated with uncertainties,
namely soft sets. He pointed out that there are no limited conditions to the
description of objects, so researchers can choose the form of parameters they
need, which simplifies the decision-making process and make the process more
efficient in the case of incomplete information. Then Maji et al. [22] in 2003,
carried out a systematic study to construct some basic operations between two
soft sets. Despite of a lot of shortcomings of Maji et al’s study, it formed the
first block of the soft set theory. To remove this weakness and to define some
soft operators in a way that preserves the crisp properties via the soft set theory,
Ali et al. [3] formulated some new operators such as restricted union, restricted
intersection and restricted difference of two soft sets and a relative complement
of a soft set.

Shabir and Naz [28] in 2011, employed the idea of soft sets to define the
soft topological spaces concept. They examined the main properties of soft
closed operators and soft separation axioms. Later on, Min [23] showed that
Example 9 of [28] does not satisfy a condition of soft T2-spaces and proved
that every soft T3-space is soft T2. Zorlutuna et al. [29] showed the connection
between fuzzy sets and soft sets. Also, they initiated the first shape of soft point
in order to study some properties of soft interior points and soft neighborhood
systems. Aygünoǧlu and Aygün [14] introduced a concept of soft compact spaces
and investigated its main features. They also presented a notion of enriched
soft topological spaces and illustrated its role to verify some results associated
with constant soft mappings and soft compact spaces. The authors of [16, 25]
simultaneously modified the first shape of soft point to be more effective for
studying soft limit points and soft metric spaces. Chen [15] started studying
generalized soft open sets by defining and investigating soft semi-open sets.
Then Arockiarani and Lancy [13] presented a concept of soft pre-open sets and
studied its fundamental properties. Akdag and Ozkan introduced a soft α-open
sets notion in [1] and then carried out a detailed study on soft α-separation
axioms in [2]. Ozturk and Bayramov [26] defined a soft compact-open topology
concept and studied its main features. Kandil et al. [20] presented γ-operations
and investigated their main properties. The authors of [4, 5, 7, 18] showed some
alleged results on soft axioms and corrected them with the help of examples.
Al-shami and Kočinac [12] proved the equivalence between the enriched and
extended soft topologies and then they derived that (int(H),K) = int(H,K)
and (cl(H),K) = cl(H,K), for any soft subset (H,K) of an extended soft
topological space. Recently, Al-shami [6, 9] introduced a new class of generalized
soft open sets, namely soft somewhere dense sets; and a newly soft mathematical
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structure, namely soft topological ordered spaces. Al-shami et al. [10, 11]
studied new types of soft ordered maps by using soft α-open and soft β-open
sets.

This paper is an attempt to open up the theoretical aspects of soft sets by ex-
tending the notions of soft compact and soft Lindelöf spaces to the framework of
soft sets. We begin this work by presenting certain of concepts of soft set theory
and soft topological spaces that we will need to demonstrate our new findings.
The goal of this study is to employ soft α-open sets to initiate eight kinds of
generalized soft compact spaces, namely soft α-compact, soft α-Lindelöf, almost
(approximately, mildly) soft α-compact and almost (approximately, mildly) soft
α-Lindelöf spaces. We characterize each one of these concepts and provide var-
ious examples to elucidate the relationships among these spaces. Moreover, we
offer some soft topological concepts such as soft α-hyperconnectedness and soft
α-partition spaces, and we establish some properties which associate them with
the introduced generalized soft compact spaces. We demonstrate the relation-
ships between an extended soft topology and the introduced soft spaces. The
sufficient conditions for the eight initiated generalized soft compact spaces to
be soft hereditary properties are investigated. last but not least, we point out
that the soft α-irresolute maps preserve all of the given generalized soft compact
spaces.

In order to investigate and discuss our new results, we recollect the following
definitions and results which will be needed in the sequels. We shall write these
definitions with respect to a fixed set of parameters because we only utilize
them on the frame of soft topological spaces which defined on a fixed set of
parameters.

Definition 1.1 ([24]). A pair (G,K) is called a soft set over X provided that
G is a mapping of a parameters set K into the family of all subsets of X. It
can be expressed as follows: (G,K) = {(k,G(k)) : k ∈ K and G(k) ∈ 2X}.

Definition 1.2 ([17, 28]). Let (G,K) be a soft set over X. We say that:

(i) x ∈ (G,K) if x ∈ G(k) for each k ∈ K; and x ̸∈ (G,K) if x ̸∈ G(k) for
some k ∈ K.

(ii) x b (G,K) if x ∈ G(k) for some k ∈ K; and x ̸b (G,K) if x ̸∈ G(k) for
each k ∈ K.

Definition 1.3 ([17]). A soft subset (G,K) over X is called stable if there is a
subset S of X such that G(k) = S, for each k ∈ K and it is denoted by S̃.

Definition 1.4 ( [3]). We say that (G,K) is a soft subset of (H,K), denoted
by (G,K)⊆̃(H,K), provided that G(k) ⊆ H(k), for each k ∈ K.

Definition 1.5 ([3]). The relative complement of a soft set (G,K), denoted
by (G,K)c, is given by (G,K)c = (Gc,K), where a mapping Gc : K → 2X is
defined by Gc(k) = X \G(k), for each k ∈ K.
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Definition 1.6 ([3, 27]). The soft union and intersection of two soft sets (G,K),
(F,K) is given by the following rule:

(i) (G,K)
∪̃
(F,K) = (H,K), where H(k) = G(k)

∪
F (k) for each k ∈ K.

(ii) (G,K)
∩̃
(F,K) = (H,K), where H(k) = G(k)

∩
F (k) for each k ∈ K.

Definition 1.7 ([22]). A soft set (G,K) over X is called:

(i) An absolute soft set if G(k) = X for each k ∈ K. It is denoted by X̃;

(ii) A null soft set if G(k) = ∅ for each k ∈ K. It is denoted by ∅̃.

Definition 1.8 ( [28]). A collection τ of soft sets over X with a fixed set of
parameters K is called a soft topology on X if it satisfies the following three
axioms:

(i) The null soft set ∅̃ and the absolute soft set X̃ are members of τ ;

(ii) τ is closed under an arbitrary soft union and

(iii) τ is closed under a finite intersection.

The triple (X, τ,K) is called a soft topological space (For short, STS). Each soft
set in τ is called soft open and its relative complement is called soft closed.

Proposition 1.9 ([28]). Let (X, τ,K) be an STS. Then τk = {G(k) : (G,K) ∈
τ} defines a topology on X, for each k ∈ K.

Definition 1.10 ([14]). A soft topology τ on X is said to be an enriched soft
topology if axiom (i) of Definition (1.8) is replaced by the following condition:
(G,K) is soft open if and only if G(k) = X or ∅, for each k ∈ K. In this case,
the triple (X, τ,K) is called an enriched STS over X.

Proposition 1.11 ([25]). Consider (X, τ,K) is an STS and τk is a topology on
X as in the above proposition. Then τ⋆ = {(G,K) : G(k) ∈ τk, for each k ∈ K}
is a soft topology on X finer than τ .

Remark 1.12. The authors of [12] termed τ⋆ an extended soft topology and
demonstrated that the extended and enriched soft topologies are identical.

Theorem 1.13 ([12]). We have the following two results, for any soft subset
(H,K) of an extended soft topological space (X, τ⋆,K).

(i) (int(H),K) = int(H,K).

(ii) (cl(H),K) = cl(H,K).

Definition 1.14 ([12, 28]). Let (F,K) be a soft subset of an STS (X, τ,K).
Then:
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(i) (cl(F ),K) is defined as cl(F )(k) = cl(F (k)), where cl(F (k)) is the closure
of F (k) in (X, τk), for each k ∈ K.

(ii) (int(F ),K) is defined as int(F )(k) = int(F (k)), where int(F (k)) is the
interior of F (k) in (X, τk), for each k ∈ K.

Definition 1.15 ([25]). Let (X, τ,K) be an STS and (Y,K) be a non-null soft

subset of X̃. Then τ(Y,K) = {(Y,K)
∩̃
(G,K) : (G,K) ∈ τ} is said to be a

relative soft topology on (Y,K) and ((Y,K), τ(Y,K),K) is called a soft subspace
of (X, τ,K).

Definition 1.16 ([16, 25]). A soft subset (P,K) over X is called soft point if
there is k ∈ K and there is x ∈ X such that P (k) = {x} and P (e) = ∅, for each
e ∈ K \ {k}. A soft point will be shortly denoted by P xk .

Definition 1.17 ([16]). A soft subset (H,K) of X̃ is called a finite (resp. count-
able) soft set if H(k) is finite (resp. countable) for each k ∈ K. A soft set is
called an infinite (resp. uncountable) soft set if it is not finite (resp. countable).

Definition 1.18. A soft subset (A,K) of an STS (X, τ,K) is said to be:

(i) Soft α-open [1] if (A,K)⊆̃int(cl(int(A,K))).

(ii) Soft semi-open [15] if (A,K)⊆̃cl(int(A,K)).

(iii) Soft pre-open [13] if (A,K)⊆̃int(cl(A,K)).

Proposition 1.19 ([1]). The union of an arbitrary class of soft α-open sets is
soft α-open and the intersection of an arbitrary class of soft α-closed sets is soft
α-closed.

Definition 1.20 ([1]). For a soft subset (G,K) of (X, τ,K), we define the
following two operators:

(i) intα(G,K) is the soft union of all soft α-open sets contained in (G,K).

(ii) clα(G,K) is the soft intersection of all soft α-closed sets containing (G,K).

Definition 1.21 ([2]). An STS (X, τ,K) is said to be soft α T2-space if for
every x ̸= y in X, there are two disjoint soft α-open sets (G,K) and (F,K)
such that x ∈ (G,K) and y ∈ (F,K).

Proposition 1.22 ([8]). Consider ((U,K), τ(U,K),K) is a soft subspace of (X, τ,K)
and let clU and intU stand for the soft closure and soft interior operators, re-
spectively, in ((U,K), τ(U,K),K). Then:

(i) clU (A,K) = cl(A,K)
∩̃
(U,K), for each (A,K)⊆̃(U,K).

(ii) int(A,K) = intU (A,K)
∩̃
int(U,K), for each (A,K)⊆̃(U,K).

Throughout this work, the two notations (X, τ,K) and (Y, θ,K) stand for
soft topological spaces and a notation S stands for a countable set.
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2. Soft α-compact spaces

Definition 2.1. (i) A family {(Gi,K) : i ∈ I} of soft α-open sets is called a

soft α-open cover of (X, τ,K) if X̃ =
∪̃
i∈I(Gi,K).

(ii) An STS (X, τ,K) is called soft α-compact (resp. soft α-Lindelöf) if every
soft α-open cover of X̃ has a finite (resp. countable) soft sub-cover of X̃.

For the purpose of brevity, we shall omit the proofs of the following three
propositions.

Proposition 2.2. Every soft α-compact space is soft α-Lindelöf.

Proposition 2.3. A finite (resp. countable) union of soft α-compact (resp. soft
α-Lindelöf) subsets of (X, τ,K) is soft α-compact (resp. soft α-Lindelöf).

Proposition 2.4. Every soft α-compact (resp. soft α-Lindelöf) space is soft
compact (resp. soft Lindelöf).

The converse of Proposition (2.4) is incorrect as it is evident in the example
below.

Example 2.5. Consider a set of parameters K is the set of irrational numbers
Qc and let a collection τ = {∅̃, X̃, (G,K) such that G(k) = {1}, for each k ∈ K}
be a soft topology on X = {1, 2}. Obviously, (X, τ,K) is soft compact. On
the other hand, a collection {(G,E) : There exists k ∈ K such that G(k) = X
and G(kj) = {1}, for each kj ̸= k} forms a soft α-open cover of X̃. Since

this collection has not a countable sub-cover of X̃, then (X, τ,K) is not soft
α-Lindelöf.

Proposition 2.6. Every soft α-closed subset (D,K) of a soft α-compact (resp.
soft α-Lindelöf) space (X, τ,K) is soft α-compact (resp. soft α-Lindelöf).

Proof. We will start with the proof for soft α-Lindelöf spaces, as the proof for
soft α-compact spaces is analogous.

Let (D,K) be a soft α-closed subset of X̃ and let {(Hi,K) : i ∈ I} be a soft

α-open cover of (D,K). Then (Dc,K) is soft α-open and (D,K)⊆̃
∪̃
i∈I(Hi,K).

Therefore X̃ =
∪̃
i∈I(Hi,K)

∪̃
(Dc,K). Since X̃ is soft α-Lindelöf, then X̃ =∪̃

i∈S(Hi,K)
∪̃
(Dc,K). This implies that (D,K)⊆̃

∪̃
i∈S(Hi,K). Hence (D,K)

is soft α-Lindelöf.

Corollary 2.7. If (G,K) is soft α-compact (resp. soft α-Lindelöf) and (D,K)
is soft α-closed subsets of X̃, then their soft intersection is soft α-compact (resp.
soft α-Lindelöf).

To show that the converse of the above proposition is not necessarily correct,
we give the following example.



686 T.M. AL-SHAMI, M.A. AL-SHUMRANI and B.A. ASAAD

Example 2.8. Take K = {k1, k2} and assume that τ is the same as in Example
(2.5). Then (X, τ,K) is soft α-compact. Take a soft set (G,K) such that
G(k1) = {1} and G(k2) = ∅. Then (G,K) is a soft α-compact, but it is not soft
α-closed.

Theorem 2.9. An STS (X, τ,K) is soft α-compact (resp. soft α-Lindelöf) if
and only if every soft collection of soft α-closed subsets of (X, τ,K), satisfying
the finite (resp. countable) intersection property, has, itself, a non-null soft
intersection.

Proof. We only prove the theorem when (X, τ,K) is soft α-Lindelöf, the other
case can be made similarly.

Let Λ = {(Fi,K) : i ∈ I} be a soft α-closed subsets of X̃. Suppose that∩̃
i∈I(Fi,K) = ∅̃. Then X̃ =

∪̃
i∈I(F

c
i ,K). As (X, τ,K) is soft α-Lindelöf, then∪̃

i∈S(F
c
i ,K) = X̃. Therefore

∩̃
i∈S(Fi,K) = ∅̃.

Conversely, let Λ = {(Hi,K) : i ∈ I} be a soft α-open cover of X̃. Suppose

that Λ has no a countable soft sub-collection which cover X̃. Then
∪̃
i∈S(Hi,K) ̸=

X̃, for any countable set S. Now,
∩̃
i∈S(H

c
i ,K) ̸= ∅̃ implies that {(Hc

i ,K) : i ∈
I} is a soft collection of soft α-closed subsets of X̃ which has the countable inter-

section property. Thus
∩̃
i∈I(H

c
i ,K) ̸= ∅̃. This implies that X̃ ̸=

∪̃
i∈I(Hi,K).

But this contradicts that Λ is a soft α-open cover of X̃. Hence (X, τ,K) is soft
α-Lindelöf.

Definition 2.10. A soft mapping g : (X, τ,K) → (Y, θ,K) is called soft α-
irresolute if the inverse image of each soft α-open subset of Ỹ is a soft α-open
subset of X̃.

We investigate the following theorem which will be useful to prove Theorem
(3.11) and Theorem (4.15).

Theorem 2.11. The following five statements are equivalent for a soft mapping
g : (X, τ,K)→ (Y, θ,K):

(i) g is soft α-irresolute;

(ii) The inverse image of each soft α-closed subset of Ỹ is a soft α-closed subset
of X̃;

(iii) clα(g
−1(A,K)) ⊆ g−1(clα(A,K)), for each soft subset (A,K) of Ỹ ;

(iv) g(clα(E,K)) ⊆ clα(g(E,K)), for each soft subset (E,K) of X̃;

(v) g−1(intα(A,K)) ⊆ intα(g−1(A,K)), for each soft subset (A,K) of Ỹ .

Proof. (i) ⇒ (ii): Suppose that (F,K) is a soft α-closed subset of Ỹ . Then
(F c,K) is soft α-open. Therefore g−1(F c,K) is a soft α-open subset of X̃. It
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is well known that g−1(F c,K) = X − g−1(F,K). Hence g−1(F,K) is a soft
α-closed subset of X̃.

(ii)⇒ (iii): For any soft subset (A,K) of Ỹ , we get that clα(A,K) is a soft
α-closed subset of Ỹ . Since g−1(clα(A,K)) is a soft α-closed subset of X̃, then
clα(g

−1(A,K))⊆̃clα(g−1(clα (A,K))) = g−1(clα(A,K)).

(iii)⇒ (iv): For any soft subset (E,K) of X̃, we know that
clα(E,K)⊆̃clα(g−1(g(E,K)). By (iii), we find that
clα(g

−1(g(E,K)))⊆̃g−1(clα(g(E,K))).

Hence g(clα(E,K))⊆̃g(g−1 (clα(g(E,K))))⊆̃clα(g(E,K)).

(iv)⇒ (v): Let (A,K) be any soft subset of Ỹ .

Then g(clα(X − g−1(A,K)))⊆̃clα(g(X − g−1(A,K))). Therefore g(X −
intα(g

−1(A,K))) = g(clα(X − g−1(A,K)))⊆̃clα(Ỹ − (A,K)) = Ỹ − intα(A,K).
Thus X̃ − intα(g−1(A,K))⊆̃g−1(Ỹ − intα(A,K)) = g−1(Ỹ )− g−1(intα(A,K)).
Hence g−1(intα(A,K))⊆̃intα(g−1(A,K)).

(v) ⇒ (i): Suppose that (A,K) is any soft α-open subset of Ỹ . Since
g−1(intα(A,K)) ⊆̃intα(g−1(A,K)), then g−1(A,K)⊆̃intα(g−1(A,K)). Since
intα(g

−1(A,K))⊆̃g−1(A,K), then g−1(A,K) = intα(g
−1(A,K)). Therefore

g−1(A,K) is a soft α-open set. Hence g is a soft α-irresolute map.

Proposition 2.12. The soft α-irresolute image of a soft α-compact (resp. soft
α-Lindelöf) set is soft α-compact (resp. soft α-Lindelöf).

Proof. For the proof, let g : X → Y be a soft α-irresolute mapping and
let (D,K) be a soft α-Lindelöf subset of X̃. Suppose that {(Hi,K) : i ∈
I} is a soft α-open cover of g(D,K). Then g(D,K)⊆̃

∪̃
i∈I(Hi,K). Now,

(D,K)⊆̃
∪̃
i∈Ig

−1(Hi,K) and g−1(Hi,K) is soft α-open, for each i ∈ I. By

hypotheses, (D,K) is soft α-Lindelöf, then (D,K)⊆̃
∪̃
i∈Sg

−1(Hi,K). Therefore

g(D,K)⊆̃
∪̃
i∈Sg(g

−1(Hi,K)) ⊆̃
∪̃
i∈S(Hi,K). Thus g(D,K) is soft α-Lindelöf.

A similar proof is given in case of a soft α-compact space.

Proposition 2.13. A soft subset (H,K) of (X, τ,K) is soft α-open if and only
if there exists a soft open set (G,K) such that (G,K)⊆̃(H,K)⊆̃int(cl((G,K)).

Proof. Necessity: Consider (H,K) is a soft α-open set.

Then int(H,K)⊆̃(H,K)⊆̃int (cl(int(H,K))). Taking int(H,K) = (G,K).
Hence (G,K)⊆̃(H,K)⊆̃int(cl((G,K)).

Sufficiency: Suppose that (H,K) is a soft set such that there exists a soft
open set (G,K) satisfies that (G,K)⊆̃(H,K)⊆̃int(cl(G,K)).

Then cl(G,K)⊆̃cl(int(H,K)). So int(cl(G,K))⊆̃int(cl(int(H,K))). By our
assumption, (H,K)⊆̃int(cl((G,K)). Thus (H,K)⊆̃int(cl(int(H,K))). Hence
the proof is complete.

Corollary 2.14. A soft subset (H,K) of (X, τ,K) is soft α-closed if and only
if there exists a soft closed set (F,K) such that cl(int(F,K))⊆̃(H,K)⊆̃(F,K).
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In what follows, we list some properties of an extended soft topology (Defini-
tion (1.11)) and its relationship with soft α-compact and soft α-Lindelöf spaces.

Proposition 2.15. If H is an α-open subset of (X, τk), then there exists a soft
α-open subset (F,K) of an extended soft topological space (X, τ,K) such that
F (k) = H.

Proof. Suppose that H is an α-open subset of (X, τk). Then there exists an
open subset G(k) of (X, τk) such that G(k) ⊆ H ⊆ int(cl(G(k))). Since G(k)
is an open subset of (X, τk), then a soft set (F,K), which is defined as F (k) =
G(k) and F (ki) = ∅, for each ki ̸= k, is soft open. Also, we define a soft
set (L,K) as L(k) = H and L(ki) = ∅, for each ki ̸= k. So we infer that
(G,K)⊆̃(L,K)⊆̃int(cl(G,K)). From Proposition (2.13), we obtain that (L,K)
is soft α-open.

Theorem 2.16. If (X, τ,K) is an extended soft α-compact (resp. extended soft
α-Lindelöf) space, then (X, τk) is α-compact (resp. α-Lindelöf), for each k ∈ K.

Proof. We prove the theorem in case of an extended soft α-Lindelöf space and
the other case is proven similarly.

Let {Hj(k) : j ∈ J} be an α-open cover of (X, τk). We construct a soft
α-open cover of (X, τ,K) consisting of the following soft sets:

(i) From the above proposition, we can choose all soft α-open sets (Fj ,K) in
which Fj(k) = Hj(k), for each j ∈ J .

(ii) Since (X, τ,K) is extended, then we take a soft open set (G,K) which
satisfies that G(k) = ∅ and G(ki) = X, for all ki ̸= k.

Obviously, {(Fj ,K)
∪̃
(G,K) : j ∈ J} is a soft α-open cover of (X, τ,K).

As (X, τ,K) is soft α-Lindelöf, then X̃ =
∪
j∈S(Fj ,K)

∪̃
(G,K). So X =∪

j∈S Fj(k) =
∪
j∈S Hj(k). Hence (X, τk) is an α-Lindelöf space.

To show that the converse of the above theorem fails, we consider the exam-
ple below.

Example 2.17. Let a set of parameters be the set of irrational numbers Qc
and τ be a soft discrete topology on X = {1, 2, 3}. A collection Λ which consists
of all soft points of X̃ forms a soft open cover of X̃. Obviously, Λ has not a
countable subcover. So X̃ is not soft α-Lindelöf. But (X, τk) is soft α-compact,
for each k ∈ Qc.

Now, we give a condition which guarantees the converse of the above theorem
holds.

Proposition 2.18. Let (X, τk) be extended and K be finite (resp. countable).
Then (X, τ,K) is soft α-compact (resp. soft α-Lindelöf) space iff (X, τk) is
α-compact (resp. α-Lindelöf), for each k ∈ K.
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Proof. Necessity: It is obtained from the theorem above.

Sufficiency: Let {(Gj ,K) : j ∈ J} be a soft α-open cover of (X, τ,K) and
| K |= m. Then X =

∪
j∈J Gj(k), for each k ∈ K.

It follows, from Proposition (2.13), that there exists a soft open set (Hj ,K)
such that (Hj ,K)⊆̃(Gj ,K)⊆̃int(cl((Hj ,K)). By Theorem (1.13), we find that
int(cl((Hj ,K)) = (int(cl(Hj)),K). So Gj(k) is soft α-open subset of (X, τk),

for each j ∈ J . As (X, τk) is α-compact for each k ∈ K, then X =
∪j=n1
j=1 Gj(k1),

X =
∪j=n2
j=n1+1Gj(k2),. . . ,X =

∪j=nm

j=nm−1+1Gj(km). Therefore X̃ =
∪̃j=nm

j=1 (Gj ,K).
Thus (X, τ,K) is soft α-compact.

A similar proof can be given for the case between parentheses.

Proposition 2.19. If (U,K) is soft open and (H,K) is soft α-open subsets of

(X, τ,K), then (U,K)
∩̃

(H,K) is a soft α-open subset of ((U,K), τ(U,K),K).

Proof. Since (U,K) is soft open and (H,K) is soft α-open subsets of (X, τ,K),
then
(U,K)

∩̃
(H,K)⊆̃ (U,K)

∩̃
int(cl(int(H,K)))⊆̃intU [(U,K))

∩̃
cl(int(H,K)]

⊆̃intU (cl(U,K))
∩̃
int(H,K).

So (U,K)
∩̃
(H,K) ⊆̃intU [cl(U,K))

∩̃
int(H,K)]

∩̃
(U,K) = intU [cl(U , K))

∩̃
int(H,K)

∩̃
(U,K)] = intU [clU [(U,K))

∩̃
int(H,K)]]. Since (U,K) is soft open,

then intU [clU [(U,K))
∩̃
int(H,K)]] = intU [clU [int[(U,K))

∩̃
(H,K)]]]⊆̃

intU [clU [intU [(U,K))
∩̃

(H,K)]]]. Hence the proof is complete.

Proposition 2.20. For each soft open set (A,K) and soft set (B,K) in (X, τ,K),

we have (A,K)
∩̃
clα(B,K)⊆̃clα((A,K)

∩̃
(B,K)).

Proof. Let P xk ∈ (A,K)
∩̃
clα(B,K). Then P xk ∈ (A,K) and P xk ∈ clα(B,K).

Therefore for each soft α-open set (U,K) containing P xk , we have (U,K)
∩̃
(B,K)

̸= ∅̃. Since (U,K)
∩̃
(A,K) is a non-null soft α-open set and P xk ∈ (U,K)

∩̃
(A,K),

then ((U,K)
∩̃
(A,K))

∩̃
(B,K) ̸= ∅̃. Now, (U,K)

∩̃
((A,K)

∩̃
(B,K)) ̸= ∅̃ im-

plies that P xk ∈ clα((A,K)
∩̃
(B,K)).

Therefore (A,K)
∩̃
clα(B,K)⊆̃ clα((A,K)

∩̃
(B,K)).

Lemma 2.21. If (U,K) is a soft open subset of (X, τ,K) and (H,K) is soft α-
open subset of ((U,K), τ(U,K),K), then (H,K) is soft α-open subset of (X, τ,K).

Proof. Since (H,K) is soft α-open subset of ((U,K), τ(U,K),K), then

(H,K)⊆̃intU [ clU [intU (H,K)]]
∩̃
(U,K) = int[clU [intU (H,K)]]

⊆̃int[cl[intU (H,K)]] = int[cl[intU [(H,K)
∩̃
(U,K)]]] = int[cl[int(H,K)]]. So

(H,K) is a soft α-open subset of (X, τ,K).

Now, we are in a position to verify the following result.
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Theorem 2.22. A soft open subset (A,K) of (X, τ,K) is soft α-compact (resp.
soft α-Lindelöf) if and only if a soft open subspace ((A,K), τ(A,K),K) is soft
α-compact (resp. soft α-Lindelöf).

Proof. We prove the theorem in case of soft α-compactness and the proof of
the case between parentheses is made similarly.

Necessity: Let {(Hi,K) : i ∈ I} be a soft α-open cover of ((A,K), τ(A,K),K).
Since (A,K) is soft open containing (Hi,K), then it follows, by the above lemma,
that (Hi,K) is soft α-open subsets of (X, τ,K).

By hypotheses, (A,K)⊆̃
∪̃i=n

i=1 (Hi,K).

Thus a soft subspace ((A,K), τ(A,K),K) is soft α-compact.

Sufficiency: Let {(Gi,K) : i ∈ I} be a soft α-open cover of (A,K) in

(X, τ,K). Now, (A,K)
∩̃
(Gi,K) is a soft α-open subset of (X, τ,K).

By Proposition (2.19), we find that (A,K)
∩̃
(Gi,K) is soft α-open subset

of ((A,K), τ(A,K),K). As a soft subspace ((A,K), τ(A,K),K) is soft α-compact,

then (A,K)⊆̃
∪̃i=n

i=1 ((A,K)
∩̃
(Gi,K)). So (A,K)⊆̃

∪̃i=n

i=1 (Gi,K). Thus (A,K) is
a soft α-compact subset of (X, τ,K).

Definition 2.23. An STS (X, τ,K) is said to be soft α T ′
2-space if for every two

distinct soft points P xk and P yk , there are two disjoint soft α-open sets (G,K)
and (F,K) such that P xk ∈ (G,K) and P yk ∈ (F,K).

Lemma 2.24. The soft intersection of a finite family of soft α-open sets is soft
α-open.

Proposition 2.25. If (A,K) is a soft α-compact subset of a soft α T ′
2-space

(X, τ,K), then (A,K) is soft α-closed.

Proof. Let the given conditions be satisfied and let P xk ∈ (A,K)c. Then for
each P yk ∈ (A,K), there are two disjoint soft α-open sets (Gi,K) and (Wi,K)
such that P xk ∈ (Gi,K) and P yk ∈ (Wi,K). It follows that {(Wi,K) : i ∈ I}
forms a soft α-open cover of (A,K). Consequently, (A,K)⊆̃

∪̃i=n

i=1 (Wi,K). By

the above lemma, it follows that
∩̃i=n

i=1 (Gi,K) = (H,K) is a soft α-open set and

since (H,K)
∩̃
[
∪̃i=n

i=1 (Wi,K)] = ∅̃, then (H,K)⊆̃(A,K)c. Thus (A,K)c is a soft
α-open set. Hence (A,K) is soft α-closed.

Corollary 2.26. If (A,K) is a stable soft α-compact subset of a soft α T2-space
(X, τ,K), then (A,K) is soft α-closed.

Proof. Since (A,K) is stable, then P xk ∈ (A,K) if and only if x ∈ (A,K). So
by using similar technique of the above proof, the corollary holds.
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3. Almost soft α-compact spaces

Definition 3.1. An STS (X, τ,K) is called almost soft α-compact (resp. almost
soft α-Lindelöf) if every soft α-open cover of X̃ has a finite (resp. countable)
soft sub-collection in which the soft α-closures of whose members cover X̃.

Definition 3.2. A soft set (F,K) is said to be:

(i) Soft α-clopen provided that it is soft α-open and soft α-closed.

(ii) Soft α-dense set provided that clα(F,K) = X̃.

For the purpose of brevity, we shall omit the proofs of the following three
propositions.

Proposition 3.3. Every almost soft α-compact space is almost soft α-Lindelöf.

Proposition 3.4. A finite (resp. countable) union of almost soft α-compact
(resp. almost soft α-Lindelöf) subsets of (X, τ,K) is almost soft α-compact
(resp. almost soft α-Lindelöf).

Proposition 3.5. Every soft α-compact (resp. soft α-Lindelöf) space is almost
soft α-compact (resp. almost soft α-Lindelöf).

The converse of Proposition (3.5) is incorrect as it is evident in the example
below.

Example 3.6. We illustrate that the given soft topological space (X, τ,K) in
Example (2.5) is not soft α-Lindelöf. On the other hand, we can note that
any soft α-open subset of (X, τ,K) must contain a soft open set (G,K). Since
(G,K) is soft α-dense, then any soft α-open set is soft α-dense. So (X, τ,K) is
almost soft α-compact.

Proposition 3.7. Every soft α-clopen subset (D,K) of an almost soft α-compact
(resp. almost soft α-Lindelöf) space (X, τ,K) is almost soft α-compact (resp.
almost soft α-Lindelöf).

Proof. Let us prove the proposition in case of (X, τ,K) is almost soft α-
compact, the case between parentheses can be achieved similarly.

Let (D,K) be a soft α-clopen subset of X̃ and let {(Hi,K) : i ∈ I} be
a soft α-open cover of (D,K). Then (Dc,K) is soft α-clopen. Therefore

X̃ =
∪̃
i∈I(Hi,K)

∪̃
(Dc,K). Since X̃ is almost soft α-compact, then X̃ =∪̃i=n

i=1clα(Hi,K)
∪̃
(Dc,K). This implies that (D,K)⊆̃

∪̃i=n

i=1clα(Hi,K). Hence
(D,K) is almost soft α-compact.

Corollary 3.8. If (G,K) is an almost soft α-compact (resp. almost soft α-
Lindelöf) subset of X̃ and (D,K) is a soft α-clopen subset of X̃, then (G,K)∩̃
(D,K) is almost soft α-compact (resp. almost soft α-Lindelöf).
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In Example (3.6), let (H,K) be a soft subset of (X, τ,K), where H(k1) =
{1, 4} and H(ki) = {5}, for each i ̸= 1. Then a soft set (H,K) is almost soft
α-compact, but it is not soft α-clopen. So the converse of the above proposition
is not necessarily correct.

Definition 3.9. A collection Λ = {(Fi,K) : i ∈ I} of soft sets is said to have the

first type of finite (resp. countable) α-intersection property if
∩̃i=n

i=1 intα(Fi,K) ̸=
∅̃, for any n ∈ N (resp.

∩̃
i∈Sintα(Fi,K) ̸= ∅̃, for any countable set S).

It is clear that any collection satisfies the first type of finite (resp. countable)
α-intersection property is also satisfies the finite (resp. countable) intersection
property.

Theorem 3.10. An STS (X, τ,K) is almost soft α-compact (resp. almost
soft α-Lindelöf) if and only if every soft collection of soft α-closed subsets of
(X, τ,K), satisfying the first type of finite (resp. countable) α-intersection prop-
erty, has, itself, a non-null soft intersection.

Proof. We will start with the proof for almost soft α-compactness, because the
proof for almost soft α-Lindelöfness is analogous.

Let Λ = {(Fi,K) : i ∈ I} be a soft α-closed subsets of X̃. Suppose

that
∩̃
i∈I(Fi,K) = ∅̃. Then X̃ =

∪̃
i∈I(F

c
i ,K). As (X, τ,K) is almost soft

α-compact, then X̃ =
∪̃i=n

i=1clα(F
c
i ,K). Therefore ∅̃ = (

∪̃i=n

i=1clα(F
c
i ,K))c =∩̃i=n

i=1 intα(Fi,K). Hence the necessary condition holds.

Conversely, let Λ be a soft α-closed subsets of X̃ which satisfies the first
type of finite α-intersection property. Then it also satisfies the finite intersection
property. Since Λ has a non-null soft intersection, then (X, τ,K) is a soft α-
compact space. It follows, by Proposition (3.5), that (X, τ,K) is almost soft
α-compact.

Theorem 3.11. The soft α-irresolute image of an almost soft α-compact (resp.
almost soft α-Lindelöf) set is almost soft α-compact (resp. almost soft α-
Lindelöf).

Proof. For the proof, let g : X → Y be a soft α-irresolute mapping and
(D,K) be an almost soft α-Lindelöf subset of X̃. Suppose that {(Hi,K) :

i ∈ I} is a soft α-open cover of g(D,K). Then g(D,K)⊆̃
∪̃
i∈I(Hi,K). Now,

(D,K)⊆̃
∪̃
i∈Ig

−1(Hi,K) and g−1(Hi,K) is soft α-open, for each i ∈ I. By hy-

potheses, (D,K) is almost soft α-Lindelöf, then (D,K)⊆̃
∪̃
i∈Sclα(g

−1(Hi,K)).

So g(D,K)⊆̃
∪̃
i∈Sg(clα(g

−1(Hi,K))). From item (iv) of Theorem (2.11), we

obtain that g(clα(g
−1(Hi,K)))⊆̃clα(g(g−1 (Hi,K)))⊆̃clα(Hi,K).

Thus g(D,K)⊆̃
∪̃
i∈Sclα(Hi,K). Hence g(D,K) is almost soft α-Lindelöf.

A similar proof is given in case of an almost soft α-compact space.
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Definition 3.12. An STS (X, τ,K) is said to be soft α-hyperconnected if it does
not contain disjoint soft α-open sets.

Proposition 3.13. Every soft α-hyperconnected space is almost soft α-compact.

Proof. Since any soft α-open set in a soft α-hyperconnected space is soft α-
dens, then the space is almost soft α-compact.

The converse of the above proposition need not be correct in general, as the
following example shall illustrates.

Example 3.14. Let K = {k1, k2} be a set of parameters and consider τ =

{∅̃, X̃, (G, K), (H,K), (L,K) be a soft topology on X = {33, 44} such that:

(G,K) = (k1, {33}), (k2, ∅);
(H,K) = (k1, ∅), (k2, {44}) and
(L,K) = (k1, {33}), (k2, {44})}.

Obviously, (X, τ,K) is almost soft α-compact. On the other hand, the soft
sets (G,K) and (H,K) are two disjoint soft α-open sets. Then (X, τ,K) is not
soft α-hyperconnected.

Theorem 3.15. If (X, τ,K) is an extended almost soft α-compact (resp. ex-
tended almost soft α-Lindelöf) space, then (X, τk) is almost α-compact (resp.
almost α-Lindelöf), for each k ∈ K.

Proof. We prove the theorem in case of an almost soft α-compact space and
the other proof follows similar lines.

Let {Hj(k) : j ∈ J} be an α-open cover for (X, τk). We construct a

soft α-open cover for X̃ like the introduced soft α-open cover in the proof of
Theorem (2.16). Now, (X, τ,K) is almost soft α-compact implies that X̃ =∪j=n
j=1 clα[(Fj ,K)

∪̃
(G,K)] =

∪j=n
j=1 [(clα(Fj),K)

∪̃
(G,K)].

Therefore, X =
∪j=n
j=1 clα(Fj(k)) =

∪j=n
j=1 clα(Hj(k)). Hence (X, τk) is an

almost α-compact space.

It can be seen from Example (2.17) that the converse of the above theorem
need not be true in general.

Proposition 3.16. Let (X, τk) be extended and K be finite (resp. countable).
Then (X, τ,K) is almost soft α-compact (resp. almost soft α-Lindelöf) space iff
(X, τk) is almost α-compact (resp. almost α-Lindelöf), for each k ∈ K.

Proof. Necessity: It is obtained from the theorem above.

Sufficiency: Let {(Gj ,K) : j ∈ J} be a soft α-open cover of (X, τ,K). By
similar discussion of the proof of the sufficient part of of Proposition (2.18),
we obtain that X =

∪j=n1
j=1 clα(Gj(k1)), X =

∪j=n2
j=n1+1 clα(Gj(k2)),. . . , X =
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∪j=nm

j=nm−1+1 clα(Gj(km)). Therefore X̃ =
∪̃j=nm

j=1 clα(Gj ,K). Since τ is ex-

tended, then it follows from Theorem (1.13), that X̃ =
∪̃j=nm

j=1 (clα(Gj),K) =∪̃j=nm

j=1 clα(Gj ,K) Hence (X, τ,K) is almost soft α-compact.

A similar proof is given for the case between parentheses.

Remark 3.17. If (X, τ,K) is an extended almost soft α-compact (resp. ex-
tended almost soft α-Lindelöf) space, then K is finite (resp. countable).

Proposition 3.18. Consider ((U,K), τ(U,K),K) is a soft subspace of (X, τ,K).
Let clα and intα stand for the soft α-closure and soft α-interior operators, re-
spectively, in (X, τ,K) and let clαU and intαU stand for the soft α-closure and
soft α-interior operators, respectively, in ((U,K), τ(U,K),K). Then:

(i) clαU (A,K) = clα(A,K)
∩̃
(U,K), for each (A,K)⊆̃(U,K).

(ii) intα(A,K) = intαU (A,K)), for each (A,K)⊆̃(U,K).

Theorem 3.19. A soft open subset (A,K) of (X, τ,K) is almost soft α-compact
(resp. almost soft α-Lindelöf) if and only if a soft open subspace ((A,K), τ(A,K),
K) is almost soft α-compact (resp. almost soft α-Lindelöf).

Proof. Necessity: Let {(Hi,K) : i ∈ I} be a soft α-open cover of ((A,K), τ(A,K),
K). Since (A,K) is soft open containing (Hi,K), then it follows, from Lemma
(2.21), that (Hi,K) is soft α-open subsets of (X, τ,K).

By hypotheses, (A,K)⊆̃
∪̃i=n

i=1clα(Hi,K) =
∪̃i=n

i=1 [clα(Hi,K)
∩̃
(A,K)

=
∪̃i=n

i=1clαU (Hi,K). Thus a soft open subspace ((A,K), τ(A,K),K) is almost
soft α-compact.

Sufficiency: Let {(Gi,K) : i ∈ I} be a soft α-open cover of (A,K) in

(X, τ,K). Now, (A,K)
∩̃
(Gi,K) is a soft α-open subset of (X, τ,K). By

Proposition (2.19), we find that (A,K)
∩̃
(Gi,K) is a soft α-open subset of

((A,K), τ(A,K),K). As a soft open subspace ((A,K), τ(A,K),K) is almost soft

α-compact, then (A,K)⊆̃
∪̃i=n

i=1clαU [(A,K)
∩̃
(Gi,K)]⊆̃

∪̃i=n

i=1clαU (Gi,K).

So, (A,K)⊆̃
∪̃i=n

i=1clα(Gi,K). Thus (A,K) is an almost soft α-compact subset
of (X, τ,K).

A case between parentheses can be proven similarly.

Proposition 3.20. If (A,K) is an almost soft α-compact subset of a soft α
T ′
2-space (X, τ,K), then (A,K) is soft α-closed.

Proof. Let the given conditions be satisfied and let P xk ∈ (A,K)c. Then for
each P yk ∈ (A,K), there are two disjoint soft α-open sets (Gi,K) and (Wi,K)
such that P xk ∈ (Gi,K) and P yk ∈ (Wi,K). It follows that {(Wi,K) : i ∈ I}
forms a soft α-open cover of (A,K). Consequently, (A,K)⊆̃

∪̃i=n

i=1clα(Wi,K).
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By Lemma (2.24), we obtain
∩̃i=n

i=1 (Gi,K) = (H,K) is a soft α-open set and

since (H,K)
∩̃
[
∪̃i=n

i=1 (Wi,K)] = ∅̃, then (H,K)
∩̃
[
∪̃i=n

i=1clα(Wi,K)] = ∅̃. So

(H,K)⊆̃(̃A,K)c. Thus (A,K)c is a soft α-open set. Hence (A,K) is soft α-
closed.

Corollary 3.21. If (A,K) is an almost soft α-compact stable subset of a soft
α T2-space (X, τ,K), then (A,K) is soft α-closed.

4. Approximately soft α-compact spaces

Definition 4.1. An STS (X, τ,K) is called approximately soft α-compact (resp.
approximately soft α-Lindelöf) space if every soft α-open cover of X̃ has a finite
(resp. countable) soft sub-collection in which its soft α-closure cover X̃.

Proposition 4.2. Every approximately soft α-compact space is approximately
soft α-Lindelöf

Proof. Straightforward.

We give an example below in order to show that the converse of the above
proposition is not correct in general.

Example 4.3. Consider (R, τ,K) is a soft topological space such that K =

{k1, k2} is a set of parameters and τ = {∅̃, (Gi,K)⊆̃R such that for each k ∈ K,
Gi(k) = {n} or their soft union}. Then any soft set (G,K) is soft α-open if and
only if there exists n ∈ N such that n ∈ (Gi,K). We define a soft α-open cover
Λ of X̃ as follows, Λ = {(G,K) : G(k) = {1, x}, for each k ∈ K}. This soft
α-open cover has not a finite sub-cover in which its soft α-closure cover X̃, hence
(R, τ,K) is not approximately soft α-compact. On the other hand, for any soft
α-open cover of R̃, we can find countable soft α-open subsets of Λ contains a
soft open set {(G(k1),N ), (G(k2),N )}. This a soft α-open set is soft α-dense,
hence (R, τ,K) is approximately soft α-Lindelöf.

Proposition 4.4. A finite (resp. countable) union of approximately soft α-
compact (resp. approximately soft α-Lindelöf) subsets of (X, τ,K) is approxi-
mately soft α-compact (resp. approximately soft α-Lindelöf).

Proof. Let {(As,K) : s ∈ S} be approximately soft α-Lindelöf subsets of

(X, τ,K) and let {(Gi,K) : i ∈ I} be a soft α-open cover of
∪̃
s∈S(As,K).

Then there exist countable sets Ms such that (A1,K)⊆̃clα(
∪̃
i∈M1

(Gi,K)), . . . ,

(An,K)⊆̃clα(
∪̃
i∈Mn

(Gi,K)), . . . .

Therefore,
∪̃
s∈S(As,K)⊆̃clα(

∪̃
i∈M1

(Gi,K))
∪̃
. . .
∪̃
clα(

∪̃
i∈Mn

(Gi,K))
∪̃
. . .

⊆̃clα (
∪̃
i∈

∪
s∈S Ms

(Gi,K)). Since
∪
s∈SMs is a countable set, then the desired

result is proved.
A similar proof is given in case of an approximately soft α-compact space.
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Proposition 4.5. Every almost soft α-compact (resp. almost soft α-Lindelöf)
space is approximately soft α-compact (resp. approximately soft α-Lindelöf).

Proof. The proof is obtained directly from the fact that∪̃
i∈Iclα(Gi,K)⊆̃clα(

∪̃
i∈I(Gi,K)).

Corollary 4.6. Every soft α-hyperconnected space is approximately soft α-
Lindelöf.

We give an example below in order to show that the converse of the above
proposition is not correct in general.

Example 4.7. Consider (R, τ,K) is a soft topological space such that K =

{k1, k2} and τ = {∅̃, R̃, (G1,K), (G2,K), (G3,K), where

(G1,K) = {(k1, {1}), (k2, {1}};
(G2,K) = {(k1, {2}), (k2, {2}};
(G3,K) = {(k1, {1, 2}), (k2, {1, 2}}.

Then any soft set (G,K) is soft α-open if and only if 1 ∈ (G,K) or 2 ∈
(G,K). We define a soft α-open cover Λ of X̃ as follows, Λ = {for each k ∈ K,
(G,K) : G(k) = {1, x} : x ̸= 2 and (H,K) : H(k) = {2}}. This soft α-open
cover has not a countable sub-cover in which its soft α-closure of whose members
cover X̃, hence (R, τ,K) is not almost soft α-Lindelöf. On the other hand, any
soft α-open cover contains a soft α-open set (G3,K). A soft α-open set (G3,K)
is soft α-dense, hence (R, τ,K) is approximately soft α-compact.

Definition 4.8. A collection Λ = {(Fi,K) : i ∈ I} of soft sets is said to have
the second type of finite (resp. countable) α-intersection property if

intα[
∩̃i=n

i=1 (Fi,K)] ̸= ∅̃, for any n ∈ N (resp. intα[
∩̃
i∈S(Fi,K)] ̸= ∅̃, for any

countable set S).

It is clear that any collection satisfies the second type of finite (resp. count-
able) α-intersection property is also satisfies the first type of finite (resp. count-
able) α-intersection property.

Theorem 4.9. An STS (X, τ,K) is approximately soft α-compact (resp. ap-
proximately soft α-Lindelöf) if and only if every soft collection of soft α-closed
subsets of (X, τ,K), satisfying the second type of finite (resp. countable) α-
intersection property, has, itself, a non-null soft intersection.

Proof. We only prove the theorem when (X, τ,K) is approximately soft α-
compact, the other case can be made similarly.

Let Λ = {(Fi,K) : i ∈ I} be a soft α-closed subsets of X̃. Suppose that∩̃
i∈I(Fi,K) = ∅̃. Then X̃ =

∪̃
i∈I(F

c
i ,K). As (X, τ,K) is approximately soft

α-compact, then X̃ = clα(
∪̃i=n

i=1 (F
c
i ,K)). Therefore ∅̃ = (clα(

∪̃i=n

i=1 (F
c
i ,K)))c =

intα(
∩̃i=n

i=1 (Fi,K)). Hence the necessary condition holds.
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Conversely, Let Λ be a soft α-closed subsets of X̃ which satisfies the second
type of finite α-intersection property. Then it also satisfies the first type of
finite α-intersection property. Since Λ has a non-null soft intersection, then
(X, τ,K) is an almost soft α-compact space. It follows, by Proposition (4.5),
that (X, τ,K) is approximately soft α-compact.

Definition 4.10. A topological space (X, τ) is called approximately α-compact
(resp. approximately α-Lindelöf) space if every α-open cover of X has a finite
(resp. countable) sub-cover in which its α-closure cover X.

Theorem 4.11. A soft open subset (A,K) of (X, τ,K) is approximately soft
α-compact (resp. approximately soft α-Lindelöf) if and only if a soft subspace
((A,K), τ(A,K),K) is approximately soft α-compact (resp. approximately soft
α-Lindelöf).

Proof. The proof is similar of that Theorem (3.19).

Definition 4.12. An STS (X, τ,E) is called soft α-separable provided that it
contains a countable α-dense soft set.

Proposition 4.13. If there exists a finite (resp. countable) soft α-dense subset
of an STS (X, τ,K) such that K is finite (resp. countable), then (X, τ,K) is
approximately soft α-compact (resp. approximately soft α-Lindelöf).

Proof. Let {(Gi,K) : i ∈ I} be a soft α-open cover of (X, τ,K) and let
(B,K) be a finite (countable) soft α-dense subset of (X, τ,K). Then for each
P xsks ∈ (B,K), there exists (Gxs ,K) containing P xsks . This implies that X̃ =

clα[
∪̃
(Gxs ,K)]. Since (B,K) and K are finite (countable), then the collection

{(Gs,K)} is finite (countable). Hence the proof is complete.

Corollary 4.14. Every soft α-separable with a countable set of parameters K
is approximately soft α-Lindelöf.

Theorem 4.15. The soft α-irresolute image of an approximately soft α-compact
(resp. approximately soft α-Lindelöf) set is approximately soft α-compact (resp.
approximately soft α-Lindelöf).

Proof. We prove the theorem by using a similar technique of the proof of The-
orem (3.11) and employing item (iii) of Theorem (2.11).

Proposition 4.16. If (A,K) is an approximately soft α-compact subset of a
soft α T ′

2-space (X, τ,K), then (A,K) is soft α-closed.

Proof. The proof is similar of that Proposition (3.20).

Corollary 4.17. If (A,K) is an approximately soft α-compact stable subset of
a soft α T2-space (X, τ,K), then (A,K) is soft α-closed.
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5. Mildly soft α-compact spaces

Definition 5.1. An STS (X, τ,K) is called mildly soft α-compact (resp. mildly
soft α-Lindelöf) if every soft α-clopen cover of X̃ has a finite (resp. countable)
soft subcover.

The proofs of the next two propositions are easy and will be omitted.

Proposition 5.2. A finite (resp. countable) union of mildly soft α-compact
(resp. mildly soft α-Lindelöf) subsets of (X, τ,K) is mildly soft α-compact (resp.
mildly soft α-Lindelöf).

Proposition 5.3. Every mildly soft α-compact space is mildly soft α-Lindelöf.

It can be seen from Example (4.3) that the converse of above proposition
fails.

Proposition 5.4. Every almost soft α-compact (resp. almost soft α-Lindelöf)
space (X, τ,K) is mildly soft α-compact (resp. mildly soft α-Lindelöf).

Proof. We only prove the proposition in case of (X, τ,K) is almost soft α-
Lindelöf, the other case can be achieved similarly.

Let Λ = {(Hi,K) : i ∈ I} be a soft α-clopen coverof (X, τ,K). Then

X̃ =
∪̃
s∈Sclα(Hi,K). Now, clα(Hi,K) = (Hi,K). Therefore (X, τ,K) is mildly

soft α-Lindelöf.

Corollary 5.5. Every soft α-compact (resp. soft α-Lindelöf) space is mildly
soft α-compact (resp. mildly soft α-Lindelöf).

Corollary 5.6. If (X, τ,K) is soft α-hyperconnected, then the following six
concepts are equivalent:

(i) Almost soft α-compact;

(ii) Almost soft α-Lindelöf;

(iii) Approximately soft α-compact;

(iv) Approximately soft α-Lindelöf;

(v) Mildly soft α-compact;

(vi) Mildly soft α-Lindelöf.

Proposition 5.7. Every soft α-connected space (X, τ,E) is mildly soft α-compact.

Proof. Because (X, τ,K) is soft α-connected, then the only soft α-clopen sub-

sets of (X, τ,K) are X̃ and ∅̃. Therefore (X, τ,K) is mildly soft α-compact.
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One can be easily seen from Example (3.14) that the two soft sets (M,K)
and (V,K), where M(k1) = M(k2) = {33} and V (k1) = M(k2) = {44}, are
disjoint soft α-open and their soft union is X̃. So the converse of the above
proposition is not always true.

In the next example, we illuminate that an approximately soft α-compact
space need not be mildly soft α-Lindelöf.

Example 5.8. Assume that (R, τ,K) is the same as in Example (4.7). We
illustrated that (R, τ,K) is an approximately soft α-Lindelöf space. The given
soft collection Λ forms an α-clopen cover of R. Since Λ has not a countable
sub-cover, then (R, τ,K) is not a mildly soft α-Lindelöf space.

Theorem 5.9. An STS (X, τ,K) is mildly soft α-compact (resp. mildly soft
α-Lindelöf) if and only if every soft collection of soft clopen subsets of (X, τ,K),
satisfying the finite (resp. countable) intersection property, has, itself, a non-
null soft intersection.

Proof. The proof is similar to that of Theorem (2.9).

Proposition 5.10. The soft α-irresolute image of a mildly soft α-compact
(resp. mildly soft α-Lindelöf) set is mildly soft α-compact (resp. mildly soft
α-Lindelöf).

Proof. By using a similar technique of the proof of Proposition (2.12), the
proposition holds.

For the sake of economy, the proofs of the following two results will be
omitted.

Proposition 5.11. If (D,K) is a soft α-clopen subset of a mildly soft α-compact
(resp. mildly soft α-Lindelöf) space (X, τ,K), then (D,K) is mildly soft α-
compact (resp. mildly soft α-Lindelöf).

Corollary 5.12. If (G,K) is a mildly soft α-compact (resp. mildly soft α-
Lindelöf) subset of X̃ and (D,K) is a soft α-clopen subset of X̃, then

(G,K)
∩̃
(D,K) is mildly soft α-compact (resp. mildly soft α-Lindelöf).

Definition 5.13. An STS (X, τ,K) is said to be soft α-partition provided that
a soft set is soft α-open if and only if it is soft α-closed.

Theorem 5.14. Let (X, τ,K) be a soft α-partition topological space. Then the
following four statements are equivalent.

(i) (X, τ,K) is soft α-Lindelöf (resp. soft α-compact);

(ii) (X, τ,K) is almost soft α-Lindelöf (resp. almost soft α-compact);

(iii) (X, τ,K) is approximately soft α-Lindelöf (resp. approximately soft α-
compact);



700 T.M. AL-SHAMI, M.A. AL-SHUMRANI and B.A. ASAAD

(iv) (X, τ,K) is mildly soft α-Lindelöf (resp. mildly soft α-compact).

Proof. (i)→ (ii): It follows from Proposition (3.5).

(ii)→ (iii): It follows from Proposition (4.5).

(iii) → (iv): Let {(Gi,K) : i ∈ I} be a soft α-clopen cover of X̃. As

(X, τ,K) is approximately soft α-Lindelöf, then X̃⊆̃clα(
∪̃
s∈S(Gi,K)) and as

(X, τ,K) is soft α-partition, then clα(
∪̃
s∈S(Gi,K)) =

∪̃
s∈S(Gi,K). Therefore

(X, τ,K) is mildly soft α-Lindelöf.

(iv)→ (i): Let {(Gi,K) : i ∈ I} be a soft α-open cover of X̃. As (X, τ,K)
is soft α-partition, then {(Gi,K) : i ∈ I} is a soft α-clopen cover of X̃ and as

(X, τ,K) is mildly soft α-Lindelöf, then X̃ =
∪̃
s∈S(Gi,K).

A similar proof can be given for the case between parentheses.

Lemma 5.15. If H is an α-clopen subset of (X, τk), then there exists a soft
α-clopen subset (F,K) of an extended soft topological space (X, τ,K) such that
F (k) = H.

Proof. Suppose that H is an α-clopen subset of (X, τk). Then cl(int(cl(H))) ⊆
H ⊆ int(cl(int(H))). Now, we define a soft set (L,K) as L(k) = H and L(ki) =
∅, for each ki ̸= k.

Since (X, τ,K) is extended, then we can conclude that (cl(int(cl(L))),K) =
cl(int(cl(L,K)))⊆̃(L,K)⊆̃(int(cl(int(L))),K) = int(cl(int(L,K))).

Hence (L,K) is a soft α-clopen subset of (X, τ,K)

Theorem 5.16. If (X, τ,K) is an extended mildly soft α-compact (resp. ex-
tended mildly soft α-Lindelöf) space, then (X, τk) is mildly α-compact (resp.
mildly α-Lindelöf), for each k ∈ K.

Proof. We prove the theorem in case of an extended mildly soft α-Lindelöf
space and the other case is proven similarly.

Let {Hj(k) : j ∈ J} be an α-clopen cover of (X, τk). We construct a soft
α-open cover of (X, τ,K) consisting of the following soft sets:

(i) From the above lemma, we can choose all soft α-clopen sets (Fj ,K) in which
Fj(k) = Hj(k), for each j ∈ J .

(ii) Since (X, τ,K) is extended, then we take a soft clopen set (G,K) which
satisfies that G(k) = ∅ and G(ki) = X, for all ki ̸= k.

Obviously, {(Fj ,K)
∪̃
(G,K) : j ∈ J} is a soft α-clopen cover of (X, τ,K).

As (X, τ,K) is mildly soft α-Lindelöf, then X̃ =
∪
j∈S(Fj ,K)

∪̃
(G,K). So

X =
∪
j∈S Fj(k) =

∪
j∈S Hj(k). Hence (X, τk) is a mildly α-Lindelöf space.

It can be seen from Example (2.17) that the converse of the above theorem
need not be true in general.
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Proposition 5.17. Let (X, τ,K) be extended and K be finite (resp. countable).
Then (X, τ,K) is soft mildly α-compact (resp. extended soft mildly α-Lindelöf)
space iff (X, τk) is mildly α-compact (resp. mildly α-Lindelöf), for each k ∈ K.

Proof. Necessity: It is obtained from the theorem above.
Sufficiency: Let {(Gj ,K) : j ∈ J} be a soft α-clopen cover of (X, τ,K).

Then X =
∪
j∈J Gj(k) for each k ∈ K. It follows, from Lemma (5.15), that

there exists a soft clopen set (Hj ,K) such that Hj(k) = Gj(k) and Hj(ki) = X,
for each ki ̸= k. As (X, τk) is mildly α-compact, for each k ∈ K, then X =∪j=n1
j=1 Gj(k1), X =

∪j=n2
j=n1+1Gj(k2),. . . , X =

∪j=nm

j=nm−1+1Gj(km). Therefore

X̃ =
∪̃j=nm

j=1 (Gj ,K). Thus (X, τ,K) is mildly soft α-compact.
A similar proof can be given for the case between parentheses.

Remark 5.18. If (X, τ,K) is an extended mildly soft α-compact (resp. ex-
tended mildly soft α-Lindelöf) space, then K is finite (resp. countable).

Definition 5.19. A collection β of soft α-open sets is called soft α-base of
(X, τ,K) if every soft α-open subset of X̃ can be written as a soft union of
members of β

Theorem 5.20. Consider (X, τ,K) has a soft α-base consists of soft α-clopen
sets. Then (X, τ,K) is soft α-compact (resp. soft α-Lindelöf) if and only if it
is mildly soft α-compact (resp. mildly soft α-Lindelöf).

Proof. The necessary condition is obvious.
To verify the sufficient condition, assume that Λ is a soft α-open cover of

a mildly soft α-compact space (X, τ,K). Since X̃ is a soft union of members
of the soft α-base and X̃ is mildly soft α-compact, then we can find a finite

member (Hs,K) of the soft α-base satisfies that X̃ =
∪̃s=n

s=1 (Hs,K). So for each
member (Gs,K) of Λ, there exists a member (Hs,K) of the soft α-base such that

(Hs,K)⊆̃(Gs,K). Thus X̃ =
∪̃s=n

s=1 (Gs,K). Hence (X, τ,K) is soft α-compact.
The proof in case of a mildly soft α-Lindelöf space is similar.

Proposition 5.21. If (A,K) is a mildly soft α-compact subset of a soft α T ′
2-

space (X, τ,K), then (A,K) is soft α-closed.

Proof. The proof is similar to that of Proposition (2.25).

Corollary 5.22. If (A,K) is a mildly soft α-compact stable subset of a soft α
T2-space (X, τ,K), then (A,K) is soft α-closed.

Conclusion

The purpose of the present study is to establish and introduce eight generalized
forms of soft compactness and soft Lindelöfness, namely soft α-compactness,
soft α-Lindelöfness, almost (approximately, mildly) soft α-compactness and al-
most (approximately, mildly) soft α-Lindelöfness. With the help of illustrative
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examples, the relationships among these concepts are shown and the image of
these spaces under soft α-irresolute maps is investigated. Some properties of
soft α-open sets which enable us to prove certain of our results are studied and
verified. The relationships of some of the introduced spaces with soft α T2-
spaces and soft α T ′

2-spaces are given. We study the equivalent conditions for
all of the initiated spaces and illustrate under what conditions the four types of
soft α-compact (the four types of soft α-Lindelöf) spaces are equivalent. The
eight introduced concepts are compared in relation with many soft topological
notions such as soft α-connectedness, soft subspaces and soft α-partition. The
concepts presented in this study are fundamental for further researches and will
open a way to improve more applications on soft topology.
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Abstract. Retrieving relevant information from trust-based Peer-to-Peer (P2P) net-
works is a challenging research task. The users on P2P networks endeavor to ensure
that the peers have to provide guaranteed relevant information (or documents) for their
information needs. Recent researches in evaluating the trustworthiness or even the rep-
utation of peers lack a well-formulated testbed. As such, building a robust testbed for
evaluating trustworthy P2P networks motivates to propose a ground truth testbed as
a contribution in P2P systems. In this paper, a trust-based testbed is developed espe-
cially in P2P digital libraries using TREC WT10g collection which has been used for
evaluation in many P2P networks. The testbed contains a set of peers of trustworthy
values for each peer that is estimated using peer rank approach. The statistical factors
such as the distribution of peer trustworthiness, distribution of relevant documents and
the location of relevant documents within each setting, and the importance of proposed
testbed to reach 100% Recall in information retrieval are analyzed. The results are
compared with two well-known testbeds.

Keywords: P2P, trustworthiness, page rank, peer rank, digital library.

1. Introduction

Peer-to-Peer (P2P) overlay network is a distributed computing system emerging
as a popular way to share a huge amount of data [14]. The nature of the P2P
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overlay network gives the flexibility to form many application scenarios from
open file sharing (content exchange) and resource sharing (CPU, storage and
bandwidth) to digital libraries [8]. Digital Library (DL) application is consid-
ered one of the common applications of such a network for content storage and
retrieval [16]. These libraries have common characteristics such as (i) contain a
large number of documents, (ii) their documents are fairly uniformly distributed
and (iii) they share the same popularity in the pattern of documents access. In
order to build a testbed to evaluate the performance of IR systems related to
DL applications, many factors should be taken into account such as the digi-
tal library trustworthiness in order to retrieve pure and high-quality materials.
Although the traditional search engines that are centralized or distributed over
self-organized P2P overlay networks mainly focus on improving the retrieval ef-
fectiveness and efficiency, the users of P2P networks concern with relevant and
trustworthy documents. These documents are relevant to the issued query and
at the same time are not corrupted or contain viruses to satisfy their informa-
tion needs. Because of the content distribution in P2P information Retrieval
(P2PIR) is subject to constant change as results of operations such as insertion,
deletion, and/or modification, the quality of the published contents (i.e. their
trustworthiness) becomes an important issue in these applications. This means
that there are some peers more trustworthy than the others. Thus, trust-aware
P2P overlay networks are concerned with the retrieval of not only relevant but
also high-quality documents from trusted peers.

Several types of research have been dedicated to essentially improve and fo-
cus on the retrieval effectiveness of DL applications. In [10] proposed a hybrid
P2PIR approach using a large scale testbed and a set of queries. The retrieval
effectiveness is estimated where the efficiency of the system is evaluated based on
the number of routed queries. They considered, in their testbed, the combined
documents that have similar content (topic) by using the similarity-based soft-
clustering algorithm. They only created the testbed depending on the topic of
documents ignoring any factors that are related to documents or peers trustwor-
thiness. In [7] proposed a cluster-based P2P architecture that is evaluated using
six testbeds developed from WT10g collection as real suite large-scale testbeds
[9]. In [9] considered three factors for building their testbeds: (i) document dis-
tribution across peer-collection (which follows a power-law distribution), (ii) the
location of relevant documents (Recall) and (iii) coverage of the topics (preci-
sion). However, they did not mention or even tackled the trust factor associated
with DL applications. The same testbeds are used by [1,2,3] for evaluating a set
of routing techniques on a cluster-based architecture P2P network to retrieved
relevant documents of a given query maintained into clusters (or super-peers).
To our knowledge, there is no common ground truth testbed that is realistic to
be used for P2P system evaluation depending on the trust factor. Therefore,
an approach is proposed to build a testbed by measuring the importance of
the peers (i.e. their trustworthiness) by estimating and assigning a trust value,
named peer rank. These values facilitate routing the given query to the rele-



TRUST-BASED TESTBED FOR P2P DIGITAL LIBRARY 707

vant and trustworthy peers in providing high-quality contents. The contribution
here is suggesting a proposed testbed for P2P overlay architectures that focusing
on peer trustworthiness evaluation. In particular, the testbed utilizes the well-
known page rank algorithm to estimate the peers rank based on the connected
graph between each other.

The remainder of the paper is organized as follows. Section 2 presents re-
search related to trustworthiness; Section 3 discusses the proposed approach
on building the testbed. Section 4 presents the experimental settings and the
data set used for constructing the proposed testbed and also analyzes the cre-
ated testbeds from trustworthiness and effectiveness point of views, followed by
Section 5 that concludes the findings of the paper and the future work.

2. Related works

Identifying the quality of documents stored in P2P network nodes has revealed
a new concept in P2P information retrieval research area called entity trust-
worthiness. The trustworthiness of an entity could be defined as the quality
of relevant documents or service providers for satisfying the user’s information
needs [3]. There are many techniques to estimate the trust values of peers,
one of them is gathering the number of positive or negative feedback from the
other peers to be exploited for estimating the reputation of a specific peer [17].
The trustworthiness of peers in P2PIR must be taken into consideration by re-
searchers due to apparently the widespread applications that depend on P2P
systems such as block-chain systems which might be a security mechanism for
authentication and authorization [13]. In addition, the users in P2P networks
have full permission to publish their content which might lead to overwhelming
the network with malicious or selfish peers or even untrustworthy documents or
feedback. Therefore, the necessity for robust techniques in order to filter such
malicious (or selfish) peers or untrustworthy documents (or feedback) is high.

Many techniques have been proposed to compute the trustworthiness of doc-
uments and peers. For instances, EigenTrust [6] is a reputation-based system
that depends on filtering out inauthentic files in P2P file-sharing networks. In
this technique, a unique global trust value for each peer in the system is esti-
mated based on the local opinions of all the other peers. The local trust value
is a summation of user ranks that are gathered directly or indirectly of either
positive or negative rate. In [15] proposed a multi-agent trustworthiness model
where each agent maintains models of its acquaintances that describe their ex-
pertise (the quality of the services they provide) and sociability (the quality of
the referrals they provide). These two works used their own testbeds to evaluate
their systems and compute the trust factor through the lifetime of the system.
In [12] suggested two trustworthiness methods to calculate the trustworthiness
of a specific peer: subjective and objective trustworthiness. The subjective
trustworthiness is estimated through direct interaction with the acquaintance
peer where the objective trustworthiness is estimated by collecting trustworthi-
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ness information from other peers. This is similar to the reputation-based trust
model that uses experience or the experiences of others as a recommendation. In
[18] also proposed to estimate documents trustworthiness depend on document
reputation (objective trustworthiness) and peer trustworthiness (subjective and
objective trustworthiness). In [4] built an approach that depends on the com-
bination of some metrics to calculate the trust values of peers. The system
suggested many factors to calculate the trustworthy peer value, where the in-
crease in factors will force these systems to built by a small number of peers
for evaluation. VectorTrust [20] is a trust management system for aggregating
distributed trust scores, which is built on a Trust Overlay Network (TON) on
the top of decentralized P2P networks. VectorTrust uses a Bellman-Ford based
distributed algorithm for fast trust score aggregation.

Although there are many models for P2P overlay networks that cover the
trust factors in these type of the systems, these proposed systems use their own
testbeds for trust-based evaluation which are small in their nature. Therefore,
they do not reflect the real environments and provide a useful testbed for com-
parison. As such, this motivates us to build a testbed simulate the trust values
of peers. The proposed testbed is built based formally on the peers rank val-
ues; which is the number of access to a specific peer by the link structure of
documents inside the peer as a factor for trustworthiness.

3. Trust-based Testbed for digital libraries

The proposed trust-aware testbed has the characteristics of real DL applica-
tions. The documents are distributed evenly over the peers with almost the
same number of documents. This paper proposes a method to build a testbed
that satisfies such characteristic called Digital Library Peer Rank (DLPR). The
UWOR (Uniform WithOut Replication) testbed is used built by [9] to be used
for systems with uniformly documents distribution, as initial testbed to build
DLPR. The UWOR testbed contains 11,680 domains (or peers) that guarantee
the equal number of documents on each peer for the proposed testbed. The pro-
cess of building DLPR testbed has three phases include estimating page ranking,
selecting top domains and documents transfer. These phases are discussed in
more detail as follows:

Page ranking: page rank indicates the importance of the page by the
number of times a user visits it through browsing the web giving either an
implicit or explicit feedback. Implicit feedback is derived from different signals
depending on the user behaviors such as the time spent on viewing documents
during the search process (or dwell time), page scrolling or browsing actions
[5]. On the other hand, the explicit feedback is estimated directly from the user
during click-through documents as relevant documents. The feedback gives an
indication of the importance related to the visited documents. The documents
in the web, however, contains links to other topically related documents which
forms the building block link structure for estimating the page rank of the web
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Figure 1: The process of building trust-based Testbed

pages. This rank value has the ability to distinguish the popular (those with
incoming links or those that have links from popular pages) and unpopular web
pages by using the in-link and out-link files [11,19]. In order to estimate the page
rank of web documents, a graph of documents has to be built and traversed for
derived the page rank. The graph comprises a set of nodes (or vertices) represent
the documents in the corpus (or collection of documents) and a set of links (or
edges) refer to the hyperlinks (in-links or out-links) between pages. Such a
graph is used to estimate the document rank by walking through the graph and
estimate the number of times document is visited as a probability chain the link
is being visited by the others. The general formula to calculate the Page Rank
for any page u is:

(1) PR(u) =
λ

N
+ (1− λ)×

∑
v∈Bu

PR(v)

Lv

where N is the number of pages being considered, λ is a constant with typical
value 0.15, Bu is the set of pages that point to u, and Lv is the number of
outgoing links from page v (not counting duplicate links).

Peer ranking: The process of estimating the ranks of peers relies on the
rank of their documents. In particular, the page ranks are estimated for each
WT10g document that has in-link and out-link structures. The peer rank based
on the rank of its documents is evaluated, then the peers are sorted based on
their rank values in descending order. The DLPR is then built by selecting the
top 8 peers from the sorted list, this number was selected to guarantee a small
number of libraries and on the same time ensure the equality in the number of



710 RAMI S. ALKHAWALDEH, MOATSUM ALAWIDA and ISSAM ALHADID

documents in each peer. These top peers are used as attractors for other peers
where the documents of the other peers are distributed over these attractors.
This process is continued until there are no peers left in the list. As a result,
this method generates 1460 number of peers each of which has 8 domains (or
peers) with an average of 1160 documents.

Document transfer: The transfer of documents in the testbed ensures
the uniform distribution of documents that represent the characteristics of DL
applications. Nevertheless, the domain of trustworthiness needs a rank system
for assigning trust values to each peer as discussed. The question is how can
exploit the rank values of peers to be used as trust metric value for re-ranking the
peers at query time. In summary, building a realistic testbed for DL applications
reflecting the trustworthiness manner leads to the necessity for a metric that
measures the trust factor of each peer collection. As a result, this paper proposes
a peer-rank based metric for building a trust-based testbed.

4. Experimental setting and results

4.1 Experimental settings

Test collection. The TRECs Web 10G Collection (WT10g) is used that con-
sists of 11,680 web domains, 1,692,096 documents and relevance assessment
comprises of 100 topic query (Ad-hoc TREC 2000 task). The motivation be-
hind using such collection is because the testbeds that are built by [9] have a
set of characteristics and they are large enough to reflect the real situation in
P2P architectures.

Evaluation metrics. Two metrics have used that estimate the trustwor-
thiness values of documents and peers used in the proposed testbed that is
being compared with the other two testbeds proposed by [7] and [10] as base-
line testbeds. These two metrics include document ranking (or page rank) and
peer ranking (extracted from the average page rank of the peers documents).
Moreover, in order to evaluate the effectiveness and efficiency of the proposed
trust-based testbed, a set of metrics were examined such as peer rank, the distri-
bution of documents, fraction of peers to reach 100% Recall values and average
Precision values. The peer rank value is obtained from its documents that rep-
resents the importance of a peer regarding the number of visits using the peer
link structure. The distribution of the documents across peers reveals the equal
number of documents over each peer to reflect the specific features characterize
the DL applications. The fraction of peers required to achieve 100% Recall (for
each topic) clarifies for each query how many peers in average is required to
reach Recall value of 100%. The average precision represents the number of
relevant documents in the results list to the whole number of documents. This
metric is used in three testbeds to analyze the effect of trustworthiness on the
distribution of the relevant documents over peers within the testbeds.
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4.2 Experimental results and testbed anaylsis

The trustworthiness of Testbeds. The proposed trust-based testbed ranks
the peers using the page rank of its documents which is estimated overall the col-
lection documents. Here, the evaluation metrics are examined and the results
are compared to the baseline testbeds. Figure 2 demonstrates the peer rank
values that are estimated in the proposed testbed and the other two baseline
testbeds. The x-axis represents the fraction of peers that are taken into account
and the y-axis represents the average peers rank value for the fraction interval.
The figure sorts out the testbeds based on the obtained average values of peers
ranks across the peers fractions. The findings show that the DLPR substan-
tially follows a power law distribution including peers rank values. This also
suggests that there are in the testbed some peers are more trustworthy than the
other peers and the distribution of this pattern follows the realistic DL scenario.
However, such property cannot be observed for the other two testbeds, i.e. DL
WOR and DL LC testbeds. As a result, these two testbeds are not suitable
for DL applications depending on the trustworthiness concept to retrieve rele-
vant and/or high quality (or trustworthy) documents from the peer-based IR
systems.

Figure 2: Average peer rank of fraction peers

Documents distribution of Testbeds. One of the P2P DLs scenario
characteristics is the even distribution of documents over each digital library.
Thereby, it is important to create the testbed which almost has evenly docu-
ments distribution. Figure 3 determines the average distribution of documents
over fraction number of peers, where the x-axis demonstrates the fraction peers
taken into account and the y-axis figures out the average number of documents
in each fraction. The proposed testbed (DLPR) is the best one of the two
testbeds in an equally large number of documents distribution which is more
real as an initial sprinkling of documents over peer collection.
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Figure 3: Average number of documents for each peer fraction

The effectiveness of Testbeds. The location of relevant documents has
important attention in the P2P system architecture due to increasing the effi-
ciency of these models. So two concepts are briefly being discussed that related
to the distribution of relevant documents (topics) over peer-collection to reach
100% Recall and average precision of relevant documents over peer-collections.

Recall: In order to compute the number of peers to reach 100% Recall,
the fraction of peer population is computed as shown in Figure 4. As clarified
from the figure, a conclusion is that for each topic the DLPR testbeds almost
has a high topical distribution over collections (or peer) than the other two
testbeds. But the DLPR testbed distributes topics over peers with redundancy
in an efficient manner compared to the other two baseline testbeds. As such, the
probability for reaching 100% Recall is high in the DLPR over peer collections.
In addition to the topics distributions, the DLPR testbed provides other impor-
tant factors such as trust factors that focus on the trustworthiness of peers in
providing trustworthy documents.

Precision: The other metric that is more important is the Precision within
the peer-collection. The Precision represents the proportion at which topics (or
relevant documents) are presented within the peer collections. The precision
is calculated by using one of the [9] precision metric that considered all the
peer collections have at least one relevant document and measured their average
precision as follows:

(2) Pavg =
1

n

n∑
i=1

Pi

where n is the number of peer-collections that have at least one relevant docu-
ment and Pi is the precision as measured by the number of relevant documents
over the total number of documents shared in the ith collection.
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Figure 4: Fraction of peer population to reach 100% recall

Figure 5: Average precision of topics distribution

In Figure 5, the DLLC (Digital Libraries Lu and Callan) and DLWOR (Dig-
ital Library WithOut Replication) have high Precision values than the proposed
testbed. The Precision and Recall have an effect to the testbed from an effec-
tiveness perspective, but their results do not reflect the quality (or trustworthy)
of documents as the number of trustworthy documents for some peers in the
testbed significantly are larger than the other two testbeds. Consequently, the
DLPR testbed specifically focuses on the importance of trustworthiness that is
related to some peers comparing to the other peers. The reasons behind such
results back to that high number of non-relevant documents have the highest
trust values, due to the trust value computed through the number of peers access
to these documents or more recommend by other peers as to be the trustworthy
documents [18].
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5. Conclusions and future works

Building a testbed reflecting the trustworthiness factor is one of the demand-
ing tasks. In addition, the trustworthiness concept is subjective in its nature.
Therefore, estimating such factor value occurs during the lifetime of the system
as deployed in dynamic systems. As a result, this paper proposed and built a
testbed that comprises the trustworthiness factor required by many researchers
to tackle the problem of retrieving more relevant and trustworthy (or reputable)
documents. The DLPR (or proposed) testbed is constructed to reflect digital li-
braries by taken into considerations many factors related to them such as a large
number of peers, uniformly distribution of relevant documents and the most im-
portant factor that is related to trustworthiness that depends on the page rank
of the documents inside each peer. In the construction phase, a well-known
dataset is selected reflecting the Web documents and the power low distribution
of documents over the Internet. This dataset is the WT10g Collection that is a
real collection and since it used by many other systems as a standard collection
to evaluate their models.

The proposed testbed suffers from precision and recall which is expected
results, as the nature of systems that depends on the trustworthiness changes
content through the lifetime of systems and some peers might join and leaf the
system to increase their reputation and existence so the distribution of topics
on the type of these systems was not taken into consideration.

Evaluating the trustworthiness in the P2P overlay networks is one of the
most demanding and neglected tasks because the trustworthiness is subjective in
nature and it supposed to be computed through the lifetime of the system. This
paper presented a proposed trust-based testbed that depends on the peer rank
as a trust factor used as a criterion for building the testbed. The distribution
of peers ranks in peer collections of DLPR, DLWOR and DLLC testbeds is also
discussed along with demonstrating the other factors such as the distribution of
relevant documents (presented by topics) over peers collection in order to reach
100% recall and the distribution of relevant documents (presented by topics)
over peers. The proposed testbed is concentrated on the importance of peer on
peer-collection and reflects it as peer trustworthiness, so another factor may be
relatively different. In the future work, the proposed testbed is being expanded
to support the model with the actual behavior of a P2P system to check how
much accurate the testbed in trust-based P2P systems.
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Abstract. In the present paper our aim is to develop coupled fixed point theorems in
fuzzy metric space with graph. We introduce the concept of J -γ-contraction mapping
using the control function developed by Wardowski [16]. In current paper, we show
the existence of coupled coincidence fixed point in fuzzy metric space with respect to
graph. We also give the result having particular value of control function such that the
J -γ-contraction change to J -fuzzy contraction.
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1. Introduction

Banach contraction principle remains as the backbone of fixed point theory to
relate different areas like differential equations, integral equations, game theory
etc. The concept of graph and fixed point theory were also combined to prove
fixed point theorems in R-trees by Espinola and Kirk [5]. Jackymski [7] stepped
in the fixed point theory with the language of graph theory and gave result with
a directed graph on Banach contractions in a metric space. Metric space with

∗. Corresponding author
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graph theory is the developing area in the field of research. Also, the coupled and
common fixed point theorem were executed by Bhaskar and Lakshmikantham
[1]. In 2014, Chifu and Petrusel [2] worked on coupled fixed point results in
metric space endowed with directed graph. In the same year, Shukla [15] also
defined G-fuzzy contraction on fuzzy metric space endowed with graph. Shukla’s
work in fuzzy metric space gave us a new direction to think with graphs. The
justified extension of coupled fixed point result to fuzzy metric was done by Zhu
et al. [23]. The control functions introduced by Wardowski [16] helped us to use
the concept of coupled fixed point theorem in fuzzy metric space endowed with
graph theory. Fuzzy metric space was introduced by Kramosil and Michalek
[8] and modified by George and Veeramani [6] using the concept of fuzzy sets,
introduced by Zadeh [22] on metric spaces. Different work has been done in
fuzzy metric space by [10], [12]-[14], [17]-[21]. In present paper, we apply the
concept of coupled fixed point theory on graph theory in fuzzy metric space to
find common coupled fixed point.

Definition 1.1 ([11]). A binary operation ∗ : [0, 1]2 → [0, 1] is called continuous
t-norm if the following properties are satisfied:

(i) ∗ is associative and commutative,

(ii) u ∗ 1 = u for all u ∈ [0, 1],

(iii) u ∗ v ≤ w ∗ r whenever u ≤ w and v ≤ r for all u, v, w, r ∈ [0, 1],

(iv) ∗ is continuous.

George and Veeramani [6] introduced the following definition of fuzzy metric
space. This definition of fuzzy metric space is utilized in our paper.

Definition 1.2 ([6]). The 3-tuple (K,M, ∗) is called a fuzzy metric space if K
is an arbitrary non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on
K2 × (0,∞) satisfying the following conditions for each u, y, z ∈ K and t, s > 0:

(FM1) M(u, y, t) > 0,

(FM2) M(u, y, t) = 1 if and only if u = y,

(FM3) M(u, y, t) =M(y, u, t),

(FM4) M(u, y, t) ∗M(y, z, s) ≥M(u, z, t+ s), and

(FM5) M(u, y, ·) : (0,∞)→ [0, 1] is continuous.

Definition 1.3 ([6]). Let (K,M, ∗) be a fuzzy metric space.

(i) A sequence {un} in K is said to be convergent to a point x ∈ K if
limn→∞M(un, x, t) = 1 for all t > 0.
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(ii) A sequence {un} in K is called a Cauchy sequence if for each 0 < ϵ < 1
and t > 0, there exists a positive integer n0 such that M(un, um, t) > 1− ϵ
for all n,m ≥ n0.

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said
to be complete.

Definition 1.4 ([16]). Denote by W a family of mappings γ : (0, 1] → [0,∞)
satisfying the following two conditions:

(W1) γ transforms (0, 1] onto [0,∞);

(W2) for all s, t ∈ (0, 1], s < t⇒ γ(s) > γ(t) (i.e. γ is strictly decreasing).

Note that (W1) and (W2) imply γ(1) = 0 and γ(αn)→ 0 whenever αn → 1 as
n→∞.

Example of γ-function is γ(t) = 1
t − 1, t ∈ (0, 1].

Lemma 1.1 ([3]). Let (K,M, ∗) be a fuzzy metric space and let γ ∈ H. The
sequences {xn} and {yn} in K are convergent to the points x ∈ K and y ∈ K if
limn→∞ γ(M(xn, x, t) ∗M(yn, y, t)) = 0 for all t > 0.

Lemma 1.2 ([3]). The sequence {xn} and {yn} in K are Cauchy sequences
if for each 0 < ϵ < 1 and t > 0, there exists a positive integer n0 such that
γ(M(xn, xm, t) ∗M(yn, ym, t)) ≤ ϵ for all n,m ≥ n0.

The concepts of graphs are similar to those in [7]. Let (K,M, ∗) be a fuzzy
metric space. Let a directed graph J such that the set V (J ) of its vertices,
consider as elements of K, the set E(J ) of its edges contains all loops, i.e.
E(J ) ⊇ ∆, where ∆ denote the diagonals of Cartesian product K × K. We
identify J with the pair (V (J ), E(J )) having no parallel edges. We also treat
J as weighted graph by assigning to each edge the fuzzy distance between its
vertices.

Also, J −1 be the graph obtained from J by reversing the direction of edges,
i.e.

E(J −1) = {(x, y) ∈ K ×K : (y, x) ∈ E(J )}.

Definition 1.5 ([9]). An element (x, y) ∈ K×K is called a coupled coincidence
point of the functions H : K ×K → K and g : K → K if

H(x, y) = gx and H(y, x) = gy.

Let us denote the set of all coupled coincidence points of H and g by C(Hg).

Definition 1.6 ([9]). An element (x, y) ∈ K × K is called a coupled common
fixed point of the functions H : K ×K → K and g : K → K if

H(x, y) = g(x) = x and H(y, x) = g(y) = y.
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Definition 1.7 ([9]). Let K be a non-empty set. Then the functionH : K×K →
K and g : K → K are said to be commutative if

g(H(x, y)) = H(gx, gy) for all x, y ∈ K.

Definition 1.8 ([7]). A function J : K → K is J -continuous if

(i) for all x, x∗ ∈ K and any sequence {ni}i∈N of positive integers, {xni} → x∗

and (xni , xni+1) ∈ E(J ) for n ∈ N implies {g(xni)} → gx∗.

(ii) for all y, y∗ ∈ K and any sequence {ni}i∈N of positive integers, {yni} → y∗

and (yni , yni+1) ∈ E(J −1), for n ∈ N , implies {g(yni)} → gy∗.

Definition 1.9 ([2]). A function H : K × K → K in J -continuous if for all
(x, y), (x∗, y∗) ∈ K ×K and any sequence {ni}i∈N of positive integers, {xni} →
x∗, {yni} → y∗ as i → ∞ and (xni , xni+1) ∈ E(J ), (yni , yni+1) ∈ E(J −1) for
n ∈ N , implies {H(xni , yni)} → H(x∗, y∗) and {H(yni , xni)} → H(y∗, x∗).

2. Main result

To find our main result, we first define some definitions and lemmas as follows:

First we define property (A) for graph in fuzzy metric space.

Definition 2.1. Let (K,M, ∗) be a complete fuzzy metric space endowed with
a directed graph J . Then the tuple (K,M, ∗,J ) has the property (A) if

(i) for any sequence {xn}n∈N in K such that {xn} → x∗ and (xn, xn+1) ∈
E(J ), (xn, x∗) ∈ E(J );

(ii) for any sequence {yn}n∈N in K such that {yn} → y∗ and (yn, yn+1) ∈
E(J −1), (yn, y

∗) ∈ E(J −1).

Next, let us consider (K,M, ∗) be a fuzzy metric space endowed with a
directed graph J and H : K ×K → K and g : K → K be the mappings.
Define the set (K ×K)Hg as

(K×K)Hg = {(x, y) ∈ K×K : (gx,H(x, y)) ∈ E(J ) and (gy,H(y, x)) ∈ E(J −1)}.

Definition 2.2. The mapping H : K ×K → K is called a J − γ-contraction if

(i) g is edge preserving, i.e., (gx, gu) ∈ E(J ) and (gy, gv) ∈ E(J −1)

⇒ (g(gx), g(gu)) ∈ E(J ) and (g(gy), g(gv)) ∈ E(J −1);

(ii) H is g-edge preserving, i.e., (gx, gu) ∈ E(J ) and

(gy, gv) ∈ E(J −1) ⇒ (H(x, y),H(u, v) ∈ E(J )) and (H(y, x),H(v, u) ∈
E(J −1);
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(iii) for all x, y, u, v ∈ K such that (gx, gu) ∈ E(J ) and (gy, gv) ∈ E(J −1)

γ(M(H(x, y),H(u, v), t)) ∗M(H(y, x),H(v, u), t))

≤ kγ(M(gx, gu, t) ∗ γ(M(gy, gv, t))

where k ∈ (0, 1) is called contraction constant of H.

Lemma 2.1 ([4]). Suppose that H : K × K → K is g-edge preserving and
H(K×K) ⊆ g(x). Also, let {xn}, {yn}, {un}, {vn} be sequences in fuzzy metric
space (K,M, ∗) endowed with a directed graph J . Then the following statements
are true:

(i) (gx, gu) ∈ E(J ) and (gy, gu) ∈ E(J −1)

⇒ (H(xn, yn),H(un, vn)) ∈ E(J ) and (H(yn, xn),H(vn, un)) ∈ E(J −1)
for all n ∈ N

(ii) (x, y) ∈ (K ×K)Hg = (H(xn, yn),H(xn+1, yn+1)) ∈ E(J ) and
(H(yn, xn), H(yn+1, xn+1)) ∈ E(J −1) for all n ∈ N .

(iii) (x, y) ∈ (K ×K)Hg ⇒ (H(xn, yn),H(yn, xn)) ∈ (K ×K)Hg for all n ∈ N .

Lemma 2.2. Let (K,M, ∗) be a fuzzy metric space endowed with a directed
graph J . Let H : K×K → K be a J − γ-contraction with contraction constant
k ∈ (0, 1) and H(K ×K) ⊆ g(x). Also suppose that {xn}, {yn} be sequences in
K. Then, for (x, y) ∈ (K × K)Hg, there exists p(x, y, t) ≥ 0 and k ∈ (0, 1) such
that

γ(M(gxn, gxn+1, t) ∗M(gyn, gyn+1, t)) ≤ knγ(p(x, y, t)).

where

p(x, y, t) = (M(gx0, gx1, t) ∗M(gy0, gy1, t))

Proof. (x, y) ∈ (K ×K)Hg

⇒ (gx,H(x, y)) ∈ E(J ) and (gy,H(y, x)) ∈ E(J −1)

⇒ (gx0, gx1) ∈ E(J ) and (gy0, gy1) ∈ E(J −1)

Then, by Lemma 2.1,

(H(xn, yn),H(xn+1, yn+1))∈E(J )
and (H(yn, xn),H(yn+1, xn+1))∈E(J −1) for all n∈N
⇒ (gxn, gxn+1) ∈ E(J ) and (g(yn), g(yn+1)) ∈ E(J −1) for all n ∈ N

But H is a J − γ-contraction, so

γ(M(gxn, gxn+1, t) ∗M(gyn, gyn+1, t))

= γ(M(H(xn−1, yn−1), H(xn, yn), t) ∗M(H(yn−1, xn−1),H(yn, xn), t))

≤ kγ(M(gxn−1, gxn, t) ∗M(gyn−1, gyn, t)),
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that is,

γ(M(gxn, gxn+1, t) ∗M(gyn, gyn+1, t))

≤ kγ(M(gxn−1, gxn, t) ∗M(gyn−1, gyn, t))(2.1)

From (2.1)we can get for all n ≥ 1, t > 0,

γ(M(gxn, gxn+1, t) ∗M(gyn, gyn+1, t))

≤ kγ(M(gxn−1, gxn, t) ∗M(gyn−1, gyn, t))

≤ k2γ(M(gxn−2, gxn−1, t) ∗M(gyn−2, gyn−1, t))(2.2)

≤ k3γ(M(gxn−3, gxn−2, t) ∗M(gyn−3, gyn−2, t))

...

≤ knγ(M(gx0, gx1, t) ∗M(gy0, gy1, t))

From the definition of γ-function we have

γ(M(gxn, gxn+1) ∗M(gyn, gyn+1, t)) ≥ knγ(p(x, y, t)),

where

p(x, y, t) = (M(gx0, gx1, t) ∗M(gy0, gy1, t))(2.3)

Hence the lemma is proved.

Lemma 2.3. Let (K,M, ∗) be fuzzy metric space endowed with a directed graph
J . Let H : K × K → K be a J − γ-contraction with contraction constant
k ∈ (0, 1) and H(K ×K) ⊆ g(K).

If the mapping H satisfies the conditions:

(i) There exists x0 and y0 in K such that

l∏
i=1

(M(gx0,H(x0, y0), ti) ∗M(gy0,H(y0, x0), t)) ̸= 0, for all l ∈ N,

(ii) r ∗ s > 0 ⇒ γ(r ∗ s) ≤ γ(r) + γ(s) for all r, s ∈ {M(gx0,H(x0, y0), t) ∗
M(qy0,H(y0, x0), t) for all x0, y0∈K, t > 0},

(iii) {γ(M(gx0,H(x0, y0), ti)∗M(gy0,H(y0, x0), ti)) : i ∈ N} is bounded for all
x0 and y0 in K and any sequence {ti}i ⊂ (0,∞),

Also, suppose that {xn}, {yn} be sequences in K. Then, for (x, y) ∈ (K×K)Hg,
there exist x∗, y∗ ∈ K such that {gxn} → x∗ and {gyn} → y∗, as n→∞.



A NEW CONTRACTION AND EXISTENCE THEOREMS ON FUZZY METRIC ... 723

Proof. Let for any n,m ∈ N , n > m, t > 0 and let {ai}i∈N be a strictly
decreasing sequence of positive numbers such that

∑∞
i=1 ai = 1. From (2.3) and

using the property of γ, we have

M(gxn, gxn+1, t) ∗M(gyn, gyn+1, t) ≥M(gx0, gx1, t) ∗M(gy0, gy1, t).(2.4)

From (2.4) and condition (i) given in Lemma 2.3 we have

M(gxm, gxn, t) ∗M(gym, gyn, t)

≥

(
M(gxm, gxm, t−

n−1∑
i=m

ait) ∗M(gxm, gxn,
n−1∑
i=m

ait)

)

∗

(
M

(
gym, gym,

n−1∑
i=m

ait

)
∗M

(
gym, gyn,

n−1∑
i=m

ait

))
(2.5)

=

(
1 ∗M

(
gxm, gxn,

n−1∑
i=m

ait

))
∗

(
1 ∗M

(
gym, gyn,

n−1∑
i=m

ait

))

≥
n−1∏
i=m

(M(gxi, gxi+1, ait) ∗M(gyi, gyi+1, ait))

≥
n−1∏
i=m

(M(gx0, gx1, ait) ∗M(gy0, gy1, ait))

By (2.5) and the condition (ii) of Lemma 2.3 , we have

γ(M(gxm, gxn, t) ∗M(gym, gyn, t))

≤ γ

(
n−1∏
i=m

(M(gxi, gxi+1, ait) ∗M(gyi, gyi+1, ait))

)
(2.6)

≤
n−1∑
i=m

γ (M(gxi, gxi+1, ait) ∗M(gyi, gyi+1, ait)) .

From (2.2) and (2.6), we have

γ(M(gxm, gxn, t) ∗M(gym, gyn, t))

≤
n−1∑
i=m

kiγ(M(gx0, gx1, ait) ∗M(gy0, gy1, ait)).(2.7)

Here the sequence γ(M(gx0, gx1, ait)∗M(gy0, gy1, ait)) for all i ∈ N , is increas-
ing and by condition (iii) of the Lemma 2.3, we find the convergence of the series∑n−1

i=m k
iγ(M(gx0, gx1, ait) ∗M(gy0, gy1, ait)).

For given ϵ > 0 there exists n0 ∈ N such that

n−1∑
i=m

kiγ(M(gx0, gx, ait) ∗M(gy0, gy1, ait)) < ϵ for all n,m ≥ n0, n > m.(2.8)
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From (2.7) and (2.8) we have

γ(M(gxm, gxn, t) ∗M(gym, gyn, t)) ≤ ϵ.

So, by Lemma 2.2, we conclude that {gxn} and {gyn} are Cauchy sequences.
Also (K,M, ∗) is complete, therefore there exists x∗, y∗ ∈ K such that

lim
n→∞

gxn = x∗ and lim
n→∞

gyn = y∗ .

Theorem 2.1. Suppose that (K,M, ∗) be a complete fuzzy metric space endowed
with a directed graph J . Let H : K × K → K be a J − γ-contraction with
contraction constant k ∈ (0, 1) and H(K × K) ⊆ g(K). Let g be J -continuous
and commutes with H. Also, we assume, either

(i) H is J -continuous, or

(ii) the four tuple (K,M, ∗,J ) has the Property (A). Then C(Hg) ̸= ϕ iff
(K ×K)Hg ̸= ϕ.

C(Hg) denotes the set of coupled coincidence points.

Proof. Suppose that C(Hg) ̸= ϕ.

Then these exists some (x∗, y∗) ∈ C(Hg), i.e. gx∗ = H(x∗, y∗) and gy∗ =
H(y∗, x∗). So,

(gx∗,H(x∗, y∗)) = (gx∗, gx∗) ∈ ∆ ⊆ E(J )
and (gy∗,H(y∗, x∗)) = (gy∗, gy∗) ∈ ∆ ⊆ E(J −1).

⇒ (x∗, y∗) ∈ (K ×K)Hg.
⇒ (K ×K)Hg ̸= ϕ.

Next, let us assume (K ×K)Hg ̸= ϕ.

Then there exists (x0, y0) ∈ (K × K)Hg, i.e., (gx0,H(x0, y0)) ∈ E(J ) and
(gy0,H(y0, x0)) ∈ E(J −1).

Then by Lemma 2.1, we have a sequence {ni}i∈N of positive integers such
that

(H(xni , yni),H(xni+1, yni+1))∈E(J ) and (H(yni , xni),H(yni+1, xni+1))∈E(J −1).

Also, H(K ×K) ⊆ g(x). Therefore

(gxni+1, gxni+2) ∈ E(J ) and (gyni+1, yni+2) ∈ E(J −1).(2.9)

Also, from Lemma 2.3

lim
n→∞

gxni = x∗ and lim
n→∞

gyni = y∗.(2.10)



A NEW CONTRACTION AND EXISTENCE THEOREMS ON FUZZY METRIC ... 725

But g is J -continuous

⇒ lim
n→∞

g(gxni) = gx∗ and lim
n→∞

g(gyni) = gy∗.

Also, since H and g are commutative

g(g(xni+1)) = g(H(xni , yni)) and g(g(yni+1)) = g(H(yni , xni))

implies

g(gxni+1) = H(gxni , gyni) and g(gyni+1) = H(gyni , gxni).(2.11)

Finally, we show that

gx∗ = H(x∗, y∗) and gy∗ = H(y∗, x∗).

Let H be J -continuous.
Then, from (2.11), we have

lim
n→∞

g(gxni+1) = lim
n→∞

H(gxni , gyni) gives gx∗ = H(x∗, y∗)

and lim
n→∞

g(gyni+1) = lim
n→∞

H(gyni , gxni),

implies gy∗ = H(y∗, x∗).

Thus, (x∗, y∗) is a coupled coincidence point of the mapping H and g, i.e.
C(Hg) ̸= ϕ.

Next, we assume that Property (A) holds.
From (2.9) and (2.10), we have {gxni} → x∗ as i→∞ and (gxni , gxni+1) ∈

E(J ) and {gyni} → y∗ as i→∞ and (gyni , gyni+1) ∈ E(J −1). Therefore, using
property (A),

(gxni , x
∗) ∈ E(J ) and (gyni , y

∗) ∈ E(J −1).

Therefore,

M(gx∗, H(x∗, y∗), t) ∗M(gy∗,H(y∗, x∗), t)

≥ (M(gx∗, g(gxni+1), t/2) ∗M(g(gxni+1), H(x∗, y∗), t/2))

∗ (M(gy∗, g(gyni+1), t/2) ∗M(g(gyni+1), H(y∗, x∗), t/2))

= (M(gx∗, g(gxni+1), t/2) ∗M(H(gxni , gyni),H(x∗, y∗), t/2))

∗ (M(gy∗, g(gyni+1), t/2) ∗M(H(gyni , gxni),H(y∗, x∗), t/2))

= (1 ∗M(H(gxni , gyni), H(x∗, y∗), t/2))

· (1 ∗M(H(gyni , gxni),H(y∗, x∗), t/2)).

Now, taking the limit n→∞,

M(gx∗,H(x∗, y∗), t) = 1 gives gx∗ = H(x∗, y∗).

Also, M(gy∗,H(y∗, x∗)t) = 1 implies gy∗ = H(y∗, x∗).
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Theorem 2.2. Suppose that the hypotheses of Theorem 2.1 hold. Beside, let
for every (x, y), (x∗, y∗) ∈ K ×K there exist (u, v) ∈ K ×K such that

(H(x, y),H(u, v)) ∈ E(J ), (H(y, x),H(v, u)) ∈ E(J −1) and
(H(x∗, y∗),H(u, v)) ∈ E(J ), (H(y∗, x∗),H(v, u)) ∈ E(J −1).

Then H and g have a unique coupled common fixed point.

Proof. Let (x, y) and (x∗, y∗) be coupled coincidence points, i.e.,

gx = H(x, y), gy = H(y, x) and(2.12)

gx∗ = H(x∗, y∗), gy∗ = H(y∗, x∗).(2.13)

By hypothesis, we have

(H(x, y),H(u, v)) ∈ E(J ) and (H(y, x),H(v, u)) ∈ E(J −1)(2.14)

(H(x∗, y∗),H(u, v)) ∈ E(J ) and (H(y∗, x∗), H(v, u)) ∈ E(J −1)(2.15)

Set H(un, vn) = gun+1, u = u0 and H(vn, un) = gvn+1, v = v0.

Then, using (2.12), (2.13), (2.14) and (2.15) we get

(gx, gu1) ∈ E(J ), (gy, gv1) ∈ E(J ),
(gx∗, gu1) ∈ E(J ), (gy∗, gv1) ∈ E(J −1).

But H is g-edge preserving, so

(H(x, y),H(u1, v1)) ∈ E(J ), (H(y, x),H(v1, u1)) ∈ E(J −1) and

(H(x∗, y∗), H(u1, v1)) ∈ E(J ), (H(y∗, x∗),H(v1, u1)) ∈ E(J −1)

this implies (gx, gu2) ∈ E(J ), (gy, gv2) ∈ E(J −1) and (gx∗, gu2) ∈ E(J ),
(gy∗, gv2) ∈ E(J −1). Using the g-edge preserving property of H repeatedly,
for all n ≥ 1, one can obtain

(gx, gun) ∈ E(J ), (gy, gvn) ∈ E(J −1) and

(gx∗, gun) ∈ E(J ), (gy∗, gvn) ∈ E(J −1).

Therefore

γ(M(gx, gu∗, t) ∗M(gy, gy∗, t))

≤ γ((M(gx, gun+1, t/2) ∗M(gun+1, gx
∗, t/2))

∗ (M(gy, gvn+1, t/2) ∗M(gvn+1, gy
∗, t/2)))

≤ γ((M(gx, gun+1, t/2) ∗M(gun+1, gx
∗, t/2))

+ γ(M(gy, gvn+1, t/2) ∗M(gvn+1, gy
∗, t/2))

≤ knγ(p(x, y, t)). (by Lemma (2.2))
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Letting n→∞, we have

γ(M(gx, gx∗t) ∗M(gy, gy∗, t)) = 0

implies M(gx, gx∗, t) = 1 and M(gy, gy∗, t) = 1, this gives

gx = gx∗ and gy = gy∗.(2.16)

Let gx = gx∗ = r and gy = gy∗ = s.
Then using the commutativity of H and g, (2.16) gives
g(gx) = g(H(x, y)) = H(gx, gy) and g(gy) = g(H(y, x)) = H(gy, gx),
gr = H(r, s) and gs = H(s, r).
Thus, (r, s) is a coupled coincidence point.
Now, the same for (x, y) as (r, s),

gx = gr and gy = gs this gives

r = gr and s = gs.

Thus, r = gr = H(r, s) and s = gs = H(s, r). So, (r, s) is a coupled common
fixed point of H and g.
Finally, we prove that the coupled fixed point of H and g is unique.

Let us suppose that (a, b) is another coupled common fixed point of H and g.
Then

a = ga = H(a, b) and b = gb = H(b, a).(2.17)

But, from (2.17) we get

ga = gr = r and gb = gs = s,(2.18)

implies a = r and b = s.
Hence the coupled common fixed point of H and g is unique.

Corollary 2.1. Let (K,M,∗ ) be a complete fuzzy metric space. Let P : K × K
be a J − γ-contraction and γ : (0, 1]→ [0,∞] satisfies the properties (W1) and
(W2). If the mapping P satisfies the conditions:

(i) There exists x0 and y0 in K such that

m∑
i=1

{M(x0, P (x0, y0), ti) ∗M(y0, P (y0, x0), ti)} ̸= 0

for all m ∈ N ;

(ii) r∗s > 0 implies γ(r∗s) ≤ γ(r)+γ(s) for all r, s ∈ {M(x0, P (x0, y0), t)∗
M(y0, P (y0, x0), t) for all x0, y0 ∈ K, t > 0};

(iii) {γ(M(x0, P (x0, y0), ti) ∗M(y0, P (y0, x0), ti)) : i ∈ N} is bounded for all x0
and y0 in K and any sequence {ti}i ⊂ (0,∞);
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(iv) ( 1
M(P (x,y),P (u,v),t)∗M(P (y,x),P (v,u),t)) ≤ k(

1
M(x,u,t)∗M(y,v,t))

for all x, y, u, v ∈ K, t > 0;

(v) P (K ×K) ⊆ K;

(vi) P is J -continuous or

the tuple (K,M, ∗,J ) has the Property (A);

(vii) For every (x, y), (x∗, y∗) ∈ K ×K, there exist (u, u) ∈ K ×K such that

(P (x, y), P (u, v)) ∈ E(J ), (P (y, x), P (v, u)) ∈ E(J −1) and
(P (x∗, y∗), P (u, u)) ∈ E(J ),(P (y∗, x∗), P (v, u)) ∈ E(J −1).

Then P has a coupled fixed point in K.
Putting γ(t) = 1

t − 1, and then proof follows by Theorem2.2.
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Abstract. Most of researches in the reliability theory dealt to study the independence
between components in a system. But, in many real systems, dependence between the
components is one of the intractable realistic assumptions that need to be carefully
considered. Then, the main purpose of this paper is to provide sharp upper and lower
bounds for the reliability of linear consecutive k-out-of-n:G systems consisting of depen-
dent components with identical or arbitrary distribution functions. Some comparisons
are done and many examples are treated to prove the performance of the proposed
method.

Keywords: linear consecutive k-out-of-n:G system, upper bound (BU ), lower bound
(BL), reliability, dependent components, Copula.

1. Introduction

Reliability is an important task especially in complex and high technology sys-
tems. Problems related to reliability are particularly critical when there are
concerns over the consequences of system failures in terms of safety and cost.
Studies elaborated for linear consecutive k-out-of-n systems have attracted a
great importance on theoretical and practical fields, indifferently. These sys-
tems appear primordially in various engineering fields, such as: mechanical,
civil, electronic engineering, telecommunication and network domain, etc.

A linear consecutive k-out-of-n:G (F) system (denoted Lin/Con/k/n:G (F))
consists of n linearly arranged components such as the system works (fails) if
and only if at least k consecutive components work (fail). Note that there is a
duality between the two systems.

Reliability and opened problems which are related to consecutive k-out-of-
n:G (F) systems have been widely studied in the literature under various as-
sumptions and have been resolved, either in the binary case (there are only
two states: function, failure): [19], [3], [4], [7], [12], or in the multi-state case

∗. Corresponding author
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(the system and the components can assume more than two states): [10], [22],
[9], [21], [1], [6], [2], ... Where special attention has been paid to i.i.d coher-
ent systems, because computation of reliability characteristics of a system that
consists of dependent components is difficult especially when the specific type
of dependence is not known.

However, in several real situations, a great number of systems operate with
dependence structures. So, it is necessary to study this category. Recently,
some authors started to study systems with dependence structures and simi-
larly, evaluating the exact value of reliability for such systems is so difficult.
For this reason, conditions oblige us to estimate this reliability via bounds lim-
its approach. Although, it should be noted that obtaining bounds under an
assumption of unknown independence for such systems is harder than for inde-
pendence one. In the literature, there are few papers investigating the system’s
reliability with dependence assumption. In this domain, [8] obtained the reliabil-
ity of consecutive k-out-of-n:G system with dependent elements using a matrix
formulation. [16] proposed bounds for the reliability and the expectations of life-
times of coherent systems based on dependent exchangeable components (which
means that the joint distribution of the component lifetimes is invariant in law
under permutation) using the concept of Samaniego’s signature. [15] investi-
gated the properties of coherent systems with dependent components using the
concept of hyperminimal and hypermaximal distributions and proved that the
lifetime distribution of any coherent system is a generalized mixture of a series
(parallel) subsystem lifetime distributions. Then, from well-known properties
of mixtures, bounds and moments for the hyperminimal and hypermaximal dis-
tributions for coherent systems are obtained. [20] studied the residual lifetime
of both linear and circular consecutive k-out-of-n systems with independent but
non identical components. They obtained expressions for residual lifetime dis-
tributions and mean residual lifetime functions in terms of permanents when
2k ≥ n for linear systems and 2k + 1 ≥ n for circular systems. The failure rate
functions and their asymptotic behavior of consecutive k-out-n systems, using
mixture representations, were investigated by [7]. They studied the two cases:
i.i.d component lifetimes, then independent but not identically distributed com-
ponent lifetimes. They also obtained some results for the case of exchangeable
dependent component lifetimes. [5] investigated the bounding systems reliabil-
ity, especially for k-out-of n:F linear and circular systems. For the k-out-of-n:F
system, the upper and lower bounds are illustrated. But for the other structures,
they provided upper and lower bounds for only linear consecutive 2-out-of-3:F
system and circular 2-out-of-4:F system. [14] derived bounds for the reliability
and the expected lifetime of a coherent system with heterogeneous components,
(based on G1: the average of the reliability functions of the components and
on G2: the average of the reliability functions of the series systems obtained
from the minimal pats sets). They showed by treating some examples that the
bounds obtained by G2 seem to be better than that from G1, but not always
(they presented a counter-example). With the particularity that G1 does not
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depend on the system structure, the permutation of the component reliability
functions, and the dependence structure, while G2 may depend on these three
characteristics. In their other paper, [13] extended the bounds obtained in the
precedent one to the case where the components are ordered (the usual stochas-
tic order). Then, using these bounds, they studied the optimal allocation of
the components at a given system structure in order to improve the system re-
liability. Moreover a similar procedure was applied to get bounds for mixtures
and the generalized proportional hazard rate model when the baseline popu-
lations are ordered. Note that, for this last case, the authors didn’t know if
the proposed bounds remain optimal. Our contribution is devoted to establish
reliability bounds for dependent linear consecutive k-out-of-n:G system for any
value of n and k satisfying the relationship 2k ≥ n. From well-known properties
of coherent systems and using [6] formula, upper and lower bounds are estab-
lished. The performance of the provided bounds is quite satisfactory and their
calculation is very easy.

The paper is organized as follows: Section 2 is devoted to some notations,
assumption and defintions which will be used in the whole paper. In Section 3,
we provide sharp upper and lower bounds for the reliability of linear consecutive
k-out-of-n:G system with component lifetimes of the systems are dependent
and both of an arbitrary joint distribution and identically distributed, by using
formulas provided by [6],[20] and [18]. In section 4, we present briefly the context
of copula applied in reliability computation. We compare reliability bounds for
Lin/con/2/3:G system obtained by our proposed method and the reliability
evaluated by using the copula context elaborated by [11]. We also compare our
obtained results with those provided by [14] and [13].

In the last section, we study the influence of the number of components on
the reliability bounds. In each section, we treat some examples to illustrate the
proposed results.

2. Notations and Definitions

Notations 1. n: number of components in the system.

k : the minimum number of consecutive components required for the system
to be good.

Tj : lifetime of component j ,j = 1, . . . , n.

Fj(t) = P (Tj ≤ t): distribution function of Tj .

R(t) = P (Tk/n:G > t): reliability of the system.

Tk/n:G : lifetime of the system.

Assumptions 1. We assume that T = (T1, ..., Tn) an n-dimensional random
vector is positively lower and upper orthant dependent. (In reliability, the com-
ponent lifetimes are usually positively dependent).
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Definition 1. Let T = (T1, ..., Tn) an n-dimensional random vector, in [18],
the positively lower orthant dependent and positively upper orthant dependent
are defined as:

1. T is positively lower orthant dependent (PLOD) if for all (t1, t2, . . . , tn)
in Rn

P (T1 ≤ t1, T2 ≤ t2, · · · , Tn ≤ tn) ≥
n∏

j=1

P (Tj ≤ tj).

2. T is positively upper orthant dependent (PUOD) if for all (t1, t2, . . . , tn)
in Rn

P (T1 > t1, T2 > t2, · · · , Tn > tn) ≥
n∏

j=1

P (Tj > tj).

Definition 2. A consecutive k-out-of-n:G system consists of n linearly arranged
components, this system works if and only if at least k consecutive components
work.

In the following section, we propose bounds of reliability for the dependent
linear consecutive k-out-of-n:G system (Lin/con/k/n:G system).

3. Bounds of linear consecutive k-out-of-n:G system

Proposition 1. Let the Lin/con/k/n:G system with arbitrarily distributed de-
pendent components. For 2k ≥ n the system’s reliability is bounded as follows

BL ≤ R(t) ≤ BU ,

where

(1) BU = 1 +

m=n−k∑
m=1

Fk+m(t)

[
1− max

m≤j≤k+m−1
Fj(t)

]
− max

n−k+1≤j≤n
Fj(t).

and

(2) BL = (k − n) +
m=n−k∑
m=1

max
m≤j≤k+m

Fj(t) +
m=n−k+1∑

m=1

j=k+m−1∏
j=m

[1− Fj(t)].

Corollary 1. If distribution functions are identical (Fj(t) = F (t) ∀j), the above
formula can be written in this simple form

(k − n)+(n−k)F (t) + (n− k + 1)(1− F (t))k ≤ R(t)

≤ 1 + (n− k − 1)F (t)− (n− k)F (t)2.(3)
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Remark 1. To ensure the reliability value of a system in the tolerable interval
[0, 1], it’s necessary to establish the following relation

max

(k − n)+

m=n−k∑
m=1

max
m≤j≤k+m

Fj(t)+

m=n−k+1∑
m=1

j=k+m−1∏
j=m

[1− Fj(t)], 0


≤ R(t)(4)

≤ min

{
1+

m=n−k∑
m=1

Fk+m(t)

[
1− max

m≤j≤k+m−1
Fj(t)

]
− max

n−k+1≤j≤n
Fj(t), 1

}
.

When components are identically distributed, formula (4) becomes

max{(k − n) + (n− k)F (t) + (n− k + 1)(1− F (t))k, 0}
≤ R(t)(5)

≤ min{1 + (n− k − 1)F (t)− (n− k)F (t)2, 1}.

The bellow property can be used to quantify bounds of the reliability of the
studied system

Properties 1.

max
j
{P (Tj ≤ t)} ≤ P (

⋃
j

Tj ≤ t) ≤ min{
∑
j

P (Tj ≤ t), 1}.

Proof of Proposition 1. The reliability of dependent linear consecutive k-out-of-
n:G system is defined by

R(t) = P (Tk/n:G > t).

The lifetime of this system can be represented as follows

Tk/n:G = max{T[1:k], T[2:k+1], · · · , T[n−k+1:n]},

such as T[1:n] = min{T1, · · · , Tn}.
[6] formula leads to

(6) R(t) = P (Tk/n:G > t) =
n∑

i=k

[
P (T[i−k+1:i] > t)− P (T[i−k+1:i+1] > t)

]
with P (T[n−k+1:n+1]>t) = 0.

Certainly, formula (6) gives the expression of reliability for this system, but
it is quite difficult to calculate it and it is not straightforward to use it especially
for large systems. For this reason, we have resorted to the calculation of the
following bounds.
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Equation (6) can be written as

(7) R(t) = 1 +

m=n−k∑
m=1

P (

j=k+m⋃
j=m

Tj ≤ t)−
m=n−k+1∑

m=1

P (

j=k+m−1⋃
j=m

Tj ≤ t)

Mathematical substitutions have been done in equation (7) that leads to

R(t) = 1 +

m=n−k∑
m=1

Fk+m(t)− P (Tk+m ≤ t
⋂

(

j=k+m−1⋃
j=m

Tj ≤ t))


− P

 j=n⋃
j=n−k+1

Tj ≤ t

 .(8)

We begin by establishing the upper bound.
We have

−P (

j=n⋃
j=n−k+1

(Tj ≤ t) ≤ − max
n−k+1≤j≤n

Fj(t)

and

− P (Tk+m ≤ t
⋂

(

j=k+m−1⋃
j=m

Tj ≤ t)) ≤ −P (Tk+m ≤ t)P (

j=k+m−1⋃
j=m

Tj ≤ t)

≤ −Fk+m(t) max
m≤j≤k+m−1

Fj(t).

Thus, the integration of obove inequalities in equation (8), the upper bound of
the reliability is given as

(9) R(t) ≤ 1 +
m=n−k∑
m=1

Fk+m(t)

[
1− max

m≤j≤k+m−1
Fj(t)

]
− max

n−k+1≤j≤n
Fj(t).

The lower bound expression can be provided as follows:
Using equation (7), we have

P (

j=k+m⋃
j=m

Tj ≤ t) ≥ max
m≤j≤k+m

Fj(t)

and

−P (

j=k+m−1⋃
j=m

Tj ≤ t) = −1 + P (

j=k+m−1⋂
j=m

Tj > t) ≥ −1 +

j=k+m−1∏
j=m

[1− Fj(t)].

Then, we obtain

(10) R(t) ≥ (k − n) +
m=n−k∑
m=1

max
m≤j≤k+m

Fj(t) +
m=n−k+1∑

m=1

j=k+m−1∏
j=m

[1− Fj(t)] .
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3.1 Numerical examples

We suppose that all components are exponentially distributed with parameter
λ (Tj ∼ ξ(λ))

Case 1: The linear consecutive 2-out-of-3:G system. The reliability bounds
using equation (5) are plotted in figure 1

Figure 1: Reliability bounds for linear consecutive 2-out-of-3:G system

Case 2: The linear consecutive 2-out-of-4:G system

Figure 2: Reliability bounds for linear consecutive 2-out-of-4:G system

Case 3: The linear consecutive 3-out-of-4:G system
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Figure 3: Reliability bounds for linear consecutive 3-out-of-4:G system

Figures 1, 2 and 3 show that for λt > 5, the system is less reliable. Then, it’s
necessary to operate machines until λt = 5. We can remark also that when
the difference (n− k) decreases, the reliability bounds of the system are getting
closer.

4. Comparison with recent results

4.1 Comparison with reliability values using copula

One of the most commonly used methods for modeling dependence between com-
ponent lifetimes is based on copulas because they contain the information about
the dependence structure and can capture the nonlinear dependence. Each cop-
ula has its own dependence properties and the detailed review of copulas can
be found in [17]. In reliability, the component lifetimes are usually positively
dependent, this should be considered while choosing a suitable copula. With the
concept of copula, several families of distributions have been constructed such
as Gaussian, Clayton, Gumbel, Frank,. . . etc, with the particularity that Gum-
bel copula and Clayton copula have simple closed form. Also Clayton copula
may characterize the joint distribution of the component lifetimes in the context
of stress strength interference, for this reason, [11] computed the reliability of
dependent consecutive k-out-of-n:G system. The dependency be either linear
or non linear. As an example, in his paper, the dependent linear consecutive
2-out-of-3:G was studied using Clayton copula

(11) Ccl
l (u1, u2) = (u−1

1 + u−1
2 − 1)

−1
.

The component lifetime distribution functions are

F1(t) = 1− e−t, F2(t) = 1− e−2t, F3(t) = 1− e−3t.

The system’s reliability is obtained as

R(t) = e−2t − {(1− e−t)−1 + (1− e−3t)−1 − 1}−1

+ {(1− e−t)−1 + (1− e−2t)−1 + (1− e−3t)−1 − 2}−1.(12)
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Now, the same example is traited using our proposed approach and applying
formula (4), we obtain

max{−1 + F3(t) + [1− F1(t)][1− F2(t)] + [1− F2(t)][1− F3(t)], 0}
≤ R(t) ≤ min{1− F3(t)F2(t), 1}.(13)

The figure 4 shows curves of upper and lower bounds elaborated by the proposed
approach and the exact value of reliability using the Clayton copula method.

Figure 4: Lower, upper bounds and exact value of Lin/con/2/3:G system

We can remark that there is a well concordance between the results obtained
by the two methods. The bounds come very close to exact value of the system’s
reliability. And when n , k increase, our approach is more flexible, because it
didn’t need many computations and the time computation is less than the time
used in the copula approach.

4.2 Comparaison with Miziula and Navarro bounds

Let us compare the procedure described here and the procedure derived by [14]
and [13]. We consider the following examples: linear consecutive 2-out-of-3:G
system and linear consecutive 2-out-of-4:G system, with

F1(t) = 1− e−t, F2(t) = 1− e−2t, F3(t) = 1− e−3t, F4(t) = 1− e−4t
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Figure 5: Reliability bounds for linear consecutive 2-out-of-3:G

Figure 6: Reliability bounds for linear consecutive 2-out-of-4:G

Figures 5 and 6 show that the bounds obtained in our paper are better than
those derived by [13].
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Figure 7: Reliability bounds for linear consecutive 2-out-of-3:G

Figure 8: Reliability bounds for linear consecutive 2-out-of-3:G (using (Equ11)
in Navarro (2018))

While figure 7 (plotted using G2) and figure 8 (plotted using (Equ11) in
Navarro 2018) show that the bounds provided by [14] are little better than our
bounds, but they stay very close.

5. Influence of system components on reliability bounds

In this section, we will evaluate the difference between the reliability bounds for
the case Fj(t) = F (t) ∀j . In order to determine the influence of variations of n
and k on the difference of bounds.

(14) I = BU −BL = (n−k+ 1)−F (t)− (n−k)F (t)2− (n−k+ 1)(1−F (t))k.
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Where

BL = max{(k − n) + (n− k)F (t) + (n− k + 1)(1− F (t))k, 0}
= (k − n) + (n− k)F (t) + (n− k + 1)(1− F (t))k,

BU = min{1 + (n− k − 1)F (t)− (n− k)F (t)2, 1}
= 1 + (n− k − 1)F (t)− (n− k)F (t)2.

We assume that the component lifetimes are exponentially distributed with
parameter λ = 1, and for some different values of n and k we obtain the following
figure.

Figure 9: Difference interval for various systems

Figure 9 evaluates the maximum difference between BU and BL for different
values of n and k.

6. Conclusion

The following results inspired from this work can be drawn as follows

• The development of the reliability bounds of a linear consecutive k-out-of-
n:G system in which k consecutive components are positively dependent
and arbitrarily distributed.

• The previous results are always valid for any values of k and n satisfying
the relationship 2k ≥ n.

• Reliability system using copula approach belongs to the interval of relia-
bility bounds using the developed approach.

• Comparisons between our obtained results and those of [14] and [13] were
done. Our approach was applied corresponding to their hypotheses, the
corresponding results show a pertinence and a robustness.
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Abstract. A modified predator-prey model is introduced with Holling -type II. In-
cluding a constant rate of harvesting in both infected predators by prey, and predators
who are prone to disease. An existence of positive biological equilibrium and uniformly
boundedness of the present system are obtained as well. Furthermore, the local stability
conditions are defined based on Routh-Hurwitz criteria. Finally, an effective Lyapunov
function was performed to check the global asymptotic stability of the interior equilib-
rium point.

Keywords: predator-prey, Holling-type II, harvesting, boundness, stability, Lyapunov
function.

1. Introduction

The active research area on classical applications of mathematics to biology, is
the study of interactions between populations of various species, by using au-
tonomous differential equations modeling a predator-prey systems [1, 2, 11, 12].
The Lotka-Volterra model was the first to study interactions between predators
and prey in 1927. Together with further developed and extended researches such
as [3], who divided the prey populations into susceptible and infected. This dy-
namic relationship between predators and their prey will take into account some
aspects that are considered essential to explain the dynamics. Lesile-Gower
model has investigated several researchers such as [4]. They studied the bound-
edness of positive equilibrium points and global stability. Sufficient conditions
for the existence and global stability of the model’s positive periodic solutions
were discussed in [13].

∗. corresponding author
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The goal of this paper is to give a study of three-dimensional system incor-
porating a modified version of Lesile-Gower Holling-type II, p(x) = x

m+x , where
m is the environment that provides production to prey. In our system there
are preys and an infected predators which are harvested continuously. However,
there are a susceptible predators living on prey and are not harvested. Harvest-
ing infected mathematical dynamics because otherwise, it can lead population
density to a dangerously low level of extinction. There are many researches on
harvesting such as [5, 9, 10]. Important to note is that our system proposed
predators are exposed to the risk of disease. In both mathematical and ecologi-
cal terms, the effect of disease on the ecological system is an important issue. As
a result, many researches [6, 7, 8] proposed and studied different predator-prey
models in presence of disease.

This paper is organized as what follows. In section 2, we describe our system
(1) then we reduce the number of parameters to get system (2). Next, in section
3, we studied the uniformly boundedness of all positive solutions. Existence of
positive equilibrium points are discussed in section 4. After that in section 5,
behavior of solutions at each equilibrium points are discussed. Finally, global
stability of interior equilibrium point is studied in section 6.

2. The model

We will consider our model under the framework of the following nonlinear
differential equations:

dx

dt
= rx(1− x

k
)− ayx

m+ x
− azx− h1x,

dy

dt
= bxy + αyz +

γyx

m+ x
− h2y,

dz

dt
= bzx− αyz − dz.

(1)

Here, x, y and z are the prey, infected predator and susceptible predator, respec-
tively and r, k, a, b, γ, α, h1, h2, d are assumed to be positive constants. From
the biological point of view, we are only interested in the dynamics of sys-
tem (1) in the closed octant R3

+. Thus, we consider the initial conditions are
x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0.

To reduce the number of parameters, we non-dimensionalize system (1) with
the following scaling:

X =
x

k
, Y =

ay

rm
, Z =

az

rm
, T = rt.
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Table 1: Definition of parameters in the model
Parameter Definition

r The logistic growth rate of the prey in the absence of predators.

k The enviromental carrying capacity.

a, b The capture rates with (a > b).

α The interaction between y, z.

h1, h2 The rates of harvesting where (h1 > h2).

γ The interaction rate of infected predator species.

d The natural death rate in the absence of prey.

Then system (1) takes the form (after some simplification):

dX

dT
= X(1−X)− Y X

1 + βX
−mZX − δ1X,

dY

dT
= cXY + eY Z +

nY X

1 + βX
− δ2Y,

dZ

dT
= cXZ − eY Z − wZ,

(2)

where

k

m
= β,

h1
r

= δ1,
bk

r
= c,

d

r
= w,

h2
r

= δ2,
γk

rm
= n,

αm

a
= e.

3. Boundedness of all positive solutions

Theorem 1. All solutions of system (2) that start in R3
+ are uniformly bounded

and remain positive, in order to be meaningful from a biological viewpoint.

Proof. Assuming that (X(T ), Y (T ), Z(T )) be any positive solution of system
(2). Let Q(T ) = nX + Y + Z. Hence

dQ

dT
+ µQ ≤ −n

(
X − D

2

)2
+ n

(D
2

)2
,

where D = (1− δ1) + µ , (δ1 < 1), therefore

dQ

dT
+ µQ ≤ n

(D
2

)2
.

Solving the differential inequality, we obtain

Q(T ) ≤ nD2

4µ
+ ce−µT ,

for T →∞, all solutions of system (2) enter into the region

B = {(X,Y, Z) : 0 ≤ Q ≤ nD2

4µ
}.
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4. Equilibrium points

System (2) has the following points of equilibrium:

(i) The trivial equilibrium E0(0, 0, 0).

(ii) The predators free equilibrium E1(1− δ1, 0, 0).

(iii) The infected predator free equilibrium E2(X2, 0, Z2), where X2 = w
c and

Z2 =
c(1−δ1)−w

m if c(1−δ1)
w > 1.

(iv) The susceptible predator free equilibrium E3(X3, Y3, 0), from system (2)
we get cβX2 + ((c + n) − δ2β)X − δ2 = 0, we have one positive real root

given by X3 =
−((c+n)−δ2β)+

√
((c+n)−δ2β)2+4cβδ2
2cβ , therefore Y3 = ((1− δ1)−

X3)(1 + βX3) if (1− δ1) > X3 hold.

(v) The interior equilibrium E∗(X∗, Y ∗, Z∗), given by:

1−X∗ − Y ∗

1 + βX∗ −mZ
∗ = δ1,

cX∗ + eZ∗ +
nX∗

1 + βX∗ = δ2,

cX∗ − eY ∗ = w,

(3)

from (3) we get X∗ = w+eY ∗

c , Z∗ = (1+βX∗)(δ2−cX∗)−nX∗

e(1+βX∗) , if (X∗ < δ2
c ). There-

fore

(4) D1Y
2 +D2Y −D3 = 0,

where

D1 = βe2(m− e

c
),

D2 = me
(
c+ n+ β(2w − δ2)−

c

m

)
− e2(1− β(1− 2w

c
− δ1)),

D3 = m(cδ2 + w(β(δ2 − w)− (c+ n)))

+ ew(β((1− δ1)−
w

c
)− 1)− ec(1− δ1).

(5)

We have one positive root for equation (4) given by:

Y ∗ =
−D2 +

√
D2

2 + 4D1D3

2D1
,

if the following conditions hold, D1 > 0 ⇐⇒ mc > e, and D3 > 0 ⇐⇒ βδ2 >
1, βc(1− δ1) > 1, and ec(1− δ1) < 1.
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5. Behaviour of solutions

First, we need to compute the Jacobian matrix of system (2) for general (X,Y, Z).

J(X,Y, Z) =

1− 2X − Y
(1+βX)2

−mZ − δ1 − X
1+βX −mX

cY + nY
(1+βX)2

cX + eZ + nX
1+βX − δ2 eY

cZ −eZ cX − eY − w

 .
We will evaluated J(X,Y, Z) at each equilibrium points. Let J0 denoted the
Jacobian matrix at E0,

J0 =

1− δ1 0 0
0 −δ2 0
0 0 −w

 ,
this immediately shows that E0 is saddle point (unstable).

Let J1 denoted the Jacobian matrix at E1,

J1 =

−(1− δ1)
−(1−δ1)

1+β(1−δ1) −m(1− δ1)
0 (1−δ1)[c(1+β(1−δ1))+n]

1+β(1−δ1) − δ2 0

0 0 c(1− δ1)− w

 ,
so the eigenvalues are:

λ1 = −(1− δ1) < 0,

λ2 =
(1− δ1)[c(1 + β(1− δ1)) + n]

1 + β(1− δ1)
− δ2,

λ3 = c(1− δ1)− w > 0.

(6)

thus, from (6)E1 is saddle point (unstable).

Let J2 denoted the Jacobian matrix at E2,

J2 =

A11 A12 A13

0 A22 0
A31 A32 0

 ,
where

A11 = 1− 2X2 −mZ2 − δ1, A12 =
−X2

1 + βX2,
,

A13 = −mX2, A22 = cX2 + eZ2 +
nX2

1 + βX2
− δ2, A31 = cZ2, A32 = −eZ2.

The characteristic equation of the Jacobian matrix J2 is given by:

λ3 + a1λ
2 + a2λ+ a3 = 0,
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where

a1 = −(A11 +A22),

a2 = A11A22 −A13A31,

a3 = A31A13A22.

(7)

Hence,
a1a2 − a3 = −A11A22(A11 +A22) +A11A13A31.

If A11 < 0, A22 < 0 then a1 > 0, a3 > 0, and a1a2 − a3 > 0, then by using
Routh-Hurwitz criterion E2 is asymptotically stable.

Let J3 denoted the Jacobian matrix at E3,

J3 =

B11 B12 B13

B21 B22 B23

0 0 B33

 ,
where

B11 = 1− 2X3 −
Y3

(1 + βX3)2
− δ1, B12 =

−X3

1 + βX3,
, B13 = −mX3,

B21 = cY3 +
nY3

(1 + βX3)2
, B22 = cX3 +

nX3

1 + βX3
− δ2,

B23 = eY3, B33 = cX3 − eY3 − w.

The characteristic equation of the Jacobian matrix J3 is given by:

λ3 + b1λ
2 + b2λ+ b3 = 0,

where

b1 = −(B11 +B22 +B33),

b2 = B11B22 +B11B33 +B22B33 −B12B21,

b3 = B12B21B33 −B11B22B33.

(8)

Hence,

b1b2 − b3 = [−(B11 +B22 +B33)(B11B22 +B11B33 +B22B33) +B12B21B11

+B12B21B22] +B11B22B33.(9)

Let M1 = B11B22B33. If B11 < 0, B22 < 0, and B33 < 0, then b1 > 0, b3 >
0,M1 < 0, and the first bracket in (9) is positive.

Thus, ifM1 < [−(B11+B22+B33)(B11B22+B11B33+B22B33)+B12B21B11+
B12B21B22], then by using Routh-Hurwitz criterion E3 is asymptotically stable.

Finally, let J∗ denoted the Jacobian matrix at E∗,

J∗ =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 ,
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where

C11 = 1− 2X∗ − Y ∗

(1 + βX∗)2
−mZ∗ − δ1, C12 =

−X∗

1 + βX∗ , C13 = −mX∗,

C21 = cY ∗ +
nY ∗

(1 + βX∗)2
,

C22 = cX∗ + eZ∗ +
nX∗

1 + βX∗ − δ2, C23 = eY ∗, C31 = cZ∗, C32 = −eZ∗,

C33 = cX∗ − eY ∗ − w.

The characteristic equation of the Jacobian matrix J∗ is given by:

λ3 + c1λ
2 + c2λ+ c3 = 0,

where

c1 = −(C11 + C22 + C33),

c2 = (C11C22 + C11C33 + C22C33)− (C12C21 + C13C31 + C23C32),

c3 = (C12C21C33 + C13C31C22 + C11C23C32)

− (C11C22C33 + C12C23C31 + C13C21C32).

(10)

Hence,

c1c2 − c3 = [−(C11 + C22 + C33)(C11C22 + C11C33 + C22C33)

+ C11C12C21 + C11C13C31 + C22C12C21 + C22C23C32 + C33C13C31

+ C33C23C32] + (C11C22C33 + C12C23C31 + C13C21C32).

(11)

If C11 < 0, C22 < 0, and C33 < 0, then c1 > 0, also the first parenthesis of c3 in
(10) and the square bracket in (11) are positive.

Let M2 = [−(C11 + C22 + C33)(C11C22 + C11C33 + C22C33) + C11C12C21 +
C11C13C31 + C22C12C21 + C22C23C32 + C33C13C31 + C33C23C32], and M3 =
C11C22C33 + C12C23C31 + C13C21C32 ,then M2 maybe positive or negative or
zero. We have the following theorem using the Routh-Hurwitz criterion.

Theorem 2. Suppose that E∗(X∗, Y ∗, Z∗) exist. Let C11 < 0, C22 < 0, and
C33 < 0. Then E∗ is asymptotically stable in one of the following cases:

(i) M3=0, or

(ii) 0 < M3 < C12C21C33 + C13C31C22 + C11C23C32, or

(iii) −M2 < M3 < 0
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6. Global stability of interior equilibrium point

Theorem 3. The interior equilibrium E∗ is globally asymptotically stable if the
following conditions hold.

1 + βX∗ >
n(4cµϵ+D2(n+ 1))

4µϵ(n(1 +m)− c)
,(12)

1 + βX∗ < max
{4neµϵ− nD2

4µϵ(c+ e)
,
n(e− c)
e− nm

}
,(13)

c < n+ nm < e+ n.(14)

Proof. We will construct a Lyapunov function V which is continuous and de-
fined on R3

+. The function V should be zero at E∗ and positive for all other
values X,Y and Z. Let us define the function V as follow:

V (X,Y, Z) = L1(X−X∗−X∗ ln
X

X∗ )+L2(Y−Y ∗−Y ∗ ln
Y

Y ∗ )+(Z−Z∗−Z∗ ln
Z

Z∗ ),

where L1 = 1 + βX∗ and L2 =
1+βX∗

n .
The time derivative of V along the solution of (2) is:

dV

dt
=L1(X −X∗)

(
1−X − Y

1 + βX
−mZ − δ1

)
+ L2(Y − Y ∗)

(
cX + eZ +

nX

1 + βX
− δ2

)
+ (Z − Z∗)(cX − eY − w),

(15)

and using system (2), we get:

dV

dt
=L1(X −X∗)

[
− (X −X∗)−m(Z − Z∗)

+
Y ∗(1 + βX)− Y (1 + βX∗)

(1 + βX)(1 + βX∗)

]
+ L2(Y − Y ∗)

[
c(X −X∗) + e(Z − Z∗)

+
nX(1 + βX∗)− nX∗(1 + βX)

(1 + βX)(1 + βX∗)

]
+ (Z − Z∗)

[
c(X −X∗)− e(Y − Y ∗)

]
.

(16)

Using some manipulation with the result of theorem 1 and assuming ϵ = 1
β ,

equation (16) takes the form

dV

dt
≤
[
(1 + βX∗)

(
− 1 +

c

n
−m

)
+ c+

D2(n+ 1)

4µϵ

]
(X −X∗)2

+
[
(1 + βX∗)

(c+ e

n

)
−
(
e− D2

4µϵ

)]
(Y − Y ∗)2

+
[
(1 + βX∗)

( e
n
−m

)
+ c− e

]
(Z − Z∗)2.

(17)
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From (12)-(14), dV
dt is negative definite. Finally, E∗ is globally asymptotically

stable.

7. Conclusion

In this paper, we deal with a modified Holling-type II predator-prey model of
one prey and two predators whom are exposed to the risk of disease. As well
as constants of harvesting (h1 > h2) in both prey and infected predator species.
Positive biological equilibrium points(E0, E1) are direct show unstability, where
the local stability of (E2, E3, E

∗) are discussed by using the Routh-Hurwitz
criterion. In addition, global stability of interior equilibrium point (E∗) has
been investigated by using a suitable Lyapunov function. In our study it is
important to realize that illegal harvesting on prey occures a risk even in the
absence of predator.
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Abstract. The primary motivation behind this paper is to present a brief overview of
the bipolar complex fuzzy sets (in short BCFS) which is an extension of bipolar fuzzy
set theory. New operations defined over the bipolar complex fuzzy sets some properties
of these operations are discussed.

1. Introduction

Fuzzy sets are a sort of useful mathematical structure representing a vague
collection of objects. There are various types of Fuzzy sets in the Fuzzy set
theory, such as intuitional Fuzzy sets, valued Fuzzy sets, vague sets, etc.

Zhang [11] introduced bipolar fuzzy sets in 1998. Positive information in a
bipolar fuzzy set is what is guaranteed to be possible, while negative information
is what is impossible or forbidden or certainly false. Bipolar valued fuzzy set
by Lee [3] introduced a further generalization of fuzzy sets in which the degree
of membership between [0, 1] and [−1, 1] increased. In bipolar fuzzy sets, mem-
bership degree 0 means that elements are irrelevant to corresponding property,
membership degree belongs to (0, 1] indicate that somewhat elements are sat-

∗. Corresponding author
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isfying the corresponding property and membership degree belongs to [−1, 0)
indicate that somewhat elements are satisfying implicit counter property.

Ramot et al. [5] introduced a new innovative concept in 2002 and called
it a complex fuzzy set (CFS). This approach is absolutely different from other
researchers, where Ramot et al. extended the range of membership function to
unit disc in the complex plane, unlike the others who limited to [0, 1]. Hence,
Ramot et al. [6] added an additional term called the phase term to solve the
enigma in translating some complex-valued functions on physical terms to hu-
man language and vice versa.

We employ techniques similar to these used earlier by Abdallah Al-Husban
and Abdul Razak Salleh ([13], [14]) and Abdallah Al-Husban et al. ([15], [?]).

In this work, we introduce some workable concepts about our (BCFS) con-
cept, which are intersection, union and complement. Also some properties of
the set theoretic operations of (BCFS).

2. Preliminaries

In this section, we remember the definitions and related results that this work
requires.

Definition 2.1 ([9]). A fuzzy set (FS) A in a universe of discourse U is charac-
terized by a membership function µA(x) that takes values in the interval [0, 1] .

Definition 2.2 ([11]). Let X be a non-empty set. A bipolar fuzzy set (BFS)
A in X is an objective having the form A =

{(
x, r+A(x), r

−
A(x)

)
: x ∈ X

}
where

r+ : X → [0, 1] and r− : X → [−1, 0] are mappings.

Definition 2.3 ([11]). Let X be every two bipolar fuzzy set.

A = {(x, r+A(x), r
−
A(x)) : x ∈ X} and B = {(x, r+B(x), r

−
B(x)) : x ∈ X} we

define

i) A ∩B = {min(r+A(x), r
+
B(x)),max(r−A(x), r

−
B(x)) : x ∈ X},

ii) A ∪B = {max(r+A(x), r
+
B(x)),min(r−A(x), r

−
B(x)) : x ∈ X},

iii) Ac = {(x, 1− r+A(x),−1− r
−
A(x)) : x ∈ X}.

Definition 2.4 ([5]). A complex fuzzy set (CFS) A, defined on a universe of
discourse U , is characterized by a membership function µA(x), that assigns to
any element x ∈ U a complex-valued grade of membership in A. By definition,
the values of µA(x), may receive all lying within the unit circle in the complex
plane, and are thus of the form µA(x) = rA(x)e

iϖA(x), where i =
√
−1, each of

rA(x) and ϖA(x) are both real-valued, and rA(x) ∈ [0, 1]. The CFS A may be
represented as the set of ordered pairs

A = {(x, µA(x)) : x ∈ U} =
{(
x, rA(x)e

iϖA(x)
)
: x ∈ U

}
.
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Definition 2.5 ([5]). A complex fuzzy complement of A may be represented as
follows:

Ac = {(x, µAc(x)) : x ∈ U} =
{(
x, rAc(x)eiϖAc (x)

)
: x ∈ U

}
,

where rAc(x) = 1− rA(x) and ϖAc(x) = 2π −ϖA(x).

Definition 2.6 ([5]). Let A and B be two complex fuzzy sets on U where

A =
{⟨
x, µA(x) = rA(x)e

i argrA
(x)
⟩
: x ∈ U

}
,

B =
{⟨
x, µB(x) = rB(x)e

i argrB
(x)
⟩
: x ∈ U

}
.

The complex fuzzy intersection of A and B denoted by A ⊕ B, is specified

by A ⊕ B = {⟨x, µA⊕B(x)⟩ : x ∈ U} , where µA⊕B(x) = rA⊕B(x)e
i argrA⊕B

(x)
=

max (rA(x), rB(x)) e
imax

(
argrA

(x),argrB
(x)

)
.

The complex fuzzy union of A and B denoted by A⊗B, is specified by

A⊗B = {⟨x, µA⊗B(x)⟩ : x ∈ U} ,

where

µA⊗B(x) = rA⊗B(x)e
i argrA⊗B

(x)
= min (rA(x), rB(x)) e

imin
(
argrA

(x),argrB
(x)

)
.

Definition 2.7 ([5]). Let A and B be two complex fuzzy sets on X, µA(x) =
rA(x)e

i argA(x) and µB(x) = rB(x)e
i argB(x) their membership functions, respec-

tively. We say that A is greater than B, denoted by A ⊇ B or B ⊇ A, if for any
x ∈ X, rA(x) ≥ rB(x) and argA(x) ≥ argB(x).

3. Bipolar complex fuzzy sets

In this work, we start with the introduction of a (BCFS) definition and some
related properties are discussed.

Definition 3.1. Let X is a non-empty set. A bipolar complex fuzzy set (BCFS)

A in X is an objective having the form A = {(x, r+Aeiθ
+
A , r−Ae

iθ−A ) : x ∈ X}. where
r+A : X → [0, 1] and r−A : X → [−1, 0] are mappings. r+Ae

iθ+A the positive complex

membership degree and r−Ae
iθ−A the negative complex membership degree. Also

the phase term of bipolar complex positive membership function and bipolar
complex negative membership function belongs to (0, 2π] and r+A ∈ [0, 1], r−A ∈
[−1, 0].

Example 3.1. Let A =

{ (
a, 0.2e2πi,−0.4e−1.2πi

)
,
(
b, 0.8e1.3πi,−0.2e0πi

)
,(

c, 0.3eπi,−0.4e−1.5πi
) }

is a (BCFS) of X = {a, b, c} .
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Definition 3.2. The complement of a (BCFS) A = {(x, r+Aeiθ
+
A , r−Ae

iθ−A ) : x ∈
X} is denoted by Ac and defined by Ac = {(x, 1−r+Aei(2π−θ

+
A),−1−r−Aei(2π−θ

−
A)) :

x ∈ X}.

Example 3.2. Let X = {a, b, c} be a universe of discourse

A =

{ (
a, 0.2e2πi,−0.4e−1.2πi

)
,
(
b, 0.8e1.3πi,−0.2e0πi

)
,(

c, 0.3eπi,−0.4e−1.5πi
) }

is a (BCFS).

Then

Ac =


(a, (1− 0.2)ei(2π−2π), (−1 + 0.4)ei(2π+1.2π)),

(b, (1− 0.8)ei(2π−1.3π), (−1 + 0.2)ei(2π−0π)),

(c, (1− 0.3)ei(2π−π), (−1 + 0.4)ei(2π+1.5πi)


=

{ (
a, 0.8e0i,−0.6e3.2πi

)
,
(
b, 0.2e0.7πi,−0.8e2πi

)
,(

c, 0.7eiπ,−0.6e3.5πi
) }

.

Definition 3.3. The union of two (BCFS) as follows:

Let A and B be two (BCFS) in X, where A = {(x, r+Aeiθ
+
A , r−Ae

iθ−A ) : x ∈ X}
and B = {(x, r+Beiθ

+
B , r−Be

iθ−B ) : x ∈ X}. Then the union of A and B is denoted
as A ∪B and is given as:

A ∪B = {(max(r+A , r
+
B)e

imax(θ+A ,θ
+
B),min(r−A , r

−
B)e

imin(θ−A ,θ
−
B)) : x ∈ X}.

Example 3.3. Let X = {a, b, c} be a universe of discourse. Let A and B be
two (BCFS). Let

A =

{ (
a, 0.2e2πi,−0.4e−1.2πi

)
,
(
b, 0.8e1.3πi,−0.2e0πi

)
,(

c, 0.3eπi,−0.4e−1.5πi
) }

and

B =

{ (
a, 0.2eπi,−0.3e−1.4πi

)
,
(
b, 0.7e1.5πi,−0.1e1.5πi

)
,(

c, 0.1eπi,−0.3e−1.5πi
) }

,

then

(A ∪B) =

{ (
a, 0.2e2πi,−0.3e−1.2πi

)
,
(
b, 0.8e1.5πi,−0.1e0πi

)
,(

c, 0.3eπi,−0.3e−1.5πi
) }

.

Definition 3.4. The intersection of two (BCFS) as follows: Let A and B

be two (BCFS) in X, where A = {(x, r+Aeiθ
+
A , r−Ae

iθ−A ) : x ∈ X} and B =

{(x, r+Beiθ
+
B , r−Be

iθ−B ) : x ∈ X}. Then the intersection of A and B is denoted as
A ∩B and is given as:
(A ∩B)(x) = {(min(r+A , r

+
B)e

imin(θ+A ,θ
+
B),max(r−A , r

−
B)e

imax(θ−A ,θ
−
B))}.

Example 3.4. Let X = {a, b, c} be a universe of discourse. Let A and B be
two (BCFS). Let
A = {(a, 0.2e2πi,−0.4e−1.2πi), (b, 0.8e1.3πi,−0.2e0πi), (c, 0.3eπi,−0.4e−1.5πi)} and
B = {(a, 0.2eπi,−0.3e−1.4πi), (b, 0.7e1.5πi,−0.1e1.5πi), (c, 0.1eπi,−0.3e−1.5πi)},
then

(A∩B) = {(a, 0.2eπi,−0.3e−1.2πi), (b, 0.7e1.3πi,−0.2e0πi), (c, 0.1eπi,−0.3e−1.5πi)}.
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Definition 3.5. If A and B are (BCFSs) in a universe of discourse X , where

A = {(x, r+Aeiθ
+
A , r−Ae

iθ−A ) : x ∈ X} and B = {(x, r+Beiθ
+
B , r−Be

iθ−B ) : x ∈ X}, then
1) A ⊂ B if and only if r+A < r+B and r−A > r−B for amplitude terms and the

phase terms (arguments) θ+A < θ+B and θ−A > θ−B for all x ∈ X.
2) A = B if and only if r+A = r+B and r−A = r−B for amplitude terms and the

phase terms (arguments) θ+A = θ+B and θ−A = θ−B for all x ∈ X.

Proposition 3.6. Let A, B and R be any three (BCFS) over U . Then the
following holds:

i. A ∪A = A,

ii. A ∩A = A,

iii. A ∪B = B ∪A,
iv. A ∩B = B ∩A,
v. A ∪ (B ∩R) = (A ∪B) ∩ (A ∪R) ,
vi. A ∩ (B ∪R) = (A ∩B) ∪ (A ∩R) ,
vii. A ∪ (B ∪R) = (A ∪B) ∪R,
viii. A ∩ (B ∩R) = (A ∩B) ∩R.

Proof. Let A, B and R are three (BCFS) given as: A = {(x, r+Aeiθ
+
A , r−Ae

iθ−A ) :

x ∈ X}, B = {(x, r+Beiθ
+
B , r−Be

iθ−B ) : x ∈ X} and R = {(x, r+Reiθ
+
R , r−Re

iθ−R ) : x ∈
X}.

So, to prove (i) we need to recall 3.3, then we have:

A ∪ A = {(max(r+A , r
+
A)e

imax(θ+A ,θ
+
A),min(r−A , r

−
A)e

imin(θ−A ,θ
−
A)) : x ∈ X} =

{(x, r+Aeiθ
+
A , r−Ae

iθ−A ) : x ∈ X} = A.

Analogously to (i), we can prove (ii) with recalling 3.4.

To prove (iii) we need to recall 3.3, and then we have

A ∪B = {(max(r+A , r
+
B)e

imax(θ+A ,θ
+
B),min(r−A , r

−
B)e

imin(θ−A ,θ
−
B)) : x ∈ X} =

{(max(r+B , r
+
A)e

imax(θ+B ,θ
+
A),min(r−B , r

−
A)e

imin(θ−B ,θ
−
A)) : x ∈ X} = B ∪A.

Analogously to (iii), we can prove (iv) with recalling 3.4.

To prove (v) we need to recall both 3.3 and 3.4, and then we have

A∪(B ∩R) =

{⟨
x,max

(
r+A(x), r

+
B∩R(x)

)
eimax(θ+A(x),θ+B∩R(x)),

min
(
r−A(x), r

−
B∩R(x)

)
eimin(θ−A(x),θ−B∩R(x))

⟩
: x ∈ X

}

=


⟨ x,max[r+A(x),

min(r+B(x), r
+
R(x))e

imin(θ+A(x),min(θ+B(x),θ+R(x))],

min[r−A(x),max(r−B(x), r
−
R(x))e

imax(θ−A ,(x)max(θ−B(x),θ−R(x))]

⟩
: x ∈ X


=


⟨ x,min[max(r+A(x), r

+
B(x)),

max(r+A(x), r
+
R(x))]e

imin[max(θ+A(x),θ+B(x)),max(θ+A(x),θ+B(x))],
max[min(r−A(x), r

−
B(x)),

min(r−A(x), r
−
R(x))]e

imax[min(θ−A(x),θ−B(x)),min(θ−A(x),θ−B(x))]

⟩

: x ∈ X


= (A ∪B) ∩ (A ∪R) .
Analogously to prove (v), we can prove (vi).
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To prove (vii) we need to recall 3.3, and then we have

A ∪ (B ∪R) =

{⟨
x,max(r+A(x), r

+
B∪R(x))e

imax(θ+A(x),θ+B∪R(x)),

min(r−A(x), r
−
B∩R(x))e

imin(θ−A(x),θ−B∪R(x))

⟩
: x ∈ X

}

=

{⟨
x,max[r+A(x),max(r+B(x), r

+
R(x))e

imax(θ+A(x),min(θ+B(x),θ+R(x))],

min[r−A(x),min(r−B(x), r
−
R(x))e

imin(θ−A ,(x)max(θ−B(x),θ−R(x))]

⟩
: x∈X

}

=

{⟨
x,max[(r+A(x), r

+
B(x), r

+
R(x))]e

imax(θ+A(x),θ+B(x),θ+R(x)),

min[r−A(x), r
−
B(x), r

−
R(x))]e

imin(θ−A(x),θ−B(x),θ−R(x))

⟩
: x∈X

}

=

{⟨
x,max[max(r+A(x), r

+
B(x)), r

+
R(x)]e

imax(max(θ+A(x),θ+B(x)),θ+R(x)),

min[min(r−A(x), r
−
B(x)), r

−
R(x))]e

imin(min(θ−A(x),θ−B(x)),θ−R(x))

⟩
: x ∈ X

}

=

{⟨
x,max[r+A∪B(x), r

+
R(x)]e

imax(θ+A∪B(x),θ+R(x)),

min[r−A∪B(x), r
−
R(x))]e

imin(θ−A∪B(x),θ−R(x))

⟩
: x ∈ X

}
= (A ∪B) ∪

R

Analogously to prove (vii), we can prove (viii).

Proposition 3.7. Let A and B be BCFSs over universe of discourse U . Then

i. (Ac)c = A,

ii. (A ∪B)c = Ac ∩Bc,

iii. (A ∩B)c = Ac ∪Bc.

Proof. Let A and B are two (BCFS) given as:

A = {(x, r+A(x)eiθ
+
A(x), r−A(x)e

iθ−A(x)) : x ∈ X} and
B = {(x, r+B(x)eiθ

+
B(x), r−B(x)e

iθ−B(x)) : x ∈ X}.
So, to prove (i) we need to apply 3.2 twice. Then, we have

Ac = {(x, (1− r+A(x))ei(2π−θ
+
A(x)), (−1− r−A(x))ei(2π−θ

−
A(x))) : x ∈ X}, thus

(Ac)c =

{(
x,
(
1−

(
1− r+A(x)

))
ei(2π−(2π−θ+A(x))),(

−1−
(
−1− r−A (x)

))
ei(2π−(2π−iθ−A(x)))

)
: x ∈ X

}
=
{(
x, r+A(x)e

iθ+A(x), r−A(x)e
iθ−A(x)

)
: x ∈ X

}
= A

To prove (ii) we need to apply 3.2 and 3.3. Then, we have

(A ∪B)c =complement(A ∪B)

=complement

{⟨
x,max

(
r+A(x), r

+
B(x)

)
eimax(θ+A(x),θ+B(x)),

min
(
r−A(x), r

−
B(x)

)
eimin(θ−A(x),θ−B(x))

⟩
: x ∈ X

}

=

{⟨
x,min

(
1− r+A(x), 1− r

+
B(x)

)
eimin(θ+A(x),θ+B(x))−2π,

max
(
−1− r−A(x),−1− r

−
B(x)

)
eimax(θ−A(x),θ−B(x))−2π

⟩
: x ∈ X

}
= Ac ∩Bc.

Analogously to prove (ii), we can prove (iii).

4. Conclusion

In this work, introduced (BCFS), also a new operations defined over the (BCFS)
some properties of this operations are discussed. These properties illustrate the
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relationship between the basic set theoretical operations such as: commutative
laws, associative laws, distributive laws, and De Morgan’s laws.

References

[1] S. Abdullah, M. Aslam, K. Ullah, Bipolar fuzzy soft sets and its applications
in decision making problem, Journal of Intelligent & Fuzzy Systems, 27
(2014), 729-742.

[2] R. Al-Husban, A.R. Salleh, Complex vague relation, In AIP Conference
Proceedings, AIP Publishing, 1691 (2015), p. 040010.

[3] K.M. Lee, Bipolar-valued fuzzy sets and their operations, In Proc. Int. Conf.
on Intelligent Technologies, Bangkok, Thailand, 2000, 307-312.

[4] M. Naz, M. Shabir, On fuzzy bipolar soft sets, their algebraic structures and
applications, Journal of Intelligent & Fuzzy Systems, 26 (2014), 1645-1656.

[5] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE
Transactions on Fuzzy Systems, 10 (2002), 171-186.

[6] D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic,
IEEE Transaction on Fuzzy Systems, 11 (2003), 450-461.

[7] S. Samanta, M. Pal, A. Pal, Some more results on bipolar fuzzy sets and
bipolar fuzzy intersection graphs, The Journal of Fuzzy Mathematics, 22
(2014), 253-262.

[8] O. Yazdanbakhsh, S. Dick, A systematic review of complex fuzzy sets and
logic, Fuzzy Sets and Systems, 338 (2018), 1-22.

[9] L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.

[10] G. Zhang, T. Dillon, K.Y. Cai, J. Ma, J. Lu, Operation properties and
equalities of complex fuzzy Sets, International Journal of Approximate Rea-
soning, 50 (2009), 1227-1249.

[11] W.R. Zhang, Bipolar fuzzy sets, In Fuzzy Systems Proceedings, World
Congress on Computational Intelligence, 1 (1998), 835-840.

[12] W.R. Zhang, Bipolar fuzzy sets and relations: a computational framework
for cognitive modeling and multiagent decision analysis, In Fuzzy Informa-
tion Processing Society Biannual Conference, 1994. Industrial Fuzzy Con-
trol and Intelligent Systems Conference, and the NASA Joint Technology
Workshop on Neural Networks and Fuzzy Logic, 305-309.

[13] A. Al-Husban, Salleh Abdul Razak, Complex fuzzy hypergroups based on
complex fuzzy spaces, International Journal of Pure and Applied Mathe-
matics, 107.4 (2016), 949-958.



BIPOLAR COMPLEX FUZZY SETS AND THEIR PROPERTIES 761

[14] A. Al-Husban, R.S. Abdul Razak Salleh, Complex fuzzy group based on
complex fuzzy space, Global Journal of Pure and Applied Mathematics,
2.12 (2016), 1433-1450.

[15] A. Al-Husban, Amourah Ala , The complex fuzzy topological spaces on com-
plex fuzzy space, (in press), 2019.

Accepted: 23.01.2019



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (762–778) 762

The impact of organizational and human factors on the
successful implementation of ERP system
in water authority of Jordan

Issam AlHadid∗

Faculty of Computer Information Systems
University of Jordan
Jordan
i.alhadid@ju.edu.jo

Suha Afaneh
Water Authority of Jordan
Jordan
suhaabed@yahoo.com

Heba AlMalahmeh
Management Information System

Management Sciences

Isra University

Jordan

h mlahmh@yahoo.com

Abstract. The implementation process of the Enterprise resource planning (ERP)
systems is complex, costly and influenced by several critical factors. Organizational
and human factors are the most critical success or failure factor for Enterprise Resource
Planning (ERP) systems implementation. This paper aims to study the impact of these
factors on the successful implementation of ERP system in Water Authority of Jordan;
which is a governmental institute responsible of distributing water to participants in
Jordan. The methodology of this paper is based on deductive and quantitative method;
a questionnaire is designed with (43) questions. The population consists of (77) employ-
ees working on the ERP system in the Water Authority of Jordan. Intentional sample
of (58) employees working at the main center in Amman was taken. Fifty-seven ques-
tionnaires were distributed and (51) were returned. Statistical Package for the Social
Sciences (SPSS) program version (12) is used to analyze every item in the questionnaire.
While the statistical analysis consists of Cronbach’s Alpha, its value is (0. 897), Mean
and Standard Deviation, Pearson Correlation, and Linear Regression. The results show
that there is statistically significant impact of Organizational and Human factors on
the successful implementation of the ERP system in the Water Authority of Jordan.

1. Introduction

ERP system is a major and sensitive tools that helps organizations to enhance
their functional abilities, improve their performance, develop their decision-

∗. Corresponding author
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making processes and gain competitive advantages [4]. An ERP system is an
integrated software package composed by a set of standard functional modules
such as: Finance, Human resources, Production Planning, Material Manage-
ment, Marketing and Sales [3]. These modules integrate and interact to achieve
the organizations’ goals. ERP system typically attempts to cover all basic func-
tions of business, regardless of the organizations business or charter. Business,
Non- profit Organization, Non- Governmental Organization, Governments and
other large entities utilize ERP system [5]. ERP have come a long way evolving
from the early 1960s to the present time, as illustrated in Figure (1).

Figure 1: The Evolution of ERP System

In 1960’s, Most of the software packages were designed to handle inventory
based on traditional inventory concepts. Then in 1970’s the focus shifted to
MRP (Material Requirement Planning) systems which is simply about ensuring
the materials are available to manufacture a specific part in a specific volume.
After that, in 1980’s, the concept of MRP-II systems evolved, and it takes care
of all other aspects of a job including ordering, tracking inventory and ensuring
capacity. In 1990’s the ERP is defined as an integrated information system that
serves all departments within an enterprise like engineering, finance, human
resources, project management [19].

While in 2000’s the ERPII software provides an integral coordination of ac-
tivates, which are carried out at every department of the enterprise. And in
2010’s Alternate ERP Solutions begin implemented like Open Source and On-
Demand ERP Applications [12]. And recently in 2015, the cloud ERP starts
to be implemented [10]. The Implementation of Enterprise Resource Planning
System (ERP) is an advanced, complex and requires a lot of preparation and
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readiness in addition to its costly to organizations. As it’s known, Jordan is a
small country and its resources are few and greatly influenced by the circum-
stances of the global economic. Also, Water Authority of Jordan (WAJ) is a
government establishment that regulates administers and oversees activities in
the water sector of Jordan for participants. Through its main subsidiaries; it
provides waste water treatment and desalination services; distribution of water.
WAJ has implemented ERP system for Finance and Human Resources, this
paper aims to determine the impact of the Critical Success Factors of Organi-
zational and Human on the successful implementation of ERP system.

2. Related work

ERP systems support the organizations’ functionality, sharing data, perfor-
mance and enhance the process of decision-making in addition to improve the
organizations’ management of the processes [4,8]. Many factors play a critical
role in implementation success or failure for the ERP systems including Orga-
nizational, technological and human factors [1,2]. Afaneh et al. [1] studied the
influence of the technological and the organizational factors during the ERP sys-
tem implementation at the Greater Amman Municipality (GAM). The authors
found that there is a correlation between the availability of the organizational
factors and the success on ERP System Implementation. Also, Afaneh et al.
[1] stated that the availability of the advanced technological infrastructure is
a major to guarantee the success of ERP implementation. AlHadid et al. [2]
investigated the relationship between the human factors and the ERP system
implantation, the authors stated that the success of ERP system implementation
depends on delivering an effective systems training, in addition to the top man-
agement and staff awareness about the importance of the ERP system. AlHadid
et al. [2] argued that the human factors are critical and might leads to system
failure. Hasan et al. [11] studied the factors that influence the ERP systems im-
plementation by investigating the literature studies between the 2011 and 2016.
The research provides a deep understanding related to the success factors that
influence ERP implantation which can be adopted to develop a strategic plan to
ensure the successful implementation of ERP system. Desalegn and Pettersson
[8] investigated the critical success factors of an ERP implementation from a user
perspective. Researchers argue that more users should be involved in the ERP
implementation in addition to provide users’ with the required education and
training. Fadelelmoula [9] discussed the effects of the key critical success factors
for ERP implementation in the higher education sector. Researcher claimed that
organizations should pay more attention to the top management support, tan-
ning, project management, technical resources, business process reengineering
and consultant support factors. Researchers stated that the mentioned factors
have a positive relationship with adopting ERP in the organization. Gupta et
al. [10] and Baskaran [6] inspected the organizational and technological factors
that affect the successful implementation of cloud ERP implementation. Re-
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searchers also study other factors that influence the cloud ERP implementation
such as security, compliance and network. Reitsma et al. [15] stated that the
top management should prioritize the following critical success factors when
implementing an ERP system. The factors include the users training and edu-
cation, business process reengineering and communication across organizational
levels and teams. Yildirim and Kuşakci [20] studied the critical success factors
of ERP selection and implementation in logistics sector. Researchers found that
the factors that affect the success of ERP implementation in an organization are
the continuous support of top management and the ERP system compatibility
with the fundamental business processes in addition to the reengineering of the
business processes in the organization. from the previous studies, we find the
factors that influence the success or failure of the ERP system implementation
are organizational and human factors including the lack or inadequate training
for end users, incompatible business process reengineering or lack of manage-
ment commitment and support in addition to the availability of the technological
factors [1,2,7,9,13,14].

3. The paper model

The researchers depended in building the paper model on previous studies that
are related to the subject of the research, and then chose the common factors
among these studies, which explained the critical factors affecting the applica-
tion of ERP system. After that the researchers relied on the above mentioned
according to what was consistent with Jordan Environment and the objectives
of the paper to build a model with the proposed independent factors affecting
ERP system implementation, which is described in Figure (2).

3.1 Hypothesis

(H1): There is no statistically significant Impact of Organizational Factors on
the successful implementation of ERP System in Water Authority of Jordan.
Organizational Factors in the following studies were adopted as factors for the
successful implementation of the ERP system [6,9,10,14,15].

(H2): There is no statistically significant Impact of Human Factors on the
successful implementation of ERP System in Water Authority of Jordan.

(H2:a) - There is no statistically significant Impact of Top Management
Support on the successful implementation of ERP System in Water Authority
of Jordan.

(H2:b) - There is no statistically significant Impact of Staff Training on the
successful implementation of ERP System in Water Authority of Jordan.

These studies used the Top Management Support and the Staff Training as
a Critical Success Factor on the implementation of ERP [6,9,11,13,14,15].
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Figure 2: The Model

3.2 The methodology

The methodology of this paper is based on deductive and quantitative method,
thus, a questionnaire is designed to measure the impact of the independent
and dependent Organizational and Human Factors on WAJ. The questionnaire
consists of (43) questions, (23) questions for the Organizational Factors, and
(20) questions for the Human Factors.

3.3 The population and sample

The population consists of (77) employees working on the ERP system in the
Water Authority of Jordan. Intentional sample of (58) employees working at the
main center in Amman was taken. Fifty-seven questionnaires were distributed
and (51) were returned. After examination all the questionnaires were valid,
and the sample size is acceptable for analysis according to Sekaran [16].

3.4 The statistical analysis

The statistical analysis that is used the following statistical ways by using Sta-
tistical Package for the Social Sciences (SPSS) program version (12) to analyze
every item in the questionnaire:

• Means and Standard deviation: to examine the hypothesis, and to identify
the relative importance.

• Cronbach’s Alpha: to verify the reliability of the used questionnaire [17]
in this paper, Cronbach’s Alpha value is (0. 897).
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• Correlation: is a term that refers to the strength of a relationship be-
tween two variables. A strong, or high, correlation means that two or
more variables have a strong relationship with each other while a weak, or
low, correlation means that the variables are hardly related. Correlation
coefficients can range from -1.00 to +1.00. The value of -1.00 represents
a perfect negative correlation while a value of +1.00 represents a perfect
positive correlation. A value of (0.00) means that there is no relationship
between the variables being tested. In this paper the researchers used
Pearson correlation test to find a correlation between the dependent and
independent variables.

• - Linear regression: Regression analysis is used to determine the impact of
the independent factor on the dependent factor. In other words, is there
an impact for the independent factor on the dependent variable or not? If
the sig value in the test is less than 5% It means no effect, If it is greater
than 5%, then there is an effect of the independent variable on the child
[18].

Each item in the questionnaire was divided into 5-points according to Likert-
type scale, and was determined in five levels as the follows: strongly agree given
(5) degrees, agree given (4) degrees, neutral given (3) degrees, disagree given (2)
degrees, and strongly disagree given (1) one degree. In addition, to use judge
scale for the responses, in this paper the level of significance of the measures
was distributed according to Table (1).

Table 1: Measures Significance Levels
Likert Scale Levels Range

Strongly Disagree 1-1.80

Disagree 1.81-2.61

Neutral 2.62-3.42

Agree 3.43-4.23

Strongly Agree 4.24-5

The level of the significance was used to analyze and study the arithmetic
Mean for the sample, whether it is agree or disagree for each question. So if the
Mean from (1) to (2.61) degree, that means disagree, or the range between (2.62)
to (3.42) degree it means neutral, and if Mean between (3.43) to (5) degree, that
means agree.

4. Results and analysis

The researcher calculated Cronbach’s Alpha for all the areas of the questionnaire
(with 43 questions) to test the reliability of each section; Cronbach’s Alpha value
is (0.897) which is accepted, because the value is above or more than (0.6) which
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is the minimum acceptable value. If the same test is returned to another sample
of the same population, the results will be close to (89%).

4.1 Demographic characteristics of the research sample

Figure (3) shows that the number of females in the sample is (18) by (35.3%),
and that the number of males is (33) by (64.7%).

Figure 3: Gender characteristics of the research sample

Figure (4) illustrates the distribution of the sample of Positions, where it is
clear that the number of Employees is (36) by (70.5%), Heads of Departments
is (12) by (23.5%) and the number of Managers is (3) by (6%).

Figure 4: Position characteristics of the research sample
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Figure (5) shows the sample distribution on the number of years of experi-
ence in WAJ, where more than (54%) of the sample has more than (10) years’
experience.

Figure 5: years of experience in WAJ

4.2 Hypotheses testing

(H1): There is no statistically significant impact of Organizational factors on
the successful implementation of the ERP system in Water Authority of Jordan.

To examining this Hypothesis the researchers first: calculates Mean and
Standard deviation for each item for the Organizational Factors in WAJ in
Tables (2) and (3). Second calculates Pearson Correlation to examine whether
there is a relationship between the Organizational Factors and the successful im-
plementation of the ERP system in Table (4), and then the Linear Regression
test is calculated to see if there is an impact of these factors on the implemen-
tation of the ERP system in Table (5).

Table (2) shows the descriptive analysis of the questions related to the Or-
ganizational factors, from which it can be observed that all the Mean values fall
within the acceptance area according to the significance of the measures of the
five-dimensional Likert scale, as well as all the standard deviations are less than
1, which means the acceptance of the values of Mean. So, the sample agrees
with the availability of Organizational factors in WAJ.
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Table 2: Descriptive Statistics of the Organizational Factor
Section Max. Min. Mean Std.

Group1

1. The objectives in our organization are
obvious for managers.

5 1 3.82 .910

2. The objectives in our organization are
obvious for employees.

5 1 3.71 0.923

3. The procedures are clear for managers. 5 1 3.90 0.806

4. The procedures are clear for employees. 5 1 3.88 .765

5. The daily operations and plans are
understood by the employees.

5 1 3.94 0.835

6. The control standards in the
organization are obvious and specific.

5 1 3.63 0.937

7. The managerial level in the
organization is task and duty specified.

5 1 3.82 0.842

8. All the Systems in the organization
are integrated & facilitate the
communication with the outside.

5 1 3.67 0.792

9. All the Systems in the organization
are integrated & facilitate the
communication between the
organization’s departments.

5 1 3.59 0.920

16. The employees in the IT
department are experienced with
efficient.

5 3 3.98 0.648

17. There is a maintenance staff
in the IT department.

5 3 4.02 0.616

18. The role for communication
in the organization is clear.

5 1 3.80 0.849

19. The LAN in the organization
increases the efficiency of
exchanging information between
the employees.

5 2 3.78 0.783

23. ERP system provides the
suitable Security mechanism.

5 1 3.88 0.864

Total 3.82 0.82

Table (3) shows the descriptive analysis of the questions that are related
to the implementation of the ERP system in WAJ. The table shows that all
questions have Mean values in the acceptance area according to the statistical
significance levels of the five-dimensional Likert scale and that all standard de-
viations are less than 1. Except the question (13); ERP System contributes in
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enhancing the exchange of ideas and experiences between the employees in the
organization. The Mean is (3.55) but the standard deviation is (1.006), i.e.,
more than 1. This indicates that there is a different view of the sample mem-
bers on the extent to which the ERP system can helps to exchange ideas among
workers within the authority.

Table 3: Descriptive Statistics of the ERP System
Section Max. Min. Mean Std.

Group2

10. ERP System supports and
achieves our objectives.

5 1 3.82 0.817

11. ERP System improves the
operations and services.

5 1 3.80 0.825

12. ERP System supports the
decision making processes.

5 1 3.84 0.857

13. ERP System contributes in
enhancing the exchange of ideas
and experiences between the
employees in the organization.

5 1 3.55 1.006

14. The new (ERP) system will
minimize the time of the operation.

5 1 3.98 0.905

15. ERP System contributes in
facilitating exchange of ideas and
experiences with the rest of the
governmental institutions’ work.

5 1 3.67 0.909

20. The ERP system helps in
facilitating the exchange of
information via communication
channels.

5 1 3.69 0.905

21. ERP system helps to
optimize the utilization of
Hardware (HW) in WAJ.

5 1 3.67 0.841

22. ERP system helps to
optimize the use of available
Software (SW) in
WAJ.

5 1 3.78 0.832

Total 3.76 0.877

The other side for testing this hypothesis is to use Pearson Correlation test
between group1 (q1,q2,q3,q4,q5,q6,q7,q8,q9,q16,q17,q18,q19,q23) and group2
(q10,q11,q12,q13,q14,q15,q20,q21,q22). The table (4) explains there is a pos-
itive correlation between group (1) and group (2). The value for Pearson Cor-
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relation is (0.799) this Correlation is significant at the 0.01 level (1-tailed). The
results in table (4) indicate that there is a significant correlation of Organiza-
tional Factors on ERP System implementation, with an error rate of not more
than 1%. So there is availability of the Organizational Factors for Success ERP
System implementation in WAJ.

Table 4: Correlation between Organizational Factor and ERP System
Group1 Group2

Group1
Pearson Correlation 1 .799 (**)
Sig. (1-tailed) . 0.000
N 51 51

Group2
Pearson Correlation .799 (**) 1
Sig. (1-tailed) 0.000 .
N 51 51

*** Correlation is significant at the 0.01 level (1-tailed).

Table (5) shows the results of the Linear Regression test between the Group1
related to Organizational Factors and the Group2 related to the ERP system.
It is noted that the value of sig = .002 is less than 5%, i.e., it is located in
the rejection zone. This means rejecting the null hypothesis and accepting the
alternative hypothesis that there is a statistically significant impact of
Organizational Factors on the successful implementation of the ERP
system in Water Authority of Jordan.

Table 5: ANOVA test of Group1 and Group2
Model Sum of Squares df Mean Square F Sig.

1
Regression 14.132 1 14.132 46.845 0.002
Residual 14.782 49 0.302
Total 28.914 50

4.3 Second hypothesis

(H2): There is no statistically significant impact of Human factors on the suc-
cessful implementation of the ERP system in Water Authority of Jordan.

For testing this hypothesis the researchers do the same steps as in testing
the first hypothesis, the results are shown in Tables from (6) to (12). The
questions which are related to the Human Factors are divided into 3 groups;
Group3 (q24,q25,q26,q27,q28,q29,q30) for Top Management Support, Group4
(q31,q32,q33,q34,q35,q36,q37) for Training, Group5 (q38,q39, q40, q41, q42,
q43) for Employees Satisfaction.

(H2-a): There is no statistically significant impact of Top Management Sup-
port on the successful implementation of the ERP system in Water Authority
of Jordan.
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(H2-b): There is no statistically significant impact of Training on the suc-
cessful implementation of the ERP system in Water Authority of Jordan.

Table (6) shows descriptive analysis of the degree of Top Management Sup-
port for the successful implementation of the ERP system. However, the values
of Mean are at the beginning of the acceptance range with close to the neutral
period, and the standard deviations are less than 1, which means there is a
need to increase the support provided by the Top Management to ensure the
success of the application of the system. As an example, the statistical analysis
of Question (27), shows that the value of Mean is (3.37), which is in the neutral
area, not the acceptance, and the highest average value is (3.57) which is at the
beginning of the acceptance period.

Table 6: Descriptive Statistics of Top Management
Section Max. Min. Mean Std.

Group3

24. The Top Management provides
specialized managers to supervise the
new ERP System in the organization.

5 1 3.51 0.967

25. The Top Management supports
the solutions provided by the system.

5 1 3.57 0..946

26. The Top Management provides
sufficient support for the work team
responsible for the ERP System.

5 1 3.51 0.966

27. Top Management presents sufficient
money required for upgrading ERP
System from time to time.

5 1 3.37 0.958

28. Top management presents full support
to the maintenance operations needed to the
system in our organization.

5 1 3.55 0.923

29. The Top Management support the
ERP system in order to support the
administrative decision making process.

5 1 3.47 0.946

30. Top Management presents support
in order to employees’ participation
in applying ERP system.

5 1 3.45 0.986

Total 3.49 0.956

Table (7) shows the Descriptive Analysis of the questions that are related to
the Training of the employees of WAJ on the ERP system. When studying the
Mean values, they are all located in the rejection area according to the statistical
significance of the five-dimensional Likert scale. That is, the employees are not
satisfied with the training courses and they need to develop their skills to be
able to deal with the system.
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Table 7: Descriptive Statistics of the Training
Section Max. Min. Mean Std.

Group4

31. A time table was set to train
all the users of the new ERP system.

4 1 2.25 0.917

32. The training program of ERP System
provides the users with all the needs to
understand and use the system.

4 1 2.29 0.986

33. We have a comprehensive
training plan to train the employees
on using the new system.

4 1 2.41 0.904

34. The ERP System in the
organization is simple and assesses
the users in self-training through
following the instructions.

4 1 2.35 0.836

35. The organization provides the
qualified employees & the
requirements needed to train the
users on using
the system.

4 1 2.24 0.950

36. Training the employees on the
ERP System contributes in minimizing
mistakes during using the system.

4 1 2.53 0.840

37. WAJ is providing continuous
training for the employees.

4 1 2.18 0.990

Total 2.32 0.92

Table (8) shows the Descriptive Analysis of the questions regarding the Opin-
ion of Employees on the ERP system after use and their satisfaction with the
system in terms of facilitating and speeding up the business performance. The
analysis of the questions shows a high degree of satisfaction with the system by
the staff, All Mean values are in the acceptance area and all standard deviations
are less than 1.

Table (9) shows a significant correlation with error rate not exceeding 1%
between the third group (Top Management Support) and the fifth group (related
to the ERP system). This means that the provision of Top Management Support
leads to the successful implementation of the system.

Table (10) shows a significant correlation with error rate not exceeding 1%
between the fourth group (Staff Training) and the fifth group (related to the
ERP system). This means that good Training leads to successful application of
the system. Table (11) shows the results of the linear regression test between
the Group3 which is related to Top Management Support and the Group5 which
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Table 8: Descriptive Statistics of the Employees Satisfaction
Section Max. Min. Mean Std.

Group5

38. Our employees do not find
difficulties in dealing with the
ERP System.

5 1 3.45 0.879

39. ERP System in the
organization is easily understood
due to its capabilities and usage.

5 1 3.63 0.824

40. ERP System in the
organization contributes in
facilitating the work procedures.

5 1 3.84 0.758

41. The ERP System in the
organization is easy to be reached
and dealt with.

5 1 3.89 0.883

42. The ERP System in the
organization helps in facilitating the
tracking of the operations in any
department at any time.

5 1 3.97 0.841

43. ERP System in the organization is easy to learn. 5 1 3.63 0.848

Total 3.74 0.839

Table 9: Correlation between Top Management and ERP System
Group3 Group5

Group3
Pearson Correlation 1 0.721 (**)
Sig. (1-tailed) . 0.000
N 51 51

Group5
Pearson Correlation 0.721 (**) 1
Sig. (1-tailed) 0.000 .
N 51 51

*** Correlation is significant at the 0.01 level (1-tailed).

is related to the ERP system. It is noted that the value of sig = .003 is less
than 5%, i.e. it is located in the rejection zone. This means rejecting the null
hypothesis and accepting the alternative hypothesis that there is a statistically
significant impact of Top Management Support on the successful implementation
of the ERP system in Water Authority of Jordan. Table (12) shows the results
of the Linear Regression test between the Group4 which is related to the Staff
Training and Group5 which is related to the ERP system. Note that the value of
(.001), that is, less than 5%, that is located in the rejection area and this means
rejecting the null hypothesis and accept the alternative hypothesis that there is a
significant statistical impact to Staff Training on the successful implementation
of the ERP system in Water Authority of Jordan.

From the previous tests it can be said that the second main null hypothesis
is rejected There is no statistically significant impact of Human factors on the
successful implementation of the ERP system in Water Authority of Jordan.
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Table 10: Correlation between Training and ERP System
Group4 Group5

Group4
Pearson Correlation 1 .758 (**)
Sig. (1-tailed) . 0.000
N 51 51

Group5
Pearson Correlation . 758 (**) 1
Sig. (1-tailed) 0.000 .
N 51 51

*** Correlation is significant at the 0.01 level (1-tailed).

Table 11: ANOVAb

Model Sum of Squares df Mean Square F Sig.

1
Regression 13.361 1 13.361 53.141 0.003
Residual 12.320 49 0.251
Total 25.681 50

5. Conclusions

As a conclusion thus, the aim of this paper is to study the organizational and
human factors that impact the influence of the ERP system implementation
success or failure. As a result, there is statistically significant impact of these
factors in WAJ. And the Organizational Factors in WAJ are available. While
using the ERP system facilitates the administrative Processes. There is a need
to increase the support provided by the top management to ensure the success
of the ERP system implementation. The employees are not satisfied with the
provided training courses and they need to develop their skills to use the ERP
system appropriately. However, there is a high degree of satisfaction with the
ERP system by the staff.
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Abstract. In this paper, we introduce a new class of derivative called second type
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1. Introduction

In modelling a real world phenomenon, some vagueness or impreciseness occurs
due to incomplete information about the parameters which we cannot exactly
describes the behaviour of the problem. In order to deal with these impre-
ciseness or vagueness Zadeh [29] introduced the theory called fuzzy sets. The
fuzzy set theory is an excellent approach which helps us to deal with fuzzy
dynamic models. Fuzzy set theory is the preliminary source to study fuzzy dif-
ferential equations (Fde’s) or interval differential equations. Fde’s play a vital
role in applications of biology, economics and many other engineering problems
where uncertainty arises. Hukuhara [12] initiated the difference between two

∗. Corresponding author
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sets called Hukuhara difference and developed the theory of derivatives and in-
tegrals for set valued mappings. Later, Puri and Ralescu [21] studied Hukuhara
derivative for fuzzy functions using Hukuhara difference and it is the primary
approach for studying uncertainty of the dynamical systems. Further, Kaleva
[14], studied Fde’s under Hukuhara differentiability and also studied existence
and uniqueness of the solutions to Fde’s using Hukuhara derivative which has a
disadvantage that the solutions exist only when the functions have an increas-
ing length of support. To overcome this circumstance, Bede and Gal [6] studied
generalizations of the differentiability of fuzzy number valued functions Later,
Stefanini and Bede [22] studied generalized Hukuhara differentiability of interval
value functions and interval differential equations. Further, Malinowski [19, 20]
studied the concept of second type Hukuhara derivative for interval differential
equations and interval cauchy problem with second type Hukuhara derivative.
Furthermore, Zhang and Sun [28] studied stability of Fde’s under second type
Hukuhara derivative.

Time scales was initiated by the german mathematician Stefan Hilger [10].
For fundamental theory and applications on time scales calculus and dynamic
equations on time scales are found in [1, 7]. For alternative solutions of linear
dynamic equations on time scales and boundary value problems for dynamic
equations on time scales were studied in [3] and [8]. The important features
of time scales are extension, unification and generalization. The theory of time
scale calculus is applicable to any field in which dynamic process described by
continuous or discrete time models. If we take time scales as real numbers, then
the derivative of a function is equal to standard differentiation while, if we take
time scales as integers then it turns to backward difference operator or forward
difference operator. In some recent studies and applications in economics [5],
production, inventory models [4], adaptive control [13], neural networks [17]
cellular neural networks [9] suggested nabla derivative is more preferable than
delta derivative on time scales.

The multivalued functions on time scales under Hukuhara derivative was
introduced in [11]. Hukuhara differentiability of interval-valued functions and
interval differential equations on time scales was studied in [18]. Recently Vasavi
et. al. [23, 24, 25, 26] introduced Hukuhara delta derivative, second type
Hukuhara delta derivative and generalized Hukuhara delta derivatives using
Hukuhara difference and studied fuzzy dynamic equations on time scales. With
the importance and advantages of nabla derivative, we proposed to develop the
theory of fuzzy nabla dynamic equations on time scales. In this context, we
introduce second type nabla Hukuhara derivative for fuzzy functions on time
scales and study their properties. The rest of this paper is organized as fol-
lows. In section 2, we present some definitions, properties, basic results relating
to fuzzy sets, calculus of fuzzy functions and time scales calculus. Section 3
introduces second type nabla Hukuhara derivative of fuzzy functions on time
scales and establish uniqueness, existence of the derivative and also obtain some
properties.
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2. Preliminaries

It is important to recall some basic results and definitions related to fuzzy cal-
culus. Let ℜk(ℜn) be the family of all convex compact nonempty subsets of
ℜn. Denote the set addition and scalar multiplication in ℜk(ℜn) as usual. Then
ℜk(ℜn) satisfies the properties of commutative semigroup [14] under addition
with cancellation laws. Further, if α, β ∈ ℜ and S, T ∈ ℜk(ℜn), then

α(S + T ) = αS + αT, α(βS) = (αβ)S, 1.S = S,

and if β, α ≥ 0 then (β+α)S = βS+αS. Let S and T be two bounded nonempty
subsets of ℜn. By using the Pampeiu-Hausdorff metric we defined the distance
between S and T as follows

dH(S, T ) = max{sup
s∈S

inf
t∈T
∥s− t∥, sup

t∈T
inf
s∈S
∥s− t∥}

here ||.|| is the Euclidean norm in ℜn. Then (ℜk(ℜn), dH) becomes a seperable
and complete metric space [14].

Define

En = {µ : ℜn → [0, 1]/µ satisfies(a)-(d) below}, where

(a) If ∃ a t ∈ ℜn such that µ(t) = 1 then µ is said to be normal,

(b) µ is fuzzy convex,

(c) µ is upper semicontinuous,

(d) the closure of {t ∈ ℜn/µ(t) > 0} = [µ]0 is compact.

For 0 < λ ≤ 1, denote [µ]λ = {t ∈ ℜn : µ(t) ≥ λ}, then from the above
conditions we have that the λ-level set [µ]λ ∈ ℜk(ℜn).

According to Zadeh’s extension principle we define g : En × En → En by

g(p, q)(Z) = sup
Z=g(p,q)

min {p(x), q(y)} .

We know that [g(p, q)]λ = g([p]λ, [q]λ), for all p, q ∈ En and g is a continuous
function. The scalar multiplication ⊙ and addition ⊕ of p, q ∈ En is defined as

[p⊕ q]λ = [p]λ + [q]λ, [k ⊙ p]λ = k[p]λ, where p, q ∈ En, k ∈ ℜ, 0 ≤ λ ≤ 1.

Theorem 2.1. [14] If µ ∈ En, then

(a) [µ]λ ∈ ℜk(ℜn) for all 0 ≤ λ ≤ 1,

(b) [µ]λ2 ⊂ [µ]λ1 for all 0 ≤ λ1 ≤ λ2 ≤ 1,
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(c) If λk ∈ [0, 1] and {λk} is a nondecreasing sequence converging to λ > 0,
then

[µ]λ =
∩
k≥1

[µ]λk .

Conversely, if {Xλ/0 ≤ λ ≤ 1} is a subsets of family of ℜn satisfying the above
conditions from (a)-(c), then ∃a x ∈ En ∋

[µ]λ = Xλ, forall λ ∈ (0, 1] and

[µ]0 = cl

 ∪
0<λ≤1

Xλ

 ⊂ X0, here cl is the closure of the set.

Theorem 2.2 ([14]). If sequence {Xn} converges to X in ℜk(ℜn) and d(Xn, X)→
0 as n→∞ then

X =
∩
n≥1

cl

 ∪
m≥n

Xm

 .

Define DH : En × En → [0,∞) by

DH(s, t) = sup
0≤λ≤1

dH([s]
λ, [t]λ),

here dH is the Pampeiu Hausdorff metric defined in ℜk(ℜn). Then (En, DH) is
a complete metric space [14].

The following theorem extend the properties of addition and scalar multi-
plication of fuzzy number valued functions (ℜF = E1) to En.

Theorem 2.3 ([2]). (a) If 0̃ is the zero element in ℜF , then 0̂ =
(
0̃, 0̃, . . . , 0̃

)
is the zero element in En. i.e. s⊕ 0̂ = 0̂⊕ s = s ∀s ∈ En;

(b) For any s ∈ En has no inverse with respect to ‘⊕′;

(c) For any β, γ ∈ ℜ with β, γ ≥ 0 or β, γ ≤ 0 and s ∈ En, then (β+ γ)⊙ s =
(β ⊙ s)⊕ (γ ⊙ s);

(d) For any β ∈ ℜ and s, t ∈ En, we have β ⊙ (s⊕ t) = (β ⊙ s)⊕ (β ⊙ t);

(e) For any β, γ ∈ ℜ and s ∈ En, we have β ⊙ (γ ⊙ s) = (βγ)⊙ s.

Let S, T ∈ En. If ∃ a R ∈ En such that S = T ⊕R then we say that R is the
H-difference (Hukuhara difference) of S and T and is denoted by S ⊖h T . For
any S, T,R,U ∈ En and α ∈ ℜ, the following holds

(a) DH(S, T ) = 0⇔ S = T ;

(b) DH(αS, αT ) = |α|DH(S, T );
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(c) DH(S ⊕R, T ⊕R) = DH(S, T );

(d) DH(S ⊖h R, T ⊖h R) = DH(S, T );

(e) DH(S ⊕ T,R⊕ U) ≤ DH(S,R) +DH(T,U);

(f) DH(S ⊖h T,R⊖h U) ≤ DH(S,R) +DH(T,U).

provided the H-difference exists.

Now, we present some fundamental definitions and properties of Hukuhara
derivative of fuzzy functions on the compact interval I = [a, b], a, b ∈ ℜ.

Definition 2.1 ([6]). Let I = [a, b] ⊂ ℜ be a compact interval. A mapping
G : I → En is said to be Hukuhara form-I differentiable at θ ∈ I if ∃ a G

′
(θ) ∈

En,∋ G(θ + ~)⊖h G(θ), G(θ)⊖h G(θ − ~) exists for all ~ > 0 sufficiently small
and the limit

lim
~→0+

G(θ + ~)⊖h G(θ)
~

, lim
~→0+

G(θ)⊖h G(θ − ~)
~

.

exists in the topology of En and equal to G
′
(θ). The element G

′
(θ) is called the

Hukuhara derivative of G at θ in the metric space (En, DH). Consider only the
one-sided derivatives at the end points of I .

Definition 2.2 ([6]). A mapping G : I → En is said to be Hukuhara form-II
differentialble at θ ∈ I, if ∃ a G

′
(θ) ∈ En ∋ G(θ)⊖h G(θ + ~), G(θ − ~)⊖h G(θ)

exists, ∀ ~ > 0 sufficiently small ∋ the limit exists

lim
~→0+

G(θ)⊖h G(θ + ~)
−~

, lim
~→0+

G(θ − ~)⊖h G(θ)
−~

.

and are equal to G
′
(θ). Here G

′
(θ) is called the Hukuhara form-II derivative at

θ.

Remark 2.1 ([14]). A function G : I → En is said to be differentiable if
the multivalued mapping Gλ : I → ℜk(ℜn) is Hukuhara differentiable for all
λ ∈ [0, 1] and

[Gλ(θ)]
′
= [G

′
(θ)]λ,

where [Gλ]
′
is the H-derivative of Gλ.

Definition 2.3 ([14]). A mapping G : I → En is said to be strongly measurable
if for each λ ∈ [0, 1], the fuzzy function Gλ : I → ℜk(ℜn) defined by Gλ(θ) =
[G(θ)]λ is measurable.

Remark 2.2 ([14]). If {λk} is a nonincreasing sequence converges to 0 for all
x ∈ En, then

lim
k→∞

dH([x]
0, [x]λk) = 0.
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Now, we present some fundamental definitions and results of time scales.

Definition 2.4 ([7]). (a) Any nonempty closed subset of ℜ is defined as a
time scale which is denoted by T.

(b) ρ : T → T is the backward jump operator and ν : T → R+, the graininess
operator are defined by

ρ(θ) = sup{θ0 ∈ T : θ0 < θ}, ν(θ) = θ − ρ(θ) for θ ∈ T.

(c) The operator ρ is called left dense if ρ(θ) = θ, otherwise left scattered.

(d) Tk = T−{m}, if T has a right scattered minimum m. Otherwise Tk = T.

(e) A mapping gρ : T→ ℜ defined by

gρ(θ) = g(ρ(θ)) for each θ ∈ T,

where g : T→ ℜ is a function.

(f) The interval in time scale T is defined by

T[a,b] = {θ ∈ T : a ≤ θ ≤ b} = [a, b] ∩ T

and

T[a,b]
k =

{
T[a,b], if a is right dense;

T[σ(a),b], if a is right scattered.

Definition 2.5 ([7]). Let g : T → ℜ be a function and θ ∈ Tk. Then g∇(θ)
exists as a number provided for any given ϵ > 0, ∃ a neighbourhood Nδ of θ (i.e.,
Nδ = (θ − δ, θ + δ) ∩ T for some δ > 0) such that

|[g(ρ(θ))− g(θ0)]− g∇(θ)[ρ(θ)− θ0]| ≤ ϵ|ρ(θ)− θ0|, for all θ0 ∈ Nδ,

Here, g∇(θ) is called the nabla derivative of g at θ. Moreover, g is said to be
nabla (or Hilger) differentiable on Tk, if g∇(θ) exists ∀ θ ∈ Tk. The function
g∇ : Tk → ℜ is then called the nabla derivative of g on Tk.

Definition 2.6 ([7]). A mapping g : T → ℜ is said to be regulated if its left
sided limits exists and are finite at all ld-point (left dense points) in T and its
right sided limits exists and are finite at all rd-points (right dense points) in T

Definition 2.7 ([7]). Let g : T→ ℜ be a function. g is said to be ld-continuous,
if it is continuous at each ld-point in T and lim

θ0→θ+
g(θ) exists as a finite number

for all rd-points in T.

Lemma 2.1 ([7]). Let G : T→ ℜ.
(a) If g is ∇-differentiable at T, then g is continuous at θ.

(b) If g is continuous at θ and θ is left scattered, then g is ∇-differentiable
and g∇(θ) = g(θ)−g(ρ(θ))

ν(θ) .

(c) If g is ∇-differentiable at θ, then g(ρ(θ)) = g(θ) + (−1)ν(θ)g∇(θ).
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3. Nabla Hukuhara differentiability

In this section, first we introduce second type nabla Hukuhara derivative of fuzzy
functions on time scales. Later, we establish uniqueness and existence of this
derivative and obtain some properties on second type nabla Hukuhara derivative.
For further discussion, we use the following notation: for some δ > 0, we define
the neighbourhood of θ ∈ T[a,b] by NT[a,b](θ, δ) = (θ − δ, θ + δ) ∩ T[a,b] = NT[a,b]

Definition 3.1. For any given ϵ > 0 ∃ a δ > 0, such that the fuzzy function
G : T[a,b] → En has a unique T-limit P ∈ En at θ ∈ T[a,b] if DH(G(θ)⊖hP, 0̂) ≤ ϵ,
for all θ ∈ NT[a,b](θ, δ) and it is denoted by T− lim

θ→θ0
G(θ).

Here T-limit denotes the limit on time scale in the metric space (En, DH).

Remark 3.1. From the above definition, we have

T− lim
θ→θ0

G(θ) = P ∈ En ⇐⇒ T− lim
θ→θ0

(G(θ)⊖h P ) = 0̂,

where 0̂ is the zero element in En.

Definition 3.2. A fuzzy mapping G : T[a,b] → En is continuous at θ0 ∈ T[a,b],
if T− lim

θ→θ0
G(θ) ∈ En exists and T− lim

θ→θ0
G(θ) = G(θ0), i.e.

T− lim
θ→θ0

(G(θ)⊖h G(θ0)) = 0̂.

Remark 3.2. If G : T[a,b] → En is continuous at θ ∈ T[a,b], then for every ϵ > 0,
∃ a δ > 0, such that

DH(G(θ)⊖h G(θ0), 0̂) ≤ ϵ, for all θ ∈ NT[a,b] .

Remark 3.3. Let G : T[a,b] → En and θ0 ∈ T[a,b].

(a) If T− limθ→θ+0
G(θ) = G(θ0), then G is said to be right continuous at θ0.

(b) If T− limθ→θ−0
G(θ) = G(θ0), then G is said to be left continuous at θ0.

(c) If T− limθ→θ+0
G(θ) = G(θ0) = T− limθ→θ−0

G(θ), then G is continuous at

θ0.

Definition 3.3 ([16]). Suppose G : T[a,b] → En be a fuzzy function and θ ∈
T[a,b]
k . Let G∇h(θ) be an element of En exists provided for any given ϵ > 0, ∃ a

neighbourhood NT[a,b] of θ and for some δ > 0 such that

(1)
DH [(G(θ + ~)⊖h G(ρ(θ)), (~+ ν(θ))⊙G∇h(θ)] ≤ ϵ|~+ ν(θ)|,
DH [(G(ρ(θ))⊖h G(θ − ~), (~− ν(θ))⊙G∇h(θ)] ≤ ϵ|~− ν(θ)|,
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for all (θ − ~, θ + ~) ∈ NT[a,b] with 0 < h < δ where ν(θ) = θ − ρ(θ). Then G
is called nabla Hukuhara form-I (nabla-h) differentiable at θ and is denoted by
G∇h(θ).

or

A fuzzy function G : T[a,b] → En is said to be nabla-h differentiable at θ ∈ T[a,b]
k

if ∃ a G∇h(θ) ∈ En such that the limits

T− lim
~→0+

G(θ + ~)⊖h G(ρ(θ))
~+ ν(θ)

& T− lim
~→0+

G(ρ(θ))⊖h G(θ − ~)
~− ν(θ)

exists and are equal to G∇h(θ).

Moreover, if nabla-h derivative exists for each θ ∈ T[a,b]
k , then G is nabla-h

differentiable on T[a,b]
k . We consider only right limit at left scattered points and

one-sided limit at the end points of T[a,b]
k .

The above definition does not exists if the fuzzy function has decreasing
diameter. So, in order to overcome this circumstance we introduce and study
the second type nabla Hukuhara derivative for fuzzy functions on time scales
where the results exist for the functions which are having decreasing diameter.

Definition 3.4. Let G : T[a,b] → En is a fuzzy function and θ ∈ T[a,b]
k . Let

G∇sh
(θ) be an element of En exists provided for any given ϵ > 0, ∃ a neighbour-

hood NT[a,b] of θ and for some δ > 0 such that

(2) DH [(G(ρ(θ))⊖h G(θ + ~)),−(~+ ν(θ))⊙G∇sh
(θ)] ≤ ϵ| − (~+ ν(θ))|,

(3) DH [(G(θ − ~)⊖h G(ρ(θ)),−(~− ν(θ))⊙G∇sh
(θ)] ≤ ϵ| − (~− ν(θ))|,

for all (θ − ~, θ + ~) ∈ NT[a,b] with 0 < h < δ where ν(θ) = θ − ρ(θ). Then G is
called second type nabla Hukuhara form-II differentiable (∇sh-differentiable) at

θ and is denoted by G∇sh
(θ).

or

A fuzzy function G : T[a,b] → En is ∇sh-differentiable at θ ∈ T[a,b]
k if ∃ a

G∇sh
(θ) ∈ En such that the limits

T− lim
~→0+

G(ρ(θ))⊖h G(θ + ~)
−(~+ ν(θ))

& T− lim
~→0+

G(θ − ~)⊖h G(ρ(θ))
−(~− ν(θ))

exists and are equal to G∇sh
(θ). Moreover, if ∇sh-derivative exists for each

θ ∈ T[a,b]
k , then G is ∇sh-differentiable on T[a,b]

k . We consider only right limit at

left scattered points and one-sided limit at the end points of T[a,b]
k .
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Note. If both T-limits exists at left scattered point, then the ∇sh-derivative
is in ℜn (crisp). It will restrict the ∇sh-differentiability of fuzzy functions on
time scales having left scattered points. To avoid this, we consider only right
limit at left scattered points.

Example 3.1. Let G : T[a,b] → E1 be a function defined by G(θ) = 1
θ2
⊙ n,

where n = (1, 3, 5) is a fuzzy number.

If T = ℜ, then from Definition 3.3 G : ℜ → En is not ∇h-differentiable at
θ ∈ ℜ. Since the H-difference G(θ)⊖hG(θ−~), G(θ+~)⊖hG(θ) does not exists.
Since the H-difference G(θ) ⊖h G(θ + ~), G(θ − ~) ⊖h G(θ) exists. Therefore,
from Definition 3.4, G is ∇sh-differentiable and we have

G∇sh
(θ) = lim

~→0+

G(θ)⊖h G(θ + ~))
−~

= lim
~→0

G(θ − ~)⊖h G(θ)
−~

=
−2
θ3
⊙ (1, 3, 5) =

1

θ3
⊙ (−10,−6,−2).

Lemma 3.1. If G is ∇sh-differentiable at θ, then ∇sh- derivative exists and it
is unique.

Proof. Suppose that G∇sh
1(θ) and G∇sh

2(θ) are ∇sh-derivatives of G at θ.
Then

DH [−(~+ ν(θ))⊙G∇sh
1(θ), G(ρ(θ))⊖h G(θ + ~)] ≤ ϵ

2
| − (~+ ν(θ))|,

DH [−(~+ ν(θ))⊙G∇sh
2(θ), G(ρ(θ)⊖h G(θ + ~))] ≤ ϵ

2
| − (~+ ν(θ))|.

Consider

DH [G
∇sh

1(θ), G∇sh
2(θ)]

=
1

| − (~+ ν(θ))|

(
DH [−(~+ ν(θ))⊙G∇sh

1(θ),−(~+ ν(θ))⊙G∇sh
2(θ)]

)
≤ 1

| − (~+ ν(θ))|

(
DH [−(~+ ν(θ))⊙G∇sh

1(θ), G(ρ(θ)⊖h G(θ + ~)]

+DH [G(ρ(θ))⊖h G(θ + ~),−(~+ ν(θ))⊙G∇sh
2(θ)]

)
≤ ϵ

2
+
ϵ

2
= ϵ, ∀ | − (~+ ν(θ))| ≠ 0.

Since ϵ > 0, then DH [G
∇sh

1(θ), G∇sh
2(θ)] = 0. Therefore, G∇sh

1(θ) = G∇sh
2(θ).

Hence ∇sh-derivative exists and is unique.

Theorem 3.1. If G : T[a,b] → En is ∇sh-differentiable at θ, then G is continuous
when θ is left dense and right continuous when θ is left scattered.
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Proof. Assume that G : T[a,b] → En is ∇sh-differentiable at θ ∈ T[a,b]
k . Let

ϵ1 ∈ (0, 1). Define

ϵ1 = ϵ[1 + ∥G∇sh
(θ)∥]−1.

Since G is ∇sh-differentiable ∃ a neighbourhood NT[a,b] such that

DH [(G(ρ(θ))⊖h G(θ + ~),−(~+ ν(θ))⊙G∇sh
(θ)] ≤ ϵ| − (~+ ν(θ))|,

DH [(G(θ − ~)⊖h G(ρ(θ)),−(~− ν(θ))⊙G∇sh
(θ)] ≤ ϵ| − (~− ν(θ))|,

for all ~ ≥ 0 with (θ − ~, θ + ~) ∈ N[a,b]
T . Therefore, for all (θ − ~, θ + ~) ∈

N
[a,b]
T ∩ (θ − ϵ, θ + ϵ) with 0 ≤ ~ < ϵ.

DH [G(θ − ~), G(θ)] = DH [G(θ − ~)⊖h G(θ), 0̂]
= DH [G(θ − ~)⊖h G(ρ(θ)) +G(ρ(θ))⊖h G(θ),

− (~− ν(θ))⊙G∇sh
(θ)− ν(θ)⊙G∇sh

+ ~G∇sh
(θ)]

≤ DH [G(θ − ~)⊖h G(ρ(θ)),−(~− ν(θ))⊙G∇sh
(θ)]

+DH [G(ρ(θ))⊖h G(θ), (−ν(θ))⊙G∇sh
(θ)]

+DH [~G∇sh
(θ), 0̂]

≤ ϵ1| − (~− ν(θ)|+ ϵ1|(−ν(θ)))|+ ~∥G∇sh
(θ)∥

< ϵ1(1 + ∥G∇sh
(θ)∥)

= ϵ.

Therefore, for θ being left dense or left scattered

T− lim
~→0+

G(θ − ~) = G(θ).

For left dense point θ, it is easy to prove that

T− lim
~→0+

G(θ + ~) = G(θ).

Hence G is continuous at left dense points and right continuous at left scattered

points in T[a,b]
k .

Theorem 3.2. Let G : T[a,b] → En be right continuous at θ, θ is left-scattered
then G is ∇sh-differentiable at θ and

G∇sh
(θ) =

−1
ν(θ)

⊙ (G(ρ(θ))⊖h G(θ)) .

Proof. Let θ be left-scattered and since G is right continuous, then by Theorem
3.1, we have

G∇sh
(θ) = T− lim

h→0+

G(ρ(θ))⊖h G(θ + ~)
−(~+ ν(θ))

=
−1
ν(θ)

⊙ (G(ρ(θ))⊖h G(θ)) .
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Theorem 3.3. Let G : T[a,b] → En be fuzzy function and let θ ∈ T[a,b]
k . If θ is

left dense, then G is ∇sh-differentiable at T[a,b]
k if and only if the limits exists

and are equal to G∇sh
(θ) i.e.,

lim
~→0+

−1
h
⊙ (G(θ)⊖h G(θ + ~)) = lim

~→0+

−1
h
⊙ (G(θ − ~)⊖h G(θ)) = G∇sh

(θ).

Proof. Suppose that G is ∇sh-differentiable at θ and θ is ld-point. Since G is
∇sh-differentiable at θ, for any given ϵ > 0, ∃ NT[a,b] a neighbourhood of θ ∋

DH [(G(ρ(θ))⊖h G(θ + ~),−(~+ ν(θ))⊙G∇sh
(θ)] ≤ ϵ| − (~+ ν(θ))|,

DH [G(θ − ~)⊖h G(ρ(θ)),−(~− ν(θ))⊙G∇sh
(θ)] ≤ ϵ| − (~− ν(θ))|,

for all, 0 < ~ < δ with (θ − ~, θ + ~) ∈ NT[a,b] . Since ρ(θ) = θ, i.e. ν(θ) = 0,

DH [(G(θ)⊖h G(θ + ~),−~⊙G∇sh
(θ)] ≤ ϵ~,

DH [(G(θ − ~)⊖h G(θ),−~⊙G∇sh
(θ)] ≤ ϵ~,

for all, 0 < ~ < δ with (θ − ~, θ + ~) ∈ NT[a,b] . This implies that

DH

[
G(θ)⊖h G(θ + ~)

−~
, G∇sh

(θ)

]
≤ ϵ,

DH

[
G(θ − ~)⊖h G(θ)

−~
, G∇sh

(θ)

]
≤ ϵ,

for all 0 < ~ < δ with (θ − ~, θ + ~) ∈ NT[a,b] . Since ϵ is arbitrary, we have

lim
~→0+

−1
~
⊙ (G(θ)⊖h G(θ + ~)) = lim

~→0+

−1
~
⊙ (G(θ − ~)⊖h G(θ)) = G∇sh

(θ)

Conversely, suppose that for all 0 < ~ < δ with (θ − ~, θ + ~) ∈ NT , ∃ a
neighbourhood NT[a,b] of θ and θ is left dense such that

DH

[
G(θ)⊖h G(θ + ~)

−~
, G∇sh

(θ)

]
≤ ϵ,

DH

[
G(θ − ~)⊖h G(θ)

−~
, G∇sh

(θ)

]
≤ ϵ.

From the above inequalities, G is ∇sh-differentiable at θ and since θ is ld-point,
we have G∇sh

(θ) = G
′
(θ) .

Theorem 3.4. Let G : T[a,b] → En be ∇sh−differentiable and θ ∈ T[a,b]
k . Then

G(ρ(θ)) = G(θ)⊕ (−1)ν(θ)G∇sh
(θ).

or
G(θ) = G(ρ(θ))⊖h (−1)(ν(θ)G∇sh

(θ).
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Proof. (a) If θ is left dense then ρ(θ) = θ and ν(θ) = 0. Hence

G(ρ(θ)) = G(θ)⊕ (−1)ν(θ)G∇sh
(θ).

or

G(θ) = G(ρ(θ)) = G(ρ(θ))⊖h (−1)ν(θ)G∇sh
(θ).

(b) If θ is left-scattered then ρ(θ) < θ. From Theorem 3.2 we have

G∇sh
(θ) =

−1
ν(θ)
⊙[G(ρ(θ))⊖hG(θ)]⇒ (−1)ν(θ)⊙G∇sh

(θ) = G(ρ(θ))⊖hG(θ).

Thus,

G(ρ(θ)) = G(θ)⊕ (−1)ν(θ)G∇sh
(θ)

or

G(θ) = G(ρ(θ))⊖h (−1)(ν(θ)G∇sh
(θ).

Example 3.2. Let us consider T = ℜ or T = tZ = {tk : k ∈ Z}.

(a) If T = ℜ, then from Theorem 3.3 G : ℜ → En is ∇sh-differentiable at
θ ∈ ℜ iff

G∇sh
(θ) = lim

~→0+

G(θ − ~)⊖h G(θ)
~

= lim
~→0

G(θ)⊖h G(θ + ~)
~

= G
′
(θ).

(b) If T = tZ, then every point θ ∈ T is isolated and

ρ(θ) = sup {θ − nt : n ∈ N} = θ − t,

ν(θ) = θ − ρ(θ) = θ − (θ − t) = t.

From Theorem 3.2 G : tZ→ En is ∇sh-differentiable at θ ∈ tZ and

G∇sh
(θ) =

G(ρ(θ))⊖h G(θ)
−ν(θ)

=
G(θ − t)⊖h G(θ)

−t
=
−1
t
⊙∆G(θ),

where ∆ is the forward Hukuhara difference operator.

Theorem 3.5. Denote [G(θ)]λ = Gλ(θ) for each λ ∈ [0, 1], where G : T[a,b] →
En be the fuzzy function and if G is ∇sh-differentiable, then Gλ is also ∇sh-
differentiable and

[G∇sh
(θ)]λ = G∇sh

λ (θ).



SECOND TYPE NABLA HUKUHARA DIFFERENTIABILITY FOR FUZZY ... 791

Proof. If θ is left scaterred and G is ∇sh-differentiable at θ ∈ T[a,b]
k , then from

Theorem 3.2, we get

[G∇sh
(θ)]λ =

[G(ρ(θ))]λ ⊖h [G(θ)]λ

−ν(θ)
=
Gλ(ρ(θ))⊖h Gλ(θ)

−ν(θ)
= G∇sh

λ (θ),

for each λ ∈ [0, 1]. If G is ∇sh-differentiable at θ ∈ T[a,b]
k and θ is left dense,

then for λ ∈ [0, 1], we get

[G(θ − ~)⊖h G(θ)]λ = [Gλ(θ − ~)⊖h Gλ(θ)]

and multiplying by −1
~ < 0 and taking the limit ~→ 0+, we have

lim
~→0+

−1
~
⊙ [Gλ(θ − ~)⊖h Gλ(θ)] = G∇sh

λ (θ).

Similarly, we can prove

lim
~→0+

−1
~
⊙
[
Gλ(θ)⊖h Gλ(θ + ~)

]
= G∇sh

λ (θ).

Therefore, from Theorem 3.3, we get [G∇sh
(θ)]λ = G∇sh

λ (θ).

Remark 3.4. The above Theorem 3.5, states that if G is ∇sh differentiable
then the multivalued mapping Gλ is ∇sh-differentiable for all λ ∈ [0, 1], but the
converse of the theorem need not be true. That is the existence of H-differences
of λ-level sets [p]λ⊖h [q]λ does not imply the existence of H-difference of p⊖h q.

However, for the converse of the theorem we have the following:

Theorem 3.6. Suppose that G : T[a,b] → En satisfy the following conditions:

(1) For each θ ∈ T[a,b] and θ is left dense

(a) ∃ a β > 0, ∋ the Hukuhara differences G(θ−~)⊖hG(θ) and G(θ)⊖h
G(θ + ~) exists for all 0 < ~ < β and for all θ − ~, θ + ~ ∈ NT[a,b];

(b) the fuzzy mappings Gλ, λ ∈ [0, 1], are uniformly ∇sh-differentiable
with derivative G∇sh

λ , i.e., to each θ ∈ T[a,b] and ϵ > 0 ∃ a δ > 0 such
that

DH

{
Gλ(θ − ~)⊖h Gλ(ρ(θ))

−(~− ν(θ))
, G∇sh

λ (θ)

}
< ϵ,

DH

{
Gλ(ρ(θ))⊖h Gλ(θ + ~)

−(~+ ν(θ))
, G∇sh

λ (θ)

}
< ϵ,

for all 0 < ~ < δ, θ − ~, θ + ~ ∈ N [a,b]
T , λ ∈ [0, 1].

(2) for each θ ∈ T[a,b] and θ is left scattered

(a) the Hukuhara differences G(ρ(θ))⊖h G(θ) exists and;
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(b) the fuzzy mappings Gλ, λ ∈ [0, 1], are uniformly nablash-differentiable

with derivative G∇sh

λ , i.e., to each θ ∈ T[a,b] and ϵ > 0 ∃ a δ > 0 such
that

(4) DH

{
Gλ(ρ(θ))⊖h Gλ(θ)

−ν(θ)
, G∇sh

λ (θ)

}
< ϵ.

Then G is ∇sh-differentiable and its derivative is given by G∇sh

λ (θ) =

[G∇sh
(θ)]λ.

Proof. Case (1): For θ being left dense points in T[a,b], then the proof is
similar to the proof of Theorem 5.1 [14].

Case(2): For θ being left scattered points in T[a,b], consider {G∇sh

λ (θ), λ ∈
[0, 1]}, where G∇sh

λ (θ) is convex, compact and nonempty subset of ℜn. If λ1 ≤ λ2
then by our supposition (a), we have

(5) Gλ1(ρ(θ))⊖h Gλ1(θ) ⊃ Gλ2(ρ(θ))⊖h Gλ2(θ)

For 0 < ~ < β, we have G∇sh

λ1
(θ) ⊃ G∇sh

λ2
(θ). Let {λn} be a nondecreasing

sequence coverges to λ > 0. For ϵ > 0 choose ~ > 0 ∋ the equation (4) holds.
Now, let us consider

DH(G
∇sh

λ (θ), G∇sh

λn (θ)) ≤ DH

(
G∇sh

λ (θ),
Gλ(ρ(θ))⊖h Gλ(θ)

−ν(θ)

)
+DH

(
Gλ(ρ(θ))⊖h Gλ(θ)

−ν(θ)
, G∇sh

λn (θ)

)
< ϵ+

1

ν(θ)
DH [Gλ(ρ(θ))⊖h Gλ(θ), Gλn(ρ(θ))⊖h Gλn(θ)]

+
1

ν(θ)
DH [Gλn(ρ(θ))⊖h Gλn(θ),−ν(θ)G∇sh

λn (θ)]

< 2ϵ+
1

ν(θ)
DH [Gλ(ρ(θ))⊖h Gλ(θ), Gλn(ρ(θ))⊖h Gλn(θ)].

By our supposition 2(a), the rightmost term converges to zero as n → ∞ and
hence

lim
n→∞

DH(G
∇sh

λ (θ), G∇sh

λn (θ)) = 0.

From Theorem 2.2 and (5) we have

G∇sh

λ (θ) =
∩
n≥1

cl

 ∪
m≥n

G∇sh

λm (θ)

 .

If λ = 0, we can write it as

lim
n→∞

DH(G
∇sh

0 (θ),∇shG∇sh

λn (θ)) = 0,
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where the nondecreasing sequence {λn} tends to zero , and as a result of this

G∇sh

0 (θ) = cl

∪
n≥1

G∇sh

λn (θ)

 .

Then from Theorem 2.1, ∃ an element ũ ∈ En such that

[ũ]λ = G∇sh

λ (θ), λ ∈ [0, 1].

Let θ ∈ T[a,b], ϵ > 0, δ > 0 and (θ − ~, θ + ~) ∈ N [a,b]
T be as in supposition (b)

then, we have

DH

(
Gλ(ρ(θ))⊖h Gλ(θ)

−ν(θ)
, ũλ
)

= DH

(
Gλ(ρ(θ))⊖h Gλ(θ)

−ν(θ)
, G∇sh

λ (θ)

)
< ϵ

Thus, G is ∇sh-differentiable.

Theorem 3.7. Let G : T[a,b] → En defined by G(θ) = g(θ)⊙ u for all θ ∈ T[a,b],
where u ∈ En and g : T[a,b] → T+ is nabla differentiable at θ0 ∈ T[a,b] . If
g∇(θ0) < 0, then G is ∇sh-differentiable at θ0 with G∇sh

(θ0) = g∇(θ0)⊙ u.

Proof. Since g is nabla differentiable at θ0, then from Lemma 2.1, g is contin-
uous at θ0. Case(i): If θ0 is left scattered then, we have

g∇(θ0) =
g(θ0)− g(ρ(θ0))

ν(θ0)
.

Since g∇(θ0) < 0, then

g(ρ(θ0))− g(θ0) = g∇(θ0)(−ν(θ0)) > 0

It implies that
g(ρ(θ0)) = g(θ0) + g∇(θ0)(−ν(θ0)).

Now, multiplying the above equation with u ∈ En on both sides, then we get

g(ρ(θ0))⊙ u = [g(θ0)⊙ u]⊕
[
g∇(θ0)(−ν(θ0))⊙ u

]
.

It implies that [g(ρ(θ0))⊙ u]⊖h [g(θ0)⊙ u] = [g∇(θ0)(−ν(θ0))]⊙ u and then

G(ρ(θ0))⊖h G(θ0) = [g∇(θ0)(−ν(θ0))]⊙ u.

dividing by (−ν(θ0)), we have

G(ρ(θ0))⊖h G(θ0)
(−ν(θ0))

= [g∇(θ0)]⊙ u

and hence
G∇sh

(θ0) = g∇(θ)⊙ u.
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Case(ii): If θ0 is left dense, then g∇(θ0) = g
′
(θ0) < 0 and

g
′
(θ0) = lim

~→0+

g(θ0)− g(θ0 − ~)
~

.

It follows that for ~ > 0 sufficiently small, we have g(θ0)− g(θ0 − ~) < o and

g(θ0 − ~) = g(θ0) + ϕ(θ0, ~)

Now, multiplying the above equation with u ∈ En on both sides, we get

g(θ0 − ~))⊙ u = [g(θ0)⊙ u]⊕ [ϕ(θ0, ~)⊙ u] .

It implies
G(θ0 − ~) = G(θ0)⊕ [(ϕ(θ0, ~)⊙ u].

Therefore, G(θ0 − ~) ⊖h G(θ0) exists and hence G is left ∇sh-differentiable at
θ0. Similarly, we can prove G is right ∇sh-differentiable at θ0.

It follows that, G is ∇sh-differentiable at θ0 with G∇sh
(θ0) = g∇0(θ)⊙u.

Example 3.3. Let us define G(θ) = 1
θ ⊙ u , ∀ θ ∈ T[1,10], G : T[1,10] → E1 is a

fuzzy function and u = (2, 3, 4) is the triangular fuzzy number. Here, g(θ) = 1
θ

and g∇(θ) = −1
θ(ρ(θ)) < 0 , ∀ θ ∈ T[1,10], from Theorem 3.7, we have G(θ) is

∇sh-differentiable and G∇(θ) = −1
θ(ρ(θ)) ⊙ u , ∀ θ ∈ T[1,10].

Theorem 3.8. Let G : T[a,b] → E1 defined as [G(θ)]λ = [gλ(θ), hλ(θ)], λ ∈ [0, 1]
and G(θ) is ∇sh-differentiable on T[a,b] . Then gλ and hλ are nabla-differentiable
on T[a,b] and

[G∇sh
(θ)]λ = [h∇λ (θ), g

∇
λ (θ)].

Proof. If G is ∇sh-differentiable at θ ∈ T[a,b]
k and θ is left scattered, then for

any λ ∈ [0, 1],

[G(ρ(θ))⊖h G(θ)]λ = [gλ(ρ(θ))− gλ(θ), hλ(ρ(θ))− hλ(θ)].

and multiplying with −1
ν(θ) , we get

[G∇sh
(θ)]λ =

−1
ν(θ)

⊙ [G(ρ(θ))⊖h G(θ)]λ

=

[
1

−ν(θ)
⊙ [gλ(ρ(θ))− gλ(θ), hλ(ρ(θ))− hλ(θ)]

]
=

[
hλ(ρ(θ))− hλ(θ)

−ν(θ)
,
gλ(ρ(θ))− gλ(θ)

−ν(θ)

]
=

[
hλ(θ)− hλ(ρ(θ))

ν(θ)
,
gλ(θ)− gλ(ρ(θ))

ν(θ)

]
=
[
h∇λ (θ), g

∇
λ (θ)

]
.
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If G is ∇sh-differentiable at θ ∈ T[a,b]
k and θ is ld-point, then for any λ ∈ [0, 1],

[G(θ − ~)⊖h G(θ)]λ = [gλ(θ − ~)− gλ(θ), hλ(θ − ~)− hλ(θ)]

and multiplying with −1
~ < 0 and taking limits as ~→ 0+, we get

lim
~→0+

−1
~
⊙ [G(θ − ~)⊖h G(θ)]λ

= lim
~→0+

−1
~
⊙ [gλ(θ − ~)− gλ(θ), hλ(θ − ~)− hλ(θ)]

=

[
lim
~→0+

hλ(θ − ~)− hλ(θ)
−~

, lim
~→0+

gλ(θ − ~)− gλ(θ)
−~

]
=

[
lim
~→0+

hλ(θ)− hλ(θ − ~)
~

, lim
~→0+

gλ(θ)− gλ(θ − ~)
~

]
= [h∇λ (θ), g

∇
λ (θ)].

Similarly, we can prove

lim
~→0+

−1
~

[G(θ)⊖h G(θ + ~)]λ = [h∇λ (θ), g
∇
λ (θ)].

Thus, gλ and hλ are nabla differentiable on T[a,b] and [G∇sh
(θ)]λ = [h∇λ (θ), g

∇
λ (θ)].

Example 3.4. Consider the fuzzy function G(θ) as in Example 3.3. Then
uλ = [2 + λ, 4− λ] is λ-level set of u and

[G(θ)]λ = [gλ(θ), hλ(θ)]

=
1

θ
⊙ [2 + λ, 4− λ]

= [
1

θ
(2 + λ),

1

θ
(4− λ)].

From Example 3.3, G(θ) is ∇sh-differentiable and G∇sh
(θ) = −1

θ(ρ(θ))⊙u. Clearly,
g∇λ (θ), h

∇
λ (θ) are nabla differentiable and g

∇
λ (θ) =

−1
θ(ρ(θ))(2+λ), h

∇
λ (θ) =

−1
θ(ρ(θ))(4−

λ). From Example 3.3 and Theorem 3.5, we have

[G∇sh
(θ)]λ =

−1
θ(ρ(θ))

⊙ uλ

=
−1

θ(ρ(θ))
⊙ [2 + λ, 4− λ]

=

[
−1

θ(ρ(θ))
(4− λ), −1

θ(ρ(θ))
(2 + λ)

]
= [h∇(θ), g∇(θ)].

Hence Theorem 3.8 is verified. And also if T = R, then ρ(θ) = θ and

G∇sh
(θ) =

−1
θ(ρ(θ))

⊙ uλ =
−1
θ2
⊙ uλ.

If T = qN, then ρ(θ) = θ
q and G∇sh(θ) = −1

θ(ρ(θ)) ⊙ u
λ = −q

θ2
⊙ uλ.
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Now, we obtain the ∇sh-derivatives of addition, scalar multiplication and
product of second type nabla Hukuhara differentiable for fuzzy functions on
time scales.

Theorem 3.9. Let G,H : T[a,b] → En are ∇sh-differentiable at θ ∈ T [a,b]
k . Then,

(a) the sum G⊕H : T[a,b] → En is ∇sh-differentiable at θ with

(G⊕H)∇
sh
(θ) = G∇sh

(θ)⊕H∇sh
(θ);

(b) for any constant λ, λG : T[a,b] → En is ∇sh-differentiable at θ with

(λ⊙G)∇sh
(θ) = λ⊙G∇sh

(θ);

(c) the product GH : T[a,b] → En is ∇sh-differentiable at θ with

(GH)∇
sh
(θ) = G(ρ(θ))H∇sh

(θ) +H(θ)G∇sh
(θ)

= G(θ)H∇sh
(θ) +H(ρ(θ))G∇sh

(θ).

Proof. Since G and H be ∇sh-differentiable at θ ∈ T[a,b]
k . Then from Theorem

3.1, G and H are continuous when θ is left dense and right continuous when θ
is left scattered. If θ is left scattered, then from Theorem 3.2, we have

(6)
G(ρ(θ))⊖h G(θ)

−ν(θ)
= G∇sh

(θ)

and

(7)
H(ρ(θ))⊖h H(θ)

−ν(θ)
= H∇sh

(θ).

If θ is ld-point, then from Theorem 3.3, we have

(8) lim
~→0+

G(θ)⊖h G(θ + ~)
−~

= lim
~→0+

G(θ − ~)⊖h G(θ)
−~

= G∇sh
(θ)

and

(9) lim
~→0+

H(θ)⊖h H(θ + ~)
−~

= lim
~→0+

H(θ − ~)⊖h H(θ)

−~
= H∇sh

(θ).

(a) If θ is left scattered and G,H are ∇sh-differentiable at θ, then from Theo-
rem 3.1, (G⊕H) is right continuous at θ. From Theorem 3.2 and (6), (7), we
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have

(G⊕H)∇
sh
(θ) =

(G⊕H)(ρ(θ))⊖h (G⊕H)(θ)

−ν(θ)

=
[G(ρ(θ))⊕H(ρ(θ))]⊖h [G(θ)⊕H(θ)]

−ν(θ)

=
[G(ρ(θ))⊖h G(θ)]⊕ [H(ρ(θ))⊖h H(θ)]

−ν(θ)

=
G(ρ(θ))⊖h G(θ)

−ν(θ)
⊕ H(ρ(θ))⊖h H(θ)

−ν(θ)
= G∇sh

(θ)⊕H∇sh
(θ).

If θ is left dense and G,H are ∇sh-differentiable at θ, then from (8) & (9), we
have

lim
~→0+

(G⊕H)(θ)⊖h (G⊕H)(θ + ~)
−~

= lim
~→0+

(G(θ)⊖h G(θ + ~))⊕ (H(θ)⊖h H(θ + ~))
−~

= lim
~→0+

G(θ)⊖h G(θ + ~)
−~

⊕ lim
~→0+

H(θ)⊖h H(θ + ~)
−~

= G∇sh
(θ)⊕H∇sh

(θ).

Similarly, we can prove

lim
~→0+

(G⊕H)(θ − ~)⊖h (G⊕H)(θ)

−~
= G∇sh

(θ)⊕H∇sh
(θ).

Therefore, G⊕H is ∇sh-differentiable at θ and

(G⊕H)∇
sh
(θ) = G∇sh

(θ)⊕H∇sh
(θ).

(b) For γ = 0, the result is obvious. Now, let us assume that γ > 0.
If θ is left scattered, then from Theorem 3.1, γ ⊙ G is right continuous at

θ. From Theorem 3.2 and (6), we have

(γ ⊙G)∇sh
(θ) =

γ ⊙G(ρ(θ))⊖h γ ⊙G(θ)
−ν(θ)

= γ ⊙ G(ρ(θ))⊖h G(θ)
−ν(θ)

= γ ⊙G∇sh
(θ).

Since G is ∇sh-differentiable at θ ∈ T[a,b]
k and θ is left dense, then from (8),

lim
~→0+

γ ⊙G(θ)⊖h γ ⊙G(θ + ~)
−~

= γ ⊙ lim
~→0+

G(θ)⊖h G(θ + ~)
−~

= γ ⊙G∇sh
(θ).

Similarly, we can prove

lim
~→0+

γ ⊙G(θ − ~)⊖h γ ⊙G(θ)
−~

= γ ⊙G∇sh
(θ).
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(c) If θ is left scattered, then from Theorem 3.1, it is clear that GH is right
continuous at θ. From Theorem 3.2, (6) & (7), we have

G∇sh
(θ) =

G(ρ(θ))⊖h G(θ)
−ν(θ)

& H∇sh
(θ) =

H(ρ(θ))⊖h H(θ)

−ν(θ)
.

(GH)∇
sh
(θ) =

GH(ρ(θ))⊖h GH(θ)

−ν(θ)

=
G(θ)[H(ρ(θ))⊖h H(θ)]⊕ [G(ρ(θ))⊖h G(θ)]H(ρ(θ))

−ν(θ)

= G(θ)

[
H(ρ(θ))⊖h H(θ)

−ν(θ)

]
⊕H(ρ(θ))

[
G(ρ(θ))⊖h G(θ)

−ν(θ)

]
= G(θ)H∇sh

(θ)⊕H(ρ(θ))G∇sh
(θ).

Since G,H are ∇sh-differentiable and if θ is left dense, then from (8) & (9), we
have

lim
~→0+

GH(θ)⊖h GH(θ + ~)
−~

= lim
~→0+

G(θ)[(H(θ)⊖h H(θ + ~)]⊕ [G(θ)⊖h G(θ + ~)]H(θ)

−~

= G(θ) lim
~→0+

H(θ)⊖h H(θ + ~)
−~

⊕ lim
~→0+

G(θ)⊖h G(θ + ~)
−~

lim
~→0+

H(θ + ~)

= G(θ) lim
~→0+

H(θ)⊖h H(θ + ~)
−~

⊕ lim
~→0+

G(θ)⊖h G(θ + ~)
−~

H(θ)

= G(θ)H∇sh
(θ)⊕G∇sh

(θ)H(θ).

Similarly, we can prove

lim
~→0+

(GH)(θ − ~)⊖h (GH)(θ)

−~
= G(θ)H∇sh

(θ)⊕G∇sh
(θ)H(θ).

Thus, (GH)∇
sh
(θ) = G(θ)H∇sh

(θ) ⊕ H(ρ(θ))G∇sh
(θ) holds at θ. We get the

another product rule in (c) by interchanging G and H and which follows from
the last equation.

4. Conclusions

The fuzzy nabla Hukuhara derivative of form-I (Definition 3.3) does not exists
for a fuzzy function of decreasing diameter on time scales. To overcome this
shortcoming, in this paper we introduce and study the fundamental properties of
second type nabla Hukuhara derivative for fuzzy functions on time scales. In our
future work, we propose to study fuzzy nabla integrals on time scales. Further,
these concepts can be applied to study the fuzzy nabla dynamic equations on
time scales.
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Abstract. We first introduce the concepts of projective soft LA-modules, free soft
LA-modules, split sequence in soft LA-modules and establish various results on projec-
tive soft LA-modules. Then, we consider the injective soft LA-modules and give some
relevant results by using free soft LA-modules and split sequences in soft LA-modules.
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1. Introduction

In our daily life, the real world is multifaceted. Thus, there are many problems
in different disciplines such as engineering, social sciences, medical sciences etc
in the real world and we construct ”models” of reality that are simplifications
of aspects of the real world. Unluckily, these mathematical models are quite
intricate and we are unable to find the precise solutions. Since there are many

∗. Corresponding author
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uncertainties mixed up with the data. The traditional tools to deal with these
uncertainties are applicable only under certain environment. These may be due
to the uncertainties of natural environmental phenomena of human awareness
about the real world or to the confines of the means used to measure objects. For
example, elusiveness or uncertainty in the boundary between states or between
urban and rural areas or the exact growth rate of population in a country’s
rural area or making decision in a machine based environment using database
information. Thus, the classical set theory, which is based on crisp and exact
case, may not be fully suitable for conducting such problems of uncertainty.

In order to deal with uncertainties, there are many theories, for example,
theory of fuzzy sets [28], theory of intuitionistic fuzzy sets [4], theory of vague
sets, the theory of interval mathematics [5], [8] and theory of rough sets [11] have
been developed, yet difficulties are seem to be still there. It is noted that the
theory of soft sets was first proposed by D. Molodtsov, has been regarded as an
effective mathematical tool to deal with uncertainties. In order to model vague-
ness and uncertainties, D. Molodtsov first introduced the concept of soft sets
and it has received much attention since its inception. In his well known paper
[13], D. Molodtsov presented some fundamental results of the new theory and
successfully applied them into several directions such as smoothness of functions,
game theory, operations research, Riemann-integration, Perron integration, the-
ory of probability etc. A soft set is a collection of approximate description of an
object. He also showed how soft set theory is free from parametrization inad-
equacy syndrome of fuzzy set theory, rough set theory, probability theory and
game theory. In fact, the soft systems provides a very general framework with
the involvement of parameters. Nowadays, the research work on soft set theory
and its applications in various fields are progressing rapidly.

We notice that P. K. Maji [11], [12] in 2002 and 2003 first presented the
application of soft sets in decision making based on the reduction of parameters
to keep the optimal choice objects. In addition, D. Chen [6] presented a new
definition of soft set parametrization reduction and a comparison of it with
attributes reduction in rough set theory. A. Sezgin et al. [17], introduced the
union soft subnear-rings and union soft ideals of a near-ring. The application
of soft sets in algebraic structures was introduced by H. Aktaş and N. Çağman
[1]. They discussed the notion of soft groups and derived some basic properties.
They also showed that soft groups extends the concept of fuzzy groups. Recently,
X. Liu et al.[9], established some useful fuzzy isomorphism theorems of soft rings.
They also discussed the fuzzy ideals of soft rings. In [10], X. Liu et al., have
considered the isomorphism theorems for soft rings. In [25], Q. M. Sun et al.,
have discussed the concept of soft modules and investigated some of their basic
properties.

The Left Almost Ring (LA-ring) is actually an off shoot of LA-semigroup
and LA-group. In fact, an LA-rings is a non-commutative and non-associative
algebraic structure and gradually due to its peculiar characteristics it has been
emerging as a useful non-associative class which intuitively would be a quite
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convinent tool to enhance non-associative ring theory. By an LA-ring, we mean
a non-empty set R with at least two elements such that (R,+) is an LA-group,
(R, ·) is an LA-semigroup, both left and right distributive laws hold. For ex-
ample, from a commutative ring (R,+, ·) , we can always obtain an LA-ring
(R,⊕, ·) by defining for all a, b ∈ R, a⊕ b = b−a and a · b is same as in the ring.

Furthermore, T. Shah and I. Rehman [22], have discussed left almost ring
(LA-ring) of finitely nonzero functions which is in fact a generalization of a
commutative semigroup ring. Recently T. Shah and I. Rehman [23], discussed
some properties of LA-rings through their ideals and intuitively ideal theory
would be a gate way for investigating the application of fuzzy sets, intuition-
istics fuzzy sets and soft sets in LA-rings. For example, T. Shah et al., [20],
have applied the concept of intuitionistic fuzzy sets and established some useful
results. In [16], some computational work through Mace4, has been done and
some interesting characteristics of LA-rings have been explored. Recently, in
[18], T. Shah et al., have adopted a new approach to apply the Molodtsov’s soft
set theory to a class of non-associative rings. And in [19], T. Shah and Asima
Razzaque have discussed some basic properties regarding soft M-system, soft
P-system and soft I-System in a non-associative left almost rings. T. Shah et
al. [21], have promoted the concept of LA-modules and establish some results
of isomorphisms theorems and direct sum of LA-modules. Also T. Shah and I.
Rehman in [22] utilized the both LA-semigroup and LA-ring and generalizes the
notion of a commutative semigroup ring. Furthermore, they defined the notion
of LA-modules over an LA-ring, which is a non abelian non-associative struc-
ture but closer to abelian group. Hence the study of this algebraic structure is
completely parallel to modules which are basically the abelian groups. In this
aspect, A. Alghamdi and F. Sahraoui [2], have defined and constructed a tensor
product of LA-modules, they extended some simple results from the ordinary
tensor to the new setting. Also Asima Razzaque et al., [3] have given the con-
cept of exact sequence in LA-modules. For some further study of LA-rings, the
readers are referred to ([15], [21], [24]).

In this paper, we initiate the concepts of projective and injective soft LA-
modules. Also we discuss the free soft LA-modules, split sequence in soft LA-
modules and prove some of their related results.

2. Preliminaries

In this section, we recall some basic definitions and results which are relevant
to soft sets and LA-modules.

Definition 1 ([13]). Let U be an initial universe and E be a set of parameters.
Then we use P (U) to denote the power set of U and A be a non-empty subset
of E. A pair (F,A) is called a soft set over U , where F is a mapping given by
F : A→ P (U).
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In other words, a soft set over U is a parametrized family of subsets of the
universe U . For ε ∈ A, F (ε) may be considered as the set of ε−approximate
elements of the soft set (F,A). Clearly, a soft set is not a set.

For the soft sets, we give the following definitions.

Definition 2 ([14]). For two soft sets (F,A) and (G,B) over a common uni-
verse U , we say that (F,A) is a soft subset of (G,B) if it satisfies the following
conditions:

(i) A ⊆ B and
(ii) for all e ∈ A, F (e) ⊆ G(e).

We write (F,A)⊂̃(G,B). Also we call (F,A) is said to be a soft super set
of (G,B), if (G,B) is a soft subset of (F,A). We denote this soft superset by
(F,A)⊃̃(G,B).

Definition 3 ([12]). Two soft sets (F,A) and (G,B) over a common universe
U are said to be soft equal if (F,A) is a soft subset of (G,B) and (G,B) is a
soft subset of (F,A).

Definition 4 ([12]). A soft set (F,A) over U is said to be a NULL soft set
denoted by Φ if for all ε ∈ A, F (ε) = ∅ (null set).

Definition 5 ([7]). Let (F,A) be a soft set .Then, the set supp (F,A) = {x ∈
A | F (x) 6= φ} is called the support of the soft set (F,A). A soft set is said to
be non null if its support is not equal to the empty set.

Definition 6 ([22]). Let (R,+, .) be an LA-ring with left identity e. An LA-
group (M,+) is said to be LA-module over R if R×M →M defined as (a,m) 7→
am ∈M, where a ∈ R, m ∈M satisfies the following conditions:

(i) (a+ b)m = am+ bm,
(ii) a(m+ n) = am+ an,
(iii) a(bm) = b(am),
(iv) 1.m = m,
for all a, b ∈ R, m,n ∈M .

Left R LA-module is denoted by RM or simply M . Right R LA-module can
be defined in a similar manner and is denoted by MR.

In the following, we give a non-trivial example of LA-module over R con-
structed by T. Shah and I. Rehman in [22]. We observe that the LA-module
constructed in this example is not a module.

Example 1 ([22]). Let (R,+, .) be an LA-ring with a left identity and S is
a commutative semigroup. Then R[S] = {

∑n
j=1 ajsj : aj ∈ R, sj ∈ S} and

the map R × R[S] 7→ R[S] defined by (a,
∑n

j=1 ajsj) 7→
∑n

j=1(aaj)sj is an
LA-module over R.

Definition 7 ([21]). Let M be a left R LA-module. Then, we call an LA-
subgroup N of M over an LA-ring R is called left R LA-submodule of M , if
RN ⊆ N, i.e., rn ∈ N for all r ∈ R and n ∈ N . This is denoted by N ≤M.
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By the above definition, we immediately have the following theorem.

Theorem 1 ([21]). If A and B are two LA-submodules of an LA-module M
over an LA-ring R, then A ∩B is also an LA-submodule of M .

Corollary 1 ([21]). The intersection of any number of LA-submodules of an
LA-module is a LA-submodule.

Following is the very useful definition in the study of LA-modules.

Definition 8 ([21]). Let M, N be LA-modules over an LA-ring R. A map ϕ :
M −→ N is called an LA-module homomorphism( or simply R-homomorphism)
if, for all r in R and m,n in M

(i) ϕ(m+ n) = ϕ(m) + ϕ(n)
(ii) ϕ(rm) = rϕ(m)

We now describe the LA-modules

Theorem 2 ([21]). Let ϕ : M −→ N be an LA-module homomorphism from an
LA-module M to an LA-module N , then

(1) If A is an LA-submodule of M , then ϕ(A) is an LA-submodule of N .
(2) If B is an LA-submodule of N , then ϕ−1(B) is an LA-submodule of M .

Definition 9 ([21]). Let M be an LA-module and A ⊂M is an LA-submodule.
We define quotient module or factor module M/A by M/A = {A+m : m ∈M}.
That is, M/A is the set of equivalence classes of elements of M . An equivalence
class is denoted by A+m or by [m]. Each element in the class A+m is called
a representative of the class.

Lemma 1 ([21]). With the canonical operations, by choosing representatives,
(A + m) + (A + n) = A + (m + n), the set M/A is an LA-group. A, the
equivalence class of 0 ∈M is the left identity of M/A. The map π : M −→M/A,
π(m) = A+m is surjective LA-group homomorphism.

Definition 10 ([21]). Let M be an LA-module over an LA-ring R. Let A and
B be LA-submodules of M . Then M is said to be the internal direct sum of
A and B, if every element m ∈ M can be written in one and only one way as
m = a+ b, where a ∈ A and b ∈ B. Symbolically, the direct sum is represented
by the notation M = A⊕B.

Definition 11 ([25]). Let {Mi | i ∈ I} be a nonempty family of R-modules,
P =

∏
i∈IMi = {(xi) | xi ∈Mi} is a direct product set, if the operations on the

product are given by (xi) + (yi) = (xi + yi) and r(xi) = (rxi), then P induce a
left R module structure called direct product of {Mi | i ∈ I}, which is denoted
by

∏
i∈IMi.

Proposition 1 ([25]). Let {Mi | i ∈ I} be a nonempty family of submodules of
M . Then ∩i∈IMi and

∑
i∈IMi are all submodules of M .
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Definition 12 ([25]). All the elements (xi) in the direct product
∏
i∈IMi, where

xi is zero for almost all i ∈ I except finite one, establish a submodule of
∏
i∈IMi

which is called direct sum of {Mi | i ∈ I}, will be denoted by
∐
i∈IMi or ⊕i∈IMi.

For the LA-modules over an LA-ring, we state the following theorem.

Theorem 3 ([21]). Let M be an LA-module over an LA-ring R. If A and B
are LA-submodules of M , then M is the internal direct sum of A and B if and
only if

(1) M = A+B.

(2) A ∩B = {0}.

Definition 13 ([25]). For a sequence of R-homomorphisms and R-modules · ·
· −→Mn−1

fn−1−→ Mn
fn−→Mn+1 −→ · · · is called an exact sequence if Imfn−1 =

kerfn for all n ∈ N. An exact sequence of the form 0 −→ M ′
f−→ M

g−→
M ′′ −→ 0 is called a short exact sequence.

By applying the above definition, we immediately obtain the following Propo-
sition concerning the morphisms of modules.

Proposition 2 ([27]). Let f : M −→ N be R-homomorphism for R-modules M
and N . Then

(1) 0 −→M
f−→ N is exact if and onlt if f is monomorphism.

(2) M
f−→ N −→ 0 is exact if and only if f is epimorphism.

(3) 0 −→M
f−→ N −→ 0 is exact if and only if f is an isomorphism.

Theorem 4 ([26]). Every left R module is a homomorphic image of free left R
module.

Proposition 3 ([26] ). For a short exact sequence O → A
f→ B

g→ C → O of
R-modules and homomorphisms, the following statements are equivalent:

(1) there exists a homomorphism α : B → A such that αf =⊥A
(2) there exists a homomorphism β : C → B such that gβ =⊥C
(3) Imf is a direct summand of B.

3. Projective soft LA-modules

We initiate in this section with the definition of projective soft LA-modules.

Definition 14. Let M be a left LA-module over an LA-ring R. Then (F,A)
is called a projective soft LA-module over M , if the given diagram of soft LA-
modules and soft LA-homomorphisms with row exact, there exists a soft LA-
homomorphism

∼
g : F (x) → G(y) which makes the completed diagram commu-

tative, that is
∼
α
∼
g =

∼
f .
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Definition 15. A soft LA-module (F ∗, A) over M is called a free soft LA-

module on a basis (
−
X,A) 6= φ, if there is a map

∼
α :

−
X(x) → F ∗(x) such that

given any map
∼
f :

−
X(x) → G∗(y), where (G∗, B) is any soft LA-module, there

exists a unique soft LA-homomorphism
∼
g : F ∗(x)→ G∗(y) such that

∼
f =

∼
g
∼
α.

Throughout this paper homomorphism is always considered as a soft LA-
homomorphism.

The following result is a crucial result.

Theorem 5. Every free soft LA-module is a projective soft LA-module.

Proof. Let (F ∗, A) be a free soft LA-module with basis (
−
X,A). Let be a di-

agram of soft LA-modules and soft LA-homomorphism in which row is exact.

Let x ∈
−
X(x) for all x ∈ A. Then

∼
f(x) ∈ H(z) for all z ∈ C, x ∈ A and as

∼
α is onto, so there exists b ∈ G(y) for all y ∈ B such that

∼
α(b) =

∼
f(x). De-

fine
∼
g :

−
X(x) → G(y), for all x ∈ A, for all y ∈ B by

∼
g(x) = b and extend

this function
∼
g : F ∗(x) → G(y) where x ∈ A, y ∈ B. It can be observed that

∼
α
∼
g(x) =

∼
α(
∼
g(x)) =

∼
α(b) =

∼
f(x). Hence it follows that

∼
α
∼
g =

∼
f . Therefore it is

proved that every free soft LA-module is projective soft LA-module.



CHARACTERIZATION OF GENERALIZED PROJECTIVE AND INJECTIVE SOFT ... 809

Proposition 4. Let (F,A) be a projective soft LA-module. If the diagram of

soft LA-modules and soft LA-homomorphisms the row is exact and
∼
β
∼
f = 0, then

there exist a homomorphism
∼
g : F (x)→ G(y) for all x ∈ A and y ∈ B such that

∼
α
∼
g =

∼
f.

Proof. Let
−
H = Im

∼
α = ker

∼
β and

−
∼
α : G(y) →

−
h(z) be the homomorphism

induced by
∼
α where y ∈ B and z ∈ C. So that

∼
β
∼
f = 0 this implies that

Im
∼
f is contained in ker

∼
β = Im

∼
α =

−
H. Therefore

∼
f induces a homomorphism

−
∼
f : F (x) →

−
H(z) where z ∈ C and x ∈ A, such that if

∼
i :
−
H(z) → H(z) is the

inclusion map then
∼
α = i

−
∼
α and

∼
f = i

−
∼
f. We have then a diagram in which row is

exact. The soft LA-module F (x) for all x ∈ A is projective soft LA-module, so

there exists a homomorphism
∼
g : F (x)→ G(y) such that

−
∼
α
∼
g =

−
∼
f for x ∈ A and

y ∈ B. But
∼
α
∼
g = i

−
∼
α
∼
g = i

−
∼
f =

∼
f .This implies that

∼
α
∼
g =

∼
f . Hence the theorem

is proved.
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In the following Proposition, we give a characterization for the projective
soft LA-modules.

Proposition 5. The soft LA-module (F,A) is projective soft LA-module if and
only if (Fj , A) is a projective soft LA-module for every j ∈ J.

Proof. Suppose that every (Fj , A) is a projective soft LA-module for every
j ∈ J. Consider, a diagram with row exact. We have a soft LA-homomorphism
∼
f
∼
i j : Fj(x) → H(z) for all x ∈ A, z ∈ C and j ∈ J . Fj(x) being projective

soft LA-module, so there exists a homomorphism
∼
gj : Fj(x) → G(y) such that

∼
α
∼
gj =

∼
f
∼
i jfor all x ∈ A, y ∈ B and j ∈ J. Now define

∼
g : F (x) → G(y) for all

x ∈ A, y ∈ B by
∼
g(ε) =

∑
j

∼
gj
∼
πj(ε), for ε ∈ F (x), x ∈ A.

It can be observed that the sum on the right hand side is finite. Then
∼
g

is a soft homomorphism. Now to show projective soft LA-module, so for ε ∈
F (x) where x ∈ A,

∼
α
∼
g(ε) =

∼
α(

∑
j

∼
gj
∼
πj(ε)) =

∑
j

∼
α
∼
gj
∼
πj(ε) =

∑
j

∼
f
∼
i j
∼
πj(ε) =

∼
f(
∑

j

∼
i j
∼
πj(ε)) =

∼
f((

∑
j

∼
i j
∼
πj)(ε)) =

∼
f(ε). Therefore it shows that

∼
α
∼
g =

∼
f .

Hence, we have proved that (F,A) is projective soft LA-module. Conversely,
suppose that F (x) for all x ∈ A is projective soft LA-module. For any j ∈ J ,

consider a diagram with row exact. Then for all x ∈ A and z ∈ C,
∼
f
∼
πj : F (x)→

H(z) is a homomorphism and F (x) being projective soft LA-module, there exists
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a homomorphism
∼
g : F (x)→ G(y) such that

∼
α
∼
g =

∼
f
∼
πjwhere x ∈ A and y ∈ B.

Now let take
∼
gj =

∼
g
∼
i j which is a homomorphism from Fj(x) → G(y), then

∼
α
∼
gj =

∼
α
∼
g
∼
i j =

∼
f
∼
πj
∼
i j =

∼
f. Hence it is proved that Fj(x) is projective soft

LA-modules.

Definition 16. A short exact sequence of the form O → F (x)
∼
i→ G(y)

∼
j→

H(z)→ O of soft LA-modules and soft homomorphism is said to splits or split
sequence of soft LA-modules, if any of the following these condition holds

(i) there exists a homomorphism
∼
γ : G(y)→ H(z) such that

∼
γ
∼
i =⊥F (x)

(ii) there exists a homomorphism
∼
θ : H(z)→ G(y) such that

∼
j
∼
θ =⊥H(z)

(iii) Im
∼
i is a direct summand of G(y)

where for all x ∈ A, y ∈ B and z ∈ C.

We now state the following theorem concerning the soft LA-modules.

Theorem 6. Every soft LA-module is a homomorphic image of a free soft LA-
module.

Proof. Let (F,A) be a soft LA-module over M . Let (
−
X,B) 6= φ be soft set

of the elements of which are in one to one correspondence with the elements of

(F,A). Let the elements of (
−
X,B) corresponding to the element ε ∈ (F,A) be

denoted
−
xε. Let (F ∗, B) be the free soft LA-module over N with basis (

−
X,B).

For all x ∈ A and y ∈ B, let
∼
f :
−
X(y) → F (x) be the map given by

∼
f(
−
xε) = ε.

Then by definition 15, for all x ∈ A and y ∈ B,
∼
g : F ∗(y)→ F (x) is the unique

homomorphism which satisfies
∼
g(
−
xε) = ε =

∼
f(
−
xε). Thus

∼
g is an epimorphism

and hence it is proved that (F,A) is a homomorphic image of (F ∗, B).

Remark 1. Since every soft LA-module is homomorphic image of a free soft
LA-module and every free soft LA-module is a projective soft LA-module, then
we have the following lemma.
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Lemma 2. Every soft LA-module is a homomorphic image of a projective soft
LA-module.

Proof. The proof follows straightforwardly by theorem 6 and theorem 5.

We now give below a characterization theorem of projective soft LA-modules.

Theorem 7. A soft LA-module (F,A) is projective soft LA-module if and only if
every exact sequence O → G(y)→ H(z)→ F (x)→ O splits for all x ∈ A, y ∈ B
and z ∈ C.

Proof. Suppose that for all x ∈ A, F (x) is a projective soft LA-module. Con-
sider the following exact sequence, then by definition of projective soft LA-

module, there exists a homomorphism
∼
h : F (x) → H(z) where x ∈ A and

z ∈ C, such that
∼
g
∼
h =⊥F (x)which shows that the sequence splits. Now con-

versely, suppose that the sequence of the form O → G(y)→ H(z)→ F (x)→ O
splits. Since every soft LA-module being homomorphic image of a free soft LA-
module. Let (F ∗, D) being free soft LA-module and

∼
α : F ∗(t) → F (x) be an

epimorphism for all t ∈ D and x ∈ A. If G(y) denotes the kernel
∼
α, we get an

exact sequence O → G(y)
∼
i→ F ∗(t)

∼
α→ F (x) → O which by hypothesis splits.

Thus F ∗(t) ∼= F (x) ⊕ G(y). The soft LA-module (F ∗, D) being free is projec-
tive soft LA-module and hence this implies that F (x) and G(y) are projective.
Hence, the theorem is proved.

4. Injective soft LA-modules

In this section, we define the injective soft LA-modules and establish some rel-
evant results.

Definition 17. Let (I, A) be a soft LA-module over M , (I, A) is called injective
soft LA-module, if given diagram of soft LA-modules and soft LA-homomorphisms
with row exact, then there exists a homomorphism

∼
g : G(z)→ I(x) for all z ∈ C

and x ∈ A, which makes the completed diagram commutative that is
∼
g
∼
α =

∼
f .
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For the injective soft LA-modules, we have the following Propositions.

Proposition 6. If (I, A) is an injective soft LA-module, then given diagramwith

row exact and
∼
f
∼
α = 0, there exists a homomorphism

∼
g : H(t)→ I(x) such that

the completed diagram is commutative
∼
g
∼
β =

∼
f for all x ∈ A and t ∈ D.

Proof. Let X(z) ⊆ G(z) = ker
∼
β = Im

∼
α where z ∈ C. Then

∼
β induces a

monomorphism

∼
−
β : G(z)/X(z) → H(t) for all t ∈ D and z ∈ C, given by

∼
−
β(ε + X(z)) =

∼
β(ε), where ε ∈ G(z). Let

∼
−
β(ε1 + X(z)) =

−
β(ε2 + X(z)) ⇒

∼
β(ε1) =

∼
β(ε2)⇒

∼
β(ε1)−

∼
β(ε2) = 0⇒

∼
β(ε1−ε2) = 0⇒ ε1−ε2 ∈ ker

∼
β = X(z)⇒

ε1−ε2 ∈ X(z)⇒ ε1−ε2+X(z) = X(z)⇒ ε1+X(z) = ε2+X(z), hence it shows

that

∼
−
β is a monomorphism. Also

∼
f
∼
α = 0 ⇒

∼
f(
∼
α(ε′)) = 0(ε′) = 0 ⇒

∼
f(
∼
α(ε′)) =

0 ⇒ ∼
α(ε′) ∈ ker

∼
f but

∼
α(ε′) ∈ Im∼α ⇒ Im

∼
α ⊆ ker

∼
f ⇒ X = Im

∼
α ⊆ ker

∼
f and,

therefore
∼
f induces a homomorphism

∼
−
f : G(z)/X(z) → I(x) for all x ∈ A and

z ∈ C, by

∼
−
f(ε + X(z)) =

∼
f(ε), where ε ∈ G(z). Let

∼
π : G(z) → G(z)/X(z)

denotes the natural projection. Then

∼
−
f
∼
π(ε) =

∼
−
f(
∼
π(ε)) =

∼
−
f(ε + X(z)) =

∼
f(ε)
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for all ε ∈ G(z), hence

∼
−
f
∼
π =

∼
f and

∼
−
β
∼
π(ε) =

∼
−
β(
∼
π(ε)) =

∼
−
β(ε + X(z)) =

∼
β(ε) for

all ε ∈ G(z), therefore

∼
−
β
∼
π =

∼
β. Since I(x) is an injective soft LA-module, so

there exists a homomorphism
∼
g : H(t)→ I(x) for all t ∈ D and x ∈ A such that

∼
−
f =

∼
g

∼
−
β then

∼
g
∼
β =

∼
g

∼
−
β
∼
π =

∼
−
f
∼
π =

∼
f . Hence proved.

Proposition 7. Let (Ij , A)j∈J be a family of soft LA-modules and I(x) =∏
j∈J Ij(x) (=direct product of Ij) for all x ∈ A. Then I(x) is an injective

soft LA-module if and only if Ij(x) is an injective soft LA-module.

Proof. Since for all x ∈ A, I(x) =
∏
j∈J Ij(x), there exists a homomorphism

∼
i j : Ij(x) → I(x) and

∼
pj : I(x) → Ij(x) such that

∼
pj
∼
i j =⊥Ijand

∼
pk
∼
i j = 0,

the zero map if j 6= k. Let
∼
α : F (y) → G(z) for all y ∈ B and z ∈ C be a

monomorphism of soft LA-modules. Suppose that every Ij(x) for all x ∈ A, is
an injective soft LA-module, by considering the following diagram.

Let
∼
f : F (y) → I(x) be a homomorphism for y ∈ B and x ∈ A, then

∼
pj
∼
f :

F (y)→ Ij(x) is a homomorphism and as Ij(x) being injective soft LA-module,

then there exists a homomorphism
∼
gj : G(z) → Ij(x) such that

∼
gj
∼
α =

∼
pj
∼
f ,

where z ∈ C and x ∈ A. Now define
∼
g : G(z) → I(x) by

∼
g(ε) = (

∼
gj(ε)), ε ∈

G(z). Then
∼
g is a homomorphism and for ε′ ∈ F (y) where y ∈ B, ∼g(

∼
α(ε′)) =

(
∼
gj
∼
α(ε′)) =

∼
pj
∼
f(ε′) =

∼
f(ε′), which shows that

∼
g
∼
α =

∼
f. Hence proved that I(x)

is an injective soft LA-module. Conversely, suppose that I(x) is an injective soft

LA-module. For any j ∈ J, let
∼
f j : F (y) → Ij(x) be a homomorphism where

y ∈ B and x ∈ A.

The soft LA-module I(x) being injective soft LA-module, there exists a

homomorphism
∼
g : G(z)→ I(x) where z ∈ C and x ∈ A, such that

∼
g
∼
α =

∼
i j
∼
f j .

Then
∼
pj
∼
g : G(z) → Ij(x) is a homomorphism such that

∼
pj
∼
g
∼
α =

∼
pj
∼
i j
∼
f j =

∼
f j .

Hence we have proved that Ij(x) is an injective soft LA-module.
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Proposition 8. If (I, A) is an injective soft LA-module, then every exact se-

quence of the form O → I(x)
∼
α→ F (y)

∼
β→ G(z)→ O splits for every x ∈ A, y ∈ B

and z ∈ C.

Proof. Consider the following diagram,
since I(x) is an injective soft LA-module, so there exists a homomorphism

∼
g : F (y) → I(x) such that

∼
g
∼
α =⊥I(x) . Hence we have proved that the exact

sequence of the form O → I(x)
∼
α→ F (y)

∼
β→ G(z)→ O splits.

5. Conclusion

Our paper can be regarded as a systematic study of soft LA-modules. We study
soft LA-modules by giving the concepts of split sequence in soft LA-modules,
free soft LA-modules, projective and injective soft LA-modules and their related
properties. One can further develop the theory of homological algebra of soft
LA-modules by defining functors, pullback and pushouts etc

References
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1. Introduction and preliminaries

Probabilistic functional analysis has risen as one of the vital mathematical dis-
ciplines in view of the needs in dealing with probabilistic models in applied
problems. Probabilistic Normed spaces were introduced by Serstnev and its
new definition was proposed by C.Alsina, B.Schwerier and A.Sklar ([1], [2]).
The general theory of Probabilistic Metric spaces and Probabilistic Normed
spaces can be read in ([8], [13], [14]). The theory of probabilistic normed spaces
(briefly. PN spaces) is important as a generalization of deterministic results of
linear normed spaces and in the study of random operator equations. The PN
spaces may also provide us with the suitable tools to contemplate the geometry
of nuclear physics and have important applications in quantum particle physics
especially in string theory and in ε∞ theory. Some of the recent developments in
different types of probabilistic normed spaces, translation invariant topologies
induced by probabilistic norms and linear 2-normed spaces are discussed in ([3],
[6], [7], [8]).

A triangle function [4] is a binary operation on ∆+, namely a function τ :
∆+×∆+ −→ ∆+ that is associative, commutative, non-decreasing in each place
and has ε0 as identity, this is, for all F,G and H in ∆+:

(TF1) τ(τ(F,G), H) = τ(F, τ(G,H)),

(TF2) τ(F,G) = τ(G,F ),

(TF3) F ≤ G =⇒ τ(F,H) ≤ τ(G,H),

(TF4) τ(F, ε0) = τ(ε0, F ) = F .

Moreover, a triangle function is continuous if it is continuous in the metric space
(∆+, dS).

Typical continuous triangle functions [4] are

τT (F,G)(x) = sup
s+t=x

{T (F (s), G(t))}

and

τT ∗(F,G) = inf
s+t=x

{T ∗(F (s), G(t)}.

Here T is a continuous t-norm, i.e. a continuous binary operation on [0, 1] that
is commutative, associative, non-decreasing in each variable and has 1 as iden-
tity; T ∗ is a continuous t-conorm, namely a continuous binary operation on [0, 1]
which is related to the continuous t-norm T through T ∗(x, y) = 1−T (1−x, 1−y).
Let us recall among the triangular function one has the function defined via
T (x, y) = min(x, y) = M(x, y) and T ∗(x, y) = max(x, y) or T (x, y) = Π(x, y) =
xy and T ∗(x, y) = Π∗(x, y) = x+ y − xy.
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Some more examples of t-norms [4] are W and Z, defined respectively by

W (x, y) := max{x+ y − 1, 0}.

Z(x, y) :=


0, if (x, y) ∈ [0, 1]× [0, 1],

x, if x ∈ [0, 1], y = 1,

y, if x = 1, y ∈ [0, 1]

then we have
Z < W < Π < M

and every t-norm T,
Z ≤ T ≤M.

For every t-norm Π,W,Z and M, it is defined that

ΠΠ(F,G)(x) := Π(F (x), G(x)),

ΠW (F,G)(x) :=W (F (x), G(x)),

ΠZ(F,G)(x) := Z(F (x), G(x)),

ΠM (F,G)(x) :=M(F (x), G(x)).

A few more interesting examples of t-norms and t-conorms can be found in
the recent paper [10].

We recall the definition of probabilistic normed space (briefly, PN space) as
given in [2], together with the notation that will be needed [13]. We shall
consider the space of all distance probability distribution functions (briefly,
d.f.’s), namely the set of all left-continuous and non-decreasing functions from
R := R ∪ {−∞,+∞} into [0, 1] such that F (0) = 0 and F (+∞) = 1, will be
denoted by ∆+, while the subset D+ ⊂ ∆+ will denote the set of all proper
distance d.f.’s, namely those for which ℓ−F (+∞) = 1. Here ℓ−f(x) denotes
the left limit of the function f at the point x ∈ R. The space ∆+ is partially
ordered by the usual pointwise ordering of functions i.e., F ≤ G if and only if
F (x) ≤ G(x) for all x in R. For any a ≥ 0, εa is the d.f. given by

εa =

{
0, if x ≤ a,
1, if x > a.

The space ∆+ can be metrized in several ways [13], but we shall here adopt
the Sibley metric dS . If F,G are d.f.’s and h is in ]0, 1[, let (F,G;h) denote the
condition:

G(x) ≤ F (x+ h) + h for everyx ∈
]
0,

1

h

[
.

Then the Sibley metric is defined by

(1.1) dS(F,G) := inf{h ∈ ]0, 1[ : both (F,G;h) and (G,F ;h) hold }.

Since every d.f. F is bounded, 0 ≤ F (t) ≤ 1, for all t ∈ R, one has dS ≤ 1.
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Definition 1.1 ([1], [4]). A Menger’s Probabilistic Normed Space (briefly, a
Menger’s PN space), is a quadruple (X, ν, τ, T ), where X is a real vector space,
τ is a triangle function, T is a t-norm and the mapping ν : X → △+ satisfies
the conditions:

1. νp = ε0 if, and only if, p = θ (θ is the null vector in X);

2. ναp(t) ≥ νp
(

t
|α|

)
for all α ∈ R\{0} and t ∈ R;

3. νp+q(s+ t) ≥ τT (νp(s), νq(t)) for all p, q ∈ X and s, t ∈ R.

The function ν is called the Menger’s probabilistic norm.

Example 1.1 ([1]). Let (V, ∥.∥) be a normed space and define νp := ε∥p∥. Let
τ be a triangle function such that

τ (εa, εb) = εa+b,

for all a, b ≥ 0 and let τ∗ be a triangle function with τ ≤ τ∗. For instance, it
suffices to take τ = τT and τ∗ = τT ∗ , where T is a continuous t-norm and T ∗ is
its t-conorm. Then (V, ν, τ, τ∗) is a Menger’s PN space.

Definition 1.2 ([8]). Let (X, ν, τ, T ) be a Menger’s PN space, and (xn) be a
sequence of X then the sequence (xn) is said to be convergent to x if for all
t > 0 and λ ∈ (0, 1) there exists n0 ∈ N such that νxn−x(t) > 1 − λ for every
n > n0.

Definition 1.3 ([8]). Let (X, ν, τ, T ) be a Menger’s PN space, and (xn) be a
sequence of X then the sequence (xn) is said to be Cauchy sequence if for all
t > 0 and λ ∈ (0, 1) there exists n0 ∈ N such that νxn−xm(t) > 1 − λ for all
n,m > n0.

Definition 1.4 ([8]). A Menger’s PN space (X, ν, τ, T ) is said to be complete
if every Cauchy sequence in X is convergent to some point in X.

A compltete Menger’s PN space is called Menger probabilistic Banach space.

Definition 1.5 ([8]). Let (X, ν, τ, T ) be a Menger’s PN space, E be a subset
of X, then the closure of E is defined as E = {x ∈ X : there exists (xn) ⊂
E such that xn → x}, that is, for α ∈ (0, 1) and r > 0, x ∈ E there exists
n0 ∈ N such that for every n > n0 one has νxn−x(r) ≥ α.

We say, E is sequentially closed if E = E,

Definition 1.6 ([8]). The probabilistic radius RA of a nonempty set A in a
Menger’s PN space (X, ν, τ, T ) is defined by

RA :=

{
ℓ−φA(t), t ∈ [0,+∞[

1, t = +∞

where φA(t) := inf{νp(t) : p ∈ A}.
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Definition 1.7 ([8]). A nonempty set A in a Menger’s PN space (X, ν, τ, T ) is
said to be:

(a) certainly bounded, if RA(t0) = 1 for some t0 ∈]0,+∞[;

(b) perhaps bounded, if one has RA(t) < 1 for every t ∈]0,+∞[, but

lim
t→+∞

RA(t) = 1;

(c) perhaps unbounded, if RA(t0) > 0 for some t0 ∈]0,+∞[ and

lim
t→+∞

RA(t) ∈]0, 1[;

(d) certainly unbounded, if limt→+∞RA(t) = 0, i.e., if RA = ε∞. More-
over, the set A will be said to be distributionally bounded (henceforth
D−bounded) if either (a) or (b) holds, i.e.,if RA ∈ D+; otherwise, i.e., if
RA belongs to ∆+ \ D+, A will be said to be D−unbounded.

Definition 1.8 ([8]). Let (X, ν, τ, T ) and (Y, µ, τ, T ) be two Menger’s PN spaces
then a mapping T : X → Y is said to be sequentially continuous if a sequence
(xn) in X converges to x ∈ X implies (Txn) converges to Tx in Y.

Lemma 1.9 ([8]). Let (X, ν, τ, T ) be a Menger’s PN space. If |α| ≤ |β|, then
ναx ≥ νβx for every x ∈ X.

Definition 1.10 ([8]). Let (X, ν, τ, T ) be a Menger’s PN space and A be a
nonempty subset of X then A is said to be probabilistically bounded if for each
r ∈ (0, 1) there exists t > 0 such that νx(t) > 1− r for all x ∈ A.

Let φ : R+ → R+ be a function. In connection with the function φ we
consider the following properties [5]:

1. φ is monotonic increasing;

2. φ(t) < t for all t > 0;

3. φ(0) = 0;

4. φ is continuous;

5. {φn(t)} converges to 0 for all t ≥ 0;

6.
∑∞

n=0{φn(t)} converges for allt > 0;

7. t− φ(t)→∞ as t→∞;

8. φ is subadditive.

Lemma 1.11 ([5]). Let φ : R+ → R+ be a function then:
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1. φ is monotonic increasing and φ(t) < t for all t > 0 implies φ(0) = 0.

2. φ(t) < t for all t > 0 and φ is continuous implies φ(0) = 0.

3. φ is monotonic increasing and {φn(t)} converges to 0 for all t ≥ 0 then
φ(t) < t for all t > 0.

Definition 1.12 ([5], [11]). A function φ : R+ → R+ is said to be a comparison
function if φ is monotonic increasing and {φn(t)} converges to 0 for all t ≥ 0.

Lemma 1.13 ([5], [11]). 1. Any comparison function φ satisfies φ(0) = 0;

2. Any subadditive comparison function φ is continuous;

3. If φ is a comparison function then, for any k ∈ N, φk is a comparison
function;

4. If φ is a comparison function then, the function s : R+ → R+ such that
s(t) =

∑∞
k=0 φ

k(t) for t ∈ R+ satisfies that s is monotonic increasing and
s(0) = 0.

Example 1.14 ([5][11]). Some examples for the function φ satisfying the prop-
erties mentioned in definition (1.11):

1. Define φ : R+ → R+ by φ(t) = kt for k ∈ [0, 1] then φ satifies all the
conditions in definition (1.11).

2. Define φ : R+ → R+ by φ(t) = t
t+1 then φ is monotonic increasing,{φn(t)}

converges to 0 for all t ≥ 0 and t− φ(t)→∞ as t→∞.

2. Contraction and φ−contraction mappings in Menger’s PN spaces

Definition 2.1 ([12]). Let (X, ν, τ, T ) be a Menger’s PN space, a subset L of
X of the form {x+ ty; t ∈ R+} where x, y ∈ X and y ̸= 0 is called a line.

Definition 2.2. Let (X, ν, τ, T ) be a Menger’s PN space,f : X → X is said to
be a contraction on X if and only if there is a k ∈ (0, 1) such that νfx−fy(kt) ≥
νx−y(t) for every x, y ∈ X and t > 0.

Example 2.3. Let (X, ν, τ, T ) be a Menger’s PN space, and S be a subset of
L = {x+ αy;α ∈ R+}. Define f : S → X by f(x+ αy) = ( α

1+α)y for x, y ∈ X,
then f is a contraction on X.

Lemma 2.4. Let (X, ν, τ, T ) be a Menger’s PN space then, every contraction
f : X → X is sequentially continuous.

Proof. Since f is a contraction on X, we have for k ∈ (0, 1) νfx−fy(kt) ≥
νx−y(t), for all x, y ∈ X and t > 0.

Let (xn) be a sequence in X such that xn → x i.e., for all t > 0 and λ ∈ (0, 1)
there exists n0 ∈ N such that for every n > n0 we have νxn−x(t) > 1− λ.
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As xn ∈ X for all n, we have νfxn−fx(kt) ≥ νxn−x(t) > 1−λ for every n >
n0.

Hence fxn → fx. So f is sequentially continuous.

Now we prove a unique fixed point theorem for contractive mappings in
Menger’s PN space.

Theorem 2.5. Let (X, ν, τ, T ) be a Menger’s probabilistic Banach space and
E be a nonempty closed and probabilistic bounded subset of X. Let f : E → E
be a contraction then f has a unique fixed point on X.

Proof. Since f is a contraction on X, for k ∈ (0, 1), νfx−fy(kt) ≥ νx−y(t) for
all x, y ∈ X and t > 0.

Let x0 ∈ X. Construct a sequence {xn} depending on x0. Let x1 = fx0, x2 =
fx1, x3 = fx2, ..., xn = fxn−1 then fx0 = x1, f

2x0 = f(fx0) = fx1 = x2,
..., fnx0 = xn.

We have, νf2(x)−f2(y)(kt) = νf(fx)−f(fy)(kt) ≥ νfx−fy(t) ≥ νx−y
(
t
k

)
.

Similarly, νf3x−f3y(kt) ≥ νx−y
(
t
k2

)
.

Continuing like this we get

νfnx−fny(kt) ≥ νx−y
(

t

kn−1

)
.

We have E is probabilistically bounded then for each r ∈ (0, 1) there exists
t > 0 such that νx(t) > 1− r for all x ∈ E.

We prove that {xn} is a Cauchy sequence in X.
Let m,n > 0 with m > n. Take m = n+ p then

νxn−xn+p(kt) = ν(xn−xn+1)+(xn+1−xn+p)(kt)

≥ τT {νxn−xn+1

(
kt

2

)
, νxn+1−xn+p

(
kt

2

)
}

= τT {νfnx0−fnx1
(
kt

2

)
, ν(xn+1−xn+2)+(xn+2−xn+p)

(
kt

2

)
}

≥ τT {νx0−x1
(

t

2kn−1

)
, τT {νfnx1−fnx2

(
kt

4

)
, ν(xn+2−xn+p)

(
kt

4

)
}}

≥ τT {νx0−x1
(

t

2kn−1

)
, τT {νx1−x2

(
t

4kn−1

)
, ν(xn+2−xn+p)

(
kt

4

)
}}

≥ τT {νx0−x1
(

t

2kn−1

)
, νx1−x2

(
t

4kn−1

)
, τT {ν(xn+2−xn+3)+(xn+3−xn+p)

(
kt

4

)
}}

> τT {1− r, 1− r, ..., 1− r} = 1− r.

So, {xn} is a Cauchy sequence in X. Therefore, {xn} converges to some point
x ∈ X.

Since f is sequentially continuous, we have limn→∞ fxn = fx and fx =
limn→∞ fxn = limn→∞ xn+1 = x. Hence f has a fixed point in X.



FIXED POINT THEOREM FOR CONTRACTION MAPPINGS IN PROBABILISTIC ... 825

It remains to prove that such a fixed point is unique.
Let y ∈ X with y ̸= x such that fy = y then, νx−y(kt) = νfx−fy(kt) ≥

νx−y(t) implies ν 1
k
(x−y)(t) ≥ νx−y(t) implies | 1k | ≤ 1 implies k ≥ 1, a contradic-

tion to k ∈ (0, 1) . Hence the fixed point of f is unique.

Definition 2.6. Let (X, ν, τ, T ) be a Menger’s PN space then a mapping f :
X → X is said to be a φ−contraction if there exists a comparison function
φ : R+ → R+ such that νfx−fy (φ(t)) ≥ νx−y (φ(t/c)) for 0 < c < 1, for all
x, y ∈ X and t > 0.

Example 2.7. Let (X, ν, τ, T ) be a Menger’s PN space. Define f : X → X by
f(t) = t and φ : R+ → R+ by φ(t) = t

c , for 0 < c < 1 then φ is a comparison
function and hence f is a φ−contraction on X.

Lemma 2.8. Let (X, ν, τ, T ) be a Menger’s PN space then, every φ−contraction
f : X → X is sequentially continuous.

Proof. Let (xn) be a sequence in X such that xn → x in X i.e., for all t > 0 and
λ ∈ (0, 1) there exists n0 ∈ N such that for every n > n0, we have νxn−x > 1−λ.

Since f is a φ−contraction, we have, for 0 < c < 1, for all x, y ∈ X and t > 0

νfxn−fx (φ(t)) ≥ νxn−x (φ(t/c)) > 1− λ, for every n > n0.

Hence f is sequentially continuous.

Theorem 2.9. Let (X, ν, τ, T ) be a Menger’s probabilistic Banach space and
E be a nonempty closed and D− bounded subset of X. Let f : E → E be a
φ−contraction then f has a unique fixed point on X.

Proof. Since f is a φ−contraction onX, then there exists a comparison function
φ for 0 < c < 1, for all x, y ∈ X and t > 0

νfx−fy (φ(t)) ≥ νx−y (φ(t/c)) .

We have

νf2(x)−f2(y) (φ(t)) = νf(fx)−f(fy) (φ(t))

≥ νfx−fy (φ(t/c))
≥ νx−y

(
φ(t/c2)

)
.

Similarly, νf3x−f3y (φ(t)) ≥ νx−y
(
φ(t/c3)

)
. Continuing like this we get,

νfnx−fny (φ(t)) ≥ νx−y (φ(t/cn)) .

Let x0 ∈ X. Construct a sequence {xn} depending on x0. Let x1 = fx0, x2 =
fx1, x3 = fx2, ..., xn = fxn−1 then fx0 = x1, f

2x0 = f(fx0) = fx1 = x2,
..., Tnx0 = xn.
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We prove that {xn} is a Cauchy sequence in X.
Let m,n > 0 with m > n. Take m = n+ p then

νxn−xn+p (φ(t)) = ν(xn−xn+1)+(xn+1−xn+p) (φ(t))

≥ τT {νxn−xn+1 (φ(t)) , νxn+1−xn+p (φ(t))}
= τT {νfnx0−fnx1 (φ(t)) , ν(xn+1−xn+2)+(xn+2−xn+p) (φ(t))}
≥ τT {νxn−x1 (φ(t)) , τT {ν(xn+1−xn+2) (φ(t)) , ν(xn+2−xn+p) (φ(t))}}
> τT {1− r, 1− r} = 1− r.

So, {xn} is a Cauchy sequence in X. Therefore, {xn} converges to some point
x ∈ X.

Since f is sequentially continuous, we have limn→∞ fxn = fx and fx =
limn→∞ fxn = limn→∞ xn+1 = x. Hence f has a fixed point in X.

Now, we have to prove that such a fixed point is unique.
Let y ∈ X with y ̸= x such that fy = y then, for t > 0,

νx−y (φ(t)) = νfx−fy (φ(t))

≥ νx−y (φ(t/c))
≥ νfx−fy

(
φ(t/c2)

)
...

≥ νx−y (φ(t/cn)) .

We have limn→∞ φ(t/cn) = ∞ and as a consequence νx−y(∞) = 1 if and
only if νx is in D+. i.e., limt→∞ νx(t) = 1. Then, νx−y(t) = 1 for all t > 0 if and
only if νx−y = ε0 if and only if x = y. This completes the proof.
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Abstract. In this article, we establish new univalence criteria for normalized analytic
functions f(z) = z +

∑∞
k=2 ak z

k with f(z)/z ̸= 0 in the unit disk U = {z : |z| < 1}.
Indeed, we prove for any n ≥ 2 that the condition |(f(z)/z)(n)| ≤ (n!/(n + 1))(1 −∑n

k=2 k|ak|) is sufficient and sharp for f to be univalent in U. The equality attained for
the functions f(z) = z+

∑n
k=2 ak z

k, where
∑n

k=2 k|ak| = 1. We investigate interesting
geometric properties for such classes of functions. Namely, subordinations, inclusions,
distortion and growth theorems, area estimate, starlikeness and convexity.

Keywords: univalent functions, univalence criteria, subordination, starlike functions,
convex functions, area theorem, distortion theorem.

1. Introduction and preliminaries

It is well known that the condition Ref ′(z) > 0 is sufficient for analytic function
f to be univalent (one-to-one) in any convex domain. In 1962, MacGregor [1]
investigated such functions in the unit disk U = {z : |z| < 1}, whenever f is
normalized by f(0) = f ′(0) − 1 = 0. In fact, the class of normalized analytic
functions, denoted by A, is analytically characterized by functions of the form

f(z) = z +
∞∑
k=2

ak z
k.

Afterwards, in [2, 3], the authors studied the subclass

F = {f ∈ A : |f ′(z)− 1| < 1, z ∈ U}

of the class R = {f ∈ A : Re f ′(z) > 0, z ∈ U}, for various geometric properties.
A function f ∈ A is said to be starlike in U if it satisfies

Re

{
zf ′(z)

f(z)

}
> 0, (z ∈ U).

Also, f ∈ A is called convex in U if it satisfies

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, (z ∈ U).
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The classes of starlike functions and convex functions are denoted, respectively,
by S∗ and K. A function f is said to be subordinate to g, written f ≺ g, if
there exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1 (z ∈ U),
such that f(z) = g(w(z)), for z ∈ U. The problems of finding criteria and
investigating geometric properties for univalent functions has been extensively
studied by many authors, see for example [4-11].

In this article, for every n ≥ 2, we introduce the classes

Fn =

{
f ∈ A :

∣∣∣∣∣
(
f(z)

z

)(n)
∣∣∣∣∣ ≤ n!

n+ 1

(
1−

n∑
k=2

k|ak|

)
,
f(z)

z
̸= 0, z ∈ U

}

of univalent functions in U. Indeed, we prove that Fn is included in the class
F , for every n ≥ 2. As a motivation of our univalence criteria is that, for n = 2
and f(z)/z ̸= 0 in U, the condition

(1.1)

∞∑
k=3

(k − 1)(k − 2)|ak| ≤
2

3
(1− 2|a2|)

is sufficient for f ∈ A to be in F2 and hence it is univalent in U. Also, the
condition ∣∣∣∣(f(z)z

)′′∣∣∣∣ ≤ 1

5

(
−7|a2|+

√
10− |a2|2

)
, (z ∈ U)

is sufficient for f ∈ A to be starlike in U, where equality attained for f(z) =
z + a2 z

2, (|a2| = 1/
√
5). Moreover, the condition∣∣∣∣(f(z)z

)′′∣∣∣∣ ≤ 2

11
(1− 4|a2|), (z ∈ U)

is sufficient for f ∈ A to be convex in U, where equality attained for f(z) =
z + a2 z

2, (|a2| = 1/4). Further, we investigate several geometric properties
for the classes Fn. Mainly, inclusions, subordinations, distortion and growth
theorems, area estimate, starlikeness and convexity. As consequences from the
subordination results, we obtain univalence criteria in terms of bounded deriva-
tives of f .

The following lemmas are needed in the sequel.

Lemma 1.1 ([12]). If ω(z) is analytic in U and |ω(z)| ≤ 1 in U, then for each
m ≥ 1, the function Φm(z) defined by

Φm(z) =

∫ z

0
mum−1ω(u)du = zm

∫ 1

0
mtm−1ω(tz)dt = zmΨm(z)

is clearly analytic in U and moreover, Ψm(z) is analytic in U such that |Ψm(z)| ≤
1 in U.
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Lemma 1.2 ([13]). Let g be a convex function in U, and let h(z) = g(z) +
kαzg′(z) for z ∈ U, where α > 0 and k is a positive integer. If p(z) = g(0) +
pkz

k + pk+1z
k+1 + · · ·, z ∈ U, is holomorphic in U and p(z) + αzp′(z) ≺ h(z),

z ∈ U, then p(z) ≺ g(z), z ∈ U, and this result is sharp.

Lemma 1.3 ([14, p.7]). For analytic functions g(z) =
∑∞

k=0 bk z
k in U with

|g(z)| ≤ 1, we have
∞∑
k=0

|bk|2 ≤ 1.

Lemma 1.4. Let f(z) = z +
∑∞

k=2 akz
k. Then, for every n ≥ 2, we have

(1.2) f (n)(z) = z

(
f(z)

z

)(n)

+ n

(
f(z)

z

)(n−1)

.

Proof. From the following expansions

f (n)(z) = n! an +

∞∑
k=n+1

k!

(k − n)!
ak z

k−n,

(
f(z)

z

)(n)

=

∞∑
k=n+1

(k − 1)!

(k − n− 1)!
ak z

k−n−1,

and (
f(z)

z

)(n−1)

= (n− 1)! an +

∞∑
k=n+1

(k − 1)!

(k − n)!
ak z

k−n.

It can be easily verified that (1.2) holds.

2. Univalence and inclusions

Let us start by proving that Fn ⊆ F , for every n ≥ 2.

Theorem 2.1 (Univalence Criteria). Let f(z) = z+
∑∞

k=2 akz
k with f(z)/z ̸= 0

in U and let

(2.1)

∣∣∣∣∣
(
f(z)

z

)(n)
∣∣∣∣∣ ≤ n!

n+ 1

(
1−

n∑
k=2

k|ak|

)
, (z ∈ U).

for some n ≥ 2. Then f ∈ F and hence it is univalent in U. The inequality
(2.1) is sharp, where equality attained for functions of the form

(2.2) fn(z) = z +

n∑
k=2

akz
k, where

n∑
k=2

k|ak| = 1

and for f(z) = z ± (1/(n+ 1))zn+1.
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Proof. Let

βn =
n!

n+ 1

(
1−

n∑
k=2

k|ak|

)
.

Then, for n = 2, condition (2.1) is equivalent to∣∣∣∣(f(z)z
)′′∣∣∣∣ ≤ β2

and

(2.3)

(
f(z)

z

)′′
= β2 ϕ1(z),

where ϕ1 is analytic in U and |ϕ1(z)| ≤ 1 in U. Now, by the virtue of(
f(z)

z

)(k)

|z=0 = k! ak+1

and using Lemma 1.1, then integrating (2.3) from 0 to z yields

(2.4)

(
f(z)

z

)′
= a2 + β2z

∫ 1

0
ϕ1(tz) dt := a2 + β2zϕ2(z).

The relation (2.4), by integration and multiplying by z, gives

(2.5) f(z)− z = a2z
2 + β2z

∫ z

0
uϕ2(u) du.

By differentiating both sides of (2.5), we have

f ′(z)− 1 = 2a2z + β2

(
z2ϕ2(z) +

∫ z

0
uϕ2(u) du

)
= 2a2z + β2

(
z2ϕ2(z) +

1

2
z2
∫ 1

0
2t ϕ2(tz) dt

)
.

Therefore, ∣∣f ′(z)− 1
∣∣ < 2|a2|+

3

2
β2 = 1,

and hence f ∈ F . For n = 3, we have

(2.6)

(
f(z)

z

)′′′
= β3ψ1(z),

where ψ1 is analytic in U and |ψ1(z)| ≤ 1 in U. By integration (2.6) from 0 to
z, we have

(2.7)

(
f(z)

z

)′′
= 2a3 + β3z

∫ 1

0
ψ1(tz) dt := 2a3 + β3z ψ2(z).
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Again by integration (2.7), we get

(2.8)

(
f(z)

z

)′
= a2 + 2a3z + β3

z2

2

∫ 1

0
2tψ2(tz) dt := a2 + 2a3z +

β3
2
z2ψ3(z).

Integration (2.8) and then multiplying by z, gives

(2.9) f(z)− z = a2z
2 + a3z

3 +
β3
2
z

∫ z

0
u2ψ3(u) du.

By differentiating both sides of (2.9) and using Lemma 1.1, we have

f ′(z)− 1 = 2a2z + 3a3z
2 +

β3
2

(
z3ψ3(z) +

∫ z

0
u2ψ3(u) du

)
= 2a2z + 3a3z

2 +
β3
2

(
z3ψ3(z) +

1

3
z3
∫ 1

0
3t2ψ3(tz) dt

)
.

Therefore, ∣∣f ′(z)− 1
∣∣ < 2|a2|+ 3|a3|+

2

3
β3 = 1,

and hence f ∈ F . In general, if∣∣∣∣∣
(
f(z)

z

)(n)
∣∣∣∣∣ ≤ βn, (z ∈ U),

then

f ′(z)− 1 =

n∑
k=2

kakz
k−1

+
1

(n− 1)!
βn

(
znφn(z) +

zn

n

∫ 1

0
ntn−1φn(tz) dt

)
,(2.10)

where φn is analytic in U and |φn(z)| ≤ 1 in U by Lemma 1.1. Therefore,

∣∣f ′(z)− 1
∣∣ < n∑

k=2

k|ak|+
1

(n− 1)!

(
1 +

1

n

)
βn = 1,

and hence f ∈ F . To show that the result is sharp for n ≥ 2, we consider

(2.11) fϵ(z) = z +
1 + ϵ

n+ 1
zn+1, (ϵ ≥ 0).

Clearly, ak = 0 for 2 ≤ k ≤ n. A computation shows that(
fϵ(z)

z

)(k)

=
(1 + ϵ)n(n− 1) · · · (n− k + 1)

n+ 1
zn−k, (2 ≤ k ≤ n).
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Therefore,

(2.12)

(
fϵ(z)

z

)(n)

=
n!

n+ 1
(1 + ϵ).

Letting ϵ = 0 in (2.11) and (2.12) implies that f0(z) satisfies the equality in
(2.1). However, for every ϵ > 0 and n ≥ 2, we have

f ′ϵ

((
−1
1 + ϵ

) 1
n

)
= 0.

Hence fϵ is not univalent in U, for ϵ > 0 and the result is sharp. It can be easily
check that functions of the form (2.2) are also satisfying the equality in (2.1),
where both sides will be zero. This completes the proof of Theorem 2.1.

Setting n = 2 in Theorem 2.1 implies, for f(z)/z ̸= 0 in U, that∣∣∣∣(f(z)z
)′′∣∣∣∣ ≤ 2

3
(1− 2|a2|), (z ∈ U)

is sufficient condition for f to be in F2. Now, expanding (f(z)/z)(n) as a Taylor
series gives the following corollary.

Corollary 2.2. Let f(z) = z +
∑∞

k=2 akz
k with f(z)/z ̸= 0 in U and let

(2.13)
n∑
k=2

k|ak|+
n+ 1

n!

∞∑
k=n+1

(k − n)n |ak| ≤ 1, (z ∈ U),

where (x)n is the Pochhammer symbol defined by

(x)n =
Γ(x+ n)

Γ(x)
= x(x+ 1)...(x+ n− 1).

Then f ∈ Fn.

Proof. Since (
f(z)

z

)(n)

=

∞∑
k=n+1

(k − 1)!

(k − n− 1)!
akz

k−n−1.

Then, we easily conclude that (2.13) is sufficient condition for f to be in Fn.

As a consequent result from Corollary 2.2, we observe that condition (1.1) is
sufficient for f to be in F2. Note that, f(z) = z± (1/n)zn ∈ Fn−1 ∩Fn. Indeed,
we have the following result.

Theorem 2.3 (Inclusions). For n ≥ 3, Fn ⊆ Fn−1 in the disk |z| ≤ (n+1)/n2.
Moreover, if f ∈ Fn with

∑n
k=2 k |ak(f)| = 1, then f ∈ Fn−1 in the unit disk U.
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Proof. Let f(z) = z +
∑∞

k=2 ak z
k ∈ Fn. Then(

f(z)

z

)(n)

=
n!

n+ 1

(
1−

n∑
k=2

k |ak|

)
µ1(z),

where µ1 is analytic in U and |µ1(z)| ≤ 1 in U. Therefore, by integration from
0 to z, we observe that(

f(z)

z

)(n−1)

= (n− 1)! an +
n!

n+ 1

(
1−

n∑
k=2

k |ak|

)
z µ2(z),

where µ2 is analytic in U and |µ2(z)| ≤ 1 in U. Now, if |z| ≤ (n+ 1)/n2, then a
simple computation gives∣∣∣∣∣

(
f(z)

z

)(n−1)
∣∣∣∣∣ ≤ (n− 1)!|an|+

n!

n+ 1

(
1−

n∑
k=2

k |ak|

)
|z|

≤ (n− 1)!

n

(
1−

n−1∑
k=2

k |ak|

)
.

This completes the proof of the first part. To prove the second part, let f ∈ Fn
with

∑n
k=2 k |ak| = 1. Then (f(z)/z)(n) = 0 and∣∣∣∣∣
(
f(z)

z

)(n−1)
∣∣∣∣∣ = (n− 1)!|an| =

(n− 1)!

n

(
1−

n−1∑
k=2

k |ak|

)
.

Therefore f ∈ Fn−1.

We note that Fn is not included in Fn−1, consider the following example

Example 2.4. The function

f(z) = z +
1

4
z4

belongs to F3. However, it does not belong to F2.

3. Subordination and an area theorem

Theorem 3.1 (Subordination). Let f ∈ A be satisfying

(3.1) f (n)(z) ≺ n! an + β(n+ 1)z, (z ∈ U).

Then,

(3.2)

(
f(z)

z

)(n−1)

≺ (n− 1)! an + βz, (z ∈ U),

for every n ≥ 3 and β ∈ C. The result is sharp.
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Proof. In view of Lemma 1.4, the subordination (3.1) can be written as

z

n

(
f(z)

z

)(n)

+

(
f(z)

z

)(n−1)

≺ (n− 1)! an +
n+ 1

n
βz, (z ∈ U).

Applying Lemma 1.2 for p(z) = (f(z)/z)(n−1), g(z) = (n − 1)! an + βz, k = 1
and α = 1/n to the above subordination yields the desired.

Corollary 3.2. If f ∈ A satisfies

(3.3) |f (n)(z)− n! an| <
(n+ 1)!

n2

(
1−

n∑
k=2

k |ak|

)
, (z ∈ U),

for some n ≥ 3, then f ∈ Fn−1.

Proof. Set

β =
(n− 1)!

n

(
1−

n∑
k=2

k |ak|

)
.

Then, in view of (3.3), f (n)(z) − n! an ≺ β(n + 1)z and hence (3.1) holds.
Therefore, from (3.2), we obtain∣∣∣∣∣

(
f(z)

z

)(n−1)
∣∣∣∣∣ < (n− 1)!

n

(
1−

n−1∑
k=2

k |ak|

)
.

Hence, f ∈ Fn−1.

For the case n = 2, we have the following

Theorem 3.3. If f ∈ A satisfies

(3.4) f ′′(z)− 2 a2 ≺
3

2
(1− 2|a2|) z,

or equivalently, |f ′′(z) − 2 a2| < 3
2 (1− 2|a2|) , (z ∈ U), then f ∈ F . In par-

ticular, if a2 = 0 and |f ′′(z)| < 3/2 then f ∈ F and hence it is univalent in
U.

Proof. In view of (3.4), we have f ′′(z) = 2 a2 +
3
2 (1− 2|a2|)w(z), where w is

analytic function in U and |w(z)| ≤ |z| in U by Schwarz lemma. Therefore,

|f ′(z)− 1| =

∣∣∣∣∫ z

0
f ′′(s) ds

∣∣∣∣
≤ |z|

∫ 1

0
|f ′′(tz)| dt

≤ |z|
∫ 1

0

(
2|a2|+

3

2
(1− 2|a2|)|z|t

)
dt

≤ 2|a2||z|+
3

4
(1− 2|a2|)|z|2

<
3

4
+

1

2
|a2| ≤ 1.
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Thus f ∈ F .

Next, we study the area covered by functions in Fn. Applying Lemma 1.3
to (f(z)/z)(n), where f(z) = z +

∑∞
k=2 ak z

k ∈ Fn, implies that

∞∑
k=n+1

 (k − n)n (n+ 1)

n!
(
1−

∑n
j=2 j |aj |

)
2

|ak|2 ≤ 1.

Using this inequality, we may derive the following theorem.

Theorem 3.4 (An Area Theorem). The area of the image of U under each
function in Fn satisfies

A ≤ π

1 +
n∑
k=2

k|ak|2 +
1

n+ 1

(
1−

n∑
k=2

k |ak|

)2
 .

Equality attained for the functions f(z) = z+
∑n

k=2 akz
k, where

∑n
k=2 k|ak| = 1.

Proof. Let f(z) = z+
∑∞

k=2 ak z
k be in the class Fn. It is well known, (see [2]),

that the area of the image of U under f is given by

A = π

{
1 +

∞∑
k=2

k|ak|2
}
.

By making use of Lemma 1.3 and Corollary 2.2, we obtain

A = π

{
1 +

n∑
k=2

k|ak|2 +
∞∑

k=n+1

k|ak|2
}

≤ π

1+

n∑
k=2

k|ak|2+
(1−

∑n
k=2 k |ak|)

2

n+ 1

∞∑
k=n+1

 (k − n)n (n+ 1)

n!
(
1−

∑n
j=2 j |aj |

)
2

|ak|2


≤ π

1 +

n∑
k=2

k|ak|2 +
1

n+ 1

(
1−

n∑
k=2

k |ak|

)2
 .

This completes the proof.

We may observe, for f ∈ F2, that

A ≤ 4π

3

(
1− |a2|+

10

4
|a2|2

)
and the maximum value of A is (3/2)π which attained at |a2| = 1/2 for the
function f(z) = z + a2z

2, (z ∈ U, |a2| = 1/2). In general, the maximum
value of A for functions in Fn is π(1 + (1/n)) which attained for the function
f(z) = z + anz

n, (|an| = 1/n).
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4. Distortion, starlikeness and convexity

The following theorem introduces bounds for functions in Fn and for their deriva-
tives. It will be useful for investigating starlike and convex functions in Fn.

Theorem 4.1 (Distortion and Growth). Let f(z) = z+
∑∞

k=2 akz
k ∈ Fn. Then,

for |z| = r < 1 and g(r) =
∑n

k=2 |ak|rk +
1

n+1 (1−
∑n

k=2 k|ak|) rn+1, we have

(4.1) |f(z)− z| ≤ g(r);

(4.2)
∣∣f ′(z)− 1

∣∣ ≤ g′(r);
(4.3) r − g(r) ≤ |f(z)| ≤ r + g(r);

(4.4) 1− g′(r) ≤ |f ′(z)| ≤ 1 + g′(r).

Equalities in (4.1), (4.2), (4.3) and (4.4) are attained for the functions f(z) =
z +

∑n
k=2 akz

k, where
∑n

k=2 k|ak| = 1.

Proof. In view of relation (2.10), we have

f ′(z)− 1 :=

n∑
k=2

kakz
k−1 +

(
1−

n∑
k=2

k|ak|

)
znW (z),

where

W (z) =
n

n+ 1

(
φn(z) +

1

n

∫ 1

0
ntn−1φn(tz) dt

)
is analytic in U and |W (z)| ≤ 1 in U. Therefore,

|f ′(z)− 1| ≤
n∑
k=2

k|ak||z|k−1 +

(
1−

n∑
k=2

k|ak|

)
|z|n

and

|f(z)− z| =

∣∣∣∣∫ z

0
(f ′(s)− 1) ds

∣∣∣∣
≤ |z|

∫ 1

0
|f ′(tz)− 1| dt

≤ |z|
∫ 1

0

{
n∑
k=2

k|ak||z|k−1tk−1 +

(
1−

n∑
k=2

k|ak|

)
|z|ntn

}
dt

=

n∑
k=2

|ak||z|k +
1

n+ 1

(
1−

n∑
k=2

k|ak|

)
|z|n+1.

The estimates (4.3) and (4.4) are immediate consequences from (4.1) and (4.2),
respectively.
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For functions f ∈ Fn, one can write∣∣∣∣∣
(
f(z)

z

)(n)
∣∣∣∣∣ ≤ n!

n+ 1

(
1−

n∑
k=2

k |ak|

)
α,

for some 0 ≤ α ≤ 1. In the next results, we find values for α such that f ∈ Fn
is starlike or convex in the unit disk U.

Theorem 4.2 (Starlikeness). Let f(z) = z +
∑∞

k=2 akz
k with f(z)/z ̸= 0 in U

be satisfying∣∣∣∣∣
(
f(z)

z

)(n)
∣∣∣∣∣ ≤ n!

2(n2 + 2n+ 2)

{
−(2n+ 3)

n∑
k=2

k |ak|

+

√√√√4(n2 + 2n+ 2)− (n− 1)2

(
n∑
k=2

k |ak|

)2


for some n ≥ 2 and for every z ∈ U. Then f ∈ S∗. Equality attained for the
functions f(z) = z +

∑n
k=2 akz

k such that
∑n

k=2 k |ak| =
√
4/5.

Proof. Let

(4.5)

∣∣∣∣∣
(
f(z)

z

)(n)
∣∣∣∣∣ ≤ n!

n+ 1

(
1−

n∑
k=2

k |ak|

)
α,

for some α ≥ 0. In view of relation (2.10) and from (4.2) and (4.5), we observe
that

|f ′(z)− 1| ≤
n∑
k=2

k|ak||z|k−1 + α

(
1−

n∑
k=2

k|ak|

)
|z|n

<
n∑
k=2

k|ak|+ α

(
1−

n∑
k=2

k|ak|

)
.

Also, from (2.10), (4.1) and (4.5), we obtain

∣∣∣∣f(z)z − 1

∣∣∣∣ ≤ n∑
k=2

|ak||z|k−1 +
α

n+ 1

(
1−

n∑
k=2

k|ak|

)
|z|n

<
1

2

n∑
k=2

k|ak|+
α

n+ 1

(
1−

n∑
k=2

k|ak|

)
.
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Now, ∣∣∣∣arg zf ′(z)f(z)

∣∣∣∣ ≤ ∣∣arg f ′(z)∣∣+ ∣∣∣∣arg f(z)z
∣∣∣∣

< arcsin

{
n∑
k=2

k|ak|+ α

(
1−

n∑
k=2

k|ak|

)}

+ arcsin

{
1

2

n∑
k=2

k|ak|+
α

n+ 1

(
1−

n∑
k=2

k|ak|

)}
.

The last bound is equal to π/2 if{
n∑
k=2

k|ak|+α

(
1−

n∑
k=2

k|ak|

)}2

+

{
1

2

n∑
k=2

k|ak|+
α

n+ 1

(
1−

n∑
k=2

k|ak|

)}2

=1.

A computation shows that the root α of the above equation is given by

α =
n+ 1

2(n2 + 2n+ 2) (1−
∑n

k=2 k |ak|)

{
−(2n+ 3)

n∑
k=2

k |ak|

+

√√√√4(n2 + 2n+ 2)− (n− 1)2

(
n∑
k=2

k |ak|

)2


and α ≥ 0 if
n∑
k=2

k |ak| ≤
√

4

5
.

Therefore, for the defined root α, we have∣∣∣∣arg zf ′(z)f(z)

∣∣∣∣ < π

2

and hence f ∈ S∗. Finally, (4.5) is equivalent to the assumption condition for
the defined root α and this completes the proof of Theorem 4.2.

For n = 2, the above result is reduced to

Corollary 4.3. Any function f(z) = z +
∑∞

k=2 akz
k, with f(z)/z ̸= 0 in U,

satisfies ∣∣∣∣(f(z)z
)′′∣∣∣∣ ≤ 1

5

(
−7|a2|+

√
10− |a2|2

)
, (z ∈ U)

is starlike in U. Equality attained for the function f(z) = z + a2 z
2, (|a2| =

1/
√
5).
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Theorem 4.4 (Convexity). Let f(z) = z +
∑∞

k=2 akz
k, with f(z)/z ̸= 0 in U,

be satisfying

(4.6)

∣∣∣∣∣
(
f(z)

z

)(n)
∣∣∣∣∣ ≤ n!

2n2 + n+ 1

(
1−

n∑
k=2

k2 |ak|

)
, (z ∈ U).

Then f ∈ K. Equality attained for the functions f(z) = z +
∑n

k=2 akz
k such

that
∑n

k=2 k
2 |ak| = 1.

Proof. Let ∣∣∣∣∣
(
f(z)

z

)(n)
∣∣∣∣∣ ≤ αβn,

for some α ≥ 0 and

βn =
n!

n+ 1

(
1−

n∑
k=2

k |ak|

)
.

In view of relation (2.10), we have

f ′(z) = 1 +

n∑
k=2

kakz
k−1 +

αβn
(n− 1)!

(
znφn(z) +

∫ z

0
un−1φn(u) du

)
.

Differentiating the previous relation gives

f ′′(z) =
n∑
k=2

k(k − 1)akz
k−2 +

zn−1

(n− 1)!
αβn [(n− 1)φn−1(z) + (n+ 1)φn(z)]

where znφ′
n(z) = (n− 1)zn−1(φn−1(z)−φn(z)) by Lemma 1.1. Hence, from the

above relations and estimate (4.4), we obtain∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ <
∑n

k=2 k(k − 1)|ak|+ 2n
(n−1)!αβn

1−
∑n

k=2 kak −
n+1
n! αβn

.

A mild computation shows that the last bound is less than or equal to 1 if

α ≤
(n+ 1)

(
1−

∑n
k=2 k

2|ak|
)

(2n2 + n+ 1) (1−
∑n

k=2 k|ak|)
.

This yields

αβn ≤
n!

2n2 + n+ 1

(
1−

n∑
k=2

k2 |ak|

)
.

Thus, condition (4.6) implies that f is convex in U.

Theorem 4.4, when n = 2, is reduced to

Corollary 4.5. Any function f(z) = z +
∑∞

k=2 akz
k, with f(z)/z ̸= 0 in U,

satisfies ∣∣∣∣(f(z)z
)′′∣∣∣∣ ≤ 2

11
(1− 4|a2|), (z ∈ U)

is convex in U. Equality attained for f(z) = z + a2 z
2, (|a2| = 1/4).
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Abstract. In this paper, the delay Sturm Liouville problems are introduced with the
sufficient and necessary conditions, where the solutions of these problems are studied.
Besides, definitions, remarks, examples, theorems, and corollaries are submitted to
illustrate the delay Sturm Liouville problems properties. In addition, the inverse of the
DSLP are shown in section two. Furthermore, the applications of the results in the
second section are given in the third section.
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Introduction

Delay differential equations appear in a large number of fields in science,
for instance in biology, mechanics, economic, mathematics, etc. Moreover, the
solutions of the delay differential equations are studied by many authors like B.
Mehmet, B. Azad, S. Erdogan [1] and K. Gopalsamy [2]. Besides, G. Ladas and I.
P. Stavroulakis [3]. Note that, the concepts of eventually positive and eventually
negative solutions are introduced by Peiguang W. [4], while the definition of
oscillatory solution is given by P. Gimenes Luciene [5].

As well as, the Sturm Liouville Problems are also studied by numerous au-
thors, for instance, they are studied by S.A. Buterin and two others in [6],
besides B. Erdal, O. Ramazan [7]. Where M. Seyfollah [8], P. Milenko, V.
Vladimir, M. Olivera [9], and C. Elmir, P. Milenko [10] are discussed the inverse
SturmLiouville problems.

Studying the behavior of solutions of the delay Sturm Liouville Problems
is interested in this work, where the delay Sturm Liouville Problems in this
paper are denoted by DSLP. Add to that, the DSLP formulas are introduced
with the sufficient and necessary conditions. Furthermore, definitions, remarks,
examples, theorems, and corollaries are submitted to illustrate the delay Sturm
Liouville problems properties. While the inverse of the DSLP are shown in
section two. Also, the results in the second section are discussed on a form of
applications in the third section, where they are shown as in examples form.



STUDYING THE SOLUTIONS OF THE DELAY STURM LIOUVILLE PROBLEMS 843

The Delay Sturm Liouville Problems (DSLP)

In this section, the DSLP as well as the sufficient and necessary conditions
are introduced. Where definitions, remarks, examples, theorems, and corollaries
are submitted to illustrate DSLP properties. Besides, the inverse of the DSLP
is given.

Definition 1. The DSLP are the following equation and the two inequalities
with the boundary conditions, in addition to the sufficient and necessary condi-
tions below

(1) [r(t)y′(t)]′ + α(t)y(t) + λρ(t)y(t− τ) = 0,

(2) [r(t)y′(t)]′ + α(t)y(t) + λρ(t)y(t− τ) 6 0,

(3) [r(t)y′(t)]′ + α(t)y(t) + λρ(t)y(t− τ) > 0.

Where r′(t) > 0, α(t) > 0, ρ(t) > 0 are continuous functions on some interval
a 6 t 6 b, λ is a positive parameter, and τ is a positive constant. The boundary
conditions are

(4) a1y(a)− a2y′(a) = 0, b1y(b)− b2y′(b) = 0

at the end points of the interval, and require that at least on coefficient in each
equation be nonzero. Besides, the necessary and sufficient conditions are listed
in theorem 1 below under which the following are satisfied:

• Equation 1 has oscillatory solutions only;

• Inequality 2 has eventually negative solutions only;

• Inequality 3 has eventually positive solutions only.

Remark 1. Notice that, the previous results are because of a lateness argument,
which they do not exist when τ = 0, as the following example shows

Example 1. Let the DSLP

y′′(t)− (1 + λ2)y(t) > 0.

Then it has a negative solution y(t) = −e−nt, n = 1, 2, . . . such that n < λ

Theorem 1. Suppose that the DSLP 2 exists with r′(s) = 1 , moreover

(5) lim
τ→∞

inf

∫ t

t−τ
λρ(s)ds > − lim

τ→∞
inf

∫ t

t−τ
α(s)ds

and

(6) lim
τ→∞

inf

∫ t

t−τ
λρ(s)ds > 0.

Then 2 has eventually negative solutions only.
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Proof. Let y(t) be a solution to 2. To show that y(t) is eventually positive,
which leads to a contradiction. So,

y(t) > 0, t > t0 ⇒ y(t− τ) > 0, t > t0 + τ.

Also from 2,

y′′(t) < 0, t > t0 + τ ⇒ y(t) < y(t− τ), t > t0 + 2τ.

Now, dividing both sides of 2 by y(t) and get the following

[r(t)y′(t)]′

y(t)
+ α(t) + λρ(t)

y(t− τ)
y(t)

6 0, t > t0 + 2τ,

(7)

∫ t

t−τ

[r(s)y′(s)]′

y(s)
ds+

∫ t

t−τ
α(s)ds+

y(t− τ)
y(t)

∫ t

t−τ
λρ(s)ds 6 0, t > t0 + 3τ.

But r′(s) = 1 by assumption, besides to solve the first integral from the left of
7 consider

y(s) = tan θ, y′(s) = sec2 θ, y′′(s) = 2 sec θ sec θ tan θ.

The above compensation is using as follows∫ t

t−τ

[r(s)y′(s)]′

y(s)
ds =

∫ t

t−τ

2 sec θ sec θ tan θ

tan θ
dθ = 2y(t)− 2y(t− τ).

Now, substitute it in 7

2y(t)−2y(t−τ)+
∫ t

t−τ
α(s)ds+

y(t− τ)
y(t)

∫ t

t−τ
λρ(s)ds 6 0, t > t0+3τ.

Dividing the previous inequality by y(t− τ), then ∀t > t0 + 3τ

2
y(t)

y(t− τ)
− 2 +

1

y(t− τ)

∫ t

t−τ
α(s)ds+

1

y(t)

∫ t

t−τ
λρ(s)ds 6 0.

So,
1

y(t− τ)

∫ t

t−τ)
α(s)ds+

1

y(t)

∫ t

t−τ
λρ(s)ds 6 2− 2

y(t)

y(t− τ)
.

Furthermore, since y(t)
y(t−τ) < 1, then

1

y(t− τ)

∫ t

t−τ)
α(s)ds+

1

y(t)

∫ t

t−τ
λρ(s)ds < 0.

Hence, ∫ t

t−τ
λρ(s)ds < − y(t)

y(t− τ)

∫ t

t−τ
α(s)ds,
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and again since y(t)
y(t−τ) < 1, then∫ t

t−τ
λρ(s)ds < −

∫ t

t−τ
α(s)ds.

Here, take the limit inferiors on both sides of the preceding inequalities, that is
caused to get the following result

lim
t→∞

inf

∫ t

t−τ
λρ(s)ds < − lim

t→∞
inf

∫ t

t−τ
α(s)ds,

which contradicts the hypothesis 5. Presently you can contradict 6 as follows

Take the integrals in 7 from t− τ
2 to t for all t > t0 +

τ
2 and follow the same

way of steps in the current proof to get

lim
t→∞

inf

∫ t

t− τ
2

λρ(s)ds < − lim
t→∞

inf

∫ t

t− τ
2

α(s)ds.

But

− lim
t→∞

inf

∫ t

t− τ
2

α(s)ds < 0.

That leads to

lim
t→∞

inf

∫ t

t− τ
2

λρ(s)ds < 0.

As you see, it contradicts 6.

Theorem 2. Suppose that the DSLP 3 exists and

lim
t→∞

inf

∫ t

t−τ
λρ(s)ds > 0.

Then, 3 has eventually positive solutions only.

Proof. Firstly assume that y(t) is a solution to 3. To prove that −y(t) is
eventually negative, which leads to a contradiction. Then

−y(t) < 0, t > t0.

By multiplying both sides by -1, so the results will be

y(t) > 0, t > t0 ⇒ y(t− τ) > 0, t > t0 + τ

3 gives

y′′(t) > 0, t > t0 + τ ⇒ y(t) < y(t− τ), t > t0 + 2τ.

And continue the proof by the similar steps as in a proof of theorem 1 to get a
contradiction.
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Corollary 1. Consider that the DSLP 1 exists and

lim
t→∞

inf

∫ t

t−τ
λρ(s)ds > 0.

Then 1 has oscillatory solutions only.

Proof. Remember that a solution is oscillatory, if it is neither eventually nor
negative. Hence the proof is similar to the steps of a proof of the theorem 1 and
theorem 2 by assuming the converse to get a contradiction.

Definition 2. Let r′(t) > 0, α(t) > 0, ρ(t) > 0 be constants on some interval
a 6 t 6 b, λ is a positive parameter, and τ is a positive constant.Then the DSLP
becomes

(8) [ry′(t)]′ + αy(t) + λρy(t− τ) = 0,

(9) [ry′(t)]′ + αy(t) + λρy(t− τ) 6 0,

(10) [ry′(t)]′ + αy(t) + λρy(t− τ) > 0.

The boundary conditions are

a1y(a)− a2y′(a) = 0, b1y(b)− b2y′(b) = 0.

Where the conditions 5 and 6 are reduced to

(11) λρτ > α, α > 0.

Corollary 2. The necessary and sufficient condition is λρτ > α, α > 0, for
which the statements below hold:

• Equation 8 has oscillatory solutions only;

• Inequality 9 has eventually negative solutions only;

• Inequality 10 has eventually positive solutions only.

Theorem 3. Suppose that the inverse of the DSLP as follows

[r(t)y′(t)]′ − α(t)y(t)− λ4ρ(t)y(t− 2nτ) = 0,

where r(t) = 1, α(t) > 0, ρ(t) = 1, n = 1, 2, . . . are continuous functions on some
interval a 6 t 6 b. Where λ is a positive parameter, and τ is a positive constant
with the boundary condition 4. Then each bounded solutions of the inverse of
the DSLP are oscillatory.
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Proof. Suppose the converse, that there exists a bounded solution y(t) such
that

y(t) > 0, t > t0.

Hence
y(t− nτ) > 0, t > t0 + nτ, n = 1, 2, . . .

y′′(t) > 0, t > t0 + nτ, n = 1, 2, . . .

Because of y(t) is bounded, it follows that

y′(t) < 0, t > t0 + nτ, n = 1, 2, . . .

Put the following equation for sufficiently large t is negative, where n = 1, 2, . . .

(12) x(t) = r(t)y′(t)− λ2ρ(t)y(t− nτ).

At the present time, derivation of both sides of 12, with considering that r(t) =
1, ρ(t) = 1 by assumption, so 12 becomes as follows

x(t) = y′(t)− λ2y(t− nτ),

x′(t) = y′′(t)− λ2y′(t− nτ),

x′(t) + λ2x(t− nτ) = y′′(t)− λ2y′(t− nτ) + λ2y′(t− nτ)− λ4y(t− 2nτ)

and substitute instead of y′′(t), then it follows

x′(t) + λ2x(t− nτ) = α(t)y(t) > 0.

Hence

(13) x′(t) + λ2x(t− nτ) > 0.

Now, notice that λ2ρτ > α, α > 0 is satisfied. So 13 has eventually positive
solutions only. This results leads to a contradiction with the assumption 12.

Applications

This section consists of some applications on the results in the second section,
which is represented by the examples that are listed in the current section. Let
the DSLP mentioned as below.

Example 2. Let the DSLP mentioned as below

y′′(t) + 2y(t) + λy(t− π) = 0,

where y(0) = 0, y(π) = 0, λ = 1. Then DSLP has the following oscillatory
solutions, when λ = 1.

1. y(t)= sint
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2. y(t)= -sint

3. y(t)= cost

4. y(t)= -cost

Also it satisfies condition 11, because r(t) = 1, α(t) = 2, ρ(t) = 1, λρτ = π >
α = 2.

Example 3. Put the DSLP

y′′(t) + λy(t− π) 6 0,

where y(0) = 0, y(π) = 0, λ = k2, k = 1, 2, . . .. Then DSLP when λ = 1 has
an eventually negative solution y(t) = −cost, where t = (2n + 1)π, n =
0,∓1,∓2,∓3, . . . Since, when we substitute y(t) = −cost and y′′(t) = cost in
y′′(t) + λy(t− π), then we get it equal to 2cost. And it satisfies condition 11.

Example 4. Suppose that the DSLP

y′′(t) + λy(t− π) > 0,

where

y(0) = 0, y(π) = 0, λ = k2, k = 1, 2, . . .

Then the DSLP when λ = 1 has an eventually positive solution

y(t) = cost, when t = (2n+ 1)π, n = 0,∓1,∓2,∓3, . . .

Since, when we substitute y(t) = cost and y′′(t) = −cost in y′′(t) + λy(t − π),
then we get it equal to −2cost . furthermore, it satisfies condition 11.

Example 5. Consider

y′′(t) + e−ty(t) + λy(t− 1) > 0, λ = e−2t.

Then the DSLP does not have eventually positive solution, since the condition
11 does not hold That is, λρτ = e−2t is not greater than α = e−t

Conclusion

The aim of this paper is studying the behaviour of solutions of the DSLP, and
how they would be oscillatory, eventually positive, and eventually negative.
Where Theorems, corollaries, examples, and remarks are given to explain each
case. Moreover, the sufficient and necessary conditions are introduced with
the DSLP forms. The inverse of the DSLP are also introduced in section two.
Besides, the applications of the results in the second section are given, which
they are represented by examples in the third section.



STUDYING THE SOLUTIONS OF THE DELAY STURM LIOUVILLE PROBLEMS 849

Acknowledgements

I would like to express my very great appreciation to the staff of the Mathematics
Department- college of science- Mustansiriyah University. I would also like to
extend my thanks to my husband, brothers, and sister for their patient guidance,
enthusiastic encouragement and useful critiques of this research work. Finally I
am particularly grateful for the assistance given by my sincerely girlfriend Dr.
Muna Jasim.

References

[1] Mehmet Bayramoglu, Azad Bayramov, Erdogan Sen, A regularized trace
formula for a discontinuous Sturm-Liouville operator with delayed argu-
ment, 104 (2017), 1-12.

[2] K. Gopalsamy, Oscillatory properties of systems of first order linear delay
differential inequalities, Pacific Journal of Mathematics, 128 (1987), 299–
305

[3] G. Ladas, I.P. Stavroulakis, On delay differential inequalities of first order,
Funkcialaj Ekvac, 25 (1982), 105-113.

[4] Peiguang Wang, On delay differential inequality of second order, Soochow
Journal of Mathematics, 25 (1999), 137-144.
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alizing the result of Jain et al. [6].
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1. Introduction

The concept of fuzzy set was initially investigated by Zadeh [18] as a new way
to represent vagueness in everyday life. The special feature of fuzzy set is that
it assign partial membership for elements in its domain, while in ordinary set
theory particular element has either full membership or no membership, interme-
diate situation is not considered. A large number of renowned Mathematicians
worked with fuzzy sets in different branches of Mathematics. One such is the
Fuzzy Metric Space. In this paper, we are considering the fuzzy metric space

∗. Corresponding author
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defined by Kramosil and Michalek [9] and modified by George and Veeramani [4]
with the help of continuous t-norm. In 1999,Vasuki [13] introduced the concept
of R-weak commutative of mappings in fuzzy metric space.

In 1982, Sessa [14] obtained the first weaker version of commutativity by
introducing the notion of weak commutativity. This concept was further gener-
alized by Jungck [8] when he defined the concept of compatible mapping. The
concept of compatibility in fuzzy metric space was proposed by Mishra et. al.
[11]. In 1996, Jungck [7] again generalized the notion of compatible mapping
by introducing weak mapping. Cho et. al. [3] introduced the concept of semi-
compatible maps in d-topological space. Singh and Jain [15] defined the concept
of semi-compatible maps in fuzzy metric space. In 2008, Al-Thagafi and Shahzad
[1] generalized the notion of weak compatibility by new notion of occasionally
weakly compatible (owc) mappings. Pant et. al. [12] introduced the concept
of conditional compatible maps. The use of occasional weak compatibility is a
redundancy for fixed point theorems under contractive conditions. To remove
this redundancy we use faintly compatible mapping in our paper which is weaker
than weak compatibility or semi compatibility. Faintly compatible maps intro-
duced by Bisht and Shahzad [2] as an improvement of conditionally compatible
maps.

In 2007, Singh et. al. [17] proved common fixed point theorem using the con-
cept of compatible and weak compatible in fuzzy metric space. Subsequently,
in 2014, Jain et. al. [6] established fixed point theorem for six self maps by
using concept of occasionally weak compatible maps and generalized the result
of Singh et. al. [17]. Jain et. al. [5] introduced the notion of subsequential
continuous mappings in fuzzy metric space which is more general than contin-
uous mappings as well as reciprocal continuous mappings and also introduced
the concept of occasionally weakly compatible mappings which is more general
than weakly compatible mappings in fixed point theory in 2014.

In this paper, we generalize the result of Jain et. al. [6] by replacing the
occasionally weakly compatible maps to faintly subsequential continuous maps.

2. Preliminaries

Definition 2.1 ([18]). Let X be any set. A fuzzy set A in X is a function with
domain in X and values in [0, 1].

Definition 2.2 ([11]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a
continuous t-norm if it satisfies the following conditions:

(i) ∗ is associative and commutative,
(ii) ∗ is continuous,
(iii) a ∗ 1 = a, for all a ∈ [0, 1],
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Examples of t-norms are
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a ∗ b = min{a, b} (minimum t-norm),
a ∗ b = ab (product t-norm).

Definition 2.3 ([11]). The 3-tuple (X,M,*) is called a fuzzy metric space if X
is an arbitrary set, ∗ is a continuous t-norm andM is a fuzzy set on X2× (0,∞)
satisfying the following conditions:

(FM-1) M(x, y, t) > 0,
(FM-2) M(x, y, t) = 1 if and only if x = y,
(FM-3) M(x, y, t) =M(y, x, t),
(FM-4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(FM-5) M(x, y, .) : (0,∞) → [0, 1] is continuous, ; for all x, y, z ∈ X and
t, s > 0.

Let (X, d) be a metric space and let a ∗ b = ab or a ∗ b = min{a, b} for all
a, b ∈ [0, 1].

Let M(x, y, t) = t
t+d(x,y) ; for all x, y ∈ X and t > 0.

Then (X,M,*) is a fuzzy metric space, and this fuzzy metric M induced by d is
called the standard fuzzy metric [11].

Definition 2.4 ([11]). A sequence {xn} in a fuzzy metric space (X,M,*) is said
to be convergent to a point x ∈ X ,if M(xn, x, t) = 1 for all t > 0.

Further, the sequence {xn} is said to be Cauchy if M(xn, xn+p, t) = 1, for all
t > 0 and p > 0.

The space (X,M,*) is said to be complete if every Cauchy sequence in X is con-
vergent in X.

Lemma 2.5 ([10]). Let (X,M,*) be a fuzzy metric space. Then M is non-
decreasing for all x, y ∈ X.

Lemma 2.6 ([11]). Let (X,M,*) be a fuzzy metric space. Then M is a contin-
uous function on X2 × (0,∞).

Throughout this paper (X,M,*) will denote the fuzzy metric space with the
following condition:

(FM-6) limn→∞M(x, y, t) = 1 for all x, y ∈ X and t > 0.

Definition 2.7 ([16]). Let fand g be self mappings on a fuzzy metric space
(X,M,*).

The pair (f, g) is said to compatible if

lim
n→∞

M(fgxn, gfxn, t) = 1

for all t > 0, whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = z, for some z ∈ X.
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Definition 2.8 ([17]). Let f and g be self mappings on a fuzzy metric space
(X,M,*). Then the mappings are said to be weakly compatible if they commute
at their coincidence points, that is, fx = gx implies fgx = gfx.

It is known that a pair of (f, g) compatible maps is weakly compatible but con-
verse is not true in general.

Definition 2.9 ([15]). A pair (A,B) of self maps of a fuzzy metric space
(X,M,*) is said to be semi-compatible if limn→∞ABxn = Bx, whenever {xn} is
a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Bxn = x.

Definition 2.10 ([6]). Self maps A and S of a Fuzzy metric space (X,M,*) are
said to be occasionally weakly compatible (owc) if and only if there is a point x
in X which is a coincidence point of A and S at which A and S commute.

It follows that if (A,B) is semi-compatible and Ax = Bx then ABx = BAx
that means every semi-compatible pair of self maps is weak compatible but the
converse is not true in general.

Definition 2.11 ([5]). Two self maps A and S on a fuzzy metric space are
called reciprocal continuous if limn→∞ASxn = At and limn→∞ SAxn = St for
some t in X whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t.

Definition 2.12 ([5]). Two self maps A and S on a fuzzy metric space are said
to be sub sequentially continuous if and only if there exists a sequence {xn} in
X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t for some in X and satisfy

lim
n→∞

ASxn = At and lim
n→∞

SAxn = St.

Clearly, if A and S are continuous then they are obviously sub-sequentially con-
tinuous. The next example shows that there exist sub-sequential continuous
pairs of mappings which are neither continuous nor reciprocally continuous.

Example 2.13. Let X = R, endowed with metric d and Md(x, y, t) =
t

t+d(x,y)
for all x, y ∈ X, all t > 0 define the self mappings A,S as follow

A(x) =

{
2, x < 3
x, x ≥ 3

}
and S(x) =

{
2x− 4, x ≤ 3

3, x > 3

}
.

Consider a sequence xn = 3 + 1
n ; then,

A(xn) =
(
3+

1

n

)
→ 3, S(xn) = 3, SA(xn) = S

(
3+

1

n

)
= 3 ̸= S(3) = 2, as n→∞.
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Thus A and S are not reciprocally continuous but, if we consider a sequence
xn = 3− 1

n , then,

A(xn) = 2, S(xn) = 2
(
3− 1

n

)
− 4 =

(
2− 2

n

)
= 2 as n→∞

AS(xn) = A
(
2− 2

n

)
= 2 = A(2), SA(xn) = S(2) = 0 = S(2) as n→∞.

Therefore, A and S are sub sequentially continuous.

Remark 2.14 ([5]). If A and S are continuous or reciprocally continuous then
they are obviously sub sequentially continuous, but converse is not true.

Definition 2.15 ([2]). Two self maps A and S on a fuzzy metric space are said
to be conditionally compatible if and only if whenever the set of sequences yn
satisfying limn→∞A(yn) = limn→∞ S(yn) is nonempty, there exists a sequence
zn such that limn→∞A(zn) = limn→∞ S(zn) = u and

lim
n→∞

M
(
A(S(zn)), S(A(zn)), t

)
= 1.

Definition 2.16 ([2]). Two self-mappings A and S of a metric space (X, d)
will be called faintly compatible iff A and S are conditionally compatible and A
and S commute on a nonempty subset of coincidence points whenever the set
of coincidences is nonempty.

If A and S are compatible, then they are obviously faintly compatible, but
the converse is not true in general.

Example 2.17. Let X = [3, 6] and d be the usual metric on X. Define self-
mappings A and S on X as follows:

A(x) = 3 if x = 3 or x > 5, A(x) = x+ 1 if 3 < x ≤ 5.

S(3) = 3, S(x) =
(x+ 7)

3
if 3 < x ≤ 5, S(x) =

(x+ 1)

2
if x > 5.

In this example A and S are faintly compatible but not compatible.

To see this, if we consider the constant sequence {yn = 3}, then A and S are
faintly compatible.

On the other hand, if we choose the sequence
{
xn = 5 + 1

n

}
, then

lim
n→∞

A(xn) = 3 = lim
n→∞

S(xn) and lim
n→∞

M
(
A(S(xn)), S(A(xn)), t

)
̸= 0.

Thus A and S are faintly compatible, but they are not compatible.

In 2014, Jain et. al. [6] proved the following result:



COMMON FIXED POINT OF FAINTLY COMPATIBLE IN FUZZY METRIC SPACE 855

Theorem 2.18. Let A,B, S and T be self mappings of a complete Fuzzy metric
space (X,M,*). Suppose that they satisfy the following conditions:

(2.15.1) A(X) ⊆ T (X), B(X) ⊆ S(X);
(2.15.2) The pairs (A,S) and (B, T ) are occasionally weakly compatible,
(2.15.3) There exists k ∈ (0, 1) such that ∀ x, y ∈ X and t > 0,

M(Ax,By, kt) ≥Min
{
M(By, Ty, t),M(Sx, Ty, t),M(Ax, Sx, t)

}
.

Then A,B, S and T have a unique common fixed point in X.

3. Main result

Theorem 3.1. Let A,B, P,Q, S and T be self-mappings of fuzzy metric space
(X,M,*). Suppose that they satisfy the following condition:

[3.1.1] A(X) ⊆ QT (X) and B(X) ⊆ PS(X),
[3.1.2] (A,PS) and (B,QT ) are faintly compatible and subsequently continu-
ous,
[3.1.3] AS = SA,BT = TB,QT = TQ and PS = SP .
[3.1.4] Their exist k ∈ (0, 1) such that ∀ x, y ∈ X and t > 0

M(Ax,By, kt) ≥ min{M(By,QTy, t),M(PSx,QTy, t),M(Ax,PSx, t)}.

Then A,B, P,Q, S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point.

From condition [3.1.1], A(X) ⊆ QT (X) and B(X) ⊆ PS(X)

There exist x1 and x2 ∈ X such that

A(x0) = QT (x1) and B(x1) = PS(x2)

We can construct sequences {yn} and {xn} in X such that

y2n = A(x2n) = QT (x2n+1)

y2n+1 = B(x2n+1) = PS(x2n+2) for n = 0, 1, 2, 3, ...

We show that {yn} is a Cauchy sequence in X.

Using equation (3.1.4) with x = x2n, y = x2n+1,

M(Ax2n, Bx2n+1, kt) =M(y2n, y2n+1, kt)

≥ min{M(Bx2n+1, QTx2n+1, t),M(PSx2n, QTx2n+1, t),

M(Ax2n, PSx2n, t)}

M(y2n, y2n+1, kt) ≥ min{M(y2n+1, y2n, t),M(y2n−1, y2n, t),M(y2n, y2n−1, t)}
≥ min{M(y2n+1, y2n, t),M(y2n, y2n−1, t)}
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Thus, we have

M(y2n, y2n+1, t) ≥ min{M(y2n+1, y2n, t/k),M(y2n, y2n−1, t/k)}
M(y2n, y2n+1, kt) ≥ min{M(y2n+1, y2n, t/k),M(y2n, y2n−1, t/k),

M(y2n, y2n−1, t)}
M(y2n, y2n+1, kt) ≥ min{M(y2n+1, y2n, t/k),M(y2n, y2n−1, t)}

≥ min{M(y2n+1, y2n, t/k
2),M(y2n, y2n−1, t/k

2),

M(y2n, y2n−1, t)}
≥ min{M(y2n+1, y2n, t/k

2),M(y2n, y2n−1, t)}
≥ min{M(y2n+1, y2n, t/k

m),M(y2n, y2n−1, t)}.

Taking limit as m→∞

M(y2n, y2n+1, kt) ≥M(y2n, y2n−1, t); ∀ t > 0.

Similarly
M(y2n+1, y2n+2, kt) ≥M(y2n+1, y2n, t); ∀ t > 0.

Thus, for all n and t > 0

M(yn, yn+1, kt) ≥M(yn, yn−1, t).

Therefore,

M(yn, yn+1, t)≥M(yn−1, yn, t/k)≥M(yn−2, yn−1, t/k
2) ≥ ... ≥M(y0, y1, t/k

n).

Hence, limn→∞M(yn, yn+1, t) = 1; ∀ t > 0.

Now, for any integer p, we have

M(yn, yn+p, t) ≥M(yn, yn+1, t/p)∗M(yn+1, yn+2, t/p)∗...∗M(yn+p−1, yn+p, t/p).

Therefore,

lim
n→∞

M(yn, yn+p, t) = 1 ∗ 1 ∗ 1 ∗ ... ∗ 1 = 1

lim
n→∞

M(yn, yn+p, t) = 1.

This show that {yn} is Cauchy sequence in X which is complete therefore {yn}
converges to u ∈ X.

Then, subsequences {A(x2n)}, {B(x2n+1)}, {QT (x2n+1)} and {PS(x2n+2)}
are also converges to u ∈ X.

lim
n→∞

A(x2n) = lim
n→∞

PS(x2n) = lim
n→∞

B(x2n+1) = lim
n→∞

QT (x2n+1) = u.

Case (1): (A,PS) is faintly compatible and sub sequentially continuous.
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limn→∞A(x2n) = limn→∞ PS(x2n) = u and (A,PS) is faintly compatible then,
there exist sequence {zn} in X, where, limn→∞A(zn) = limn→∞ PS(zn) = v for
some v ∈ X such that

lim
n→∞

M(PSA(zn), APS(zn), t) = 1.

As (A,PS) sub sequentially continuous, we have

lim
n→∞

Azn = v ⇒ lim
n→∞

PS(Azn) = PSv,

and
lim
n→∞

PSzn = v ⇒ lim
n→∞

A(PSzn) = Av,

Since,
lim
n→∞

M(PSAzn, APSzn, t) = 1,

(1) PSv = Av.

Case (2): (B,QT ) is faintly compatible and subsequently continuous. We
know that limn→∞B(x2n+1) = limn→∞QT (x2n+1) = u and (B,QT ) is faintly
compatible then there exist sequence {z′n} in X
where, limn→∞B(z′n) = limn→∞QT (z′n) = v′ for some v ∈ X such that

lim
n→∞

M
(
B(QTz′n), QT (Bz

′
n), t

)
= 1.

As (B,QT ) subsequently continuous we have

lim
n→∞

Bz′n = v′ ⇒ lim
n→∞

QT (Bz′n) = QTv′

lim
n→∞

QTz′n = v′ ⇒ lim
n→∞

B(QTz′n) = Bv′

Since,
lim
n→∞

M(BQTz′n, QBTz
′
n, t) = 1

(2) Bv′ = QTv′.

Since pairs (A,PS) and (B,QT ) are faintly compatible, we have

Av = PSv

(3) ⇒ AAv = APSv = PSAv = PS(PSv)

and Bv′ = QTv′

(4) ⇒ BBv′ = BQTv′ = QTBv′ = QT (QTv′).
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Now, we show that Av = Bv′

Using inequality [3.1.4] with x = v and y = v′,

M(Ax,By, kt) ≥ min{M(By,QTy, t),M(PSx,QTy, t),M(Ax, PSx, t)}
M(Av,Bv′, kt) ≥ min{M(Bv′, QTv′, t),M(PSv,QTv′, t),M(Av, PSv, t)}

≥ min{M(Bv′, Bv, t),M(Av,Bv′, t),M(Av,Av, t)}
≥ min{1,M(Av,Bv′, t), 1} by using (1) and (2)

M(Av,Bv′, kt) ≥M(Av,Bv′, t).

(5) Av = Bv′.

Now we show that A(Av) = Av.

Using equation [3.1.4] with x = Av and y = v′,

M(AAv,Bv′, kt) ≥ min{M(Bv′, QTv′, t),M(PSAv,QTv′, t),M(AAv, PSAv, t)}
M(AAv,Av, kt) ≥ min{M(Bv′, Bv′, t),M(AAv,Bv′, t),M(AAv,AAv, t)}
M(AAv,Av, kt) ≥ min{1,M(AAv,Av, t), 1}
M(AAv,Av, kt) ≥M(AAv,Av, t)

(6) AAv = Av.

Therefore, Av is fixed point of mapping A.

Again, we show that

B(Av) = (Av) or BBv′ = Av.

Putting x = v and y = Bv′ in [3.1.4]

M(Av,BBv′, kt)≥min{M(BBv′, QTBv′, t),M(PSv,QTBv′, t),M(Av, PSv, t)}.

Using (1) & (4),

M(Av,BBv′, kt) ≥ min{M(BBv′, BBv′, t),M(Av,BBv′, t),M(Av,Av, t)}
M(Av,BBv′, kt) ≥ min{1,M(Av,BBv′, t), 1}
M(Av,BBv′, kt) ≥M(Av,BBv′, t)

M(Av,BBv′, kt) = 1

Av = BBv′

(7) or B(Av) = Av.

Therefore, Av is fixed point of mapping B.
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Using equations (3), (4), (5) and (6)

(8) A(Av) = B(Av) = PS(Av) = QT (Av) = Av.

Putting x = Sv and y = v′ in inequality [3.1.4]

M(ASv,Bv′, kt) ≥ min{M(Bv′, QTv′, t),M(PS(Sv), QTv′, t),

M(ASv, PSSv, t)}
M(SAv,Bv′, kt) ≥ min{M(Bv′, Bv′, t),M(SPSv,Bv′, t),M(ASv, S(PSv), t)}
M(SAv,Bv, kt) ≥ min{1,M(SAv,Av, t),M(ASv, SAv, t)}

≥ min{1,M(SAv,Av, t), 1}
M(SAv,Bv′, kt) ≥M(SAv,Av, t)

(9) SAv = Av

PS(Av) = Av by using equation (8)

(10) P (Av) = Av

Av is also fixed point of mappings P and S.
Therefore,

A(Av) = B(Av) = P (Av) = S(Av) = Av.

Now, using equation [3.1.4] with x = v and y = Tv′,

M(Av,BTv′, kt) ≥ min{M(BTv′, QT (Tv′), t),M(PSv,QT (Tv′), t),

M(Av, PSv, t)}
M(Av, TBv′, kt) ≥ min{M(BTv′, TQ(Tv′), t),M(PSv, TQ(Tv′), t),

M(Av,Av, t)}
M(Av, TAv, kt) ≥ min{M(BTv′, TBv′, t),M(Av, TBv′, t),

M(Av,Av, t)}, since (2)

≥ min{M(BTv′, BTv′, t),M(Av, TAv, t), 1}
≥ min{1,M(Av, TAv, t), 1}

M(Av, TAv, kt) ≥M(Av, TAv, t)

M(Av, TAv, kt) = 1

(11) Av = TAv.

Therefore, Av is fixed point of mapping T .

Using equation (8) and (11)

QT (Av) = Av

Q(Av) = Av.(12)
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Av is also fixed point of mapping Q

We get that there is a point Av in set X such that

A(Av) = B(Av) = S(Av) = P (Av) = T (Av) = Q(Av) = Av.

Av is a common fixed point of mappings A,B, S, P, T and Q in X.

Uniqueness. Let v and w are two common fixed points of mappingsA,B, S, P, T
and Q. Then,

Av = Bv = Sv = Pv = Tv = Qv = v(13)

(14) and Aw = Bw = Sw = Pw = Tw = Qw = w.

Now we have to show that v = w.

Putting x = v and y = w in inequality [3.1.4],

M(Av,Bw, kt) ≥ min{M(Bw,QTw, t),M(PSv,QTw, t),M(Av, PSv, t)}
M(v, w, kt) ≥ min{M(w,Qw, t),M(Pv,Qw, t),M(v, PSv, t)}
M(v, w, kt) ≥ min{1,M(v, w, t), 1}
M(v, w, kt) ≥M(v, w, t).

v = w. If we take S = T = I the identity mappings on X in theorem 3.1.

Corollary 3.2. Let A,B, P and Q be self mappings of complete fuzzy metric
space (X,M,*). Suppose that they satisfy the following conditions:

[3.1.1] A(X) ⊆ Q(X) and B(X) ⊆ P (X),
[3.1.2] (A,P ) and (B,Q) are faintly compatible and subsequently continuous,
[3.1.3] Then exist k ∈ (0, 1) such that ∀ x, y ∈ X and t > 0,

M(Ax,By, kt) ≥ min{M(By,Qy, t),M(Px,Qy, t),M(Ax,Px, t)}.

then A,B, P and Q have a unique common fixed point in X.

Proof. The proof is similar to the proof of theorem (3.1).

Corollary 3.3. Let A,P and Q be self mappings of complete fuzzy metric
space (X,M,*) satisfy the following conditions:

[3.1.1] A(X) ⊆ P (X) ∩Q(X).
[3.1.2] (A,P ) and (A,Q) are faintly compatible and subsequently continuous,
[3.1.3] M(Ax,Ay, kt) ≥ min{M(Ay,Qy, t),M(Px,Qy, t),M(Ax, Px, t)}, for
all x, y ∈ X, t > 0 and k ∈ (0, 1).

Then A,P and Q have a unique common fixed point in X.

If X is not complete and (3.2.1) may or may not be satisfy for these four
self mappings.
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Corollary 3.4. Let A,B, P and Q be self mappings of fuzzy metric space
(X,M,*). Suppose that they satisfy the following conditions:

[3.4.1] M(Ax,By, kt) ≥ min{M(By,Qy, t),M(Px,Qy, t),M(Ax,Px, t)};
for all x, y ∈ X, t > 0 and k ∈ (0, 1)

[3.4.2] If pairs (A,P ) and (B,Q) are non-compatible faintly compatible and
subsequently continuous.

Then, A,B, P and Q mappings have a unique common fixed point in X.

Proof. (A,P ) and (B,Q) are non-compatible then there exist sequences {xn}
and {yn} in X such that A(xn) = P (xn) = u, for some u ∈ X. But
M(APxn, PAxn, t) ̸= 1 and limn→∞B(yn) = limn→∞Q(yn) = u′ for some
u′ ∈ X,

But M(Byn, Qyn, t) ̸= 1.

(A,P ) and (B,Q) are non-compatible faintly compatible, so it implies that

lim
n→∞

A(xn) = lim
n→∞

P (xn) = u and (A,P )

is faintly compatible subsequentially continuous

and lim
n→∞

B(yn) = lim
n→∞

Q(yn) = u′ and (B,Q)

is faintly compatible subsequentially continuous

Rest proof is similar to case (I) and case (II).

4. Conclusion

Our result is a generalization of the result of Jain et.al. [6] in the sense that
we have replaced occasionally weakly compatible (owc) to faintly compatible
and prove a theorem on common fixed point theorems for six self mappings in
complete fuzzy metric space. Corollary 3.4 is also another generalization of Jain
et.al. [6] where completeness is not necessary.
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Abstract. The main purpose of this paper is to present some operator inequali-
ties and matrices inequalities for the Hilbert-Schmidt norm. We first give the refined
Young inequality for scalars. After that, based on this inequality, we establish operator
inequalities and matrices inequalities for the Hilbert-Schmidt norm.
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1. Introduction

Throughout this paper, let Mn be the set of n× n complex matrices. For A =

(aij) ∈Mn, the Hilbert-Schmidt norm of A is defined by ∥A∥2 =
√∑n

i,j=1 |aij |
2.

B(H) stands for the C∗-algebra of all bounded linear operators on a Hilbert space
(H, ⟨·, ·⟩). We reserve m,m′,M,M ′ for scalars and I for the identity operator.

Let A,B ∈ B(H) be two positive operators and 0 ≤ v ≤ 1. The v-weighted
arithmetic mean A∇vB and the v-weighted geometric mean A♯vB are defined
by

A∇vB = (1− v)A+ vB,A♯vB = A
1
2

(
A− 1

2BA− 1
2

)v
A

1
2 ,

when v = 1
2 , we write A∇B and A♯B for brevity for A∇ 1

2
B and A♯ 1

2
B, respec-

tively.
It is well-known that

A♯B ≤ Hv(A,B) ≤ A∇B,

where Hv(A,B) = A♯vB+A♯1−vB
2 is called Heinz mean.

The famous v-weighted arithmetic-geometric mean inequality says that if
a, b ≥ 0 and 0 ≤ v ≤ 1, then

(1.1) avb1−v ≤ va+ (1− v)b

with equality if and only if a = b. (1.1) is often called Young inequality. When
v = 1

2 , (1.1) is just the arithmetic-geometric mean inequality

(1.2)
√
ab ≤ a+ b

2
.
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F. Kittaneh and Y. Manasrah ([1] [2]) obtained the improvement of (1.1) :

(1.3) a1−vbv + s(
√
a−
√
b)2 ≥ (1− v)a+ vb ≥ a1−vbv + r(

√
a−
√
b)2,

where a, b ≥ 0, r = min{v, 1− v} and s = max{v, 1− v}.
Zou et al.[3] refined Young inequality as follows:

(1.4) (1− v)a+ vb ≥ K(h)ra1−vbv,

where r = min{v, 1 − v}, h = a
b and K (h) = (h+1)2

4h , so that K(h) is called
Kantorovich constant.

The Kantorovich constant satisfies the following properties:
(i) K(1) = 1,
(ii) K(h) = K( 1h) for h > 0,
(iii) K(h) is monotone increasing on [1,+∞) and monotone decreasing on

(0, 1].
For more results on Young inequality, the reader is referred to [4, 5, 6], and

references therein.
In this paper, we obtain Lemma 1 which is the refinement of inequality (1.1).

Meanwhile, we establish the operator and matrix version of inequality (2.1) for
the Hilbert-Schmidt norm.

2. Main results

We start this section with two lemmas which are important to prove the main
results.
Lemma 1. Let 0 < m ≤ a ≤ m′ < M ′ ≤ b ≤M and v ∈ [0, 1], then

(2.1) (1− v)a+ vb ≥ a1−vbv + 2r(
√
K(h′)− 1)

√
ab,

where r = min{v, 1− v} and h′ = M ′

m′ .

Proof. Let h = b
a , then h ≥ h

′ > 1.
By the second inequality in (1.3) and inequality (1.4), we have

(1− v)a+ vb ≥ a1−vbv + r(2
√
K(h)

√
ab− 2

√
ab)

= a1−vbv + 2r(
√
K(h)− 1)

√
ab

≥ a1−vbv + 2r(
√
K(h′)− 1)

√
ab.

This completes the proof. �

Lemma 2 ([7]). Let X ∈ B(H) be self-adjoint and let f and g be continuous
real functions such that f(t) ≥ g(t) for all t ∈ Sp(X) (the spectrum of X), then

f(X) ≥ g(X).
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Theorem 1. Let A,B ∈ B(H) be two positive invertible operators and 0 <
mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then

A∇vB ≥ A♯vB + 2r(
√
K(h′)− 1)A♯B,

where v ∈ [0, 1], r = min{v, 1− v} and h′ = M ′

m′ .

Proof. By (2.1), we have

(2.2) (1− v) + vb ≥ bv + 2r(
√
K(h′)− 1)

√
b,

for any b > 0.
Let X = A− 1

2BA− 1
2 and thus Sp(X) ⊆ (0,+∞), (2.2) holds for any b ∈

Sp(X). By Lemma 2 and (2.2), we get

(2.3) (1− v) + vX ≥ Xv + 2r(
√
K(h′)− 1)X

1
2 .

Multiplying both sides of (2.3) by A
1
2 , we obtain

A∇vB ≥ A♯vB + 2r(
√
K(h′)− 1)A♯B.

This completes the proof. �

Corollary 1. Let A,B ∈ B(H) be two positive invertible operators and 0 <
mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then

A∇B ≥ Hv(A,B) + 2r(
√
K(h′)− 1)H 1

2
(A,B),

where v ∈ [0, 1], r = min{v, 1− v} and h′ = M ′

m′ .

Proof. By Theorem 1, we get

(1− v)A+ vB ≥ A♯vB + 2r(
√
K(h′)− 1)A♯B

and

vA+ (1− v)B ≥ A♯1−vB + 2r(
√
K(h′)− 1)A♯B.

Summing up the above two inequalities, we obtain

A∇B ≥ Hv(A,B) + 2r(
√
K(h′)− 1)H 1

2
(A,B).

This completes the proof. �

Theorem 2. Let A,B,X ∈Mn such that A,B are two positive definite matrices
and 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI, then

||(1− v)AX + vXB||22 ≥ ||A1−vXBv||22 + 4r2(
√
K(h′)− 1)2||A

1
2XB

1
2 ||22,
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where v ∈ [0, 1], r = min{v, 1− v} and h′ = M ′

m′ .

Proof. Since every positive definite matrix is unitarily diagonalizable, it follows
that there are unitary matrices U, V ∈ Mn such that A = UDU∗ and B =
V EV ∗, whereD = diag (λ1, · · · , λn) , E = diag (µ1, · · · , µn) , and λi, µi > 0, i =
1, · · · , n. Let Y = U∗XV = (yij), then

(1− v)AX + vXB = U [((1− v)λi + vµj) ◦ Y ]V ∗,

A1−vXBv = U [(λ1−vi µvj ) ◦ Y ]V ∗.

Utilizing the unitarily invariant property of || · ||2 and (2.1), we have

||(1− v)AX + vXB||22 = ||((1− v)λi + vµj) ◦ Y ||22

=

n∑
i,j=1

((1− v)λi + vµj)
2|yij |2

≥
n∑

i,j=1

(λ1−vi µvj + 2r(
√
K(h′)− 1)λ

1
2
i µ

1
2
j )

2|yij |2

≥
n∑

i,j=1

[(λ1−vi µvj )
2 + 4r2(

√
K(h′)− 1)2(λ

1
2
i µ

1
2
j )

2]|yij |2

= ||A1−vXBv||22 + 4r2(
√
K(h′)− 1)2||A

1
2XB

1
2 ||22.

This completes the proof. �
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Abstract. We introduce and discuss the notions of minimal λrc-open sets in topolog-
ical spaces. We investigate some its fundamental properties. We show that the notions
of minimal open sets and minimal λrc-open sets are independent and finally we obtain
some applications of a minimal λrc-open sets.
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1. Introduction

The study of semi open sets in topological spaces was initiated by Levine
[10]. The complement of a subset A of X is denoted by X \ A. In 1937,
M. Stone [22], defined regular closed set, a subset A is said to be regular-closed
if A = Cl(Int(A)). The family of all regular-closed sets of (X, τ) is denoted
by RC(X). The concept of operation γ was initiated by Kasahara [4]. He
also introduced γ-closed graph of a function. Using this operation, Ogata [21]
introduced the concept of γ-open sets and investigated the related topological
properties of the associated topology τγ and τ . He further investigated general
operator approaches of closed graph of mappings. Further Ahmad and Hussain
[1] continued studying the properties of γ -open(γ-closed) sets. In 2009, Hus-
sain and Ahmad [3], introduced the concept of minimal γ-open sets. In 2011 [5]
(resp. in 2013 [6]) Khalaf and Namiq, defined an operation γ called s-operation.
They work in operation in topology in [14], [8], [9], [15], [16], [17],[18], [19]. They
defined λβc-open set[13] by using s-operation and β-closed set and also inves-
tigated several properties of λβc-derived, λβc-interior and λβc-closure points in

∗. Corresponding author
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topological spaces. In 2017, Carpintero et al. [2], investigated the notions of
minimal open sets in a generalized topological spaces and investigated its fun-
damental properties.
In this paper, we introduce and discuss minimal λrc-open sets in topological
spaces and investigate some of their fundamental properties. We show that the
notions of minimal λrc-open sets and minimal open sets are independent. Fi-
nally we obtain some applications of minimal λrc-open sets. First, we recall
some definitions and results used in this paper.

2. Preliminaries

Throughout, X denotes a topological space. Let A be a subset of X, then the
closure and the interior of A are denoted by Cl(A) and Int(A) respectively.
A subset A of a topological space (X, τ) is said to be semi open [10] if A ⊆
Cl(Int(A)). The complement of a semi open set is called semi closed [10]. The
family of all semi open (resp. semi closed) sets in a topological space (X, τ) is
denoted by SO(X, τ) or SO(X) (resp. SC(X, τ) or SC(X)). We consider λ as
a function defined on SO(X) into P (X) and λ : SO(X) → P (X) is called an
s-operation if V ⊆ λ(V ) for each non-empty semi open set V . It is assumed
that λ(∅) = ∅ and λ(X) = X for any s-operation λ. Let X be a topological
space and λ : SO(X)→ P (X) be an s-operation, then a subset A of X is called
a λ∗-open set [12] which is equivalent to λ-open set [5] and λs-open set [6] if
for each x ∈ A there exists a semi open set U such that x ∈ U and λ(U) ⊆ A.
The complement of a λ∗-open set is called λ∗-closed. The family of all λ∗-open
(resp. λ∗-closed ) subsets of a topological space (X, τ) is denoted by SOλ(X, τ)
or SOλ(X) (resp. SCλ(X, τ) or SCλ(X) ).

Proposition 2.1 ([13]). For a topological space X, SOλ(X) ⊆ SO(X).

The following example shows that the contention of the above proposition
may be strict..

Example 2.2 ([13]). Let X = {a, b, c}, and τ = {∅, {a}, X}. We define an
s-operation λ : SO(X)→ P (X) as λ(A) = A if b ∈ A and λ(A) = X otherwise.
Here, we have {a, c} is semi open but it is not λ∗-open.

Definition 2.3 ([13]). An s-operation λ on X is said to be s-regular which is
equivalent to λ-regular [7] if for every semi open sets U and V of X containing
the point x ∈ X, there exists a semi open set W containing x such that λ(W ) ⊆
λ(U) ∩ λ(V ).

The proof of the following two propositions are in [7].

Proposition 2.4. Let {Aα}α∈I be any collection of λ∗-open sets in a topological
space (X, τ), then

∪
α∈I Aα is a λ∗-open set.

Proposition 2.5. Let λ be semi-regular operation. If A and B are λ∗-open sets
in X, then A ∩B is also a λ∗-open set.
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Definition 2.6. A λ∗-open [12] (λ-open [5], λs-open [6]) subset A of a topo-
logical space X is called λrc-open [20] if for each x ∈ A there exists a regular
closed set F such that x ∈ F ⊆ A. The complement of a λrc-open set is called
λrc-closed. The family of all λrc-open (resp. λrc-closed) subsets of a topologi-
cal space (X, τ) is denoted by SOλrc(X, τ) or SOλrc(X)(resp. SCλrc(X, τ) or
SCλrc(X)).

Definition 2.7. Let X be a topological space and λ : SO(X) → P (X) be an
s-operation, then a subset A of X is called a λrc-open neighbourhood of a point
x ∈ X if A is a λrc-open set and x ∈ A.

Proposition 2.8 ([20]). For a topological space X, SOλrc(X) ⊆ SOλ(X) ⊆
SO(X).

The following example shows that the contention of the above proposition
may be strict.

Example 2.9. In Example 2.2, we have {a, c} is semi open but it is not λ∗-open.
And also {a, b} is λ∗-open set but it is not λrc -open.

Definition 2.10 ([20]). Let A be a subset of X. Then:

1. The λrc-closure of A (λrcCl(A)) is the intersection of all λrc-closed sets
containing A.

2. The λrc-interior of A (λrcInt(A)) is the union of all λrc-open sets of X
contained in A.

Proposition 2.11 ([20]). For each point x ∈ X, x ∈ λrcCl(A) if and only if
V ∩A ̸= ∅ for every V ∈ SOλrc(X) such that x ∈ V .

Proposition 2.12 ([20]). Let {Aα}α∈I be any collection of λrc-open sets in a
topological space (X, τ), then

∪
α∈I Aα is a λrc-open set.

Proposition 2.13 ([20]). Let λ be an s-regular operation. If A and B are
λrc-open sets in X, then A ∩B is also a λrc-open set.

Definition 2.14 ([11]). Let X be a space and A ⊆ X be an open set. Then A
is called a minimal open set if ∅ and A are the only open subsets of A.

3. Minimal λrc-open sets

Definition 3.1. Let X be a space and A ⊆ X be a λrc-open set. Then A is
called a minimal λrc-open set if ∅ and A are the only λrc-open subsets of A.

The following example show that minimal open set and minimal λrc-open
set are independent.
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Example 3.2. Let X = {a, b, c}, and τ = {∅, {a}, {b}, {a, b}, X}. We define an
s-operation λ : SO(X)→ P (X) as λ(A) = A if A ̸= {a}, {b} and λ(A) = {a, b}
if A = {a} or {b}. The λrc-open sets are ∅, {a, c}, {b, c} and X. We have {a, c}
is minimal λrc-open set, but it is not minimal open set. And also {a} is minimal
open set, but it is not minimal λrc-open set.

Proposition 3.3. Let A be a nonempty λrc-open subset of a space X. If A ⊆
λrcCl(C), then λrcCl(A) = λrcCl(C), for any nonempty subset C of A.

Proof. For any nonempty subset C of A,we have λrcCl(C) ⊆ λrcCl(A). On
the other hand, by supposition, we see λrcCl(A) ⊆ λrcCl(λrcCl(C)) = λrcCl(C)
implies λrcCl(A) ⊆ λrcCl(C). Therefore we have λrcCl(A) = λrcCl(C) for any
nonempty subset C of A.

Proposition 3.4. Let A be a nonempty λrc-open subset of a space X. If
λrcCl(A) = λrcCl(C), for any nonempty subset C of A, then A is a minimal
λrc-open set.

Proof. Suppose that A is not a minimal λrc-open set. Then there exists a
nonempty λrc-open set B such that B ⊆ A and hence there exists an element
x ∈ A such that x /∈ B. Then we have λrcCl({x}) ⊆ X \ B implies that
λrcCl({x}) is a proper subset of λrcCl(A). And the result follows.

Remark 3.5. For simplify, we assume that λ is an s-regular operation in the
remainder of this section three, such as in Proposition 3.7, 3.8, 3.9, 3.10, Corol-
lary 3.11, 3.12 and Theorem 3.13. Observe that if the condition of λ is not an
s-regular operation, then the intersection of two λrc-open sets not necessarily is
a λrc-open set, as we can see in the following Example.

Example 3.6. Let X = {a, b, c}, and τ = {∅, {a}, {b}, {a, b}, X}. We define an
s-operation λ : SO(X)→ P (X) as λ(A) = A if A ̸= {a}, {b} and λ(A) = {a, b}
if A = {a} or {b}.
SO(X) = {∅, X, {a}, {b}, {a, b}, {a, c}, {b, c}}.
SOλ(X) = {∅, X, {a, b}, {a, c}, {b, c}}.
SOλrc(X) = {∅, X, {a, c}, {b, c}}.
Clearly λ is not a s-regular operation and the intersection of the λrc-open sets
{a, c} and {b, c} is not a λrc-open.

Proposition 3.7. The following statements are true:

1. If A is a minimal λrc-open set and B a λrc-open set, By proposition 2.13,
A ∩B is a λrc-open set. Then A ∩B = ∅ or A ⊆ B.

2. If B and C are minimal λrc-open sets. Then B ∩ C = ∅ or B = C.

Proof. (1) Let B be a λrc-open set such that A ∩B ̸= ∅. Since A is a minimal
λrc-open set and A ∩B ⊆ A, we have A ∩B = A. Therefore A ⊆ B.
(2) If A∩B ̸= ∅, then by (1), we have B ⊆ C and C ⊆ B. Therefore, B = C.
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Proposition 3.8. Let A be a minimal λrc-open set. If x ∈ A, then A ⊆ B for
any λrc-open neighborhood B of x.

Proof. Let B be a λrc-open neighborhood of x such that A is not contained
in B. Since λ is a s-regular operation, then ∅ ̸= A ∩ B is a λrc-open set. This
contradicts our assumption that A is a minimal λrc-open set.

Proposition 3.9. Let A be a minimal λrc-open set. Then for any x ∈ A,
A = ∩{B : B is λrc − open neighborhood of x}.

Proof. By Proposition 3.4 and the fact that A is λrc-open neighborhood of x,
we have A = ∩{B : B is λrc − open neighborhood of x} ⊆ A. Therefore, the
result follows.

Proposition 3.10. If A is a minimal λrc-open set in X not containing x ∈ X.
Then for any λrc-open neighborhood C of x, either C ∩A = ∅ or A ⊆ C.

Proof. Since C is a λrc-open set, we have the result by Proposition 3.3.

Corollary 3.11. If A is a minimal λrc-open set in X not containing a point x ∈
X. If Ax = ∩{B : B is λrc − open neighborhood of x}. Then either Ax ∩A = ∅
or A ⊆ Ax.

Proof. If A ⊆ B for any λrc-open neighborhood B of x, then A ⊆ ∩{B :
B is λrc−open neighborhood of x}. Therefore A ⊆ Ax. Otherwise there exists a
λrc-open neighborhoodB of x such thatB∩A = ∅. Then we haveAx∩A = ∅.

Corollary 3.12. If A is a nonempty minimal λrc-open set of X, then for a
nonempty subset C of A, A ⊆ λrcCl(C).

Proof. Let C be any nonempty subset of A. Let y ∈ A and B be any λrc-open
neighborhood of y. By Proposition 3.4, we have A ⊆ B and C = A ∩ C ⊆
B ∩ C. Thus we have B ∩ C ̸= ∅ and hence y ∈ λrcCl(C). This implies that
A ⊆ λrcCl(C).

Combining Corollary 3.12 and Propositions 3.3 and 3.4, we have:

Theorem 3.13. Let A be a nonempty λrc-open subset of space X. Then the
following are equivalent:

1. A is minimal λrc-open set, where λ is s-regular.

2. For any nonempty subset C of A, A ⊆ λrcCl(C).

3. For any nonempty subset C of A, λrcCl(A) = λrcCl(C).
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4. Finite λrc-open sets

In this section, we study some properties of minimal λrc-open sets in finite
λrc-open sets and λrc-locally finite spaces.

Proposition 4.1. Let (X, τ) be a topological space and ∅ ̸= B a finite λrc-open
set in X. Then there exists at least one (finite) minimal λrc-open set A such
that A ⊆ B.

Proof. Suppose that B is a finite λrc-open set in X. Then we have the following
two possibilities:

1. B is a minimal λrc-open set.

2. B is not a minimal λrc-open set.

In case (1), if we choose A = B, then the proposition is proved. If the case (2)
is true, then there exists a nonempty (finite) λrc-open set B1 which is properly
contained in B. If B1 is minimal λrc-open, we take A = B1. If B1 is not a
minimal λrc-open set, then there exists a nonempty (finite)λrc-open set B2 such
that B2 ⊆ B1 ⊆ B. We continue this process and have a sequence of λrc-open
sets ⊆ Bm ⊆ ... ⊆ B2 ⊆ B1 ⊆ B. Since B is a finite, this process will end in a
finite number of steps. That is, for some natural number k, we have a minimal
λrc-open set Bk such that A = Bk. This completes the proof.

Definition 4.2. A space X is said to be a λrc-locally finite space, if for each
x ∈ X there exists a finite λrc-open set A in X such that x ∈ A.

Definition 4.3. Let X = R and τ = P (R). We define an s-operation λ :
SO(R) → P (R) as λ(A) = A for every subset A of R. Then (R, τ) is a λrc-
locally finite space

Corollary 4.4. Let X be a λrc-locally finite space and B a nonempty λrc-open
set. Then there exists at least one (finite) minimal λrc-open set A such that
A ⊆ B, where λ is s-regular.

Proof. Since B is a nonempty set, there exists an element x of B. Since X is a
λrc-locally finite space, we have a finite λrc-open set Bx such that x ∈ Bx. Since
B ∩ Bx is a finite λrc-open set, we get by Proposition 4.1, a minimal λrc-open
set A such that A ⊆ B ∩Bx ⊆ B.

Proposition 4.5. Let X be a space and for any α ∈ I, Bα a λrc-open set and
∅ ̸= A a finite λrc-open set. Then A ∩ (

∩
α∈I Bα) is a finite λrc-open set, where

λ is s-regular.

Proof. We see that there exists an integer n such that A ∩ (
∩
α∈I Bα) = A ∩

(
∩n
i=1Bαi)) and hence we have the result.

Using Proposition 4.5, we can prove the following:
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Theorem 4.6. Let X be a space and for any α ∈ I, Bα is a λrc-open set and for
any β ∈ I, Bβ is a nonempty finite λrc-open set. Then (

∪
β∈I Bβ) ∩ (

∩
α∈I Bα)

is a λrc-open set, where λ is s-regular.

It is important to know that the notions of λrc-locally finite space and locally
finite space are independent, because the family of λrc-open sets and the family
of open set in a topological (X, τ) with an s-operation λ : SO(X)→ P (X) are
independent.

5. More properties

Let A be a nonempty finite λrc-open set. It is clear, by Proposition 3.3 and 4.1,
that if λ is s-regular, then there exists a natural numberm such that{A1, A2, . . . ,
Am} is the class of all minimal λrc-open sets in A satisfying the following two
conditions:

1. For any i, n with 1 ≤ i, n ≤ m and i ̸= n, Ai ∩An = ∅.

2. If C is a minimal λrc-open set in A, then there exists i with 1 ≤ i ≤ m
such that C = Ai.

Theorem 5.1. Let X be a space and A ̸= ∅ be a finite λrc-open set which is not
a minimal λrc-open set. Let {A1, A2, . . . , Am} be a class of all minimal λrc-open
sets in A and y ∈ A \ (

∪m
i=1Ai). Define Ay = ∩{By}, where By is a λrc-open

neighborhood of y. Then there exists a natural number k ∈ {1, 2, 3, . . . ,m} such
that Ak is contained in Ay, where λ is s-regular.

Proof. Suppose on the contrary that for any natural number k ∈ {1, 2, 3, . . . ,m},
Ak is not contained in Ay. By Proposition 3.7, for any minimal λrc-open set Ak
in A, Ak∩Ay = ∅. By Proposition 4.5, ∅ ̸= Ay is a finite λrc-open set. Therefore
by Proposition 4.1, there exists a minimal λrc-open set C such that C ⊆ Ay.
Since C ⊆ Ay ⊆ A, we have C is a minimal λrc-open set in A. By supposition,
for any minimal λrc-open set Ak, we have Ak ∩ C ⊆ Ak ∩ Ay = ∅. Therefore,
for any natural number k ∈ {1, 2, 3, . . . ,m}, C ̸= Ak. This contradicts our
assumption. Hence the proof.

Proposition 5.2. Let X be a space and A ̸= ∅ be a finite λrc-open set which
is not a minimal λrc-open set. Let {A1, A2, . . . , Am} be a class of all minimal
λrc-open sets in A and y ∈ A \ (A1 ∪A2 ∪ ...∪Am). Then there exists a natural
number k ∈ {1, 2, 3, . . . ,m}, such that for any λrc-open neighborhood By of y,
Ak is contained in By, where λ is s-regular.

Proof. This follows from Theorem 5.1.

Theorem 5.3. Let X be a space and A ̸= ∅ be a finite λrc-open set which is not
a minimal λrc-open set. Let {A1, A2, . . . , Am} be a class of all minimal λrc-open
sets in A and y ∈ A \ (A1 ∪A2 ∪ ... ∪Am). Then there exists a natural number
k ∈ {1, 2, 3, . . . ,m}, such that y ∈ λrcCl(Ak). where λ is s-regular.
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Proof. It follows from Proposition 5.2, that there exists a natural number
k ∈ {1, 2, 3, . . . ,m} such that Ak ⊆ B for any λrc-open neighborhood B of
y. Therefore ∅ ̸= Ak ⊆ Ak ∩B and then, y ∈ λrcCl(Ak).

Proposition 5.4. Let A ̸= ∅ be a finite λrc-open set in a space X and for
each k ∈ {1, 2, 3, . . . ,m}, Ak is a minimal λrc-open set in A. If the class
{A1, A2, . . . , Am} contains all minimal λrc-open sets in A, then for any ∅ ̸=
Bk ⊆ Ak, A ⊆ λrcCl(B1 ∪B2 ∪B3 ∪ ... ∪Bm), where λ is s-regular.

Proof. If A is a minimal λrc-open set, then this is the result of Theorem 3.13(2).
Otherwise, when A is not a minimal λrc-open set. If x is any element of A \
(A1 ∪ A2 ∪ A3 ∪ ... ∪ Am), then by Theorem 5.3, x ∈ λrcCl(A1) ∪ λrcCl(A2) ∪
....λrcCl(Am). Therefore, by Theorem 3.13 (3), we obtain that A ⊆ λrcCl(A1)∪
λrcCl(A2)∪....λrcCl(Am) = λrcCl(B1)∪λrcCl(B2)∪....λrcCl(Bm) = λrcCl(B1∪
B2 ∪B3 ∪ ... ∪Bm).

Proposition 5.5. Let A ̸= ∅ be a finite λrc-open set and for each k ∈ {1, 2, 3, . . . ,
m}, Ak is a minimal λrc-open set in A. If for any ∅ ̸= Bk ⊆ Ak, A ⊆
λrcCl(B1 ∪B2 ∪B3 ∪ ...∪Bm), then λrcCl(A) = λrcCl(B1 ∪B2 ∪B3 ∪ ...∪Bm).

Proof. For any ∅ ̸= Bk ⊆ Ak, with k ∈ {1, 2, 3, . . . ,m}, we have λrcCl(B1 ∪
B2∪B3∪ ...∪Bm) ⊆ λrcCl(A). Also, we have λrcCl(A) ⊆ λrcCl(B1∪B2∪B3∪
... ∪ Bm) = λrcCl(B1) ∪ λrcCl(B2) ∪ λrcCl(B3) ∪ ... ∪ λrcCl(Bm). Therefore,
λrcCl(A) = λrcCl(B1 ∪B2 ∪B3 ∪ ... ∪Bm), for any nonempty subset Bk of Ak
with k ∈ {1, 2, 3, . . . ,m}.

Proposition 5.6. Let A ̸= ∅ be a finite λrc-open set and for each k ∈ {1, 2, 3, . . . ,
m}, Ak is a minimal λrc-open set in A. If for any ∅ ≠ Bk ⊆ Ak, λrcCl(Ak) =
λrcCl(B1 ∪B2 ∪B3 ∪ ...∪Bm), then the class {A1 ∪A2 ∪A3 ∪ ...∪Am} contains
all minimal λrc-open sets in A.

Proof. Suppose that C is a minimal λrc-open set in A and C ̸= Ak for k ∈
{1, 2, 3, . . . ,m}. Then we have C ∩ λrcCl(Ak) = ∅ for each k ∈ {1, 2, 3, . . . ,m}.
It follows that any element of C is not contained in λrcCl(A1∪A2∪A3∪...∪Am).
This is a contradiction to the fact that C ⊆ A ⊆ λrcCl(A) = λrcCl(B1 ∪ B2 ∪
B3 ∪ ... ∪Bm). This completes the proof.

Combining Propositions 5.4, 5.5 and 5.6, we have the following theorem:

Theorem 5.7. Let A be a nonempty finite λrc-open set and Ak a minimal λrc-
open set in A for each k ∈ {1, 2, 3, . . . ,m}. Then the following three conditions
are equivalent:

1. The class {A1, A2, . . . , Am} contains all minimal λrc-open sets in A.

2. For any ∅ ̸= Bk ⊆ Ak, Ak ⊆ λrcCl(B1 ∪B2 ∪B3 ∪ ... ∪Bm).

3. For any ∅ ̸= Bk ⊆ Ak, λrcCl(Ak) = λrcCl(B1 ∪B2 ∪B3 ∪ ...∪Bm), where
λ is s-regular.
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Pseudo analytic approach to estimate drug transport and
release in the annular section of human limbs
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Abstract. A mathematical model has been developed to estimate the concentration
of transdermal drug transport in an annular section of the human forearm. The formu-
lation of the model is based on the radial and angular diffusion equation together with
appropriate boundary conditions. An analytic method has been employed to determine
the steady-state concentration of the drug in the annular region of dermal system and
the unsteady-state concentration of drug release and transport has been computed using
finite difference explicit method. The proposed model may be useful for drug trans-
port in human subjects especially for the application of drug through transdermal drug
delivery system. The model has applications in biomedical sciences especially while
dealing with the patients having oral and intravenous drug issues.

Keywords: transdermal drug diffusion, Dirichlet’s problem, separation of variables
method, finite difference method.

1. Introduction

The suitable administration route for strong and low molecular weight drugs is
considered to be transdermal drug delivery. Its main advantage is that it is a
substitute to tablets and injections. This delivery system is mainly concerned
with the delivery device and anatomy of dermal region, which consists of upper-
most stratum corneum and underlying layers of stratum germinativum, dermis
and subcutaneous tissue[2]. The transdermal drug delivery system(TDDs) is a
suitable format in which the drug is applied externally either through a reservoir
in contact with the outermost layer or through periodic application. The drug
and the delivery system are designed in such a way that the drug reaches the
targeted area with prescribed concentration.

Over the last 50 years, mathematical modeling on the diffusional and release
processes has been used to design a number of simple and complex drug delivery
systems and devices to predict the overall release behaviour and diffusion of the

∗. Corresponding author
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drug. R.A. Gatenby and E.T. Gawlinski developed a reaction-diffusion model
of cancer invasion[3]. They have developed a model encompassing the key com-
ponents of their hypothesis predicting an acidic pH gradient extending into the
peritumoral tissue, which they confirmed by reanalysis of extant experimental
data. A two-layer reaction-diffusion-convection model for drug delivery in bi-
ological tissues was developed by S. McGinty and G. Pontrelli[11]. They have
presented a general model of drug release from a drug delivery device(DDD)
and the subsequent drug transport in biological tissue. Feizabadi et al have de-
veloped a two compartment interacting with the dynamic drugs[7]. They have
combined the total cell evolution curve and a two compartment model inter-
acting with dynamic anti-cancer agents. They have analytically obtained the
evolution of subpopulations. N.A. Peppas and B.Narasimhan have developed
mathematical models in drug delivery to predict how the new drug delivery
systems can be designed[12].

Further Khanday and Rafiq have studied the absorption rate of drug at
various compartments through TDD system[8]. Khanday et al have also devel-
oped some mathematical models for drug diffusion through the compartments
of blood and tissue medium[6]. They have established mathematical models
to understand the distribution of drug administration in human body through
oral and intravenous routes. They formulated three models based on diffusion
process using Fick’s principle and law of mass action. Distribution of drug in
a sample of five layers of human skin was also studied by A. Sharma and V.P.
Saxena[13]. They have constructed a mathematical model to study the drug
concentration in the different layers of skin through transdermal drug delivery
system. They have used the finite element method with linear shape functions
to obtain the solution of governing one dimensional partial differential equation
for unsteady state case. Further, mathematical and computational models of
drug transport in tumors were also developed by C.M. Groh et al [5]. They
considered three different modelling approaches, each of which represented drug
delivery from a central blood vessel to a surrounding tumor cord. Their mod-
els were based on the assumption of axial uniformity- the dependence of drug
concentration on the distance from the central vessel does not vary along the
vessel, to reduce the complexity of their models.

The mathematical models based on radial and angular diffusion were stud-
ied by various researchers. Heat and mass diffusions were extensively studied
by Khanday and his co-workers[6, 8, 9, 10] however, the drug diffusion in an
annular region of human forearm has not been studied so far. The transport of
drug has been studied in the dermal and the muscular regions of the forearm.
In the steady-state, we have taken the three regions of the dermal section viz:
epidermis, dermis and hypodermis, while as in the unsteady-state case, epider-
mis, dermis and hypodermis have been collectively taken as the skin(dermal)
region. Consider the boundary of the region with one end at the boundary of
the bone and the other end at the skin surface. The formulation is based on the
mass diffusion equation with appropriate boundary and initial conditions, and
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the solutions have been established analytically and numerically respectively for
the steady-state and unsteady-state cases. The proposed work can provide the
details of drug transport in the annular region defined above.

2. Mathematical model

Consider the annular section of the human forearm with radii respectively as
r1 cm and r2 cm such that 0 < r1 < r2 as shown in Fig. 1 and Fig. 2.

Figure 1: Cylindrical sample section of human forearm.

Figure 2: Annular Cross-section of the limb.

The drug is applied at the outer skin surface r = r2 and the estimation of
the drug transport in the ring shaped(annular) region(skin and muscle) can be
established using suitable partial differential equation. The diffusion equation
in plane polar coordinates for the transport and diffusion of a drug in the cross-
section of the annular region of human forearm is given by Crank[1]

1

D

∂C

∂t
=
∂2C

∂r2
+

1

r

∂C

∂r
+

1

r2
∂2C

∂θ2
+R(r, θ)(1)

where C(r, θ, t) is the drug concentration in the annular dermal region r1 ≤
r ≤ r2, t denotes the time, θ determines the angular direction of drug, D is the
diffusion coefficient and R is the rate of metabolic drug consumption.

It is imperative to see that the transport of the drug from the skin surface
towards the deep core has a non-linear behaviour and at any radial distance,
the oscillation of the drug flow has been assumed by using the following initial
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and boundary conditions :

C(r2, θ, t) = c0 at t = 0 and ∀ 0 ≤ θ ≤ 2π(2)

C(r2, θ, t) = sin(θ − π

2
t) ∀ 0 ≤ θ ≤ 2π and ∀ t > 0(3)

C(r1, θ, t) = cos(θ − π

2
t) ∀ 0 ≤ θ ≤ 2π and ∀ t > 0(4)

2.1 Steady-state case

In this case, Eq. (1) reduces to

∂2C

∂r2
+

1

r

∂C

∂r
+

1

r2
∂2C

∂θ2
= −R(r, θ)(5)

which is a non homogeneous partial differential equation.
The solution of Eq.(5) is sum of two terms, namely C1(r, θ) which represents

the complementary function corresponding to the solution of the homogeneous
part of Eq.(5) and C2(r, θ), which represents the particular integral correspond-
ing to the non-homogeneous part of Eq.(5). Also, the boundary conditions in
Eqs.(2) ,(3),(4) for the homogeneous part of Eq.(5), become respectively as :

C1(r2, θ) = sin(θ) ∀ 0 ≤ θ ≤ 2π(6)

C1(r1, θ) = cos(θ) ∀ 0 ≤ θ ≤ 2π(7)

Assume the periodicity condition as:

C1(r, θ + 2π) = C(r, θ), r1 ≤ r ≤ r2(8)

The formulation part of the model is given by the boundary-value problem
defined by Eqs.(5) - (8). The solution of the model can help us to estimate the
steady-state drug concentration at various sections of the annular region given
in Fig. (2).

2.1.1 Method

The model Eq. (5) is a non homogeneous equation in nature, its complete
solution will be of the form

C(r, θ) = C1(r, θ) + C2(r, θ)(9)

where C1(r, θ) and C2(r, θ) respectively represent the solution of homogeneous
part and the particular solution of Eq.(5).

Now considering the homogeneous part of Eq.(5) along with the conditions
given by Eqs.(6) -(8), it becomes Dirichlet’s boundary value problem for the
annulus. The analytical solution of the problem is given as

C1(r, θ) = a0 + α0log(r) +

∞∑
n=1

[
(anr

n + αnr
−n) cos(nθ) + (bnr

n

+βnr
−n) sin(nθ)

]
(10)
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where the coefficients a0,α0,an,αn,bn and βn are determined and are given in
Appendix.

Also the particular integral of Eq.(5) is

C2(r, θ) =
1

D2
1 +D′2

F (r, θ)(11)

where D1 = ∂
∂z , z = log r, D′ = ∂

∂θ and F (r, θ) = −r2R(r, θ) = c0
r cos(θ)

(because the concentration decreases radially).
Now,

C2(r, θ) =
1

D2
1 +D′2

c0
r

cos(θ) = c0
1

D2
1 +D′2

e−z cos(θ) = − c0
2r

cos(θ)

Therefore the complete solution of Eq.(5) is

C(r, θ) =
[
(a1r + α1r

−1) cos(θ) + (b1r + β1r
−1) sin(θ)

]
− c0

2r
cos(θ)(12)

where the coefficients are defined in Appendix.
After finding the solution completely, we now assign different values to the

physiological parameters used in the model depending on the sample of the an-
nular section of the forearm under study. Some of the values of the parameters
were taken from M.A. Khanday et al [10] in order to determine the drug con-
centrations in the mentioned regions using Eq. (12). Eq. (12) can help us in
finding out the drug absorption and release in steady-state case by assigning
values of the parameters.

2.1.2 Results

The drug concentration profiles in the annular region were computed taking the
initial concentration c0 = 2.5mg/cm3. The numerical values of the physiological
parameters used and the results obtained are shown in Table 1. The computed
values are given as follows: C(r = 0.25) = C(0.25) = 0.42mg/cm3, C(r =
0.29) = C(0.29) = 0.21mg/cm3, C(r = 0.16) = C(0.16) = 0.43mg/cm3, C(r =
1.28) = C(1.28) = 0.02mg/cm3.

For fixed θ = π/4 and applying Lagranges’s interpolation formula [4], the
interpolation polynomial is given as

C(r) = 39.6r3 − 67.3r2 + 22.4r − 1.5(13)

The graph in Fig. 3 has been plotted between drug release/absorption versus
radial distance of the annular region. The size of the ring was taken as (1.02 ≤
r ≤ 3.0)cm, where it was assumed that bone radius is 1.02 cm and the size of
the limb is 3.0 cm.

Further the graphs given in Figs.[4] and [5] are plotted according to the
equation(12).
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Table 1: Physiological and Numerical values of parameters and Concentration
in the different sections of the annular region[10].

Parameter Epidermis Dermis Hypodermis Muscle

r1 2.75 cm 2.46 cm 2.30 cm 1.02 cm
r2 3.00 cm 2.75 cm 2.46 cm 2.30 cm
r 0.25 cm 0.29 cm 0.16 cm 1.28 cm
Q 1.09 1.11 1.06 2.25
Q−1 0.91 0.89 0.94 0.44

Q−Q−1 0.18 0.22 0.12 1.81
a1 −1.85 cm−1 −1.65 cm−1 −3.38 cm−1 −0.24 cm−1

α1 16.66 cm 12.5 cm 20.5 cm 1.27 cm
b1 2.02 cm−1 1.84 cm−1 3.62 cm−1 0.54 cm−1

β1 −15.27 cm −11.18 cm −19.16 cm −0.54 cm
C 0.42 mg/cm3 0.21 mg/cm3 0.43 mg/cm3 0.02 mg/cm3

Figure 3: Drug Concentration in the annular section from the skin towards the
core with c0 = 2.5mg/cm3

2.2 Un-steady state case

The unsteady-state diffusion equation in polar coordinates for the transport and
diffusion of a drug is given in Eq.(1) along with the associated conditions given
in Eqs.(2)-(4). In order to determine the time dependent drug distribution in
the annular region of the human limb, the two subsections denoted by 1 and
2 in Fig. 6(a) were studied and the uniform treatment can be followed for
other regions. The discretization of these regions is shown in Fig. 6(b), where
nine nodal points are shown for bone, muscle and skin regions. The value of
each of the nine nodal points has to be calculated for k = 0, 1, 2 time levels,
so that we actually have twenty-seven nodal points. The subscripts d and m
represent the parameters related to these regions respectively. The physiological
and parametric behaviour of these regions is given below:
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Figure 4: Drug flow in (a) epidermis and (b) dermis.

Figure 5: Drug flow in (a) hypodermis and (b) muscle.

Skin: In the uppermost layer of this region(epidermis), there are no blood
vessels and hence almost negligible metabolic activity [9], thus we take Dd =
D1 = constant = 0.002cm2/min and Rd = R0 = 0.

Muscular region: For this case, we take
Dm = D2 = constant = 0.00204cm2/min and Rm = Ri = c0

(ih)3
cos(π/4) for

i = 1, 2.

2.2.1 Method

On employing the explicit finite difference method to solve the boundary value
problem given in Eqs.(1)-(4), we have

aiCi,j,k+1 = {ai − di − 2(bi + 1)}Ci,j,k + (bi + di)Ci+1,j,k + biCi−1,j,k

+ Ci,j+1,k + Ci,j−1,k + ei(14)

C0,j,0 = c0 = 2.5 mg/cm3 ∀ j(15)

C0,j,k = sin(jk′ − π

2
kl) ∀ k 6= 0 and ∀ j(16)

C2,j,k = cos(jk′ − π

2
kl) ∀ k 6= 0 and ∀ j(17)

where the values of unknown parameters ai, bi, di and ei are given in Appendix.
For j = 0, 1, 2 in Eq.(15), we obtain the values of C0,0,0, C0,1,0 and C0,2,0,

and are all found to be equal to c0 = 2.5 mg/cm3. Also we obtained that
R1 = 5.1mg/cm6, R2 = 0.6mg/cm6.
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Figure 6: (a) Division of the annular cross-section into 8 sub-sections and (b)
Layer-wise discretization of skin and muscle,Ci,j,k(i-space step param-
eter in cm, j-angular step parameter in radians and k-time step pa-
rameter in min based on finite difference method) is the nodal con-
centration at (i, j, k)th place of the interface.

Now, using j = 0, 1, 2 and then k = 1, 2 in Eqs. (16) and (17), we obtain the
nodal concentrations C0,0,1, C0,0,2, , C0,1,1, C0,1,2, C0,2,1, C0,2,2, C2,0,1, C2,0,2, C2,1,1,
C2,1,2, C2,2,1 and C2,2,2.

Continuing in this way, we shall be able to compute the values of all nodal
points of the sub-domains given by the symbols Ci,j,k, representing the nodal
values of the drug concentration of the discretized region shown in Fig. 5 using
Eq.(14).

2.2.2 Results

Assigning different values to the physiological parameters used in the model
depending on the properties and the sample of the forearm(annular section) of
skin and muscle under study, we have calculated the drug concentrations at
various nodal points. The values have been calculated for h = 0.70 cm for skin,
h = 1.28 cm for muscle,l = 5 min and k′ = π/4, as given below in the following
Tables 2 − 5. Since,when the time has not started or when the drug has not
been applied, there will be no diffusion of the drug inside the skin or muscle, so
we choose C1,0,0 = C1,1,0 = C1,2,0 = C2,0,0 = C2,1,0 = C2,2,0 = 0.

3. Discussion

The mathematical model has been formulated to study the drug transport in
an annular region of human forearm. The model has been solved for steady
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Table 2: Numerical values of the coefficients appearing in Eq.(14).
Parameter Value Parameter Value

a0 0 d0 0
a1 30.1 d1 0.6
a2 120.7 d2 1.2
b0 0 e0 0
b1 0.6 e1 −1.5 mg/cm3

b2 2.4 e2 −0.6 mg/cm3

Table 3: Concentration at nodal points corresponding to i = 0(i.e; at exposed
skin surface).

Concentration-nodal points Values in mg/cm3

C0,0,0 2.5
C0,1,0 2.5
C0,2,0 2.5
C0,0,1 1
C0,0,2 0
C0,1,1 0.7
C0,1,2 0.7
C0,2,1 0
C0,2,2 1

and unsteady-state cases using analytical and numerical methods respectively.
For the steady-state case, the solution has been established using Dirichlet’s
boundary value problem and Lagrange’s interpolation scheme, and the boundary
conditions were constructed on the basis of drug/cream/ointment pasted on the
skin surface. For the unsteady-state case, the solution was established using the
explicit finite difference method where the domain is taken as the skin(dermal
regions) and the muscular region. The transport of drug takes place through the
dermal regions. The presence of pores on the skin surface and other biophysical
and physiological parameters support the flow of drug towards the inner core.
Since the formulation of the model has been carried out on a ring shaped annular
region, both radial and angular variables play a key role to understand the
mechanism of drug transport in this region. We assumed that the flux of drug
at the skin surface satisfies sinusoidal pattern due the fact that drug transports
in all directions and the rare presence of holes at the skin surface. The same
argument is applicable at the bone surface which is infact the interior of the
annulus. The partial differential equation (1) together with the appropriate
boundary conditions were used to estimate the drug transport in the region (0 <
)r1 < r < r2. The model equations were solved by using method of separation
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Table 4: Concentration at nodal points corresponding to i = 1(i.e; at the inter-
face between the skin and the muscle).

Concentration-nodal points Values in mg/cm3

C1,0,1 0.08
C1,0,2 0.04
C1,1,1 0.00066
C1,1,2 0.0046
C1,2,1 0.00066
C1,2,2 0.0093

Table 5: Concentration at nodal points corresponding to i = 2(i.e; at the inter-
face between the bone and the muscle).

Concentration-nodal points Values in mg/cm3

C2,0,1 0
C2,0,2 1
C2,1,1 0.7
C2,1,2 0.7
C2,2,1 1
C2,2,2 0

of variables and Fourier expansions for the steady-state case and by the explicit
finite difference method for the unsteady-state case. Our proposed model has
an advantage that at any time we can find the value of the drug concentration
inside the given region if the initial concentration is known.

4. Conclusion

It has been observed that the drug release and absorption in dermal and mus-
cular regions has a continuous pattern from the outer surface towards the inner
core through TDD route. The pattern of drug transport is shown in Fig. 3 with
initial drug concentration of c0 = 2.5 mg/cm3 while keeping one variable (θ)
fixed. Also graphs given in Figs.[4] and [5] are plotted according to the Eqn.(12)
which show the drug flow in the regions epidermis, dermis, hypodermis and mus-
cle respectively, which describe that the concentration of the drug in each region
is maximum near the boundaries of the regions and remains nearly uniform in
the centre of each region in the steady state case.

The maximum drug absorption takes place in the papillary and reticular
regions of human dermal system due to dense network of blood vessels. In the
muscular region, the flow is comparatively steep as shown by the curve of the
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graph in Fig. 3. The solution for the unsteady-state case as given by Eqn.(14)
depicts that the drug concentration can be found at any time in any region of
the domain. This study can help the medical scientists and allied researchers to
understand the residual drug concentration and absorption at various tissues of
the human forearm. Further, since the model does not possess an exact solution
for the unsteady state case, this is a severe limitation of this model, hence this
work can further be improved if an exact solution can be found.
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Appendix

a0 = 0; α0 = 0; a1 = − r−1
2

Q−Q−1 ;

α1 = r2
Q−Q−1 ; b1 =

r−1
1

Q−Q−1 ; β1 = − r1
Q−Q−1 ; an = αn = bn = βn = 0 ∀ n 6= 1 ;

Q = r2
r1

ai = i2h2k′2

Dl ; bi = i2k′2; di = ik′2; ei = −Ri2h2k′2 ;

i = 0, 1, 2.
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1. Introduction

In the modern days the communication between two individuals, or among
groups of people, or social establishments requires high security of the message
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or information. Boolean functions have been studied due to their cryptographic
properties for the last two decades. These functions play a significant role in
constructing components of symmetric ciphers. Boolean functions used in cryp-
tographic applications provide security of a cipher against different kinds of
attacks.

Nonlinearity of a Boolean function is an essential property and functions with
high non-linearity have applications in cryptography. Shannon in [1] identified
that confusion and diffusion are the essential technique for performing secu-
rity. Confusion could be achieved by the nonlinearity of a Boolean function.
Thus, certainly one can efficiently use Boolean functions with high nonlinearity
in coding theory and cryptography. For security reasons, the nonlinearity of
Boolean functions must be high since the existence of affine approximations of
the Boolean functions involved in a cryptosystem allows to build attacks on this
system. In the case of stream ciphers, high nonlinearity is important to prevent
fast correlation attacks and Linear Cryptanalysis for Block Ciphers [2,3,4].

Siegenthaler proposed the concept of correlation immunity in 1984. Corre-
lation immunity is an interesting cryptographic property, which is to measure
the level of resistance against correlation attacks. It is a safety measure for the
correlation attack of nonlinear combiners. When used in a stream cipher as a
combining function for linear feedback shift registers, a Boolean function with
low-order correlation-immunity is more susceptible to a correlation attack than
a function with correlation immunity of high order [4,5].

Algebraic immunity is a cryptographic property to measure the resistance
against algebraic attack for stream ciphers. The concept of algebraic immunity
of Boolean functions comes from the algebraic attack on stream ciphers proposed
by Courtois and Meier in 2003 in [6], which has proven to be a very effective
attack for both stream ciphers and block ciphers [4,7].

Zheng and Zhang in 1999 introduced plateaued Boolean functions for design-
ing cryptographic functions as they have various cryptographic characteristics
[8]. If squared Walsh transform of a Boolean function f : Fn2 → F2 takes only
one nonzero value then the function is known as plateaued [9]. Moreover, if

the values of its Walsh transform belong to the set {0,±2
n+r
2 } for some fixed r,

0 ≤ r ≤ n then the n-variable Boolean function is said to be r-plateaued. The
cases of r = 0, 1 and 2 have attracted much attention due to their cryptographic
algebraic and combinatorial properties [5].

Bent functions are 0-plateaued functions introduced by Rothaus in the year
1976 [10]. Bent functions are perfect nonlinear functions and have interesting
implications to design block ciphers as well as stream ciphers. But these func-
tions may not be compatible with other cryptographic design criteria as these
functions cannot be implemented in conjunction with balance or highest nonlin-
ear order [11]. Near bent functions are 1- plateaued functions on F2n exist only
when n is odd and Semi bent functions are 2- plateaued functions on F2n exist
only when n is even, introduced by Chee et al. in the year 1995 [12]. Similar
to bent functions, semi bent functions and near bent functions are also widely
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studied in sequences and cryptography. Unlike bent functions, semi bent func-
tions and near bent functions are nearly perfect nonlinear so that they can be
balanced and resilient. These functions are desirable for cryptographic applica-
tions as these functions have the low autocorrelation, a maximal nonlinearity
among balanced plateaued functions, the high algebraic degree and satisfy the
propagation criteria. They are also used for constructing the cryptographically
robust S-blocks and widely used in code division multiple access (CDMA) com-
munication systems for sequence design [5,13,14]. These semi bent and near
bent functions are one of the most intensively studied topics related to bent
functions.

Khoo et al. in 2002 gave the construction of n- variable quadratic semi bent
functions in polynomial forms for both odd and even n [15]. Before his work,
most of the researchers constructed semi bent function from power polynomials,
that is, for suitably chosen d f(x) = Tr(xd). Dillon and McGuire in 2008
presented a general criterion for near bent functions to be bent on a hyperplane,
and they showed that the Kasami-Welch function Tr(xd) is a bent function when
restricted to the hyperplane of trace 0 elements in F2n [16]. Dong et al. in 2013
presented a new method for constructing semi bent function in polynomial form
for both odd and even n with the help of few trace terms [17]. S. K. Pandey
et al. presented an exhaustive construction of bent and balanced symmetric
generalized functions (in form of ANF) on smaller domains [18].

From the above all observations, most of the researchers have focused on
the construction of monomial semi bent and near bent functions. And few
researchers have constructed these functions via composition and constructed
in the polynomial form using few trace terms. To the best of our knowledge no
work has been carried out so far to construct near bent function of the form
f(x) = (x2+x)d where d is Gold exponent (2i+1) and we have also investigated
some of the cryptographical properties as mentioned above. The improvement
of cryptographic properties can be possibly expected with suitable modifications
on the homomorphism functions similar to the functions used in [19].

2. Preliminaries

Definition of the near bent function is given by using Walsh-Hadamard coeffi-
cients.

Definition 2.1 ([9]). The Walsh-Hadamard transform of a function f in n
variables is the integer-valued function on Fn2 , whose value at a ϵ Fn2 is defined
as

Wf (a) =
∑
xϵFn

2

(−1)f(x)+<a·x>.

As an example, one can use the usual inner product over Fn2 , which is a ·x =∑n
i=1 aixi (mod 2). If the vector space Fn2 is viewed as the structure of the
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finite field F2n , the usual inner product is nothing but a · x = trn(ax), where
trn(x) =

∑n−1
i=0 x

2i is the trace function.

Definition 2.2 ([5]). A Boolean function f : Fn2 → F2 is called a near bent if
its Walsh transform satisfies:

Wf (a) ϵ {0,±2
n+1
2 }, for all a ϵ F2n

Near bent functions on F2n exist only when n is odd.

Definition 2.3 ([20]). The non-linearity of a Boolean function f is denoted by
nl(f) and is defined as

nl(f) = 2n−1 − 1

2
max
aϵFn

2

Wf (a).

Definition 2.4 ([14]). A sub function of order k of Boolean function f in
variables x1, . . . , xn is a function f i1,...,ika1,...,ak where each variable xij is fixed by the
value aij , j = 1, . . . , k, 0 < k ≤ n.

Definition 2.5 ([14]). A Boolean function f in n variables is called correlation
immune of order k if the weight of any of its sub function of order k equals
wt(f)/2k.

Definition 2.6 ([14]). The minimum algebraic degree of a Boolean function g,
g ̸= 0, such that f · g = 0 or (f ⊕ 1) · g = 0 is called the algebraic immunity of
f, and is denoted by AI(f).

Definition 2.7 ([21]). If c is an element of K = GF (qn), its trace relative to
the subfield F = GF (q) is defined as follows:

TrKF (c) = c+ cq + cq
2
+ . . .+ cq

n−1
.

Theorem 2.8 ([21]). For all α, β ϵ K we have

Tr(α+ β) = Tr(α) + Tr(β).

3. Algebraic construction of near bent function

Theorem 3.1. The function of the form

f(x) = Tr(x2 + x)(2
i+1),

is a near bent function with gcd(i, n) = 1.

Proof. (x2 + x)2
i+1 = x2∗(2

i+1) + x2∗2
i ∗ x+ x2 ∗ x2i + x2

i+1.
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Note that in the finite field F2n holds x2∗(2
i) = x2

i
. Therefore, (x2+x)2

i+1 =
x2

i+1+x2
i ∗x+x2∗x2i+x2i+1 = x2

i+1+x2
i+2. Walsh transform for the function

f(x) = Tr((x2 + x)2
i+1) is

(1) Wf (a) =
∑
xϵFn

2

(−1)Tr(x2
i+1+x2

i+2)⊕<a·x>

Walsh transform for the function f(x) = Tr((x)2
i+1) is

(2) Wf (a) =
∑
xϵFn

2

(−1)Tr(x)2
i+1⊕<a·x>

Equation (1) has same terms as that of equation (2), except that the one term
Tr(x2

i+2) is extra. So we consider the following two cases regarding extra term.

Case 1. When Tr(x2
i+2) = 0.

The term of the Boolean function will be Tr((x)2
i+1)+0, which is Tr((x)2

i+1).
Hence it is near bent function by [14].

Case 2. When Tr(x2
i+2) = 1.

The terms of the Boolean function will be Tr((x)2
i+1)+1, whose values will

be exactly opposite to that of equation (2). As f(x) = Tr((x)2
i+1) is near bent

function, the function f(x) = Tr((x2 + x)2
i+1) is also near bent over Fn2 .

Thus the function defined on Fn2 by

f(x) = Tr((x2 + x)2
i+1)

with gcd(i, n) = 1 is a near bent over Fn2 .

If gcd(i, n) ̸= 1, then the functions Tr((x2 + x)2
i+1) cannot be near bent

function, which can be observed over some fields from the following examples.

Example 3.2. Over F5
2, the function f(x) = Tr((x2 + x)2

5+1) is not a near
bent function.

In fact, the values of Walsh transform Wf (a) are 0 or −32, for all a ϵ F5
2.

Hence f(x) = Tr((x2 + x)33) is not a near bent function.

Example 3.3. Over F9
2, the function f(x) = Tr((x2 + x)2

3+1) is not a near
bent function.

In fact, the values of Walsh transform Wf (a) are 0 or ±64, for all a ϵ F9
2.

Hence f(x) = Tr((x2 + x)9) is not a near bent function.
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4. Cryptographic properties of above constructed near bent
functions

There are many different kinds of attacks on the stream ciphers, and hence the
Boolean functions used in the stream ciphers should have essential properties.
Boolean functions play an important role in both error correcting coding activi-
ties and cryptography. Indeed, cryptographic transformations can be developed
by the appropriate composition of nonlinear Boolean functions. Moreover, every
code of length 2n, for some nonnegative integer n, can be interpreted as a set of
Boolean functions. In both frameworks, n is rarely large, in practice. The error
correcting codes derived from n-variable Boolean functions have length 2n; so,
taking n = 11 already gives codes of length 2048. In the case of stream ciphers,
n was in general at most equal to 11 until recently [4,5,14].

Moreover, Some of the important and very common cryptographic properties
of near bent functions are briefly described in next sections.

4.1 Nonlinearity

The nonlinearity of the functions which are constructed using the theorems
above is tabled for some values of i and n as follows.

Table 1: Nonlinearity of function f(x) = Tr((x2+x)2
i+1), with (i) gcd(i, n) = 1

(ii) gcd(i, n) ̸= 1

(i)
i \ n 3 5 7 9 11

1 2 12 56 240 992

2 2 12 56 240 992

3 12 56 992

4 2 12 56 240 992

5 2 56 240 992

(ii)
i \ n 3 5 7 9 11

1

2

3 0 224

4

5 0

The above Tables represent the nonlinearity values of the constructed near
bent functions and Boolean functions for different values of i and n. For instance,
for i = 3 and n = 11, the Table (1(i)) shows that nonlinearity of the function is
992. The same comparison is true for other values of i and n.

From the above Tables (1) and (1(ii)), it is clear that the nonlinearity of a
newly constructed near bent functions in the Tables (1(i)) is more than that of
Boolean functions in the Tables (1(ii)).

4.2 Correlation immunity

The below Tables (2(i), 2(ii)), represent the correlation immunity of the newly
constructed near bent function and Boolean function. The correlation immunity
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for the constructed near bent functions in Tables (2(i)) found to have the low
number when compared to the Boolean function of the form in the Tables (2(ii)).

Table 2: Correlation Immunity of function f(x) = Tr((x2 + x)2
i+1), with (i)

gcd(i, n) = 1 (ii) gcd(i, n) ̸= 1.

(i)
i \ n 3 5 7 9 11

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0

4 0 0 0 0 0

5 0 0 0 0

(ii)
i \ n 3 5 7 9 11

1

2

3 2 0

4

5 4

4.3 Algebraic immunity

The below Tables (3(i),3(ii), represent the algebraic immunity values of the
near bent functions and Boolean functions. The constructed near bent function
exhibit more algebraic immunity, which can be observed by in Tables (3(i)) and
(3(ii)). Further, it is worth noticing that the use of near bent functions will
enhance the security of cryptosystems.

Table 3: Algebraic immunity of function f(x) = Tr((x2 + x)2
i+1), with (i)

gcd(i, n) = 1 (ii) gcd(i, n) ̸= 1.

(i)
i \ n 3 5 7 9 11

1 1 2 2 2 2

2 1 2 2 2 2

3 2 2 2

4 1 2 2 2 2

5 1 2 2 2

(ii)
i \ n 3 5 7 9 11

1

2

3 0 2

4

5 0

5. Conclusion

The cryptographic properties nonlinearity, correlation immunity, and algebraic
immunity are exhibited remarkably by near bent functions which are constructed
using Gold power functions. The similar properties are expected to in case of
large values of n too.



SOME CRYPTOGRAPHIC PROPERTIES OF NEAR BENT FUNCTIONS ... 897

6. Acknowledgements

The corresponding author and the second author acknowledges Manipal Insti-
tute of Technology (MIT), Manipal Academy of Higher Education, India for
their kind encouragement. The first author is grateful to Manipal Academy
of Higher Education for their support through the Dr. T. M. A. Pai Ph. D.
scholarship program.

References

[1] C. E. Shannon, Communication theory of secrecy systems, Bell System
Technical Journal, 28 (1949), 656-715.

[2] W. Meier and O. Staffelbach, Fast corrrelation attacks on stream ciphers,
Springer, Berlin, Heidelberg, 1988.

[3] C. Carlet, Nonlinearity of boolean functions, 848-849. Boston, MA, Springer
US, 2011.

[4] C.-K. Wu and D. Feng, Boolean functions and their applications in cryp-
tography, Springer-Verlag Berlin Heidelberg, 2016.

[5] S. Mesnager, Bent functions, Springer, 2016.

[6] N. T. Courtois and W. Meier, Algebraic attacks on stream ciphers with
linear feedback, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, 345-
359.

[7] D. H. Lee, J. Kim, J. Hong, J. W. Han, and D. Moon, Algebraic attacks
on summation generators, in International Workshop on Fast Software En-
cryption, Springer, 2004, 34-48.

[8] Y. Zheng and X.-M. Zhang, Plateaued functions, Springer Berlin Heidel-
berg, 1999, 284-300.

[9] C. Carlet, Boolean and vectorial plateaued functions and apn functions,
IEEE Transactions on Information Theory, 61 (2015), 6272-6289.

[10] O. S. Rothaus, On bent functions, Journal of Combinatorial Theory, Series
A, 20 (1976), 3 (1976), 300-305.

[11] W. Meier and O. Staffelbach, Nonlinearity criteria for cryptographic func-
tions, Berlin, Heidelberg, Springer Berlin Heidelberg, 1990, 549-562.

[12] S. Chee, S. Lee, and K. Kim, Semi-bent functions, Berlin, Heidelberg,
Springer Berlin Heidelberg, 1995, 105-118.

[13] K. Khoo, G. Gong, and D. R. Stinson, A new characterization of semi-bent
and bent functions on finite fields, Designs, Codes and Cryptography, 38
(2006), 279-295.



898 PRASANNA POOJARY, P.K. HARIKRISHNAN and VADIRAJA BHATTA G.R.

[14] N. Tokareva, Bent functions: results and applications to cryptography, Aca-
demic Press, 2015.

[15] K. Khoo, G. Gong, and D. R. Stinson, A new family of gold-like sequences,
in Information Theory, Proceedings, 2002 IEEE International Symposium,
p. 181, IEEE, 2002.

[16] J. Dillon and G. McGuire, Near bent functions on a hyperplane, Finite
Fields and Their Applications, 14 (2008), 715-720.

[17] D. Dong, L. Qu, S. Fu, and C. Li, New constructions of semi-bent functions
in polynomial forms, Mathematical and Computer Modelling, 57 (2013),
1139-1147.

[18] S. K. Pandey, P. Mishra, and B. Dass, Count and cryptographic properties of
generalized symmetric boolean functions, Italian journal of pure and applied
Mathematics, 37 (2017), 173-182.

[19] S. P. Kuncham, B. Jagadeesha, and B. S. Kedukodi, Interval valued l-
fuzzy cosets of nearrings and isomorphism theorems, Afrika Matematika,
27 (2016), 393-408, 2016.

[20] C. Carlet, Open Questions on Nonlinearity and on APN Functions, Cham:
Springer International Publishing, 2015, 83-107.

[21] R. J. McEliece, Finite fields for computer scientists and engineers, Springer
Science & Business Media, 2012, 23 (2012).

Accepted: 1.03.2019



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (899–904) 899

On (m,n)-fully stable Banach algebra modules

Manal Ali Sagban
Muna Jasim Mohammed Ali∗

Samira Naji Kadhim
Holy Karbala Governorate Directorate General of Education

University of Baghdad

College of Science for Women

Department of Mathematics

Baghdad

Iraq

munajm math@csw.uobaghdad.edu.iq

samirank math@csw.uobaghdad.edu.iq

Abstract. In this paper the concept of fully-(m,n) stable Banach Algebra-module
(F − (m,n)−S−B−A-module), we study some properties of F − (m,n)−S−B−A-
module and another characterization have been given.
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1. Introduction

A non-empty set A is an algebra if, (A,+, .) is a vector space over a field F ,
(A,+, ◦) is a ring and (αa) ◦ b = α(a ◦ b) = a ◦ (αb) for every α ∈ F , for every
a, b ∈ A” [1]. In [2]” a ring R is an algebra ⟨R,+, · ,−, 0⟩ where + and · are two
binary operations, − is unary and 0 is nullary element satisfying, ⟨R,+,−, 0⟩
is an abelian group, ⟨R, .⟩ is a semigroup and x.(y + z) = (x.y) + (x.z) and
(x+ y).z = (x.z) + (y + z)”. ”Let A be an algebra, recall that a Banach space
E is a Banach left A-module (B − A - module) if E is a left A-module, and
∥a.x∥ ≤ ∥a∥ ∥x∥(a ∈ A, x ∈ E)” [1]. Following [3] ”a map from a left B − A-
module X into a left Banach A-module Y (A is not necessarily commutative )
is said a multiplier (homomorphism) if it satisfies T (a.x) = a.Tx for all a ∈ A,
x ∈ X ”. In [4], ”a submodule N of an R-module M is said to be stable,
if f(N) ⊆ N for each R-homomorphism f : N −→ M . M is called a fully
stable module, each submodule of M is stable”. ”A Banach algebra module M
is called F − S − B − A-module if for every submodule N of M and for each
multiplier θ : N −→ M such that θ(N) ⊆ N” [5]. We use the notation Rm×n

for the set of all m × n matrices over R. For A ∈ Rm×n, AT will denote the
transpose of A. In general, for an R-module N , we write Nm×n for the set of

∗. Corresponding author
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all formal m × n matrices whose entries are elements of N . Let M be a right
Banach Algebra-module and N be a left R-module. For x ∈ M l×m, s ∈ Rm×n

and y ∈ Mn×k, under the usual multiplication of matrices, xs (resp. sy) is a
well defined element in M l×m (resp. Nn×k). ”If X ⊆ M l×m, S ⊆ Rm×n and
Y ⊆ Nn×k define

ℓM l×m(S) =
{
u ∈M l×m | us = 0; ∀s ∈ S

}
,

rNn×k(S) =
{
v ∈ Nn×k | sv = 0;∀s ∈ S

}
,

ℓRm×n(Y ) =
{
s ∈ Rm×n | sy = 0;∀y ∈ Y

}
,

rRm×n(X) =
{
s ∈ Rm×n | xs = 0; ∀x ∈ X

}
.

We will write Nn = N1×n, Nn = Nn×1 [6]. In this paper for two fixed
positive integers n, m the concept of fully (m,n)-stable Banach algebra modules
has been introduced.

2. Fully (m,n)-stable Banach algebra modules

”A left B−A-module X is n-generated for n ∈ N if there exists x1, . . . , xn ∈ X
such that each x ∈ X can represented as x =

∑n
k=1 ak.xk for some a1, . . . , an ∈

A. A module which is 1-generated is called a cyclic module” [7] .

Definition 2.1. Let K be B − A-module, K is called (m,n)-fully stable B-A-
module, if for every n-generated submodule L of Km and for each multiplier
θ : L→ Km satisfy θ(L) ⊆ L, for two fixed positive integers n,m.

In [5] ”for a nonempty subset M in a left B−A - module X, the annihilater
annA(M) of M is annA(M) = {a ∈ A|a.x = 0 ∀x ∈M}”.

Notation. Let X be a B −A-module

1. Lx1,x2,...,xn = {⊕lxi |n ∈ N, xi ∈ X, i = 1, 2, . . . , n},
Ky1,y2,...,yn = {⊕kyi |k ∈ K, yi ∈ X, i = 1, 2, . . . , n},

2. ℓAm×nLx1,x2,...,xn = {a ∈ Am×n, a.(⊕lxi) = 0, ∀ ⊕ lxi ∈ Lx1,x2,...,xn},
ℓAm×nKy1,y2,...,yn = {a ∈ Am×n, a.(⊕kyi) = 0, ∀kyi ∈ Ky1,y2,...,yn}.

Proposition 2.2. A B − A-module M is fully-(m,n) stable, if and only if
any two m-element subsets {Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xm} and {Ky1 ,Ky1,y2 , . . . ,
Ky1,y2,...,ym} of Mn, if βj ̸∈

∑n
i=1Aαi, for each j = 1, . . . ,m implies ℓAn({Lx1 ,

Lx1,x2 , . . . , Lx1,x2,...,xm}) ̸⊆ ℓAn({Ky1 ,Ky1,y2 , . . . ,Ky1,y2,...,ym}).

Proof. Assume that K is F−(m,n)−S−B−A-module and there exist twom -
element subsets {Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xm} and {Ky1 ,Ky1,y2 , . . . ,Ky1,y2,...,ym}
of Mn such that if Kyj /∈

∑n
i=1Aαi, for each j = 1, . . . ,m and

ℓAn({Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xm}) ⊆ ℓAn({Ky1 ,Ky1,y2 , . . . ,Ky1,y2,...,ym}).
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Define f :
∑n

i=1 αiA −→Mm by f(
∑n

i=1 aiLxi) =
∑n

i=1 aiKyi .
Let Lxi = (k1i, k2i, . . . , kni). If

∑n
i=1 aiLxi = 0, then

∑n
i=1 aikij = 0, j =

1, 2, . . . ,m, implies that rLxj = 0 where r = (r1, . . . , rn) and hence r ∈ ℓAn{Lx1 ,
Lx1,x2 , . . . , Lx1,x2,...,xm}. By assumption rKyj = 0, j = 1, . . . ,m so

∑n
i=1 riKyi =

0. This shows that f is well defined. It is an easy matter to see that f is
multiplier. Fully-(m,n) stability ofM implies that there exists t = (t1, . . . , tn) ∈
An such that f(

∑n
i=1 riLxi) =

∑n
k=1 tk(

∑n
i=1 riLxi) =

∑n
k=1

∑n
i=1(tkri)Lxi for

each
∑n

i=1 riLxi ∈
∑n

i=1ALxi .
Let ri = (0, . . . , 0, 1, 0, . . . , 0) ∈ An where 1 in the i-th position and 0 oth-

erwise. Kyi = f(Lxi) =
∑n

k=1 tkLxi ∈
∑n

i=1ALxi , which is contradiction.
Conversely assume that there exists n-generated B −A-submodule of Mm and
multiplier µ :

∑
i=1ALxi → Mm such that µ(

∑n
i=1ALxi) ̸⊆

∑n
i=1ALxi . Then

there exists an element β(=
∑n

i=1 riLxi) ∈
∑n

i=1ALxi such that µ(Ky) /∈∑n
i=1ALxi . Take Kyi = Ky, j = 1, . . . ,m, then we have m-element subset

{µ(Ky), . . . , µ(Ky)}, such that µ(Ky) /∈
∑n

i=1ALxi , j = 1, . . . ,m. Let η =
(t1, . . . , tn) ∈ ℓAn({Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xm}), then ηαj = 0, i.e

∑n
i=1 tiaij =

0, for each j = 1, . . . ,m, Lxj = (a1j , a2j , . . . , anj) and {µ(Ky), . . . , µ(Ky)}η =∑n
k=1 tkµ(Ky) =

∑n
k=1 tkµ(

∑n
i=1 riLxi) =

∑n
k=1 µ(

∑n
i=1 tkriLxi) = 0 hence

ℓAn({Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xm}) ⊆ ℓAn({µ(Ky), . . . , µ(Ky)}), thus ℓAn({Lx1 ,
Lx1,x2 , . . . , Lx1,x2,...,xm}) ⊆ ℓAn({µ(Ky1), . . . , µ(Ky1,y2,...,ym)} which is a contra-
diction. Thus M is F − (m,n)− S −B −A-module.

Corollary 2.3. LetM be an F−(m,n)−S−B−A-module, then for any two m-
element subsets {Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xm} and {Ky1 ,Ky1,y2 , . . . ,Ky1,y2,...,ym}
of Mn, ℓAn({Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xm}) ⊆ ℓAn({Ky1 ,Ky1,y2 , . . . ,Ky1,y2,...,ym})
implies that ALx1+ALx1,x2+. . .+ALx1,x2,...,xm = AKy1+AKy1,y2+AKy1,y2,...,ym.

In [9], ”AB−A - module X is said to satisfy Baer criterion if each submod-
ule of X satisfies Baer criterion, that is for every submodule N of X and A-
multiplier θ : N → X, there exists an element a in A such that θ(n) = an for
all n ∈ N”.

Definition 2.4. A B −A - module X is said to satisfy Baer (m,n)-criterion if
each submodule ofX satisfies Baer (m,n)-criterion, that is for every n-generated
submodule L of X and A- multiplier θ : L → Xm, there exists an element a in
A such that θ(l) = al for all l ∈ L”.

Proposition 2.5. If X satisfies Baer (m, 1)-criterion and ℓA(L∩M) = ℓA(L)+
ℓA(M) for each n-generated submodules of Xm, then X satisfies Baer (m,n)-
criterion.

Proof. Let P = Ax1 + Ax2 + . . . + Axn be an n-generated submodule of Xm

and f : P → Xm a multiplier. We use induction on n. It is clear that M
satisfies Bear (m,n) - criterion, if n = 1. Suppose that M satisfies Bear (m,n)-
criterion for all k-generated submodule of Xm, for k ≤ n − 1. Write L = Ax1,
M = Ax2 + . . . + Axn, then for each w1 ∈ L and w2 ∈ M , f |L(w1) = y1w1,
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f |M (w2) = y2w2 for some y1, y2 ∈ A. It is clear y1 − y2 ∈ ℓA(L ∩ M) =
ℓA(L) + lA(M). Suppose that y1 − y2 = z1 + z2 with z1 ∈ ℓA(L), z2 ∈ ℓA(M)
and let y = y1 − z1 = y2 + z2. Then for any w = w1 + w2 ∈ P with w1 ∈ L and
w2 ∈M , f(w) = f(w1)+ f(w2) = w1y1+w2y2 = w1(y− 1− z1)+w2(y2+ z2) =
w1y + w2y = (w1 + w2)y = wy.

Proposition 2.6. Let X be a B − A - module. Then X satisfies Baer (m,n)
criterion if and only if rXnℓAn(ALx1 + ALx1,x2 + . . .+ ALx1,x2,...,xn) = ALx1 +
ALx1,x2 + . . . + ALx1,x2,...,xn for n-element subset {Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xn}
of Xn.

Proof. Suppose that Baer (m,n)-criterion holds for n-generated submodule of
Xm let Lxi = (ki1; ki2, . . . , kim), for each i = 1, . . . , n andKy = {Ky1 ,Ky1,y2 , . . . ,
Ky1,y2,...,yn}∈rXnℓAn(ALx1+ALx1,x2+ . . .+ALx1,x2,...,xn),Kyi=(a1i, a2i, . . . , ani).

Define µ : ALx1 + ALx1,x2 + . . . + ALx1,x2,...,xn → Xm by µ(
∑n

i=1 aiLxi) =∑n
i=1 aiKyi . If

∑n
i=1 aiLxi , then

∑n
i=1 aikij = 0. j = 1, . . . ,m, this implies

that rLxi = 0 where r = (r1, . . . , rn) and hence r ∈ ℓAn(ALx1 + ALx1,x2 +
. . . + ALx1,x2,...,xn). By assumption rLxi = 0, i = 1, . . . , n so

∑n
i=1 aiKyi =

0. This show that f is well defined. It is an easy matter to see that µ is
an multiplier. By assumption there exists t ∈ A such that µ(

∑n
i=1 aiLxi) =

t(
∑n

i=1 aiKyi) =
∑n

i=1(tai)Kyi for each
∑n

i=1 aiLxi ∈
∑n

i=1ALxi . Let ri =
(0, . . . , 0, 1, 0, . . . , 0) ∈ An where 1 in the i-th position and 0 otherwise. Kyi =
µ(
∑n

i=1 Lxi) =
∑n

i=1 tLxi ∈
∑n

i=1ALxi which is contradiction. This implies
that rXnℓAn(ALx1 + ALx1,x2 + . . . + ALx1,x2,...,xn) ⊆ ALx1 + ALx1,x2 + . . . +
ALx1,x2,...,xn , the other inclusion is trivial.

Conversely, assume that rXnℓAn(ALx1 + ALx1,x2 + . . . + ALx1,x2,...,xn) =
ALx1 + ALx1,x2 + . . . + ALx1,x2,...,xn , for each {Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xn} in
Xn.

Then for each multiplier f : ALx1 +ALx1,x2 + . . .+ALx1,x2,...,xn −→ Xm and
s=(s1, . . . , sn) ∈ ℓAn(ALx1+ALx1,x2+. . .+ALx1,x2,...,xn),

∑n
k=1 sk(

∑n
i=1 tiLxi) =

0, for each
∑n

i=1 tiLxi ∈
∑n

i=1ALxi , hence

n∑
k=1

skf(
n∑
i=1

tiLxi) =
n∑
k=1

f(
n∑
i=1

sktiLxi) = 0,

thus f(
∑n

i=1 tiLxi) ∈ rXnℓAn(ALx1 + ALx1,x2 + . . . + ALx1,x2,...,xn) = ALx1 +
ALx1,x2 + . . . + ALx1,x2,...,xn , for some t ∈ A. Then X satisfies Baer (m,n)-
criterion.

Corollary 2.7. Let X be a B−A - module. Then X is F − (m,n)−S−B−A
- module if and only if rXnℓAn(ALx1 + ALx1,x2 + . . .+ ALx1,x2,...,xn) = ALx1 +
ALx1,x2 + . . . + ALx1,x2,...,xn for n-element subset {Lx1 , Lx1,x2 , . . . , Lx1,x2,...,xn}
of Xn

Following [8], let A be a unital Banach algebra and let α > 1. A-module X
is called quasi α-injective if, φ : N → X is A-module homomorphisms such that



ON (m,n)-FULLY STABLE BANACH ALGEBRA MODULES 903

∥φ∥ ≤ 1, there exists A-module homomorphism θ : X → X, such that θ ◦ i = φ
and ∥θ∥ ≤ α where i is an isometry from submodule N of X. We shall say that
X is quasi injective if it is quasi α - injective for some α”.

The concepts quasi (m,n) − α - injective for some α and multiplication
(m,n)−B −A - module has been introduced.

Definition 2.8. Let A be a unital Banach algebra and let α > 1. A-moduleX is
called quasi (m,n)−α - injective if,φ : N −→ X is A - module homomorphisms
such that ∥φ∥ ≤ 1, there exists A - module homomorphism θ : X −→ X, such
that θ ◦ i = φ and ∥θ∥ ≤ α where i is an isometry from n - generated submodule
N of X. We shall say that X is quasi (m,n) - injective if it is quasi (m,n)− α
- injective for some α.

Definition 2.9. B −A-module X is called multiplication (m,n)−A - module
if each n - generated submodule of X is of the form KXn for some ideal K of
Am×n.

Proposition 2.10. Let X be multiplication (m,n) − B − A - module. If X is
quasi (m,n)−B −A -module then X is F − (m,n)− S −B −A-module.

Proof. LetN be n-generated submodule ofX, let α > 1 and f be any A-module
homomorphism from N to Xm such that ∥f∥ ≤ 1. Since X is multiplication
(m,n) − B − A-module, then N = KXn, and since X is quasi (m,n) − B − A
- module, then there exist A-module homomorphism g : Xm −→ Xm such that
f(N) = g(N) = g(KXn) = Kg(Xn) ⊆ KXn = N .

References

[1] S. Petrakis, Introduction to Banach algebras and the Gelfand-Naimark the-
orems, special subject II and III Aristotle, University of Thessaloniki De-
partment of Mathemayics, 2008.

[2] G. Ramesh, Banach algebras, Department of Mathematics, I. I. T. Hyder-
abad, ODF Estate, Yeddumailaram, A. P, India 502205, 2013.

[3] J. Bracic, Simple multipliers on Banach modules, University of Ljubljana,
Slovenia, Glasgow Mathematical Journal Trust, 2003.

[4] M.S. Abbas, On fully stable modules, Ph. D. Thesis, University of Baghdad,
Iraq, 1990.

[5] Samira Naji Kadhim, On fully stable Banach algebra modules and fully
pseudo stable Banach algebra modules, Baghdad Science Journal, 15 (2018).

[6] M.S. Abbas, Ali M. Mohammed, A note on fully (m,n)-stable modules,
International Electronic Journal of Algebra, 6 (2009), 65-73,



904 MANAL ALI SAGBAN, MUNA JASIM MOHAMMED ALI and SAMIRA NAJI KADHIM

[7] J. Bracic, Local operators on Banach modules, University of Ljubljana,
Slovenia, Mathematical Proceedings of the Royal Irish Academy, 2004.

[8] Z.M. Zhu, J.L. Chen, X.X. Zhang, On (m,n)-quasi-injective modules, Acta
Math. Univ. Comenianae Vol. LXXIV, 1 (2005), 25-36.

[9] Ali M.J. Mohammed, M. Ali, Fully stable Banach algebra module, Mathe-
matical Theory and Modeling, 6 (2016), 136-139.

Accepted: 15.04.2019



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 43–2020 (905–911) 905

Vertex (n, k)-choosability of graphs

Germina K. Augusthy∗

P. Soorya
Department of Mathematics

Central University of Kerala

Kasargod, Kerala

India

germinaka@cukerala.ac.in

sooryap2017@gmail.com

Abstract. Let G = (V,E), connected, simple graph of order n and size m and let
V (G) = {1, 2, ..., n} . A graph G = (V,E) is said to be vertex (n, k)-choosable, if there
exists a collection of subsets of the vertex set, {Sk(v) : v ∈ V } of cardinality k, such
that Sk(u)∩Sk(v) = ∅ for all uv ∈ E(G). This paper initiates a study on vertex (n, k)-
choosable graphs and finds the different integer values of k, for which the given graph
is vertex (n, k)-choosable.

Keywords: choosability, vertex (n, k)-choosability.

1. Introduction

Throughout this article, unless otherwise mentioned, by a graph we mean a
connected, simple graph and any terms which are not mentioned here, the reader
may refer to [8]. Let G = (V,E), be a graph of order n and size m, where
V (G) = {1, 2, ..., n} . Given a graph G, a list assignment L (or a list coloring) of
G is a mapping that assigns to every vertex v of G, a finite list L(v) of colors[12].
Also, G is said to be L-list colorable if the vertices of G can be properly colored
so that each vertex v is colored with a color from L(v).

Invoking the concept of list-assignments of graphs, the concept of (a : b)-
choosability was defined and studied in [4].

Definition 1.1. A graph G = (V,E) is (a : b)-choosable, if for every family
of sets {S(v) : v ∈ V } of cardinality a, there exist subsets C(v) ⊂ S(v), where
|C(v)| = b for every v ∈ V, and C(u)∩C(v) = ∅, whenever u, v ∈ V are adjacent.

The kth choice number of G, denoted by chk(G), is the minimum integer
n so that G is (n : k)-choosable. A graph G = (V,E) is k-choosable if it
is (k : 1)-choosable. The choice number of G, denoted by ch(G), is equal to
ch1(G). Following this, some interesting studies on choosability of graphs have
been done (see [1, 5, 6]).

∗. Corresponding author
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Motivated by the studies on (a : b)-choosability of graphs, we initiate a study
on the vertex (n, k)-choosable graphs, where n is the cardinality of the vertex
set of G, and discuss the various parameter for the integer values of k.

2. Vertex (n, k)-choosability of graphs

Definition 2.1. A graph G = (V,E) is said to be vertex (n, k)-choosable, if
there exists a collection of subsets {Sk(v) : v ∈ V } of V (G) of cardinality k, such
that Sk(u) ∩ Sk(v) = ∅ for all uv ∈ E(G).

Definition 2.2. The maximum value of k for which the given graph G is vertex
(n, k)-choosable is called vertex choice number of G, and is denoted by Vch(G).

Not all graphs admit vertex (n, k)-choosability for all values of k. A trivial
bound for k is, k ≤ n− 1. One may verify that when k = n− 1, the only vertex
(n, k)-choosable graph is the trivial graph K2. And, for k = n − 2, the vertex
(n, k)-choosable graph is isomorphic to P3. However, every graph G of order n
is vertex (n, 1)-choosable. That is, the minimum value of k for which the given
graph G is vertex (n, k)-choosable is k = 1. Hence, finding the positive integer
values of k, and also the maximum value of k, where 1 ≤ k ≤ n, for which the
graph G is vertex (n, k)-choosable is an interesting problem.

First, let us look at the vertex choice number of certain classes of graphs.
The following observations are immediate.

Observation 2.3. The vertex choice number of a path Pn is ⌊n2 ⌋. That is, Pn
is vertex (n, k)-choosable for all k, 1 ≤ k ≤ ⌊n2 ⌋.

Consider two disjoint k-element subsets of V (Pn). Since, the path Pn is a
bipartite graph, one k-element set can be assigned to all vertices in the first
partition and other k-element set can be assigned to all vertices in the second
partition. That is, by atleast two disjoint k-element sets, all vertices of Pn can
be covered. Hence, the maximum value of k will be, ⌊n2 ⌋. Let k > ⌊n2 ⌋, say,
k = ⌊n2 ⌋ + 1. Take any subset V1 of V (Pn) = {u1, u2, . . . , un}, of cardinality
⌊n2 ⌋ + 1. Let u1 ∈ Pn be assigned by this set of cardinality ⌊n2 ⌋ + 1. . Then,
for the second vertex u2, we cannot find a subset V2 of V (Pn), of order ⌊n2 ⌋+1,
disjoint from V1. That is, Pn is not vertex (n, k) choosable for k = ⌊n2 ⌋ + 1.
Hence, in general Pn is not vertex (n, k) choosable for any k > ⌊n2 ⌋.

Observation 2.4. The vertex choice number of the star graph Sn is ⌊n2 ⌋.

That is, for the star graph Sn, the vertex (n, k)-choosability is possible if
there exists two disjoint k-element subsets of V (Sn). Then, one k-element set
should necessarily be assigned to the central node and the other k-element set
should be assigned to all other nodes that are at a distance one from the central
node. Therefore, Sn is vertex (n, k)-choosable for all k ≤ ⌊n2 ⌋.

Proposition 2.5. The complete graph Kn is vertex (n, k)-choosable if and only
if k = 1.



VERTEX (n, k)-CHOOSABILITY OF GRAPHS 907

Proof. Let V (G) = {1, 2, 3, . . . , n}. Clearly there are n number of disjoint one
element subsets of V (G), and hence these one element subsets may be assigned
to every vertex of Kn in a one-to-one manner. And hence, Kn is vertex (n, 1)-
choosable. If k ≥ 2, then the number of k-element subsets are less than n. Hence
Kn is not vertex (n, k)-choosable, for k ≥ 2. Also the vertex choice number of
the complete graph Kn is 1, for all n.

Theorem 2.6. An even cycle Cn is vertex (n, k)-choosable if and only if k ≤ n
2 .

Proof. Let V (Cn) = {1, 2, . . . , n} , and n be even.

Consider, f : V (Cn)→ P(V (Cn))− ∅ defined by,

f(i) =

{
{1, 2, . . . , k} , if i is odd,
{k + 1, k + 2, . . . , k + k} , if i is even.

Then, for Cn to be vertex (n, k)-choosable, k should necessarily be such that,
1 ≤ k ≤ n

2 , if n is even.

Conversely, when n is even and k > n
2 + 1, we reach a contradiction that

whenever ij ∈ E(Cn), f(i) ∩ f(j) ̸= ∅.

Remark. An odd cycle Cn is vertex (n, k)-choosable if and only if ≤ ⌊n2 ⌋.

Theorem 2.7. A complete bipartite graph Km,n is vertex (m+n, k)-choosable,
for 1 ≤ k ≤ m+n

2 , if and only if both m and n are simultaneously even or
simultaneously odd.

Proof. Without loss of generality, assume that both m and n are even. Let
the vertex set of Km,n be V, where V = A ∪ B so that |A| = m and |B| = n.
Here, |V | = m + n . Now we have to find the values of k, for which Km,n is
(m+ n, k)-choosable.

Trivially there exists vertex (m + n, 1) choosability, since there are m + n
disjoint one element subsets of V. Hence, k ≥ 1.

Now, V = A ∪ B, and every vertices in A is adjacent to all vertices in
B. Also, there is no adjacency among the vertices in A and similarly, no two
vertices in B are adjacent to each other. Let A = {1, 2, . . . ,m} and B =
{m+ 1,m+ 2, . . . ,m+ n} .

Choose a k-element subset of V for a vertex in A. For example, let f(1) =
{1, 2, . . . , k} . Since i and j are not adjacent for all i, j ∈ {1, 2, . . . ,m} , it is
possible to choose the same set for each vertex in A. That is, f(i) = {1, 2, . . . , k}
for all i such that 1 ≤ i ≤ m. Since, every vertices in A is adjacent to all other
vertices in B, we cannot give the same set to any element in B. Hence, we need
other k-element set. For this, let f(m + i) = {k + 1, k + 2, . . . , k + k} for all i
such that 1 ≤ i ≤ n. This is possible since, no two vertices in B are adjacent
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to each other. Hence, if there are two disjoint k element sets then vertex (n, k)-
choosability is possible for Km,n. Which gives k ≤ m+n

2 .
Now, suppose that Km,n is (m + n, k)-choosable for 1 ≤ k ≤ m+n

2 , and let
m is odd and n is even. That is add fracm+ n2 is not an integer. Hence, the
complete bipartite graph Km,n is vertex (m+ n, k)-choosable for 1 ≤ k ≤ m+n

2 ,
if and only if, both m and n are simultaneously even or simultaneously odd.

Theorem 2.8. A tree of order n is vertex (n, k)-choosable if and only if k ≤ ⌊n2 ⌋.

Proof. Let T be the given tree of order n and let V (T ) = {v1, v2, . . . , vn} . Apply
BFS algorithm to the given tree T, by choosing a vertex vi with maximum
degree as root. If there are more than one vertices vj ∈ V (T ) of maximum
degree, choose one such vertex arbitrarily. Without loss of generality, denote
the chosen root vertex as v1. Then, by the choice of v1, there will be |deg(v1)|
number of vertices in the first level. Define a function f : V (T )→ P(V (T ))− ∅
by f(v1) = {1, 2, . . . , i} , 1 ≤ i ≤ n

2 . Let v
j
k denote any vertex in jth level which

is adjacent to vertices in the (j−1)th level. Hence, the vertex v1 can be denoted
by v01.

Define

f(vjk) =

{
{1, 2, . . . , k} , 1 ≤ k ≤ ⌊n2 ⌋, if j is even,
{k + 1, k + 2, . . . , k + k} , 1 ≤ k ≤ ⌊n2 ⌋, if j is odd.

With this labeling the tree T admits vertex (n, k)-choosability ∀k such that
1 ≤ k ≤ ⌊n2 ⌋.

Conversely, it is sufficient to prove that if k > ⌊n2 ⌋, then the tree T is not
vertex (n, k)-choosable.

If possible, let k = ⌊n2 ⌋+ 1 Let f(v1) =
{
1, 2, . . . , ⌊n2 ⌋+ 1

}
.

Let v1m be any vertex in the first level adjacent to the root vertex v1. Then,
we should necessarily have,

f(v1m) =
{
⌊n
2
⌋+ 1, ⌊n

2
⌋+ 2, . . . , 2(⌊n

2
⌋+ 1)

}
.

Clearly, |f(v1m)| < ⌊n2 ⌋+ 1, a contradiction. Hence, k ≤ ⌊n2 ⌋.

Theorem 2.9. The complete r-partite graph K(m1,m2, . . . ,mr) is vertex (m1+
m2 + · · ·+mr, k)-choosable for, 1 ≤ k ≤ ⌊m1+m2+···+mr

r ⌋.

Proof. Denote the given complete r-partite graph Km1,m2,...,mr by G. Here,
|S(V )| = m1 +m2 + · · ·+mr. Now, let V (G) = A1 ∪A2 ∪ · · · ∪Ar. Since, every
vertex in Ai is adjacent to all other vertices in Aj , for all i ̸= j. Hence, atleast
r k-element sets are needed. First choose a k-element set for the first set A1.
Since there is no adjacency between any pair of vertices in A1, the same set
can be choosen for all vertices in Ai. similarlly for each Ai, this method can be
followed. That is, only r k-element sets are needed to cover all the vertices in
G. Hence, k ≤ ⌊m1+m2+···+mr

r ⌋.
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Theorem 2.10. Any unicyclic graph G of order n with the unique cycle Cp is
vertex (n, k)-choosable if and only if k ≤ ⌊n2 ⌋.

Proof. Let G be a unicyclic graph of order n with the unique cycle Cp. Suppose
that p is even. By theorem 2.4, an even cycle Cn is vertex (n, k)-choosable if
and only if, k ≤ n

2 . Hence, the cycle Cp alone is vertex (n, k)-choosable in G, for
k ≤ ⌊n2 ⌋. We note that G−Cp is a forest. Consider the components of G−Cp.

For the vertex (n, k)-choosabiliy of trees, we need two distinct k-element
subsets. We can choose the same sets that are assigned for the vertices in the
cycle, for the vertices in the tree also. For this, let {1, 2, . . . , p} be the vertex set

of Cp and
{
j1, j2, . . . , jpj

}
be the vertex set of the tree with the root vertex j in

the cycle. Also, we have p+p1+p2+ ...+pp = n. Then, if there are two distinct
k-element sets, then the vertex (n, k)-choosabiliy of the cycle Cp is given by,

f(i) =

{
{1, 2, . . . , k} , if i is odd,
{k + 1, k + 2, . . . , k + k} , if i is even,

where 1 ≤ k ≤ ⌊n2 ⌋.
Then, in the tree if j is odd, then for j1, we can choose the set assigned for

even vertices in the cycle Cp. By applying BFS algorithm, we can seen that, by
two distinct k element sets, we can cover all the vertices in the tree. Hence, the
unicyclic graph G of order n is vertex (n, k)-choosable for k ≤ ⌊n2 ⌋, if the unique
cycle Cp is even. Now, let p be odd. That is Cp is an odd cycle.

We have an odd Cn is vertex (n, k)-choosable if and only if k ≤ ⌊n2 ⌋. First
label the vertices of Cp by ⌊n2 ⌋ element subsets of V (G). Next, consider the
remaining vertices in the tree. If the root vertex of the tree is an even(odd)
vertex in the cycle, then for the next vertex in the tree, we can choose the set
assigned for the neighbouring odd (even) vertices in the cycle. Using these two
sets all vertices in the tree can be labelled. In a similar manner all the trees
attached with the vertices of Cp can be labelled.

Hence, the unicyclic graph G of order n with the unique cycle Cp is vertex
(n, k)-choosable if and only if k ≤ ⌊n2 ⌋. This completes the proof.

Theorem 2.11. A graph G is vertex (n, k)-choosable, if it does not contain a
complete subgraph Km of order m ≥ ⌊nk ⌋+ 1.

Proof. Let G = (V,E) be a vertex (n, k)-choosable graph. Suppose that G
contains a complete subgraph of order m = ⌊nk ⌋ + 1. Since, G is vertex (n, k)-
choosable, every vertex of G can choose a set of k elements. Let V (Km) =
{1, 2, . . . ,m} . Now, define the function f : V (G)→ P(V (G))− ∅. Consider the
vertex 1 in the complete graph, and let f(1) = {1, 2, . . . , k} . Since, 1 is adjacent
to all the remaining vertices i, where i = 2, 3, . . . ,m in Km, they cannot chose
the same set f(1). That is, for all vertices in the complete graph Km we need
disjoint k element sets. Hence, atleast m disjoint k-element sets are needed to
cover all the vertices in Km. Since G is a connected graph and Km is a complete
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subgraph of G, atleast one vertex in Km will be adjacent to a vertex not in Km.
Hence we have, mk < n. This implies m < n

k . That is, m = ⌊nk ⌋+ 1 < n
k , which

is a contradiction. Hence, a graph G is vertex (n, k)-choosable, if it does not
contain a complete subgraph of order m ≥ ⌊nk ⌋+ 1.

3. Conclusion

In this paper, we introduced a new concept namely, vertex (n, k)-choosability of
graph. We also discussed the vertex (n, k)-choosability of certain fundamental
graph classes. There is a wide scope for further investigation on the vertex
(n, k)-choosability of many other graph classes, graph operations and graph
products. The edge (m, k)-choosability is another interesting area for further
investigation.
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Abstract. Fuzzy soft set is a mapping from a parameter set to the collection of
fuzzy subset of universal set. In this paper fuzzy soft relation is presented based on the
cartesian product of fuzzy soft sets and the notion of fuzzy soft equivalence relation is
introduced. We prove that every fuzzy soft equivalence relation on an arbitrary fuzzy
soft set partition the given fuzzy soft set into equivalence classes and thus induces a
new relation on the parameter set. Basic properties of the induced relation are studied.
A pair of rough approximate operators are investigated and their related properties
are given. Relationship between a fuzzy soft topological space and rough approximate
operators based on fuzzy soft relation is further established.

Keywords: fuzzy soft set, fuzzy soft relation, fuzzy soft topology.

1. Introduction

Theory of fuzzy sets and fuzzy relation first developed by Zadeh [1] has been ap-
plied to many branches of mathematics. Fuzzy equivalence relation introduced
by Zadeh as a generalization of the concept of an equivalence relation has been
widely studied in [2], [3], [4], [5], [6], [7] as a way to measure the degree of dis-
tinguishability or similarity between the objects of a given universe of discourse.
And it have been shown to be useful in different context such as fuzzy control [8],
approximate reasoning [9], fuzzy cluster analysis [10]. Depending on the authors
and the context in which they appeared, it have received other names such as
similarity relations, indistinguishability operators [11], many valued equivalence
relations[12], etc. Later V. Murali [13] studied the cuts of fuzzy equivalence
relation and lattice theoretic properties of fuzzy equivalence relation. In 1999
Molodtsov [14] proposed the novel concept of soft theory which provides a com-
pletely new approach for modelling vagueness and uncertainty. Theory of soft

∗. Corresponding author
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set has gained popularity among the researchers working in diverse areas. It
is getting richer with new developments. Application of soft set theory can be
seen in [15], [16], [17], [18], [19], [20], [21], [22], [23].

Relations in soft set have been studied in [24], [25], [26]. Structures of soft set
have been studied by many authors [27], [28]. Recently Ali et al. [29] have shown
that a collection of soft set with reference to so called new operations give rise to
many algebraic structures and form certain complete modular lattice structures.
The theory of fuzzy soft set [30], fuzzification of the notion of soft set has the
ability of hybridization. In this reagard fuzzy soft set and their applications has
been investigated by many authors [31], [32], [33], [34], [35], [36], [37]. Fuzzy soft
set is the parametrized collection of fuzzy sets. Fuzzy soft sets can be used to
crunch the volume of data. Collection of fuzzy soft set form a complete modular
lattice structures with respect to certain binary operations defined on them [38].
Topological structure of fuzzy soft sets can be seen in [39].

Based on these concepts fuzzy soft relation is introduced and it provides
both a general and flexible method for the designing of fuzzy logic controller
and more generally for the modelling of any decision making process. Fuzzy soft
relation stores data in terms of relation between parameters which we define by
membership function.

Theory of rough sets proposed by Pawalk [40]is considered as an alternative
tool for imperfect data analysis. The rough set approach has fundamental impor-
tance in the area of knowledge acquisition, machine learning, decision analysis
and many other fields [41], [42]. Approximation space is the basic structure
of Rough set theory. Lower and upper approximation induced from an ap-
proximation space can be used to reveal and express the knowledge hidden in
information systems in the form of decision rules. Various fuzzy generalizations
of rough approximations have been proposed in [43], [44]. The most common
fuzzy rough set, obtained by replacing the crisp relations with fuzzy relations on
the universe and crisp subsets with fuzzy sets, have been used to solve practi-
cal problems such as data mining [45], approximate reasoning [46], and medical
time series. An interesting topic in rough set theory is to study the relationship
between rough sets and topologies. Many authors studied topological properties
of rough sets [47], [48]. Using the concept of fuzzy soft relation, R rough set is
introduced. Fuzzy soft equivalence relation is the key notion used in R rough set
model. The equivalence classes generated by the fuzzy soft equivalence relation
are the building blocks for the construction of these approximations.

This paper is organized in the following manner. In Section 2 basic defi-
nitions related to fuzzy soft sets are given. These basic concepts are required
in later sections. In Section 3 fuzzy soft relation is defined and its properties
are studied. Also this Section is devoted to the study of composition of fuzzy
soft relation and fuzzy soft equivalence relation. We define a new relation on
parameter set induced by the fuzzy soft relation with example and its theo-
retical aspects are studied. Also we prove that the new relation induced by a
fuzzy soft eqivalence relation partition the given fuzzy soft set. In Section 4 a
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pair of rough approximate operators has been defined and fuzzy soft reflexive,
fuzzy soft symmetric and fuzzy soft transitive relation have been characterized
by these rough approximate operators. In Section 5 relation between a fuzzy
soft topological space and rough approximate operators based on fuzzy soft re-
lation is further established. The last section concludes the paper and points
out further research work.

2. Preliminaries

Through out this paper X refers to an initial universe, ℘ is a set of parameters
in relation to objects in X. Parameters are often attributes, characteristics or
properties of objects. I X denote the set of all fuzzy subsets of X and P,Q ⊂ ℘.

Definition 2.1 ([30]). The pair (f,P) is called a fuzzy soft set over X if f is a
mapping given by f:P→IX . Each element in the fuzzy soft set (f,P) correspond-
ing to the parameter p∈ P can be denoted by fp, where fp is a function from X
to [0,1].

The fuzzy soft set(f,P) is said to be a null fuzzy soft set, denoted by 0̃, if
fp(x)=0,∀ p ∈ P and ∀ x ∈ X

Definition 2.2 ([30]). Let (f,P) and (g,Q) be two fuzzy soft set over X. Then
(f,P) is called fuzzy soft subset of (g,Q) denoted by (f,P) ⊆(g,Q) if P ⊆ Q and
fp(x) ≤ gp(x), ∀ p ∈ P.

Collection of all fuzzy soft subsets of(f,P) be denoted as Sf (X,P)

Definition 2.3 ([30]). Let (f,P) and (g,Q) be two fuzzy soft sets over X. Then
(f,P)-(g,Q) is the fuzzy soft set (h,C) where C= P-Q and hc(x)=fc(x),∀ c ∈ C

Definition 2.4 ([30]). Union of two fuzzy soft sets (f,P) and (g,Q) over X is
defined as the fuzzy soft set (h,C)=(f,P) ∪ (g,Q) where C=P∪Q and for all c∈C

hc(x) =


fc(x), if c ∈ P −Q
gc(x), if c ∈ Q− P
fc(x) ∨ gc(x) , if c ∈ P ∩Q.

Definition 2.5 ([30]). Intersection of two fuzzy soft sets (f,P) and (g,Q) over
X is defined as the fuzzy soft set (h,C)=(f,P) ∩ (g,Q) where C=P∩Q and for all
c∈ C, hc(x)=fc(x) ∧ gc(x)

Definition 2.6 ([30]). Let (f,P) and (g,Q) be two fuzzy soft sets over a universe
X. Then cartesian product of (f,P) and (g,Q) is defined as (f,P) x (g,Q) = (h,
P x Q) where h: P x Q→IX and h(p,q)(x) = min(fp(x),gq(x)), ∀ (p,q) ∈ P x Q.

Example 2.7. Consider the various investment avenues as x1-bank deposit, x2-
Insurance, x3-postal savings, x4- shares and stocks, x5-mutual funds, x6-gold, x7-
real estate as the universal state X, and factors influencing investment decision
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such as e1-safety of funds, e2-liquidity of funds, e3-high returns, e4-maximum
profit in minimum time period, e5-stable returns, e6-easy accessibility, e7-tax
concession, e8-minimum risk of parameters.

Decision maker P is good at the parameters e1 and e5. Decision maker Q is
good at the parameters e3 and e4. This information can be expressed by two
fuzzy soft sets (f,P) and (g,Q) respectively.

(f, P ) =


e1 = {

x1
1
,
x2
0.9

,
x3
1
,
x4
0.2

,
x5
0.3

,
x6
0.8

,
x7
0.4
}

e5 = {
x1
1
,
x2
1
,
x3
1
,
x4
0.1

,
x5
0.1

,
x6
0.3

,
x7
0.7
}


and

(g,Q) =


e3 = {

x1
0.5

,
x2
0.5

,
x3
0.5

,
x4
0.7

,
x5
0.6

,
x6
0.8

,
x7
0.9
}

e4 = {
x1
0.4

,
x2
0.2

,
x3
0.4

,
x4
0.8

,
x5
0.6

,
x6
0.8

,
x7
0.9
}


A typical element of (h,P x Q) will look like

h(e1, e3) =
{ x1
0.5

,
x2
0.5

,
x3
0.5

,
x4
0.2

,
x5
0.3

,
x6
0.8

,
x7
0.4

}
3. Fuzzy soft relations and partition on fuzzy soft set

Fuzzy soft Relation is a suitable tool for describing correspondence between the
parameters in a fuzzy soft set, which makes the theory of fuzzy soft set a hot
subject for research. It plays an important role in modeling and decision making
of systems. In this section we discuss a variety of different properties of a fuzzy
soft relation may possess.

Definition 3.1. Fuzzy Soft Relation R from (f,P) to (g,Q) is a fuzzy soft subset
of (f,P) x (g,Q). If R is a fuzzy soft subset of (f,P) x (f,P) then it is called a
Fuzzy Soft Relation on (f,P).

If R is a Fuzzy Soft Relation on (f,P) then R−1
pq = Rqp, ∀ (p,q) ∈ PxQ. If R

is a fuzzy soft relation from (f,P) to (g,Q) then R−1 is a fuzzy soft relation from
(g,Q) to (f,P).

Definition 3.2. Let R1 and R2 be two Fuzzy Soft Relations from (f,P) to (g,Q)
and (g,Q) to (h,S) respectively. Composition of R1 and R2 denoted by R1◦R2 is
a Fuzzy Soft Relation from (f,P) to (h,S) defined as (R1◦R2)ps =

∨
q∈Q((R1)pq

∧ (R2)qs) where (p,q) ∈ PxQ and (q,s) ∈ QxS.

Theorem 3.3. Let Q,R, S be fuzzy soft relation on (f, P ) then:
1) (R−1)−1 = R;
2) R ⊆ S =⇒ R−1 ⊆ S−1;
3) (R◦S)−1 = S−1 ◦ R−1;
4)R ⊆ S =⇒ R◦Q ⊆ S◦Q;
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5)(Q◦R)◦S = Q◦(R◦S).

Definition 3.4. Let (f,P) be a fuzzy soft set over the universal set X and R be
a fuzzy soft relation on (f,P) then R is said to be:

1) Fuzzy soft reflexive if ∀ p,q ∈ P with p ̸= q and ∀ x ∈ X, Rpq(x) ≤ Rpp(x)
and Rqp(x) ≤ Rpp(x);

2) Fuzzy soft symmetric relation if R = R−1;

3) Fuzzy soft transitive relation if R ◦ R ⊆ R;

4) Fuzzy soft equivalence relation if it is fuzzy soft reflexive, fuzzy soft sym-
metric and fuzzy soft transitive.

Definition 3.5. The relation R on fuzzy soft set (f,P) induces a new relation
Rλ on (f,P) as follows:

Let λ ∈ [0,1]. Define the relation Rλ on (f,P) such that fp Rλ fq if and only
if Rpq(x) ≥ λ, ∀ x ∈ X.

Theorem 3.6. If R is a fuzzy soft equivalence relation on (f,P) and α =
∧
x∈X∧

p∈P Rpp(x) then for each λ ∈ [0,α], Rλ is an equivalence relation on (f,P).

Proof. For each p ∈ P and ∀ x ∈ X, Rpp(x) ≥ α ≥ λ =⇒ fpR
λfp =⇒ Rλ is

reflexive.

Let fpR
λfq i.e. Rpq(x) ≥ λ.

Since R is a fuzzy soft symmetric relation, R−1
pq (x) = Rpq(x) =⇒ Rqp(x) =

Rpq(x) ≥ λ =⇒ fqR
λfp. This implies Rλ is a symmetric relation.

Finally let fpR
λfr and frR

λfq =⇒ Rpr(x) ≥ λ and Rrq(x) ≥ λ, ∀ x
∈ X. Since R is a fuzzy soft transitive relation, Rpq(x) ≥ (R ◦ R)pq(x) =∨
r∈P (Rpr(x)∧Rrq(x)) ≥ (Rpr(x)∧Rrq(x)) ≥ λ. Hence Rλ is a transitive relation.

Definition 3.7. Equivalence class of fp denoted by [fp] is defined as [fp] = {fq:
fpR

λfq}.

Example 3.8. Let the fuzzy soft set (f,P) over universal set x={x1, x2, x3, x4}
and parameter set P ={p, q, r} be given by.

(f, P ) =



fp = {
x1
.76

,
x2
0.5

,
x3
.82

,
x4
0.64
}

fq = {
x1
.58

,
x2
.075

,
x3
.6
,
x4
0.56
}

fr = {
x1
.66

,
x2
.5
,
x3
.7
,
x4
0.75
}


Consider the fuzzy soft equivalence relations R on (f,P) as follows
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R x1 x2 x3 x4
Rpp 0.76 0.5 0.82 0.64

Rpq 0.58 0.075 0.6 0.56

Rqp 0.58 0.075 0.6 0.56

Rqq 0.6 0.7 0.82 0.9

Since Rrr(x) = 0, ∀x∈ X we have λ =
∧
x∈X

∧
p∈PRpp(x) = 0. Then R0 =

{(fp,fp), (fq,fq), (fp,fq), (fq,fp),(fr,fr)} is an equivalence relation on (f,P).
If λ = 0.55 , R0.55 = {(fq,fq), (fp,fq), (fq,fp)} is not an equivalence relation

on fuzzy soft set (f,P).

Lemma 3.9. Let R be a fuzzy soft equivalence relation on (f,P) and α =∧
x∈X

∧
p∈PRpp(x). For p,q ∈ P and λ ∈ [0,α], [fp] = [fq] if and only if fpR

λfq
if and only if [fp] ∩ [fq] ̸= ϕ.

Proof. Suppose [fp] = [fq].
Since R is a fuzzy soft equivalence relation on (f,P), Rλ is an equivalence

relation =⇒ Rλ is a reflexive relation =⇒ fpR
λfp.

Hence fp ∈ [fp] = [fq] i.e. fqR
λfp. By Theorem 3.6 we have Rλ is a symmetric

relation. Hence fpR
λfq. Conversely suppose that fpR

λfq.
Let fr ∈ [fp], then fpR

λfr. Using symmetric and transitive property of Rλ we
have fqR

λfr =⇒ fr ∈ [fq]. Hence [fp] ⊆ [fq].
Using a similar argument we can show that [fp] ⊆ [fq]. Hence [fp] =[fq].
Now, let [fp] ∩ [fq] ̸= ϕ ⇐⇒ fr ∈ [fp] ∩ [fq] ⇐⇒ fpR

λfr and fqR
λfr ⇐⇒

fpR
λfq.

Definition 3.10. A collection of fuzzy soft subset {(fi, Pi): i∈I} of a fuzzy soft
set (f,P) is called a partition of (f,P) if:

1) (f,P) =
∪
i(fi,Pi);

2) Pi ∩ Pj = ϕ when ever i ̸= j.

Theorem 3.11. Corresponding to every fuzzy soft equivalence relation defined
on the fuzzy soft set (f,P) there exist a partition of (f,P) and this partition
precisely consist of the equivalence class of Rλ where λ =

∧
x∈X

∧
p∈P Rpp(x).

Proof. Let [fp] be an equivalence class corresponding to the relation Rλ on (f,P)
and Pp = { q ∈ P: fpR

λfq}. Also denote [fp] as (f,Pp).
We have to show that {(f,Pp): p ∈ P} of such distinct set forms a partition

of (f,P), i.e. we have to prove that:
1) (f,P) =

∪
p∈P (f, Pp);

2) if Pp, Pq are not identical then Pp ∩ Pq = ϕ.
Since Rλ is a reflexive relation fpR

λfp ∀ p ∈ P, so that 1) can be easily proved.
Let r ∈ Pp ∩ Pq. Then, fr ∈ (f,Pp) and fr ∈ (f,Pq) =⇒ frR

λfp and frR
λfq.

Using transitive property of Rλ we have fpR
λfq hence by Lemma 3.9 [fp]=[fq]

=⇒ Pp = Pq.



918 ANJU S. MATTAM and SASI GOPALAN

Definition 3.12. Let Rλ be the relation induced by the fuzzy soft relation
R on (f,P). ∀ (g,Pg) ∈ Sf (X,P),Define Pg(f,R)= {fp ∈ (f,P):[fp] ⊆ (g,Pg)} and
P g(f,R) = {fp ∈ (f, P ) : [fp] ∩ (g, Pg) ̸= 0̃}.

Example 3.13. In Example 3.8 let (g,Pg)∈ Sf (X,P) be given by

(g, Pg) =
{
gp = {

x1
.76

,
x2
0.5

,
x3
.82

,
x4
0.64
}
}
.

Consider the relation R0.5 induced by the fuzzy soft equivalence relation R.
[fp] = [fq]={fp,fq} not a subset of (g,Pg). Hence Pg(f,R) is an empty set with
repect to the equivalence classes [fp] and [fq].

Since Pg contains only one parameter p, we have [fr]=0̃ *(g,Pg) =⇒
Pg(f,R)= ϕ with repect to the equivalence classes [fr]. Next, we can compute
Pg(f,R).

[fp] ∩ (g,Pg) ̸=0̃ =⇒ Pg(f,R)={fp} with respect to the equivalence classes
[fp]. Using a similar argument we can prove that Pg(f,R)={fq} w.r.t to the
equivalence classes [fq]. [fr] ∩ (g,Pg)=0̃ =⇒ Pg(f,R)=ϕ w.r.t to the equivalence
class [fr].

Lemma 3.14. Let R be a fuzzy soft relation defined on (f,P) then ∀ (g,Pg),(h,Ph)
∈ Sf (X,P):

1. Pf (f,R)=(f,P);

2. If Rλ is a reflexive relation on (f,P) then Pg(f,R) ⊆ (g,Pg) ⊆ Pg(f,R);

3. a) (g,Pg)⊆ (h,Ph) =⇒ Pg(f,R) ⊆ Ph(f,R);

b) (g,Pg)⊆ (h,Ph) =⇒ Pg(f,R) ⊆ Ph(f,R);

4. a) Pl(f,R)= Pg(f,R) ∪ Ph(f,R) where (l,Pl)=(g,Pg)∪ (h,Ph);

b)Pl(f,R)= Pg(f,R) ∩ Ph(f,R) where (l,Pl)=(g,Pg)∩ (h,Ph).

Proof. 1. This is obvious.

2. Let fp ∈ Pg(f,R).

Since Rλ is a reflexive relation on (f,P), fp ∈[fp] ⊆ (g,Pg) =⇒ [fp] ∩ (g,Pg )̸=0
=⇒ fp ∈ Pg(f,R). Hence the proof.

3. a) fp ∈ Pg(f,R) =⇒ [fp] ⊆ (g,Pg) =⇒ [fp] ⊆ (h,Ph) =⇒ fp ∈Ph(f,R).
Hence Pg(f,R) ⊆ Ph(f,R).

b) Proof is similar to a).

4. a) Let fp ∈Pl(f,R) =⇒ [fp] ∩ (l,Pl)̸=0.Since (l,Pl)=(g,Pg)∩ (h,Ph),either
[fp] ∩ (g,Pg )̸=0 or [fp] ∩ (h,Ph) ̸=0 =⇒ fp ∈Pg(f,R) or fp ∈Ph(f,R) =⇒ fp
∈Pg(f,R) ∪ Ph(f,R). Conversely this is obvious.

b) Proof is similar to a).

4. Rough approximate operators of fuzzy soft relation

In this section we propose two rough approximate operators for a given fuzzy
soft relation.
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Definition 4.1. Define the following operations- apr, apr : Sf (X,P)→Sf (X,P)
by apr(g,Pg)= ∪ Pg(f,R) and apr(g,Pg)= ∪ Pg(f,R).

apr and apr are called the R lower approximation operator and R upper
approximation operator respectively. The soft subset (g,P) is called R definable
if apr(g,Pg) = apr(g,Pg). (g,Pg) is called R rough set if apr(g,Pg) ̸= apr(g,Pg).

Theorem 4.2. Let R be a fuzzy soft relation defined on (f,P). Then ∀ (g,Pg),(h,Ph)
∈ Sf (X,P).

1. If (g,Pg)⊆ (h,Ph), then:
a)apr(g,Pg) ⊆ apr(h,Ph);
b) apr(g,Pg)⊆ apr(h,Ph).

2. a)apr((g,Pg)∩(h,Ph))=apr(g,Pg)∩apr(h,Ph);
b) apr((g,Pg) ∪ (h,Ph))=apr(g,Pg) ∪ apr(h,Ph).

Proof. 1. This obviously hold by Lemma 3.14.
2. a) Let (g,Pg)∩(h,Ph)=(l,Pl) then by Lemma 3.10,Pl(f,R)= Pg(f,R) ∩

Ph(f,R).
Let fp ∈ apr(l,Pl) =⇒ fp ∈ ∪ Pl(f,R) =⇒ fp ∈ Pl(f,R) =⇒ fp ∈ Pg(f,R)

and fp ∈ Ph(f,R) =⇒ fp ∈ apr(g,Pg) ∩ apr(h,Ph).
Hence apr(l,Pl)⊆ apr(g,Pg) ∩ apr(h,Ph).
Similarly we can prove the Converse part apr(g,Pg)∩apr(h,Ph) ⊆ apr(l,Pl).
b) This can be proved similarly as above.

Theorem 4.3. If R is any arbitrary fuzzy soft relation defined on fuzzy soft set
(f,P) then Rλ, λ ∈[0,1] is reflexive iff ∀ (g,Pg) ∈ Sf (X,P),apr(g,Pg)⊆(g,Pg) ⊆
apr(g,Pg).

Proof. First part of above statement follows from Lemma 3.14.
Now, suppose that ∀ (g,Pg) ∈ Sf (X,P), apr(g,Pg)⊆(g,Pg) ⊆ apr(g,Pg).
Let fp ∈ (f,P) and (g,Pg)= fp. By our assumption fp ∈ apr(g,Pg) =⇒ fp ∈

Pg(f,R) =⇒ [fp] ∩ (g,Pg) ̸= 0̃ =⇒ fp ∈ [fp], ∀ fp ∈ (f,P) =⇒ Rλ is reflexive.

Theorem 4.4. Let R be any arbitrary fuzzy soft relation defined on fuzzy soft
set (f,P). If Rλ,λ ∈ [0,1] is reflexive then:

1) apr(f,P)= apr(f,P)=(f,P);

2) apr0̃= apr0̃=0̃.

Proof. 1) By Theorem 4.3 we have apr(f,P)⊆(f,P) ⊆ apr(f,P). Conversely since

Pf (f,R) ⊆(f,P) =⇒ apr(f,P) ⊆ (f,P) =⇒ apr(f,P) = (f,P). By Lemma 3.14
Pf (f,R)=(f,R) =⇒ apr(f,P)=(f,P). Hence the result.

2) This is obvious.

Theorem 4.5. If R is any arbitrary fuzzy soft relation defined on fuzzy soft set
(f,P) and α=

∧
x∈X

∧
p∈P Rpp(x) then Rλ,λ ∈[0,α] is symmetric iff ∀ (g,Pg) ∈

Sf (X,P), apr(apr(g,Pg))⊆(g,Pg) ⊆ apr(apr(g,Pg)).
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Proof. Let (g,Pg) ∈ Sf (X,P) and denote (k,Pk)=apr(g,Pg),(h,Ph)=apr(g,Pg),
(w,Pw)=apr(k,Pk), (l,Pl)=apr(h,Ph).

Suppose Rλ is symmetric and (w,Pw)-(g,Pg )̸= ϕ. Pick fp ∈ (w,Pw)-(g,Pg) =⇒
[fp]∩ (k,Pk )̸=0̃.

Let fk∈ [fp]∩ (k,Pk) =⇒ fk∈(k,Pk)=∪Pg(f,R) =⇒ fk∈Pg(f,R) =⇒ [fp]⊆(g,Pg).
Since Rλ is symmetric,fk∈ [fp] =⇒ fp∈ [fk]. Hence fp∈ [fk]⊆(g,Pg), a contradic-
tion. Hence apr(apr(g,Pg))⊆(g,Pg). Next suppose that (g,Pg)-(l,Pl)̸= ϕ. Pick
fp ∈(g,Pg)-(l,Pl) =⇒ fp ∈(g,Pg) and fp /∈(l,Pl).

fp /∈(l,Pl) =⇒ fp /∈apr(h,Ph) =⇒ fp /∈Ph(f,R) =⇒ [fp] ̸⊆(h,Ph). Pick fq∈[fp]
such that fq /∈ (h,Ph) =⇒ fq /∈Pg(f,R) =⇒ [fq]∩(g,Pg)=0̃.

Since Rλ is symmetric fp∈[fq], i.e fp /∈(g,Pg), a contradiction. Conversely
suppose ∀ (g,Pg) ∈ Sf (X,P),apr(apr(g,Pg))⊆(g,Pg) ⊆ apr(apr(g,Pg)).

Let fq∈[fp] and (g,Pg)=fp, then fp∈apr(apr(g,Pg)) =⇒ fp∈Ph(f,R) =⇒
[fp]⊆(h,Ph)=apr(g,Pg) =⇒ fq∈apr(g,Pg) =⇒ fq∈Pg(f,R) =⇒ [fq]∩(g,Pg )̸=0̃ =⇒
fp∈[fq] =⇒ Rλ is symmetric.

Lemma 4.6. Let R be a fuzzy soft relation defined on fuzzy soft set(f,P) and
Rλ,λ ∈[0,1] is symmetric then for each fp∈(f,P), apr( fp) =[fp].

Proof. Let (g,Pg)= fp and (h,Ph)= apr(g,Pg) fk ∈ (h,Ph) ⇐⇒ fk ∈Pg(f,R)
⇐⇒ [fk] ∩ (g,Pg )̸=0̃⇐⇒ fp∈[fk]⇐⇒ fk∈[fp]. Hence the proof.

Theorem 4.7. If R is any arbitrary fuzzy soft relation defined on fuzzy soft set
(f,P) and Rλ,λ ∈[0,1] is reflexive and symmetric then following statements are
equivalent:

1) Rλ is transitive;

2) ∀ (g,Pg)∈ Sf (X,P),apr(g,Pg) ⊆ apr(apr(g,Pg))⊆(g,Pg) ⊆ apr(apr(g,Pg))
⊆apr(g,Pg).

Proof. 1 =⇒ 2. Let (h,Ph)=apr(g,Pg),(k,Pk)=apr(g,P),and (l,Pl)=apr(k,Pk).
First, we prove that if (h,Ph)=apr(g,Pg) then Ph(f,R)=Pg(f,R).

By Lemma 3.14 (h,Ph)⊆ (g,Pg) =⇒ Ph(f,R) ⊆ Pg(f,R) Now let Pg(f,R)-
Ph(f,R) ̸= ϕ and fp∈ Pg(f,R)-Ph(f,R)fp∈ Pg(f,R) =⇒ [fp]⊆ (g,Pg) and fp /∈
Ph(f,R) =⇒ [fp]* (h,Ph) =⇒ there exist fk∈ [fp] and fk /∈ (h,Ph).

Since Rλ is transitive [fk] ⊆[fp]. Hence [fk] ⊆ (g,Pg) =⇒ fk ∈ Pg(f,R) =⇒
fk ∈ apr(g,Pg) =⇒ fk ∈ (h,Ph), a contradiction.

This implies Pg(f,R)⊆Ph(f,R) and hence Ph(f,R)=Pg(f,R). Let fp∈ (h,Ph)
=⇒ fp∈Pg(f,R) =⇒ fp∈Ph(f,R) =⇒ fp∈ apr(h,Ph). =⇒ apr(g,Pg) ⊆
apr(apr(g,Pg)).

By Theorem 4.3 we have apr(apr(g,Pg))⊆(g,Pg) ⊆ apr(apr(g,Pg)) To prove
(l,Pl)⊆ (k,Pk). Suppose(l,Pl)- (k,Pk )̸=ϕ and fp∈(l,Pl)- (k,Pk) fp /∈ (k,Pk) =⇒ fp /∈
Pg(f,R) fp∈(l,Pl) =⇒ fp∈ Pk(f,R) =⇒ [fp] ∩ (k,Pk )̸=0̃. Let fk ∈[fp] and fk ∈
(k,Pk) fk ∈ (k,Pk) =⇒ [fp] ∩ (g,Pg )̸=0̃. Since Rλ is transitive, fk ∈[fp] =⇒ [fk]
⊆[fp] =⇒ [fp] ∩ (g,Pg )̸=0̃ =⇒ fp∈Pg(f,R), a contradiction.
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Hence apr(apr(g,Pg))⊆apr(g,Pg).
2 =⇒ 1. Let fp,fq,fr∈ Rλ such that (fp,fq),(fq,fr)∈ Rλ =⇒ fq∈[fp]and fq∈[fr]

=⇒ [fp] ∩ [fr ]̸= ϕ. Let (h,Ph)=apr( fp). By previous Lemma [fr] ∩(h,Ph) ̸= 0̃
=⇒ fr∈ Ph(f,R) =⇒ fr∈apr(h,Ph). By our assumption apr((h,Ph))⊆(h,Ph) =⇒
fr∈(h,Ph)=[fp] =⇒ (fr,fp)∈Rλ =⇒ Rλ is transitive.

5. Fuzzy soft topology induced by the fuzzy soft relation

Definition 5.1 ([39]). Let {Pi:i∈I}⊂℘.
The union of non empty family {(fi,Pi):i∈I} of fuzzy soft sets over the com-

mon universe X, denoted by
∪
i∈I(fi,Pi) is defined as the fuzzy soft set(h,C) such

that C=
∪
i∈IPi and for each c∈C, hc(x)=

∨
i∈IC (fi)c(x),∀ x∈ X, where Ic={i∈I:

c∈Pi}

Definition 5.2 ([39]). Let {Pi:i∈I}⊂℘. The intersection of non empty fam-
ily {(fi,Pi):i∈I} of fuzzy soft sets over the common universe X, denoted by∩
i∈I(fi,Pi) is defined as the fuzzy soft set(h,C) such that C=

∩
i∈IPi and for

each c∈C,hc(x)=
∧
i∈IC (fi)c(x),∀ x∈ X.

Definition 5.3 ([39]). Let (f,P) be a fuzzy soft set defined over the universal
set X and the parameter set P ⊂ ℘. τ be the sub family of Sf (X,P). Then τ is
called the fuzzy soft topology on (f,P) if the following conditions are satisfied:

1) ϕ, (f, P ) ∈ τ ;
2) (f1,P1),(f2,P2)∈ τ =⇒ (f1,P1)∩ (f2,P2)∈ τ ;
3) {(fi,Pi):i∈I}⊂τ =⇒

∪
i∈I(fi,Pi)∈ τ .

The pair (Xf ,τ)is called the fuzzy soft topological space. Every member of
τ is called open fuzzy soft set.

Theorem 5.4. Let R be any arbitrary surjective fuzzy soft relation defined on
fuzzy soft set (f,P) and if for λ ∈[0,1],Rλ is reflexive then τ={(g,Pg)∈Sf (X,P);
apr(g,Pg)=(g,Pg)}is a fuzzy soft topology defined on (f,P).

Proof. By Theorem 4.4 we have ϕ, (f,P)∈ τ .
Let (g,Pg),(h,Ph)∈ τ =⇒ apr(g,Pg)= (g,Pg) and apr(h,Ph)= (h,Ph) (g,Pg)

∩(h, Ph) = apr(g,Pg)∩ apr(h,Ph)=apr((g,Pg)∩ (h,Ph)) =⇒ (g,Pg)∩ (h,Ph)∈
τ .

Now let (gi,Pi)∈ τ , ∀i∈I. By Theorem 4.3, apr(
∪
(gi,Pi))⊆

∪
(gi,Pi). Con-

versely, since apr(gi, Pi) = (gi, Pi) we have
∪
(gi,Pi)=

∪
apr(gi, Pi)⊆apr(

∪
(gi,

Pi)).

Hence τ={(g,Pg)∈Sf (X,P); apr(g,Pg)=(g,Pg)}is a fuzzy soft topology de-
fined on (f,P) and τ is called the fuzzy soft topology induced by the fuzzy soft
relation R on (f,P).
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6. Conclusion

In this paper we have proposed fuzzy soft relation on fuzzy soft sets. By means
of relations on parameter set induced by a fuzzy soft relation, a pair of rough
approximate operators are defined. Also we have investigated fuzzy soft topology
generated by the rough approximate operators. As a future work with the
motivation of ideas presented in this paper one can think of axiomatization of
proposed rough approximate operators based on fuzzy soft relation and consider
some applications of proposed notions.
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Abstract. The aim of this paper is to define new certain subclasses of analytic
functions of fractional parameters in the well-known unit disk U. Then introduce and
study a new integral operator type fractional in the sense of Noor integral on Banach
space. In addition, some of its applications are discussed by utilizing a Owa-Hadamard
product.
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1. Introduction

In general, one of the most significant problems facing many analytical appli-
cations of geometric functions is how to introduce and study operators type
fractional of analytic and univalent functions on complex Banach spaces for
example (see [1, 2, 3, 4, 5, 6] ). Specifically, the theory of analytic functions
includes the following format:

f(z) = z + a2z
2 + a3z

3 + . . .(1.1)

which are analytic and univalent in S ∈ U := {z : |z| < 1}, normalized by
f ′(0) = 1 and f(0) = 0. For instance the functions of class S are convex if

f(z) =
z

(1− z)
= z + z2 + z3 + . . . ,

and are starlike if

f(z) =
z

(1− z)2
= z + 2z2 + 3z3 + . . . .

The aim of this paper is to define a new analytic family type of fractional power
Aυ by

F(z) = z +
∞∑
m=2

amz
υm, (|z| < 1),(1.2)
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where υ := m+k−1
k , k ∈ N and m ∈ N0. Specifically, when m = k = 1 in (1.2)

we get the Koebe function in U. Then, introduce subclasses of analytic and
univalent functions defined by applying fractional integral operators involving
the well-known integral operator such as the Noor integral operator. For two
functions F given by (1.2) and G(z) = z +

∑∞
m=2 hmz

υm, the product functions
F ∗G is known as the convolution (or Hadamard product) and defined by [7]

(F ∗G)(z) = z +
∞∑
m=2

amhmz
υm(1.3)

and
(F ∗G)′(z) = F ∗G′(z), (|z| < 1).

By utilising (1.3) we introduce a new integral operator type of fractional
power denote by Iρ,υ : Aυ → Aυ. In this effort, let defined the analytical
fractional function Fρ by

Fρ =
zυ

(1− zυ)ρ+1
, (z ∈ U, υ ≥ 1, ρ ≥ 1)

such that

Fρ(z) ∗ F−1
ρ (z) =

zυ

1− zυ
.(1.4)

Consequently, we receive the integral operator Iρ,υ defined by

Iρ,υF(z) =
(

zυ

(1− zυ)ρ+1

)−1

∗ F (z)

= z +

∞∑
m=2

(m− 1)!

(ρ+ 1)m−1
amz

υm.(1.5)

For ρ = 1 and υ ≥ 1, then the integral operator I1,υ is closed to the Noor
integral (see [8]) of the m-th order of function F ∈ Aυ. Corresponding to (1.5),
we have the following conclusion:

z(Iρ,υF (z))′ = z +

∞∑
m=2

Γ(m+ 1)Γ(ρ+ 1)

Γ(m+ ρ)
υamz

υm.(1.6)

In the following section, we study some properties of the integral operator Iρ,υ
given by (1.5) in the class of uniformly convex functions type of fractional power
on Banach spaces.

2. Class of uniformly convex functions

Let X be a Banach space and X† its dual. For any A ∈ X†, we interest the
set W(A) := {w ∈ X : A(w) ̸= 0} and let the set γ(A) := {w ∈ X : X \W(A)}.
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If A ̸= 0 then W(A) is dense in X and W(A) ∩ B̂ is dense in B̂, where B̂ :=
{w ∈ X : ||w|| = 1}. Let define B be a complex Banach space and H(B,C) be
a family of all functions f : B → C, such that f(w)|w=0 = 0, this means that
these functions are holomorphic in B and have the Fréchet derivative f ′(w) for
all points w ∈ B.

Recall that : Let Υ and Ξ be two Banach spaces, such that Ω ⊂ Υ an open
subset in V . A function ϕ : Ω → Ξ is known as Fréchet differentiable at y ∈ Ω
if there exists a bounded linear operator Λ : Υ→ Ξ such that [9]

lim
h→0

[
∥ϕ(y + h)− ϕ(y)− Λh∥Ξ

∥h∥Υ

]
= 0.

If f ∈ H(B,C), then

f(w) =
∞∑
m=1

Pm(w).(2.1)

Remark 1. We note that, the series Pm : X→ C are

1- Uniformly convergent on some neighborhood V of the origin.

2- Continuous and homogeneous polynomials of degree m.

In unit disk U, let denote the family CV of functions by

F(z) = z +
∞∑
m=2

amz
υm,(2.2)

are convex in U. In geometrically sense Goodman [10] considered the class
UCV ⊂ CV of uniformly convex functions in U and stated that, if f normalized
and every (positive oriented) circular arc γ with center ζ in U such that the
image arc f(γ) is a convex arc, then f ∈ CV . Moreover, proved the function f
given by (1.1) analytic in UCV if and only if satisfied

R{(z − ζ)f
′′(z)

f ′(z)
+ 1} ≥ 0, (z, ζ) ∈ U× U.(2.3)

Lemma 1 ([10]). If f ∈ UCV , then

|an| ≤
1

n
, n ≥ 2.

Rønning [11] declared that, the function f analytic in UCV if and only if

R

{
zf ′′(z)

f ′(z)
+ 1

}
≥
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣, |z| < 1.(2.4)
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Now, let A ∈ X†, A ̸= 0. For any f ∈ H(B,C) of the form

F(w) = A(w) +

∞∑
m=2

Pm(w), w ∈ B(2.5)

and for any a ∈ W(A) ∩ B̂ we put

Fa(z) =
F(za)
A(a)

, υ ≥ 1, z ∈ U.(2.6)

It is clear that, for all |z| < 1

Fa(z) = z +
∞∑
m=2

Pm(a)

A(a)
zυm(2.7)

and

F(m)
a (z) =

F
(m)
a (za)(a, · · · , a)

A(a)
, m ∈ N.(2.8)

Let UCVAυ denote the family of all functions F ∈ H(B,C) of the form (2.5)
such that, for any a ∈ W(A) ∩ B̂ the function Fa belongs to the class UCV .
From the following results, we investigate some properties of the functions F in
the class UCV .

Theorem 1 (Bounded coefficient). If the function F is belong in UCVAυ and
a ∈ B̂. Then ∣∣Pm(a)∣∣ ≤ 1

m

∣∣A(a)∣∣, m ≥ 2.

Proof. Assume that, the function F ∈ UCVAυ , if a ∈ W(A) ∩ B̂, then Fa ∈
UCV . In another side, if a ∈ γ(A) ∩ B̂, clearly that a = limn→∞ an, where
an ∈ W(A), n ∈ N. There exists rn ∈ R+ such that an

rn
∈ W(A) ∩ B̂, n ∈ N, it

is clear that (rn, n > 0) is bounded for the origin is an interior point of B. For
an
rn
∈ W(A) ∩ B̂, n ∈ N, we obtain∣∣Pm(an

rn
)
∣∣ ≤ 1

m

∣∣A(an
rn

)
∣∣, m ≥ 2

consequence ∣∣Pm(an)∣∣ ≤ rm−1
n

m

∣∣A(an)∣∣, m ≥ 2

by letting n→∞, we get Pm(a) = 0.

Corollary 1. All the functions F in UCVAυ are vanish on γ(A) ∩ B.

Corollary 2. If F ∈ UCVAυ , then

||Pm|| ≤
1

m
||A||, m ≥ 2.
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Theorem 2 (Sufficient condition). If F ∈ UCVAυ and F′(w) ̸= 0, for all w ∈ B,
then

R

{
1 +

F′′(w)(w,w)

F′(w)(w)

}
≥
∣∣∣∣F′′(w)(w,w)

F′(w)(w)

∣∣∣∣, w ∈ W(A) ∩ B.(2.9)

Proof. Let w ∈ W(A) ∩ B, w ̸= 0, then a = w
||w|| ∈ W(A) ∩ B̂ and thus the

Fa ∈ UCV . By using (2.4), we get

R

{
1 +

zF′′
a(z)

F′
a(z)

}
≥
∣∣∣∣zF′′

a(z)

F′
a(z)

∣∣∣∣, z ∈ U.

By recall the equality
zF′′

a(z)

F′
a(z)

=
F′′(za)(za, za)

F′(za)(za)

then, we have∣∣∣∣zF′′
a(z)

F′
a(z)

∣∣∣∣ = ∣∣∣∣zF′′(za)(za, za)

F′(za)(za)

∣∣∣∣ ≤ ∣∣∣∣1 + F′′(za)(za, za)

F′(za)(za)

∣∣∣∣,
by putting za = ||w||, we obtain (2.9).

Corollary 3. For F ∈ H(B, C), F′(w)|w=0 = A and F′(w) ̸= 0, for all w ∈ B. If

R

{
1 +

zF′′(w)(w,w)

F′(w)(w)

}
≥
∣∣∣∣zF′′(w)(w,w)

F′(w)(w)

∣∣∣∣, w ∈ W(A) ∩ B(2.10)

then F ∈ UCVAυ

Proof. Let a ∈ W(A) ∩ B̂. Then F′
a(z) = F′(za)(a) ̸= 0, |z| < 1 and

zF′′
a(z)

F′
a(z)

=
F′′(za)(za, za)

F′(za)
, |z| < 1.

From (2.10), we get Fa ∈ UCV , for all a ∈ W(A) ∩ B̂ hence F ∈ UCVAυ .

3. Owa-Hadamard product

In this section, we set up some certain results which dealing with the Owa-
Hadamard product functions F(w) of form (2.5). First, let define

Fj(w) = A(w) +
∞∑
m=2

Pm,j(w)zυm, j = {1, 2, · · · l} ,(3.1)
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and

Faj (z) = z +

∞∑
m=2

Pm(aj)
A(aj)

zυm, j = {1, 2, · · · l} , z ∈ U.(3.2)

Let define the Owa-Hadamard product of two functions F(w) and G(w) in class
UCVAυ by

(F ∗G)(w) := A(w) +

∞∑
m=2

P(w)Φ(w)zυm,

where G(w) := A(w) +
∑∞

m=2Φ(w)z
υm w ∈ B.

Theorem 3. Let Fj given by (3.1) be in the class ∈ UCVAυ for every j =
1, 2, · · · l; and let the function Gi defined by

Gi(w) = A(w) +
∞∑
m=2

Φm,i(w)z
υm, i = 1, 2, · · · , s

then the Owa-Hadamard product of more two functions F1 ∗ F2 ∗ · · · ∗ Fl ∗G1 ∗
G2, · · · ∗Gs(z) belongs to the class UCV l+s

Aυ
.

Proof. Let

H(w) = A(w) +
∞∑
m=2


l∏

j=1

Pm,j(w)
s∏
i=1

Φm,i(w)

 zυm.

We aim to show that

∞∑
m=2

ml+s


l∏

j=1

Pm(aj)
s∏
i=1

Φm(ai)

 ≤
l∏

j=1

A(aj)
s∏
i=1

A(ai).

Since Fj ∈ UCVAυ , then from Theorem 1, we obtain (3.3) and (3.4)

∞∑
m=2

mPm(aj) ≤ A(aj),

for every j = 1, 2, · · · , l. then we have

Pm(aj) ≤
A(aj)

m
(3.3)

for every j = 1, , 2, · · · , s. In a similar way, for Gi ∈ UCVAυ we get

∞∑
m=2

mΦm(ai) ≤ A(ai).
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Therefore

Φm(ai) ≤
A(ai)

m
,(3.4)

for every i = 1, 2, · · · , s. By (3.3) and (3.4), for j = 1, 2, · · · , l and i = 1, 2, · · · , s,
we attain

∞∑
m=2

ml+s


l∏

j=1

Pm(aj)
s∏
i=1

Φm(ai)




≤

ml+s

m−sm−l
l∏

j=1

A(aj)
s∏
i=1

A(ai)


 ≤


l∏

j=1

A(aj)
s∏
i=1

A(ai)

 .

Hence H(w) ∈ UCV l+s
Aυ

.

Corollary 4. Let the function Fj(w) = A(w) +
∑∞

m=2 Pm,j(w)zυm given by
(3.1) be in the class ∈ UCVAυ for every j = 1, 2, · · · l. Then the Hadamard
product F1 ∗ F2, · · · ∗ Fl(z) belongs to the class UCV l

Aυ
.

Corollary 5. Let the function Gi(w) = A(w) +
∑∞

m=2Φm,i(w)z
υm, defined by

(3.1) be in the class ∈ UCVAυ for every i = 1, 2, · · · s. Then the Hadamard
product G1 ∗G2, · · · ∗Gs(z) belongs to the class UCV s

Aυ
.

4. Conclusion

We generalized a class of analytic functions (Koebe type), by utilizing the con-
cept of fractional calculus. Moreover, by utilising the above class, we defined
fractional operator type of integral in the sense of Noor integral operator. Some
geometrical properties are illustrated in Banach space. The generalized product
(Owa-Hadamard product) is discussed in some subclasses.
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Abstract. In this paper, a sufficient condition for asymptotic stability of nonlinear
systems with impulse time window is derived, which avoids solving linear matrix in-
equalities. For the system with disturbance input and bounded gain error due to limit of
equipment and technology in practical applications, another sufficient condition is also
obtained. Numerical examples are carried out to validate effectiveness of the proposed
results.

Keywords: impulse time window, disturbance input, bounded gain error, impulsive
control, asymptotic stability, Chua’s oscillator.

1. Introduction

Customarily, Rn is an n− dimensional real Euclidean space with norm ∥·∥.
Rm×n denotes the set of all m × n− dimensional real matrices. AT , λmax (A)
and λmin (A) denote the transpose, the maximal and the minimal eigenvalue
of a real matrix A, respectively. A > 0 means the matrix A is symmetric

∗. Corresponding author
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and positive definite. I is the identity matrix of proper dimension. Define
f
(
x
(
t−0
))

= limt→t−0
f (x (t)).

Impulsive control theory has received considerable attention and many schol-
ars have been researching on this topic because it can be applied in many fields.
For instance, HIV prevention model [3], chaotic systems [6], neural networks
[17], etc. A lot of results of impulsive control and its applications have been
reported, see [9, 10, 14, 16] and reference therein.

In the previous literature of impulsive control [2, 13], the assumption of
impulses occur at fixed times. Recently, Feng, Li and Huang [4] discussed the
following nonlinear impulsive control systems with impulse time window:

(1.1)


ẋ(t) = Ax (t) + f (x (t)) , mT ≤ t < mT + τm,

x(t) = x (t−) + Jx (t−) , t = mT + τm,

ẋ(t) = Ax (t) + f (x (t)) , mT + τm < t < (m+ 1)T,

where x(t) ∈ Rn is the state vector, f : Rn → Rn is said to be a continuous
nonlinear function if f(0) = 0, there exists a constant l ≥ 0 such that ∥f (x)∥ ≤
l ∥x∥, A, J ∈ Rn×n are constant matrices, T > 0 is the control period, τm
is unknown within impulse time window (mT, (m+ 1)T ). Since the impulsive
effects can be stochastically occurred in an impulse time window in system (1.1),
which is more general and more applicable than ones impulses occurred at fixed
times. Some results related to impulse time window can be found in [8, 15].

Zou et al. [18] considered system (1.1) with bounded gain error and param-
eter uncertainty. The corresponding system was described as

(1.2)


ẋ(t) = (A+∆A)x (t) + f (x (t)) , mT ≤ t < mT + τm,

x(t) = (Jm +∆Jm)x (t
−) , t = mT + τm,

ẋ(t) = Ax (t) + f (x (t)) , mT + τm < t < (m+ 1)T,

where ∆A = DG (t)E is the parameter uncertainty, ∆Jm = mF (t)Jm is gain
error which is often time-varying and bounded.

In many practical applications, we can not guarantee the input and impulses
without any error due to the limit of equipment and technology. In what follows,
we will consider system (1.1) with disturbance input and bounded gain error.
System (1.1) can be rewritten as follows:

(1.3)


ẋ(t) = Ax (t) +Bw (t) + f (x (t)) , mT ≤ t < mT + τm,

x(t) = x (t−) + Jx (t−) + ϕ (x (t−)) , t = mT + τm,

ẋ(t) = Ax (t) +Bw (t) + f (x (t)) , mT + τm < t < (m+ 1)T,

where w (t) ∈ Rr is the disturbance input, ϕ (x (t)) is gain error, ϕ : Rn → Rn

is a continuous nonlinear function satisfying ϕ(0) = 0, B ∈ Rn×r is a constant
matrix. Without loss of generality, we assume that

∥w (t)∥ ≤ l1 ∥x (t)∥ , ∥ϕ (x (t))∥ ≤ l2 ∥x (t)∥ ,
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where l1, l2 ≥ 0 are two constants. In fact, for the case of parameter uncer-
tainties, they are commonly assumed that w (t) = ∆Ax (t) = DG (t)Ex (t) and
ϕ (x (t)) = ∆Jmx (t) = mF (t) Jx (t), where ∥G (t)∥ ≤ 1 and ∥F (t)∥ ≤ 1, while
D and E are appropriate known matrices, m > 0 is a known constant. At the
same time, we have

∥w (t)∥2 = (DG (t)Ex (t))T (DG (t)Ex (t))
= xT (t)ETGT (t)DTDG (t)Ex (t)

≤ ∥D∥2 ∥E∥2 ∥x (t)∥2

and
∥ϕ (x (t))∥2 = (mF (t) Jx (t))T (mF (t) Jx (t))

= xT (t) JTF T (t)mmF (t) Jx (t)

≤ m2 ∥J∥2 ∥x (t)∥2 .

We can choose l1 = ∥D∥ ∥E∥ and l2 = m ∥J∥. Clearly, (1.3) is more general
than (1.1) and (1.2).

The aim of this paper is to present a new sufficient condition for the asymp-
totic stability of system (1.1). Compared with the results shown in [4, 5], our
result is simpler. At the same time, we investigate system (1.3) and establish
a new sufficient condition for the asymptotic stability of system (1.3). Further-
more, numerical examples are given to demonstrate effectiveness of our theoret-
ical results.

2. Main results

We begin this section with the following lemmas.

Lemma 2.1 ([7]). Let x, y ∈ Rn, then∣∣xT y∣∣ ≤ ∥x∥ ∥y∥ .
Lemma 2.2 ([7]). Let A be a real symmetrical matrix. Then for any x ∈ Rn,

λmin (A)x
Tx ≤ xTAx ≤ λmax (A)x

Tx.

Theorem 2.1. Let 0 < P ∈ Rn×n such that

gT + lnβ < 0,

where β = λmax(P
−1(I + J)TP (I + J)), β1 = λmax(P

−1(PA+ATP )), β2 =

λmax(P ), β3 = λmin(P ), g = β1 + 2l
√

β2
β3
, then system (1.1) is asymptotically

stable at origin.

Proof. Consider the following Lyapunov function:

V (x (t)) = xT (t)Px (t) .
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If t ∈ [mT,mT + τm), then by Lemmas 2.1 and 2.2, we have

D+ (V (x (t))) = 2xT (t)P (Ax (t) + f (x (t)))
= 2xT (t)PAx (t) + 2xT (t)Pf (x (t))

= xT (t)
(
PA+ATP

)
x (t) + 2xT (t)P

1
2P

1
2 f (x (t))

≤ β1x
T (t)Px (t) + 2

√
xT (t)Px (t) fT (x (t))Pf (x (t))

≤ β1x
T (t)Px (t) + 2

√
xT (t)Px (t)β2fT (x (t)) f (x (t))

≤ β1x
T (t)Px (t) + 2

√
xT (t)Px (t)β2l2xT (t)x (t)

≤ β1x
T (t)Px (t) + 2l

√
xT (t)Px (t)

β2
β3
xT (t)Px (t)

= gV (x (t)) ,

which implies that

(2.1) V (x (t)) ≤ V (x (mT )) eg(t−mT ).

Similarly, if t ∈ (mT + τm, (m+ 1)T ), we also have

D+ (V (x (t))) ≤ gV (x (t)) ,

which leads to

(2.2) V (x (t)) ≤ V (x (mT + τm)) e
g(t−mT−τm).

If t = mT + τm, then we have

(2.3)

V (x (t)) = (x (t−) + Jx (t−))
T
P (x (t−) + Jx (t−))

= xT (t−) (I + J)T P (I + J)x (t−)

= xT (t−)P
1
2P− 1

2 (I + J)T P (I + J)P− 1
2P

1
2x (t−)

≤ βV (x (t−)) .

It follows from (2.2) and (2.3) that

(2.4) V (x (t)) ≤ βV
(
x
(
(mT + τm)

−)) eg(t−mT−τm),

where t ∈ [mT + τm, (m+ 1)T ).
When m = 0, if t ∈ [0, τ0), then by (2.1) we have

V (x (t)) ≤ V (x (0)) egt

and so

(2.5) V
(
x
(
τ−0
))
≤ V (x (0)) egτ0 .

If t ∈ [τ0, T ), then by (2.4) and (2.5) we have

V (x (t)) ≤ βV (x (0)) egt
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and so

(2.6) V (x (T )) ≤ βV (x (0)) egT .

When m = 1, if t ∈ [T, T + τ1), then by (2.1) and (2.6) we have

(2.7)
V (x (t)) ≤ V (x (T )) eg(t−T )

≤ βV (x (0)) egt.

If t ∈ [T + τ1, 2T ), then by (2.4) and (2.7) we have

V (x (t)) ≤ βV
(
x
(
(T + τ1)

−)) eg(t−T−τ1)
≤ β2V (x (0)) egt.

By induction, when m = k, k = 0, 1, · · · , if t ∈ [kT, kT + τk), then we have

(2.8)

V (x (t)) ≤ βkV (x (0)) egt

≤

{
V (x (0)) egT+k(gT+lnβ) , g > 0,

V (x (0)) ek(gT+lnβ) , g ≤ 0.

If t ∈ [kT + τk, (k + 1)T ), we obtain

(2.9)

V (x (t)) ≤ βk+1V (x (0)) egt

≤

{
V (x (0)) e(k+1)(gT+lnβ) , g > 0,

βV (x (0)) ek(gT+lnβ) , g ≤ 0.

It follows from (2.8), (2.9), and gT + lnβ < 0 that

lim
t→∞

V (x (t)) = 0.

This completes the proof. �

Remark 2.1. The computation amount of solving linear matrix inequalities
is not small [1]. Compared with the results shown in [4], Theorem 2.1 avoids
solving linear matrix inequalities.

Theorem 2.2. Let 0 < P ∈ Rn×n such that

hT + ln γ < 0,

where

β=λmax(P
−1(I + J)TP (I + J)), β1=λmax(P

−1(PA+ATP )), β2=λmax(P ),

β3=λmin(P ), β4=λmax(B
TPB), β5=λmax(B

TB), β6=λmax((I + J)T (I + J)),

h=β1 + 2

√
β4l21 + β2l2 + 2ll1β2

√
β5

β3
,

γ=β +
l2β2(2

√
β6 + l2)

β3
,
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then system (1.3) is asymptotically stable at origin.

Proof. Consider the following Lyapunov function:

V (x (t)) = xT (t)Px (t) .

By Lemmas 2.1 and 2.2, we have

(2.10)

(Bw (t))T Pf (x (t)) ≤
√

(Bw (t))T Bw (t) (Pf (x (t)))T Pf (x (t))

≤
√
β5β22w

T (t)w (t) fT (x (t)) f (x (t))

≤
√
β5β22 l

2
1l

2xT (t)x (t)

≤ ll1β2
β3

√
β5x

T (t)Px (t) .

Similarly, we have

(2.11) wT (t)BTPBw (t) ≤ β4l
2
1

β3
xT (t)Px (t)

and

(2.12) fT (x (t))Pf (x (t)) ≤ β2l
2

β3
xT (t)Px (t) .

By Lemmas 2.1, 2.2, (2.10), (2.11) and (2.12), we have

xT (t)P (Bw (t) + f (x (t))) = xT (t)P
1
2P

1
2 (Bw (t) + f (x (t)))

≤
√
xT (t)Px (t) (Bw (t) + f (x (t)))T P (Bw (t) + f (x (t)))(2.13)

=
√
xT (t)Px(t)(wT (t)BTPBw(t) + 2wT (t)BTPf(x(t)) + fT (x(t))Pf(x(t)))

≤

√
β4l21 + β2l2 + 2ll1β2

√
β5

β3
xT (t)Px (t) .

If t ̸= mT + τm, by (2.13) we have

D+ (V (x (t))) = 2xT (t)P (Ax (t) +Bw (t) + f (x (t)))
= 2xT (t)PAx (t) + 2xT (t)P (Bw (t) + f (x (t)))

≤ (β1 + 2

√
β4l21 + β2l2 + 2ll1β2

√
β5

β3
)xT (t)Px (t)

= hV (x (t)) ,

which implies that
V (x (t)) ≤ V (x (mT )) eh(t−mT ).
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If t = mT + τm, then we have

V (x(t)) = ((I + J)x(t−) + ϕ(x(t−)))TP ((I + J)x(t−) + ϕ(x(t−)))

= xT (t−)(I + J)TP (I + J)x(t−) + 2xT (t−)(I + J)TPϕ(x(t−))

+ ϕT (x(t−))Pϕ(x(t−))(2.14)

≤ βxT (t−)Px(t−) + 2l2β2
√
β6

β3
xT (t−)Px(t−) +

β2l
2
2

β3
xT (t−)Px(t−)

= (β +
l2β2(2

√
β6 + l2)

β3
)V (x(t−)).

The rest of proof is same as that of Theorem 2.1, so we omit it here for simplicity.
This completes the proof. �

Remark 2.2. If we choose B = 0 and ϕ (x (t)) = 0, Theorem 2.2 is reduced
into Theorem 2.1.

3. Numerical examples

In this section, we illustrate the effectiveness of our theoretical results employing
the Chua’s oscillator.

Example 3.1. The Chua’s oscillator [12] is described by

(3.1)


ẋ1 = α(x2 − x1 − g(x1)),
ẋ2 = x1 − x2 + x3,

ẋ3 = −ηx2,

where α and η are parameters and g(x1) is the piecewise linear characteristics of
the Chua’s diode, which is defined by g(x1) = bx1+0.5(a−b)(|x1+1|−|x1−1|),
where a < b < 0 are two constants.

By decomposing the linear and nonlinear parts of the system in (3.1), we
can rewrite it into the following form, ẋ(t) = Ax+ f (x) , where

A =

 −α− αb α 0
1 −1 1
0 −η 0

 , f (x) =
 −0.5α(a− b)(|x1 + 1| − |x1 − 1|)

0
0

 .
By simple calculation, we can choose l2 = α2(a− b)2.
In the initial condition x(0) = (0.5, 0.3,−0.5)T , Chua’s circuit (3.1) has

chaotic phenomenon when α = 9.2156, η = 15.9946, a = −1.24905, b =
−0.75735 , as shown in Figure 1. Meanwhile, for the sake of convenience, we
can choose P = I, J = diag(−0.5,−0.5,−0.5). A small calculations show that
β = 0.25 , β1 = 16.5498, l = 4.5313 and g = 25.6124. By the condition of
Theorem 2.1, we have T < 0.0541. Thus by Theorem 2.1 we know that the
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Figure 1: The chaotic phenomenon of Chua’s oscillator with the initial condition
x(0) = (0.5, 0.3,−0.5)T .

Figure 2: Time response curves of controlled Chua’s oscillator with the initial
condition x(0) = (0.5, 0.3,−0.5)T .

origin of the system (1.1) is asymptotically stable. The simulation results with
T = 0.0500 are shown in Figure 2.

Example 3.2. In this example, the coefficient matrix A and the impulsive con-
trol gain matrix J are same as Example 3.1. Suppose that w (t) = 0.05x(t)cost,
ϕ (t) = 0.05x(t)sintJ , B = I. Simple calculations show that l1 = 0.05, l2 =
0.025

√
3, β = 0.25 , β1 = 16.5498 , β2 = β3 = β4 = β5 = 1 , β6 = 0.25,

h = 25.7124 and γ = 0.2952. By the condition of Theorem 2.2, we have
T < 0.0475. Thus by Theorem 2.2 we know that the origin of the system (1.3)
is asymptotically stable. The simulation results with T = 0.0400 are shown in
Figure 3.
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Figure 3: Time response curves of controlled Chua’s oscillator with the initial
condition x(0) = (0.5, 0.3,−0.5)T .

4. Conclusions

In this paper, we discuss asymptotic stability of nonlinear impulsive control
systems with impulse time window. The stability conditions avoid solving linear
matrix inequalities. At the same time, we consider the nonlinear impulsive
control systems with impulse time window, disturbance input and bounded gain
error. Obviously, system (1.3) is more general and more applicable than [4, 5, 11,
18]. Finally, numerical examples demonstrate the effectiveness of the theoretical
results.
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Abstract. In this article, an effective recent analytical treatment is presented to solve
a certain class of nonlinear fractional integrodifferential equations of Volterra type based
on the residual error functions. The solution methodology of the fractional power series
(FPS) approach is to replace the n-term truncated solution by generalized fractional
power series to minimize the residual error function through the derivation of those
functions under the Caputo concept. Anyhow, the approximate solution is obtained
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directly in a rapidly convergent fractional power series without needed to linearization,
perturbation, or discretization. Numerical examples are performed to show the validity
and reliability of the FPS method. Numerical analysis of the results indicates that the
RPS approach is simple, efficient and systematic tool in solving fractional nonlinear
issues arising in applied mathematics, physics and engineering.

Keywords: fractional derivative, residual power series method, nonlinear fractional
models, integro-differential equations.

1. Introduction

The fractional differentiation and integration theory is indeed a generalization
of ordinary calculus theory that deals with differentiation and integration to
an arbitrary order, which is utilized to describe various real-world phenomena
arising in natural sciences, applied mathematics, and engineering fields with
great applications for these tools, for instance, fractional fluid-dynamic traffic,
economics, solid mechanics, viscoelasticity, the nonlinear oscillation of earth-
quakes, control theory [1-8]. The major cause behind this is that- modeling
of a specific phenomenon doesn’t depend only at the time instant but also the
historical state, so the fractional differential and integral operators superb tool
to describe the hereditary and memory properties for different engineering and
physical phenomena. However, several mathematical forms of above-mentioned
issues contain nonlinear fractional integro-differential equations (FIDEs) [9-11].
Since most fractional differential and integro-differential equations cannot be
solved analytically, thus it is necessary to find an accurate numerical and an-
alytical methods to deal with the complexity of fractional operators involving
such equations. Anyhow, in recent times, many experts have devoted their
interest in finding solutions of the fractional integro-differential equations and
other nonlinear differential equations utilizing different analytic-numeric meth-
ods [12-17]. The Adomian decomposition method, variational iteration method,
homotopy perturbation method, Taylor expansion method, multistep approach,
and reproducing kernel method are powerful and reliable numerical tools for
handling many real-world problems [18-23].

The basic goal of the present work is to introduce a recent analytic-numeric
method based on the use of residual power series technique for obtaining the ap-
proximate solution for a class of nonlinear fractional Volterra integro-differential
equations in the form

(1) Dβ
a+
φ(t) +

∫ t

0
h(t, s)(φ(s))rds = f(t), 0 < β ≤ 1, r ≥ 2,

with the initial condition

(2) φ(0) = φ0,

where Dβ
a+

denotes the Caputo fractional derivative, f(t) and h(t, s) are smooth
functions. Here, φ(t) is unknown analytic function to be determined.
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The fractional power series (FPS) method is a recent analytic-numeric treat-
ment method based on power series expansion, which is easy and applicable to
find the series solutions for several types of the non-linear differential equation
and integro-differential equations without being linearized, discretized, or ex-
posed to perturbation [24-27]. The RPS method has been successfully applied
to solve linear and non-linear ordinary, partial and fuzzy differential equations
for more details, see [28-30].

The rest of the current paper is as follow: In next section, we introduce
some essential preliminaries related to fractional calculus and fractional power
series representations. In Section 3, we illustrate the solution methodology by
using the RPS technique. In Section 4, illustrative problems are provided to
demonstrate the simplicity, accuracy, and performance of the present method.
Finally, we give a concluding remark in the final section.

2. Preliminaries

In this section, we recall some definitions and basic results concerning fractional
calculus and fractional power series representations.

Definition 2.1. The Riemann-Liouville fractional integral operator of order β,
over the interval [a, b] for a function φ ∈ L1[a, b] is defined by

J β
a+
φ(t) =

{
1

Γ(β)

∫ t
a

φ(τ)
(t−τ)1−β , 0 < τ < t, β > 0

φ(t), β = 0

For β1, β2 ≥ 0, and q ≥ −1, the operator J β
a+

has the following basic prop-
erties:

1) J β
a+

(t− a)q = Γ(q+1)
Γ(q+1+β)(t− a)

q−β.

2) J β1
a+
J β2
a+
φ(t) = J β1+β2

a+
φ(t).

3) J β1
a+
J β2
a+
φ(t) = J β2

a+
J β1
a+
φ(t).

Definition 2.2. For β > 0, a, t, β ∈ R The following fractional differential
operator of order β

Dβ
a+
φ(t) =

1

Γ(n− β)

∫ t

a

φ(n)(τ)

(t− τ)β−n+1
dτ,

n − 1 < β < n for n ∈ N, is called the Caputo fractional derivative of order β.
In case β = n, then Dβ

a+
φ(t) = dn

dtnφ(t).

The following are some interesting properties of the operator Dβ
a+
φ(t):

1) For any constant c ∈ R, then Dβ
a+
c = 0.
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2) J β
a+
Dβ
a+
φ(t) = φ(t).

3) J β
a+
Dβ
a+
φ(t) = φ(t)−

∑n−1
k=0

φ(k)(a+)
k! (t− a)k.

Definition 2.3. The representation of the fractional power series (FPS) about
t = t0 is given by

∑∞
m=0 cm(t− t0)mβ = c0+ c1(t− t0)β+ c1(t− t0)2β+ ..., where

0 ≤ n− 1 < β ≤ n and t ≥ t0 and cm’s are the coefficients of the series.

Remark 2.1. Let R be the radius of convergence for the FPS
∑∞

m=0 cm(t −
t0)

mβ, then the following are only the possibilities for the FPS

1) For all t = t0, the series
∑∞

m=0 cm(t− t0)mβ converges with R.

2) The series converges for all t > t0 whenever the radius of convergence is
equal to ∞.

3) The series converges for t ∈ [t0, t0 + R), for some positive R and diverges
for t > t0 +R.

Theorem 2.1. Assuming that the FPS expansion
∑∞

m=0 cm(t− t0)mβ 0 ≤ n−
1 < α ≤ n, has radius of convergence R > 0. If function φ(t) is defined by
f(t) =

∑∞
m=0 cm(t− t0)mβ, then for t0 < t < t0 +R, we have the following:

1) Dβt0f(t) =
∑∞

m=0 cm
Γ(mβ+1)

Γ((m−1)β+1)(t− t0)
(m−1)β;

2) J βt0f(t) =
∑∞

m=0 cm
Γ(mβ+1)

Γ((m+1)β+1)(t− t0)
(m+1)β

Proof. For the first part, by using the definition of the Caputo fractional deriva-
tive and certain properties of the operator Dβt0 , we conclude that

Dβt0φ(t) =
1

Γ(n− β)

∫ t

t0

φ(n)(ε)

(t− ε)β−n+1
dε

=
1

Γ(n− β)

∫ t

t0

(t− ε)n−β−1

(
dn

dtn

∞∑
m=0

cm(ε− t0)mβ
)
dε

=

∞∑
m=1

cm
1

Γ(n− β)

∫ t

t0

(t− ε)n−β−1

(
dn

dtn
(ε− t0)mβ

)
dε(3)

=

∞∑
m=0

cm
Γ(mβ + 1)

Γ((m− 1)β + 1)
(t− t0)(m−1)β.

For the second part, apply the Riemann-Liouville fractional integral operator
J βt0 and by using the property J β

a+
(t − a)q = Γ(q+1)

Γ(q+1+β)(t − a)
q−β, we conclude

that

J βt0φ(t) =
1

Γ(β)

∫ t

t0

φ(ε)

(t− ε)1−β
dε =

1

Γ(β)

∫ t

t0

(t− ε)β−1

( ∞∑
m=0

cm(ε− t0)mβ
)
dε
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=

∞∑
m=0

cm

(
1

Γ(β)

∫ t

t0

(t− ε)β−1(ε− t0)mβ
)
dε =

∞∑
m=1

cmJ βt0(t− t0)
mβ(4)

= J βt0f(t) =
∞∑
m=0

cm
Γ(mβ + 1)

Γ((m+ 1)β + 1)
(t− t0)(m+1)β.

Theorem 2.2. Assuming that Dmβt0 = Dβt0 .D
β
t0
...Dβt0 (m-times)and φ(t) has the

following representation of the FPS at t = t0

φ(t) =
∞∑
m=0

cm(t− t0)mβ

where 0 ≤ n − 1 < β ≤ n, t0 < t < t0 + R, φ(t) ∈ C[t0, t0 + R) and Dmβt0 φ(t) ∈
C[t0, t0 +R), for m = 0, 1, 2, ... then the coefficients cm is given as follows cm =
Dmβ

t0
φ(t0)

Γ(mβ+1) .

3. Construction solution by RPS algorithm

The purpose of this section is to construct FPS solution for non-linear frac-
tional Volterra integro-differential equations (1) and (2) by substitute its FPS
expansion among its truncated residual function.

The RPS algorithm proposed the solution of Eqs. (1) and (2) about a = 0
has the following FPS expansion:

(5) φ(t) =
∞∑
m=0

cm
Γ(mβ + 1)

tmβ.

For obtaining the approximate values of (5), consider the following k-th FPS
approximate solution

(6) φk(t) =

k∑
m=0

cm
Γ(mβ + 1)

tmβ.

Clearly, if m = 0, φ(0) = φ0. So, the expansion (6) can be written as

(7) φk(t) = φ0 +

k∑
m=1

cm
Γ(mβ + 1)

tmβ.

Define the so-called the residual function for equations (1) and (2) as follows:

(8) Res(t) = Dβ
0+
φ(t) +

∫ t

0
h(t, s)(φ(s))rds− f(t),
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and the following k-th residual function

(9) Resk(t) = Dβ0+φk(t) +
∫ t

0
h(t, s)(φk(s))

rds− f(t).

As in [31-36], some useful properties of residual function

1) limk→∞Resk(t) = Res(t) = 0, for each t ∈ (0, 1).

2) Dmβ
0+
Res(0) = Dmβ

0+
Resk(0), for each m = 0, 1, 2, ...k.

For obtaining the coefficients cm,m = 0, 1, 2, , k, solve the solution of the
following relation:

(10) D(k−1)β
0+

Resk(0) = 0, k = 1, 2, 3, ...

Lemma 3.1 Assuming that φ(t) ∈ C[t0, t0 + R),R > 0,Djβ
t0
φ(t) ∈ C[t0, t0 +

R), 0 < β ≤ 1. Then for any j ∈ N, we have(
J jβt0 D

jβ
t0

)
φ(t)−

(
J (j+1)β
t0

D(j+1)β
t0

)
φ(t) =

Djβt0 φ(t)
Γ(jβ + 1)

(t− t0)jβ .

Proof. From the properties of the fractional integral operator, it follows that(
J jβt0 D

jβ
t0

)
φ(t)−

(
J (j+1)β
t0

D(j+1)β
t0

)
φ(t)

=
(
J jβt0 D

jβ
t0

)
φ(t)−

(
J βt0J

jβ
t0
Djβt0 D

β
t0

)
φ(t)

=
(
J jβt0 D

jβ
t0

)
φ(t)−

(
J βt0(J

jβ
t0
Djβt0 )D

β
t0

)
φ(t)(11)

= J jβt0
[(
Djβt0 φ(t)

)]
−
(
J jβt0 D

jβ
t0

)(
Dβt0
)
φ(t),

Hence, for
(
J jβt0 D

jβ
t0

)(
Dβt0
)
φ(t), one can obtain(

J jβt0 D
jβ
t0

)
φ(t)−

(
J (j+1)β
t0

D(j+1)β
t0

)
φ(t)

= J jβt0
[(
Djβt0 φ(t)

)
−
(
Djβt0 φ(t)

)
+Djβt0 φ(t)

]
(12)

= J jβt0
[
Djβt0 φ(t)

]
=
Djβt0 φ(t0)
Γ(jβ + 1)

(t− t0)jβ

with c = Djβt0 φ(t0)

Theorem 3.1. If φ(t) has the FPS of (8) with R > 0, such that φ(t) ∈ C[t0, t0+
R > 0),Djβt0 φ(t) ∈ C(t0, t0 +R) for j = 0, 1, 2, ..., N + 1. Then,

(13) φ(t) = φN (t) +RN (ζ),

where φN (t) =
∑N

j=0

Djβ
t0
φ(t0)

Γ(jβ+1) (t− t0)
jβ and RN (ζ) =

∑N
j=0

D(N+1)β
t0

φ(t0)

Γ((N+1)β+1)(t− t0)
jβ,

for some ζ ∈ (t0, t)
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Proof. From the properties of fractional operators, we have

φ(t) =

N∑
j=0

[(
J jβt0 D

jβ
t0

)
φ(t)−

(
J (j+1)β
t0

D(j+1)β
t0

)
φ(t)

]
.

By using Lemma 3.1, it follows

(14) φ(t)−
(
J (N+1)β
t0

D(N+1)β
t0

)
φ(t) =

N∑
j=0

Djβt0 φ(t0)
Γ(jβ + 1)

(t− t0)jβ .

So, φ(t) =
∑N

j=0

Djβ
t0
φ(t0)

Γ(jβ+1) (t− t0)
jβ +

(
J (N+1)β
t0

D(N+1)β
t0

)
φ(t). But(

J (N+1)β
t0

D(N+1)β
t0

)
φ(t) = J (N+1)β

t0

(
D(N+1)β
t0

)
φ(t)

=
1

Γ((N + 1)β)

∫ t

0
D(N+1)β
t0

φ(τ)(t− τ)(N+1)β−1dτ(15)

=
D(N+1)β
t0

φ(t0)

Γ((N + 1)β)

∫ t

0
(t− τ)(N+1)β−1dτ,

by the MVT of integrals

(16)
D(N+1)β
t0

φ(t0)

Γ((N + 1)β)

(t− t0)(N+1)β
t0

((N + 1)β)
=
D(N+1)β
t0

φ(t0)

Γ((N + 1)β) + 1
(t− t0)(N+1)β.

Remark 3.1. The representation of φN (t) in (13) gives an approximation

of φ(t), and RN (ζ) is remainder term. Furthermore, if | D(N+1)β
t0

φ(t0) |< M
on[t0, t0 +R), then the upper bound of the error can be computed by

|RN (ζ)| = sup
t∈[t0,t0+R]

M(t− t0)(N+1)β

Γ(N + 1)β + 1
.

Remark 3.2. To solve the fractional IVP in (1) and (2) by the FPS method,
let

(17) φN (t) =
N∑
n=0

cn
tnβ

Γ(nβ + 1)
,

with radius of convergence R0 > 0. If φ(t) ∈ C[0,R0),Djβt0 φ(t) ∈ C(0,R0) then
φ(t) = φN (t) +RN (ζ).

Algorithm 3.1. To find the coefficients cm,m = 1, 2, 3, k, in (7), do the follow-
ing steps:
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Step 1: Substitute the expansion (6) function φk(t) into the k-th residual resid-
ual function (7) such that

Resk(t) = Dβa+

(
φ0 +

k∑
m=1

cm
tmβ

Γ(mβ + 1)

)
(18)

+

∫ t

0
h(t, s)

(
φ0 +

k∑
m=1

cm
tmβ

Γ(mβ + 1)

)r
ds− f(t).

Step 2: Find the relation of fractional formula D(k−1)β
t0

of Resk(t) at t = t0.

Step 3: Do the following:

For k = 1, obtain Res1(t)
∣∣∣
t=0

= 0.

For k = 2, obtain Dβ
0+
Res2(t)

∣∣∣
t=0

= 0.

...

For k = m, obtain Dmβ
0+
Resm(t)

∣∣∣
t=0

= 0.

Step 4: Solve the obtained system D(k−1)β
0+

Resk(0), k = 1, 2, 3, ....

Step 5: Substitute the values of cm back into Eq. (4) and then STOP.

4. Numerical examples

In this section, we demonstrate the efficiency, accuracy of the RPS approach
by applying to two nonlinear fractional VIDEs. All numerical calculations are
performed using Mathematica 10.

Example 4.1. Consider the following nonlinear fractional VIDE

(19) Dβ
0+
φ(t) = et +

t

3
(1− e3t) +

∫ t

0
et−s(φ(s))3ds, 0 < β ≤ 1,

with the initial condition

(20) φ(0) = 1.

Here, the exact solution at β = 1 is given by φ(t) = et.

Using the FPS algorithm, The k-th residual function Resk(t) is given by

(21) Resk(t) = Dβ0+φ(t)−
∫ t

0
et−s(φk(s))

3ds−
(
et +

t

3
(1− e3t)

)
,

where φk(t) has the form

φk(t) = 1 +

k∑
m=1

cm
tmβ

Γ(mβ + 1)
,
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Consequently,

Resk(t) = Dβ0+

(
1 +

k∑
m=1

cm
tmβ

Γ(mβ + 1)

)

−
∫ t

0
et−s

(
1 +

k∑
m=1

cm
tmβ

Γ(mβ + 1)

)3

ds−
(
et +

t

3
(1− e3t)

)
,(22)

The absolute errors are listed in Table 1. The results obtained by the RPS
method show that the exact solutions are in good agreement with approximate
solutions at β = 1, n = 6 and step size 0.2. While Table 2 show approximate
solutions at different values of β such that β ∈ 1, 0.9, 0.8, 0.7 with step size
0.16. From the table, one can be found that the RPS method provides us with
an accurate approximate solution, which is in good agreement with the exact
solutions for all values of t in [0, 1].

Table 1. The numerical results of Absolute error for Example 4.1 at β = 1.

t Exact solution Numerical solution Absolute error

0.2 1.221402758160169 1.2214027555555556 2.60461× 10−9

0.4 1.491824697641270 1.4918243555555555 3.42085× 10−7

0.6 1.822118800390509 1.8221128000000000 6.00039× 10−6

0.8 2.225540928492468 2.2254947555555558 4.61729× 10−5

Table 2. Numerical results for Example 4.1 for different values of β.

t 6th FPS solution

β = 1 β = 0.9 β = 0.8 β = 0.7

0.16 1.1735108704 1.2236588706 1.2896293585 1.3781327965
0.32 1.3771276933 1.4620068483 1.5701199217 1.7112052001
0.48 1.6160731635 1.7354009578 1.8854925107 2.0791905574
0.64 1.8964714019 2.0527277406 2.2480109650 2.4982975959
0.80 2.2254947555 2.4227191207 2.6681456160 2.9806767189
0.96 2.6115273760 2.8549680620 3.1566853797 3.5379276118

Example 4.2. Consider the following nonlinear fractional VIDE

(23) Dβ
0+
φ(t) =

∫ t

0
cost− s(φ(s))2ds− 2

3
sin(t)(2 + cos(t)), 0 < β ≤ 1,

with the initial condition

(24) φ(0) = 1.
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Here, the exact solution is φ(t) = cos(t) for β = 1.

Using the FPS algorithm, The k-th residual function Resk(t) is given by

(25) Resk(t) = Dβ0+φk(t)−
∫ t

0
cos(t− s)(φk(s))2ds+

2

3
sin(t)(2 + cos(t)),

where φk(t) has the form

φk(t) = 1 +
k∑

m=1

cm
tmβ

Γ(mβ + 1)
,

Consequently,

Resk(t) = Dβ0+

(
1 +

k∑
m=1

cm
tmβ

Γ(mβ + 1)

)

−
∫ t

0
cos(t− s)

(
1 +

k∑
m=1

cm
tmβ

Γ(mβ + 1)

)2

ds+
2

3
sin(t)(2 + cos(t)),

The absolute errors are given in Table 3. The results obtained by the FPS
method show that the exact solutions are in good agreement with approximate
solutions at β = 1, n = 8 and step size 0.25. While Table 4 show approximate
solutions at different values of β such that β = 1, 0.95, 0.85, and β = 0.75 with
step size 0.2. In Figure 1, the behavior of the 8th FPS-approximation is plotted
for different values of β in [0, 1], where β = 1, 0.95, 0.85, and β = 0.75. From
these results, it can be observed that the behavior of the approximate solutions
for different values of β is in good agreement with each other that depends on
the fractional order β.

Table 3. The numerical results of Absolute error for Example 4.2 at β = 1.

t Exact solution Numerical solution Absolute error

0.25 0.9689124217106447 0.9689124217109074 2.62679× 10−13

0.50 0.8775825618903728 0.8775825621589781 2.68605× 10−10

0.75 0.7316888688738209 0.7316888843263899 1.54526× 10−8

1.0 0.5403023058681397 0.5403025793650793 2.73497× 10−7

Table 4. Numerical results for Example 4.1 for different values of β.

t 6th FPS solution

β = 1 β = 0.95 β = 0.85 β = 0.75

0.2 0.98006657784 0.97441161411 0.95844541415 0.93403621799
0.4 0.921060994032 0.90575062873 0.86795945799 0.82005645947
0.6 0.82533561657 0.80058551593 0.74520770139 0.68453141148
0.8 0.69670673879 0.66520694561 0.60100540330 0.54042995454
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Figure 1: FPS-solution plots of Example 4.2 for different values of β.

5. Concluding remarks

The present paper aims to solve a class of nonlinear fractional Volterra integro-
differential equations of order β, 0 < β ≤ 1, based on the use of RPS algorithm.
The solution methodology depends on the constructing of the residual func-
tion and applying the generalized Taylor formula under the Caputo fractional
derivative. The proposed algorithm provides the solutions in the form of rapidly
convergent series with no need linearization, limitation on the problems nature,
sort of classification or perturbation. Graphical and numerical results are per-
formed by Mathematica 10. The results demonstrate the accuracy, efficiency and
the capability of the present method. Therefore, the RPS algorithm is reliable,
effective, simple, straightforward tool for handling a wide range of nonlinear
fractional integro-differential equations.
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Abstract. This paper studies the dynamics of a SIRS epidemic model with varying
population size and vaccination in a complex network. Using an analytical method, we
mainly investigate the stability of the model according to the threshold R0. That is, if
R0 is less than one, then the disease will die out. Alternatively, the system admits a
unique endemic equilibrium which is globally asymptotically stable ifR0 > 1. Moreover,
we investigate the case when R0 = 1. Finally, some numerical simulations are provided
to illustrate the effectiveness of the theoretical results.

Keywords: SIRS model, vaccination, stability, complex network.

1. Introduction

In order to prevent and understand the spreading of diseases, mathematical epi-
demic models have been developed. Based on the pioneering work by Kermark
and Mckendrick [9], Many researches have studied the spread of infectious dis-
eases in a population by compartmental models such as SIS, SIR, SIRS, SEIR
or SVIS, see for instance [5, 10, 19, 11, 12]. Arino et al [2], incorporated vacci-

∗. Corresponding author
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nation of both newborns and susceptible individuals into an SIRS model. They
shown that a backward bifurcation leading to bistability can occur depending
to the efficacy of the vaccine. In [4], Onofrio studied the use of a pulse vac-
cination strategy to eradicate infectious diseases. However, the early models
were presented on homogeneous networks which implies that all individuals are
equally likely to contact each other. Obviously, this assumption is unrealistic in
some sense because physical contacts between individuals vary with each indi-
vidual. To deal with the effect of contact heterogeneity, another approach came
to analyze the spreading of diseases using the complex network theory. In a
complex network, each node represents an individual in its corresponding epi-
demiological state, and each edge between two nodes stands for an interaction
that may allow disease transmission. Several forms of computer-generated net-
works have been studied in the context of disease transmission. Each of these
idealized networks can be defined in terms of how individuals are distributed
in space and how connections are formed. One of the most studied network is
scale-free network, see for instance [3, 7, 15, 20]. Scale-free network provides
a means of achieving extreme levels of heterogeneity. In such networks nodes
degree followed the power-law distribution. Namely, P (k) ∼ k−γ , the parame-
ter γ must be larger than zero to ensure a finite average connectivity < k >.
One special case of scale-free networks is the Barabasi Albert (BA) model [3]. In
this model P (k) ∼ k−3. It incorporates two important general concepts: growth
and preferential attachment. Growth means that the number of nodes in the
network increases over time. Preferential attachment means that the more con-
nected a node is, the more likely it is to receive new links. Scale-free networks
can be constructed dynamically by adding new individuals to a network one by
one with a connection mechanism that imitates the natural formation of social
contacts. In the preferential attachment model of Barabasi Albert [3], the ex-
istence of individuals of arbitrarily large degree means that there is no level of
random vaccination that is sufficient to prevent an epidemic [1, 17, 20]. On the
other hand, when there is some upper limit imposed on the degree of individuals
[21], or when a scale-free network is generated by nearest neighbor attachment
within a lattice [22], it becomes possible to control infection through random
vaccination [8]. In addition, Li et al [13] proposed a SIRS network-based model
in constant population size and studied the global dynamics through theoretical
analysis and numerical simulation.
In this paper, based on the previous works, we will study a SIRS epidemic
model on the scale-free networks with vaccination in a non-constant population
including births and deaths, where a fraction q of the newly born individuals
are vaccinated at birth . Due to the complexity of network structure, the nodes
in network are divided into n classes with respect to their degrees, where n de-
notes the maximum degree of the network. That is to say that the nodes i and
j belong to the k-th class if they both have degree k , where k ∈ {1, 2, ..., n}.
So, the dynamical behaviour of our model can be described as
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(1)


dSk
dt = (1− q)Λ− (µ1 + ν)Sk − βkΘSk + γRk,
dIk
dt = −(µ2 + λ)Ik + βkΘSk,
dRk
dt = qΛ− (µ3 + γ)Rk + νSk + λIk,

where the initial states satisfy

(2) Sk(0), Ik(0), Rk(0) > 0 and Sk(0) + Ik(0) +Rk(0) ≤
Λ

µ
, k = 1, 2, ..., n.

Denote the meaningful domain for system (1) by

∆ = {(S1, I1, R1, ..., Sn, In, Rn) ∈ R3n
+ , Sk + Ik +Rk ≤

Λ

µ
, k = 1, 2, ..., n}.

The meaning of the variables and parameters in system (1) is as follows. Sk(t),
Ik(t) and Rk(t) represent the relative densities of the susceptible, infected and
recovered nodes with degree k, Λ is the birth rate (and q ∈ [0, 1] is a per-
centage of new born vaccinated children). µ1, µ2, and µ3 represents the death
rates of susceptible, infected and recovered individuals, respectively. β is the
infection coefficient, λ is the rate at which the infective individuals become re-
covered, ν is the proportional coefficient of vaccinated for susceptible, and γ
is the average loss of immunity rate. Also, it is assumed that the connectiv-
ity of nodes on the network is uncorrelated, thus, the probability that an edge
points to an infected node with degree k is proportional to kP (k)Ik(t) such

that Θ(t) =
∑n

k=1
kP (k)Ik(t)

<k> , where P (k) is the connectivity distribution and
< k >=

∑n
k=1 kP (k) is the average degree of the network.

The rest of this paper is organized as follows. In Section 2, we discuss the
positivity and boundedness of the solutions. Then, we establish the basic repro-
duction number and the existence of equilibrium points. Section 3 is devoted to
explore the convergence of solution of system (1) to the disease-free equilibrium
and the global stability of the endemic equilibrium. Finally, conclusions and
simulations are drawn in Section 4.

2. Positivity of solutions and the epidemic threshold

In this section, we will provide some basic properties of system (1). First we
establish that the domain ∆ is positively invariant with respect to system (1).

Lemma 2.1. Let (S1, I1, R1, ..., Sn, In, Rn) be the solution of system (1) with
initial conditions (2) and Θ(0) > 0. Then, the set ∆ is positively invariant for
model (1) and Θ(t) > 0 for all t > 0.

Proof. First, we will show Θ(t) > 0. In fact, from the second equation of
system (1) we have

(3)
dΘ(t)

dt
=

(
−(µ2 + λ) + β

n∑
k=1

k2P (k)Sk(t)

< k >

)
Θ(t).
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Then

Θ(t) = Θ(0) exp

(
− (µ2 + λ)t+

β

< k >

∫ t

0

n∑
k=1

k2P (k)Sk(s)ds

)
> 0.

On the other hand, we have Sk(0) > 0 for k = 1, ..., n. So, by continuity there
exists δ1 such that Sk(t) > 0 for t ∈ (0, δ1) and k = 1, ..., n.
Let δk = sup{τ > 0 : Sk(t) > 0, ∀t ∈ (0, τ)}. Now, we will show Sk(t) > 0 for all
t > 0 and k = 1, ..., n. To this end, we have to proof that δk =∞ for k = 1, ..., n.
Suppose not, so there existsm ∈ {1, ..., n} such that δm <∞. Then, Sm(δm) = 0
and Sm(t) > 0 for all t ∈ (0, δm). From the second equation of (1), we get
I ′m(t) + (λ + µ2)Im(t) > 0 for t ∈ (0, δm). Then, Im(t) > Im(0)e

−(λ+µ2)t ≥ 0
for t ∈ (0, δm). Since Im(t) > 0 and Sm(t) > 0 for all t ∈ (0, δm). It follows
R′
m(t) + (µ3 + γ)Rm(t) > 0 for t ∈ (0, δm), using the similar arguments to those

given for Im(t), we get Rm(t) > 0 for t ∈ (0, δm). By continuity of Rm(t) we
have Rm(δm) ≥ 0. Thus, S′

m(δm) = (1− q)Λ + γRm(δm) > 0. So, there exists
some t ∈ (0, δm) such that Sm(t) < 0. This is apparently a contradiction.
Consequently δk = ∞ for k = 1, ..., n, which means Sk(t) > 0 for all t > 0 and
k = 1, ..., n. Finally, by the second and the third equation of (1), we conclude
that Ik(t) > 0 and Rk(t) > 0 for all t > 0 and k = 1, ..., n.

Now, let denote Nk(t) = Sk(t) + Ik(t) +Rk(t) for all t ≥ 0 and k = 1, ..., n.
By summing the three equations of (1), we get

(4)

dNk(t)

dt
= Λ− µ1Sk − µ2Ik − µ3Rk
≤ Λ− µ(Sk + Ik +Rk)
≤ Λ− µNk(t),

where µ = min(µ1, µ2, µ3). Using the comparison principle of ODEs we deduce

Nk(t) ≤
Λ

µ
+ (Nk(0)−

Λ

µ
) exp(−µt).

Hence, Sk(t), Ik(t), Rk(t) ≤ Λ
µ for all t > 0 and k = 1, ..., n, which implies that

∆ is positively invariant.

Obviously, system (1) admits the disease-free equilibrium E0 = (S0, 0, R0, ..., S0,
0, R0) ∈ R3n, where

S0 =
((1− q)µ3 + γ)Λ

µ1(µ3 + γ) + νµ3
and R0 =

(qµ1 + ν)Λ

µ1(µ3 + γ) + νµ3
.

Now, we will investigate the existence of a positive equilibrium state in terms
of the number

R0 =
< k2 >

< k >

βS0

µ2 + λ
.
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Lemma 2.2. The system (1) admits a unique endemic equilibrium E∗ = (S∗
1 , I

∗
1 ,

R∗
1, ..., S

∗
n, I

∗
n, R

∗
n) if and only if R0 > 1.

Proof. By letting the right side of system (1) equal to zero, we get the following
equations

S∗
k =

(µ2 + λ)I∗k
βkΘ∗(5)

R∗
k =

q

µ3 + γ
Λ +

(
ν(µ2 + λ)

(µ3 + γ)βkΘ∗ +
λ

µ3 + γ

)
I∗k(6)

I∗k =
((1− q)µ3 + γ)βkΘ∗Λ

(µ2(µ3 + γ) + µ3λ)βkΘ∗ + (µ2 + λ)(µ1(µ3 + γ) + µ3ν)
,(7)

which determine the endemic equilibrium E∗ of system (1). We know that

Θ∗ =
∑
kP (k)I∗k
<k> . So, from (7) we get f(Θ∗) = 1, where

(8) f(x) =
1

< k >

n∑
k

((1− q)µ3 + γ)βk2P (k)Λ

(µ2(µ3 + γ) + µ3λ)βkx+ (µ2 + λ)(µ1(µ3 + γ) + µ3ν)
.

Since, f(0) = R0 and f is a decreasing function, the equation f(x) = 1 has
unique root if and only if R0 > 1.

3. Disease-free equilibrium dynamics

In this section, we will first prove that the solution of system (1) converges in
the mean to the disease-free equilibrium E0 when R0 < 1, and next we show
that under the same condition, the solution (Sk(t), Ik(t), Rk(t)) of system (1)
converges to (S0, 0, R0) for all k ∈ {1, ..., n}. Finally, we explore the crucial case
when R0 = 1.

3.1 Convergence in the mean

Theorem 3.1. If R0 < 1, then for all k ∈ {1, ..., n} we have

(9) lim
t→∞

1

t

∫ t

0
Sk(s)ds = S0, lim

t→∞

1

t

∫ t

0
Ik(s)ds = 0, lim

t→∞

1

t

∫ t

0
Rk(s)ds = R0.

Proof. From the second equation of (1) we get

Θ̇ = −(µ2 + λ)Θ + βΘ

∑
k2PkSk
< k >

.

Hence

d logΘ = −(µ2 + λ) + β

∑
k2PkSk
< k >

= −(µ2 + λ) + β

∑
k2PkS

0

< k >
+ β

∑
k2Pk(Sk − S0)

< k >

= −(µ2 + λ)(1−R0) + β

∑
k2Pk(Sk − S0)

< k >
.
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Using the following identities

(1− q)Λ = (µ1 + ν)S0 + γR0,

Λ = (µ3 + γ)R0 + νS0,

we have

Ṡk = −(µ1 + ν)(Sk − S0)− βkΘSk + γ(Rk −R0),(10)

Ṙk = −(µ3 + γ)(Rk −R0) + ν(Sk − S0) + λIk.(11)

So

µ3 + γ

γ
Ṡk + Ṙk =

−(µ3 + γ)

γ
(µ1 + ν)(Sk − S0)− βµ3 + γ

γ
kΘSk

+ν(Sk − S0) + λIk.

Then

µ3(µ1 + ν) + γµ1
γ

(Sk − S0) = −µ3 + γ

γ
Ṡk − Ṙk − β

µ3 + γ

γ
kΘSk + λIk.(12)

By integrating the above equality both sides from 0 to t we get∫ t

0
(Sk(s)− S0)ds =

γ

µ3(µ1 + ν) + γµ1

(
− µ3 + γ

γ
Sk(t) +

µ3 + γ

γ
Sk(0)

−Rk(t) +Rk(0)− β
µ3 + γ

γ
k

∫ t

0
Θ(s)Sk(s)ds

+λ

∫ t

0
Ik(s)ds)

)
,

which together with (2) implies∫ t

0
(Sk(s)− S0)ds ≤ γ

µ3(µ1 + ν) + γµ1

(
Λ

µ

(
1 +

µ3 + γ

γ

)
+ λ

∫ t

0
Ik(s)ds

)

, a0 + a1

∫ t

0
Ik(s)ds,(13)

where 
a0 =

γ

µ3(µ1 + ν) + γµ1

(
Λ

µ
(1 +

µ3 + γ

γ
)

)
a1 =

λγ

µ3(µ1 + ν) + γµ1
.

From (10) and (13) we have

logΘ(t)− logΘ(0) ≤ −(µ2 + λ)(1−R0)t+ βna0 + βa1n

∫ t

0
Θ(s)ds.



964 A. ASSADOUQ, H. EL MAHJOUR and A. SETTATI

Hence

Θ(t) exp

(
−βa1n

∫ t

0
Θ(s)ds

)
≤ Θ(0) exp(βna0) exp

(
− (µ2 + λ)(1−R0)t

)
.

Therefore

d −1
βa1n

exp
(
−βa1n

∫ t
0 Θ(s)ds

)
dt

≤ Θ(0) exp(βna0) exp
(
− (µ2 + λ)(1−R0)t

)
.

By integrating the above inequality both sides from 0 to t we obtain

exp

(
−βa1n

∫ t

0
Θ(s)ds

)
≥ 1

+
Θ(0)βa1n exp(βna0)

(µ2 + λ)(1−R0)

(
exp

(
− (µ2 + λ)(1−R0)t

)
− 1

)
.

Which implies

− βa1n
∫ t

0
Θ(s)ds

≥ log

(
1 +

Θ(0)βa1n exp(βna0)

(µ2 + λ)(1−R0)

(
exp(−(µ2 + λ)(1−R0)t)− 1

))
.

Then,

1

t

∫ t

0
Θ(s)ds

≤ −1
βa1nt

log

(
1 +

Θ(0)βa1n exp(βna0)

(µ2 + λ)(1−R0)

(
exp(−(µ2 + λ)(1−R0)t

))
.

Consequently, we have

(14) lim
t→∞

1

t

∫ t

0
Θ(s)ds = 0 and then lim

t→∞

1

t

∫ t

0
Ik(s)ds = 0, k ∈ {1, ..., n}.

By (3.1) we get

1

t

∫ t

0
(Sk(s)− S0)ds =

γ

µ3(µ1 + ν) + γµ1

(
−(µ3 + γ)

γ

(Sk(t)− Sk(0))
t

−Rk(t)−Rk(0)
t

− β (µ3 + γ)

γ
k
1

t

∫ t

0
Θ(s)Sk(s)ds

+λ
1

t

∫ t

0
Ik(s)ds

)
.



QUALITATIVE BEHAVIOR OF A SIRS EPIDEMIC MODEL WITH VACCINATION ... 965

Combining (Sk(t), Ik(t), Rk(t)) ∈ ∆ with (2) and (14) yields to lim
t→∞

Υ(t) = 0,

where

Υ(t) =
Sk(t)− Sk(0)

t
+
Rk(t)−Rk(0)

t
+

1

t

∫ t

0
Θ(s)Sk(s)ds.

Which, together with (14), implies

lim
t→∞

1

t

∫ t

0
(Sk(s)− S0)ds = 0, k ∈ {1, ..., n}.

Finally, from (11) one can easily deduce

lim
t→∞

1

t

∫ t

0
(Rk(s)−R0)ds = 0, k ∈ {1, ..., n}.

3.2 Pointwise convergence

Theorem 3.2. If R0 < 1, then for all k ∈ {1, ..., n} we have

lim
t→∞

Sk(t) = S0, lim
t→∞

Ik(t) = 0, and lim
t→∞

Rk(t) = R0.

Proof. Combining (9) and (10) leads to

lim
t→∞

sup
1

t
logΘ(t) ≤ −(µ2 + λ)(1−R0).

Hence, limt→∞Θ(t) = 0 which leads to limt→∞ Ik(t) = 0. Using (10), we obtain

(Sk(t)− S0)′ + (µ1 + ν)(Sk(t)− S0) = −βkΘ(t)Sk(t) + γ(Rk(t)−R0)(
(Sk(t)− S0)e(µ1+ν)t

)′
=
[
−βkΘ(t)Sk(t) + γ(Rk(t)−R0)

]
e(µ1+ν)t.

Integrating the above equality both sides from 0 to t yields to

Sk(t)− S0 = (Sk(0)− S0)e−(µ1+ν)t

+

(∫ t

0

(
− βkΘ(s)Sk(s) + γ(Rk(s)−R0)e(µ1+ν)s

)
ds

)
e−(µ1+ν)t.

So
lim
t→∞

sup(Sk(t)− S0) ≤
( γ

µ1 + ν

)
lim
t→∞

sup(Rk(t)−R0).

Similarly, we also get

lim
t→∞

sup(Rk(t)−R0) ≤
( ν

µ3 + γ

)
lim
t→∞

sup(Sk(t)− S0).

Consequently

lim
t→∞

Rk(t) = R0 and lim
t→∞

Sk(t) = S0, k ∈ {1, ..., n}
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Theorem 3.3. If ν = 0 and R0 = 1, then the solution (Sk(t), Ik(t), Rk(t)) of
system (1) converges to (S0, 0, R0) for all k ∈ {1, ..., n}.

Proof. Let ε > 0 such that ε < Θ(0). We define

τ1 = inf{t > 0, Θ(t) ≤ ε}, τ
′
= inf{t ≥ τ1, Θ(t) ≥ ε},

τ
′
m = inf{t ≥ τm, Θ(t) ≥ εm}, τm+1 = inf{τm ≤ t ≤ τ

′
m, Θ(t) ≤ εm+1}.

Let’s show that τm < ∞, ∀m ≥ 1. We will proceed by contradiction. Suppose
that τ1 =∞, so

(15) Θ(t) ≥ ε,∀t > 0.

Which implies that

(16) Γn(I(t)) ,
∑ k2Pk

< k >
Ik(t) > Θ(t) ≥ ε, ∀t > 0.

From the differential system (1), we have
(17)
d logΘ(t)

dt
= −(µ2 + λ)(1−R0) + β

∑ k2Pk
< k >

(Sk(t)− S0) , β Γn(S(t)− S0).

The 3rd equation of (1) implies that

(18) Rk(t)−R0 = (Rk(0)−R0)e−(µ3+γ)t + λ

∫ t

0
Ik(s)e

−(µ3+γ)(t−s)ds.

So

Γn(R(t)−R0) = Γn(R(0)−R0)e−(µ3+γ)t + λ

∫ t

0
Γn(I(s))e

−(µ3+γ)(t−s)ds.

It follows from (16) that

(19) Γn(R(t)−R0) ≥ Γn(R(0)−R0)e−(µ3+γ)t +
λε

µ3 + γ

(
1− e−(µ3+γ)t

)
.

On the other hand

d(Nk −N0) = −µ1(Nk −N0)− (µ2 − µ1)Ik − (µ3 − µ1)(Rk −R0).

Which leads to

Nk(t)−N0 = (Nk(0)−N0)e−µ1t − (µ2 − µ1)
∫ t

0
Ik(s)e

−µ1(t−s)ds

−(µ3 − µ1)
∫ t

0
(Rk(s)−R0)e−µ1(t−s)ds.(20)
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Then we get

Γn(N(t)−N0) = Γn(N(0)−N0)e−µ1t − (µ2 − µ1)
∫ t

0
Γn(I(s))e

−µ1(t−s)ds

−(µ3 − µ1)
∫ t

0
Γn(R(s)−R0)e−µ1(t−s)ds.

According to (16) and (19), we have

Γn(N(t)−N0) ≤ Γn(N(0)−N0)e−µ1t − µ2 − µ1
µ1

ε
(
1− e−µ1t

)
−(µ3 − µ1)Γn(R(0)−R0)

e−µ1t
(
1− e−(µ3+γ−µ1)t

)
µ3 + γ − µ1

−µ3 − µ1
µ3 + γ

λε

[
1

µ1

(
1− e−µ1t

)
−
e−µ1t

(
1− e−(µ3+γ−µ1)t

)
µ3 + γ − µ1

]
.(21)

In views of (17), we get

(22) d logΘ = β
(
Γn(N(t)−N0)− Γn(I(t))− Γn(R(t)−R0)

)
.

Substituting (19) and (21) into (22), we obtain

(23) d logΘ(t) ≤ −Hε+ F (ε, t).

Where

Hε = β
(µ2 − µ1)

µ1
ε+ β

(µ3 − µ1)λε
(µ3 + γ)µ1

+ βε,

and

F (ε, t) = β Γ(N(0)−N0)e−µ1t +
β(µ2 − µ1)εe−µ1t

µ1

−β(µ3 − µ1)Γn(R(0)−R0)e−µ1t

(
1− e−(µ3+γ−µ1)t

)
µ3 + γ − µ1

+

[
β(µ3 − µ1)λε

µ3 + γ

(
1

µ1
+

1− e−(µ3+γµ1)t

µ3 + γ − µ1

)]
e−µ1t

−βe−(µ3+γ)t
(
Γn(R(0)−R0) +

λε

µ3 + γ

)
.(24)

Since, there exists t0 such that t > t0 and F (ε, t) ≤ Hε
2 . Then, for t ≥ t0 we get∫ t

t0

d logΘ(s)ds ≤ −Hε
2

(t− t0).
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Which implies that Θ(t) ≤ Θ(0) e−
Hε
2
(t−t0) and then lim

t→∞
Θ(t) = 0. This contra-

dicts the assumption that in (15). Let’s suppose that τm < ∞ and τm+1 = ∞.
We have τ

′
m = ∞, which gives Θ(t) ≥ εm+1 for all t > τm. Then, by using

similar arguments to those given in the case when τ1 =∞, we get

Γn
(
N(t)−N0

)
≤ Γn

(
N(τm)−N0

)
e−µ1t − µ2−µ1

µ1
εm+1

(
1− e−µ1(t−τm)

)
(−(µ3−µ2)Γn(R(τm)−R0)e−µ1t)

(
1−e−(µ3+γ−µ1)(t−τm)

)
µ3+γ−µ1

−µ3−µ1
µ3+γ

λεm+1

[
1
µ1

(
1− e−µ1(t−τm)

)
−e−µ1t

(
1−e−(µ3+γ−µ1)(t−τm)

)
µ3+γ−µ1

]
.

By (23), we have

d logΘ(t) ≤ −Hεm+1 + F (εm+1, t− τm),

there exists t
′
0 such that t > t

′
0∨ τm and F (εm+1, t− τm) ≤ Hεm+1

2 . Which yields
to

(25)

∫ t

t
′
0∨τm

d log(Θ(s))ds ≤ −Hε
m+1

2
× (t− (t

′
0 ∨ τm)),

thus

(26) Θ(t) ≤ Θ(0) e−
Hεm+1

2
×(t−(t

′
0∨τm)).

Hence, Θ(t) −→ 0 as t −→ ∞, which contradicts the assumption that in (15).
Beside, τm < ∞ for all m in N. By construction, the sequence (τm)m∈N is
increasing. Hence, τm converges to τ∞ . Also, We have τ∞ = ∞ (otherwise
Θ(τm) = εm which leads to Θ(τ∞) = 0, contradiction with Θ(t) > 0 for all
t > 0).

Finally, let η > 0 and m0 =
[
log η
log ε

]
+ 1, where [.] denotes the integer

part. For all t ≥ τm0 , there exists m ≥ m0 such that τm ≤ t ≤ τm+1 and
Θ(t) ≤ εm ≤ εm0 ≤ εlog η/ log ε = η. So, Θ(t) converges to 0 and automatically
Ik(t) converges to 0 for all k ∈ {1, .., n}. It follows that

lim
t→∞

∫ t

0
Ik(s)e

−(µ3+γ)(t−s)ds = 0.

Which implies by (18) that Rk(t) converges to R
0 for all k ∈ {1, .., n}. Similarly

we obtain

lim
t→∞

∫ t

0
(Rk(s)−R0)e−µ1(t−s)ds = 0.

Then, From (20), one can deduce that Nk(t) converges to N
0 and it immediately

yields Sk(t) converges to S0. Finally, we have shown that (Sk(t), Ik(t), Rk(t))
converge towards to (S0, 0, R0) for all k ∈ {1, .., n}.
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4. Stability of the endemic equilibrium

In this section, We show the global asymptotical stability of the equilibrium E∗

of the system (1), by means of a suitable Lyapunov function.

Theorem 4.1. If R0 > 1 and the following assumptions hold

λ > ν
µ2 + µ3
µ1 + µ3

and γ <
4(µ1 + ν)

(
µ1 + µ3 − ν

λ(µ2 + µ3)
)
µ2

(µ1 + µ2)2
.

Then E∗ is globally asymptotically stable.

Proof. We consider the following Lyapunov function W =
∑4

i=1Wi, where

W1 =
a1
2

∑
k

kPk
< k > S∗

k

(Sk − S∗
k)

2, W2 = a1

(
Θ−Θ∗ −Θ∗ log

Θ

Θ∗

)
,

W3 =
a3
2

∑
k

kPk
< k > S∗

k

(Rk −R∗)2,W4 =
a4
2

∑
k

kPk
< k > S∗

k

(Sk − S∗
k + Ik − I∗k

+Rk −R∗
k)

2,

and a1, a3, a4 are positive constants to be determined suitably. We now give the
derivative of each of the previous functions.

W ′
1 +W ′

2 = a1
∑

k
kPk

<k>S∗
k
(Sk − S∗

k)
[
− µ1(Sk − S∗

k)− βkΘ(Sk − S∗
k)

−βkS∗
k(Θ−Θ∗) + γ(Rk −R∗

k)
]

+a1(Θ−Θ∗)β
∑

k
k2Pk
<k> (Sk − S∗

k)

= −a1(µ1 + ν)
∑

k
kPk

<k>S∗
k
(Sk − S∗

k)
2 − a1βΘ

∑
k

kPk
<k>S∗

k
(Sk − S∗

k)
2

+a1γ
∑

k
kPk

<k>S∗
k
(Sk − S∗)(Rk −R∗

k).

W ′
3 = a3

∑
k

kPk
<k>S∗

k
(Rk −R∗

k)
[
− (µ3 + γ)(Rk −R∗

k) + ν(Sk − S∗
k)

+λ(Ik − I∗k)
]

= −a3(µ3 + γ)
∑

k
kPk

<k>S∗
k
(Rk −R∗

k)
2

+a3ν
∑

k
kPk

<k>S∗
k
(Rk −R∗

k)(Sk − S∗
k)

+a3λ
∑

k
kPk

<k>S∗
k
(Rk −R∗

k)(Ik − I∗k).

W ′
4 = a4

∑
k

kPk
<k>S∗

k

(
Sk − S∗

k + Ik − I∗k +Rk −R∗
k

)
×(

− µ1(Sk − S∗
k)− µ2(Ik − I∗k)− µ3(Rk −R∗

k)
)
.
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So

W ′ =
∑

k
kPk

<k>S∗
k

[
− a1(µ1 + ν)(Sk − S∗

k)
2 − a4µ2(Ik − I∗k)2

−a4(µ1 + µ2)(Sk − S∗
k)(Ik − I∗k)

]
− a1βΘ

∑
k

kPk
<k>S∗

k
(Sk − S∗

k)
2

−
(
(µ3 + γ) + a4µ3

)∑
k

kPk
<k>S∗

k
(Rk −R∗

k)
2

+
[
a1γ + a3ν − a4(µ1 + µ3)

]∑
k

kPk
<k>S∗

k
(Sk − S∗

k)(Rk −R∗
k)

+
[
a3λ− a4(µ2 + µ3)

]∑
k

kPk
<k>S∗

k
(Rk −R∗

k)(Ik − I∗k).

Then

(27)

W ′ ≤ −a1(µ1 + ν)
∑ kPk

<k>S∗
k

(
Sk − S∗

k +
a4(µ1+µ2)
2a1(µ1+ν)

(Ik − I∗k)
)2

−
[
4a1a4(µ1+ν)µ2−

(
a4(µ1+µ2)

)2
4a1(µ1+ν)

]∑
k

kPk
<k>S∗

k
(Ik − I∗k)2

−
(
(µ3 + γ) + a4µ3

)∑
k

kPk
<k>S∗

k
(Rk −R∗

k)
2

+
[
a1γ + a3ν − a4(µ1 + µ3)

]∑
k

kPk
<k>S∗

k
(Sk − S∗

k)(Rk −R∗
k)

+
[
a3λ− a4(µ2 + µ3)

]∑
k

kPk
<k>S∗

k
(Rk −R∗

k)(Ik − I∗k).

Consequently, in order to get W ′ ≤ 0, the parameters a1, a3, and a4 should
satisfy

a1γ + a3ν − a4(µ1 + µ3) = 0,(28)

a3λ− a4(µ2 + µ3) = 0,(29)

4a1a4(µ1 + ν)µ2 −
(
a4(µ1 + µ2)

)2
4a1(µ1 + ν)

< 0.(30)

Therefore, from (28) and (29) we can choose a3 = a4
µ2+µ3
λ and a1 = a4

γ

(
µ1 +

µ3 − ν
λ(µ2 + µ3)

)
. Thus (30) holds when

(31) γ <
4(µ1 + ν)

(
µ1 + µ3 − ν

λ(µ2 + µ3)
)
µ2

(µ1 + µ2)2
.

So, it follows from (27) thatW ′ ≤ 0. Also, we haveW ′ = 0 if and only if Sk = S∗
k ,

Ik = I∗k and Rk = R∗
k for k = 1, 2, ..., n. According to the LaSalle invariant

principle [6], the unique endemic equilibrium state E∗ is globally asymptotically
stable. This completes the proof.

5. Simulation and discussion

In this section, several numerical examples are designed to illustrate the dynam-
ics of system (1). Using a preferential attachment algorithm, a BA network can
be generated following the methods in [3]. The schema of the scale-free network
with different sizes is illustrated in Figure 1.
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Figure 1: A Barabasi-Albert scale-free network of respectively 20, 150 and 350
nodes, it starts with m0 = 5 fully connected nodes, and then each
time a new node is added to the network with m = 2 links until the
network size is reached.

Example 1. Consider a scale-free network with 20 nodes, and the parameters
values Λ = 0.03, λ = 0.2, β = 0.01, µ1 = 0.08, µ2 = 0.08, µ3 = 0.05,, γ = 0.6
and ν = 0.015. In this situation R0 = 0.72 < 1. Hence, according to Theorem
(3.2) the solution of system (1) converges to E0, (see Figure 2).
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Figure 2: The time evolution of the densities of each state

Example 2. Figure (3) shows the evolution of infectives with several different
values of ν, respectively 0.1, 0.2, 0.25, 0.3, 0.35 and 0.4. We observe that the
values of I(t) eventually converge to corresponding equilibrium points at higher
speeds as the parameter ν grows, which reveal the important role of vaccination
in the stability of system (1).

Example 3. Figure (4) manifest the influence of network size in the time evo-
lution of I(t) of system (1). It is observed that the values of I(t) eventually
converge to corresponding equilibrium points at faster rates as the network size
increases.
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Figure 3: Time evolution of infectives with different values of ν.
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Figure 4: Time evolution of infectives with different network sizes (20, 30, and
50 nodes).

6. Conclusion

In this paper, we have studied an SIRS epidemic model with vaccination in
complex heterogeneous networks and where contacts between human are treated
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as a scale-free social network. We obtain a specific expression of the threshold
R0 through the existence of the endemic equilibrium. It is concluded that the
solution of the system (1) converges to the disease free equilibrium E0 if R0 <
1, which means from the biological point of view, the disease always dies out
eventually. Otherwise the system admits a unique endemic equilibrium, which
is globally asymptotically stable if R0 > 1. We have also treated the crucial
case when R0 = 1 and we have shown that (S1, I1, R1, ..., Sn, In, Rn) converges
consecutively to the disease free equilibrium E0 = (S0, 0, R0, ..., S0, 0, R0). To
confirm the accuracy of the theoretical analysis, several numerical simulations
are performed. Namely, We have found that the percentages of infectives will
increase in the early time and then decrease until achieve a steady state as
the parameter of vaccination ν increases. Also, we have shown the impact of
network size in the convergence of infectives to the steady states.
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Abstract. Let R be a ring, we associate a simple graph Φ(R) to R, with vertices
V (R) = R\{0, 1,−1}, where distinct vertices x, y ∈ V (R) are adjacent if and only if
either xy ̸= 0 or yx ̸= 0. In this paper, we prove that if Φ(R) is connected such that
R � Z2×Z4 then the diameter of Φ(R) is almost 2. Also, we will pay specific attention
to investigate the connectivity of certain rings such that, the ring of integers modulo
n,Zn is connected, reduced ring and matrix ring.

Keywords: ring, zero-divisor, connected graph, diameter.

Introduction

It is believed that studying the action of a ring or group on a graph is one of
the best comprehensible ways of analysing the structure of the rings or groups.
There are many researches appointing a graph on group or ring to study the
algebraic properties of that group or ring, for example, see [1, 2, 4, 5 and
10]. Suppose that R is a ring, the non-zero divisor graph, denoted by Φ(R)
has a vertex set V (R) = R\{0, 1,−1}, along with vertices x, y ∈ V (R) being
connected together on the condition of x ̸= y and either xy ̸= 0 or yx ̸= 0.
Therefore, R is domain if and only if Φ(R) is complete graph. Thus if R is
finite commutative ring with one such that Φ(R) is complete then R is a filed.

∗. Corresponding author
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This sort of graphs is inspired by the zero divisor graph which defined as the
directed graph Γ(R) such that its vertices are all non-zero zero-divisors of R
in which any two distinct vertices x and y, x −→ y is an edge if and only if
xy = 0. Several fundamental results concerning with the zero divisor graph can
be seen in [2].The main object of this paper is to study how the graph theoretical
properties of Φ(R) effect on the ring theoretical properties of R. We assume that
all graphs are simple graphs, which means they are undirected graphs with no
multiple edges or loops. By abuse of notation, we denote by V (R), the vertices
of a graph Φ(R). We also should mentioned that a graph Φ(R) is connected if
there is a path between any two distinct vertices in V (R). For vertices x and y
of V (R), let d(x, y) be the length of a shortest path from x to y. If no such path
exist we my let d(x, y) = ∞ , also d(x, x) = 0. Finally, the diameter of Φ(R)
is define as Diam(Φ(R)) = sup{d(x, y)|x and y are vertices of V (R)} for
more details see [5]. This paper is organized as follows: In section 1, we study
the non-zero divisor graph Φ(R) such that R is ring of integers modulo n,Zn.
In section 2, we prove that the diameter of the graph is almost 2. Moreover, we
investigate the non-zero divisor graph of reduced ring and thus of Boolean ring.
In section 3, we scrutinize the connectivity of the non-zero divisor graph for the
matrix ring.

1. The non-zero divisor graph of the ring of integers modulo n

This section dedicated to investigate the non-zero divisor graphs for the ring of
integers modulo n,Zn.

Lemma 1.1. V (R) has an invariable element a then Φ(R) is connected.

Proof. As a is invariable then there is b ∈ G such that ba = ab = 1. Let x in
V (R) if ax = 0 or xa = 0, then we have x = 0, which is a contradiction. Thus
|Deg(a)| = |V (R)|.

Now, for n /∈ 1, 2, 3, 6. Let (Zn)
× be the multiplicative group of integers

modulo n. Then its order is given by Euler’s phi function [9]

ϕ(n) =
∏s
i=1(p

δi
i −p

δi−1

i ) Such that n written uniquely as
∏s
i=1 p

δi
i , δi > 1 are

integers and pi < pi+1 are prime numbers. We should note that ϕ(n) represent
the number of invertible element in the ring of integers modulo n.

Lemma 1.2. For n > 6, we have ϕ(n) > 2.

Proof. We may write n as above, n =
∏s
i=1 p

δi
i . Thus ϕ(n) =

∏s
i=1(p

δi
i −p

δi−1

i ).
And one can see immediately that ϕ(n) = 2 if and only if there is j such that

p
δj
j − p

δj−1

j = 2 and
∏s
i=1i̸=j

(pδii − p
δi−1

i )=1. Which is impossible as n > 6.

Theorem 1.3. The ring of integers modulo n,Zn is connected if and only if
n /∈ {1, 3, 2, 6}
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Proof. By using Lemma 1.2 we get ϕ(n) > 2. Therefore, there is x ∈ (Zn)
× ∩

V (R) . And our result follow immediately by Lemma 1.1.

Now, by using MATLAB program [3] we create an algorithm aim to draw
Φ(Zn) for all n > 3 , and calculate the diameter of the graph. This algorithm
summarized as follows :

.
Algorithm 1.
Let zz: seat of the system
Let n: the order of the system
Let k = 0
Let no, Initial Conditions
For i←− n− 3 to nf Do
For j ←− n− 3 to nf Do
Read all Seats Value (n1, n2, ṅf )
Set ik ←−

∑n
i←−1 ik + 1

Set K(ik)←− zz(i) ∗ zz(j)
If mod(K(ik), n)←− = 0
Set w ←− [zz(i)zz(j)];
End if
End for
End for

.

Magma [7] is a computational algebra system support most research deal with
algebra. The following algorithm aim to calculate the diameter of the non-zero
divisor graph for a residue class ring Z/nZ ∼= Zn , n > 3 and the Cartesian
product of Zn×Zm. Implantations of the procedures associated with this algo-
rithm will be via magma packages. This algorithm employed for the Cartesian
product Zn × Zm, and for Zn, n > 3, we may take Zn ∼= Zn × Z1. Moreover,
in [8] one can see that Znm ∼= Zn × Zm if and only if g.c.d(m,n) = 1. The
algorithm is as follows:

.
Algorithm 2.
Let Zn ←− ResidueClassRing(n)
Let Zm ←− ResidueClassRing(m)
Let R←− CartesianProduct(Zn × Zm)
Let V (R)←− Set(R) diff {⟨0, 0⟩, ⟨1, 1⟩, ⟨n− 1,m− 1⟩}
Let Gr ←− Graph⟨V (R)|{}⟩
for x, y in S Do
if x ̸= y Then
if x ∗ y ̸= or y ∗ x ̸= 0 Then
Let Gr ←− Gr + {{V ertices(Gr)!x, V ertices(Gr)!y}}
End if
End if
End for
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.

To be familiar with non-zero divisor graph, we utilize the above algorithms
in the following examples:

Example 1.4. The non zero divisor graph of Z10 is describe as follows:

from above graph one can see that Diam(Φ(Z10) = 2.

Example 1.5. Φ(Z6) is disconnect:

Example 1.6. Another example of connected non-zero divisor graph is Φ(Z8)

Also, we should note that Diam(Φ(Z8) = 2.

Example 1.7. The non-zero divisor of Φ(Z12) is describe as follows: Further-
more, Diam(Φ(Z12) = 2.

On the other hand, easy calculating by using Algorithm 2 one can obtain the
next example which shows that Diam(Φ(Z2 × Z4)) = 3. Indeed. in the coming
section we going to prove that the only connected non-zero divisor graph of
diameter 3 is Φ(Z2 × Z4).

Example 1.8. The non-zero divisor graph of Z2×Z4. This graph with diameter
3 as we see below:
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2. Connectivity of the non-zero divisor graph

The results of this section related to connectivity of the graph. The first result
shows that diameter of the connected non-zero divisor graph is almost 2.

Theorem 2.1. Let R be a ring. If Φ(R) is a connected non-zero divisor graph
and R � Z2 × Z4. Then Diam(Φ(R)) 6 2.

Proof. Let x, y ∈ V (R), such that x ̸= y. If xy ̸= 0, then we done. So we may
assume that xy = 0 = yx. As Φ(R) is connected then there is a, b ∈ V (R), such
that d(x, a) = d(y, b) = 1. Which means either (ax ̸= 0 or xa ̸=) and (by ̸= 0 or
yb ̸= 0). Thus we have the following subcases:

1. If d(y, a) = 1 or d(x, b) = 1, so in both cases we have Diam(Φ(R)) 6 2.

2. If bx = xb = ay = ya = 0, let w = a ∓ b. Then it’s obvious that
d(x,w) = 1 = d(y, w). Thus we may assume that both a − b and a + b not in
V (R). Hence we need to consider the following subcases:

I.If a− b = 0 or a+ b = 0. Then ax = bx = 0. Which is a contradiction.

II. If a + b = 1 and a − b = 1. Note that with this conditions we have
ax = x, 2b = 0, 2a = 2 and by = y. Also we consider the following:

i. If x2 = 0. Then we consider the following cases:

• if y2 = 0, then we take q = y + 1, so that d(q, x) = d(q, y) = 1. Further-
more, this is not true if y = ∓2 multiply by a we get 0 = ay = 2a = 2,
but this means y = 0 which is a contradiction.

• if y2 ̸= 0, then x+1, x−1, y+a and y−a connect x with y and this is not
true if R � Z2×Z4. Indeed, in this we haveDiam(Φ(R)) = 3 as we showed
in Example 1.8. Else, we may take z ∈ V (R) such that z /∈ {x, y, a,−a, b}.
if d(z, x) = d(y, z) = 1 we done, if d(x, z) = 1, d(y, z) = 0 take z + b, and
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take z + a if d(x, z) = 0, d(y, z) = 1. Finally take z + 1 to connect x with
y in other cases.

ii. If x2 ̸= 0. Then we consider the following cases:

• if y2 = 0, then d(y + 1, x) = d(y + 1, y) = 1, also this not true if y = ∓2
, multiply by a we get 0 = ay = 2a = 2, but this mean y = 0 which is a
contradiction.

• if y2 ̸= 0, then x+ y ∈ V (R) connect x with y.

III. If a + b = −1 and a − b = −1, note that with this conditions we get
ax = −x, 2b = 0, 2a = −2, by = −y = y and 2y = 0. Then we may apply
similar argument as in case II to show that Diam(Φ(R))2.

IV. If a+b = −1 and a−b = 1, with these conditions we obtain ax = x, 2b =
b, 2a = 0, by = −y and 2x = 0. Also we consider the following cases:

i. If x2 = 0. Then we consider the following cases:

• if y2 = 0, then we take w = x+ 1 clearly that d(w, x) = d(w, y) = 1, also
this not true if x = ∓2, multiply by a we get 0 = bx = 2b = 2, but this
mean x = 0 which is a contradiction.

• if y2 ̸= 0, then x+1 and x−1 connect x with y, and this mean ax = 2a = 0,
again we get a contradiction.

ii. If x2 ̸= 0, then we consider the following:

• if y2 = 0 then y + 1, y − 1, x + b and x − b connect x with y. Moreover,
this is not true if R � Z2 ×Z4, which has diameter 3. Otherwise, we may
take z ∈ V (R) such that z /∈ {x, y, a,−a, b}. Now if d(z, x) = d(y, z) = 1
we done, if d(x, z) = 1, d(y, z) = 0 take z + b in this case, and take z + a
if d(x, z) = 0, d(y, z) = 1. Finally take z + 1 to connect x and y in other
cases.

• if y2 ̸= 0, then x+ y ∈ V (R) connect x and y.

V. If a+ b = 1 and a− b = −1, with this conditions we obtain ax = x, 2b =
b, 2a = 0, by = y and 2x = 0. Then we may apply similar argument as in case
IV to show that Diam(Φ(R)) 6 2.

The next theorem shows the connectivity of the reduced rings:

Theorem 2.2. Let R be a reduced ring such that |V (R)| > 3. Then Φ(R) is
connected.

Proof. Let x, y ∈ V (R), then if d(x, y) = 1, then we done. So we may let
d(x, y) ̸= 1, thus xy = yx = 0. In this, we need to consider the following
subcases:
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I. If R without one then x+ y connected x with y (if x+ y = 0 then x2 = 0
which is a contradiction as R is reduced)

II. If R with one, then if x+ y = 1. Since |V (R)| > 3, then there is z ̸= w ∈
V (R)�{x, y}. Again we have to consider the following subcases:

1. if zx = 0 = zy then z−1 connect x with y, and this not true if z = 2,
in this case z+1 will connect x with y also this is not true if z = −2.
If both cases not true, then we have 4=0, and this means z2 = 0,
which a contradiction.

2. if zx ̸= 0 ̸= zy, then z connected x with y.

3. if zx ̸= 0, zy = 0, then z + y connect x with y only if z + y ̸= −1. If
z + y = −1, then we get 2y = 0, x2 = x, z2 = −z and x = −z. Now
if w satisfy 1 or 2 then we done, else we have the following subcases:

i. if wy ̸= 0, wx = 0, then w + x connect x with y, and it is not
true if w + x = −1, and this lead to 2x = 0, y2 = y, w2 = −w
and y = −w, this means x = z, a contradiction.

ii. if wy = 0, wx ̸= 0, then we get w + y connect x with y, and it
is not true if w + y = −1, which yields that w + y = z + y, thus
w = z, a contradiction.

4. if zx = 0, zy ̸= 0, then similar as case II, 3, one can find a path
between x and y.

III. If R with one such that x+ y = −1. Then the proof is the same as in case
II.

The above theorem not always correct. Especially when |V (R)| = 3 . A very
obvious example can be seen in Example 1.5.

Corollary 2.3. The non-zero divisor graph of a Boolean rings is connected.

3. The non-zero divisor graph of a matrix ring

Let R be a ring. The next theorem illustrate the condition on R in order to get
the connectivity of matrix ring Mn(R), such that n ≥ 2.

Theorem 3.1. Let A,B ∈ V (M) such that d(A,B) ̸= 1. We aim to find
W ∈ V (M) connect A with B. First since A,B ∈ V (M), thus there are i, j, d
and k such that aij ̸= 0 and bdk ̸= 0.To do that we consider the following
subcases:

i. if aij = bdk, then W ∈ V (M), such that wji = 1 and zero otherwise,
connect A with B.
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ii. if n ̸= 2, and no there exist 0 ̸= aij = bij ̸= 0. Since A ̸= 0 and B ̸= 0.
Then W ∈ V (M), connected A with B such that wji = 1, wkd = 1 and
zero otherwise.

iii. if n = 2, and no there exist 0 ̸= aij = bij ̸= 0, similar as case ii, but
this not work if ij = 11, and dk = 22 or conversely, then W ∈ V (M),
connected A with B such that w11 = 1, w12 = 1 and zero otherwise.

The next theorem shows under what circumstances Φ(R) become connected when
R ring without one.

Theorem 3.2. Let R be a ring without one, such that deg(x) > 0 for all x ∈
V (R). Then the graph of Mn(R) is connected.

Proof. Let A,B ∈ V (M). If d(A,B) = 1wedone. so we may let d(A,B) ̸= 1.
Then since A,B are not equal to zero then there are i, j, k and d ∈ n such that
aij ̸= 0 and bdk ̸= 0. Because of deg(x) > 0 for all x ∈ V (R), then there are
w1, w2V (R), such that either aijw1 ̸= 0 and bkhw2 ̸= 0 or the other way around.
We aim to find W ∈ V (R) connect A with B. To do that we consider the
following cases:

i. if aijw1 ̸= 0 and bijw2 ̸= 0 then let W = {wjs = w1, wht = w2}, such that
t ̸= s and zero otherwise.

ii. if w1aij ̸= 0 and w2bij ̸= 0 then W = {wis = w1, wkt = w2}, such that
t ̸= s and zero otherwise.

iii. if w1aij ̸= 0 and bijw2 ̸= 0 then W = {wis = w1, wht = w2}, such that
t ̸= s and zero otherwise.

iv. if aijw1 ̸= 0 and w2bij ̸= 0 then W = {wjs = w1, wkt = w2}, such that
t ̸= s and zero otherwise.

In all cases we can find a path between A and B.

It can be shown that Theorem 3.2 not always true. To illustrate that we
give the following Exampe 4.1: Let R = {0, 2, 4, 6} ⊆ Z8, then the non-zero
divisor graph of M = Mn(R), such that n > 2, is disconnected. Indeed, if
we take A ∈ V (M) such that a11 = 4 and aij = 0 for all i = 2, 3 . . . , n and
j = 2, 3 . . . , n. Then AX = XA = 0 for all X ∈ V (M).

Corollary 3.3. Let R be a ring such that Φ(R) is connected then Φ(M) is
connected.
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