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On two new approaches in modular spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679–690

Mohammad Aladwan
Accrual based and real earning management association with dividends

policy “the case of Jordan” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691–707



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 41-2019 vii

B. Moeini, M. Asadi, H. Aydi, H. Alsamir and M.S. Noorani
C∗-algebra-valued M-metric spaces and some related fixed point results . . . . . . . . . . . . . . 708–723

Mohammad Aladwan
Fluctuations of stock price and revenue after the early adoption of

IFRS 15, “revenue from contracts with customers” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724–738



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS  –  N. 41-2019

Exchanges

Up to December 2015 this journal is exchanged with the following periodicals:

1. Acta Cybernetica - Szeged H
2. Acta Mathematica et Informatica Universitatis Ostraviensis CZ
3. Acta Mathematica Vietnamica – Hanoi VN
4. Acta Mathematica Sinica, New Series – Beijing RC
5. Acta Scientiarum Mathematicarum – Szeged H
6. Acta Universitatis Lodziensis – Lodz PL
7. Acta Universitatis Palackianae Olomucensis, Mathematica – Olomouc CZ
8. Actas del tercer Congreso Dr. Antonio A.R. Monteiro - Universidad Nacional del Sur Bahía Blanca AR
9. AKCE International Journal of Graphs and Combinatorics - Kalasalingam IND
10. Algebra Colloquium - Chinese Academy of Sciences, Beijing PRC
11. Alxebra - Santiago de Compostela E
12. Analele Ştiinţifice ale Universităţii “Al. I Cuza” - Iaşi RO
13. Analele Universităţii din Timişoara - Universitatea din Timişoara RO
14. Annales Academiae Scientiarum Fennicae Mathematica - Helsinki SW
15. Annales de la Fondation Louis de Broglie - Paris F
16. Annales Mathematicae Silesianae – Katowice PL
17. Annales Scientif. Université Blaise Pascal - Clermont II F
18. Annales sect. A/Mathematica – Lublin PL
19. Annali dell’Università di Ferrara, Sez. Matematica I
20. Annals of Mathematics - Princeton - New Jersey USA
21. Applied Mathematics and Computer Science -Technical University of Zielona Góra PL
22. Archivium Mathematicum - Brnö CZ
23. Atti del Seminario di Matematica e Fisica dell’Università di Modena I
24. Atti dell’Accademia delle Scienze di Ferrara I
25. Automatika i Telemekhanika - Moscow RU
26. Boletim de la Sociedade Paranaense de Matematica - San Paulo BR
27. Bolétin de la Sociedad Matemática Mexicana - Mexico City MEX
28. Bollettino di Storia delle Scienze Matematiche - Firenze I
29. Buletinul Academiei de Stiinte - Seria Matem. - Kishinev, Moldova CSI
30. Buletinul Ştiinţific al Universităţii din Baia Mare - Baia Mare RO
31. Buletinul Ştiinţific şi Tecnic-Univ. Math. et Phyis. Series Techn. Univ. - Timişoara RO
32. Buletinul Universităţii din Braşov, Seria C - Braşov RO
33. Bulletin de la Classe de Sciences - Acad. Royale de Belgique B
34. Bulletin de la Societé des Mathematiciens et des Informaticiens de Macedoine MK
35. Bulletin de la Société des Sciences et des Lettres de Lodz - Lodz PL
36. Bulletin de la Societé Royale des Sciences - Liege B
37. Bulletin  for Applied Mathematics - Technical University Budapest H
38. Bulletin Mathematics and Physics - Assiut ET
39. Bulletin Mathématique - Skopje Macedonia MK
40. Bulletin Mathématique de la S.S.M.R. - Bucharest RO
41. Bulletin of the Australian Mathematical Society - St. Lucia - Queensland AUS
42. Bulletin of the Faculty of Science - Assiut University ET
43. Bulletin of the Faculty of Science - Mito, Ibaraki J
44. Bulletin of the Greek Mathematical Society - Athens GR
45. Bulletin of the Iranian Mathematical Society - Tehran IR
46. Bulletin of the Korean Mathematical Society - Seoul ROK
47. Bulletin of the Malaysian Mathematical Sciences Society - Pulau Pinang MAL
48. Bulletin of Society of Mathematicians Banja Luka - Banja Luka BiH
49. Bulletin of the Transilvania University of Braşov - Braşov RO
50. Bulletin of the USSR Academy of Sciences - San Pietroburgo RU
51. Busefal - Université P. Sabatier - Toulouse F
52. Calculus CNR - Pisa I
53. Chinese Annals of Mathematics - Fudan University – Shanghai PRC

viii



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS  –  N. 41-2019

54. Chinese Quarterly Journal of Mathematics - Henan University PRC
55. Classification of Commutative FPF Ring - Universidad de Murcia E
56. Collectanea Mathematica - Barcelona E
57. Collegium Logicum - Institut für Computersprachen Technische Universität Wien A
58. Colloquium - Cape Town SA
59. Colloquium Mathematicum - Instytut Matematyczny - Warszawa PL
60. Commentationes Mathematicae Universitatis Carolinae - Praha CZ
61. Computer Science Journal of Moldova CSI
62. Contributi - Università di Pescara I
63. Cuadernos - Universidad Nacional de Rosario AR
64. Czechoslovak Mathematical Journal - Praha CZ
65. Demonstratio Mathematica - Warsawa PL
66. Discussiones Mathematicae - Zielona Gora PL
67. Divulgaciones Matemáticas - Universidad del Zulia YV
68. Doctoral Thesis - Department of Mathematics Umea University SW
69. Extracta Mathematicae - Badajoz E
70. Fasciculi Mathematici - Poznan PL
71. Filomat - University of Nis SRB
72. Forum Mathematicum - Mathematisches Institut der Universität Erlangen D
73. Functiones et Approximatio Commentarii Mathematici - Adam Mickiewicz University L
74. Funkcialaj Ekvaciaj - Kobe University J
75. Fuzzy Systems & A.I. Reports and Letters - Iaşi University RO
76. General Mathematics - Sibiu RO
77. Geometria - Fasciculi Mathematici - Poznan PL
78. Glasnik Matematicki - Zagreb CRO
79. Grazer Mathematische Berichte – Graz A
80. Hiroshima Mathematical Journal - Hiroshima J
81. Hokkaido Mathematical Journal - Sapporo J
82. Houston Journal of Mathematics - Houston - Texas USA
83. IJMSI - Iranian Journal of Mathematical Sciences & Informatics, Tarbiat Modares University, Tehran IR
84. Illinois Journal of Mathematics - University of Illinois Library - Urbana USA
85. Informatica - The Slovene Society Informatika - Ljubljana SLO
86. Internal Reports - University of Natal - Durban SA
87. International Journal of Computational and Applied Mathematics – University of Qiongzhou, Hainan PRC
88. International Journal of Science of Kashan University - University of Kashan IR
89. Iranian Journal of Science and Technology - Shiraz University IR
90. Irish Mathematical Society Bulletin - Department of Mathematics - Dublin IRL
91. IRMAR - Inst. of Math. de Rennes - Rennes F
92. Israel Mathematical Conference Proceedings - Bar-Ilan University - Ramat -Gan IL
93. Izvestiya: Mathematics - Russian Academy of Sciences and London Mathematical Society RU
94. Journal of Applied Mathematics and Computing – Dankook University, Cheonan – Chungnam ROK
95. Journal of Basic Science - University of Mazandaran – Babolsar IR
96. Journal of Beijing Normal University (Natural Science) - Beijing PRC
97. Journal of Dynamical Systems and Geometric Theory - New Delhi IND
98. Journal Egyptian Mathematical Society – Cairo ET
99. Journal of Mathematical Analysis and Applications - San Diego California USA
100. Journal of Mathematics of Kyoto University - Kyoto J
101. Journal of Science - Ferdowsi University of Mashhad IR
102. Journal of the Bihar Mathematical Society - Bhangalpur IND
103. Journal of the Faculty of Science – Tokyo J
104. Journal of the Korean Mathematical Society - Seoul ROK
105. Journal of the Ramanujan Mathematical Society - Mysore University IND
106. Journal of the RMS - Madras IND
107. Kumamoto Journal of Mathematics - Kumamoto J
108. Kyungpook Mathematical Journal - Taegu ROK
109. L’Enseignement Mathématique - Genève CH
110. La Gazette des Sciences Mathématiques du Québec - Université de Montréal CAN
111. Le Matematiche - Università di Catania I
112. Lecturas Matematicas, Soc. Colombiana de Matematica - Bogotà C
113. Lectures and Proceedings International Centre for Theorical Phisics - Trieste I

ix



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS  –  N. 41-2019

114. Lucrările Seminarului Matematic – Iaşi RO
115. m-M Calculus - Matematicki Institut Beograd SRB
116. Matematicna Knjiznica - Ljubljana SLO
117. Mathematica Balcanica – Sofia BG
118. Mathematica Bohemica - Academy of Sciences of the Czech Republic Praha CZ
119. Mathematica Macedonica, St. Cyril and Methodius University, Faculty of  Natural Sciences and Mathematics - Skopje MK
120. Mathematica Montisnigri - University of Montenegro - Podgorica MNE
121. Mathematica Moravica - Cacak SRB
122. Mathematica Pannonica - Miskolc - Egyetemvaros H
123. Mathematica Scandinavica - Aarhus - Copenhagen DK
124. Mathematica Slovaca - Bratislava CS
125. Mathematicae Notae - Universidad Nacional de Rosario AR
126. Mathematical Chronicle - Auckland NZ
127. Mathematical Journal - Academy of Sciences - Uzbekistan CSI
128. Mathematical Journal of Okayama University - Okayama J
129. Mathematical Preprint - Dep. of Math., Computer Science, Physics – University of Amsterdam NL
130. Mathematical Reports - Kyushu University - Fukuoka J
131. Mathematics Applied in Science and Technology – Sangyo University, Kyoto J
132. Mathematics Reports Toyama University - Gofuku J
133. Mathematics for Applications - Institute of Mathematics of  Brnö University of Technology,  Brnö CZ
134. MAT - Prepublicacions - Universidad Austral AR
135. Mediterranean Journal of Mathematics – Università di Bari I
136. Memoirs of the Faculty of Science - Kochi University - Kochi J
137. Memorias de Mathematica da UFRJ - Istituto de Matematica - Rio de Janeiro BR
138. Memorie linceee - Matematica e applicazioni - Accademia Nazionale dei Lincei I
139. Mitteilungen der Naturforschenden Gesellschaften beider Basel CH
140. Monografii Matematice - Universitatea din Timişoara RO
141. Monthly Bulletin of the Mathematical Sciences Library – Abuja WAN
142. Nagoya Mathematical Journal - Nagoya University,Tokyo J
143. Neujahrsblatt der Naturforschenden Gesellschaft - Zürich CH
144. New Zealand Journal of Mathematics - University of Auckland NZ
145. Niew Archief voor Wiskunde - Stichting Mathematicae Centrum – Amsterdam NL
146. Nihonkai Mathematical Journal - Niigata J
147. Notas de Algebra y Analisis - Bahia Blanca AR
148. Notas de Logica Matematica - Bahia Blanca AR
149. Notas de Matematica Discreta - Bahia Blanca AR
150. Notas de Matematica - Universidad de los Andes, Merida YV
151. Notas de Matematicas - Murcia E
152. Note di Matematica - Lecce I
153. Novi Sad Journal of Mathematics - University of Novi Sad SRB
154. Obzonik za Matematiko in Fiziko - Ljubljana SLO
155. Octogon Mathematical Magazine - Braşov RO
156. Osaka Journal of Mathematics - Osaka J
157. Periodica Matematica Hungarica - Budapest H
158. Periodico di Matematiche - Roma I
159. Pliska - Sofia BG
160. Portugaliae Mathematica - Lisboa P
161. Posebna Izdanja Matematickog Instituta Beograd SRB
162. Pre-Publicaçoes de Matematica - Univ. de Lisboa P
163. Preprint - Department of Mathematics - University of Auckland NZ
164. Preprint - Institute of Mathematics, University of Lodz PL
165. Proceeding of the Indian Academy of Sciences - Bangalore IND
166. Proceeding of the School of Science of Tokai University - Tokai University J
167. Proceedings - Institut Teknology Bandung - Bandung RI
168. Proceedings of the Academy of Sciences Tasked – Uzbekistan CSI
169. Proceedings of the Mathematical and Physical Society of Egypt – University of Cairo ET
170. Publicaciones del Seminario Matematico Garcia de Galdeano - Zaragoza E
171. Publicaciones - Departamento de Matemática Universidad de Los Andes Merida YV
172. Publicaciones Matematicas del Uruguay - Montevideo U
173. Publicaciones Mathematicae - Debrecen H

x



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS  –  N. 41-2019

174. Publicacions mathematiques - Universitat Autonoma, Barcelona E
175. Publications de l’Institut Mathematique - Beograd SRB
176. Publications des Séminaires de Mathématiques et Informatiques de Rennes F
177. Publications du Departmenet de Mathematiques, Université Claude Bernard - Lyon F
178. Publications Mathematiques - Besançon F
179. Publications of Serbian Scientific Society - Beograd SRB
180. Publikacije Elektrotehnickog Fakulteta - Beograd SRB
181. Pure Mathematics and Applications - Budapest H
182. Quaderni di matematica - Dip. to di Matematica – Caserta I
183. Qualitative Theory of Dynamical Systems - Universitat de Lleida E
184. Quasigroups and Related Systems - Academy of Science - Kishinev Moldova CSI
185. Ratio Mathematica - Università di Pescara I
186. Recherche de Mathematique - Institut de Mathématique Pure et Appliquée Louvain-la-Neuve B
187. Rendiconti del Seminario Matematico dell’Università e del Politecnico – Torino I
188. Rendiconti del Seminario Matematico - Università di Padova I
189. Rendiconti dell’Istituto Matematico - Università di Trieste I
190. Rendiconti di Matematica e delle sue Applicazioni - Roma I
191. Rendiconti lincei - Matematica e applicazioni - Accademia Nazionale dei Lincei I
192. Rendiconti Sem. - Università di Cagliari I
193. Report series - Auckland NZ
194. Reports Math. University of Stockholm - Stockholm SW
195. Reports - University Amsterdam NL
196. Reports of Science Academy of Tajikistan – Dushanbe TAJ
197. Research Reports - Cape Town SA
198. Research Reports - University of Umea - Umea SW
199. Research Report Collection (RGMIA) Melbourne AUS
200. Resenhas do Instituto de Matemática e Estatística da universidadae de São Paulo BR
201. Review of Research, Faculty of Science, Mathematics Series - Institute of Mathematics University of Novi Sad SRB
202. Review of Research Math. Series - Novi Sad YN
203. Revista Ciencias Matem. - Universidad de la Habana C
204. Revista Colombiana de Matematicas - Bogotà C
205. Revista de Matematicas Aplicadas - Santiago CH
206. Revue Roumaine de Mathematiques Pures et Appliquées - Bucureşti RO
207. Ricerca Operativa AIRO - Genova I
208. Ricerche di Matematica - Napoli I
209. Rivista di Matematica - Università di Parma I
210. Sains Malaysiana - Selangor MAL
211. Saitama Mathematical Journal - Saitama University J
212. Sankhya - Calcutta IND
213. Sarajevo Journal of Mathematics BIH
214. Sciences Bulletin, DPRK, Pyongyang KR
215. Scientific Rewiev - Beograd SRB
216. Scientific Studies and Research, Vasile Alecsandri University Bacau RO
217. Semesterbericht Funktionalanalysis - Tübingen D
218. Séminaire de Mathematique - Université Catholique, Louvain la Neuve B
219. Seminario di Analisi Matematica - Università di Bologna I
220. Serdica Bulgaricae Publicaciones Mathematicae - Sofia BG
221. Serdica Mathematical Journal - Bulgarian Academy of Sciences, University of Sofia BG
222. Set-Valued Mathematics and Applications – New Delhi IND
223. Sitzungsberichte der Mathematisch Naturwissenschaflichen Klasse Abteilung II – Wien A
224. Southeast Asian Bulletin of Mathematics - Southeast Asian Mathematical Society PRC
225. Studia Scientiarum Mathematica Hungarica – Budapest H
226. Studia Universitatis Babes Bolyai - Cluj Napoca RO
227. Studii şi Cercetări Matematice - Bucureşti RO
228. Studii şi Cercetări Ştiinţifice, ser. Matematică - Universitatea din Bacău RO
229. Sui Hak - Pyongyang DPR of Korea KR
230. Tamkang Journal of Mathematics - Tamsui - Taipei TW
231. Thai Journal of Mathematics – Chiang Mai TH
232. Task Quarterly PL
233. The Journal of the Academy of Mathematics Indore IND

xi



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS  –  N. 41-2019

234. The Journal of the Indian Academy of Mathematics - Indore IND
235. The Journal of the Nigerian Mathematical Society (JNMS) - Abuja WAN
236. Theoretical and Applied Mathematics – Kongju National University ROK
237. Thesis Reprints - Cape Town SA
238. Tohoku Mathematical Journal – Sendai J
239. Trabalhos do Departamento de Matematica Univ. - San Paulo BR
240. Travaux de Mathematiques – Bruxelles B
241. Tsukuba Journal of Mathematics - University of Tsukuba J
242. UCNW Math. Preprints Prifysgol Cymru - University of Wales – Bangor GB
243. Ukranii Matematiskii Journal – Kiev RU
244. Uniwersitatis Iagiellonicae Acta Mathematica – Krakow PL
245. Verhandlungen der Naturforschenden Gesellschaft – Basel CH
246. Vierteljahrsschrift der Naturforschenden Gesellschaft – Zürich CH
247. Volumenes de Homenaje - Universidad Nacional del Sur Bahía Blanca AR
248. Yokohama Mathematical Journal – Yokohama J
249. Yugoslav Journal of Operations Research – Beograd SRB
250. Zbornik Radova Filozofskog – Nis SRB
251. Zbornik Radova – Kragujevac SRB
252. Zeitschrift für Mathematick Logic und Grundlagen der Math. – Berlin D

xii



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 41–2019 (1–22) 1

ON THE GENERALIZED DRAZIN INVERSE IN A
BANACH ALGEBRA

Xiaoji Liu∗

College of Mathematics and Computer Science
Guangxi University for Nationalities
Nanning, 530006
P.R. China
xiaojiliu72@126.com

Yonghui Qin
College of Mathematics and Computing Science
Guilin University of Electronic Technology
Guilin, 541004
P. R. China
yonghui1676@163.com

Julio Beńıtez
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Abstract. We give the representations of (a + b)d, (a + ab)d and (a + ba)d in terms
of a, b, ad and bd being elements of a Banach algebra with a3b = ba and b3a = ab. We
also give the representations of (a + b)d under the assumptions a3b = ba, ∥aDb∥ < 1,
and ∥(1 − aaD)bDa∥ < 1.

Keywords: generalized Drazin inverse, Banach algebra.

1. Introduction

Let A be a complex Banach algebra with unit 1. The symbols A −1,A nil,A qnil

and A • stand for the sets of all invertible, nilpotent, quasinilpotent and idem-
potent elements in the Banach algebra A , respectively.

For a ∈ A , if there exists a unique x ∈ A such that

(1.1) xax = x, ax = xa, ak+1x = ak

x is the Drazin inverse of a (denoted by aD). The least nonnegative integer k for
which satisfies the above equations is the Drazin index ind(a) of a. If ind(a)≤ 1,

∗. Corresponding author



2 XIAOJI LIU, YONGHUI QIN and JULIO BENITEZ

then aD reduces to the group inverse of a in this case it is customary to denote
aD = a#. Note that a ∈ A is invertible if and only if ind(a) = 0.

In [12] Koliha generalized the Drazin invertibility by changing (1.1). Let
a ∈ A . An element x ∈ A is called a generalized Drazin inverse of a if

(1.2) xax = x, ax = xa, a− a2x ∈ A qnil.

If there exists x ∈ A satisfying (1.2), the element a is said to be generalized
Drazin invertible. Koliha proved in [12] that the set of generalized Drazin in-
verses of an element of a Banach algebra is or empty or a singleton. In case that
a has a generalized Drazin inverse, we shall denote by ad its unique generalized
inverse. The subset of A consisting of elements that have a generalized Drazin
inverse will be denoted by A d. In fact, Koliha proved the following lemma
which will be useful. (stated in a unital ring)

Lemma 1.1 ([12, Lemma 2.4]). In a Banach algebra A with unit, an element
a ∈ A is generalized Drazin invertible if and only if there is p ∈ A • such that

pa = ap, ap ∈ A qnil, a+ p ∈ A −1.

In this case, the set consisting of generalized Drazin inverses of a is a singleton
and its unique element ad is given by

ad = (a+ p)−1(1 − p).

Let a ∈ A be generalized Drazin invertible. If a−a2ad /∈ A nil, it is customary
to say that ind(a) = ∞. It is easily seen from the proof of [12, Lemma 2.4] that
the idempotent p given in Lemma 1.1 is unique which explicit expression is
p = 1 − aad. We shall denote this idempotent by aπ.

Every p ∈ A • induces a matrix representation of any element a ∈ A given
by (see [17, Chapter 5])

a =

(
pap pa(1 − p)

(1 − p)ap (1 − p)a(1 − p)

)
p

.

If B is a subalgebra of the unital algebra A , for an element b ∈ B−1, we
shall denote by [b−1]B the inverse of b in B. Let us observe that in general
B−1 ̸⊂ A −1 (if we take p ∈ A •, p ̸= 1, and B = pA p, then p ∈ B−1 and
p /∈ A −1). But if the subalgebra B has unity, then B−1 ⊂ A d and if b ∈ B−1,
then bd = [b−1]B: let e be the unity of B, since b[b−1]B = [b−1]Bb = e, it is easy
to see b[b−1]Bb = b, [b−1]Bb[b

−1]B = [b−1]B, and [b−1]Bb = b[b−1]B.
It is known [3] that any a ∈ A d has the following matrix representation

a =

(
a1 0
0 a2

)
p

,

p = 1 − aπ = aad, a1 ∈ [pA p]−1, a2 ∈ [(1 − p)A (1 − p)]qnil.(1.3)
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Then we have

(1.4) ad =

(
[a1

−1]pA p 0
0 0

)
p

.

If a is Drazin invertible (instead of being generalized Drazin invertible), the only
difference with the representation (1.3) is that a2 is nilpotent instead of being
quasinilpotent.

The following result [3] will be useful for our purposes.

Lemma 1.2 ([3, Theorem 2.3]). Let A be a Banach algebra, x, y ∈ A , and
p ∈ A •. Assume that

x =

(
a c
0 b

)
p

, y =

(
b 0
c a

)
1−p

.

(i) If a ∈ (pA p)d and b ∈ ((1 − p)A (1 − p))d, then x, y ∈ A d and

(1.5) xd =

(
ad u
0 bd

)
p

, yd =

(
bd 0
u ad

)
1−p

,

where u =
∑∞

n=0(a
d)n+2cbnbπ +

∑∞
n=0 a

πanc(bd)n+2 − adcbd.

(ii) If x ∈ A d and a ∈ (pA p)d, then b ∈ [(1− p)A (1− p)]d and xd is given by
(1.5).

Moreover, when an element x ∈ A d commutes with an idempotent p ∈ A ,
the generalized Drazin inverse of x has a simple form in terms of the matrix
representation relative to p as the following simple (but useful) result shows:

Lemma 1.3. Let A be a unital Banach algebra and let x ∈ A , p ∈ A •. If

x =

(
x1 0
0 x2

)
p

, then x ∈ A d if and only if x1 ∈ [pA p]d and x2 ∈ [(1 −

p)A (1 − p)]d. In this situation, one has xd =

(
xd1 0
0 xd2

)
p

.

The Drazin inverse is used in applications of many areas such that differential
and difference equations, Markov chains and control theory [1, 2].

In recent years, the representations of the Drazin inverse of a+ b have been
considered by many authors (see [4, 5, 6, 7, 8, 9, 11, 13, 14, 15]) (being a, b
matrices, operators or elements in a infinite dimensional Banach algebra). In
[10] the Drazin inverse in semigroups and associative rings was firstly introduced.
The Drazin inverse in a Banach algebra was introduced in [9]. A formula is given
for the Drazin inverse of a sum of two matrices in [11]. In [9], Djordjević and
Wei considered additive results for the generalized Drazin inverse in a Banach
space.
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C.Y. Deng in [7] explored the Drazin inverse of bounded operators with com-
mutativity up to a factor in a Banach space, being these extended by Cvetković-
Ilić in [4]. In [18], the authors considered the Drazin inverse of a sum of two
matrices and derived additive formulas under conditions weaker than those used
in some recent papers on the subject. As an application they gave some new
representations for the Drazin inverse of a block matrix.

In the rest of this section, we will give some key lemmas. In Section 2 we
will discus the representations of the generalized Drazin inverse of a+ b, a+ ab
and a+ ba in terms of a, b ad and bd being elements of a unital Banach algebras
under the conditions a3b = ba and b3a = ab . We also will consider related
results under the assumptions a3b = ba, ∥aDb∥ < 1, and ∥(1 − aaD)bDa∥ < 1.

We will give some lemmas in the following:

Lemma 1.4. Let A be a ring and let a, b ∈ A satisfy a3b = ba. If n ∈ N, then

(i) a3nb = ban.

(ii) (ab)n = a(3
n−1)/2bn.

(iii) a3
n
bn = bna.

(iv) If b3a = ab, then ab = a26n(ab)b2n.

Proof. The proofs of (i), (ii), and (iii) can be easily done by induction. To

prove (iv), observe that by applying (iii) we have ab = b3a = a3
3
b3 = a26(ab)b2,

and now, the equality a26(n+1)(ab)b2(n+1) = a26
[
a26n(ab)b2n

]
b2 permits finish

the proof of (iv) by induction.

Lemma 1.5. Let A be a Banach algebra and let a, b ∈ A satisfy a3b = ba. If
a ∈ A qnil or b ∈ A qnil, then ab ∈ Aqnil and aba ∈ A qnil.

Proof. Assume that a or b are quasinilpotent. By Lemma 1.4 we have

∥(ab)n∥1/n ≤ ∥a(3n−1)/2∥1/n∥bn∥1/n.

Hence ab ∈ A qnil. To prove aba ∈ A qnil, observe that aba = aa3b and (a4)3b =
a3·4b = ba4. By the first part of this lemma, (notice that a ∈ A qnil ⇒ a4 ∈ A qnil)
we get that aba is quasinilpotent.

The proof of the following lemma is inspired by the proof of [4, Theorem
2.2].

Lemma 1.6. Let A be a unital Banach algebra. Let a, b ∈ A be such that
a3b = ba. If a ∈ A d, then aπb = baπ. If b ∈ A d, then bπa = bπabπ.

Proof. Assume a ∈ A d. Let p = aad. To prove bp = pb pick any n ∈ N and
use Lemma 1.4 (iii). We have

pb− pbp = pb(1 − p) = p3nb(1 − p) = (ad)3na3nb(1 − p) = (ad)3nban(1 − p)n

= (ad)3nban(1 − aad)n = (ad)3nb[a(1 − aad)]n.
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Since a(1 − aad) ∈ A qnil we have, by making n → ∞, that pb = pbp. Similarly
we prove bp = pbp. Hence bp = pbp.

If b ∈ A d, then by setting q = bbd and by mimicking the above reasoning we
have qa = qaq.

2. Main results

Theorem 2.1. Let A be a unital Banach algebra and let a, b ∈ A d such that
a3b = ba. Then

(i) ab ∈ A d and bbd(ab)d = bdad.

(ii) aba ∈ A d and bd(aba)d = (bdad)2.

(iii) bbdabd = bda3.

Proof. (i) and (ii): Since a ∈ A d, the elements a and ad can be represented as

in (1.3) and (1.4), respectively. Let us represent b =

(
b1 b4
b3 b2

)
p

. From Lemma

1.6, we have pb = bp, hence b =

(
b1 0
0 b2

)
p

. Therefore, ab =

(
a1b1 0

0 a2b2

)
p

,

a3b =

(
a31b1 0

0 a32b2

)
p

, and ba =

(
b1a1 0

0 b2a2

)
p

. From a3b = ba we get

a31b1 = b1a1 and a32b2 = b2a2. Since a2 is quasinilpotent and by Lemma 1.5
a2b2 is quasinilpotent. i.e. (a2b2)

d = 0. Let us observe that by Lemma 1.3,

b1 ∈ [pA p]d, b2 ∈ [(1 − p)A (1 − p)]d, and bd =

(
bd1 0
0 bd2

)
p

.

Now we consider b1:

(1) If b1 is quasinilpotent, then bd1 = 0 and from Lemma 1.5 we get (a1b1)
d =

0. By using (a2b2)
d = 0 and Lemma 1.3 we get ab ∈ A d and (ab)d = 0. Since

b ∈ A d, from Lemma 1.3 we have b2 ∈ [(1−p)A (1−p)]d and bd =

(
bd1 0
0 bd2

)
p

=(
0 0
0 bd2

)
p

. By that ad is represented as in (1.4) we have bdad = 0. Thus (i)

holds.

By Lemma 1.5 we have a1b1a1 and a2b2a2 are quasinilpotent (in their re-
spective subalgebras). By Lemma 1.3 we have aba ∈ A d and (aba)d = 0. Since

bdad =

(
0 0
0 bd2

)
p

(
[a1

−1]pA p 0
0 0

)
p

= 0,

(ii) holds.

(2) Assume now that b1 is invertible (in the subalgebra pA p). Since a1 is also
invertible (in the subalgebra pA p), a1b1 ∈ [pA p]d and (a1b1)

d = [a1b1
−1]pA p =
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[b1
−1]pA p[a1

−1]pA p. Recall that we have (a2b2)
d = 0. By Lemma 1.3 we get

(ab)d =

(
[b1

−1]pA p[a1
−1]pA p 0

0 0

)
p

.

Since b1 is invertible, bd =

(
[b1

−1]pA p 0
0 bd2

)
p

. Thus, (i) holds.

Since b1 ∈ [pA p]−1 (recall that a1 always belongs to [pA p]−1), we have
a1b1a1 ∈ [pA p]−1. Since a2 is quasinilpotent, by Lemma 1.5, the element
a2b2a2 is quasinilpotent. From Lemma 1.3 we get aba ∈ A d and (aba)d =(

[a1
−1]pA p[b1

−1]pA p[a1
−1]pA p 0

0 0

)
p

. Thus

bd(aba)d =

(
[b1

−1]pA p 0
0 bd2

)
p

(
[a1

−1]pA p[b1
−1]pA p[a1

−1]pA p 0
0 0

)
p

and

bdad =

(
[b1

−1]pA p 0
0 bd2

)
p

(
[a1

−1]pA p 0
0 0

)
p

.

Evidently, we have proved (ii).

(3) Assume that b1 is neither invertible nor quasinilpotent. Setting q = b1b
d
1

we have the representation b1 =

(
b′1 0
0 b′′1

)
q

, where b′1 ∈ [qA q]−1 and b′′1 ∈

[(p − q)A (p − q)]qnil (recall that q ∈ pA p and p is the unity of the algebra
q ∈ pA p). Let us represent a1 as follows:

a1 =

(
a11 a12
a21 a22

)
q

.

By Lemma 1.4 (iii)

qa1 − qa1q = qa1(p− q) = qna1(p− q)n = (bd1)nbn1a1(p− q)n

= (bd1)na3
n

1 b
n
1 (p− q)n

= (bd1)na3
n

1 [b1(p− b1b
d
1)]n.

Hence ∥qa1 − qa1q∥1/n → 0, i.e., qa1 = qa1q, thus

(2.1) a1 =

(
a11 0
a21 a22

)
q

.

Therefore,

a1b1 =

(
a11 0
a21 a22

)
q

(
b′1 0
0 b′′1

)
q

=

(
a11b

′
1 0

a21b
′
1 a22b

′′
1

)
q

.
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To prove a1b1 ∈ [pA p]d we shall apply Lemma 1.2 (i). To this end, we must
prove that a11b

′
1 ∈ [qA q]d and a22b

′′
1 ∈ [(p− q)A (p− q)]d. From a1 ∈ [pA p]−1

and (2.1) we get a11 ∈ [qA q]−1 and recall that b′1 ∈ [qA q]−1 we have a11b
′
1 ∈

[qA q]−1 ⊂ [qA q]d. Now, from a31b1 = b1a1 we get a322b
′′
1 = b′′1a22. By using that

b′′1 ∈ [(p− q)A (p− q)]qnil and Lemma 1.5 we get a22b
′′
1 ∈ [(p− q)A (p− q)]qnil ⊂

[(p− q)A (p− q)]d. Moreover, (a22b
′′
1)d = 0. Therefore, from Lemma 1.2 we get

a1b1 ∈ [pA p]d and

(a1b1)
d =

(
[(a11b

′
1)

−1]qA q 0
x 0

)
q

,

where x is some element of A given by Lemma 1.2 (i). To prove bbd(ab)d = bdad

it is enough to prove b1b
d
1(a1b1)

d = bd1[a1
−1]pA p. But we have

b1b
d
1(a1b1)

d =

(
b′1 0
0 b2

)
q

(
[(b′1)

−1]qA q 0
0 0

)
q

(
[(a11b

′
1)

−1]qA q 0
x 0

)
q

=

(
[(a11b

′
1)

−1]qA q 0
0 0

)
q

and

bd1[a1
−1]pA p =

(
[(b′1)

−1]qA q 0
0 0

)
q

·
(

[a11
−1]qA q 0

−[a22
−1](p−q)A (p−q)a21[a11

−1]qA q [a22
−1]qA q

)
q

(2.2)

=

(
[(a11b

′
1)

−1]qA q 0
0 0

)
q

.

We have

a1b1a1 =

(
a11 0
a21 a22

)
q

(
b′1 0
0 b′′1

)
q

(
a11 0
a21 a22

)
q

=

(
a11b

′
1a11 0
y a22b

′′
1a22

)
q

,

where y is some element in A . The invertibility of a11b
′
1a11 in qA q follows from

the invertibility of a11 and b′1 qA q. The quasinilpotency of a11b
′
1a11 follows from

a32b
′′
1 = b′′1a2, the quasinilpotency of b′′1, and by Lemma 1.5. By Lemma 1.2 (i)

we have that a1b1a1 ∈ [pA p]d and

(a1b1a1)
d =

(
[a11

−1]qA q[(b
′
1)

−1]qA q[a11
−1]qA q 0

z 0

)
q

,

where z is an element of A given by Lemma 1.2. Having in mind the quasinilpo-

tency of a2b2a2 and that aba =

(
a1b1a1 0

0 a2b2a2

)
p

we get from Lemma 1.3

that aba ∈ A d and

(aba)d =

(
(a1b1a1)

d 0
0 0

)
p

.
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Thus, to prove (ii), it is enough to prove bd1(a1b1a1)
d = (bd1[a1

−1]pA p)
2. But, this

expression follows easily from the above formula and the following computation:

bd1(a1b1a1)
d =

(
[(b′1)

−1]qA q 0
0 0

)
q

(
[a11

−1]qA q[(b
′
1)

−1]qA q[a11
−1]qA q 0

z 0

)
q

=

(
[(b′1)

−1]qA q[a11
−1]qA q[(b

′
1)

−1]qA q[a11
−1]qA q 0

0 0

)
q

.

(iii) As in the beginning of the proof but by changing the roles of a and b,
we get that a, b ∈ A d can be represented by

a =

(
f1 0
0 f2

)
π

, b =

(
g1 0
0 g2

)
π

,

where f1, g1 ∈ πA π, f2, g2 ∈ (1 − π)A (1 − π), g1 is invertible and g2 is
quasinilpotent (in their respectives subalgebras) and π is the idempotent bbd.
From a3b = ba we get f3i gi = gifi for i = 1, 2. To prove (iii) we need to prove
gig

d
i fig

d
i = gdi f

3
i for i = 1, 2. Since g1 is invertible, then g1g

d
1f1g

d
1 = gd1f

3
1 follows

from f1[g1
−1]πA π = [g1

−1]πA πf
3
1 . Since g2 is quasinilpotent, then gd2 = 0, and

thus, g2g
d
2f2g

d
2 = gd2f

3
2 trivially holds.

Theorem 2.2. Let A be a Banach algebra and let a, b ∈ A d such that b3a = ab
and a3b = ba. Then

(i) abd = (b3)da = bda3,

(ii) bda = b2abd,

(iii) ab ∈ A d and (ab)d = bdad.

Proof. We represent

b =

(
b1 0
0 b2

)
q

, bd =

(
[b1

−1]qA q 0
0 0

)
q

,

where q = bbd, b1 ∈ [qA q]−1 and b2 ∈ [(1 − q)A (1 − q)]qnil. From Lemma 1.6
we can write

a =

(
a1 0
0 a2

)
q

.

Moreover, from a3b = ba and b3a = ab we obtain a3i bi = biai and b3i ai = aibi for
i = 1, 2.

(i) and (ii): It is enough to prove: (a) a1[b1
−1]qA q = ([b1

−1]qA q)
3a1; (b)

a1[b1
−1]qA q = [b1

−1]qA qa
3
1; and (c) [b1

−1]qA qa = b21a1[b1
−1]qA q. Expressions (a)

and (c) follow from b31a1 = a1b1. Expression (b) follows from b1a1 = b1a
3
1.

(iii): By Theorem 2.1, and the invertibility of b1 (in qA q) we get a1b1 ∈
[qA q]d and (a1b1)

d = [b1
−1]qA qa

d
1. Since b2 is quasinilpotent, from Lemma 1.5,
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a2b2 is quasinilpotent, a2b2 ∈ [(1− q)A (1− q)]d and (a2b2)
d = 0. From Lemma

1.3, we have ab ∈ A d and

(ab)d =

(
[b1

−1]qA qa
d
1 0

0 0

)
q

=

(
[b1

−1]qA q 0
0 0

)
q

(
ad1 0
0 ad2

)
q

= bdad.

Remark. Since the hypothesis of Theorem 2.2 are symmetric on the elements
a and b, we have also valid formulas by changing the roles of a and b.

Lemma 2.1. Let A be a Banach algebra and let x, y ∈ A be such that x3y = yx
and y3x = xy. If y is quasinilpotent, then xy = yx = 0.

Proof. By Lemma 1.4 (iv), for an arbitrary positive integer n, we have

∥xy∥1/n = ∥x26n(xy)(y)2n∥1/n ≤ ∥x∥26∥xy∥1/n
[
∥yn∥1/n

]2
.

Making n→ ∞ and using that y is quasinilpotent we get limn→∞ ∥xy∥1/n = 0,
i.e., xy = 0. Now, yx = x3y = x2xy = 0.

Theorem 2.3. Let A be a unital Banach algebra. Let a, b ∈ A d such that
a3b = ba and b3a = ab. Then

(i) (a+ b)d = 1
8bb

d(3a3 + 3b3 − a− b)aad + bπad + bdaπ.

(ii) (1 − aadbbd)(a+ b)d = bπad + bdaπ.

(iii) (a+ ab)d = 3
8bb

d
[
a3 + a+ ba+ 3ab

]
aad + bπad.

(iv) (a+ ba)d = 3
8bb

d
[
a3 + a+ ba+ ab

]
aad + bπad.

Proof. If ab = 0, then ba = a2ab = 0. It is known [12, Theorem 5.7] that
ab = ba = 0 and a ∈ A d and b ∈ A d imply a+ b ∈ A d and (a+ b)d = ad + bd.
Similarly, ba = 0 leads to a+b ∈ A d and (a+b)d = ad +bd. Therefore, if ab = 0
or ba = 0, then the four formulas of this theorem hold.

(i) In the following we will assume ab ̸= 0 and ba ̸= 0. As in the proof of
Theorem 2.1, we can represent a and b as follows:

(2.3) a =

(
a1 0
0 a2

)
p

, b =

(
b1 0
0 b2

)
p

,

where p = aad , a1 ∈ [pA p]−1 and a2 ∈ [(1 − p)A (1 − p)]qnil. The hypotheses
a3b = ba and b3a = ab imply that a3i bi = biai and b3i ai = aibi for i = 1, 2.
Moreover, a2b2 is quasinilpotent since a2 is quasinilpotent. In the following we
will prove the theorem depending on b1 as in Theorem 2.1.
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(1) If b1 is neither invertible nor quasinilpotent, then we represent

(2.4) b1 =

(
b′1 0
0 b′′1

)
q

,

where q = b1b
d
1 , b′1 ∈ [qA q]−1 and b′′1 ∈ [(p− q)A (p− q)]qnil. If we set

a1 =

(
a11 a12
a21 a22

)
q

,

by Lemma 1.6 we get a12 = 0 and a21 = 0. Thus

(2.5) a1 =

(
a11 0
0 a22

)
q

.

From a31b1 = b1a1 and b31a1 = a1b1 we obtain a311b
′
1 = b′1a11, (b′1)

3a11 = a11b
′
1,

a322b
′′
1 = b′′1a22, and (b′′1)3a22 = a22b

′′
1. Moreover, since a1 ∈ [pA p]−1 we get

a11 ∈ [qA q]−1 and a22 ∈ [(p− q)A (p− q)]−1.
Let us define

(2.6) x =
1

8

(
3a311 + 3(b′1)

3 − a11 − b′1
)
.

By the definition of the generalized Drazin inverse, we shall prove that a11 + b′1
is generalized Drazin invertible and (a11 + b′1)

d = x. Before doing this, let us
simplify some powers of a11 + b′1, which will help us to prove (a11 + b′1)

d = x.
Evidently we have

(a11 + b′1)
2 = a211 + a11b

′
1 + b′1a11 + (b′1)

2.

Observe that

a11b
′
1 = (b′1)

3a11 = (b′1)
2b1a11 = (b′1)

2a311b1 = (b′1)
2a211a11b

′
1.

The invertibility of a11b
′
1 yields

(2.7) q = (b′1)
2a211

(recall that the unity of the subalgebra qA q is q). Now we have

a411b
′
1 = a11(a

3
11b

′
1) = a11b

′
1a11 = (a11b

′
1)a11 = ((b′1)

3a11)a11

= b′1((b
′
1)

2a211) = b′1.(2.8)

The invertibility of b′1 leads to

(2.9) a411 = q.

Postmultplying (2.7) by a211 and by using (2.9) we get

(2.10) a211 = (b′1)
2.
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By inserting (2.10) into (2.7) we obtain

(2.11) (b′1)
4 = q.

Moreover, from (2.10) we get

(2.12) a211b
′
1 = (b′1)

3 = b′1a
2
11, (b′1)

2a11 = a311 = a11(b
′
1)

2.

Observe that the computations made (2.8) imply

(2.13) a11b
′
1a11 = b′1.

From (2.9) and (2.10) we have b′1a11b
′
1 = (b′1a11)b

′
1 = (a311(b

′
1))b

′
1 = a311(b

′
1)

2 =
a511 = a11. Thus,

(2.14) b′1a11b
′
1 = a11.

Expressions (2.10), (2.13), and (2.14) lead to

(a11 + b′1)
3 = a311 + a11b

′
1a11 + b′1a

2
11 + (b′1)

2a11 + a211b
′
1 + b′1a11b

′
1

+ a11(b
′
1)

2 + (b′1)
3 = 3a311 + 3(b′1)

3 + a11 + b′1.(2.15)

Employing (2.9), (2.11), and recalling a311b
′
1 = b′1a11 and (b′1)

3a11 = a11b
′
1 we

have

(a11 + b′1)
4 = (a11 + b′1)

3(a11 + b′1)

= (3a311 + 3(b′1)
3 + (a11 + b′1))(a11 + b′1)

= 3a411 + 3a311b
′
1 + 3(b′1)

3a11 + 3(b′1)
4 + (a11 + b′1)

2

= 6q + 3a11b
′
1 + 3b′1a11 + (a11 + b′1)

2.

Furthermore

(a11 + b′1)
5 = (a11 + b′1)

4(a11 + b′1)

=
[
6q + 3a11b

′
1 + 3b′1a11 + (a11 + b′1)

2
]

(a11 + b′1)

= 6a11 + 6b′1 + 3a11b
′
1a11 + 3a11(b

′
1)

2 + 3b′1a
2
11

+3b′1a11b
′
1 + (a11 + b′1)

3,

which by using (2.10), (2.13), (2.14), and (2.15) reduces to

(a11 + b′1)
5 = 9a11 + 9b′1 + 3a311 + 3b′31 + (a11 + b′1)

3

= 2(a11 + b′1)
3 + 8(a11 + b′1).(2.16)

Now we have

(a11 + b′1)
7 = [2(a11 + b′1)

3 + 8(a11 + b′1)](a11 + b′1)
2

= 2(a11 + b′1)
5 + 8(a11 + b′1)

3.(2.17)
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In view of (2.6) and (2.15) we get

(2.18) x =
1

8
(a11 + b′1)

3 − 1

4
(a11 + b′1),

which trivially yields x(a11 + b′1) = (a11 + b′1)x. Furthermore, from (2.16) and
(2.18)

x(a11+b
′
1)x =

[
1

8
(a11+b

′
1)

3−1

4
(a11+b

′
1)

]
(a11+b

′
1)

[
1

8
(a11+b

′
1)

3−1

4
(a11+b

′
1)

]
=

1

8

[
(a11 + b′1)

5 − 2(a11 + b′1)
3
] [1

8
(a11 + b′1)

2 − 1

4
q

]
= (a11 + b′1)

[
1

8
(a11 + b′1)

2 − 1

4
q

]
=

1

8
(a11 + b′1)

3 − 1

4
(a11 + b′1) = x.

Now, by using (2.17) and (2.18), we have

(a11 + b′1)
6x = (a11 + b′1)

6

[
1

8
(a11 + b′1)

3 − 1

4
(a11 + b′1)

]
=

1

8
(a11 + b′1)

2
[
(a11 + b′1)

7 − 2(a11 + b′1)
5
]

= (a11 + b′1)
5.

Hence the expression (a11 + b′1)
5+1x = (a11 + b′1)

5 holds, and thus a11 + b′1 is
generalized Drazin invertible (in fact, is Drazin invertible) and (a11 + b′1)

d = x.
Now, we shall study the generalized Drazin invertibility of a22 + b′′1. Recall

that a322b
′′
1 = b′′1a22 and (b′′1)3a22 = a22b

′′
1, a22 ∈ [(p − q)A (p − q)]−1 , and

b′′1 ∈ [(p− q)A (p− q)]qnil. By Lemma 2.1 we get a22b
′′
1 = 0. The invertibility of

a22 leads to b′′1 = 0. Thus, a22 + b′′1 = a22 and therefore, (a22 + b′′1)d = ad22.
From (2.4), (2.5), a12 = a21 = 0 , a11 +b′1 ∈ [qA q]d, a22 +b′′1 ∈ [(p−q)A (p−

q)]d, and by Lemma 1.3, we have a1 + b1 ∈ [pA p]d and

(a1 + b1)
d∗ =

(
(a11 + b′1)

d 0
0 (a22 + b′′1)d

)
q

=

(
1
8

(
3a311 + 3(b′1)

3 − a11 − b′1
)

0
0 ad22

)
q

.

By (2.5), (2.4), and by observing q =

(
q 0
0 0

)
q

, we have

q(3a31 + 3b31 − a1 − b1) =

(
3a311 + 3(b′1)

3 − a11 − b′1 0
0 0

)
q

.

Recall that q is an idempotent in the subalgebra pA p (whose unity is p), and

thus, pq = qp = q. So, p− q =

(
0 0
0 p− q

)
q

, and therefore, from (2.5)

(p− q)[a1
−1]pA p =

(
0 0
0 ad22

)
q

.
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But [a1
−1]pA p ∈ pA p and p is the unity of pA p, thus p[a1

−1]pA p = [a1
−1]pA p

and (p− q)[a1
−1]pA p = (1 − q)[a1

−1]pA p.
From the above computations we have

(a1 + b1)
d =

1

8
q(3a31 + 3b31 − a1 − b1) + (1 − q)[a1

−1]pA p.

From (2.3) we get a32b2 = b2a
3
2 and b32a2 = a2b

3
2. Recall that a2 is quasinilpo-

tent, hence by Lemma 2.1 we have that a2b2 = b2a2 = 0. Moreover, a2 and b2
are generalized Drazin invertible because a and b are generalized Drazin invert-
ible (recall Lemma 1.3). By [12, Theorem 5.7] we get that a2 + b2 is generalized
Drazin invertible and (a2 + b2)

d = ad2 + bd2, but ad = 0 since a2 is quasinilpotent.
Therefore, (a2 + b2)

d = bd2. By Lemma 1.3 we get a+ b ∈ A d and

(a+ b)d =

(
(a1 + b1)

d 0
0 (a2 + b2)

d

)
p

=

(
(a1 + b1)

d 0
0 bd2

)
p

=

(
(a1 + b1)

d 0
0 0

)
p

+

(
0 0
0 bd2

)
p

=

(
1
8q(3a

3
1 + 3b31 − a1 − b1) + (1 − q)[a1

−1]pA p 0
0 0

)
p

+

(
0 0
0 bd2

)
p

.(2.19)

Observe that q, a1, b1, and [a1
−1]pA p belong to the subalgebra pA p (whose

unity is p), so q(3a31+3b31−a1−b1)p = q(3a31+3b31−a1−b1) and (1−q)[a1−1]pA pp =
(1 − q)[a1

−1]pA p. Hence by using (2.3) and recalling that q = b1b
d
1

bbd(3a3 + 3b3 − a− b)p

=

(
b1b

d
1 0

0 b2b
d
2

)
p

(
3a31 + 3b31 − a1 − b1 0

0 3a31 + 3b31 − a1 − b3

)
p

(
p 0
0 0

)
p

=

(
q(3a31 + 3b31 − a1 − b1) 0

0 0

)
p

(2.20)

and

bπad = ad − bbdad

=

(
[a1

−1]pA p 0
0 0

)
p

−
(
b1b

d
1 0

0 b2b
d
2

)
p

(
[a1

−1]pA p 0
0 0

)
p

=

(
(1 − q)[a1

−1]pA p 0
0 0

)
p

.(2.21)

Since b2 ∈ [(1 − p)A (1 − p)]d we get bd2 ∈ (1 − p)A (1 − p) and bd2(1 − p) = bd2
because the unity of the subalgebra (1 − p)A (1 − p) is 1 − p. Thus

(2.22) bdaπ = bd(1 − aad) = bd(1 − p) =

(
bd1 0
0 bd2

)
p

(
0 0
0 1 − p

)
p

=

(
0 0
0 bd2

)
p

.
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From (2.19–2.22) we obtain

(a+ b)d =
1

8
bbd(3a3 + 3b3 − a− b)aad + bπad + bdaπ.

(2) If b1 is invertible, in the representation (2.4) we have b1 = b′1, b
′′
1 = 0,

and q = p. The above computations work.

(3) If b1 is quasinilpotent, in (2.4) we have q = b1b
d
1 = 0 (observe that in this

case, the subalgebra qA q becomes the subalgebra {0}), b1 = b′′1, and b′1 = 0.
Also, the above computations are valid.

Therefore, (i) is proved.

(ii) Notice that bdbπ = 0. Furthermore,

aadbbdbdaπ = pbd(1 − p) =

(
p 0
0 0

)
p

(
bd1 0
0 bd2

)
p

(
0 0
0 1 − p

)
p

= 0.

By (2.3) and (2.20)

(aadbbd)
[
bbd(3a3 + 3b3 − a− b)aad

]
= bbd(3a3 + 3b3 − a− b)aad.

Thus, we obtain

(1 − aadbbd)(a+ b)d = (1 − aadbbd)

[
1

8
bbd(3a3 + 3b3 − a− b)aad + bπad + bdaπ

]
= bπad + bdaπ.

(iii) Let us decompose a and b as in (2.3), a1 as in (2.5), and b1 as in (2.4).
We shall study the generalized Drazin invertibility of a11 + a11b

′
1, a22 + a22b

′′
1,

and a2 + a2b2.

We will apply properties (2.9), (2.10), (2.11), (2.13), (2.14) to simplify some
powers of a11 + a11b

′
1. It is simple to see that

(a11 + a11b
′
1)

2 = 2a211 + (b′1)
3 + b′1,

(a11 + a11b
′
1)

3 = 3a311 + 3b′1a11 + a11 + a11b
′
1,

(a11 + a11b
′
1)

4 = 6q + 3b′1 + 3(b′1)
3 + (a11 + a11b

′
1)

2,

(a11 + a11b
′
1)

5 = 8(a11 + a11b
′
1) + 2(a11 + a11b

′
1)

3,

(a11 + a11b
′
1)

7 = 8(a11 + a11b
′
1)

3 + 2(a11 + a11b
′
1)

5.

As we did in the proof of (i), we have (a11 + a11b
′
1)

d = 1
8(a11 + a11b

′
1)

3 + 1
4(a11 +

a11b
′
1). Simplifying and using the above expression for the cube of a11 + a11b

′
1

we get

(2.23) (a11 + a11b
′
1)

d =
3

8

[
a311 + a11 + b′1a11 + 3a11b

′
1

]
.
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Since b′′1 and a2 are quasinilpotent and a3b = ba, b3a = ab hold, by Lemma
2.1, we get a22b

′′
1 = 0 and a2b2 = 0. Thus a22+a22b

′′
1 and a2+a2b2 are generalized

Drazin invertible and

(2.24) (a22 + a22b
′′
1)d = ad22 and (a2 + a2b2)

d = ad2 = 0,

the last equation be guaranteed by the quasinilpotency of a2. By (2.23) and
(2.24) and by the same argument as in (i), we get

(a+ ab)d =
3

8
bbd
[
a3 + a+ ba+ ab

]
aad + bπad

i.e., (iii) is proved. The proof of (iv) is similar to (iii).

Theorem 2.4. Let A be a unital Banach algebra and let a, b be Drazin invertible
elements of A . If a3b = ba, ∥aDb∥ < 1, and ∥(1 − aaD)bDa∥ < 1, then a + b is
generalized Drazin invertible and

(i) (a+ b)d =
∑∞

n=0(−1)n(aDb)naD + z +
∑∞

n=0 a
π(a+ b)nbπabbDzn+2.

(ii) aπbbD(a+ b)d = z,

where z = aπ
∑∞

n=0(−1)n(bDa)nbD.

Proof. If ab = ba = 0, the formulas of the Theorem hold by Theorem 5.7 of
[12]. Thus, we can assume ab ̸= 0 and ba ̸= 0.

(i) Setting p = aaD, we represent a as in (1.3), where a2 is nilpotent (since
a is Drazin invertible instead of generalized Drazin invertible, we can get a
stronger condition than the quasinilpotency). By Lemma 1.6 we have pb = bp,
and thus we can represent b as follows

(2.25) b =

(
b1 0
0 b2

)
p

.

First we study the Drazin invertibility of a1 + b1. Since

aDb =

(
[a1

−1]pA p 0
0 0

)
p

(
b1 0
0 b2

)
p

=

(
[a1

−1]pA pb1 0
0 0

)
p

,

we get ∥[a1
−1]pA pb1∥ = ∥aDb∥ < 1, and thus, p+ [a1

−1]pA pb1 ∈ [pA p]−1. From
a1 + b1 = a1(p + [a1

−1]pA pb1) and a1 ∈ [pA p]−1 we obtain a1 + b1 ∈ [pA p]−1

and

[(a1 + b1)
−1]pA p = [(p+ [a1

−1]pA pb1)
−1

]pA p[a1
−1]pA p

=

∞∑
n=0

(−1)n([a1
−1]pA pb1)

n[a1
−1]pA p.
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From this, we have a1 + b1 ∈ A d and

(2.26) (a1 + b1)
d =

∞∑
n=0

(−1)n(aDb)naD.

Now, we study the Drazin invertibility of a2 + b2. To this end, let us define
q = b2b

D
2 and represent b2 as follows:

b2 =

(
b11 0
0 b22

)
q

,

where b11 ∈ [qA q]−1 and b22 is nilpotent. Since a3b = ba implies a32b2 = b2a2,
by Lemma 1.4

qa2 − qa2q = qa2(1 − q) = qna2(1 − q) = (bD2 )na3
n

2 b
n
2 (1 − b2b

D
2 )n.

Since a2 is nilpotent we get qa2 = qa2q. Hence,

(2.27) a2 =

(
a11 0
a21 a22

)
q

, a2 + b2 =

(
a11 + b11 0
a21 a22 + b22

)
q

.

An evident induction argument shows that there exists x1, x2, . . . ∈ A such that

an2 =

(
an11 0
xn an22

)
q

, ∀ n ∈ N.

Since a2 is nilpotent, we get that a11 and a22 are nilpotent.
In order to study the Drazin invertibility of a2 + b2, we use Lemma 1.2: We

need prove that a11 + b11 and a22 + b22 are generalized Drazin invertible.
First we prove that a11 + b11 is generalized Drazin invertible. Let us observe

that

(1 − aaD)bDa =

(
0 0
0 1 − p

)
p

(
bD1 0
0 bD2

)
p

(
a1 0
0 a2

)
p

=

(
0 0
0 bD2 a2

)
p

and

bD2 a2 =

(
[b11

−1]qA q 0
0 0

)
q

(
a11 0
a21 a22

)
q

=

(
[b11

−1]qA qa11 0
0 0

)
q

,

which yields ∥[b11
−1]qA qa11∥ = ∥(1 − aaD)bDa∥ < 1. Now

a11 + b11 = b11
(
[b11

−1]qA qa11 + q
)

and b11 ∈ [qA q]−1 lead to a11 + b11 ∈ [qA q]−1 and

[(a11 + b11)
−1]qA q =

∞∑
n=0

(−1)n([b11
−1]qA qa11)

n[b11
−1]qA q =

∞∑
n=0

(−1)n(bD2 a2)
nbD2

= (1 − aaD)
∞∑
n=0

(−1)n(bDa)nbD.



ON THE GENERALIZED DRAZIN INVERSE IN A BANACH ALGEBRA 17

Since qA q is a subalgebra of A with unity, a11 + b11 is generalized Drazin
invertible and (a11 + b11)

d = [(a11 + b11)
−1]qA q. Thus,

(2.28) (a11 + b11)
d = (1 − aaD)

∞∑
n=0

(−1)n(bDa)nbD.

In the following, we study the Drazin invertibility of a22 + b22. In fact, we
are going to prove that a22 + b22 is nilpotent. Since a22 and b22 are nilpotent,
there exists k ∈ N such that ak22 = bk22 = 0. It is clear that if a22 = b22, then
a22 + b22 is nilpotent; so we can assume a22 ̸= b22. Let us remark that for
any n ∈ N, we can write (a22 + b22)

n =
∑2n

j=1 c1j · · · cnj , where cij ∈ {a22, b22}.

Now, we are ready to prove (a22 + b22)
2k = 0. To this end, we will prove that if

d1, . . . , d2k ∈ {a22, b22}, then d1 · · · d2k = 0. LetA = {r ∈ {1, . . . , 2k} : dr = a22}
and B = {r ∈ {1, . . . , 2k} : dr = b22} (observe that A ∪ B = {1, . . . , 2k} and
A ∩ B = ∅). If | · | denotes the cardinal of a set, it is clear than |A| ≥ k or
|B| ≥ k. If |A| ≥ k, by using a322b22 = b22a22, then there exists x ∈ A such
that d1 · · · d2k = ak22x = 0. If |B| ≥ k, by using again a322b22 = b22a22, there
exists y ∈ A such that d1 · · · d2k = ybk22 = 0. Thus, a22 + b22 is nilpotent, and
therefore, a22 + b22 is Drazin invertible and (a22 + b22)

D = 0.
From the second expression of (2.27) and Lemma 1.2, we get a2 + b2 is

generalized Drazin invertible and

(a2 + b2)
d =

(
(a11 + b11)

d 0
u (a22 + b22)

d

)
q

,

where

u =

∞∑
n=0

[
(a22 + b22)

d
]n+2

a21(a11 + b11)
n(a11 + b11)

π +

+

∞∑
n=0

(a22 + b22)
π(a22 + b22)

na21

[
(a11 + b11)

d
]n+2

−(a22 + b22)
da21(a11 + b11)

d,

which, having in mind that (a22 + b22)
d = 0, reduces to

(a2 + b2)
d =

(
(a11 + b11)

d 0
u 0

)
q

,

u =
∞∑
n=0

(a22 + b22)
na21

[
(a11 + b11)

d
]n+2

.(2.29)

From (2.29) we get

(a+ b)d = (a1 + b1)
d + (a2 + b2)

d

= (a1 + b1)
d + (a11 + b11)

d +

∞∑
n=0

(a22 + b22)
na21

[
(a11 + b11)

d
]n+2

.(2.30)
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In (2.26) and (2.28) we have expressed (a1+b1)
d and (a11+b11)

d, respectively, in
terms of a, aD, b, and bD. We will express the remaining terms of (2.30) in terms
of a, aD, b, and bD. To this end, let us remark that q = b2b

D
2 is an element of the

subalgebra (1−p)A (1−p) (whose unity is 1−p) and thus, (1−p)q = q(1−p) = q.
In other words, we have

pq = qp = 0.

Furthermore, recall that an element x ∈ (1− p)A (1− p) has the representation

x =

(
qxq qx(1 − p− q)

(1 − p− q)xq (1 − p− q)x(1 − p− q)

)
q

.

Observe that from the expression of a2 + b2 in (2.27) we can write

(a2 + b2)
n =

(
(a11 + b11)

n 0
yn (a22 + b22)

n

)
q

,

where y1, y2, . . . are elements in A (we are not interested in their explicit ex-
pressions). We have

(1 − aaD)(a+ b)n(1 − bbD)

=

(
0 0
0 1 − p

)
p

(
(a1 + b1)

n 0
0 (a2 + b2)

n

)
p

(
p− b1b

D
1 0

0 1 − p− b2b
D
2

)
p

=

(
0 0
0 (a2 + b2)

n(1 − p− b2b
D
2 )

)
p

.(2.31)

Having in mind that (a22 + b22)
n ∈ (1 − p− q)A (1 − p− q),

(a2 + b2)
n(1 − p− q) =

(
(a11 + b11)

n 0
yn (a22 + b22)

n

)
q

(
0 0
0 1 − p− q

)
q

=

(
0 0
0 (a22 + b22)

n

)
q

.

Therefore,

(2.32) (a22 + b22)
n = (1 − aaD)(a+ b)n(1 − bbD).

Now, we are going to express a21 in terms of a, aD, b and bD. By 1 − p is the
unity of the subalgebra (1 − p)A (1 − p), one has

(1 − aaD)(1 − bbD)abbD

=

(
0 0
0 1 − p

)
p

(
p− b1b

D
1 0

0 1 − p− b2b
D
2

)
p

(
a1 0
0 a2

)
p

(
b1b

D
1 0

0 b2b
D
2

)
p

=

(
0 0
0 (1 − p− q)a2q

)
p

.
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Since

(1 − p− q)a2q =

(
0 0
0 1 − p− q

)
q

(
a11 0
a21 a22

)
q

(
q 0
0 0

)
q

=

(
0 0

(1 − p− q)a21q 0

)
q

and a21 ∈ (1 − p − q)A q (this latter subset is not a subalgebra of A ) we have
(1 − p− q)a21q = a21. Thus, from the above computations, we have

a21 = (1 − aaD)(1 − bbD)abbD.

From (2.26), (2.28), (2.32), and (2.30) we get

(a+ b)d =
∞∑
n=0

(−1)n(aDb)naD + z

+
∞∑
n=0

(1 − aaD)(a+ b)n(1 − bbD)(1 − aaD)(1 − bbD)abbDzn+2,(2.33)

where z = (1−aaD)
∑∞

n=0(−1)n(bDa)nbD. We can simplify expression of (a+b)d.
By observing the expression of (1 − aaD)(a + b)n(1 − bbD) obtained in (2.31),
easily we can see (1−aaD)(a+b)n(1−bbD)(1−aaD) = (1−aaD)(a+b)n(1−bbD)
and using that 1 − bbD is an idempotent, (2.33) reduces to

(a+ b)d =
∞∑
n=0

(−1)n(aDb)naD + z +
∞∑
n=0

(1 − aaD)(a+ b)n(1 − bbD)abbDzn+2.

(ii) By using (1.3) and (2.25) we have

(1 − aaD)bbD(a+ b)d =

(
0 0
0 1 − p

)
p

(
b1b

D
1 0

0 b2b
D
2

)
p

(
(a1 + b1)

d 0
0 (a2 + b2)

d

)
p

and using that the unity of (1 − p)A (1 − p) is 1 − p we get

(1 − aaD)bbD(a+ b)d = b2b
D
2 (a2 + b2)

d = q(a2 + b2)
d.

From (2.29) and using q(a11 + b11)
d = (a11 + b11)

d (because (a11 + b11)
d ∈ qA q

and q is the unity of the subalgebra qA q),

q(a2 + b2)
d =

(
q 0
0 0

)
q

(
(a11 + b11)

d 0
u 0

)
q

=

(
(a11 + b11)

d 0
0 0

)
q

.

Now, (2.28) leads to (1− aaD)bbD(a+ b)d = (1− aaD)
∑∞

n=0(−1)n(bDa)nbD.

If b is a special perturbation of a, then we have the following theorem.
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Theorem 2.5. Let A be a unital Banach algebra. If a, b ∈ A d, a3b = ba, and
b3a = ab, then

(i) ∥(a+ b)d − ad∥ ≤ 1
8

(
∥bbd∥∥aad∥∥3a3 + 3b3 − a− b∥

)
+ ∥bbdad∥ + ∥bdaπ∥.

(ii) ∥bdaπ∥ ≤ ∥1 − aadbbd∥∥(a+ b)d − ad∥.

Proof. (i) From Theorem 2.3, we get

(a+ b)d − ad =
1

8
bbd(3a3 + 3b3 − a− b)aad + bπad + bdaπ − ad

=
1

8
bbd(3a3 + 3b3 − a− b)aad − bbdad + bdaπ.

Thus

∥(a+ b)d − ad∥ ≤ 1

8
∥bbd(3a3 + 3b3 − a− b)aad∥ + ∥bbdad∥ + ∥bdaπ∥

≤ 1

8

(
∥bbd∥∥aad∥∥3a3 + 3b3 − a− b∥

)
+ ∥bbdad∥ + ∥bdaπ∥.

(ii) By the proof of Theorem 2.3 we get aadbbd = bbdaad.
By Theorem 2.3, we have

bdaπ = (1 − aadbbd)(a+ b)d − bπad

= (1 − bbdaad)(a+ b)d − (1 − bbd)ad

= (1 − bbdaad)[(a+ b)d − ad].

Hence; ∥bdaπ∥ ≤ ∥1 − bbdaad∥∥(a+ b)d − ad∥.

In the following result we have a bound for another kind of perturbation.

Theorem 2.6. Let A be a unital algebra and let a, b ∈ A be Drazin invertible
satisfying a3b = ba, ∥aDb∥ < 1, and ∥aπbDa∥ < 1. Then

(i) ∥(a+b)d−aD∥ ≤ ∥aD∥∥aDb∥
1−∥aDb∥ + ∥bD∥

1−∥aπbDa∥ + ∥abbD∥∥bD∥2
(1−∥aπbDa∥)2

∑∞
n=0 ∥aπ(a+b)nbπ∥.

(ii) ∥z∥ ≤ ∥aπbbD∥∥(a+ b)d − aD∥, where z is giving as in Theorem 2.4.

Proof. (i) From Theorem 2.4, we have

(a+ b)d − aD =
∞∑
n=1

(−1)n(aDb)naD + z +
∞∑
n=0

aπ(a+ b)nbπabbDzn+2,

where z = aπ
∑∞

n=0(−1)n(bDa)nbD. Hence, (in Theorem 2.4 we had proved that
∥aDb∥ < 1 and in (2.31) we have shown, by using the nilpotency of a22 + b22,
that there exists k ∈ N such that aπ(a+ b)kbπ = 0)

∥(a+ b)d − aD∥ ≤ ∥aD∥
∞∑
i=1

∥aDb∥n + ∥z∥ + ∥abbD∥∥z2∥
∞∑
n=0

∥aπ(a+ b)nbπ∥

= ∥aD∥ ∥aDb∥
1 − ∥aDb∥

+ ∥z∥ + ∥abbD∥∥z∥2
∞∑
n=0

∥aπ(a+ b)nbπ∥.
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Now, we will find an upper bound for ∥z∥. Observe that the proof of Theorem
2.4 distil aπ(bDa)n = (aπbDa)n. Thus, z =

∑∞
n=0(−1)n(aπbDa)nbD. By using

that ∥aπbDa∥ < 1, one has ∥z∥ ≤ ∥bD∥
∑∞

n=0 ∥aπbDa∥n = ∥bD∥ 1
1−∥aπbDa∥ . Hence,

(i) is proved.
(ii) From Theorem 2.4 we have aπbbD(a+ b)d = z. Also, the from the proof

of Theorem 2.4 we easily get aπbbDaD = 0; hence aπbbD
[
(a+ b)d − aD

]
= z.

The conclusion is obtained.
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Abstract. The aim of this paper is to study hypervector spaces. In this regard at
first some new nontrivial examples of hypervector spaces are introduced. Then the
notions of linearly span, linearly independence, basis, ordered basis, coordinates and
linear transformation are investigated and some related results are obtained. Especially,
it is proved that for a linear transformation T : V → W between two hypervector
spaces, dim kerT + dimT (V ) = dimV, and under certain conditions dimL(V,W ) =
dimV × dimW .

Keywords: hypervector space, linearly span, linearly independent set, basis, linear
transformation, coordinate.

1. Introduction

The theory of hyperstructuers was born in 1934, when Marty [6] defined hy-
pergroups. Since then many researches have worked on hyperalgberaic struc-
tures and developed this theory (for more see [3], [4], [5], [13]). In 1990, M.
Scafati Tallini introduced the notion of hypervector spaces [8], and studied ba-

∗. Corresponding author
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sic properties of them (for more see [9], [10], [11]). Recently Ameri [1], [2],
Vaezpoor [7] and Taghavi [12] in Iran have developed this concept. In this
paper we follow [2] and study more properties of hypervector spaces. In this
regard at first some new interesting nontrivial examples of hypervector spaces
are introduced. Then their basic notions are investigated and some related
results are obtained. Especially, it is proved that for a linear transformation
T : V → W , dim kerT + dimT (V ) = dimV, and under certain conditions,
dimL(V,W ) = dimV × dimW .

2. Preliminaries

In this section we present some definitions and simple properties of hypervector
spaces that we shall use in later.

A map ◦ : H × H −→ P∗(H) is called a hyperoperation or join operation,
where P∗(H) is the set of all non-empty subsets of H. The join operation is
extended to subsets of H in natural way, so that A ◦B is given by

A ◦B =
∪

{a ◦ b : a ∈ A and b ∈ B }.

The notations a ◦ A and A ◦ a are used for {a} ◦ A and A ◦ {a} respectively.
Generally, the singleton {a} is identified by its element a.

Definition 2.1. ([8]) Let K be a field and (V,+) be an abelian group. We
define a hypervector space over K to be the quadruplet (V,+, ◦,K), Where “◦”
is a mapping:

◦ : K × V −→ P∗(V ),

such that for all a, b ∈ K and x, y ∈ V the following conditions hold:

(H1) a ◦ (x+ y) ⊆ a ◦ x+ a ◦ y, right distributive law,

(H2) (a+ b) ◦ x ⊆ a ◦ x+ b ◦ x, left distributive law,

(H3) a ◦ (b ◦ x) = (ab) ◦ x, associative law,

(H4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x),

(H5) x ∈ 1 ◦ x.

Remark 2.2 ([8]). (i) In the right hand of (H1) the sum is meant in the sense
of Frobenius, i.e.

a ◦ x+ a ◦ y = {p+ q : p ∈ a ◦ x, q ∈ a ◦ y}.

Similarly we have in (H2). Moreover, the left hand side of (H3) means the
set-theoretical union of all the sets a ◦ y, where y runs over set b ◦ x, i.e.

a ◦ (b ◦ x) =
∪

y∈a◦x
a ◦ y.
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(ii) ([9]) We say that (V,+, ◦,K) is anti-left distributive, if

∀a, b ∈ K, ∀x ∈ V, (a+ b) ◦ x ⊇ a ◦ x+ b ◦ x,

and strongly left distributive if equality holds. In a similar way we define anti-
right distributive and strongly right distributive. V is called strongly distributive
if it is both strongly left and right distributive.

(iii) The mapping “ ◦ ” in Definition 2.1, is called external hyperoperation.

Example 2.3 ([8]). In (R2,+) we define the product times a scalar in R by
setting:

a ◦ x =

{
line pass origin and point x, if x ̸= 0,

{0} , if x = 0.

Then (R2,+, ◦,R) is a hypervector space.

Example 2.4 ([12]). (C,+, ◦,R) is a hypervector space, where “+” is the usual
sum and the mapping “◦ : R× C −→ P∗(C)” is defined by the following:

a ◦ z =

{{
reiθ : 0 < r ≤ |a||z|, θ = arg(az)

}
, if a ̸= 0 and z ̸= 0,

{0} , if a = 0 or z = 0.

Lemma 2.5 ([8]). Let (V,+, ◦,K) be a hypervector space and ΩV = 0◦0, where
0 is the zero of (V,+). Then

1. If V is either strongly right or left distributive, then ΩV is a subgroup of
(V,+).

2. If V is anti-left distributive, then for all x ∈ V the set 0 ◦ x is a subgroup
of (V,+).

3. If V is strongly left distributive, then a ◦ 0 = ΩV = a ◦ ΩV , for all a ∈ K.

Proposition 2.6. Let (V,+, ◦,K) be a strongly left distributive hypervector
space such that |1 ◦ 0| = 1 and for all x ∈ V , −x ̸= x, unless x = 0. Then
for any x ∈ V , the following holds:

x = 0 ⇐⇒ ∀0 ̸= a ∈ K; a ◦ x+ a ◦ x = Ω.

Proof. (=⇒) Let x = 0 and 0 ̸= a ∈ K. Then by Lemma 2.5, it follows that:

a ◦ x+ a ◦ x = a ◦ 0 + a ◦ 0 = Ω + Ω = Ω.

(⇐=) By Definition 2.1, a ◦ 2x = a ◦ (x + x) ⊆ a ◦ x + a ◦ x = Ω = a ◦ 0. So
a−1 ◦ (a ◦ 2x) ⊆ a−1 ◦ (a ◦ 0). Thus 1 ◦ 2x ⊆ 1 ◦ 0 = {0}. Hence 2x = 0 and so
x = −x. Therefore x = 0.
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3. New examples of hypervector spaces

In this section we present some new nontrivial examples of hypervector spaces.

Example 3.1. (Z,+, ◦,Q) is a hypervector space, where “ + ” is the usual sum
and the mapping “ ◦ ” is defined by the following:{

◦ : Q× Z −→ P∗(Z)
r

s
◦ n = {m(rn) : m ∈ Z}.

Example 3.2. If the external hyperoperation “◦ : R × R2 −→ P∗(R2)” for all
r, a, b ∈ R is defined by each of the followings, then (R2,+, ◦,R) is a hypervector
space:

(i) r ◦ (a, b) = {(x, y) ∈ R2 | 0 ≤ x ≤ ra, 0 ≤ y ≤ rb},

(ii) r ◦ (a, b) = Environment of the rectangle bounded with lines
x = 0, x = ra, y = 0, y = rb,

(iii) r ◦ (a, b) = {(x, y) ∈ R2 | −ra ≤ x ≤ ra,−rb ≤ y ≤ rb},

(iv) r ◦ (a, b) = Environment of the rectangle bounded with lines
x = −ra, x = ra, y = −rb, y = rb,

(v) r◦(a, b) = Environment of the circle with origin (0, 0) and radius |r|
√
a2 + b2.

Proposition 3.3. If (V,+, ◦,K) is a hypervector space such that −x ∈ 1 ◦ x
for all x ∈ V, then (V,⊕,⊙,K) construct a hypervector space with the following
mappings:{

⊕ : V × V −→ V

x⊕ y = x+ y,
and

{
⊙ : K × V −→ P∗(V )

a⊙ x = −a ◦ x.

Proof. Straightforward.

Proposition 3.4. Let (V,+, ◦,K) be a hypervector space. Suppose

V n =


x1...
xn

 : xi ∈ V

 .

Then (V n,⊕n,⊙n,K) is a hypervector space, where “⊕n” and “⊙n” are defined
by the followings:x1...
xn

⊕n

y1...
yn

 =

x1 + y1
...

xn + yn

 and a⊙n

x1...
xn

 =


x

′
1
...
x′n

 : x′i ∈ a ◦ xi, 1 ≤ i ≤ n

 .
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Proof. Let

x1...
xn

,

y1...
yn

 ∈ V n and a ∈ K. Then

a⊙n


 x1

...
xn

⊕n

 y1
...
yn


 = a⊙n

 x1 + y1
...

xn + yn



=


 z1

...
zn

 : zi ∈ a ◦ (xi + yi)


⊆


 z1

...
zn

 : zi ∈ a ◦ xi + a ◦ yi


=


 z1

...
zn

 : zi = x́i + ýi, x́ ∈ a ◦ xi, ý ∈ a ◦ yi


=


 x́1 + ý1

...
x́n + ýn

 : x́ ∈ a ◦ xi, ý ∈ a ◦ yi


=


 x́1

...
x́n

⊕n

 ý1
...
ýn

 : x́ ∈ a ◦ xi, ý ∈ a ◦ yi


=


 x́1

...
x́n

 : x́ ∈ a ◦ xi

⊕n


 ý1

...
ýn

 : ý ∈ a ◦ yi


=

a⊙n

 x1
...
xn


⊕n

a⊙n

 y1
...
yn


 .

Thus

a⊙n


x1...
xn

⊕n

y1...
yn


 ⊆

a⊙n

x1...
xn


⊕n

a⊙n

y1...
yn


 .

In a similar way, it is easy to verify the other parts of Definition 2.1.

Remark 3.5. In Proposition 3.4, if V is strongly left, Strongly right or strongly
distributive, then V n is strongly left, Strongly right or strongly distributive,
respectively.
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Proposition 3.6. Let (V,+, ◦,K) be a hypervector space. Suppose

MV
m×n =


 x11 · · ·x1n...

...
...

xm1 · · ·xmn

 : xij ∈ V, 1 ≤ i ≤ m, 1 ≤ j ≤ n

 .

Then (MV
m×n,⊕,⊙,K) is a hypervector space, where ⊕ is the usual sum of

matrices and external hyperoperation ⊙ : K ×MV
m×n −→ P∗(M

V
m×n) is defined

by the following:

a⊙

 x11 · · ·x1n...
...

...
xm1 · · ·xmn

 =


 x

′
11 · · ·x′1n
...

...
...

x′m1 · · ·x′mn

 : x′ij ∈ a ◦ xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n

 .

Corollary 3.7. Let (V,+, ◦,K) be a hypervector space. Then the set{[
x −y
y x

]
: x, y ∈ V

}
together operation ⊕ and external hyperoperation ⊙ is a hypervector space over
the field K, where ⊕ is the usual sum of matrices and ⊙ is defined by the
following:

a⊙
[
x −y
y x

]
=

{[
w −z
z w

]
: w ∈ a ◦ x, z ∈ a ◦ y

}
.

Definition 3.8 ([9]). A nonempty subset W of V is called a subhyperspace of
V, if W is itself a hypervector space with the external hyperoperation on V, i.e.

W ̸= ϕ,
∀x, y ∈W =⇒ x− y ∈W,
∀a ∈ K, ∀x ∈W =⇒ a ◦ x ⊆W.

In this case we write W 6 V .

Example 3.9. (i) Let L = {(a, 0) | a ∈ R} and R = {(0, b) | b ∈ R}. Then
L and R are subhyperspaces of the hypervector space (R2,+, ◦,R) in Example
2.3.

(ii) In Example 3.2, the hypervector spaces are defined in parts (ii) and (iv)
are subhyperspaces of the hypervector spaces are defined in parts (i) and (iii),
respectively.

(iii) The hypervector space is defined in part (v) of Example 3.2, is a sub-
hyperspace of the hypervector space in Example 2.4.

Proposition 3.10. If V is either strongly left or right distributive hypervector
space, then ΩV is the smallest subhyperspace of V .
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Proof. By Lemma 2.5, ΩV is a subgroup of V and a ◦ΩV = ΩV , for all a ∈ K.
Thus ΩV is a subhyperspace of V . Now if H is a subhyperspace of V , then for
any x ∈ ΩV , we have:

x ∈ 0 ◦ 0 ⊆ 0 ◦H ⊆ H.

So ΩV ⊆ H.

Proposition 3.11. If V is a hypervector space over the field K and H 6 V ,
then for any x, x1, . . . , xn ∈ H and a, a1, . . . , an ∈ K, the following conditions
hold:

1. (a1 + · · · + an) ◦ x ⊆ a1 ◦ x+ · · · + an ◦ x,

2. a ◦ (−x) ⊆ H,

3. a1 ◦ x1 + · · · + an ◦ xn ⊆ H.

Proof. Straightforward.

4. Basis and dimension

In the sequel of this note, unless otherwise specified, we assume that V =
(V,+, ◦,K) is a hypervector space over the field K.

Definition 4.1 ([2]). Let S be a subset of V . Then the linear span of S is
the smallest subhyperspace of V containing S and denoted by SP (S). If S is a
nonempty subset of V, then

SP (S) = {x ∈ V : x ∈
∑n

i=1 ai ◦ yi, ai ∈ K, yi ∈ S, 1 ≤ i ≤ n, n ∈ N}
= {x1 + · · · + xn : xi ∈ ai ◦ yi, ai ∈ K, yi ∈ S, 1 ≤ i ≤ n, n ∈ N} .

We say that S spans V , if SP (S) = V . It is easy to verify that if A and B are
subsets of V such that A ⊆ B, then SP (A) ⊆ SP (B).

Proposition 4.2. Let V be strongly left distributive and x1, . . . , xn, y1, . . . , ym ∈
V , such that {y1, . . . , ym} spans V and y1, . . . , ym ∈ SP (x1, . . . , xn). Then
{x1, . . . , xn} spans V .

Proof. Let x ∈ V . Then x ∈ b1 ◦y1 + · · ·+ bm ◦ym, for some bi ∈ K, 1 ≤ i ≤ m.
On the other hand, 

y1 ∈ a11 ◦ x1 + · · · + a1n ◦ xn
y2 ∈ a21 ◦ x1 + · · · + a2n ◦ xn
...

...
...

...

ym ∈ am1 ◦ x1 + · · · + amn ◦ xn
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for some aij ∈ K, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Thus

x ∈ b1 ◦ (a11 ◦ x1 + · · · + a1n ◦ xn) + · · · + bm ◦ (am1 ◦ x1 + · · · + amn ◦ xn)

⊆ b1 ◦ (a11 ◦ x1) + · · · + b1 ◦ (a1n ◦ xn) + · · ·
+ bm ◦ (an1 ◦ x1) + · · · + bm ◦ (amn ◦ xn)

= (b1a11) ◦ x1 + · · · + (b1a1n) ◦ xn + · · · + (bman1) ◦ x1 + · · · + (bmamn) ◦ xn
= (b1a11 + · · · + bman1) ◦ x1 + · · · + (b1a1n + · · · + bmamn) ◦ xn
⊆ SP (x1, . . . , xn).

Hence SP (x1, . . . , xn) = V.

Definition 4.3. (i) A hypervector space V over the field K is said to be K-weak
invertible or shortly weak invertible if and only if

∀a ∈ K, ∀u, v ∈ V, u ∈ a ◦ v implies that v ∈ a′ ◦ u, for some a′ ∈ K.

(ii) ([2]) A hypervector space V over the field K is said to be K-invertible or
shortly invertible if and only if

∀a ̸= 0 ∈ K, ∀u, v ∈ V, u ∈ a ◦ v implies that v ∈ a−1 ◦ u.

Proposition 4.4. Let V be weak invertible and {x1, x2, y1, y2} ⊆ V, such that
x1 ∈ b1◦y1 and x2 ∈ b2◦y2, for some b1, b2 ∈ K. Then SP (x1, x2) = SP (y1, y2).

Proof. Let z ∈ SP (x1, x2). Then z ∈ a1 ◦ x1 + a2 ◦ x2, for some a1, a2 ∈ K. So

z ∈ a1 ◦ (b1 ◦ y1) + a2 ◦ (b2 ◦ y2)
= (a1b1) ◦ y1 + (a2b2) ◦ y2
⊆ SP (y1, y2).

Thus SP (x1, x2) ⊆ SP (y1, y2). On the other hand, y1 ∈ b′1 ◦ x1 and y2 ∈ b′2 ◦ x2,
for some b′1, b

′
2 ∈ K. Now let w ∈ SP (y1, y2). Then w ∈ c1 ◦ y1 + c2 ◦ y2, for

some c1, c2 ∈ K. So

w ∈ c1 ◦ (b′1 ◦ x1) + c2 ◦ (b′2 ◦ x2)
= (c1b

′
1) ◦ x1 + (c2b

′
2) ◦ x2

⊆ SP (x1, x2).

Thus SP (y1, y2) ⊆ SP (x1, x2). Therefore SP (x1, x2) = SP (y1, y2).

Proposition 4.5. Let V be strongly left distributive and x1, . . . , xn, y ∈ V. Then
SP (x1, . . . , xn, y) = SP (x1, . . . , xn) if and only if y ∈ SP (x1, . . . , xn).
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Proof. (⇐=) Let y ∈ SP (x1, . . . , xn). Then y ∈ a1 ◦x1 + · · ·+an ◦xn, for some
a1, . . . , an ∈ K. Now if x ∈ SP (x1, . . . , xn, y), then x ∈ a′1◦x1+· · ·+a′n◦xn+b◦y,
for some a′1, . . . , a

′
n, b ∈ K. Thus

x ∈ a′1 ◦ x1 + · · · + a′n ◦ xn + b ◦ (a1 ◦ x1 + · · · + an ◦ xn)

⊆ a′1 ◦ x1 + · · · + a′n ◦ xn + b ◦ (a1 ◦ x1) + · · · + b ◦ (an ◦ xn)

= a′1 ◦ x1 + · · · + a′n ◦ xn + (ba1) ◦ x1 + · · · + (ban) ◦ xn
= (a′1 + ba1) ◦ x1 + · · · + (a′n + ban) ◦ xn
⊆ SP (x1, . . . , xn).

Consequently, SP (x1, . . . , xn, y) ⊆ SP (x1, . . . , xn). On the other hand, by Def-
inition 4.1, SP (x1, . . . , xn) ⊆ SP (x1, . . . , xn, y), and so the equality holds.

(=⇒) It is clear that y ∈ SP (x1, . . . , xn, y). Thus y ∈ SP (x1, . . . , xn).

Definition 4.6 ([2]). A subset S of V is called linearly independent if for every
vectors x1, . . . , xn ∈ S and c1, . . . , cn ∈ K, 0 ∈ c1 ◦ x1 + · · · + cn ◦ xn implies
that c1 = · · · = cn = 0. Note that some hypervector spaces V (some set W
of vectors) may not have any collection of linearly independent vectors. Such
hypervector space (set) is called independentless. S is called linearly dependent
if it is not linearly independent. A basis for V is a linearly independent subset
of V such that spans V . We say that V has finite dimensional if it has a finite
basis. If V has a basis with n vectors, then every basis for V has n vectors. In
this case the number n is called the dimension of V , denoted by dimV = n.

Proposition 4.7. If V is strongly distributive, then for any linearly independent
subset {xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n} of V, the set

S =


x11 · · · 0...

...
...

0 · · · 0

 , . . . ,
0 · · · 0

...
...

...
0 · · ·xmn




is a basis for the hypervector space (MV
m×n,⊕,⊙,R) is defined in Proposition

3.6, and so dimMV
m×n = mn.

Proof. Let

 x11 · · ·x1n...
...

...
xm1 · · ·xmn

 ∈MV
m×n. Then

 x11 · · ·x1n...
...

...
xm1 · · ·xmn

 =

x11 · · · 0...
...

...
0 · · · 0

+ · · · +

0 · · · 0
...

...
...

0 · · ·xmn


∈ 1 ⊙

x11 · · · 0...
...

...
0 · · · 0

+ · · · + 1 ⊙

0 · · · 0
...

...
...

0 · · ·xmn

 .
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Thus S spans MV
m×n. Now we show that S is linearly independent. For this, let0 · · · 0

...
...

...
0 · · · 0

 ∈ a11 ◦

x11 · · · 0...
...

...
0 · · · 0

+ a12 ◦

0 x12 · · · 0
...

...
...

0 · · · 0

+ · · · + amn ◦

0 · · · 0
...

...
...

0 · · ·xmn

 ,
for some a11, a12, . . . , amn ∈ K. Then0 · · · 0

...
...

...
0 · · · 0

 ∈


 x

11
11 · · ·x111n
...

...
...

x11m1 · · ·x11mn

 : x1111 ∈ a11 ◦ x11, x11ij ∈ a11 ◦ 0, ij ̸= 11

+ · · ·+

+


x

mn
11 · · ·xmn

1n
...

...
...

xmn
m1 · · ·xmn

mn

 : xmn
mn ∈ amn ◦ xmn, x

mn
ij ∈ amn ◦ 0, ij ̸= mn


=



∑mn

i=1 x
i
11 · · ·

∑mn
i=1 x

i
1n

...
...

...∑mn
i=1 x

i
m1 · · ·

∑mn
i=1 x

i
mn

 : xrsij ∈

{
aij ◦ xij rs = ij

aij ◦ 0 rs ̸= ij

 .

Thus 0 ∈
∑mn

i=1 x
i
11, . . . , 0 ∈

∑mn
i=1 x

i
1n, . . . , 0 ∈

∑mn
i=1 x

i
m1, . . . , 0 ∈

∑mn
i=1 x

i
mn.

Hence 
0 ∈ a11 ◦ x11 +

∑mn
i=1 ai ◦ 0 =⇒ 0 ∈ a11 ◦ x11

0 ∈ a12 ◦ x12 +
∑mn

i=1 ai ◦ 0 =⇒ 0 ∈ a12 ◦ x12
...

0 ∈
∑mn

i=1 ai ◦ 0 + amn ◦ xmn =⇒ 0 ∈ amn ◦ xmn

Consequently, 0 ∈ a11 ◦ x11 + a12 ◦ x12 + · · ·+ amn ◦ xmn and so a1 = a2 = · · · =
amn = 0. Therefore S is linearly independent and forms a basis for MV

m×n.

Lemma 4.8. Let V be strongly left distributive and {x, y, z} be a linearly inde-
pendent subset of V. Then {x+ y, y + z, x+ z} is a linearly independent subset
of V .

Proof. Let 0 ∈ a1 ◦ (x+ y) + a2 ◦ (y + z) + a3(x+ z), for some a1, a2, a3 ∈ K.
Then

0 ∈ a1 ◦ x+ a1 ◦ y + a2 ◦ y + a2 ◦ z + a3 ◦ x+ a3 ◦ z
= (a1 + a3) ◦ x+ (a1 + a2) ◦ y + (a2 + a3) ◦ z.

Hence a1 + a3 = 0, a1 + a2 = 0, a2 + a3 = 0, and so a1 = a2 = a3 = 0.

Proposition 4.9. Let V be strongly left distributive and x, y be linearly in-
dependent vectors of V. If a1, a2, b1, b2 ∈ K, such that b1 ̸= 0, b2 ̸= 0 and
a1b2 − b1a2 ̸= 0, then for all t1 ∈ a1 ◦ x, t2 ∈ a2 ◦ y, s1 ∈ b1 ◦ x and s2 ∈ b2 ◦ y,
the vectors t1 + t2 and s1 + s2 are linearly independent in V.



SOME RESULTS ON HYPERVECTOR SPACES 33

Proof. Let 0 ∈ c ◦ (t1 + t2) + d ◦ (s1 + s2), for some c, d ∈ K. Then 0 ∈
c◦(a1◦x+a2◦y)+d◦(b1◦x+b2◦y) ⊆ c◦(a1◦x)+c◦(a2◦y)+d◦(b1◦x)+d◦(b2◦y) =
(ca1) ◦x+ (ca2) ◦ y+ (db1) ◦x+ (db2) ◦ y = (ca1 +db1) ◦x+ (ca2 +db2) ◦ y. Thus
ca1 + db1 = 0, ca2 + db2 = 0. Hence c = d = 0. Therefore t1 + t2 and s1 + s2 are
linearly independent.

Proposition 4.10. If V is strongly left distributive, then any subset of V con-
taining zero is linearly dependent.

Proof. Let H = {0, x1, x2, . . . , xn} ⊆ V. Then 0 ∈ 1◦0+0◦x1+0◦x2+· · ·+0◦xn.
Thus H is linearly dependent.

Theorem 4.11. Let V be anti-left distributive. Then β = {x1, . . . , xn} is a
basis for V if and only if every element x ∈ V belongs to a unique sum in the
form c1 ◦ x1 + · · · + cn ◦ xn, with ci ∈ K.

Proof. (=⇒) [2, Lemma 3.4.]
(⇐=) By hypothesis β spans V . Now let 0 ∈ a1 ◦ x1 + · · · + an ◦ xn, for some
a1, . . . , an ∈ K. By Lemma 2.5, 0 ◦ xi 6 V, 1 ≤ i ≤ n. So 0 ∈ 0 ◦ xi, 1 ≤ i ≤ n.
Hence 0 ∈ 0◦x1 + · · ·+0◦xn. From uniqueness it follows that ai = 0, 1 ≤ i ≤ n.
Therefore β is linearly independent and consequently it is a basis for V.

Proposition 4.12. If (V,+, ◦,R) is a strongly left distributive hypervector space
over the field R and {x, y, z} is a basis for V, then the set {x+ y, y + z, x + z}
is another basis for V .

Proof. By Lemma 4.8, the set {x+y, y+z, x+z} is linearly independent. Now
let w ∈ V. Then there exist a, b, c ∈ R, such that w ∈ a◦x+ b◦y+c◦z. Suppose

a′ =
a− b+ c

2
, b′ =

c− a+ b

2
, c′ =

b− c+ a

2
.

Then it is easy to verify that w ∈ a′ ◦ (x+y)+ b′ ◦ (y+z)+ c′ ◦ (x+z). Therefore
{x+ y, y + z, x+ z} spans V and so it is a basis for V .

Theorem 4.13. Let V be invertible and H be a subhyperspace of V with basis
β. Then β∪{y} is linearly independent, for all y ∈ V \H, such that 0◦y = {0}.

Proof. Let β = {x1, . . . , xn} and β ∪ {y} be linearly dependent. Then 0 ∈
a′1 ◦ x1 + · · · + a′n ◦ xn + b ◦ y, for some a′1, . . . , a

′
n, b ∈ K, such that at least one

of the coefficients is nonzero. Thus 0 = t1 + · · ·+ tn + c, for some ti ∈ ai ◦xi, c ∈
b ◦ y. Now if b ̸= 0, then y ∈ b−1 ◦ c. Hence y ∈ b−1 ◦ (−t1 − · · · − tn) ⊆
b−1 ◦ (−t1) + · · · + b−1 ◦ (−tn) ⊆ b−1 ◦ (−a′1 ◦ x1) + · · · + b−1 ◦ (−a′n ◦ xn) =
(−b−1a′1) ◦ x1 + · · · + (−b−1a′n) ◦ xn ⊆ H. Which is contradiction. Also if b = 0,
then 0 ∈ a′1 ◦ x1 + · · · + a′n ◦ xn + 0 ◦ y, such that at least one of a′i’s is nonzero.
Thus 0 ∈ a′1 ◦x1 + · · ·+a′n ◦xn, Which is a contradiction, too. Therefore β∪{y}
is linearly independent.
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Theorem 4.14 ([2]). Let V be strongly left distributive and invertible. If V has
a finite basis with n elements, then every linearly independent subset of V has
no more than n elements.

Theorem 4.15. Let V be strongly left distributive and invertible such that
dimV = n and 0 ◦ y = {0}, for all y ∈ V . Then any linearly independent
subset S of V with n vectors is a basis for V .

Proof. Let S = {x1, . . . , xn} and H = SP (S). If H ̸= V , then there exists
y ∈ V \H. Thus by Theorem 4.13, {x1, . . . , xn, y} is linearly independent with
n + 1 elements, which is in contradiction with the Theorem 4.14. Therefore
H = V and so {x1, . . . , xn} is a basis for V .

Theorem 4.16. Let X be a finite spanning set for V . Then X ∪{y} is linearly
dependent, for any y ∈ V \X.

Proof. Let X = {x1, . . . , xn} and y ∈ V \X. Then y ∈ a1 ◦ x1 + · · · + an ◦ xn,
for some a1, . . . , an ∈ K. Thus y = t1 + · · ·+ tn, for some ti ∈ ai ◦ xi, 1 ≤ i ≤ n.
So 0 = y− t1− · · ·− tn ∈ 1 ◦ y− a1 ◦x1− · · ·− an ◦xn. Therefore {x1, . . . , xn, y}
is linearly dependent.

Proposition 4.17. Let V be invertible and 0◦y = {0}, for all y ∈ V . If the set
{x1, . . . , xn} is linearly independent in V, such that {x1, . . . , xn, xn+1, . . . , xm}
is linearly dependent, for any m > n, then {x1, . . . , xn} is a basis for V .

Proof. Let H = SP (x1, . . . , xn) and V ̸= H. Then there exists y ∈ V \H such
that by Theorem 4.13, the set {x1, . . . , xn, y} is linearly independent, which is
a contradiction. Therefore V = H.

Proposition 4.18. Let W1 and W2 be strongly left distributive and invertible
subhyperspaces of V such thatW1 ⊆W2 and dimW1 = dimW2. ThenW1 = W2.

Proof. Let {x1, . . . , xn} be a basis for W1 and W1 ̸= W2. Then there exists
y ∈ W2 \W1. Thus by Theorem 4.13, {x1, . . . , xn, y} is a linearly independent
subset of W2 with n + 1 vectors, which is in contradiction with the Theorem
4.14. Therefore W1 = W2.

Proposition 4.19. Let V be strongly left distributive and invertible and {x1, . . . ,
xn} be a linearly independent subset of V . If x ∈ V such that 0 ◦ x = {0} and
x /∈ SP (x1, . . . , xn), then {x1 + x, . . . , xn + x} is linearly independent in V .

Proof. Let 0 ∈ a1 ◦ (x1 + x) + · · · + an ◦ (xn + x), for some a1, . . . , an ∈ K.
Then 0 ∈ a1 ◦ x1 + · · · + an ◦ xn + (a1 + · · · + an) ◦ x. So 0 = t1 + · · · + tn + b,
for some ti ∈ ai ◦ xi, 1 ≤ i ≤ n, b ∈ (a1 + · · · + an) ◦ x. Now if a1 + · · · + an ̸= 0,
then x ∈ (a1 + · · · + an)−1 ◦ b = (a1 + · · · + an)−1 ◦ (−t1 − · · · − tn) ⊆ (a1 +
· · · + an)−1 ◦ (−a1 ◦ x1 − · · · − an ◦ xn) ⊆

(
−a1(a1 + · · · + an)−1

)
◦ x1 + · · · +(

−an(a1 + · · · + an)−1
)
◦ xn ⊆ SP (x1, . . . , xn). Which is a contradiction. Also
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if a1 + · · ·+ an = 0, and aj ̸= 0 for some 1 ≤ j ≤ n, then 0 ∈ a1 ◦ x1 + · · ·+ aj ◦
xj + · · · + an ◦ xn + 0 ◦ x = a1 ◦ x1 + · · · + aj ◦ xj + · · · + an ◦ xn. Which is a
contradiction, too. Thus a1 + · · · + an = 0 and ai = 0 for all 1 ≤ i ≤ n, which
it means that {x1 + x, . . . , xn + x} is linearly independent in V .

Definition 4.20. Let V be anti-left distributive and finite dimensional with
order basis β = {x1, . . . , xn}. (The basis β is called ordered basis, if the order of
it’s vectors is important). Then by Theorem 4.11, every vector x ∈ V belongs
to a unique sum in the form a1 ◦ x1 + · · · + an ◦ xn, with ai ∈ K. The scalars
a1, . . . , an are called the coordinates of x relative to the basis β. The coordinate
matrix (or coordinate vector) of x relative to β is the column matrix in Kn

whose components are the coordinates of x, i.e.

[x]β =

 a1
...
an

 .
It is clear that the coordinate matrix of x relative to β is unique.

Theorem 4.21. Let V be strongly left distributive and finite dimensional. Let
β = {x1, . . . , xn} and β́ = {x́1, . . . , x́n} be two ordered basis for V , such that

∀1 ≤ i ≤ n, [x́i]β =

 a1i
...
a1n

 .
Suppose P = [aij ]n×n. Then [x]β = P [x]β́, for all x ∈ V .

Proof. Let x ∈ V and

[x]β́ =

 b́1
...

b́n

 .
Then

x ∈
n∑

i=1

b́i ◦ x́i ⊆
n∑

i=1

b́i ◦

 n∑
j=1

aij ◦ xi

 ⊆
n∑

i=1

n∑
j=1

aijb
′
j ◦ xi.

Thus

[x]β =


n∑

j=1
a1j b́j

...
n∑

j=1
anj b́j

 = P

 b́1
...

b́n

 = P [x]β́.

Remark 4.22. The matrix P in Theorem 4.21, is called the transitive matrix
from basis β́ to basis β.
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5. Linear transformations between hypervector spaces

In this section we investigate the concept of linear transformation between two
hypervector spaces. Let V and W be hypervector spaces over the field K. Then
a function T : V −→W is called

1. linear transformation iff T (x + y) = T (x) + T (y) and T (a ◦ x) ⊆ a ◦
T (x), ∀x, y ∈ V, a ∈ K,

2. good linear transformation iff T (x + y) = T (x) + T (y) and T (a ◦ x) =
a ◦ T (x), ∀x, y ∈ V, a ∈ K.

The kernel of linear transformation T : V −→W is denoted by kerT and defined
by kerT = {x ∈ V : T (x) ∈ ΩV }.

Proposition 5.1. Let T : V −→W be a good linear transformation. Then

T (
n∑

i=1

ai ◦ xi) =
n∑

i=1

ai ◦ T (xi).

Proof. Straightforward.

Proposition 5.2. Let (V m,⊕m,⊙m,K) and (V n,⊕n,⊙n,K) be two strongly
distributive hypervector spaces is defined in Proposition 3.4, such that m < n.
Then T : V m −→ V n with the following rule is a good linear transformation.

T


x1...
xm


 =



x1 + x2
x2 + x3

...
xm−1 + xm
x1 + x2

...
x1 + x2


Proof. Straightforward.

Example 5.3 ([2]). Let (V,+, .,K) be a classical vector space, P be a subspace
of V and the external hyperoperation ◦ : K × V −→ P∗(V ) is defined by a ◦
x = a.x + P , for all a ∈ K,x ∈ V. Then (V,+, ◦,K) is a strongly distributive
hypervector space.

Example 5.4. Let (R2,+, ·,R) be the classical vector space and (R2,+, ◦,R)
be the strongly distributive hypervector space is constructed in Example 5.3,
with P = R× {0}. Then

T :
((

R2
)2
,⊕2,⊙2,R

)
−→

((
R2
)3
,⊕3,⊙3,R

)
T

([
x
y

])
=

 x+ y
x− y
x+ y

 .
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is a linear transformation, where ((R2)2,⊕2,⊙2,R) and ((R2)3,⊕3,⊙3,R) are
the hypervector spaces defined in Proposition 3.4.

Proposition 5.5. Let T : V −→W be a linear transformation and x1, . . . , xn ∈
V such that T (x1), . . . , T (xn) be linearly independent in W. Then x1, . . . , xn are
linearly independent in V .

Proof. Let 0 ∈ a1 ◦ x1 + · · · + an ◦ xn, for some ai ∈ K. Then 0 = T (0) ∈
T (a1 ◦x1 + · · ·+an ◦xn) ⊆ a1 ◦T (x1)+ · · ·+an ◦T (xn). Thus a1 = · · · = an = 0,
and so x1, . . . , xn are linearly independent.

Theorem 5.6. Let W be a hypervector space such that ΩW = {0W } and T :
V −→W be a linear transformation. Then T is injective if and only if kerT =
{0V }.

Proof. Let T be injective and x ∈ kerT. Then T (x) ∈ ΩW = {0}. Thus T (x) =
0 = T (0), and So x = 0. Hence kerT ⊆ {0}. On the other hand, 0V ∈ kerT ,
because T (0V ) = 0W ∈ ΩW . Therefore kerT = {0V }. Conversely, let kerT = {0}
and x1, x2 ∈ V, such that T (x1) = T (x2). Then T (x1 − x2) = T (x1) − T (x2) =
0 ∈ Ωw. Thus x1 − x2 ∈ kerT , and so x1 = x2. Consequently T is injective.

Theorem 5.7 ([2]). Let V be strongly left distributive, invertible and finite di-
mensional. If W is a subhyperspace of V, then dimW ≤ dimV and dimV/W =
dimV − dimW, where the external hyperoperation ⋆ : K × V/W −→ P∗(V/W )
is defined by a ⋆ (v +W ) = a ◦ v +W .

Theorem 5.8 ([2]). Let V and W be strongly left distributive hypervector spaces
over the field K, and T : V −→W be a linear transformation. Then

V

kerT
∼=
T (V )

ΩW
.

Proposition 5.9 ([10]). (i) If V is strongly left distributive, then dim ΩV = 0
and SP (∅) = ΩV .

(ii) If W 6 V such that dimW = 0, then SP (∅) = W .

Theorem 5.10. Let V and W be strongly left distributive, invertible and finite
dimensional hypervector spaces. If T : V −→W is a linear transformation, then

dim kerT + dimT (V ) = dimV.

Proof. By Theorem 5.8, V
kerT

∼= T (V )
Ω . Thus dim V

kerT = dim T (V )
Ω . Hence by

Theorem 5.7, dimV −dim kerT = dimT (V )−dim Ω. Then by Proposition 5.9,
dimV − dim kerT = dimT (V ). Therefore dim kerT + dimT (V ) = dimV .

Corollary 5.11. Let V and W be strongly left distributive, invertible and finite
dimensional hypervector spaces such that dimW < dimV . If T : V −→ W is a
linear transformation, then dim kerT > 0.
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Proof. It is clear that T (V ) 6 W , so by Theorem 5.7, dimT (V ) ≤ dimW .
Hence dimT (V ) < dimV . Thus by Theorem 5.10, it follows that dim kerT =
dimV − dimT (V ) > 0.

Corollary 5.12. Let V and W be strongly left distributive, invertible and finite
dimensional hypervector spaces, such that dimV = dimW, ΩV = {0V } and
ΩW = {0W }. If T : V −→ W is a linear transformation, then T is injective if
and only if T is surjective.

Proof. Let T be surjective. Then T (V ) = W and so by Theorem 5.10, dim kerT
= dimV − dimT (V ) = dimV − dimW = 0. Thus by Proposition 5.9, kerT =
SP (∅) = ΩV = {0V }. Hence by Theorem 5.6, T is injective. Conversely,
if T is injective, then by Theorem 5.6, kerT = {0V }. Thus by Proposition
5.9, kerT = ΩV = SP (∅) and so dim kerT = 0. Thus by Theorem 5.10,
dimT (V ) = dimV = dimW . Hence by Proposition 4.18, T (V ) = W .

Corollary 5.13. Let V and W be strongly left distributive, invertible and finite
dimensional hypervector spaces, such that dimV = dimW, ΩV = {0V } and
Ωw = {0W }. If T : V −→W is a linear transformation, then the followings are
equivalent:

1. T is isomorphism;

2. T is injective;

3. T is surjective.

Theorem 5.14. Let V and W be hypervector spaces and T : V −→ W be
an isomorphism (i.e. T is a good linear transformation, which is injective and
surjective). Then the followings hold:

1. If {x1, . . . , xn} is linearly independent in V, then {T (x1), . . . , T (xn)} is
linearly independent in W .

2. If {x1, . . . , xn} spans V , then {T (x1), . . . , T (xn)} spans W .

3. If {x1, . . . , xn} is a basis for V , then {T (x1), . . . , T (xn)} is a basis for W .

4. dimV = dimW.

Proof. 1. Let 0 ∈ a1 ◦ T (x1) + · · · + an ◦ T (xn), for some ai ∈ K. Then
0 = T (0) ∈ T (a1 ◦ x1 + · · · + an ◦ xn) and so 0 ∈ a1 ◦ x1 + · · · + an ◦ xn. Hence
ai = 0, 1 ≤ i ≤ n. Therefore {T (x1), . . . , T (xn)} is linearly independent.

2. Let y ∈W . Then y = T (x), for some x ∈ V . Thus x ∈ a1◦x1+· · ·+an◦xn,
for some ai ∈ K. Hence y = T (x) ∈ T (a1 ◦ x1 + · · · + an ◦ xn) = a1 ◦ T (x1) +
· · · + an ◦ T (xn). Therefore {T (x1), . . . , T (xn)} spans W .

3. It is obtained from (1) and (2).
4. It is obtained from (3).
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Theorem 5.15. Let V and W be finite dimensional hypervector spaces with
ordered bases β = {x1, . . . , xn} and β́ = {y1, . . . , ym}, respectively. If T : V →
W is a linear transformation such that

∀1 ≤ j ≤ n, [T (xj)]β́ =

 a1j
...

amj

 .
Then the m× n matrix AT = [aij ] is such that ∀x ∈ V, [T (x)]β́ = AT [x]β .

Proof. Proof is similar to the proof of Theorem 4.21.

Remark 5.16. The matrix AT in Theorem 5.15, is called the matrix of T
relative to the bases β and β́.

Proposition 5.17 ([7]). Let V and W be hypervector spaces over the field R.
Assume that L(V,W ) denotes the set of all good linear transformations from V
to W. For every T, S ∈ L(V,W ), a ∈ R, and x ∈ V, suppose that:

i (T + S)(x) = T (x) + S(x),

ii a⊙ T = {T ′ ∈ L(V,W ) : T ′(x) ∈ T (a ◦ x), for every x ∈ V }.

Then (L(V,W ),+,⊙,R) is a hypervector space over the field R. If V and W
are strongly left distributive, then L(V,W ) is strongly left distributive, too.

Theorem 5.18. Let V and W be hypervector spaces over the field R, with
bases β = {x1, . . . , xn} and β́ = {y1, . . . , ym}, respectively. Let W be strongly
left distributive, a ◦ 0 = {0W }, for all a ∈ R and 0 ◦ y = {0W }, for all y ∈ W.
Then the mapping [

G : L(V,W ) −→Mm×n

T 7−→ AT

is an injective and good linear transformation, where Mm×n = (Mm×n,+, .,R)
is the ordinary vector space of matrices and AT is the matrix of T relative to
the bases β and β́.

Proof. Let T, S ∈ L(V,W ) and

∀1 ≤ j ≤ n, [T (xj)]β́ =

 a1j
...

amj

 , [S(xj)]β′ =

 b1j
...
bmj

 .
Then G(T ) = AT = [aij ]mn and G(S) = AS = [bij ]mn. Also,

(T + S)(xj) = T (xj) + S(xj) ∈
m∑
i=1

aij ◦ yi +

m∑
i=1

bij ◦ yi =

m∑
i=1

(aij + bij) ◦ yi.
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Hence

G(T +S) = AT+S = [aij + bij ]mn = [aij ]mn+[bij ]mn = AT +AS = G(T )+G(S).

Therefore G(T + S) = G(T ) +G(S). Now if a ∈ K and T ∈ L(V,W ), then

G(a⊙ T ) = {G(S) : S ∈ a⊙ T} = {G(S) : ∀x ∈ V, S(x) ∈ a ◦ T (x)}
= {AS : ∀x ∈ V, S(x) ∈ a ◦ T (x)} ,

such that for all AS ∈ G(a⊙ T ) and 1 ≤ j ≤ n,

S(xj) ∈ a ◦ T (xj) ⊆ a ◦ (a1j ◦ y1 + · · · + amj ◦ ym)

⊆ aa1j ◦ y1 + · · · + aamj ◦ ym,

so

[S(xj)]β́ =

 aa1j
...

aamj

 .
Thus AS = [aaij ]mn = a · [aij ]mn = a · AT = a · G(T ). Therefore G(a ⊙ T ) =
a · G(T ). Consequently G is a good linear transformation. Now let T be a
good linear transformation such that G(T ) = AT = [0]mn. Then T (xj) ∈
0 ◦ y1 + · · ·+ 0 ◦ yn = {0}, for all 1 ≤ j ≤ n. Thus T = 0, because a ◦ 0 = {0W },
for all a ∈ K. Therefore G is injective.

Corollary 5.19. Let V and W be hypervector spaces over the field R, with
bases β = {x1, . . . , xn} and β́ = {y1, . . . , ym}, respectively. Let W be strongly
left distributive, a ◦ 0 = {0W }, for all a ∈ R and 0 ◦ y = {0W }, for all y ∈ W.
Then L(V,W ) ∼= Mm×n.

Proof. Let G be the good linear transformation defined in Theorem 5.18. Then
By Theorem 5.8,

L(V,W )

kerG
∼=

Mm×n

ΩMm×n

.

It is easy to verify that ΩMm×n = {0Mm×n}. Also by Theorem 5.6, kerG = {0}.
Therefore L(V,W ) ∼= Mm×n.

Corollary 5.20. Let V and W be hypervector spaces over the field R, with
bases β = {x1, . . . , xn} and β́ = {y1, . . . , ym}, respectively. Let W be strongly
left distributive, a ◦ 0 = {0W }, for all a ∈ R and 0 ◦ y = {0W }, for all y ∈ W.
Then dimL(V,W ) = dimV × dimW.

Proof. By Corollary 5.19, L(V,W ) ∼= Mm×n. Thus by Theorem 5.14,

dimL(V,W ) = dimMm×n = m× n = dimV × dimW.
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Abstract. In this paper we mainly discuss Heinz inequalities involving unitarily
invariant norms. By using the Hermite-Hadamard inequality, we get some refinements
of the Heinz inequalities, thus new improvements of Heinz Inequalities for matrices are
obtained. Our results are different from those of [7, 1, 3, 6, 8].

Keywords: refinements, Heinz inequality, convex function, Hermite-Hadamard in-
equality, unitarily invariant norm.

1. Introduction

On a complex separable Hilbert space, let A and B are positive operations, X
is an operator, then the function

f(v) =
∣∣∣∣∣∣AvXB1−v +A1−vXBv

∣∣∣∣∣∣ ,
where ||| · ||| denotes unitarily invariant norm, is convex on the interval [0, 1].
f(v) get its minimum at v = 1

2 , and gets its maximum at v = 0 and v = 1.
Moreover, f(v) = f(1 − v) for 0 ≤ v ≤ 1. Thus , from [4] we know that the
Heinz inequalities are valid

(1.1) 2
∣∣∣∣∣∣∣∣∣A 1

2XB
1
2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣AvXB1−v +A1−vXBv
∣∣∣∣∣∣ ≤ |||AX +XB||| .

The convexity of the function

f(v) =
∣∣∣∣∣∣AvXB1−v +A1−vXBv

∣∣∣∣∣∣
on [0, 1] is obvious.

Similar to the methods of [5] we begin our main results.
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2. Main results

A real-valued function f on the interval [a, b] is convex, if

f

(
x+ y

2

)
≤ f(x) + f(y)

2
,

where x, y ∈ [a, b].
Let f be a convex real-valued function on the interval [a, b], then the Hermite-

Hadamard integral inequality [2] is

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(t)dt ≤ f(a) + f(b)

2
.

In [5], Kittaneh gave several refinements of the Heinz inequalities by using
the Hermite-Hadamard integral inequality. Feng improved the results of [5] in
the paper [3]. Wang [6] also improved the results of Kittaneh. In [8], Yan
and Feng refined Kittaneh again. Abbas and Mourad [1] used a parameter to
generalize the results of [3, 6, 8]. Xue [7] also generalized the results and gave a
formula shown as follows,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(t)dt

≤ 1

2n

(
(n− 1)f(a) + 2f

(
a+ b

2

)
+ (n− 1)f(b)

)
≤ f(a) + f(b)

2
,

where n ≥ 2 is an integer. It is easy to know that results of [7] is more general
than of [1]. Other kinds of improvement of Heinz Inequalitie can be seen, for
example , see [9].

In this paper, we give other refinements of Heinz inequalities for matrices
which are different from [5, 3, 6, 8, 7]. We will use the following lemma to obtain
several better improved Heinz inequalities.

Let’s first give a lemma.

Lemma 1. If f is a convex real-valued function on the interval [a, b], then

f

(
a+ b

2

)
≤ 1

12

(
f(a) + 10f

(
a+ b

2

)
+ f(b)

)
≤ 1

4

(
f(a) + 2f

(
a+ b

2

)
+ f(b)

)
≤ f(a) + f(b)

2
.

Proof. From the Hermite-Hadamard integral inequality we know

2f

(
a+ b

2

)
≤ f(a) + f(b).
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So

12f

(
a+ b

2

)
≤ f(a) + 10f

(
a+ b

2

)
+ f(b).

Thus

f

(
a+ b

2

)
≤ 1

12

(
f(a) + 10f

(
a+ b

2

)
+ f(b)

)
.

Next, the following inequality will be proved.

1

12

(
f(a) + 10f

(
a+ b

2

)
+ f(b)

)
≤ 1

4

(
f(a) + 2f

(
a+ b

2

)
+ f(b)

)
.

From

2f

(
a+ b

2

)
≤ f(a) + f(b),

we conclude that

f(a) + 10f

(
a+ b

2

)
+ f(b) ≤ 3f(a) + 6f

(
a+ b

2

)
+ 3f(b).

And so

1

12

(
f(a) + 10f

(
a+ b

2

)
+ f(b)

)
≤ 1

4

(
f(a) + 2f

(
a+ b

2

)
+ f(b)

)
.

From

f(a) + 2f

(
a+ b

2

)
+ f(b) ≤ 2f(a) + 2f(b)

we get that
1

4

(
f(a) + 2f

(
a+ b

2

)
+ f(b)

)
≤ f(a) + f(b)

2
.

So, we finish the proof.

Set f(v) =
∣∣∣∣∣∣AvXB1−v +A1−vXBv

∣∣∣∣∣∣, then the following theorems can be
obtained.

Theorem 1. Let A,B are positive operators, X be an operator, then for 0 ≤
µ ≤ 1, we obtain

2
∣∣∣∣∣∣∣∣∣A 1

2XB
1
2

∣∣∣∣∣∣∣∣∣
≤ 1

6

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣+ 5

∣∣∣∣∣∣∣∣∣A 1
2XB

1
2

∣∣∣∣∣∣∣∣∣)(2.1)

≤ 1

2

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣∣A 1
2XB

1
2

∣∣∣∣∣∣∣∣∣)
≤
∣∣∣∣∣∣AµXB1−µ +A1−µXBµ

∣∣∣∣∣∣ .
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Proof. Applying the previous lemma on f(v) on the interval [µ, 1 − µ] when
0 ≤ µ ≤ 1

2 , then

f

(
1 − µ+ µ

2

)
≤ 1

12

(
f(µ) + 10f

(
1 − µ+ µ

2

)
+ f(1 − µ)

)
≤ 1

4

(
f(µ) + 2f

(
1 − µ+ µ

2

)
+ f(1 − µ)

)
≤ f(µ) + f(1 − µ)

2
,

and thus

f

(
1

2

)
≤ 1

6

(
f(µ) + 5f

(
1

2

))
≤ 1

2

(
f(µ) + f

(
1

2

))
≤ f(µ).

So,

2
∣∣∣∣∣∣∣∣∣A 1

2XB
1
2

∣∣∣∣∣∣∣∣∣ ≤ 1

6

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣+ 5

∣∣∣∣∣∣∣∣∣A 1
2XB

1
2

∣∣∣∣∣∣∣∣∣)
≤ 1

2

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣∣A 1
2XB

1
2

∣∣∣∣∣∣∣∣∣)(2.2)

≤
∣∣∣∣∣∣AµXB1−µ +A1−µXBµ

∣∣∣∣∣∣ .
Applying the previous lemma on f(v) on the interval [1 − µ, µ] when 1

2 ≤
µ ≤ 1, then

2
∣∣∣∣∣∣∣∣∣A 1

2XB
1
2

∣∣∣∣∣∣∣∣∣ ≤ 1

6

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣+ 5

∣∣∣∣∣∣∣∣∣A 1
2XB

1
2

∣∣∣∣∣∣∣∣∣)
≤ 1

2

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣∣A 1
2XB

1
2

∣∣∣∣∣∣∣∣∣)(2.3)

≤
∣∣∣∣∣∣AµXB1−µ +A1−µXBµ

∣∣∣∣∣∣ .
By combining (2.2) and (2.3) we obtain (2.1).

Theorem 2. Let A,B are positive operators, X be an operator, then for 0 ≤
µ ≤ 1, we have∣∣∣∣∣∣∣∣∣A 2µ+1

4 XB
3−2µ

4 +A
3−2µ

4 XB
2µ+1

4

∣∣∣∣∣∣∣∣∣ ≤ 1

12

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣

+10
∣∣∣∣∣∣∣∣∣A 2µ+1

4 XB
3−2µ

4 +A
3−2µ

4 XB
2µ+1

4

∣∣∣∣∣∣∣∣∣+ 2
∣∣∣∣∣∣∣∣∣A 1

2XB
1
2

∣∣∣∣∣∣∣∣∣)
≤ 1

4

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣(2.4)

+2
∣∣∣∣∣∣∣∣∣A 2µ+1

4 XB
3−2µ

4 +A
3−2µ

4 XB
2µ+1

4

∣∣∣∣∣∣∣∣∣+ 2
∣∣∣∣∣∣∣∣∣A 1

2XB
1
2

∣∣∣∣∣∣∣∣∣)
≤ 1

2

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣∣A 1
2XB

1
2

∣∣∣∣∣∣∣∣∣) .
Proof. Applying the lemma to the function f(v) on [µ, 12 ], where 0 ≤ µ ≤ 1

2 ,
and on the [12 , µ], where 1

2 ≤ µ ≤ 1, respectively, we can finish the proof.
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From (2.4) and the first part of (1.1) we obtain the refinement of first part
of (1.1).

Corollary 1. Let A,B are positive operators, X be an operator, then for 0 ≤
µ ≤ 1, we get

2
∣∣∣∣∣∣∣∣∣A 1

2XB
1
2

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣A 2µ+1
4 XB

3−2µ
4 +A

3−2µ
4 XB

2µ+1
4

∣∣∣∣∣∣∣∣∣
≤ 1

12

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣

+10
∣∣∣∣∣∣∣∣∣A 2µ+1

4 XB
3−2µ

4 +A
3−2µ

4 XB
2µ+1

4

∣∣∣∣∣∣∣∣∣+ 2
∣∣∣∣∣∣∣∣∣A 1

2XB
1
2

∣∣∣∣∣∣∣∣∣)
≤ 1

4

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣(2.5)

+2
∣∣∣∣∣∣∣∣∣A 2µ+1

4 XB
3−2µ

4 +A
3−2µ

4 XB
2µ+1

4

∣∣∣∣∣∣∣∣∣+ 2
∣∣∣∣∣∣∣∣∣A 1

2XB
1
2

∣∣∣∣∣∣∣∣∣)
≤ 1

2

(∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣∣A 1
2XB

1
2

∣∣∣∣∣∣∣∣∣)
≤
∣∣∣∣∣∣AµXB1−µ +A1−µXBµ

∣∣∣∣∣∣ .
Applying the lemma to f(v) on [0, µ], where 0 ≤ µ ≤ 1

2 , and [µ, 1], where
1
2 ≤ µ ≤ 1, respectively, we get the following theorem.

Theorem 3. Let A,B are positive operators, X be an operator, then
(1) for 0 ≤ µ ≤ 1

2 , we have∣∣∣∣∣∣∣∣∣Aµ
2XB1−µ

2 +A1−µ
2XB

µ
2

∣∣∣∣∣∣∣∣∣
≤ 1

12

(
|||AX +XB||| + 10

∣∣∣∣∣∣∣∣∣Aµ
2XB1−µ

2 +A1−µ
2XB

µ
2

∣∣∣∣∣∣∣∣∣
+
∣∣∣∣∣∣AµXB1−µ +A1−µXBµ

∣∣∣∣∣∣)(2.6)

≤ 1

4

(
|||AX +XB||| + 2

∣∣∣∣∣∣∣∣∣Aµ
2XB1−µ

2 +A1−µ
2XB

µ
2

∣∣∣∣∣∣∣∣∣
+
∣∣∣∣∣∣AµXB1−µ +A1−µXBµ

∣∣∣∣∣∣)
≤ 1

2

(
|||AX +XB||| +

∣∣∣∣∣∣AµXB1−µ +A1−µXBµ
∣∣∣∣∣∣) .

(2) for 1
2 ≤ µ ≤ 1, we have∣∣∣∣∣∣∣∣∣A 1+µ

2 XB
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Because on the interval [0, 12 ], the function f(v) is decreasing and on the
interval [12 , 1], it is increasing, then by using the inequalities (2.6) and (2.7), we
get the refinement of the second inequality in (1.1).

Corollary 2. Let A,B are positive operators, X be an operator, then for
0 ≤ µ ≤ 1, we have

(1) for 0 ≤ µ ≤ 1
2 and for every unitarily norm,
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3. Results and discussion

By refining the Hermite-Hadamard Integral Inequality, we get a new refined
Heinz Inequalities of matrices.

Can we add a parameter to get a family of refined Heinz Inequalities of
matrices as [7] and [1]? We are going to consider this case in next papers.
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4. Conclusion

Xue [7], Abbas and Mouradand [1] have generalized the results of [3, 6, 8]. In
a different way, this paper gives a new generalization of Heinz Inequalities for
matrices.
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Abstract. With the development of digitalization, more and more colleges and uni-
versities have applied information management technology into the optimal allocation
of human resources. How to manage the growing number of human resource manage-
ment data and mine their potential laws to realize the optimal allocation of human
resources in colleges and universities has become a top priority. In this paper, an im-
proved k-means algorithm was introduced and its superiority was verified through an
experiment by comparing the results before and after improvement. The result showed
that the calculation time and complexity of the improved algorithm decreased greatly,
suggesting that it could be applied for the optimal allocation of human resources in
colleges and universities.

Keywords: university human resources, optimal configuration management, k-means
algorithm.

Introduction

Nowadays, with the rapid development of computer technology, information
management technology has been applied to the university’s human resources
management, resulting in a large number of data in university databases [1].
Without effective data mining technologies, these data can not play their roles.
As an effective data mining algorithm, the clustering analysis algorithm has
been studied by scholars all over the world. Xu et al. [2] applied the k-means
algorithm based on Web user log data to perform clustering of the Web users,
studied their historical Web usage data and behavioral characteristics and found
that the algorithm was feasible and effective in data mining and could provide
useful knowledge for Web user cluster. RJ Kuo et al. [3] integrated particle
swarm optimization algorithm and k-means algorithm to cluster data and found
that the particle swarm optimization algorithm could be applied to find the
cluster centroid with user specified number. Besides, they used four data sets
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to evaluate the proposed particle swarm optimization algorithm and found that
the algorithm had great potential and could complete the mining of data. In
this paper, an improved k-means algorithm was introduced and its superiority
was verified through an experiment by comparing the results before and after
improvement. The result showed that the calculation time and complexity of
the improved algorithm decreased greatly, suggesting that it could be applied
for the optimal allocation of human resources in colleges and universities, which
provided some reference for the application of clustering analysis algorithm in
the optimization of human resources in colleges and universities.

1. Clustering analysis algorithm

1.1 Clustering analysis

Clustering analysis refers to the grouping of a collection of physical or abstract
objects into a number of classes that consist of similar objects, whose aim is to
collect data on a similar basis for classification [4-5]. As there are many types of
clustering analysis algorithms, appropriate ones should be chosen based on the
specific data type and clustering purpose [6]. The common clustering algorithms
are as follows:

1.1.1 Classification method

A database containing j objects is divided into k categories, with each category
representing a cluster, where all the objects are similar, k ≤ j. Two conditions
must be met using this method. Firstly, each object can belong to only one
group, rather than multiple groups. Secondly, there must be one object in each
group. The method is carried out as follows: the group number k is given;
iteration positioning is used to move the objects between partitions and divide
them; make the objects within the same group to be as similar as possible while
those of different groups to be as diverse as possible. Currently, the k-means
algorithm is a popular heuristic method, where each group can be represented
with the average value of the objects in the group. In this paper, we use the
improved k-means algorithm [7] to excavate human resource data.

1.1.2 Hierarchy method

The hierarchy method is to perform hierarchical decomposition of objects, which
includes two types. One is the coagulation method, which includes all the similar
objects into one group until all the groups are merged into one. The other is the
splitting method, which splits s a big group into small groups until each object
is in a separate group [8].
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1.1.3 Density method

The density method means that the clustering behavior is continued as long as
the number of objects within a neighbor region exceeds a threshold value [9].

1.1.4 Grid method

In the grid method, the space where the objects lie is divided into several grids,
where clustering of the objects is performed so as to improve the clustering
speed. STING is one of the commonly used grid methods [10].

1.2 k-means algorithm

The k-means algorithm divides j objects into k groups based on similarity,
with the average value of the objects in each group as its center and significant
differences between groups. The detailed algorithm is as follows:

(1) k objects are selected from j objects to be the center of k groups.

(2) Repeat step (1).

(3) According to the distance between each object to the center object of
each group, they are divided into corresponding groups.

(4) Recalculate the average value of each group.

(5) Take the renewed average value of each group as new centers.

(6) Repeat step (3) and (4) until the group centers do not change any longer.

Generally, square error criterion is taken as distance calculation function,
with its formula as follows:

Where is the average value of group and a is a data in group.

This algorithm calculates the square error of the objects, according to which
j objects are divided. If the sum of the squared differences between them is
large, group centers must be redefined to continue clustering until the sum of
the square errors reaches the minimum. When the data is relatively large, the
algorithm can efficiently complete the data mining work. Besides, most cases
using the algorithm for data mining are ended with local optimization.

Because the algorithm needs to divide the starting center of each group, it
is necessary to determine the number of groups and the initial center of each
group firstly. Therefore, the k-means algorithm does not apply to groups where
the size of the objects in the database is too different. Also, it is susceptible
to isolated point data, which can exert great impact on the clustering analysis
results.

1.3 Improved k-means algorithm

In order to avoid the impact of extreme differences, we improved the k-means
algorithm by removing x maximum values and x minimum values respectively.
The specific algorithm is as follows:

(1) Rank the j objects from large to small, removing x maximum values and
x minimum values.
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(2) Calculate the average value F of all the remaining j − 2x objects and
take (0 − 2) times that of the value of F to be the initial center of each group.

(3) Repeat the above step.

(4) According to the distance between each object and each group center,
they are divided into corresponding groups.

(5) Recalculate the average value of each group.

(6) Take the recalculated average value as the new group center.

(7) Repeat step (5) and (6) until the group centers do not change any longer.

2. Clustering analysis of human resource management in colleges
and universities

2.1 Application of clustering analysis in post setting in colleges and
universities

In this paper, both the k-means algorithm before and after improvement were
applied to extract the human resource data of School of Economics and Man-
agement, Yanshan University, which was compared to verify the significance of
clustering analysis algorithm in human resource data mining. Before the clus-
tering analysis, the preliminary statistics on the human resources data in the
university was performed and the mining objects were determined.

This paper studied the university professional and technical personnel database.
The class information table and scientific research information table of teachers
between 2015-2016 were obtained from the office of academic affairs, including
1,524 records on in-service staff appointment time, standard class hours and
student ratings. As the research objects are the teachers, 855 related records
were selected while others were omitted. Then, after screening based on the
deputy senior title, 192 records were kept for clustering analysis.

2.2 Application of k-means algorithm in human resource
management in colleges and universities

In this design, the 192 included records were divided into three groups, i.e.,
k = 3. Firstly, 3 objects were taken as the center of clustering. Then, according
to Euclidean distance, each object was assigned to the group to which it is close
in its average value. Besides, the mean vector of these objects to each cluster
point was calculated and the total mean value was used as the center to perform
clustering again. All the screened data were stored in an Excel table and the
Excel built-in functions were used to perform clustering analysis on the data.

In the table, lines 5 to 196 are the 192 records and lines 2-4 are the new
average values. A and B stand for the job number and workload respectively.
G5 to G196 are the groups each point was assigned to through calculation.
H1, H2 and H3 represent three groups; C1-G1 are numbers of iterations; lines
194-199 are the numbers of objects in each group after each iteration.
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Table 1. Clustering analysis in universities and colleges

2.2.1 Determination of iteration group center

Based on the k-means algorithm, k objects were randomly taken as the initial
group centers, which are C2-C4 in table 1. Afterwards, new average values
were generated after each iteration as new group centers, noted by D2, whose
function is D2 = AVERAGEIF (C 5 : C 196, ”H1”, B 5: B 196). As an average
function, AVERAGEIF is mainly used to calculate the average value of multiple
table cells. In column D, the function was applied to calculate the average value
of the workload data which meet the H1 condition between D5-D196.

2.2.2 Grouping of records after each iteration

In the data area, this paper made an iterative grouping of all the probabilities,
and registered the value of each record and the European distance of the center of
three groups [11]. According to the distance, they were assigned to the neighbor
groups. For example, the function of D5 is: suppose ($B5 − D$2)2 to be m,
($B5−D$3) to be n, and ($B5−D$4)2 to be p, then: D5 = if((m ≤ n, ifa ≤ c,
”H1”, ”H2”)), if (n ≤ p, ”H2”, ”H3”).

Where m refers to the European distance between record D and group 1; n
refers to the European distance between record D and group 2; p refers to the
European distance between record D and group 3.

When m ≤ n, if m ≤ p, then D belongs to group 1, denoted by H1; if
m > p, then D belongs to group 3, denoted by H3. When m > n, if n ≤ p,
then D belongs to group 2, denoted by H2; if n > p, then D belongs to group
3, denoted by H3.
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2.2.3 Calculation of the number of samples in each group

In the data area, the number of samples in each group after each iteration is
recorded. For example, the function of C197 is:

C197 = COUNTIF (C5: C197, ”H1”)

COUNTIF is the function to calculate the number of records which meet
the H1 condition.

2.2.4 Iteration

After one iteration is completed, the content in D2-D196 is used to continue the
following iterations.

2.2.5 End

The iteration is stopped when the group centers and the number of samples in
each group do not change any longer.

2.3 Improved k-means algorithm

As mentioned in section 2.2, we set the number of groups to be 3, i.e., k = 3.
Then, the 192 records were ranked, the maximum vale 487.0 and minimum value
3.4 were selected and the average value of the remaining samples was calculated,
denoted by Q. Afterwards, 0.5Q and 1.5Q were used as the initial center of the
clustering and each object was assigned to the group to which it was close in
its average value. Finally, the mean vectors of each object to each clustering
point were calculated and the whole mean value was taken as the new center to
perform the clustering again. The Excel table used in this section was the same
as table 1, with the specific steps as follows:

2.3.1 Determination of the iteration group center

Using the improved algorithm, the ranked samples were calculated. After re-
moving the maximum value and the minimum value, the average value Q was
calculated. Then, 0.5Q and 1.5Q was used as the initial group center of the
iteration and the value of C2 − 4, with the calculation formula as follows:

C2 = AV ERAGE(B$6 : B$195) ∗ 0.5

C3 = AV ERAGE(B$6 : B$195)

C4 = AV ERAGE(B$6 : B$195) ∗ 1.5

After each iteration, the average value of the group of the previous iteration
was calculated. For example, the function of D2 is as follows:

D2 = AV ERAGEIF (C$5 : C$196, ”H1”$B$5 : $B$196)

The following steps were as the same as mentioned in the above sections.
When the group centers and the number of samples in groups did not change
any longer, the iteration ended.



RESEARCH ON A CLUSTERING ANALYSIS ALGORITHM ... 55

3. Results

The clustering analysis on the data of scientific research work of university
teachers was performed using the above methods, with the results shown in
table 2 and 3.

Table 2. k-means algorithm analysis results

Table 3. Improved k-means algorithm analysis results

As shown in table 2, the center of the three groups was 186.2568, 869.3516
and 3658.2615 respectively, with great differences between groups and small dif-
ferences within each group. The minimum values of the groups are the boundary
points of university teacher recruitment, i.e., the minimum standards of recruit-
ment. Based on the workload, we can assign the recruitment conditions. The
results suggest that the k-means algorithm can adapt to the excavation of human
resource data in colleges and universities and complete the optimal allocation
of human resources.

By comparing table 2 with table 3, it can be seen that the group centers,
number of samples in each group, the maximum values and minimum values of
groups were the same in the two tables, suggesting that the improved k-means
algorithm also adapted to the excavation of human resource data in colleges
and universities. Moreover, the number of iteration of the improved algorithm
was 13 times less than that before improvement, which reduced the calculation
complexity to a large degree. Therefore, the improved k-means algorithm was
more convenient and can realize better optimal allocation of university human
resources.

4. Conclusion

As one of clustering analysis methods, the k-means algorithm can well com-
plete the clustering analysis of human resource data [12]. HM Hussain et al.
[13] proposed a highly parallel hardware design that accelerates the k-means
clustering of microarray data by implementing the k-means algorithm in a field
programmable gate array. Q Ren et al. [14] improved the k-means algorithm
using the kruskai algorithm, and obtained the minimum spanning tree of the
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clustering object by kruskai algorithm and proved that the improved algorithm
was more efficient than the traditional algorithm through an experiment. In this
paper, the k-means algorithm before and after improvement were both applied
to carry out clustering analysis on university human resource data and the re-
sults showed that the improved algorithm was more convenient, which provide
references for the application of clustering analysis in the optimization of human
resources in colleges and universities.

References

[1] Y. Liu, Analysis on the effective integration of information technology and
personnel management in colleges and universities, Creative Education, 6
(2015), 785-789.

[2] Jin Hua Xu, Hong Liu, Web user clustering analysis based on K means
algorithm, International Conference on Information NETWORKING and
Automation, IEEE, 2010.

[3] R.J. Kuo, M.J. Wang, T.W. Huang, An application of particle swarm opti-
mization algorithm to clustering analysis, Soft Computing, 15 (2011), 533-
542.

[4] K. Xia, Y. Wu, X. Ren et al., Research in clustering algorithm for diseases
analysis, Journal of Networks, 8 (2013), 1632-1639.

[5] S. Cheng, Y. Shi, Q. Qin et al., Solution clustering analysis in brain storm
optimization algorithm, Swarm Intelligence, IEEE, 2013, 111-118.

[6] R. Bala, S. Sikka, J. Singh, A Comparative analysis of clustering algorithms,
International Journal of Computer Applications, 100 (2014), 35-39.

[7] K. Singh, D. Malik, N. Sharma, Evolving limitations in K-means algorithm
in data mining and their removal, International Journal of Computational
Engineering & Management, 2011, 2230-7893.

[8] F. Murtagh, P. Legendre, Ward’s hierarchical agglomerative clustering
method: which algorithms implement ward’s criterion?, Journal of Clas-
sification, 31 (2014), 274-295.

[9] Y. Fan, Y. Rao, A density-based path clustering algorithm, International
Conference on Intelligent Computation and Bio-Medical Instrumentation,
IEEE, 2011, 224-227.

[10] S. Krinidis, V. Chatzis, A robust fuzzy local information C-means clustering
algorithm, IEEE Transactions on Image Processing A Publication of the
IEEE Signal Processing Society, 19 (2010), 1328-1337.



RESEARCH ON A CLUSTERING ANALYSIS ALGORITHM ... 57

[11] L. Liberti, C. Lavor, N. Maculan et al., Euclidean distance geometry and
applications, Quantitative Biology, 56 (2012), 3-69.

[12] J. Zhu, H. Wang, An improved K-means clustering algorithm, Journal of
Networks, 9 (2014), 44-46.

[13] H.M. Hussain, K. Benkrid, H. Seker et al, FPGA implementation of K-
means algorithm for bioinformatics application: an accelerated approach to
clustering microarray data, Adaptive Hardware and Systems, IEEE, 2011,
248-255.

[14] Q. Ren, X. Zhuo, Application of an improved K-means algorithm in gene
expression data analysis, IEEE International Conference on Systems Biol-
ogy, IEEE, 2011, 87-91.

Accepted: 21.01.2016



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 41–2019 (58–64) 58

THE NUMERICAL RANGE OF AN ELEMENT OF A CLASS
OF TOPOLOGICAL ALGEBRAS

E. Ansari-Piri
Department of Mathematics
Faculty of Science
University of Guilan
Rasht
Iran
eansaripiri@gmail.com

M. Sabet∗

Department of Mathematics

University of Guilan

Rasht

Iran

and

Department of Mathematics

Payame Noor University

Iran

sabet.majid@gmail.com

Abstract. Kinani, Oubbi and Oudadess (1998) show that every unital and commu-
tative locally convex algebra with a jointly continuous product is β - subadditive, for
which β is the boundedness radius. In this paper we obtain some results on numerical
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space of topological algebras for which the boundedness radius is finite. Furthermore,
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1. Introduction

Allan [1] provides the definition of the radius of boundedness β to develop the
spectral theory for locally convex topological algebras. After that, the radius of
boundedness β is extended for general topological algebras (see for example
[11]). T.Husain [9] introduces the concepts of strongly sequential and infrase-
quential topological algebras and the first author [3] introduces the concept
of fundamental topological algebra to generalize the famous Cohen factoriza-
tion theorem. Kinani, Oubbi and Oudadess [10] show that every unital and
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commutative locally convex algebra with a jointly continuous product is β -
subadditive. Also Oubbi [12] extended β - subadditive algebras. In this note,
at first we study the dual space of topological algebras for which the bound-
edness radius is finite; and provide a norm on a subspace of the algebraic dual
space of topological algebras. Next, we try to study numerical range in β -
subadditive algebras. Here, we have supposed all algebras are complex unital
complete metrizable topological algebra.

2. Definitions and related results

At first we begin with the previous definitions and related results.

Definition 2.1. Let x be an element of a topological algebra (A, τ). We will
say that x is bounded if there exists some r > 0 such that the sequence (x

n

rn )n
converges to zero. The radius of boundedness of x with respect to (A, τ) is
denoted by β(x) and defined by

(2.1) β(x) = inf{r > 0 : (
xn

rn
) → 0}

with the convention : inf ϕ = +∞. We also say A is a β− finite topological
algebra if all elements of A are bounded.

Definition 2.2. Let A be a topological algebra.
(i) A is said to be strongly sequential if there exists a neighborhood U of 0

such that for all x ∈ U, xn → 0 as n→ ∞ .
(ii) A is said to be infrasequential if for each bounded set B ⊆ A there exists

λ > 0 such that for all x ϵ B, (λx)n → 0 as n→ ∞.

Proposition 2.3 ([9]). With reference to the above definitions, (i) implies (ii),
and (ii) implies that β is finite.

Definition 2.4 ([3]). A topological algebra A is said to be fundamental if
there exists b > 1 such that for every sequence (an) of A, the convergence of
bn(an+1 − an) to zero in A implies that (an) is a Cauchy sequence.

Proposition 2.5 ([5]). Let A be a strongly sequential topological algebra that
ρ ≤ β. Then A is a Q− algebra.

Corollary 2.6 ([8]). Let A be a Q− algebra. Then every multiplicative linear
functional is automatically continuous.

3. A norm on a subspace of the algebraic dual space of a β-finite
topological algebra

Let A be a topological algebra, A′ be the space of all linear functionals on A,
and f ∈ A′. Define v(f) = sup {|f(x)| : β(x) < 1}. Then we have the
following theorem.
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Theorem 3.1. Suppose β is finite. Taking the above notations, one has:
(i) v(f) = sup {|f(x)| : β(x) ≤ 1} = sup {|f(x)| : x ∈ β−1{0, 1}}.
(ii) If β(x) ̸= 0 then we have

(3.1) |f(x)| ≤ v(f) β(x)

and if β(x) = 0, then we have

(3.2) |f(x)| ≤ v(f).

(iii) f = 0 if and only if v(f) = 0.
(iv) If f, g ∈ A′ , α ∈ C then v(f +g) ≤ v(f)+ v(g) , v(αf) = |α| v(f).
(v) If Â = {f ∈ A′ : v(f) < ∞} then v(.) is a norm on Â and (Â, v(.))

is a Banach space.
(vi) If f ∈ Â, β(x) = 0, then, f(x) = 0 and therefore we have:

(3.3) f ∈ Â ⇒ (|f(x)| ≤ v(f) β(x) for all x ∈ A).

(vii) If A is an infrasequential algebra, then Â ⊆ A∗ where A∗ is the set of
all continuous linear functionals on A.

Proof. (i) Let r = sup{|f(x)| : β(x) < 1}, r′ = sup{|f(x)| : β(x) ≤ 1}. Then
obviously, we have r ≤ r′. If n ∈ N, β(x) ≤ 1 then β((1 − 1

n)x) < 1 , that
implies |f((1 − 1

n)x)| ≤ r, i.e (1 − 1
n)|f(x)| ≤ r. Since n is arbitrary, it follows

r′ ≤ r. On the other hand, if we suppose r′′ = sup {|f(x)| : x ∈ β−1{0, 1}},
obviously r′′ ≤ r′. If suppose 0 ̸= β(x) ≤ 1, We have |f( x

β(x))| ≤ r′′ that implies

r′ ≤ r′′.
(ii) Let x ∈ A, β(x) ̸= 0, then β( x

β(x)) = 1, that implies |f( x
β(x))| ≤ v(f) as

desired.
(iii) By (3.1)and (3.2) the result is clear.
(iv) It is clear.
(v) It suffices to show that (Â, v(.)) is complete. Let(fn)n be a Cauchy

sequence in (Â, v(.)) and x ∈ A. By (3.1) and (3.2) , the sequence (fn(x))n is
a Cauchy sequence of C and so, there exists a function f : A → C such that
fn(x) → f(x) for all x ∈ A. Let ε > 0, x ∈ A for which β(x) < 1. There exists
N ∈ N such that m,n ≥ N implies that |fn(x)− fm(x)| ≤ v(fn − fm) < ε

2 .
Now, we let m tends to infinity, then we have |fn(x) − f(x)| < ε; therefore, if
n ≥ N then v(fn − f) < ε.

(vi) Let n ∈ N. By (3.2), |f(nx)| ≤ v(f) that implies |f(x)| ≤ v(f)
n for all

n ∈ N; i.e f(x) = 0.
(vii) Let f ∈ Â and E be a bounded subset of A. Since A is an infrasequential

algebra, then there exists M > 0 such that β(x) ≤ M for all x ∈ E. By (3.3)
we get f(E) is bounded; that implies f ∈ A∗.

We define weak̂-topology on Â, the same as the definition of weak∗-topology
on A∗.
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Definition 3.2. We call the A-topology of Â the weak̂-topology on Â. (pro-
nunciation: weak hat topology).

According to this definition, the next theorem is clear.

Theorem 3.3. Let A be β-finite. We have:

(i) The weak̂-topology is a locally convex vector topology on Â.

(ii) Every linear functional φ on Â is weak̂-continuous if and only if there
exists a ∈ A such that φ(Λ) = Λa for every Λ ∈ Â.

Theorem 3.4. (Banach- Alaoglu theorem for weak̂-topology) We suppose A is
β-finite and D(A) = {x ∈ A : β(x) < 1} if

(3.4) K = {Λ ∈ Â : |Λx| ≤ 1 on D(A)}

then K = {Λ ∈ Â : v(Λ) ≤ 1} and K is weak̂-compact.

Proof. The proof is similar to ([13], theorem 3.15).

Proposition 3.5. Let A be a strongly sequential algebra for which ρ ≤ β and
ΦA be the carrier space of A. We have

(i) If f is multiplicative linear functional, then v(f) = 1 and therefore
ΦA ⊆ Â ⊆ A∗.

(ii) The carrier space ΦA is weak∗-compact.

(iii) Suppose A is a Banach algebra, then for every continuous linear func-
tional f , ∥f∥ ≤ v(f).

Proof. (i) Let x ∈ A, β(x) < 1; then there exists b > 1 such that bn xn → 0 and
by propsition 2.5 and corollary 2.6, since f is continuous, we have bn(f(x))n =
f(bnxn) → 0. Therefore |f(x)| < 1; and since β(1) = 1, we get the result.

(ii) By (i) and (3.4), it is sufficient to observe that Φ∞
A = ΦA

∪
{0} is a

weak̂-closed subset of Â (see [7] chapter2, section17, proposition 2).

(iii) It is sufficient to note that, β(x) ≤ ∥x∥.

4. Numerical range on β- subadditive algebras

In this section, moreover, we suppose that every algebra A is β- subadditive and
β-finite, that is, β(x+ y) ≤ β(x) + β(y), β(x) <∞ for all x, y ∈ A.

Lemma 4.1. Suppose A is an algebra and x0 ∈ A. Then there exists Λ ∈ Â
such that Λ(x0) = β(x0) and |Λ(x)| ≤ β(x) for all x ∈ A.

Proof. We apply the Hahn- Banach theorems where β is indicated seminorm
on A.
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In [7 section 10] a suitable discussion is given on the numerical range of
elements of normed algebras. Here we use the similar notations and extend the
ideas for topological algebras. Suppose E(a, r) = {x ∈ X : ∥x − a∥ ≤ r}, X1 =
{x ∈ X : ∥x∥ ≤ 1} and S(X) = {x ∈ X : ∥x∥ = 1} for which X is a normed
vector space. We define the following concepts.

Definition 4.2. We define sets Dβ(A; 1), Vβ(A; a) by

Dβ(A; 1) = {f ∈ S(Â) : f(1) = 1},
Vβ(A; a) = {f(a) : f ∈ Dβ(A; 1)}(a ∈ A).

The elements of Dβ(A; a) are called β- normalized states on A, Vβ(A; a) is
called the β- numerical range of a. We write D(1), V (a) for Dβ(A; 1) , Vβ(A; a)
when no confusion can occur.

Proposition 4.3. Let B be a subalgebra of A such that 1 ∈ B, b ∈ B. Then
Vβ(B; b) = Vβ(A; b).

Proof. Let λ ∈ Vβ(A; b); therefore, there exists f ∈ D(A; 1), λ = f(b). If g is
the restriction mapping f to B, Then g ∈ Dβ(B; 1), λ = g(b) that implies λ ∈
Vβ(B; b). On the other hand, we suppose λ ∈ Vβ(B; b), therefore, there exists
f ∈ B′ : |f(x)| ≤ β(x) (x ∈ B), λ = f(b), f(1) = 1; and by the Hahn- Banach
theorems, there exists F ∈ A′ such that |F (x)| ≤ β(x), (x ∈ A), and F =
f on B, which implies that, F ∈ D(A; 1), λ = F (b); and we get the result.

Lemma 4.4. D(1) is non-void weak̂-compact convex subset of Â .

Proof. Since D(1) = (Â)1
∩

1−1{1} , if, in lemma 4.1, we put x0 = 1, we get
the result.

Proposition 4.5. (i) V (a) is non-void compact convex subset of C .

(ii) V (γ + λb) = γ + λV (b), V (a+ b) ⊆ V (a) + V (b) (a, b ∈ A, λ, γ ∈ C).

(iii) |z| ≤ β(a) (z ∈ V (a)).

Proof. (i) By the lemma 4.4, it is clear.

(ii) It is clear.

(iii) Let z ∈ V (a). Then, there exists f ∈ D(1) such that z = f(a) , and by
3.3 we have, |z| = |f(a)| ≤ v(f)β(a) ≤ β(a).

Lemma 4.6. V (a) =
∩

z∈CE(z, β(z − a)).

Proof. If λ ∈ V (a), then λ = f(a) for some f ∈ D(1), and for all z ∈ C we
have

(4.1) |λ− z| = |f(z − a)| ≤ β(z − a),

i.e.

(4.2) λ ∈ E(z, β(z − a)) (z ∈ C).
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Suppose on the other hand that λ ∈
∩

z∈CE(z, β(z − a)). If a = z01A, then
V (a) = {f(a) : f ∈ D(1)} = {f(z01A) : f ∈ D(1)} = {z0}; also |λ − z0| ≤
β(z0 − z0) = 0. Therefore λ = z0 ∈ V (a). Suppose then that 1, a are linearly
independent, and define f0 on their linear span by

(4.3) f0(w + w′a) = w + w′λ (w,w′ ∈ C).

Since λ satisfies (4.2), we have |f0(w + w′a)| ≤ β(w + w′a), v(f0) ≤ 1. By
the Hahn-Banach theorem, f0 can be extended to f ∈ Â with v(f) ≤ 1. Then
f ∈ D(1) and f(a) = f0(a) = λ.

We remember by [2] corollary 2.2 in every fundamental algebra, we have
ρ ≤ β.

Proposition 4.7. If ρ ≤ β, in particular, in fundamental algebras, we have
Sp(a) ⊆ V (a).

Proof. Let λ ∈ C \ V (a). Then by lemma 4.6, there exists z ∈ C such that
|z − λ| > β(z − a). Therefore β((z − λ)−1(z − a)) < 1, and so

(4.4) 1 − (z − λ)−1(z − a) ∈ Inv(A).

It follows that λ− a ∈ Inv(A), and as a result λ ∈ C \ Sp(a).
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Abstract. In this paper we introduce a new class of rings that we say idempotent
rings. We call a ring R is idempotent, if every ideal of R is generated by an idempotent
element. In this paper we prove some properties of this rings, where one of the important
results is the following:

Let t ≥ 2 be an integer number. Then the ring Zt is an idempotent ring if and only
if t = p1p2 . . . pn, where all of the pi are distinct prime numbers.

Keywords: idempotent, artinian ring, noetherian ring.

1. Introduction

Throughout this paper, all rings are commutative rings with identity and all
modules are unital. Let M be a submodule of the R-module L. We say that
L is an essential extension of M precisely when B ∩M ̸= 0 for every non-zero
submodule B of L. We say that L is an injective envelope (or injective hull) of
M precisely when L is an injective R-module which is also an essential extension
of M . We denote by E(M) the injective envelope of M . For any unexplained
notation and terminology we refer the reader to [2] and [3].

2. Main results

Definition 2.1. Let R be a ring. We say that R is idempotent if every ideal of
R is generated by an idempotent element.

Lemma 2.2. Every idempotent ring is Artinian ring.

Proof. Suppose that m ∈ Max(R). Then there exist an element e ∈ R such that
m = ⟨e⟩ and e2 = e. Now in local Noetherian ring Rm, we have (mRm)2 = mRm,
and so by Nakayama,s lemma, mRm = 0. Hence dimRm = 0. Sinc m is an
arbitrary maximal ideal, it follows that dimR = 0 and so R is Artinian ring.

Lemma 2.3. In idempotent ring, the Jacobson radical is zero.
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Proof. We denote the Jacobson radical ofR by J(R), so we show that J(R) = 0.
There exists an element e ∈ R such that J(R) = ⟨e⟩ and e2 = e. Therefore
J(R) = J(R) · J(R) and by Nakayama,s lemma, J(R) = 0.

Theorem 2.4. Let R be an idempotent ring and m1, . . . ,mn be all of the max-
imal ideals of R. Then R ≈ R

m1
⊕ . . .⊕ R

mn
.

Proof. Let MaxR = {m1, . . . ,mn}. By induction on n we prove the theorem.

If n = 1, then J(R) = m1 = 0 and so R ≈ R
m1

.

Now we suppose that n ≥ 0 and consider the following exact sequence,

0 −→ R

m1 ∩m2
−→ R

m1
⊕ R

m2
−→ R

m1 + m2
−→ 0

Since m1+m2 = R, it follow from the above exact sequence that R
m1∩m2

≈ R
m1

⊕ R
m2

.
Now consider the following exact sequence

0 −→ R

m1 ∩m2 ∩m3
−→ R

m1 ∩m2
⊕ R

m3
−→ R

(m1 ∩m2) + m3
−→ 0.

Again similar the above argument, since (m1 ∩m2) + m2 = R, it follows that

R

m1 ∩m2 ∩m3
≈ R

m1 ∩m2
⊕ R

m3
≈ R

m1
⊕ R

m2
⊕ R

m3
.

By reapiting this argument we have

R ≈ R

(0)
≈ R

J(R)
=

R

∩n
i=1mi

≈ ⊕n
i=1

R

mi
.

Theorem 2.5. Every idempotent ring R as an R-module is injective.

Proof. Let I be an ideal of R and consider the diagram

0 // I
i //

f
��

R

R

There exists an element e ∈ R such that I = ⟨e⟩ and e2 = e. Let f(e) = x.
We define the function g : R → R with g(r) = rx. Then we have the following
relations for all r ∈ R.

goi(re) = g(re) = rex = ref(e) = rf(e2) = rf(e) = f(re),

and so R is an injective R-module.
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Corollary 2.6. If R is an idempotent ring, then every simple R-module is
injective.

Proof. Let N be a simple R-module. Then there exists m ∈ Max(R), such that
N ≈ R

m . Therefore N is a direct summand of an injective R-module R and so
N is injective.

Corollary 2.7. Let R be an idempotent ring. Then for every m ∈ Max(R),
ER

(
R
m

)
≈ R

m .

Proof. Follows from the above corollary.

Lemma 2.8. Let R be an idempotent ring and M be a finitely generated R-
module. Then M is injective.

Proof. Since R is Artinian ring, it follows that l(M) < ∞. We prove the
assersion by induction on l(M). If l(M) = 1, then M is a simple and so the
assersion follows from Corollary 2.6. Now suppose that l(M) = n ≥ 2 and the
assertion holds for n− 1.

Since M is Artinian R-module, it follows that M has a simple submodule
such as N . Consider the following exact sequence.

0 −→ N −→M −→ M

N
−→ 0

l(N) = 1 and so N is injective. l
(
M
N

)
= n − 1 then M

N is injective. Therefore
M is also injective.

Lemma 2.9. Let R be a Noetherian ring and {Ei}i∈A be a family of injective
R-modules. Then lim

⃗i∈A
Ei is injective.

Proof. Is simple.

Theorem 2.10. Let R be an idempotent ring. Then every R-module is injective.

Proof. Let T be an R-module. Then T is a direct limit of its finitely generated
submodules.

Theorem 2.11. Let R be an idempotent ring. Then every R-module is projec-
tive and so is flat.

Proof. By the above theorem every R-module is injective. Let T be an R-
module. Then T is injective. By Matlis theorem

T = ⊕p∈Spec(R)E

(
R

p

)
.
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On the other hand Max(R) = Spec(R). Therefore,

T = ⊕m∈Max(R)
R

m
.

Also for any m ∈ Max(R), R
m is a direct summand of R and so is projective.

Consequently T is projective.

Theorem 2.12. Let t ≥ 2 be an integer number. Then the ring Zt is an
idempotent ring if and only if t = p1p2 . . . pn, where all of the pi are distinct
prime numbers.

Proof. Let Zt be an idempotent ring. Suppose on the contrary that there exists
a prime number p such that p2 | t.

In this case, we set J = ⟨p̄⟩. Then J2 = ⟨p̄2⟩ ̸= J and so J is not an idempo-
tent ideal of Zt and therefore Zt is not idempotent ring which is a contradiction.

Conversely, let t = p1 . . . pn, where pi are distinct prime numbers. If n = 1,
then all of the ideals of Zt are I = ⟨0⟩ and J = Zp1 = Zt = ⟨1̄⟩ and so Zt is
idempotent ring.

Now let n ≥ 2 and we set mi = ⟨p̄i⟩. Then m1, . . . ,mn are all the maximal
ideals of R. We claim that each mi is generated by an idempotent element. It is
enough to show that for m1. Since (p1, p2p3 . . . pn) = 1, then there exist r, s ∈ Z,
such that rp1 + sp2 . . . pn = 1. Therefore p2 . . . pn | rp1 − 1 and p1 | rp1. Hence
p1 . . . pn | rp1(rp1 − 1) = (rp1)

2 − rp1 and so in the ring Zt, we have rp1
2 = rp1.

Set e = rp1 and we claim that m1 = ⟨e⟩. rp1 + sp2 . . . pn = 1 implies that

rp21 + sp1p2 . . . pn = p1. Hence in the ring Zt, rp21 = p1 and so p1e = p1 and
m1 = ⟨p1⟩ = ⟨p1e⟩ ⊆ ⟨e⟩ ⊆ m1. Therefore m1 = ⟨e⟩ and every maximal ideal
of Zt is generated by an idempotent element. Now let I be an arbitrary ideal
of Zt. Then there exists an element pi1pi2 . . . pik such that I = ⟨pi1pi2 . . . pik⟩,
where pi1 , . . . , pik are different elements of the set {p1, . . . , pn}. Also we have,

I = mi1mi2 . . .mik = ⟨ei1⟩ . . . ⟨eik⟩ = ⟨ei1 . . . eik⟩

where all of the eij are idempotent and so the element ei1ei2 . . . eik is also idem-
potent and the assertion follows.

Remark 2.13. It is well known, in a Noetherian ring R, for any ideal I of R
and any injective R-module E, 0 :E (0 :R I) = IE.

Theorem 2.14. Let R be a Noetherian ring and every R-module be an injective
R-module. Then R is idempotent.

Proof. Let I be an ideal of R. Then I is injective R-module and by Remark
2.13, we have

I ⊆ 0 :I (0 :R I) = II = I2 ⊆ I

Hence I = I2 and by [1, Corollary 2.5], there exists a ∈ I such that (1−a)I = 0
and so I = ⟨a⟩ and a2 = a.
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Corollary 2.15. The Noetherian ring R is idempotent iff every R-module is an
injective R-module.

Corollary 2.16. If p1, . . . , pn are distinct prime numbers and R = Zp1...pn.
Then every R-module is injective and projective.

Corollary 2.17. Let R be an idempotent ring and M be an R-module. Then
the following are equivalent:

i) There exists an exact sequence 0 −→ R −→M

ii) Ann M = 0

Proof. i→ ii) is clear.

ii→ i) SinceM is injective, it follows by Matlis theoremM = ⊕γ∈AE
(

R
mγ

)
=

⊕γ∈A
R
mγ

. Set T = {mγ | γ ∈ A} and we prove that T = Max(R). Suppose on

the contrary that T ̸= Max(R). Let m ∈ Max(R)\T .

0 = AnnM =
∩
γ∈A

mγ ⇒
∩
γ∈A

mγ = 0 ⊆ m

and so there exist γ ∈ A such that mγ ⊆ m which implies that m = mγ ∈ T ,
which is a contradiction. Therefore M = ⊕mγ∈MaxR

R
mγ

≈ R and so the sequence
0 −→ R −→M is exact.
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perbolic equations. By using optimize-then-discretize, variational discretization and the
finite volume method to solve the distributed optimal control problems. A semi-discrete
optimal system is obtained. Meanwhile, we obtain the optimal order error estimates in
L∞(J ;L2) and L∞(J ;H1)-norm.

Keywords: error estimates, variational discretization, hyperbolic optimal control
problems, finite volume element method.

1. Introduction

As is known to all, optimal control problems are widely used in science and
engineering. Over the past decade, a large number of numerical methods have
been applied to approximate the solutions of these optimal control problems,
such as finite element method, mixed finite element method, spectral method,
and finite volume method, see, e.g., [25, 24, 22, 11, 9, 13, 10]. For the finite
element method, some error estimates for the finite element approximation of a
class of nonlinear optimal control problems can be found in [28, 29]. The error
estimates of mixed finite element approximation for optimal control problems
are investigated in [7, 27, 23]. Furthermore, in [26], the finite volume element
method is applied to solve the distributed optimal control problems governed
by hyperbolic equation, and a priori error estimates were presented. There
are plenty of others studies of the numerical methods for the optimal control
problems, see, e.g., [19, 30, 31, 32, 33, 34, 20].

Finite volume method, as a type of important numerical tool for solving
differential equations, has been widely used in several engineering fields, such
as fluid mechanics, heat and mass transfer and petroleum engineering. Perhaps
the most important property of Finite volume method is that it can preserve
the conservation laws (mass, momentum and heat flux) on each computational
cell. This important property, combined with adequate accuracy and ease of
implementation, has attracted more people to do research in this field. There
have been a lot of studies of the mathematical theory for finite volume element
methods, see, e.g., [4, 5, 6, 8, 14, 16] and the references cited therein.

In this paper, we use the standard notations Wm,p(Ω) for Sobolev spaces and
their associated norms ||v||m,p (see, e.g., [1, 3]). To simplify the notations, we
denote Wm,2(Ω) by Hm(Ω) and drop the index p = 2 and Ω whenever possible,
i.e., ||u||m,2,Ω = ||u||m,2 = ||u||m, ||u||0 = ||u||. Let H1

0 (Ω) = {v ∈ H1 : v|∂Ω =
0}. As usual, we use (·, ·) to denote the L2(Ω)-inner product. We denote by
Ls(J ;Wm,p(Ω)) the Banach space of all Ls integrable functions from J into

Wm,p(Ω) with norm ||v||Ls(J ;Wm,p(Ω)) = (
∫ T
0 ||v||sWm,p(Ω)dt)

1/s for s ∈ [1,∞) and
the standard modification for s = ∞.

Now, we consider the following optimal control problem:

min
u∈Uad

1

2

∫ T

0
(||y − yd(x, t)||2L2(Ω) + ||u(x, t)||2L2(Ω))dt,(1.1)

ytt(x, t) −∇ · (A∇y(x, t)) + ϕ(y(x, t)) = Bu(x, t) + f(x, t), t ∈ J, x ∈ Ω,(1.2)
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y(x, t) = 0, t ∈ J, x ∈ Γ,(1.3)

y(x, 0) = y0(x), yt(x, 0) = g(x), x ∈ Ω,(1.4)

where

∇ · (A∇y) =
∂

∂xi

(
aij(x)

∂y

∂xj

)
,

Ω ⊂ R2 is a bounded convex polygonal domain and Γ is the boundary of Ω,
f(·, t), yd(·, t) ∈ L2(Ω) or H1(Ω), J = (0, T ], A = (ai,j)2×2 is a symmetric,
smooth enough and uniformly positive definite matrix in Ω, B : L2(J ;L2(Ω)) →
L2(J ;L2(Ω)) is a bounded continuous linear operator, y0(x) = 0, x ∈ Γ, y0(x) ∈
H3(Ω), g(x) ∈ H2(Ω). ϕ is of class C2 with respect to the variable y, for any
R > 0 the function ϕ(·) ∈W 2,∞(−R,R), ϕ′(y) ∈ L2(Ω) for any y ∈ H1(Ω), and
ϕ′(y) ≥ 0. Uad is a set defined by

Uad = {u : u ∈ L2(J ;L2(Ω)), u(x, t) ≥ 0, a.e. in Ω, t ∈ J, a, b ∈ R}.

The rest of this paper is organized as follows. In Section 2, we present
some notations. In Section 3, we apply finite volume method and variational
discretization concept to the problem (1.1)-(1.4) and obtain the discretized op-
timal system. In Section 4, we analyze the error estimates between the exact
solution and the finite volume element approximation.

2. Notations and preliminaeies

For a convex polygonal domain Ω, we consider a quasi-uniform triangulation Th
consisting of closed triangle elements K such that Ω̄ =

∪
K∈Th K. We use Nh

to denote the set of all nodes or vertices of Th. To define the dual partition
T ∗
h of Th, we divide each K ∈ Th into three quadrilaterals by connecting the

barycenter CK of K with line segments to the midpoints of edges of Kas is
shown in Figure 1.

 C
K

 Z
k

 Z
j

 Z
i

M
3

M
2

M
1

 K

Figure 1. The dual partition of a triangular K.
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The control volume Vi consists of the quadrilaterals sharing the same vertex
zi as is shown in Figure 2.

i

 Z
i

Figure 2. The control volume Vi sharing the same vertex zi.

The dual partition T ∗
h consists of the union of the control volume Vi. Let

h = max{hK}, where hK is the diameter of the triangle K. As is shown in [17],
the dual partition T ∗

h is also quasi-uniform. Throughout this paper, the constant
C denotes different positive constant at each occurrence, which is independent
of the mesh size h and the time step k.

We define the finite dimensional space Vh (i.e. trial space) associated with Th
for the trial functions by Vh = {v : v ∈ C(Ω), v|K ∈ P1(K), ∀K ∈ Th, v|Γ = 0}
and define the finite dimensional space Qh (i.e. test space) associated with the
dual partition T ∗

h for the test functions by Qh = {q : q ∈ L2(Ω), q|V ∈
P0(V ), ∀ V ∈ T ∗

h ; q|Vz = 0, z ∈ Γ}, where Pl(K) or Pl(V ) consists of all the
polynomials with degree less than or equal to l defined on K or V .

To connect the trial space and test space, we define a transfer operator
Ih : Vh → Qh as follows:

Ihvh =
∑

zi∈Nh

vh(zi)χi, Ihvh|Vi = vh(zi), ∀ Vi ∈ T ∗
h ,

where χi is the characteristic function of Vi. For the operator Ih, it is well known
that there exists a positive constant C such that for all v ∈ Vh

||v − Ihv|| ≤ Ch||v||1.(2.1)

Let a(w, v) =
∫
ΩA∇w · ∇vdx. We define the standard Ritz projection Rh :

H2 ∩H1
0 → Vh by

a(Rhu, χ) = a(u, χ), ∀χ ∈ Vh.(2.2)
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And let

ah(ϕ, Ihψ) = −
∑

zi∈Nh

ψ(zi)

∫
∂Vi

A∇ϕ · nds,

where n is the unit outward normal vector to ∂Vi. πh is defined as the linear
interpolation on the triangulation Th.

3. Finite volume method for optimal control problems

In this section, we will use the optimize-then-discretize approach to obtain the
finite volume element approximation for nonlinear hyperbolic optimal control
problems.

It is well known (see, e.g.,[29]) that the optimal control problem (1.1)-(1.4)
has a solution (y(·, t), p(·, t), u(·, t)), and that if a triplet (y(·, t), p(·, t), u(·, t))
is the solution of (1.1)-(1.4), then there is a co-state p(·, t) ∈ H1

0 (Ω) such that
(y(·, t), p(·, t), u(·, t)) satisfies the following optimality conditions:

(ytt, w) + (A∇y,∇w) + (ϕ(y), w) = (Bu+ f, w), ∀ w ∈ H1
0 (Ω),(3.1)

y(x, 0) = y0(x), yt(x, 0) = g(x);

(ptt, q) + (A∇p,∇q) + (ϕ′(y)p, q) = (y − yd, q), ∀ q ∈ H1
0 (Ω),(3.2)

p(x, T ) = 0, pt(x, T ) = 0;∫ T

0
(u+B∗p, v − u)dτ ≥ 0, ∀ v ∈ Uad.(3.3)

If y(·, t) ∈ H1
0 (Ω)∩C2(Ω) and p(·, t) ∈ H1

0 (Ω)∩C2(Ω), then the optimal system
(3.1)-(3.3) can be written by

ytt −∇ · (A∇y) + ϕ(y) = Bu+ f, t ∈ J, x ∈ Ω, y(x, t) = 0, t ∈ J, x ∈ Γ,(3.4)

y(x, 0) = y0(x), yt(x, 0) = g(x), x ∈ Ω;

ptt −∇ · (A∇p) + ϕ′(y)p = y − yd, t ∈ J, x ∈ Ω, p(x, t) = 0, t ∈ J, x ∈ Γ,(3.5)

p(x, T ) = 0, pt(x, T ) = 0, x ∈ Ω;∫ T

0
(u+B∗p, v − u)dτ ≥ 0, ∀ v ∈ Uad.(3.6)

We use the finite volume method to discretized the state and costate equa-
tions directly. Then the optimal control problem (3.4)-(3.6) again has a so-
lution (yh(·, t), ph(·, t), uh(·, t)), and that if a triplet (yh(·, t), ph(·, t), uh(·, t)) is
the solution of (3.4)-(3.6), then there is a co-state ph(·, t) ∈ Vh such that
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(yh(·, t), ph(·, t), uh(·, t)) satisfies the following optimality conditions:

(yh,tt, Ihwh)+ah(yh, Ihwh) + (ϕ(yh), Ihwh)=(Buh + f, Ihwh),∀wh∈Vh,(3.7)

yh(x, 0) = πhy0(x), yh,t(x, 0) = πhg(x), x ∈ Ω;

(ph,tt, Ihqh) + ah(ph, Ihqh) + (ϕ′(yh)ph, Ihqh) = (yh − yd, Ihqh), ∀qh ∈ Vh,(3.8)

ph(x, T ) = 0, ph,t(x, T ) = 0, x ∈ Ω;∫ T

0
(uh +B∗ph, v − uh)dτ ≥ 0, ∀ v ∈ Uad.(3.9)

In order to express the control in a concise form, we introduce a projection
(see, e.g., [18])

P[a,b](f(x)) = max (a,min(b, f(x))) ,

we can denote the variational inequality (3.6) by

u(x) = P[a,b](−B∗p(x, t)).(3.10)

And the variational inequality (3.9) is equivalent to

uh(x) = P[a,b](−B∗ph(x, t)).(3.11)

Then the discrete optimality condition can be rewritten by: find (yh(·, t), ph(·, t),
uh) ∈ Vh × Vh × Uad such that

(yh,tt, Ihwh)+ah(yh, Ihwh)+(ϕ(yh), Ihwh)=(Buh + f, Ihwh), ∀wh∈Vh,(3.12)

yh(x, 0) = πhy0(x), yh,t(x, 0) = πhg(x), x ∈ Ω;

(ph,tt, Ihqh)+ah(ph, Ihqh)+(ϕ′(yh)ph, Ihqh)=(yh − yd, Ihqh), ∀qh ∈ Vh,(3.13)

ph(x, T ) = 0, ph,t(x, T ) = 0, x ∈ Ω;

uh(x) = P[a,b](−B∗ph(x, t)).(3.14)

This is our finite volume method for the problems (1.1)-(1.4) which the varia-
tional concept is used for the variational inequality (3.6).

For φ ∈ Vh, we shall write

(3.15) ϕ(φ) − ϕ(ρ) = −ϕ̃′(φ)(ρ− φ) = −ϕ′(ρ)(ρ− φ) + ϕ̃′′(φ)(ρ− φ)2,

where

ϕ̃′(φ) =

∫ 1

0
ϕ′(φ+ s(ρ− φ))ds,

ϕ̃′′(φ) =

∫ 1

0
(1 − s)ϕ′′(ρ+ s(φ− ρ))ds

are bounded functions in Ω̄, more details can be found in [12].
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4. Error estimates

In this section, to begin with, we present some useful results. Then we obtain two
Lemmas to deduce the error estimates. At last, we derive some error estimates
for the finite volume element approximation of the problems (1.1)-(1.4).

To describe error estimates for the finite volume methods, we will give some
useful results. As shown in [15, 17], for all wh, vh ∈ Vh, there exist positive
constants C and h0 > 0 such that for all 0 < h < h0

|ah(wh, Ihvh) − ah(vh, Ihwh)| ≤ Ch||wh||1 ||vh||1,(4.1)

ah(vh, Ihvh) ≥ C||vh||21,(4.2)

ah(wh, Ihvh) ≤ C||wh||1 ||vh||1.(4.3)

Let εa(φ, χ) = a(φ, χ) − ah(φ, Ihχ), we have (see, e.g., [21])

|εa(φ, χ)| ≤ Ch ||φ||1 ||χ||1, φ, χ ∈ Vh.(4.4)

Then, we present two auxiliary problems to deduce the error estimates. Let
yh(u) be the solution of

(yh,tt(u), Ihwh) + ah(yh(u), Ihwh) + (ϕ(yh(u)), Ihwh) = (Bu+ f, Ihwh),(4.5)

yh(u)(x, 0) = πhy0, yh,t(u)(x, 0) = πhg, x ∈ Ω,

and ph(y) be the solution of

(ph,tt(y), Ihqh) + ah(ph(y), Ihqh) + (ϕ′(yh(u))ph(u), Ihqh) = (y − yd, Ihqh),(4.6)

ph(y)(x, T ) = 0, ph,t(y)(x, T ) = 0, x ∈ Ω,

where wh, qh ∈ Vh, and note that yh = yh(uh), ph = ph(yh). We have the
following lemmas for yh(u), ph(y).

Lemma 4.1. Assume that yh(u), ph(y) are the solutions of (4.5) and (4.6),
respectively. Then there exists an h0 > 0 such that for all 0 < h ≤ h0

||yh(u) − yh||L∞(J ;H1) ≤ C||u− uh||L2(J ;L2(Ω)),(4.7)

||ph(y) − ph||L∞(J ;H1) ≤ C||y − yh||L2(J ;L2(Ω)).(4.8)

Proof. Subtracting (3.7) from (4.5), we have

(yh,tt(u) − yh,tt, Ihwh) + ah(yh(u) − yh, Ihwh) + (ϕ(yh(u)) − ϕ(yh), Ihwh)

= (B(u− uh), Ihwh), ∀wh ∈ Vh.

A direct calculation using (3.15) shows

(yh,tt(u) − yh,tt, Ihwh) + ah(yh(u) − yh, Ihwh) + (ϕ̃′(yh(u))(yh(u) − yh), Ihwh)

= (B(u− uh), Ihwh).



ERROR ESTIMATES OF FINITE VOLUME ELEMENT METHOD ... 77

For convenience, let θ = yh(u)− yh. We get (θtt, Ihwh) + a(θ, wh) = εa(θ, wh) +
(B(u− uh), Ihwh)− (ϕ̃′(yh(u))θ, Ihwh), ∀wh ∈ Vh. Choosing wh = θt, we obtain

1

2

d

dt
[(θt, Ihθt) + a(θ, θ)] = εa(θ, θt) + (B(u− uh), Ihθt) − (ϕ̃′(yh(u))θ, Ihθt).

Integrating both sides from 0 to t and noticing that θ(x, 0) = 0 and θt(x, 0) = 0,
we have

(θt, Ihθt) + a(θ, θ) = 2

∫ t

0
εa(θ, θt)dτ + 2

∫ t

0
(B(u− uh), Ihθt)dτ

− 2

∫ t

0
(ϕ̃′(yh(u))θ, Ihθt)dτ.

The coercive property of a(·, ·) implies

(θt, Ihθt) + ||θ||21 ≤ C

∫ t

0
εa(θ, θt)dτ

+ C

∫ t

0
(B(u− uh), Ihθt)dτ − C

∫ t

0
(ϕ̃′(yh(u))θ, Ihθt)dτ.(4.9)

Using (4.4) and the inverse estimate, we derive∫ t

0
εa(θ, θt)dτ ≤

∫ t

0
Ch||θ||1 ||θt||1dτ

≤
∫ t

0
C||θ||1 ||θt||dτ

≤C
∫ t

0
||θ||21dτ + Cδ

∫ t

0
||θt||2dτ.(4.10)

Using linear bound properties of B and Ih, we can write the inequality as∫ t

0
(B(u− uh), Ihθt)dτ ≤

∫ t

0
C||u− uh|| ||θt||dτ

≤C
∫ t

0
||u− uh||2dτ + Cδ

∫ t

0
||θt||2dτ.(4.11)

Note that ∫ t

0
(ϕ̃′(yh(u))θ, Ihθt)dτ ≤

∫ t

0
C∥θ∥ · ∥θt∥dτ

≤C
∫ t

0
∥θ∥2dτ + Cδ

∫ t

0
∥θt∥2dτ

≤C
∫ t

0
∥θ∥21dτ + Cδ

∫ t

0
∥θt∥2dτ.(4.12)
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Using (4.10)-(4.12) and for δ sufficiently small, note that (θt, Ihθt) is equivalent
to (θt, θt)(see, e.g., [17]) , we can obtain from (4.9) that

||θt||2 + ||θ||21 ≤ C

∫ t

0
||θ||21dτ + C

∫ t

0
||u− uh||2dτ.

The Gronwall’s lemma implies that

||θt||2 + ||θ||21 ≤ C

∫ T

0
||u− uh||2dτ = C||u− uh||2L2(J ;L2),

which completes the proof of (4.7). In a similar way, (4.8) can be verified
easily.

We consider the following problem

(4.13)


wtt(x, t) −∇ · (A∇w(x, t)) = f(x, t), t ∈ J, x ∈ Ω,

w(x, t) = 0, t ∈ J, x ∈ Γ,

w(x, T ) = w0(x), wt(x, T ) = w1(x), x ∈ Ω,

where A, J, Ω are as described as in (1.1)-(1.4). The finite volume method for
the problem (4.13) is to find wh(·, t) ∈ Vh such that

(4.14)

{
(wh,tt, Ihχ) + ah(wh, Ihχ) = (f, Ihχ), ∀χ ∈ Vh,

wh(x, T ) = u0(x), wh,t(x, T ) = u1(x).

For the finite volume method, we have the following results.

Lemma 4.2. Let wh, w be the solutions of (4.14) and (4.13) respectively. As-
sume that ft, ftt ∈ L2(J ;L2(Ω)), f ∈ L2(J ;H1(Ω)), If uh(0) = Rhu0 and
uh.t(0) = Rhu1.Then there exists a constant C independent of h such that for
all 0 < h < h0

||wh(t) − w(t)|| ≤ Ch2,(4.15)

||wh(t) − w(t)||1 ≤ Ch.(4.16)

Proof. The proofs of (4.15) and (4.16) are similar to the proof of Theorem 1
in [7] and Theorem 2 in [7], respectively.

Let (p(y), y(u)) and (ph(y), yh(u)) be the solutions of (3.7)-(3.8) and (3.12)-
(3.13), respectively. Let J(·) : Uad → R be a G-differential convex functional
near the solution u which satisfies the following form:

J(u) =
1

2
(||y(u) − yd||2L2(Ω) + ||u||2L2(Ω)).
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Then we have a sequence of convex functional Jh : Uad → R:

Jh(u) =
1

2
(||yh(u) − yd||2L2(Ω) + ||u||2L2(Ω)),

Jh(uh) =
1

2
(||yh(uh) − yd||2L2(Ω) + ||uh||2L2(Ω)).

It can be shown that

(J ′(u), v) = (u+B∗p, v),

(J ′
h(u), v) = (u+B∗ph(y), v),

(J ′
h(uh), v) = (uh +B∗ph, v).

In the following we estimate ∥u − uh∥L2(J ;L2). We assume that the cost
function J is strictly convex near the solution u, i.e., for the solution u there
exists a neighborhood of u in L2 such that J is convex in the sense that there
is a constant c > 0 satisfying:

(J ′(u) − J ′(v), u− v) ≥ c∥u− v∥2,(4.17)

for all v in this neighborhood of u. The convexity of J(·) is closely related to the
second order sufficient optimality conditions of optimal control problems, which
are assumed in many studies on numerical methods of the problem. For instance,
in many references, the authors assume the following second order sufficiently
optimality condition (see [16, 28]): there is c > 0 such that J ′′(u)v2 ≥ c∥v∥20.

From the assumption (4.17), by the proof contained in [2], there exists a
constant c > 0 satisfying

(J ′
h(v) − J ′

h(u), v − u) ≥ c∥v − u∥2, ∀v ∈ Uad.(4.18)

Theorem 4.1. Let (y, p, u) and (yh, ph, uh) be the solutions of problems (3.1)-
(3.3) and (3.7)-(3.9), respectively. Assume that ft, ftt, yd,t, yd,tt ∈ L2(J ;L2(Ω)),
f, yd ∈ L2(J ;H1(Ω)), y0(x) ∈ H3(Ω), g(x) ∈ H2(Ω). Then there exists an
h0 > 0 such that for all 0 < h ≤ h0

||u− uh||L2(J ;L2) ≤ Ch2.(4.19)

Proof. Let v = uh in (3.6) and v = u in (3.9), then we have∫ T

0
(u+B∗p, uh − u)dτ ≥ 0,(4.20) ∫ T

0
(uh +B∗ph, u− uh)dτ ≥ 0.(4.21)

From (4.20) and (4.21), it is easy to see that∫ T

0
(u− uh, u− uh)dτ ≤

∫ T

0
(B∗(p− ph), uh − u)dτ.(4.22)
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By using (4.18) and (4.22), we obtain

c∥u− uh∥2L2(J ;L2) ≤
∫ T

0
(u, u− uh)dτ −

∫ T

0
(uh, u− uh)dτ

=

∫ T

0
(u+B∗ph(y), u− uh)dτ −

∫ T

0
(uh +B∗ph, u− uh)dτ

=

∫ T

0
(u− uh, u− uh)dτ +

∫ T

0
(B∗(ph(y) − ph), u− uh)dτ

≤
∫ T

0
(B∗(ph(y) − ph, u− uh)dτ −

∫ T

0
(B∗(p− ph), u− uh)dτ

=

∫ T

0
(B∗(ph(y) − p), u− uh)dτ.(4.23)

Now, we estimate all terms at the right side of (4.23). From the continuity of
the operator B and Cauchy inequality, we deduce that∫ T

0
(B∗(ph(y) − p), u− uh)dτ ≤C∥ph(y) − p∥L2(J ;L2) · ∥u− uh∥L2(J ;L2)

≤Ch2∥u− uh∥L2(J ;L2)

≤Ch4 + δ∥u− uh∥L2(J ;L2),(4.24)

where ∥p − ph(y)∥0,2 ≤ Ch2(see the Theorem 2 in [7]). Combining (4.23) and
(4.24), we conclude the result (4.19).

Theorem 4.2. Let (y, p, u) and (yh, ph, uh) be the solutions of problems (3.1)-
(3.3) and (3.7)-(3.9), respectively. Assume that ft, ftt, yd,t, yd,tt ∈ L2(J ;L2(Ω)),
f, yd ∈ L2(J ;H1(Ω)), y0(x) ∈ H3(Ω), g(x) ∈ H2(Ω). Then there exists an
h0 > 0 such that for all 0 < h ≤ h0

||y − yh||L∞(J ;L2) + ||p− ph||L∞(J ;L2) ≤ Ch2.(4.25)

Assume that f, yd, ft, ftt, yd,t, yd,tt ∈ L2(J ;L2(Ω)), y0(x) ∈ H3(Ω), g(x) ∈ H2(Ω).
Then there exists an h0 > 0 such that for all 0 < h ≤ h0

||y − yh||L∞(J ;H1) + ||p− ph||L∞(J ;H1) ≤ Ch.(4.26)

Proof. Using the triangle inequality, we have that

||y − yh||L∞(J ;L2) ≤ ||y − yh(u)||L∞(J ;L2) + ||yh(u) − yh||L∞(J ;L2),

||p− ph||L∞(J ;L2) ≤ ||p− ph(y)||L∞(J ;L2) + ||ph(y) − ph||L∞(J ;L2).

Lemma 4.1 implies that

||y − yh||L∞(J ;L2) ≤ ||y − yh(u)||L∞(J ;L2) + C||u− uh||L2(J ;L2),(4.27)

||p− ph||L∞(J ;L2) ≤ ||p− ph(y)||L∞(J ;L2) + C||y − yh||L∞(J ;L2).(4.28)
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Using Lemma 4.1, Lemma 4.2, (4.27)-(4.28), and Theorem 2 of [7], we can easily
obtain (4.25) from Theorem 4.1.

In a similar way, (4.26) can be proved easily.

Theorem 4.3. Let (y, p, u) and (yh, ph, uh) be the solutions of problems (3.1)-
(3.3) and (3.7)-(3.9), respectively. Assume that ft, ftt, yd,t, yd,tt ∈ L2(J ;L2(Ω)),
f, yd ∈ L2(J ;H1(Ω)), y0(x) ∈ H3(Ω), g(x) ∈ H2(Ω). Then there exists an
h0 > 0 such that for all 0 < h ≤ h0

||u− uh||L∞(J ;L2) ≤ Ch2.(4.29)

Proof. Using the definition of P[a,b](·) and (3.10)-(3.11), we have that

|u− uh| = |P[a,b](−B∗p) − P[a,b](−B∗ph)|
≤ C|p− ph|.(4.30)

Which implies that

∥u− uh∥ ≤ C∥p− ph∥.(4.31)

Then we can get

∥u− uh∥L∞(J ;L2) ≤ C∥p− ph∥L∞(J ;L2).(4.32)

Finally, we can obtain (4.29) from (4.25) and (4.32).

5. Conclusion and future works

In this paper, we consider a priori error estimates for the finite volume element
approximation of nonlinear hyperbolic optimal control problem. Then we use
finite volume method to discretize the state and adjoint equation of the system.
Under some reasonable assumptions, we obtain some optimal order error esti-
mates. To our best knowledge in the context of optimal control problems, these
priori error estimates of finite volume method for general nonlinear hyperbolic
optimal control problem is new.

In future, we shall consider a posteriori error estimates and superconvergence
of the finite volume element solutions for hyperbolic optimal control problems.
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Abstract. In this paper we initiate the concept of a hyper BCH-algebra which is a
generalization of a BCH-algebra, and hyper BCK/BCI algebras and investigate some
related properties. Moreover we introduce a hyper BCH-ideal, weak hyper BCH-ideal
and strong hyper BCH-ideal in hyper BCH-algebras, and give a few relations among
these hyper BCH-ideals. Finally we define homomorphism of hyper BCH-algebras.

Keywords: hyper BCH-algebra, hyper BCH-ideals, week hyper BCH-ideals, Strong
hyper BCH-ideals, homomorphism.

1. Introduction

In (1966) the notion of BCK-algebra was first introduces by Y. Imai and K.
Iseki [6]. The notion of BCK-algebra is a generalization of properties of the
Set-difference. In (1975), the concept of ideal in BCK-algebra was first initiated
by K. Iseki [7]. A remarkable feature of K. Iseki definition is that, its for-
mulation is free from those of ring theoretical and lattice theoretical concepts.
In same year K. Iseki initiated the concept of BCI-algebra [6, 8] which is the
generalization of BCK-algebra. These algebras have been extensively studied

∗. Corresponding author
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since their introduction. The concept of ideals has played an important role
in the study of the theory of BCI-algebras, [9]. In a BCI-algebra X, an ideal
I need not be subalgebra of X. If the ideal I is also a subalgebra of X, then
it has better algebraic properties. In (1983), Q. P. Hu and X. Li, introduced
the concept of BCH-algebra [3, 4] and prove some motivating results. In (1990)
and (1991) certain other properties have been studied by W. A. Dudek and J.
Thomys [2] and M. A. Chaudhry, [1], respectively. In [1], the author also defines
ideals in BCH-algebras. Hyperstructure represent a natural extension of classi-
cal algebraic structures and they were introduced by the French mathematician
F. Marty in (1934), [12]. Algebraic hyperstructures are a suitable generaliza-
tion of classical algebraic structures. Hyperstructures have many applications
to several sectors of both pure and applied sciences. In a classical algebraic
structure, the composition of two elements is an element, while in an algebraic
hyperstructure; the composition of two elements is a set. In (2000) Y. B. Jun et
al applied the hyperoperation to BCK-algebras and introduced the concept of
a hyper BCK-algebra [12] which is a generalization of a BCK-algebra, and in-
vestigated some related properties. Ideal theory of hyper BCK-algebra studied
in [11]. Further in (2006), X.L. Xin initiated the concept of hyper BCI-algebras
[13], which is basically a generalization of hyper BCK-algebras, and he proved
that every hyper BCK-algebra is a hyper BCI-algebra. It should be pointed
out that the research of hyper BCI-algebras seems to have been focused on the
ideal theory. The author introduced the concepts of hyper BCI-ideals, weak hy-
per BCI-ideals, strong hyper BCI-ideals and reflexive hyper BCI-ideals in hyper
BCI-algebras, and he gave the relations among these hyper BCI-ideals. In this
paper we initiated the notion of hyper BCH-algebra which is a generalization of
BCH-algebra and hyper BCI/BCK-algebras and studied some basic properties.
Moreover we introduce a hyper BCH-ideal, weak hyper BCH-ideal and strong
hyper BCH-ideal in hyper BCH-algebras, and give some relations among these
hyper BCH-ideals. We define homomorphism in hyper BCH-algebra and then
we investigate some related results.

2. Premilinaries

Let H be a non-empty set and ”◦” a function from H×H → P (H) \ {ϕ} , where
P (H) denotes the power set of H. For any two non-empty subsets A and B of
H, denote by A ◦B the set

∪
a∈A,b∈B a ◦ b. We will use x ◦ y instead of x ◦ {y},

{x} ◦ y or {x} ◦ {y}. Also we define x≪ y by 0 ∈ x ◦ y and for every A,B ⊆ H,
A≪ B is defined by for all a ∈ A, there exist b ∈ B such that a≪ b.

Definition 2.1 ([10]). A non-empty set H endowed with a constant 0 and a
hyperoperation is called hyper BCK-algebra if it satisfies the following axioms:

HK1) (x ◦ y) ◦ (y ◦ z) ≪ x ◦ y,
HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
HK3) x ◦H ≪ {x} ,
HK4) x≪ y and y ≪ x⇒ x = y.
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for all x, y, z ∈ H.

Definition 2.2 ([13]). A non-empty set H endowed with a constant 0 and a
hyperoperation is called hyper BCI-algebra if it satisfies the following axioms:

HI1) (x ◦ y) ◦ (y ◦ z) ≪ x ◦ y,
HI2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
HI3) x ◦H ≪ {x} ,
HI4) x≪ y and y ≪ x⇒ x = y.
HI5) 0 ◦ (0 ◦ x) ≪ x.
for all x, y, z ∈ H.

Definition 2.3 ([11]). Let I be a nonempty subset of a hyper BCK-algebra H
and 0 ∈ I. Then I is said to be a hyper BCK-ideal of H if x ◦ y ≪ I and y ∈ I
implies x ∈ I for all x, y ∈ H, reflexive if x ◦ x ⊆ I for all x ∈ H, strong hyper
BCK-ideal of H if (x ◦ y)∩ I = ϕ and y ∈ I implies x ∈ I for all x, y ∈ H, hyper
subalgebra of H if x ◦ y ⊆ I for all x, y ∈ I.

Proposition 2.4 ([11]). Let H be hyper BCK-algebra. Then,
(i) any strong hyper BCK-ideal of H is a hyper BCK-ideal of H.
(ii) if I is a hyper BCK-ideal of H and A is a nonempty subset of H. Then

A≪ I implies A ⊆ I.
(iii) if I is a reflexive hyper BCK-ideal of H and (x◦y)∩I = ϕ, then x◦y ⊆ I

for all x, y ∈ H.
(iv) H is a BCK-algebra if and only if H = {x ∈ H : x ◦ x = {0}}.

3. Hyper BCH-algebra

In this section we introduce a notion of hyper BCH-algebra and studied some
of its basic properties.

Definition 3.1. Let H be a on-empty set with a constant ”0” and ”◦” be a
hyper operation defined on H. Then (H, ◦, 0) is said to be a hyper BCH-algebra
if the following axioms are satisfied:

HCH1) x ≪ x,
HCH2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
HCH3) x ≪ y and y ≪ x⇒ x = y
for all x, y, z ∈ H; where x ≪ y is defined by 0 ∈ x ◦ y and for every A,B

⊆ H, A≪ B is defined by for all a ∈ A, there exists b ∈ B such that a ≪ b. In
such case, ”≪ ” is called a hyper order in H.

Example 3.2. Let H = {0, 1, 2} and ” ◦ ” be a hyperoperation defined on H in
the following table:

◦ 0 1 2

0 {0} {0} {1}
1 {1} {0, 1} {0, 1}
2 {2} {0, 2} {0, 1, 2}

Then (H, ◦) is a hyper BCH-algebra.
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Example 3.3. Let H = {0, 1, 2, 3} and ”◦” be a hyperoperation defined on H
in the following table:

◦ 0 1 2 3

0 {0} {0} {2} {3}
1 {1} {0, 1} {0, 3} {0, 3}
2 {2} {0, 2} {0, 2} {0, 2}
3 {3} {0, 2} {0, 2} {0, 2}

Then (H, ◦) is a hyper BCH-algebra.

Proposition 3.4. Any hyper BCK/BCI- algebra is a hyper BCH-algebra.

Proposition 3.5. Let H be a hyper BCH-algebra, then for all x, y, z ∈ H and
A ⊆ H;the following holds.

1) x◦ y ≪ z ⇔ x ◦ z ≪ y

2) x ◦ y ≪ x

3) 0 ≪ x

4) t ∈ 0 ◦ 0 ⇔ t = 0

5) x ∈ x ◦ 0

6) A ◦ y ≪ A

7) x ◦ A≪ y ⇔ x ◦ y ≪ A

8) A ≪ A ◦ 0

9) x ◦ x = {x} ⇔ x = 0.

Proof. We only prove 1, 2, 5, 6, 7 and 9.

1) Letx, y, z ∈ H,be such that x◦y ≪ z.Then there exists t ∈ x◦y such that
t≪ z.Thus 0 ∈ t ◦ z ⊆ (x ◦ y) ◦ z = (x ◦ z) ◦ y and hence there exists w ∈ x ◦ z
such that 0 ∈ w ◦ y that is w ≪ y.Therefore x ◦ z ≪ y.

Conversly, let x, y, z ∈ H be such that x ◦ z ≪ y. Then there exists w ∈ x ◦ z
such that w ≪ y.Thus 0 ∈ w ◦ y ⊆ (x ◦ z) ◦ y = (x ◦ y) ◦ z and hence there exists
t ∈ x ◦ y such that 0 ∈ t ◦ zthat is t≪ z.Therefore x ◦ y ≪ z.

2) Let 0 ∈ 0 ◦ y ⊆ (x ◦ x) ◦ y = (x ◦ y) ◦ x. Then there exists t ∈ x ◦ y such
that 0 ∈ t ◦ x⇒ t≪ x⇒ x ◦ y ≪ x.

5) By (2) above we have x ◦ 0 ≪ x, so there exists t ∈ x ◦ 0 such that t ≪ x,
since t ∈ x ◦ 0, then x ◦ 0 ≪ t and so by (1) x ◦ t ≪ 0. Thus there is r ∈ x ◦ t
such that r ≪ 0, so by (3) and (HCH3) r = 0. so 0 ∈ x ◦ t, that is x ≪ t since
x ≪ t and t ≪ x; then by (HCH3) ⇒ x = t. Therefore x ∈ x ◦ 0.

6) Let a ∈ A be any element, then by (2) a ◦ y ≪ a hence there is b
∈ a ◦ y ⊆ A ◦ y such that b≪ a, that is A ◦ y ≪ A.

7) Since x◦A≪ y which implies that there exists a ∈ A such that x◦a≪ y.
Hence by (1) x ◦ a≪ a≪ A implies that x ◦ y ≪ A. The proof of the converse
is easy to prove.

9) {x} = x ◦ x ⊆ x ◦ (x ◦ 0). Hence by (5) x ≪ 0; thus x = 0. The converse
follows from (4).
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Proposition 3.6. In any hyper BCH-algebra H, x ◦ 0 = {x} for all x ∈ H.

Proof. We have from above proposition (5) x ∈ x ◦ 0, now let t ∈ x ◦ 0.Since
x ◦ 0 ≪ {x}, we have t ≪ x. So, 0 ∈ t ◦ t ⊆ (x ◦ 0) ◦ t = (x ◦ t) ◦ 0. Then there
exists a ∈ x ◦ t such that 0 ∈ a ◦ 0.Thus a ≪ 0.Then a = 0; Thus x ≪ t. We
have that x = t. Therefore, x ◦ 0 = {x}.

It is known that every hyper BCI-algebra is a hyper BCH-algebrs, but the
following example show that the converse is not true.

Example 3.7. Let H = {0, 1, 2, 3}and ”◦” be a hyperoperation define on H in
the following table:

◦ 0 1 2 3

0 {0} {1} {1} {1}
1 {1} {0} {3} {3}
2 {2} {3} {0} {2}
3 {3} {0} {0} {0}

Then (H, ◦) is a hyper BCH-algebra, but it is not a hyper BCI-algebra. Because,

(2 ◦ 3) ◦ (2 ◦ 1) = {2} ◦ {3} = {2, 3}

and
(1 ◦ 3) = {3}.(2 ◦ 3) ◦ (2 ◦ 1) ̸= (1 ◦ 3)

Example 3.8. Let H = {0, 1, 2, 3, 4} and ”◦” be a hyperoperation defined of
H in the following table:

◦ 0 1 2 3 4

0 {0} {0} {0} {0} {0}
1 {1} {0} {2} {1} {0, 4}
2 {2} {2} {0} {2} {0, 4}
3 {3} {3} {3} {0} {4}
4 {4} {4} {4} {4} {0}

Then (H, ◦) is a hyper BCH-algebra, but it is not a hyper BCI-algebra. Because,

(1 ◦ 3) ◦ (1 ◦ 2) = {1} ◦ {2} = {1, 2}

and (2 ◦ 3) = {2} that is {1, 2} ≮ {2}.

Definition 3.9. A hyper BCH-algebra H is called proper if it is not a hyper
BCI-algebra.

In above examples the hyper BCH-algebras are proper hyper BCH-algebras.

Definition 3.10. Let (H, ◦) be a hyper BCH-algebra, and X a non-empty
subset of H containing ”0”. Then X is called hypersubalgebra of H if X is a
hyper BCH-algebra under the same hyperoperation ”◦” on H.



90 M.S. ALI KHAN, K. RAHMAN, S. ABDULLAH and F. HUSSAIN

Example 3.11. From the above Example 3.8 if we let X = {0, 1, 2}, then X is
a hypersubalgebra of H as we in the following table:

◦ 0 1 2

0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {0, 2} {0}

Also, let X = {0, 1, 3}. Then X is a hypersubalgebra of H.

Theorem 3.12. Let X be a non-empty subset of a hyper BCH-algebra (H, ◦).
The X is a hypersubalgebra of H if and only if x ◦ y ⊆ X for all x, y ∈ X.

Proof. Straghtfarword.

Theorem 3.13. Let (H, ◦) be a hyper BCH-algebra and X(H) = {x ∈ H |
0 ◦ x≪ {0}}. Then X(H) is a hypersubalgebra of H.

Proof. Let x, y ∈ X(H), then by definition a = 0◦a≪ {0} and b = 0◦b≪ {0}.
Now

a ◦ b = (0 ◦ a) ◦ (0 ◦ b) ≪ {0} ◦ {0} = {0}

Hence, a ◦ b ≪ {0}.Which implies that a ◦ b ≪ X(H). Hence X(H) is a hy-
persubalgebra of H. The set X(H) is called the hyper BCA-part of the hyper
BCH-algebra H.

4. Hyper BCH-Ideals

Definition 4.1. Let (H, ◦) be a hyper BCH-algebra and I a subset of H. Then
I is called a hyper BCH-ideal of H if:

i) 0 ∈ I

ii) x ◦ y ≪ I and y ∈ I ⇒ x ∈ I for all x, y ∈ I.

Example 4.2. Let H = {0, 1, 2, 3, 4, 5} and ”◦” be a hyperoperation defined on
H in the following table:

◦ 0 1 2 3 4 5

0 {0} {0} {0} {0} {0, 4} {0, 5}
1 {1} {0} {0} {0} {1} {0, 5}
2 {2} {0, 2} {0} {0} {0} {0, 5}
3 {3} {0, 3} {0, 3} {0} {0} {0, 5}
4 {4} {0, 4} {0, 4} {0, 4} {0} {0}
5 {5} {0, 5} {0, 5} {0, 5} {0, 5} {0}

Then (H, ◦) is a hyper BCH-algebra. Let I = {0, 1, 2, 3} is an ideal of H.
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Example 4.3. Let H = {0, 1, 2, 3, 4} and ”◦” be a hyperoperation defined on
H in the following table:

◦ 0 1 2 3 4

0 {0} {0} {0} {0, 3} {0, 4}
1 {1} {0} {0, 1} {0, 1} {0, 4}
2 {2} {0, 2} {0} {0, 2} {0, 3}
3 {3} {0, 3} {0, 3} {0} {0, 2}
4 {4} {0, 4} {0, 4} {0, 1} {0}

Then (H, ◦) is a hyper BCH-algebra.
Let I1 = {0, 1, 2}, then I1 is a hyper BCH-ideal of H.
Let I2 = {0, 1, 3}, then I2 is a hyper BCH-ideal of H.
Let I3 = {0, 2, 3}, then I3 is not a hyper BCH-ideal of H. Because (3 ◦ 4) =

{0, 2} ≪ I3 and 4 ∈ I3 but 3 /∈ I3.

Theorem 4.4. Let (H, ◦) be a hyper BCH-algebra and {Iλ| λ ∈ Λ} a family of
hyper BCH-ideals of H, then

∩
λ∈Λ Iλ is a hyper BCH-ideal of H.

Proof. For any λ ∈ Λ; let Iλ be a hyper BCH-ideal of a hyper BCH-algebra
H, then clearly 0 ∈

∩
λ∈Λ Iλ. Now let x, y ∈ H be such that x ◦ y ≪ Iλ and

y ∈ Iλ for every λ ∈ Λ. Since each Iλ for every λ ∈ Λ is a hyper BCH-ideal of
H. Therefore it implies that x ◦ y ≪ Iλ for every λ ∈ Λ and y ∈ Iλ ⇒ x ∈ Iλ.
Hence x ◦ y ≪

∩
λ∈Λ Iλ and y ∈

∩
λ∈Λ Iλ ⇒ x ∈

∩
λ∈Λ Iλ. Thus

∩
λ∈Λ Iλ is a

hyper BCH-ideal of H.

Remark 4.5. The union of two hyper BCH-ideals need not be hyper BCH-
ideals. For this we have the following example.

Example 4.6. Let H = {0, 1, 2, 3, 4} be a hyper BCH-algebra define in Example
4.3. Let I1 = {0, 1, 3} and I2 = {0, 1, 4} be hyper BCH-ideals of H. But,
(3 ◦ 4) = {0, 2} � I1∪ I2, which show that union of two hyper BCH-ideals is not
a hyper BCH-ideal.

Theorem 4.7. Every hyper BCH-ideal of a hyper BCH-algebra is a hypersub-
algebra.

Proof. Let (H, ◦) be a hyper BCH-algebra and I a hyper BCH-ideal of H. Let
x, y ∈ I. Then since I is a hyper BCH-ideal of H, and so by definition it implies
that, x ◦ y ≪ I; which shows that I is a hypersubalgebra of H.

The convers of the above theorem is not true, that is a hypersubalgebra is
not a hyper BCH-ideal. From the above example if we consider I3 = {0, 2, 4},
then is a hypersubalgebra of H but not a hyper BCH-ideal of H.

Proposition 4.8. Let I be a hyper BCH-ideal and A a subset of a hyper BCH-
algebra H such that A≪ I. Then A ⊆ I.
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Proof. Let I be a hyper BCH-ideal of H and A a subset of H. Let A ≪ I
implies there exists a ∈ A and x ∈ I such that a≪ x⇒ 0 ∈ a ◦ x≪ I. Since I
is a hyper BCH-ideal of H it implies that a ∈ I and so A ⊆ I.

Definition 4.9. Let I be a non-empty subset of a hyper BCH-algebra H. Then
I is said to be a weak hyper BCH-ideal of H, if for all x, y ∈ H

(i) 0 ∈ I
(ii) x ◦ y ⊆ I and y ∈ I ⇒ x ∈ I.

Theorem 4.10. The intersection of any family of weak hyper BCH-ideal of a
hyper BCH-algebra is a weak hyper BCH-ideal.

Proof. For any λ ∈ Λ; let Iλ be a weak hyper BCH-ideal of a hyper BCH-algebra
H. Then clearly 0 ∈

∩
λ∈Λ Iλ. Now let x, y ∈ H be such that x ◦ y ⊆ Iλand

y ∈ Iλfor every λ ∈ Λ. Since each Iλ for every λ ∈ Λ is a weak hyper BCH-ideal
of H. Therefore it implies that x ◦ y ⊆ Iλ for every λ ∈ Λ and y ∈ Iλ ⇒ x ∈ Iλ
for every λ ∈ Λ. Hence x◦ y ⊆

∩
λ∈Λ Iλ and y ∈

∩
λ∈Λ Iλ ⇒ x ∈

∩
λ∈Λ Iλ. Thus∩

λ∈Λ Iλ is a weak hyper BCH-ideal of H.

Proposition 4.11. Every hyper BCH-ideal in hyper BCH-algebra H is a weak
hyper BCH-ideal.

Proof. Let I be a hyper BCH-ideal of a hyper BCH-algebra H. Let x ◦ y ⊆ I
and y ∈ I for some x, y ∈ H. Since x ◦ y ⊆ I which implies that x ◦ y ≪ I. Now
since I is a hyper BCH-ideal of H, so it implies that x ∈ I. Hence I is a weak
hyper BCH-ideal of H.

Definition 4.12. Let I be a non-empty subset of a hyper BCH-algebra H.
Then I is said to be a strong hyper BCH-ideal of H if for all x, y ∈ H

(i) 0 ∈ I
(ii) (x ◦ y) ∩ I ̸= ϕ and y ∈ I ⇒ x ∈ I.

Theorem 4.13. The intersection of any family of strong hyper BCH-ideal of a
hyper BCH-algebra is a stong hyper BCH-ideal.

Proof. For any λ ∈ Λ; let Iλ be a strong hyper BCH-ideal of a hyper BCH-
algebra H. Then clearly 0 ∈

∩
λ∈Λ Iλ. Now let x, y ∈ H be such that (x ◦ y)

∩
∩

λ∈Λ Iλ ̸= ϕ and y ∈
∩

λ∈Λ Iλ. Since each Iλ for every λ ∈ Λ is a strong hyper
BCH-ideal of H. Therefore it implies that (x ◦ y) ∩ Iλ ̸= ϕ for every λ ∈ Λ and
y ∈ Iλ ⇒ x ∈ Iλ. Hence (x ◦ y) ∩

∩
λ∈Λ Iλ ̸= ϕ and y ∈

∩
λ∈Λ Iλ ⇒ x ∈

∩
λ∈Λ

Iλ. Thus
∩

λ∈Λ Iλ is a strong hyper BCH-ideal of H.

Proposition 4.14. Every strong hyper BCH-ideal in hyper BCH-algebra H is
a hyper BCH-ideal.

Proof. Let I be a strong hyper BCH-ideal of H. Let x, y ∈ H be such that
x ◦ y ≪ I and y ∈ I. Then for a ∈ x ◦ y there exists b ∈ I such that a ≪
b ⇒ 0 ∈ a ◦ b. It follows that (a ◦ b) ∩ I ̸= ϕ ⇒ a ∈ I. Thus x ◦ y ⊆ I and so
(x ◦ y)∩ I ̸= ϕ. Since I is a strong hyper BCH-ideal of H. It follows that x ∈ I.
Hence I is a hyper BCH-ideal of H.
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5. Homomorphisms of hyper BCH-algebras

Definition 5.1. Let H1 and H2 be two hyper BCH-algebras. A mapping ψ :
H1 → H2 is called a homomorphism if

(i) ψ(0) = 0

(ii) ψ(x ◦ y) = ψ(x) ◦ ψ(y); for all x, y ∈ H1.

If ψ is 1 − 1 (or onto) we say that ψ is a monomorphism (or epimorphism).
And if ψ is both 1 − 1 and onto, we say that ψ is an isomorphism.

Theorem 5.2. Let ψ : H1 → H2 be a homomorphism of hyper BCH-algebras.
Then

(i) If S is a hyper BCH-subalgebra of H1, then ψ(S) is a hyper BCH-
subalgebra of H2,

(ii) ψ(H1) is a hyper BCH-subalgebra of H2,

(iii) If S is a hyper BCH-subalgebra of H2, then ψ−1(S) is a hyper BCH-
subalgebra of H1,

(iv) If I is a (weak) hyper BCH-ideal of H2, then ψ
−1(I) is a (weak) hyper

BCH-ideal of H1,

(v) Kerψ = {x ∈ H1|ψ(x) = 0} is a hyper BCH-ideal and hence a weak hyper
BCH-ideal of H1,

(vi) If ψ is onto and I is a hyper BCH-ideal of H1 which contains Kerψ,
then ψ(I) is a hyper BCH-ideal of H2.

Proof. (i) Let x, y ∈ ψ(S). Then there exist a, b ∈ S such that ψ(a) = x and
ψ(b) = y. It follows from Theorem 3.12 that x◦y = ψ(a)◦ψ(b) = ψ(a◦b) ⊆ ψ(S)
so that ψ(S) is a hyper BCH-subalgebra of H2.

(ii) Proof of this is same as (i).

(iii) Since 0 ∈ S, we have ψ−1(0) ⊆ ψ−1(S). Since ψ(0) = 0, so 0 ∈
ψ−1(0) ⊆ ψ−1(S). Therefore ψ−1(S) is non-empty. Now let x, y ∈ ψ−1(S).
Then ψ−1(x), ψ−1(y) ∈ S. Thus ψ(x◦y) = ψ(x)◦ψ(y) ⊆ S and so x◦y ⊆ ψ−1(S),
which implies that ψ−1(S) is a hyper BCH-subalgebra of H1.

(iv) Let I be a weak hyper BCH-ideal of H2. Clearly 0 ∈ ψ−1(I). Let x, y ∈
H1 such that x ◦ y ⊆ ψ−1(I) and y ∈ ψ−1(I). Then ψ(x) ◦ ψ(y) = ψ(x ◦ y) ⊆ I
and ψ(y) ∈ I. Since I is a weak hyper BCH-ideal, it follows from (Id2) that
ψ(x) ∈ I, i.e., x ∈ ψ−1(I). Hence ψ−1(I) is a weak hyper BCH-ideal of H1. Now
let I be a hyper BCH-ideal of H2. Obviously 0 ∈ ψ−1(I). Let x, y ∈ H1 such
that x ◦ y ≪ ψ−1(I) and y ∈ ψ−1(I). Then there exist t ∈ x ◦ y and z ∈ ψ−1(I)
such that t ≪ z, that is 0 ∈ t ◦ z. Since ψ(z) ∈ I and 0 ∈ t ◦ z ⊆ (x ◦ y) ◦ z, it
follows that 0 = ψ(0) ∈ ψ((x ◦ y) ◦ z) = ψ(x ◦ y) ◦ ψ(z) ⊆ ψ(x ◦ y) ◦ I so that
ψ(x) ◦ ψ(y) = ψ(x ◦ y) ≪ I. As ψ(y) ∈ I and I is hyper BCH-ideal, by using
(Id3) we have ψ(x) ∈ I, that is x ∈ ψ−1(I). Hence ψ−1(I) is a hyper BCH-ideal
of H1.

(v) First we show that {0} ⊆ H2 is a hyper BCH-ideal. To do this, let x, y ∈
H2 be such that x◦y ≪ {0} and y ∈ {0}. Then y = 0 and so x◦0 = x◦y ≪ {0}.
Therefore there exists t ∈ x ◦ 0 such that t ≪ 0. Thus t = 0, and consequently
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0 ∈ x ◦ 0, that is x ≪ 0, which implies that x = 0. This shows that {0} is a
hyper BCH-ideal of H2. Now by (iv), Kerf = ψ−1({0}) is a hyper BCH-ideal
of H1.

(vii) Since 0 ∈ I, we have 0 = ψ(0) ∈ ψ(I). Let x and y be arbitrary
elements in H2 such that x ◦ y ≪ f(I) and y ∈ ψ(I). Since y ∈ ψ(I) and ψ is
onto, there are y1 ∈ I and x1 ∈ H1 such that y = ψ(y1) and x = ψ(x1). Thus
ψ(x1 ◦ y1) = ψ(x1) ◦ ψ(y1) = x ◦ ◦y ≪ ψ(I). Therefore there are a ∈ x1 ◦ y1 and
b ∈ I such that ψ(a) ≪ ψ(b). So 0 ∈ ψ(a) ◦ ψ(b) = ψ(a ◦ b), which implies that
ψ(c) = 0 for some c ∈ a◦ b. It follows that c ∈ Kerψ ⊆ I so that a◦ b≪ I. Now
since I is a hyper BCH-ideal of H1 and b ∈ I, we get a ∈ I. Thus x1 ◦ y1 ≪ I,
which implies that x1 ∈ I. Thus x = ψ(x1) ∈ ψ(I), and so ψ(I) is a hyper
BCH-ideal of H2.

Theorem 5.3. Let ψ : H1 → H2 be an epimorphism of hyper BCH-algebras.
Then there is a one to one correspondence between the set of all hyper BCH-
ideals of H1 containing Kerψ and the set of all hyper BCH-ideals of H2.

Theorem 5.4. Let ψ : H1 → H2 and π : H1 → H3 be two homomorphisms of
hyper BCH- algebras such that ψ is onto and Kerψ ⊆ Kerπ. Then there exists
a homomorphism τ : H2 → H3 such that τ ◦ ψ = π.

Proof. Let y ∈ H2 be arbitrary. Since ψ is onto, there exists x ∈ H1 such that
y = ψ(x). Define τ : H2 → H3 by τ(y) = π(x), for all y ∈ H2. Now we show
that τ is well-defined. Let y1; y2 ∈ H2 and y1 = y2. Since ψ is onto, there are
x1;x2 ∈ H1 such that y1 = ψ(x1) and y2 = ψ(x2). Therefore ψ(x1) = ψ(x2)
and thus 0 ∈ ψ(x1) ◦ ψ(x2) = ψ(x1 ◦ x2). It follows that there exists t ∈ x1 ◦ x2
such that ψ(t) = 0. Thus t ∈ Kerψ ⊆ Kerπ and so π(t) = 0. Since t ∈ x1 ◦ x2
we conclude that 0 = π(t) ∈ π(x1 ◦ x2) = π(x1) ◦ π(x2) which implies that
π(x1) ≪ π(x2). On the other hand since 0 ∈ ψ(x2) ◦ ψ(x1) = ψ(x2 ◦ x1),
similarly we can conclude that 0 ∈ π(x2) ◦ π(x1), that is π(x2) ≪ π(x1). Thus
π(x1) = π(x2), which shows that τ is well-defined. Clearly τ ◦ ψ = π. Finally
we show that τ is a homomorphism. Let y1; y2 ∈ H2 be arbitrary. Since ψ is
onto there are x1, x2 ∈ H1 such that y1 = ψ(x1) and y2 = ψ(x2). Then

τ(y1 ◦ y2) = τ(ψ(x1) ◦ ψ(x2))

= τ(ψ(x1 ◦ x2))
= (τ ◦ ψ)(x1 ◦ x2)
= π(x1 ◦ x2)
= π(x1) ◦ π(x2)

= (τ ◦ ψ)(x1) ◦ (τ ◦ ψ)(x2)

= τ(ψ(x1)) ◦ τ(ψ(x2))

= τ(y1) ◦ τ(y2)

Moreover since ψ(0) = 0 and π(0) = 0, we conclude that τ(0) = τ(ψ(0)) =
(τ ◦ ψ)(0) = π(0) = 0. Thus τ is a homomorphism.
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Theorem 5.5. Let ψ : H1 → H2 be a homomorphism of hyper BCH-algebras.
If I is a strong hyper BCH-ideal of H2, then ψ

−1(I) is a strong hyper BCH-ideal
of H1.

Proof. Suppose I is a strong hyper BCH-ideal, then clearly 0 ∈ ψ−1(I). Let
a, b ∈ H1 be such that (a ◦ b) ∩ ψ−1(I) ̸= ϕ and b ∈ ψ−1(I). Then we have ϕ ̸=
ψ(a◦b)∩ψ−1(I)) ⊆ ψ(a◦b)∩ψψ−1(I) ⊆ ψ(a)◦ψ(b)∩I and so (ψ(a)◦ψ(b))∩I ̸= ϕ
and ψ(a) ∈ ψ(ψ−1(I)) ⊆ I. Since I is a strong hyper BCH-ideal of H2, we have
ψ(a) ∈ I and so x ∈ ψ−1(I). Therefore ψ−1(I) is a strong hyper BCH-ideal of
H1.

Theorem 5.6. Let ψ : H1 → H2 be a homomorphism of hyper BCH-algebras.
Then kerψ = {x ∈ H1|ψ(x) = 0} is a strong hyper BCH-ideal of H1.

Proof. To prove this first we show that {0} is a strong hyper BCH-ideal of H2.
For this, let a, b ∈ H1 be such that (a◦b)∩{0} ̸= ϕ and b ∈ {0}. Then b = 0 and
so 0 ∈ a ◦ 0 since (a ◦ 0) ∩ {0} ̸= ϕ. Thus we have a ≪ 0. By (HCH3) and 3.5
3, we get a = 0 ∈ {0}. This shows that {0} is a strong hyper BCH-ideal of H2.
It follows fromTheorem 5.5 that kerψ = ψ−1({0}) is a strong hyper BCH-ideal
of H1.

Theorem 5.7. Let ψ : H1 → H2 be a homomorphism of hyper K-algebras. If
ψis onto and I is a strong hyper BCH-ideal of H1 which contains kerψ , then
ψ(I) is a strong hyper BCH-ideal of H2.

Proof. Suppose I is a strong hyper BCH-ideal of H1. Clearly 0 ∈ ψ(I). Let
x, y ∈ H2 be such that (x ◦ y) ∩ ψ(I) ̸= ϕ and y ∈ ψ(I). Since y ∈ ψ(I) and
ψ is onto, there are y1 ∈ I and x1 ∈ H1 such that y = ψ(y1) and x = ψ(x1).
Thus ϕ ̸= (x ◦ y)∩ψ(I) = ψ(x1 ◦ y1)∩ψ(I) and so there exists a ∈ H2 such that
a ∈ ψ(x1 ◦ y1) and a ∈ ψ(I). It follows that there are a1 ∈ x1 ◦ y1 and b1 ∈ I
such that a = ψ(a1) and a = ψ(b1) so that 0 ∈ a ◦ a = ψa1 ◦ ψb1 = ψ (a1 ◦ b1)
which implies that ψ(c) = 0 for some c ∈ a1 ◦ b1. Hence c ∈ kerψ ⊆ I and so
(a1 ◦ b1) ∩ I ̸= ϕ. Now since I is a strong hyper BCH-ideal of H1 and b1 ∈ I,
we get a1 ∈ I. Thus (x1 ◦ y1) ∩ I ̸= ϕ, which implies that x1 ∈ I. Thereby
x = ψ(x1) ∈ ψ(I), and so ψ(I) is a strong hyper BCH-ideal of H2.
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Abstract. In this paper, we give a new definition–a CSS subgroup(a subgroup H
of a finite group G is called a CSS-subgroup of G if there exists a normal subgroup
K of G such that G = HK and H ∩ K is SS-quasinormal in G). By this definition,
we investigate the relationship between the p-nilpotence of G and the p-nilpotence of
NG(P ), and generalize the corresponding results to a saturated formation F which
contains the class Np of all p-nilpotent groups, where p is an odd prime factor of |G|,
P a Sylow p-subgroup of a group G.

Keywords: CSS-subgroups, Sylow subgroups, mxiamal subgroups, p-nilpotent groups,
saturated formations.

1. Introduction

All groups considered in this paper are finite. A subgroup H of a group G is
said to be S-quasinormal in G if H permutes with every Sylow subgroup of
G(see [5]). Recall that a subgroup H of a group G is c-normal in G if there
is a normal subgroup K of G such that G = HK and H ∩ K ≤ HG, where
HG is the core of H in G(see [8]). Recently, Li[6] defined that a subgroup H
of G is said to be an SS-quasinormal subgroup of G if there is a supplement
B of H to G such that H permutes with every Sylow subgroup of B. By use
of these definitions, many authors investigated such structure of a group as the
nilpotence, the supersolvability and so on, see [8, 1, 6, 4, 2, 5].

∗. Corresponding author
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Enlightened by the above concepts, we give a new definition −− a CSS-
subgroup, which is a generalization of C-normality and SS-quasinormality.

Definition 1.1. A subgroup H of a group G is called a CSS-subgroup of G
if there exists a normal subgroup K of G such that G = HK and H ∩ K is
SS-quasinormal in G. In this case, K is called a normal CSS-supplement of H
in G.

Remark. Obviously, if a subgroup H of G is c-normal in G, then there is a
normal subgroup K1 of G such that G = HK1 and H ∩ K1 ≤ HG. In this
case, writing K = HGK1, then we have G = HK and H ∩K = HG; Of course,
H ∩ K is SS-quasinormal in G. Therefore c-normal subgroups of G also are
CSS-subgroups of G. Besides, a SS-quasinormal subgroup H of G, by taking
K = G, must be a CSS-subgroup.

However, the following examples show the above converse is not true.

Example 1. Let G = A5 be the alternating group of degree five. We have
G = A4C5. Then A4 is SS-quasinormal in G, and is a CSS-subgroup of G.
However, A4 is not c-normal in G.

Example 2. Consider G = S4, the symmetric group of degree four. Take
α = (34) and β = (123). Then G = ⟨α⟩A4 and ⟨α⟩ ∩ A4 = 1, hence ⟨α⟩ is
c-normal in G. Of course ⟨α⟩ is a CSS-subgroup of G. Let B be a subgroup of
G satisfying G = ⟨α⟩B. Then B is either A4 or G. As ⟨α⟩⟨β⟩ ̸= ⟨β⟩⟨α⟩, which
indicates that ⟨α⟩ is not SS-quasinormal in G.

In Section 2 of this paper, we give some properties of CSS-subgroups. Let
p be an odd prime factor of |G|, P a Sylow p-subgroup of a group G. In Section
3, we investigate the relationship between p-nilpotence of G and p-nilpotence
of NG(P ), and generalize the corresponding results to a saturated formation F
which contains the class Np of all p-nilpotent groups.

2. Preliminaries

In this section we list some known results and some properties about CSS-
subgroups which are needed in the main results.

Lemma 2.1 ([6, Lemma 2.1]). Suppose that H is SS-quasinormal in a group
G, K ≤ G and N a normal subgroup of G. We have:

(1) If H ≤ K, then H is SS-quasinormal in K.

(2) HN/N is SS-quasinormal in G/N .

(3) If N ≤ K and K/N is SS-quasinormal in G/N , then K is SS-quasinormal
in G.

(4) If K is quasinormal in G, then HK is SS-quasinormal in G.
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Lemma 2.2 ([6, Lemma 2.5]). If a p-subgroup P of G is SS-quasinormal, where
p is a prime. Then P permutes with every Sylow q-subgroup of G with q ̸= p.

Lemma 2.3. Let H be a CSS-subgroup of a group G. We have:
(1) If H ≤M ≤ G, then H is a CSS-subgroup of M .

(2) Let N E G and N ≤ H, then H is a CSS-subgroup of G if and only if
H/N is a CSS-subgroup of G/N .

(3) Let π be a set of some primes and N a normal π′-subgroup of G. If H
is a π-subgroup of G, then HN/N is a CSS-subgroup of G/N .

Proof. (1) Since H is a CSS-subgroup of G, there exists a subgroup K E G
such that G = HK and H ∩K is SS-quasinormal in G. Notice that H ∩K ≤
H ≤ M ≤ G and K EG, we have that M = H(M ∩K) and M ∩K EM . On
the other hand, Lemma 2.1.1 shows that H ∩K is SS-quasinormal in M . Also,
H ∩ (M ∩K) = H ∩K, so H ∩ (M ∩K) is SS-quasinormal in M . Therefore H
is a CSS-subgroup of M .

(2) Let K EG be a CSS-supplement of H in G, then G = HK and H ∩K
is SS-quasinormal in G. Consider the group KN/N , we have: KN/N E G,
G/N = HK/N = (H/N) · (KN/N), and (H/N) ∩ (KN/N) = (H ∩K)N/N is
SS-quasinormal in G/N by Lemma 2.1(2). Thus H/N is a CSS-subgroup of
G/N .

Conversely, if H/N is a CSS-subgroup of G/N , then there exists a normal
subgroup K/N of G/N such that G/N = (H/N) · (K/N) and (H/N) ∩ (K/N)
is SS-quasinormal in G/N . Obviously, G = HK and K EG. Also, by Lemma
2.1(3), H ∩K is SS-quasinormal in G. Thus H is a CSS-subgroup of G.

(3) Let K be a normal CSS-supplement of H in G, then G = HK, and
H ∩ K is SS-quasinormal in G. Since N is a normal π′-subgroup and H is a
π-subgroup of G, then N ≤ K. Consequently G/N = (HN/N) · (K/N) and
K/N E G/N . Also, (HN/N) ∩ (K/N) = (H ∩ K)N/N is SS-quasinormal in
G/N by Lemma 2.1.2. Therefore HN/N is a CSS-subgroup of G/N .

Lemma 2.4. Let P be a Sylow p-subgroup of a finite group G and N a normal
subgroup of G. If every maximal subgroup of P is a CSS-subgroup of G, then
every maximal subgroup of PN/N is a CSS-subgroup of G/N .

Proof. Let S/N be a maximal subgroup of PN/N , and T a Sylow p-subgroup
of S. Without loss of generality, we may assume that T ≤ P . Obviously,
S/N = TN/N . Notice that p = |PN : T | = |PN : TN | = |P : T |, it shows
that T is a maximal subgroup of P . By hypothesis of the theorem, T is a CSS-
subgroup of G, so there exists a normal subgroup K such that G = TK and
T ∩K is SS-quasinormal in G. Let Kq be a Sylow q-subgroup of K, where q is
a prime factor of |K| and q ̸= p. Obviously, Kq is also a Sylow q-subgroup of G,
and N ∩Kq is a Sylow q-subgroup of N . Set D = ⟨N ∩Kq |q ̸= p⟩, then D ≤ K
and N = (T ∩N)D. So TN∩KN = (TN∩K)N = (TD∩K)N = (T ∩K)DN =
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(T ∩K)N . By Lemma 2.1(2), we know TN/N ∩KN/N = (T ∩K)N/N is SS-
quasinormal in G/N , it is to say S/N is SS-quasinormal in G/N .

Lemma 2.5. Let M be a maximal subgroup of G and P a normal p-subgroup
of G such that G = PM , where p is a prime. Then P ∩M is a normal subgroup
of G.

Proof. Notice that P E G, so M ≤ NG(P ∩M). Also, it is clear that P ∩M
is not a Sylow p-subgroup of G, so P ∩ M � NP (P ∩ M). It follows that
M � NG(P ∩M). By the maximality of M , we have that NG(P ∩M) = G,
which implies that (P ∩M) EG.

Lemma 2.6 ([3, Proposition IV.3.11]). Let F1 = LF (F1) and F2 = LF (F2),
where Fi is both an integrated and full formation function of Fi(i = 1, 2). Then
the following statements are equivalent:

(1) F1 ⊆ F2,

(2) F1(p) ⊆ F2(p) for all p ∈ P .

3. Main results

Theorem 3.1. Let H be a normal subgroup of a group G, p an odd prime
factor of |H| and P a Sylow p-subgroup of H. If NG(P ) is p-nilpotent and every
maximal subgroup of P is a CSS-subgroup of G, then G is p-nilpotent.

Proof. Assume that the theorem is false and let G be a counterexample of
minimal order. We proceed by the following steps:

Step 1. Op′(G) = 1.

Otherwise, consider the quotient group G/Op′(G) and HOp′(G)/Op′(G). For
convenience, we write D = Op′(G). Obviously, PD/D is a Sylow p-subgroup
of HD/D. Notice that (|D|, p) = 1, so we have NG/D(PD/D) = NG(P )D/D,
which shows that NG/D(PD/D) is p-nilpotent. By applying Lemma 2.4, we
have that G/Op′(G) satisfies the hypotheses of the theorem. The choice of G
implies that G/Op′(G) is p-nilpotent, so is G, a contradiction.

Step 2. If P ≤ L < G, then L is p-nilpotent.

As NL(P ) ≤ NG(P ), so L satisfies the hypotheses of the theorem by Lemma
2.3.1. The minimality of G implies that L is p-nilpotent, as desired.

Step 3. 3.1 H = G;

3.2 If K be a normal subgroup of G, then G/K is p-nilpotent. So G has
a unique minimal normal subgroup N and N � Φ(G).

3.1 If H < G, by using Step 2, we have that H is p-nilpotent. Also, Step
1 implies that H is a p-group, so H = P . Therefore, NG(P ) = NG(H) = G is
p-nilpotent, a contradiction.
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3.2 It is clear that P is a Sylow p-subgroup by 3.1, thereforeNG/K(PK/K) =
NG(P )K/K is p-nilpotent. Applying Lemma 2.4, we have that G/K satisfies the
hypotheses of the theorem. So the choice of G implies that G/K is p-nilpotent.

Since the class of all p-nilpotent groups is a saturated formation, we may
assume that G has the unique minimal normal subgroup, say N and N � Φ(G).

Step 4. Op(G) > 1, moreover, G is p-solvable.

Since G is not p-nilpotent, by a result of Thompson [[7], Corollary], there ex-
ists a non-trivial character subgroup T of P such that NG(T ) is not p-nilpotent.
Now, T char P ENG(P ), so NG(P ) ≤ NG(T ). Step 2 implies that NG(T ) = G,
so T E G, therefore Op(G) > 1. By Step 3.2, we have that G/Op(G) is p-
nilpotent, so G ia p-solvable.

Step 5. N = Op(G) and |N | = p.

Since Op(G) > 1, by Step 3.2, we have that N ≤ Op(G). Therefore there
exists a maximal subgroup M such that G = NM and N ∩M = 1. So G =
Op(G)M . By Lemma 2.5, we have Op(G) ∩M = 1, hence N = Op(G).

Next, we affirm that N � Φ(P ). Otherwise, N ≤ Φ(G), a contradiction to
Step 3.2. Therefore there exists a maximal subgroup P1 of P such that N � P1,
so P = NP1. Put N1 = N ∩ P1, then |N : N1| = |N : N ∩ P1| = |NP1 : P1| =
|P : P1| = p. By hypotheses, there exists a normal subgroup K1 of G such that
G = P1K1 and P1 ∩K1 is SS-quasinormal in G. By the minimality of N , we
have that N ≤ K1 and P ∩K1 = P1N ∩K1 = (P1∩K1)N is a Sylow p-subgroup
of K1. Let K1q be a Sylow q-subgroup of K1, where q ̸= p. K1q is also a Sylow
q-subgroup of G. By Lemma 2.2, we have (P1 ∩K1)K1q is a subgroup. Since
N 6 K1, it follows that N1 = N ∩ (P1 ∩ K1)K1q E (P1 ∩ K1)K1q. Therefore
N1 is normal in the subgroup ⟨N, (P1 ∩K1)K1q|q ∈ π(G), q ̸= p⟩ = K1. On the
other hand, N1 = N ∩ P1 E P1, then N1 E P1K1 = G. The minimality of N
yields N1 = 1. Consequently, N is a cyclic subgroup of order p.

Step 6. The final contradiction.

Notice that N = Op(G) EG and |N | = p, we have that N ≤ Z(P ), so P ≤
CG(N). On the other hand, G is p-solvable and Op′(G) = 1, so CG(Op(G)) ≤
Op(G). It follows that P = Op(G) = N , hence NG(P ) = G. Therefore, by using
the hypothesis of the theorem, we have thatG is p-nilpotent, a contradiction.

Remark. In Theorem 3.1, if take H = G, then we have the following:

Corollary 3.2. Let G be a group, and P a Sylow p-subgroup of G such that
NG(P ) is p-nilpotent, where p is an odd prime factor of |G|. If every maximal
subgroup of P is a CSS-subgroup of G, then G is p-nilpotent.

Corollary 3.3. Let H be a normal subgroup of a group G and p an odd prime
factor of |H|. Also, let F be a saturated formation containing the class Np of all
p-nilpotent groups and G/H ∈ F . If NG(P ) is p-nilpotent and every maximal
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subgroup of P is a CSS-subgroup of G, then G ∈ F , where P is a Sylow p-
subgroup of H.

Proof. It is clear that NH(P ) is p-nilpotent and every maximal subgroup of P
is a CSS-subgroup of H. By Corollary 3.2, we have that H is p-nilpotent. Now
let Hp′ be the normal Hall p′-subgroup of H, then Hp′ E G. By using similar
arguments such as in the proof of Theorem 3.1, we have that G/H satisfies the
hypotheses of the corollary, so G/H ∈ F by induction. Let Fi(i = 1, 2) be the
full and integrated formation function such that Np = LF (F1) and F = LF (F2),
respectively, then G/CG(K1/K2) ∈ F1(q) for every chief factor K1/K2 of G with
K1 ≤ Hp′ and every prime q dividing |K1/K2|. By Lemma 2.6, we have that
G/CG(K1/K2) ∈ F2(q) for every chief factor K1/K2 of G with K1 ≤ Hp′ and
every prime q dividing |K1/K2|. Therefore, it follows that G ∈ F . Hence, we
may assume that Hp′ = 1 and henceforth H = P is a p-group. So, by the
hypotheses of the corollary, NG(P ) = G is p-nilpotent and therefore G ∈ F .

Remark. In Theorem 3.1, Corollary 3.2 and Corollary 3.3, the assumption that
”NG(P ) is p-nilpotent” is necessaey. For example, we consider the group G = A5

and p = 5. In this case, since every maximal subgroup of Sylow 5-subgroup of
G is 1, we see that every maximal subgroup of Sylow 5-subgroup of G is a
CSS-subgroup of G, but G is not 5-nilpotent.
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Abstract. With the rapid development of economy, the tourism in China has flour-
ished and eco-tourism has emerged. Eco-tourism is an inexorable trend in the sustain-
able development of tourism. Requirements for eco-tourism attractions are compared
to ordinary tourist attractions. This study selected the forest eco-tourist attraction
in Yunnan as an example because Yunnan has a warm climate, beautiful sceneries
and rich forest resources. The economic benefits of the attraction were analyzed us-
ing factor analysis method. Score was calculated through extracting common factor,
the index variables were processed, and the index results were then applied to the so-
lution formulas. The obtained economic benefit results were analyzed and compared.
Finally, relevant suggestions were proposed for local government, citizens and tourists.
This work provides a reference for the economic construction and development of forest
eco-tourism attractions in the future.

Keywords: factor analysis, forest eco-tourism, economic benefits, evaluation.

1. Introduction

Since the 21st century, forest area has greatly reduced with the rapid develop-
ment of economy and the acceleration of urbanization [14]. People demand more
about nature and are eager to get close to nature. With the rising of tourism,
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people tend to get closer to nature by means of tourism. But some areas have
been excessively developed for pursuing economic benefits despite resource and
environmental bearing capacity and moreover the uncivilized behaviors of some
tourists make tourist environment worse and worse, leading to the increasing
demand on eco-tourism [21].

Forest eco-tourism has captured the attention of the whole world rather than
China alone. After the Second World War, countries such as America, Germany,
England, Japan and France began to put emphasis on forest eco-tourism and
spent heavily on building forest eco-tourism attractions. With the development
of forest eco-tourism attractions, many benefits have been produced [22]. China,
one of the countries with the largest number of eco-system categories, has rich
forest resources [26]. Yunnan, in the southwest of China, covers an area of
19.924 million qing (1 qing = 6.6667 hectares) [24] and had a forest coverage
rate of 55.7% till 2015; Yunnan has rich forest resources, beautiful sceneries and
a pleasant climate.

Till December 2015, Yunnan has had 41 forest ecological parks with a total
area of 150, 000 hectares and 159 natural reserve areas which covers an area
of 2,840 thousand hectares [7] and a forest tourism system dominated by forest
park and natural reserve area has formed preliminarily [9]. Wu B. J. [16] made
a tourist satisfaction evaluation and analysis for Guangdong Dawang Mountain
National Forest Park using importance-performance analysis diagram, perfected
the deficiencies, and proposed strategies of Dawangshan forest eco-tourism de-
velopment according to quadrant distribution. Zhan H. et al. [19] discussed the
eco-tourism resources in natural conservation areas using gray cluster model
and formulated an eco-tourism resources evaluation indicator system according
to the environmental characteristics and research suggestions. This study made
a factor analysis on the national forest parks in Yunnan. Yunnan is one of
the minority enclaves and has wonderful national culture. Therefore, the forest
eco-tourism attraction in Yunnan is more representative.

Introduction of scenic spot

Pudacuo national forest park, the first national park in China, locates in Shangri-
La and covers an area of 1, 313 square kilometers; it is 22 kilometers away from
the county [13]. The park has national sceneries such as plateau lakes; hence
it is a good place for tourists. By now, the management right and operation
right of the park have been separated. Besides, it has four basic functions, i.e.,
ecological protection, amusement, scientific research and survey and education
practice [4].

Xishuangbanna forest park locating in Jinghong city, accounts for 1666.7
square kilometers [18]. It is the only tropical rain forest protection area in
China. People are attracted by the park for its amazing animals and precious
flowers and plants. The park relies mainly on tropical rain forest sightseeing,
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while relaxation and vacation are subsidiary, embellished by national customs
[10].

Laojunshan national park locates in the west of Lijiang [8]. It gains its
name because the local people say that TaishangLaojun (the supreme god of
Taoism) is refining dan on the mountain. The park accounting for 1,324 square
kilometers is famous for Danxia landform and picturesque peaks and rocks and
it is called the originator of mountains in Yunnan province [23]. Centering on
resource protection and tourism development, overall planning and all-round
consideration and making progress while maintaining stability are the cores of
the development and construction of Laojunshan.

The establishment of evaluation model based on factor analysis

Principle introduction

The indexes were grouped according to the correlation between them. The
most representative common factor was selected out from each group [6]; thus
we obtained several different common factors and calculated variance. To be
short, the weight of evaluation was obtained by analyzing the selected factors.

Model establishment

Suppose that α scenic spots were selected and every scenic spot had β ben-
efit indexes. Let original variable A (the mean value of A1, A2, . . . , Aβ) be
equal to 0 and standard deviation equal to 1, then B = (B1, B2, . . . , Bβ) was
obtained. Index variables were supposed as C1, C2, . . . , Cβ and common fac-
tors as g1, g2, . . . , gt(t < β). Suppose that B = (B1, B2, . . . , Bβ) index vector
was observable, then E(B) = 0 and covariance matrix cov(B) = Σ. Besides,
G = (g1, g2, . . . , gt), (t < β) variable was unobservable, then E(G) = 0 and
covariance matrix cov(G) = M . Every component was independent from each
other.

γ = (γ1, γ2, . . . , γ
β) and G were independent from each other; E(γ) = 0; the

diagonal matrix of Σ(γ) was

(2 − 2 − 1) cov(γ) =


µ211 0

µ222
. . .

0 µ2ββ


If β original variables were expressed as g1, g2, . . . , gt, then we have:

(2 − 2 − 1)


B1 = w11g1 + w12g2 + . . .+ w1tgt+ γ1

B2 = w21g1 + w22g2 + . . .+ w2tgt + γ2

. . .

Bβ = wβ1g1 + wβ2g2 + . . .+ wβtgt + γβ
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i.e.,

= WG+ γ,W =


w11 w12 . . . w1t

w21 w22 . . . w2t

. . .
wβ1 wβ2 . . . wβt

 .

We called W as factor loading matrix and its elements as factor loading. Then
the score of single common factor was calculated. Suppose original data matrix
A = (aij)α×β, (I = 1, 2, . . . , α; j = 1, 2, . . . , β), we have Ĝ = W ′R−1A(2 − 2 −
3) (W: factor loading matrix; R: original variable related matrix; A: original
vector).

The selection of economic benefit indexes
Following the principles of scientificity, integrity and feasibility [1], the se-

lected economic benefit evaluation indexes were summarized.

Figure 1: Economic indexes

Per capita GDP
Per capita GDP is an important index for reflecting the economic develop-

ment condition and living level in an area; it can be obtained by dividing total
output value in some period by population [1].

Table 1. Per capita GDP of three scenic spots and their ranks in Yunnan

The comparison of the three parks suggested that, the per capita GDP of
Pudacuo national forest park was the highest because it has a small permanent
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resident population; the per capita GDP of Xishuangbanna ranked the second
among the three scenic spots, but it had the highest total output value; the
per capita GDP of Laojunshan ranked low due to the large permanent resident
population.

Per capita disposable income of local citizens

Per capita disposable income refers to the income spending on daily life after
the deduction of tax, which can fully display the living level of citizens [1]. In
2015, the per capita income of Pudacuonational forest park, Xishuangbanna
park and Laojunshan national park was 6,487 yuan, 10, 080 yuan and 6, 037
yuan respectively.

Direct tourist income

Direct tourism income refers to ticket income. Tourists need to pay a certain
amount of money before entering scenic spots. The charge is different in every
scenic spot, and some scenic spots are even for free.

Indirect tourist income

Indirect tourist income comes from accommodation, catering, entertainment,
transportation, collocation and performance watching. The sum of direct tourist
income and indirect tourist income is the total income of a scenic spot.

Table 2. Total income of the three scenic spots (unit: 0.1 billion yuan)

Investment on scenic spot

The money that government or enterprise put into the construction and per-
fection of scenic spots is called investment on scenic spots. It can effectively re-
flect the emphasis of governmental departments and enterprises on scenic spots.

Appreciation of the third industry

Forest eco-tourism not only can increase local tourism income, but also can
significantly promote the third industry such as real estate in local area; hence
it is taken as one of the economic benefit evaluation indexes [15].

Table 3. Appreciation of the third industry in the three scenic spots (unit: 0.1 billion yuan)
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Analysis of economic benefit evaluation results
Data in year 2015 were selected. Per capita GDP was supposed as A1, per

capita disposable income as A2, total income as A3, the output of the third
industry as A4, and original matrix as A. The detailed data are shown in table
4.

Table 4. Summary of economic indexes

A =

39582.31 6487 3.14 5.52
29031.98 10080 4.13 5.84
22745.1 6037 5.84 4.32


Using SPSS 17.0, relevant coefficients were obtained, as shown below.

Table 5. Relevant coefficients of the original index matrix

The observation of relevant coefficients of the original matrix suggested that,
per capita GDP and per capita disposable income was in a highly negative corre-
lation, indicating there was a huge gap between per capita GDP and per capita
disposable income and there was no correlation between per capita disposable
income and the appreciation of the third industry output; per capita GDP was
in a positive correlation to per capita disposable income, suggesting the im-
provement of per capita GDP was beneficial to per capita disposable income;
total input was in a positive correlation to the appreciation of the third industry
output and they promote each other.

Table 6 demonstrates that, the accumulated variance contribution rate of
the first and third factor reached 100%, but the rate of the other factors was so
low that it can be ignored. Hence the first and third factors could be taken for
effectively evaluating the economic benefit of scenic spots. Through calculating
loading factor matrix, we have:
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Table 6. Variable characteristic values and variance contribution rates

Table 7. Factor loading matrix

After substituting the above values into expression (2 − 2 − 2), we have:

B1 = 0.913g1 + 0.501g3(1)

B2 = 0.795g1 − 0.416g3(2)

B3 = −0.436g1 + 0.891g3(3)

B4 = −0.893g1 + 0.124g3.(4)

Referring to the expression, we found the absolute value of factor loading capac-
ity was smaller or equal to 0.5. There was overlapped information, suggesting
the correlation still could be reduced. After rotation, we obtained the matrix
after transformation.

Table 8. Factor loading matrix obtained after rotation

After substituting the above data into the expression (2 − 2 − 2), we have:

B1 = 0.999g1 + 0.483g3(5)

B2 = −0.665g1 − 0.283g3(6)

B3 = 0.998g1 + 0.765g3(7)

B4 = 0.463g1 + 0.084g3(8)

After rotation, we found that, the absolute value of factor loading capacity was
smaller or equal to 0.552; hence the rotation method was not available. Thus
we explained g2 and g4 by taking g1 and g3 as common factors.
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Coefficient matrix obtained by regression method was as follows.

Table 9. Factor score coefficient matrix

Then the values of g1 and g3 of the three parks were calculated and ranked,
as shown below.

Table 10. Ranking of common factor scores of the three scenic spots

g1 of Pudacuo national forest park ranked the first, g3 of Xishuangbanna
national park ranked the first, the total score of Pudacuo national park was
1.0046, suggesting the economic benefit of Pudacuo national forest park was the
highest, followed by Laojunshan and Xishuangbanna.

Besides, we found two problems. The first problem is that, insufficient in-
vestment can inhibit the development of the forest park. Though the scale of
scenic spots is continuously enlarged, the mode of input being larger than out-
put remains unchanged and economic benefit is not as expected [17]. The fund
invested on forest park come from the government and enterprises. However, the
fund assigned to every scenic spot is low because Yunnan province is a major
tourism province and has many scenic spots, resulting in no increase of eco-
nomic benefit. The second problem is that the management model is affected
by problems left over by history. For example, Pudacuopark was not a national
park when it was established. At first, it was managed by enterprises, but then
thoroughly managed by the government; currently, the management right and
operation right of the park are separated [20]. But the defects existing when the
park was managed by enterprises still have influence. Diqing state government
as the main part has the power of administrative jurisdiction and departments
at different levels play a supervision role; the insufficient agent authorization
of scenic spot authority blocks the joint development of scenic spots and com-
munities. The working efficiency of scenic spots is low due to the inconsistent
attitudes of investment companies and authority to policies. Moreover, there
are no definite laws for the construction and management of Pudacuo national
forest park locating in minority habitation in China and the enforcement sys-



112 QIONG SUN, XIUPING NIE, ZHIYONG TAN and WEI SU

tem of the park originated from foreign countries, which is inconsistent with the
national condition.

Suggestions for the development of forest eco-tourism in Yunnan
Suggestions to government
The leading function of government should be combined with the pushing ac-

tion of market to improve management efficiency [5]. In the initial construction
period of forest national park, the government should play a leading role and
emphatically promote the establishment of regulations of scenic spots. More-
over, the market allocates resources. What is more, the assistance of enterprises
and the public is indispensable [25]. Only in this way can we promote the es-
tablishment of forest parks, improve per capita GDP of scenic spots and drive
the harmonious development of the third industry.

Suggestions to scenic spots
The first suggestion is to optimize the existing products and develop new

products. The characteristics of forest parks should be put into full play and
combine with the advantages of local area. Besides, network should be interna-
tionalized to keep up with the trend of age and products need to be refined by
considering the demand of tourists [11]. As shown in figure 2, there are totally
three categories of tourism products and several subcategories.

Figure 2: Product development

Secondly, scenic spots should establish good public image and improve pop-
ularity [2], i.e., strengthen publicity, cultivate special culture and do cultural
transmission.

Lastly, the introduction of talents should be attached great importance. On
the one hand, scenic spots should enroll students from relevant professions. On
the other hand, scenic spots can cultivate those students to carry out researches
to guide practice [3].
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Suggestions to local citizens
Local citizens should pay attention to or utilize culture and form a hospitable

atmosphere spontaneously to make guests feel at home. Yunnan is a province
with the most minorities; besides Han nationality, there were another 25 nation-
alities living in Yunnan. Every nationality has its own special culture. Local
citizens and the other nationalities can learn from each other and seek common
points while reserving difference to make local culture yield unusually brilliant
results [12].

Conclusion
There are many ways for evaluating the economic benefits of a tourist attrac-

tion, and factor analysis method is one of them. Firstly, factors were selected
from economic field; then common factor was selected after multiple factors were
analyzed and calculated; the demonstration of benefits using common factor pro-
vided the evaluation of economic benefit of scenic spots with data support and
finally the economic benefits of forest ecological scenic spots were systemically
assessed. Based on it, some suggestions were proposed to the establishment of
scenic spots, aiming to improve the benefits of scenic spots.

Acknowledgements. This study was supported by the General Project of
the Beijng Municipal Education Committee’s Scientific and Technological Plan
(KM201711417013) to Sun Qiong.

References

[1] V. Bystrov, A.D. Salvatore, Martingale approximation of eigenvalues for
common factor representation, Statistics & Probability Letters, 83(1)
(2013), 233-237.

[2] G. Chen, M. Firth, O. Rui, Have China’s enterprise reforms led to improved
efficiency and profitability?, Emerging Markets Review, 7 (2006), 82-109.

[3] Y. Chen, Y. X. Yang, A.Y. Xu, Study on the sustainable development of
eco-tourism in the Tianhuajing national forest park, Journal of Jiujiang
University, 31 (2007), 129135.

[4] H. Cheng, X.J. Huang, C.O. Pharmacy, Study on Characteristic and Ac-
tuality of Lisaw National Medicine in the Nujiang River Basin of Yunnan
Province, Lishizhen Medicine & MateriaMedica Research, 24 (2013), 2512-
2514.

[5] B. Frantál, J. Kunc, Wind turbines in tourism landscapes: Czech Experi-
ence, Annals of Tourism Research, 38 (2011), 499-519.

[6] L. Galicia, A. Garciaromero, Land Use and Land Cover Change in High-
land Temperate Forests in the Izta-Popo National Park, Central Mexico.
Mountain Research & Development, 27 (2007), 48-57.



114 QIONG SUN, XIUPING NIE, ZHIYONG TAN and WEI SU

[7] M.A. Guoqiang, M. Liu, Y. Zhou, The Assessment of Recreational Effect
on Diversity and Feeding Distance of Birds - A Case Study in Pudacuo
National Park, Forest Resources Management, 314 (2012), 76-82.

[8] Y. Hou, S. Peng, F. Li, Z. G. Lin, M. C. Bao, H. Peng, Characteristics
and scientific values of ecological succession in Danxia Landform of China,
Acta Ecologica Sinica, 28 (2008), 3384-3389.

[9] D.S. Li, S. Fan, A. He, F. Yin, Forest resources and environment in China,
Chinese Forestry Science & Technology, 9 (2005), 88-95.

[10] B.Y. Liang, H. Peng, S. X. Weng, Study of the impact of tourism develop-
ment to the interpersonal relationship in rural society: cases from Danxi-
ashan scenic spot, Human Geography, 86 (2015), 1-1.
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Abstract. In this article, we introduce the notion of (∈,∈ ∨qk)-intuitionistic fuzzy
subsemigroup, (∈,∈ ∨qk)-intuitionistic fuzzy left (resp. right) ideals, (∈,∈ ∨qk)-intuitio-
nistic fuzzy bi-ideals and (∈,∈ ∨qk)-intuitionistic fuzzy (1, 2)-ideals and study some of
its properties. We study the related properties of the (∈,∈ ∨qk)-intuitionistic fuzzy
bi-ideals, (1, 2)-ideals and in particular, an (∈,∈ ∨qk)-fuzzy bi-ideals and (1, 2)-ideals
in semigroups will be investigated.

Keywords: (∈,∈ ∨qk)-intuitionistic fuzzy subsemigroup, (∈,∈ ∨qk)-intuitionistic
fuzzy left (resp. right) ideals,(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideals, (∈,∈ ∨qk)-intuitio-
nistic fuzzy (1, 2)-ideals.

1. Introduction

The idea of a fuzzy set was first originated by Zadeh in 1965 [1]. Fuzzy set
theory has been shown to be a useful tool to define conditions in which the data

∗. Corresponding author
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are inexact or vague. Fuzzy sets theory handle such conditions by attributing a
degree to which a certain object belongs to a set. The concept of fuzzy group
was first proposed by Rosenfeld [2]. The notion of fuzzy semigroups was first
studied by Kuroki in his standard paper [3]. The concepts of fuzzy ideals,
bi-ideals, semi-prime ideals, quasi-ideals of semigroups are initiated by Kuroki
in [4, 5, 6, 7, 8, 9, 10]. A logical account of fuzzy semigroup was specified by
Mordeson et.al. [11], and they have found theoretical results on fuzzy semigroups
and their use in fuzzy languages, fuzzy finite state machines, and fuzzy coding.
The book of Mordeson and Malik treaties with the application of fuzzy method
to the notions of formal languages and automata [12]. Newly, fuzzy set theory
has been well developed in the context of hyperalgebraic structure theory. Ameri
and Noari in [13] introduced fuzzy hyperalgebras and investigated some vital
results. In [14], Davvaz et.al., initiated fuzzy Hv-ideals in Γ-Hv-rings. The
concept of fuzzy Γ-hypernearrings was initiated by Davvaz in [15]. In [16],
Davvaz originated fuzzy Krasner (m,n)-hyperrings. Sun et al., consider fuzzy
hypergraphs on fuzzy relations in [17]. The notion of “belong to” relation (∈)
was intitiated by Pu and Lia in [18]. The concept of a fuzzy point belonging to a
fuzzy subset under natural equivalence on fuzzy subset was proposed by Morali
in [19]. Bhakat and Das in [20], initiated the ideas of (α, β)-fuzzy subgroups
by using the ”belong to” relation (∈) and ”quasi-coincident with” relation (q)
concerning with a fuzzy point and a fuzzy subgroup, and defined an (∈,∈ ∨q)-
fuzzy subgroup of a group. Kazanci and Yamak in [21], studied generalized types
fuzzy bi-ideals of semigroups and defined (∈,∈ ∨q)-fuzzy bi-ideals of semigroups.
The concept of generalized fuzzy interior ideals of semigroups was studied by
Jun and Song in [22]. Shabir et. al. in [23], characterized regular semigroups
by the properties of (α, β)-fuzzy ideals, bi-ideals and quasi-ideals. S In [24],
Shabir et. al. originated the notion of (∈,∈ ∨qk)-fuzzy ideals of semigroups and
characterized regular semigroups by these ideals. Shabir and Mehmood in [25],
initiated the notion of (∈,∈ ∨qk)-fuzzy h-ideals of hemirings and characterized
different classes of hemirings by the using the concept of (∈,∈ ∨qk)-fuzzy h-
ideals. Aslam et al. in [26], originated the notion of (α, β)-fuzzy Γ-ideals of
Γ-LA-semigroups and given some characterization of Γ-LA-semigroups by (α, β)-
fuzzy Γ-ideals:

In 1986, the notion of intuitionistic fuzzy set (IFS) was premised by Atanassov
in [27]. An Atanassov intuitionistic fuzzy set is considered as a generalization
of fuzzy set [1]. In the sense of Atanassov an IFS is characterized by a pair
of functions valued in [0, 1]: the membership function and the non-membership
function. The evaluation degrees of membership and non-membership are in-
dependent. Thus, an Atanassov intuitionistic fuzzy set is most substantial and
brief to designate the spirit of fuzziness, and Atanassov intuitionistic fuzzy set
theory may be more appropriate than fuzzy set theory for dealing with imperfect
knowledge in many problems. Biswas in [28], use the idea of intuitionistic fuzzy
set and initiated the the notion of intuitionistic fuzzy subgroup of a group. Kim
and Jun in [29], originated intuitionistic fuzzy ideals of semigroups. In [30], Kim
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and Lee initiated the notion of intuitionistic fuzzy bi-ideals of semigroups. The
concepts of intuitionistic fuzzy interior ideals of semigroups was initiated by Kim
and Jun in [31]. The concept of intuitionistic fuzzy point was initiated by Coker
and Demirci in [32]. Jun in [33], introduced the concept of (Φ,Ψ)-intuitionistic
fuzzy subgroups. Aslam and Abdullah in [34], initiated the concept of (Φ,Ψ)-
intuitionistic fuzzy ideals of semigroups. Abdullah et.al., in [35], initiated the
concept of (α, β)-intuitionistic fuzzy ideals of hemirings by using the ”belong to”
relation (∈) and ”quasi-coincident with” relation (q) between an intuitionistic
fuzzy point and an intuitionistics fuzzy set, and they defined prime (semi-prime)
(α, β)-intuitionistic fuzzy ideals of hemirings. In [36], Khan et. al. initiated the
notion of (∈,∈ qk)-intuitionistic fuzzy bi-ideals in ordered semigroups.

In this article, we introduce the notion of (∈,∈ qk)-intuitionistic fuzzy bi-
ideal, (∈,∈ qk)-intuitionistic fuzzy (1, 2)-ideal of semigroup, and studied re-
lated properties. We also prove that in regular semigroup, every (∈,∈ qk)-
intuitionistic fuzzy (1, 2)- ideal of semigroup S is an (∈,∈ qk)-intuitionistic fuzzy
bi-ideal of semigroup S.

2. Preliminaries

In this section we give some basic definitions and results which are use in this
note. Throughout in this article S will denote semigroup unless otherwise stated.

An algebraic system (S, ·) consisting of a non-empty set S together with an
associative binary operation ” · ” is called a semigroup. A subsemigroup of S
is a non-empty set A such that A2 ⊆ A. A left (resp. right) ideal of S is a
non-empty set if SA ⊆ A(AS ⊆ A). It is called two sided ideal of S if it is
both left and right ideal of S. A quasi-ideal Q of S is a non-empty subset of
S if QS ∩ SQ ⊆ Q. A bi-ideal of S is a subsemigroup B of S if BSB ⊆ B. A
generalized bi-ideal B of S is a non-empty subset of S if BSB ⊆ B. An interior
ideal A of S is a subsemigroup of S if SAS ⊆ A. An element ”x” of S is called
a regular element if there exists an element a ∈ S such that x = xax. ”S” is
called regular if every element of S is regular.

Definition 2.1 ([27]). Suppose X is a non-empty set. An intuitionistic fuzzy
set (briefly, IFS) F is object having the form

F = {⟨x, λF (x) , µF (x)⟩ : x ∈ X}

where the functions λF : X → [0, 1] and µF : X → [0, 1] denote the degree of
membership and the degree of non-membership of each element x ∈ X to the
set F , respectively, and λF (x) + µF (x) ≤ 1 for all x ∈ S for simplicity, we use
the symbol F = ⟨λF , µF ⟩ for the IFS F = {⟨x, λF (x) , µF (x)⟩ : x ∈ X}.

Definition 2.2 ([28]). An intuitionistic fuzzy subsemigroup of S is an IFS
F = ⟨λF , µF ⟩ in S if the satisfy the following conditions:

(IF1) λF (xy) ≥ λF (x) ∧ λF (y),
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(IF2) µF (xy) ≤ µF (x) ∨ µF (y),
∀ x, y ∈ S.

Definition 2.3 ([28]). An intuitionistic fuzzy left (resp. right) ideal of S is
an IFS F = ⟨λF , µF ⟩ in S if it satisfy λF (xy) ≥ λF (y) (λF (xy) ≥ λF (x)) and
µF (xy) ≤ µF (y) (µF (xy) ≤ µF (x)) for all x, y ∈ S.

Definition 2.4 ([29]). An intuitionistic fuzzy subsemigroup of S is an IFS
F = ⟨λF , µF ⟩ in S if the following conditions hold:

(IF1) λF (xy) ≥ λF (x) ∧ λF (y), λF (xyz) ≥ λF (x) ∧ λF (z)
(IF2) µF (xy) ≤ µF (x) ∨ µF (y), µF (xyz) ≤ µF (x) ∨ µF (z)
∀ x, y, z ∈ S.

Definition 2.5 ([36]). Let c be a point in a non-empty set X. If t1, t2 ∈ (0, 1]
are two real numbers such that 0 ≤ t1 + t2 ≤ 1, then the IFS ⟨x; (t1, t2)⟩ =
⟨a, xt1 , 1 − x1−t2⟩ is said to be an intuitionistic fuzzy point (IFP for short) in
X, where t1 (resp, t2) is the degree of membership (resp, non-membership)
of ⟨x; (t1, t2)⟩ and x ∈ X is the support of ⟨x; (t1, t2)⟩. Let ⟨x; (t1, t2)⟩ be an
IFP in X and let F = ⟨λF , µF ⟩ be an IFS in X. Then, ⟨x; (t1, t2)⟩ is said to
belong to F , written ⟨x; (t1, t2)⟩ ∈ F , if λF (x) ≥ t and µF (x) ≤ t2. We say that
⟨x; (t1, t2)⟩ is quasi-coincident with F , written ⟨x; (t1, t2)⟩ qkF , if λF (x)+t1+k >
1 and µF (x) + t2 + k < 1. To say that ⟨x; (t1, t2)⟩ ∈ ∨qkF (resp, ⟨x; (t1, t2)⟩ ∈
∧qkF ) means that ⟨x; (t1, t2)⟩ ∈ F or ⟨x; (t1, t2)⟩ qkF (resp, ⟨x; (t1, t2)⟩ ∈ F and
⟨x; (t1, t2)⟩ qkF ) and ⟨x; (t1, t2)⟩ ∈ ∨qkF means that ⟨x; (t1, t2)⟩ ∈ ∨qkF does not
hold and t1 ∧ t2 = min {t1, t2}; r1 ∨ r2 = max{r1, r2}.

3. (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideals

In this section, we initiated the notion of (∈,∈ ∨qk)-intuitionistic fuzzy sub-
semigroup, (∈,∈ ∨qk)-intuitionistic fuzzy left(resp. right, two sided) ideal,
(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal and (∈,∈ ∨qk)-intuitionistic fuzzy (1, 2)-
ideals in semigroups and investigated some of its properties.

Definition 3.1. An IFS F = ⟨λF , µF ⟩ in a semigroup S is called an (∈,∈ ∨qk)-
intuitionistic fuzzy subsemigroup of S if satisfy the following condition:

⟨x; (t1, r1)⟩ ∈ F and ⟨y; (t2, r2)⟩ ∈ F ⇒ ⟨xy; (t1 ∧ t2, r1 ∨ r2)⟩ ∈ ∨qkF, ∀
x, y ∈ S, k ∈ [0, 1, t1, t2 ∈ (0, 1] and r1, r2 ∈ [0, 1)

Definition 3.2. An IFS F = ⟨λF , µF ⟩ in a semigroup S is called an (∈,∈ ∨qk)-
intuitionistic fuzzy left (resp. right) ideal of S if satisfy the following condition:

(IFI1) ⟨y; (t, r)⟩ ∈ F ⇒ ⟨xy; (t, r)⟩ ∈ ∨qkF, (resp. ⟨x; (t, r)⟩ ∈ F ⇒
⟨xy; (t, r)⟩ ∈ ∨qkF ), ∀x, y ∈ S, k ∈ [0, 1), t ∈ (0, 1] and r ∈ [0, 1).

Definition 3.3. An IFS F = ⟨λF , µF ⟩ in a semigroup S is called an (∈,∈ ∨qk)-
intuitionistic fuzzy ideal of S, if it is an (∈,∈ ∨qk)-intutionistic fuzzy left ideal
and (∈,∈ ∨qk)-intuitionistic fuzzy right ideal of S.
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Definition 3.4. An IFS F = ⟨λF , µF ⟩ in a semigroup S is called an (∈,∈ ∨qk)-
intuitionistic fuzzy bi-ideal of S if satisfy the following conditions:

(IFB1) ⟨x; (t1, r1)⟩ ∈ F and ⟨y; (t2, r2)⟩ ∈ F ⇒ ⟨xy; (t1 ∧ t2, r1 ∨ r2)⟩ ∈
∨qkF.

(IFB2) ⟨x; (t1, r1)⟩ ∈ F and ⟨z; (t2, r2)⟩ ∈ F ⇒ ⟨xyz; (t1 ∧ t2, r1 ∨ r2)⟩ ∈
∨qkF.

(∀x, y, z ∈ S and k ∈ [0, 1))(t1, t2 ∈ (0, 1] and r1, r2 ∈ [0, 1))

Definition 3.5. An IFS F = ⟨λF , µF ⟩ in a semigroup S is called an (∈,∈ ∨qk)-
intuitionistic fuzzy (1, 2)-ideal of S if satisfy the following conditions:

(∀a, x, y, z ∈ S and k ∈ [0, 1))(t1, t2 ∈ (0, 1] and r1, r2 ∈ [0, 1))

(IF1) ⟨x; (t1, r1)⟩ ∈ F and ⟨y; (t2, r2)⟩ ∈ F ⇒ ⟨xy; (t1 ∧ t2, r1 ∨ r2)⟩ ∈ ∨qkF.
(IF2) ⟨x; (t1, r1)⟩ ∈ F and ⟨z; (t2, r2)⟩ ∈ F ⇒ ⟨xa (yz) ; (t1 ∧ t2, r1 ∨ r2)⟩ ∈

∨qkF.

Theorem 3.6. Let B be a left (resp. right) ideal of S and F = ⟨λF , µF ⟩ be an
IFS such that

1) (∀x ∈ S\R) (λF (x) = 0 and µF (x) = 1) ,

2) (∀x ∈ S\R)
(
λF (x) ≥ 1−k

2 and µF (x) ≤ 1−k
2

)
,

Then, F = ⟨λF , µF ⟩ is an (q,∈ ∨qk)-intuitionistic fuzzy left (resp. right)
ideal of S.

Proof. Let x, y ∈ S and t ∈ (0, 1], and r ∈ [0, 1) be such that ⟨y; (t, r)⟩ qF.
Then, λF (y) + t > 1 and µF (y) + r < 1. So, y ∈ B. Therefore, xy ∈ B. Thus,
if t ≤ 1−k

2 and r ≥ 1−k
2 , then λF (xy) ≥ 1−k

2 ≥ t and µF (xy) ≤ 1−k
2 ≤ r. Hence

⟨xy; (t, r)⟩ ∈ F. If t > 1−k
2 and r < 1−k

2 , then λF (xy)+t+k > 1−k
2 + 1−k

2 +k = 1

and µF (xy)+t+k < 1−k
2 + 1−k

2 +k = 1. Thus ⟨xy; (t, r)⟩ qkF. Hence ⟨xy; (t, r)⟩ ∈
∨qkF. Since t + r ≤ 1, the case t > 1−k

2 and r ≥ 1−k
2 does not occur. From

the fact that ⟨y; (t, r)⟩ qkF, if implies that the case t ≤ 1−k
2 and r < 1−k

2 does
not occur. Hence, F = ⟨λF , µF ⟩ is an (q,∈ ∨qk)-intuitionistic fuzzy left ideal of
S.

Theorem 3.7. Let B be a subsemigroup of S and F = ⟨λF , µF ⟩ be an IFS
such that

1) (∀x ∈ S\B) (λF (x) = 0 and µF (x) = 1) ,

2) (∀x ∈ S\B)
(
λF (x) ≥ 1−k

2 and µF (x) ≤ 1−k
2

)
.

Then, F = ⟨λF , µF ⟩ is an (q,∈ ∨qk)-intuitionistic fuzzy subsemigroup of S.

Proof. Proof of the Theorem follows from Theorem 3.6.

Theorem 3.8. Let B be a bi-ideal of S and F = ⟨λF , µF ⟩ be an IFS such that
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1) (∀x ∈ S\B) (λF (x) = 0 and µF (x) = 1) ,

2) (∀x ∈ S\B)
(
λF (x) ≥ 1−k

2 and µF (x) ≤ 1−k
2

)
,

Then, F = ⟨λF , µF ⟩ is an (q,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.

Proof. Let x, y∈S and t1, t2∈(0, 1] and r1, r2∈[0, 1) be such that ⟨x; (t1, r1)⟩ qF
and ⟨y; (t2, r2)⟩ qF . Then λF (x)+t1 > 1 and µF (y)+r1 < 1, and λF (x)+t2 > 1
and µF (y)+r2 < 1. Hence x, y ∈ B. since B is a subsemigroup, therefore xy ∈ B
and so, λF (xy) ≥ 1−k

2 and µF (xy) ≤ 1−k
2 . If t1∧t2 > 1−k

2 and r1∨r2 < 1−k
2 , then

λF (xy)+t1∧t2+k > 1−k
2 + 1−k

2 +k = 1 and µF (xy)+r1∨r2+k < 1−k
2 + 1−k

2 +k =

1. Hence ⟨xy; (t1 ∧ t2, r1 ∨ r2)⟩ qkF. If t1 ∧ t2 ≤ 1−k
2 and r1 ∨ r2 ≥ 1−k

2 , then,
λF (xy) ≥ t1 ∧ t2 and µF (xy) ≤ r1 ∨ r2 and so, ⟨xy; (t1 ∧ t2, r1 ∨ r2)⟩ ∈ F.
Since t1 + r1 ≤ 1 and t2 + r2 ≤ 1, the case t1 ∧ t2 > 1−k

2 , r1 ∨ r2 ≥ 1−k
2 does

not hold. From the fact that ⟨x; (t1, r1)⟩ qF and ⟨y; (t2, r2)⟩ qF , it implies that
t1∧ t2 ≤ 1−k

2 , r1∨r2 < 1−k
2 does not hold. Hence, F = ⟨λF , µF ⟩ is an (q,∈ ∨qk)-

intuitionistic fuzzy subsemigroup of S. Now let, a, b, c ∈ S and t1, t2 ∈ (0, 1] and
r1, r2 ∈ [0, 1) be such that ⟨x; (t1, r1)⟩ qF and ⟨z; (t2, r2)⟩ qF. Then λF (x)+t1 > 1
and µF (x)+r1 < 1, and λF (z)+t2 > 1 and µF (z)+r2 < 1. Hence x, z ∈ B. since
B is a bi-ideal. Therefore xyz ∈ B. Hence λF (xyz) ≥ 1−k

2 and µF (xyz) ≤ 1−k
2 .

If t1∧t2 > 1−k
2 and r1∨r2 < 1−k

2 , then λF (xyz)+t1∧t2+k > 1−k
2 + 1−k

2 +k = 1

and µF (xyz)+r1∨r2+k < 1−k
2 + 1−k

2 +k = 1. Hence, ⟨xyz; (t1 ∧ t2, r1 ∨ r2)⟩ qkF.
If t1∧t2 ≤ 1−k

2 and r1∨r2 ≥ 1−k
2 , then, λF (xyz) ≥ t1∧t2 and µF (xyz) ≤ r1∨r2

implies that ⟨xyz; (t1 ∧ t2, r1 ∨ r2)⟩ ∈ F. Since t1 + r1 ≤ 1 and t2 + r2 ≤ 1, the
case t1∧t2 > 1−k

2 , r1∨r2 ≥ 1−k
2 does not hold. From the fact that ⟨x; (t1, r1)⟩ qF

and ⟨y; (t2, r2)⟩ qF , it implies that t1 ∧ t2 ≤ 1−k
2 , r1 ∨ r2 < 1−k

2 does not hold.
Hence, F = ⟨λF , µF ⟩ is an (q,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.

Theorem 3.9. Let B be a (1, 2)-ideal of S and F = ⟨λF , µF ⟩ be an IFS such
that:

1) (∀x ∈ S\B) (λF (x) = 0 and µF (x) = 1) ,

2) (∀x ∈ S\B)
(
λF (x) ≥ 1−k

2 and µF (x) ≤ 1−k
2

)
.

Then, F = ⟨λF , µF ⟩ is an (q,∈ ∨qk)-intuitionistic fuzzy (1, 2)-ideal of S.

Proof. Proof of the Theorem follows from Theorem 3.8.

Theorem 3.10. Let F = ⟨λF , µF ⟩ is an intuitionistic fuzzy set in S. Then
F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S if and only if the
following conditions satisfied:

1) λF (xy) ≥ λF (x) ∧ λF (y) ∧ 1−k
2 and µF (xy) ≤ µF (x) ∨ µF (y) ∨ 1−k

2 .

2) λF (xyz) ≥ λF (x) ∧ λF (z) ∧ 1−k
2 and µF (xyz) ≤ µF (x) ∨ µF (z) ∨ 1−k

2 .

Proof. Let F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.

1) Suppose x, y ∈ S. We consider the following two cases:

i) λF (x) ∧ λF (y) < 1−k
2 and µF (x) ∨ µF (y) > 1−k

2

ii) λF (x) ∧ λF (y) ≥ 1−k
2 and µF (x) ∨ µF (y) ≤ 1−k

2
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Case i. Suppose that λF (xy) < λF (x)∧λF (y)∧ 1−k
2 and µF (xy) > µF (x)∨

µF (y)∨ 1−k
2 . Then, λF (xy) < λF (x)∧λF (y) and µF (xy) > µF (x)∨µF (y) . We

choose t ∈ (0, 1] and r ∈ [0, 1) in such a way that λF (xy) < t < λF (x) ∧ λF (y)
and µF (xy) > r > µF (x) ∨ µF (y) . Then, ⟨x; (t, r)⟩ ∈ F and ⟨y; (t, r)⟩ ∈ F, but
⟨xy; (r, s)⟩ ∈ ∨qkF, which is a contradiction.

Case ii. Suppose that, λF (xy) < 1−k
2 and µF (xy) > 1−k

2 . Then, ⟨x; (1−k
2 , 1−k

2 )⟩
∈ F and ⟨y; (1−k

2 , 1−k
2 )⟩ ∈ F, but ⟨xy; (1−k

2 , 1−k
2 )⟩∈ ∨qkF, which is a contradic-

tion. Hence, λF (xy) ≥ λF (x)∧λF (y)∧ 1−k
2 and µF (xy) ≤ µF (x)∨µF (y)∨ 1−k

2 .

2) Now suppose x, y, z ∈ S. We consider the following two cases:

i) λF (x) ∧ λF (z) < 1−k
2 and µF (x) ∨ µF (z) > 1−k

2

ii) λF (x) ∧ λF (z) ≥ 1−k
2 and µF (x) ∨ µF (z) ≤ 1−k

2

Case i. Suppose that λF (xyz) < λF (x) ∧ λF (z) ∧ 1−k
2 and µF (xyz) >

µF (x) ∨ µF (z) ∨ 1−k
2 , then λF (xyz) < λF (a) ∧ λF (c) and µF (xyz) > µF (x) ∨

µF (z) . We choose t ∈ (0, 1] and r ∈ [0, 1) in such a way that λF (xyz) < t <
λF (x) ∧ λF (z) and µF (xyz) > r > µF (x) ∨ µF (z) . Then, ⟨x; (t, r)⟩ ∈ F and
⟨z; (t, r)⟩ ∈ F, but ⟨xyz; (t, r)⟩ ∈ ∨qkF, which is a contradiction.

Case ii. Suppose that λF (xyz) < 1−k
2 and µF (xyz) > 1−k

2 . Then, ⟨x; (1−k
2 ,

1−k
2 )⟩ ∈ F and ⟨z; (1−k

2 , 1−k
2 )⟩ ∈ F. But ⟨xyz; (1−k

2 , 1−k
2 )⟩∈ ∨qkF, which is a

contradiction. Hence λF (xyz) ≥ λF (x) ∧ λF (z) ∧ 1−k
2 and µF (xyz) ≤ µF (x) ∨

µF (z) ∨ 1−k
2 .

Conversely, suppose that F = ⟨λF , µF ⟩ satisfy (i) and (ii) . Let x, y ∈ S,
t1, t2 ∈ (0, 1] and r1, r2 ∈ [0, 1) be in a way that ⟨x; (t1, r1)⟩ ∈ F and ⟨y; (t2, r2)⟩ ∈
F. Then, λF (x) ≥ t1 and µF (x) ≤ r1, λF (y) ≥ t2 and µF (y) ≤ r2. Now we
have λF (xy) ≥ λF (x) ∧ λF (y) ∧ 1−k

2 and µF (xy) ≤ µF (x) ∨ µF (y) ∨ 1−k
2 . It

Implies that λF (xy) ≥ t1 ∧ t2 ∧ 1−k
2 and µF (xy) ≤ r1 ∨ r2 ∨ 1−k

2 . Then, we have
the following two cases.

i) t1 ∧ t2 ≤ 1−k
2 and r1 ∨ r2 ≥ 1−k

2 .

ii)t1 ∧ t2 > 1−k
2 and r1 ∨ r2 < 1−k

2 , the other cases does not occurs.

Case i. If t1 ∧ t2 ≤ 1−k
2 and r1 ∨ r2 ≥ 1−k

2 , then, λF (xy) ≥ t1 ∧ t2 and
µF (xy) ≤ r1 ∨ r2, which implies that (xy) (t1 ∧ t2, r1 ∨ r2) ∈ F.

Case ii. If t1 ∧ t2 > 1−k
2 and r1 ∨ r2 < 1−k

2 , then, λF (xy) ≥ 1−k
2 and

µF (xy) ≤ 1−k
2 , which implies that λF (xy) + t1 ∧ t2 + k > 1−k

2 + 1−k
2 + k = 1

and µF (xy) + r1 ∨ r2 + k < 1−k
2 + 1−k

2 + k = 1. Thus, ⟨xy; (t1 ∧ t2, r1 ∨ r2)⟩ qkF.
Hence, ⟨xy; (t1 ∧ t2, r1 ∨ r2)⟩ ∈ ∨qkF.

Now, let x, y, z ∈ S and t1, t2 ∈ (0, 1] and r1, r2 ∈ [0, 1) be in a way
that ⟨x; (t1, r1)⟩ ∈ F and ⟨z; (t2, r2)⟩ ∈ F. Then, λF (x) ≥ t1 and µF (x) ≤
r1, λF (z) ≥ t2 and µF (z) ≤ r2. Now we have λF (xyz) ≥ λF (x) ∧ λF (z) ∧ 1−k

2

and µF (xyz) ≤ µF (x) ∨ µF (z) ∨ 1−k
2 . It Implies that λF (xyz) ≥ t1 ∧ t2 ∧ 1−k

2

and µF (xyz) ≤ r1 ∨ r2 ∨ 1−k
2 . Then, we have the following two cases.

i) t1 ∧ t2 ≤ 1−k
2 and r1 ∨ r2 ≥ 1−k

2

ii) t1 ∧ t2 > 1−k
2 and r1 ∨ r2 < 1−k

2
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Case i. If t1 ∧ t2 ≤ 1−k
2 and r1 ∨ r2 ≥ 1−k

2 , then λF (xyz) ≥ t1 ∧ t2 and
µF (xyz) ≤ r1 ∨ r2, which implies that (xyz) (t1 ∧ t2, r1 ∨ r2) ∈ F.

Case ii: If t1 ∧ t2 > 1−k
2 and r1 ∨ r2 < 1−k

2 , then λF (xyz) ≥ 1−k
2 and

µF (xyz) ≤ 1−k
2 , which implies that λF (xyz) + t1 ∧ t2 + k > 1−k

2 + 1−k
2 + k = 1

and µF (xyz)+r1∨r2+k < 1−k
2 + 1−k

2 +k = 1. Thus, ⟨xyz; (t1 ∧ t2, r1 ∨ r2)⟩ qkF.
Hence, ⟨xyz; (t1 ∧ t2, r1 ∨ r2)⟩ ∈ ∨qkF.

Every intuitionistic fuzzy bi-ideal and an (∈,∈ ∨q)-intuitionistic fuzzy bi-
ideal is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of a semigroup S. But the
converse is not true. For this we have the following example.

Example 3.11. Let S = {a, b, c, d, e} be a semigroup with the following table.

· a b c d e

a a a a a a

b a a a a a

c a a c c c

d a a c d e

e a a c c e

Let F = ⟨λF , µF ⟩ be an IFS is a semigroup S, defined by λF (a) = λF (c) =
0.3, λF (b) = λF (e) = 0.6, λF (d) = 0.5 and µF (a) = µF (c) = 0.2, µF (b) =
µF (e) = 0.3, µF (d) = 0.5. Take 1−k

2 = 0.2. Thus by simple calculation F =
⟨λF , µF ⟩ is an (∈,∈ ∨q0.6)-intuitionistic fuzzy bi-ideal of S. But F = ⟨λF , µF ⟩
is not an (∈,∈ ∨q)-intuitionistic fuzzy bi-ideal of S nor an fuzzy bi-ideal of S.
i.e,

λF (d · e · d) = λF (c) = 0.3 � 0.5 = λF (d) ∧ λF (d) ∧ 0.5

and λF (d · e · d) = λF (c) = 0.3 � 0.5 = λF (d) ∧ λF (d)

Remark 3.12. From above example we say that an (∈,∈ ∨qk)-intuitionistic
fuzzy bi-ideal of S is a generalization of an(∈,∈ ∨q)-intuitionistic fuzzy bi-ideal
and fuzzy bi-ideal of S.

Theorem 3.13. Let F = ⟨λF , µF ⟩ is an intuitionistic fuzzy set in S. Then
F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-intuitionistic fuzzy (1, 2)-ideal of S if and only if
the following conditions satisfied:

i) λF (xy) ≥ λF (x) ∧ λF (y) ∧ 1−k
2 and µF (xy) ≤ µF (x) ∨ µF (y) ∨ 1−k

2 .

ii) λF (xa (yz)) ≥ λF (x)∧λF (z)∧ 1−k
2 and µF (xa (yz)) ≤ µF (x)∨µF (z)∨

1−k
2 .

Proof. Proof of the Theorem follows from Theorem 3.10.

Lemma 3.14. Every (∈,∈ ∨qk)-intuitionistic fuzzy left (resp. right) ideal of S
is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.
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The converse of the above Lemma not true. For this we have the following
example.

Let S = {a, b, c, d} be a semigroup with the following table:

· a b c d

a a c a a

b a a a a

c b a a d

d a a d a

(a) : Let F = ⟨λF , µF ⟩ be an IFS defined by, λF (a) = 0.6, λF (b) = 0.5, λF (c) =
0.3, λF (d) = 0.2 and µF (a) = µF (b) = 0.6, µF (c) = µF (d) = 0.4. Then F =
⟨λF , µF ⟩ is an (∈,∈ ∨q0.3)-intuitionistic fuzzy bi-ideal of S, where 1−k

2 = 0.3.
Clearly it is not an (∈,∈ ∨q)-intuitionistic fuzzy bi-ideal nor intuitionistic fuzzy
bi-ideal of S. Because, λF (a · b) = λF (c) = 0.3 � 0.5 = λF (a) ∧ λF (b) ∧ 0.5
and λF (a · b) = λF (c) = 0.3 � 0.5 = λF (a)∧ λF (b) . Also λF (c · d) = λF (d) =
0.2 � 0.3 = λF (c) ∧ 1−k

2 . Which shows that F = ⟨λF , µF ⟩ is not (∈,∈ ∨q0.3)-
intuitionistic fuzzy right ideal of S.

(b) : Let F = ⟨λF , µF ⟩ be an IFS defined by, λF (a) = 0.7, λF (b) = 0.3,
λF (c) = 0.4, λF (d) = 0.2 and µF (a) = µF (b) = 0.2, µF (c) = µF (d) =
0.32.Then F = ⟨λF , µF ⟩ is an (∈,∈ ∨q0.3)-intuitionistic fuzzy bi-ideal of S.
Clearly it is not an (∈,∈ ∨q)-intuitionistic fuzzy bi-ideal nor intuitionistic fuzzy
bi-ideal of S. Because, λF (c · a) = λF (b) = 0.3 � 0.5 = λF (c) ∧ λF (a) ∧ 0.5
and λF (c · a) = λF (b) = 0.3 � 0.5 = λF (c)∧ λF (a) . Also λF (d · c) = λF (d) =
0.2 � 0.3 = λF (c)∧ 1−k

2 . Which shows that F = ⟨λF , µF ⟩ is not an (∈,∈ ∨q0.3)-
intuitionistic fuzzy left ideal of S.

Lemma 3.15. (i) Every (∈ ∨qk,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S is an
(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.

(ii) Every (∈,∈ ∨q)-intuitionistic fuzzy bi-ideal of S is an (∈,∈ ∨qk)-intui-
tionistic fuzzy bi-ideal of S.

(iii) Every (∈,∈)-intuitionistic fuzzy bi-ideal of S is an (∈,∈ ∨qk)-intuitio-
nistic fuzzy bi-ideal of S.

Proof. Straightforward.

Examples 3.11 and 3 shows that the converse of the above Lemma 3.15 is
not true in general.

Lemma 3.16. Let {Fi}i∈I be a family of an (∈,∈ ∨qk)-intuitionistic fuzzy bi-
ideal of S. Then

∩
i∈I Fi is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S, where∩

i∈I Fi =
⟨∧

i∈I λF ,
∨

i∈I µF
⟩
.

Proof. Straightforward.

Lemma 3.17. Let {Fi}i∈I be a family of an (∈,∈ ∨qk)-intuitionistic fuzzy bi-
ideal of S. Then

∪
i∈I Fi is not an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S,

where
∪

i∈I Fi =
⟨∧

i∈I λFi ,
∨

i∈I µFi

⟩
. For this we have the following example.
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Example 3.18. Let S = {a, b, c, d} be a semigroup with the following table:

· a b c d

a a c a a

b a a a a

c b a a d

d a a d a

Let E = ⟨λE , µE⟩ and F = ⟨λF , µF ⟩ be two IFS′s of semigroup S defined by
λE (a) = 0.7, λE (b) = 0.5, λE (c) = λE (d) = 0.3 and µE (a) = µE (c) = 0.5,
µE (b) = µE (d) = 0.2, and λF (a) = 0.8, λF (b) = λF (d) = 0.3, λF (c) = 0.4
and µF (a) = µF (b) = 0.5, µF (c) = µF (d) = 0.3. Then, both E = ⟨λE , µE⟩
and F = ⟨λF , µF ⟩ are an (∈,∈ ∨q0.4)-intuitionistic fuzzy bi-ideals of S, where
1−k
2 = 0.4. But E ∪ F is not an (∈,∈ ∨q0.4)-intuitionistic fuzzy bi-ideal of
S. i.e, (λE ∨ λF ) (bc) = (λE ∨ λF ) (d) = λE (d) ∨ λF (d) = 0.3 ∨0.3 = 0.3 and
(λE ∨ λF ) (b)∧(λE ∨ λF ) (c)∧ 1−k

2 = 0.5∧0.4∧ 1−k
2 = 0.4. Hence (λE ∨ λF ) (bc) =

0.3 � 0.4 = (λE ∨ λF ) (b) ∧ (λE ∨ λF ) (c) ∧ 1−k
2 .

Theorem 3.19. Let {Fi}i∈I be a family of an (∈,∈ ∨qk)-intuitionistic fuzzy bi-
ideal of S such that Fi ⊆ Fj or Fj ⊆ Fi for all i, j ∈ I. Then

∪
i∈I Fi is not an

(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S, where
∪

i∈I Fi =
⟨∨

i∈I λF ,
∧

i∈I µF
⟩
.

Proof. For all x, y ∈ S, we have(∨
i∈I

λFi (xy)

)
=

∨
i∈I

(λFi (xy)) ≥
∨
i∈I

(
λFi (x) ∧ λFi (y) ∧ 1 − k

2

)
=

∨
i∈I

λFi (x) ∧
∨
i∈I

λFi (y) ∧ 1 − k

2

=

(∨
i∈I

λFi

)
(x) ∧

(∨
i∈I

λFi

)
(y) ∧ 1 − k

2
.

It is clear that∨
i∈I

(
λFi (x) ∧ λFi (y) ∧ 1 − k

2

)
≤

(∨
i∈I

λFi

)
(x) ∧

(∨
i∈I

λFi

)
(y) ∧ 1 − k

2
.

Suppose that

∨
i∈I

(
λFi (x) ∧ λFi (y) ∧ 1 − k

2

)
̸=

(∨
i∈I

λFi

)
(x) ∧

(∨
i∈I

λFi

)
(y) ∧ 1 − k

2
.

Then there exists t such that∨
i∈I

(
λFi (x) ∧ λFi (y) ∧ 1 − k

2

)
< t <

(∨
i∈I

λFi

)
(x) ∧

(∨
i∈I

λFi

)
(y) ∧ 1 − k

2
.
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Since λFi ⊆ λFj or λFj ⊆ λFi for all i, j ∈ I, thus there exists k ∈ I such that

t < λFk
(x)∧ λFk

(y)∧ 1−k
2 . On the other hand t > λFi (x)∧ λFi (y)∧ 1−k

2 for all
i ∈ I, a contradiction. Hence

∨
i∈I

(
λFi (x) ∧ λFi (y) ∧ 1 − k

2

)
=

(∨
i∈I

λFi

)
(x) ∧

(∨
i∈I

λFi

)
(y) ∧ 1 − k

2

and (∧
i∈I

µFi (xy)

)
=

∧
i∈I

(µFi (xy))

≤
∧
i∈I

(
µFi (x) ∨ µFi (y) ∨ 1 − k

2

)
=

∧
i∈I

µFi (x) ∨
∧
i∈I

µFi (y) ∨ 1 − k

2

=

(∧
i∈I

µFi

)
(x) ∨

(∧
i∈I

µFi

)
(y) ∨ 1 − k

2
.

It is clear that

∧
i∈I

(
µFi (x) ∨ µFi (y) ∨ 1 − k

2

)
≥

(∧
i∈I

µFi

)
(x) ∨

(∧
i∈I

µFi

)
(y) ∨ 1 − k

2
.

Suppose that

∧
i∈I

(
µFi (x) ∨ µFi (y) ∨ 1 − k

2

)
̸=

(∧
i∈I

µFi

)
(x) ∨

(∧
i∈I

µFi

)
(y) ∨ 1 − k

2
.

Then there exists r such that

∧
i∈I

(
µFi (x) ∨ µFi (y) ∨ 1 − k

2

)
> r >

(∧
i∈I

µFi

)
(x) ∨

(∧
i∈I

µFi

)
(y) ∨ 1 − k

2
.

Since µFi ⊆ µFj or µFj ⊆ µFi for all i, j ∈ I. Thus there exists k ∈ I such that
r > µFi (x) ∨ µFi (y) ∨ 1−k

2 . On the other hand, r < µFi (x) ∨ µFi (y) ∨ 1−k
2 for

all i ∈ I, which is a contradiction. Hence,

∧
i∈I

(
µFi (x) ∨ µFi (y) ∨ 1 − k

2

)
=

(∧
i∈I

µFi

)
(x) ∨

(∧
i∈I

µFi

)
(y) ∨ 1 − k

2
.
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Let a, b, c ∈ S, we have(∨
i∈I

λFi (xyz)

)
=

∨
i∈I

(λFi (xyz)) ≥
∨
i∈I

(
λFi (x) ∧ λFi (z) ∧ 1 − k

2

)
=

∨
i∈I

λFi (x) ∧
∨
i∈I

λFi (z) ∧ 1 − k

2

=

(∨
i∈I

λFi

)
(x) ∧

(∨
i∈I

λFi

)
(z) ∧ 1 − k

2

and (∧
i∈I

µFi (xyz)

)
=

∧
i∈I

(µFi (xyz)) ≤
∧
i∈I

(
µFi (x) ∨ µFi (z) ∨ 1 − k

2

)
=

∧
i∈I

µFi (x) ∨
∧
i∈I

µFi (z) ∨ 1 − k

2

=

(∧
i∈I

µFi

)
(x) ∨

(∧
i∈I

µFi

)
(z) ∨ 1 − k

2
.

Hence,
∪

i∈I Fi =
⟨∨

i∈I λF ,
∧

i∈I µF
⟩

is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-
ideal of S.

Definition 3.20. Let E = ⟨λE , µE⟩ and F = ⟨λF , µF ⟩ of S. Then, the 1−k
2 -

product of E and F is defined by:

E ◦ 1−k
2
F =

⟨
λE ◦ 1−k

2
λF , µE ◦ 1−k

2
µF

⟩
(
λE ◦ 1−k

2
λF

)
(a) =

{ ∨
a=xy

(
λE (x) ∧ λF (y) ∧ 1−k

2

)
if a = xy

0 if a ̸= xy

}
(
µE ◦ 1−k

2
µF

)
(a) =

{ ∧
a=xy

(
µE (x) ∨ µF (y) ∨ 1−k

2

)
if a = xy

0 if a ̸= xy

}
E ∩ 1−k

2
F =

⟨
λE ∧ 1−k

2
λF , µE ∨ 1−k

2
µF

⟩
(
λE ∧ 1−k

2
λF

)
(a) = λE (a) ∧ λF (a) ∧ 1 − k

2(
µE ∨ 1−k

2
µF

)
(a) = µE (a) ∨ µF (a) ∨ 1 − k

2
.

Remark 3.21. Let E,F,G,H are IFS′s of S such that E ⊆ F and G ⊆ H.
Then E ◦ 1−k

2
F ⊆ G ◦ 1−k

2
H.

Lemma 3.22. Let E = ⟨λE , µE⟩ and F = ⟨λF , µF ⟩ be (∈,∈ ∨qk)-intuitionistic
fuzzy bi-ideal of S. Then E ∩ 1−k

2
F is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal

of S.
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Definition 3.23. An (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal F = ⟨λF , µF ⟩ of S
is said to be 1−k

2 -idempotent if F ◦ 1−k
2
F = F.

Lemma 3.24. Let F = ⟨λF , µF ⟩ be an (∈,∈ ∨qk)-intuitionistic fuzzy subsemi-
group of S. Then F ◦ 1−k

2
F ⊆ F.

Lemma 3.25. Let E = ⟨λE , µE⟩ and F = ⟨λF , µF ⟩ be an (∈,∈ ∨qk)-intuitionistic
fuzzy bi-ideals of S. Then F ◦ 1−k

2
F ⊆ 1 ◦ 1−k

2
F.(resp. F ◦ 1−k

2
F ⊆ E ◦ 1−k

2
1).

Theorem 3.26. Let F = ⟨λF , µF ⟩ be an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal
of S. Then, F ◦ 1−k

2
S ◦ 1−k

2
F ⊆ F, where S = ⟨1, 0⟩, 1 (a) = 1 and 0 (a) = 0 for

all a ∈ S.

Proof. Let x ∈ S. Then we have the following two cases:

(i) If x ̸= ab ∀a, b ∈ S.

(ii) If x = ab for some a, b ∈ S.

Case (i). If a ̸= xy, then(
λF ◦ 1−k

2
1 ◦ 1−k

2
λF

)
(x) = 0 ≤ λF (x) ∧ 1 − k

2

and (
µF ◦ 1−k

2
0 ◦ 1−k

2
µF

)
(x) = 1 ≥ µF (x) ∨ 1 − k

2
.

Thus, F ◦ 1−k
2
S ◦ 1−k

2
F ⊆ F.

Case (ii). If x = ab for some x, y ∈ S, then(
λF ◦ 1−k

2
1 ◦ 1−k

2
λF

)
(x) =

∨
x=ab

{
λF (a) ∧

(
1 ◦ 1−k

2
λF

)
(b) ∧ 1 − k

2

}

=
∨
x=ab

λF (a) ∧

∨
b=pq

1 (p) ∧ λF (q) ∧ 1 − k

2

 ∧ 1 − k

2


=
∨
x=ab

∨
b=pq

{
λF (x) ∧ 1 ∧ λF (q) ∧ 1 − k

2

}

=
∨

x=apq

{
λF (x) ∧ λF (q) ∧ 1 − k

2

}
.

Since x = ab = a (pq) = apq and F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-intuitionistic
fuzzy bi-ideal of S, therefore we have λF (apq) ≥ λF (a) ∧ λF (q) ∧ 1−k

2 . Hence,

∨
x=apq

{
λF (a) ∧ λF (q) ∧ 1 − k

2

}
≤

∨
x=apq

{λF (apq)} = λF (x)(
λF ◦ 1−k

2
1 ◦ 1−k

2
λF

)
(x) ≤ λF (x)
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and (
µF ◦ 1−k

2
0 ◦ 1−k

2
µF

)
(x)

=
∧
x=ab

{
µF (a) ∨

(
0 ◦ 1−k

2
µF

)
(b) ∨ 1 − k

2

}

=
∧
x=ab

{
µF (a) ∨

{ ∧
y=pq

{
1 (p) ∨ µF (q) ∨ 1 − k

2

}}
∨ 1 − k

2

}

=
∧
x=ab

∧
y=pq

{
µF (a) ∨ 0 ∨ µF (q) ∨ 1 − k

2

}
=

∧
x=apq

{
µF (a) ∨ µF (q) ∨ 1 − k

2

}
.

Since x = ab = a (pq) = apq and F = ⟨λF , µF ⟩ is an interval valued (∈,∈ ∨qk)-
intuitionistic fuzzy bi-ideal of S, therefore we have µF (apq) ≤ µF (a)∨ µF (q)∨
1−k
2 . Hence,∧

x=apq

{
µF (a) ∨ µF (q) ∨ 1 − k

2

}
≤

∧
a=xpq

{µF (apq)} = µF (x)(
µF ◦ 1−k

2
0 ◦ 1−k

2
µF

)
(x) ≤ µF (x) .

Thus, F ◦ 1−k
2
S ◦ 1−k

2
F ⊆ F.

Theorem 3.27. Let F = ⟨λF , µF ⟩ be an IFS. Then F = ⟨λF , µF ⟩ is an
(∈,∈ ∨qk)-intuitionistic fuzzy subsemigroup of S if and only if F ◦ 1−k

2
F ⊆ F.

Theorem 3.28. An IFS F = ⟨λF , µF ⟩ of S is an (∈,∈ ∨qk)-intuitionistic fuzzy
bi-ideal of S if and only if the following condition satisfied.

(i) F ◦ 1−k
2
F ⊆ F,

(ii) F ◦ 1−k
2
S ◦ 1−k

2
F ⊆ F.

Proof. Let F = ⟨λF , µF ⟩ be an interval valued (∈,∈ ∨qk)-intuitionistic fuzzy
bi-ideal of S.Then, by Lemma 3.24 and Theorem 3.26, we have F ◦ 1−k

2
F ⊆ F

and F ◦ 1−k
2
S ◦ 1−k

2
F ⊆ F.

Conversely, assume that condition (i) and (ii) satisfied. Let x, y ∈ S be such
that a = xy. Then, we have

λF (xy) = λF (a) ≥
(
λF ◦ 1−k

2
λF

)
(a)

=
∨

a=xy

{
λF (p) ∧ λF (q) ∧ 1 − k

2

}
≥ λF (x) ∧ λF (y) ∧ 1 − k

2
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and

µF (xy) = µF (a) ≤
(
µF ◦ 1−k

2
µF

)
(a)

=
∧
a=pq

{
µF (p) ∨ µF (q) ∨ 1 − k

2

}
≤ µF (p) ∨ µF (q) ∨ 1 − k

2
.

Now, let x, y, z ∈ S such that a = xyz. Then, we have

λF (xyz) = λF (a) ≥
(
λF ◦ 1−k

2
1 ◦ 1−k

2
λF

)
(a)

=
∨
a=pq

{
λF (p) ∧

(
1 ◦ 1−k

2
λF

)
(q) ∧ 1 − k

2

}

=
∨
a=pq

{
λF (p) ∧

(∨
q=st

{
1 (t) ∧ λF (s) ∧ 1 − k

2

})
∧ 1 − k

2

}

=
∨
a=pq

{
λF (p) ∧

(∨
q=st

{
1 ∧ λF (s) ∧ 1 − k

2

})
∧ 1 − k

2

}

≥
∨
a=pq

∨
q=st

{
λF (p) ∧ λF (s) ∧ 1 − k

2

}
≥

∨
a=pst

{
λF (p) ∧ λF (s) ∧ 1 − k

2

}
≥ λF (x) ∧ λF (z) ∧ 1 − k

2

and

µF (xyz) = µF (a) ≤
(
µF ◦ 1−k

2
0 ◦ 1−k

2
µF

)
(a)

=
∧
a=pq

{
µF (p) ∨

(
0 ◦ 1−k

2
µF

)
(q) ∨ 1 − k

2

}

=
∧
a=pq

{
µF (p) ∨

{∧
q=st

{
0 (s) ∨ µF (t) ∨ 1 − k

2

}}
∨ 1 − k

2

}

=
∧
a=pq

{
µF (p) ∨

{∧
q=st

{
0 ∨ µF (t) ∨ 1 − k

2

}}
∨ 1 − k

2

}

≤
∧
a=pq

∧
q=st

{
µF (p) ∨ µF (t) ∨ 1 − k

2

}
≤

∧
a=pst

{
µF (p) ∨ µF (t) ∨ 1 − k

2

}
≤ µF (x) ∨ µF (z) ∨ 1 − k

2
.
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Hence, F = ⟨λF , µF ⟩ be an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.

Theorem 3.29. An IFS F = ⟨λF , µF ⟩ of S is an (∈,∈ ∨qk)-intuitionistic fuzzy
left (resp. right, two sided) ideal of S if and only if it satisfied:

S ◦ 1−k
2
F ⊆ F

(
F ◦ 1−k

2
S ⊆ F, S ◦ 1−k

2
F ⊆ F and F ◦ 1−k

2
S ⊆ F

)
.

Proof. Straightforward.

Theorem 3.30. Let E = ⟨λE , µE⟩ and F = ⟨λF , µF ⟩ be two (∈,∈ ∨qk)-intuitio-
nistic fuzzy bi-ideal of S. Then A = E◦ 1−k

2
F is an (∈,∈ ∨qk)-intuitionistic fuzzy

bi-ideal of S.

Proof. Let E = ⟨λE , µE⟩ and F = ⟨λF , µF ⟩ be two (∈,∈ ∨qk)-intuitionistic
fuzzy bi-ideal of S and a ∈ S. Then we have two cases:

(i) If x ̸= ab for any a, b ∈ S. (ii) If x = ab for some a, b ∈ S.
Case i. If x ̸= ab for any a, b ∈ S, then((

λE ◦ 1−k
2
λF

)
◦ 1−k

2

(
λE ◦ 1−k

2
λF

))
(x) = 1 ≤

(
λE ◦ 1−k

2
λF

)
(x)

and ((
µE ◦ 1−k

2
µF

)
◦ 1−k

2

(
µE ◦ 1−k

2
µF

))
(x) = 0 ≥

(
µE ◦ 1−k

2
µF

)
(x) .

Thus, A ◦ 1−k
2
A ⊆ A.

Case ii. If x = ab for some a, b ∈ S, then((
λE ◦ 1−k

2
λF

)
◦ 1−k

2

(
λE ◦ 1−k

2
λF

))
(a)

=
∨

a=xy

{(
λE ◦ 1−k

2
λF

)
(x) ∧

(
λE ◦ 1−k

2
λF

)
(y) ∧ 1 − k

2

}

=
∨

a=xy


{∨

x=pq

{
λE (p) ∧ λF (q) ∧ 1−k

2

}}
∧{∨

y=st

{
λE (s) ∧ λF (t) ∧ 1−k

2

}}


=
∨

a=xy

∨
x=pq

∨
y=st

{{
λE (p) ∧ λF (q) ∧ 1 − k

2

}
∧ λE (s) ∧ λF (t) ∧ 1 − k

2

}
=

∨
a=xy

∨
x=pq

∨
y=st

{
λE (p) ∧ λE (s) ∧ λF (t) ∧ 1 − k

2
}
}

≤
∨

a=xy

∨
x=pq

∨
y=st

{
λE (p) ∧ λE (s) ∧ 1 − k

2
∧ λF (t)}

}
.

Since a = xy, x = pq and y = st. So, a = (xy) (st) = (pqs) t and we have∨
a=xy

∨
x=pq

∨
y=st

{
λE (p) ∧ λE (s) ∧ 1 − k

2
∧ λF (t)}

}
≤

∨
a=(xys)t

{
λE (p) ∧ λE (s) ∧ 1 − k

2
∧ λF (t)

}
.
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Since E = ⟨λE , µE⟩ is an interval valued (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal
of S we have

λE (xys) ≥ λE (x) ∧ λE (s) ∧ 1 − k

2
.

So, ∨
a=(xys)t

{
λE (p) ∧ λE (s) ∧ 1 − k

2
∧ λF (t)

}

≤
∨

a=(xys)t

{
λE (xys) ∧ λE (s) ∧ 1 − k

2

}

≤
∨

a=uv

{
λE (u) ∧ λE (v) ∧ 1 − k

2

}
=
(
λE ◦ 1−k

2
λF

)
(a) .

Therefore,
((
λE ◦ 1−k

2
λF

)
◦ 1−k

2

(
λE ◦ 1−k

2
λF

))
(a) ≤

(
λE ◦ 1−k

2
λF

)
(a) . Now,((

µE ◦ 1−k
2
µF

)
◦ 1−k

2

(
µE ◦ 1−k

2
µF

))
(a)

=
∧

a=xy

{(
µE ◦ 1−k

2
µF

)
(x) ∨

(
µE ◦ 1−k

2
µF

)
(y) ∨ 1 − k

2

}

=
∧

a=xy

{ ∧
x=pq

{
µE (p) ∨ µF (q) ∨ 1 − k

2

}
∨
∧
y=st

{
µE (s) ∨ µF (t) ∨ 1 − k

2

}
∨ 1 − k

2

}

=
∧

a=xy

∧
x=pq

∧
y=st

{{
µE (p) ∨ µF (q) ∨ 1 − k

2

}
∨
{
µE (s) ∨ µF (t) ∨ 1 − k

2

}}
=
∧

a=xy

∧
x=pq

∧
y=st

{
µE (p) ∨ µE (s) ∨ µF (t) ∨ 1 − k

2
}
}

≥
∧

a=xy

∧
x=pq

∧
y=st

{
µE (p) ∨ µE (s) ∨ 1 − k

2
∨ µF (t)}

}
.

Since a = xy, x = pq and y = st. So, a = (xy) (st) = (pqs) t and we have∧
a=xy

∧
x=pq

∧
y=st

{
µE (p) ∨ µE (s) ∨ 1 − k

2
∨ µF (t)}

}
≥

∧
a=(xys)t

{
µE (p) ∨ µE (s) ∨ 1 − k

2
∨ µF (t)}

}
.

Since E = ⟨λE , µE⟩ is an interval valued (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal
of S we have

µE (xys) ≥ µE (x) ∨ µE (s) ∨ 1 − k

2
.
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So,

∧
a=(xys)t

{
µE (p) ∨ µE (s) ∨ 1 − k

2
∨ µF (t)}

}

≥
∧

a=(xys)t

{
µE (xys) ∨ µE (s) ∨ 1 − k

2
}
}

≥
∧

a=uv

{
µE (u) ∨ µF (v) ∨ 1 − k

2

}
=
(
µE ◦ 1−k

2
µF

)
(a) .

Therefore,
((
µE ◦ 1−k

2
µF

)
◦ 1−k

2

(
µE ◦ 1−k

2
µF

))
(a) ≥

(
µE ◦ 1−k

2
µF

)
(a) and hence

A ◦ 1−k
2
A ⊆ A. Thus, A = E ◦ 1−k

2
F is an intutionistic (∈,∈ ∨qk)-intuitionistic

fuzzy subsemigroup of S.

Now, let a, b, c ∈ S. Then,

((
λE ◦ 1−k

2
λF

)
(a) ∧

(
λE ◦ 1−k

2
λF

))
(c) ∧ 1 − k

2

=
∨

a=xy

{
λE (x) ∧ λF (y) ∧ 1 − k

2

}
∧
∨
c=pq

{
λE (p) ∧ λF (q) ∧ 1 − k

2

}
∧ 1 − k

2

=
∨

a=xy

∨
c=pq

{{
λE (x) ∧ λF (y) ∧ 1 − k

2

}
∧
{
λE (p) ∧ λF (q) ∧ 1 − k

2

}
∧ 1 − k

2

}
≤
∨

a=xy

∨
c=pq

{
λE (x) ∧ λF (y) ∧ λE (p) ∧ λF (q) ∧ 1 − k

2

}
≤
∨

a=xy

∨
c=pq

{
λE (x) ∧ λF (y) ∧ λF (q) ∧ 1 − k

2

}
.

Since a = xy and c = pq, so abc = (xy) b (pq) = (x (yb) p) q and we have

∨
a=xy

∨
c=pq

{
λE (x) ∧ λF (y) ∧ λF (q) ∧ 1 − k

2

}
≤

∨
abc=(x(yb)p)q

{{
λE (x) ∧ λF (y) ∧ 1 − k

2

}
∧ λF (q)

}
.

Since E = ⟨λE , µE⟩ is an interval valued (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal
of S we have

λE (x (yb) p) ≥ λE (x) ∧ λE (yb) ∧ 1 − k

2
.
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So,

∨
abc=(x(yb)p)q

{{
λE (x) ∧ λF (y) ∧ 1 − k

2

}
∧ λF (q)

}

≤
∨

abc=(x(yb)p)q

{
λE (x (yb) p) ∧ λF (q) ∧ 1 − k

2

}
=
(
λE ◦ 1−k

2
λF

)
(abc) .

Thus,

(
λE ◦ 1−k

2
λF

)
(abc) ≥

(
λE ◦ 1−k

2
λF

)
(a) ∧

(
λE ◦ 1−k

2
λF

)
(c) ∧ 1 − k

2

and

((
λE ◦ 1−k

2
λF

)
(a) ∧

(
λE ◦ 1−k

2
λF

))
(c) ∧ 1 − k

2

=

{ ∨
a=xy

{
λE (x) ∧ λF (y) ∧ 1 − k

2

}}
∧

{ ∨
c=pq

λE (p) ∧ λF (q) ∧ 1 − k

2

}
∧ 1 − k

2

=
∨

a=xy

∨
c=pq

{{
λE (x) ∧ λF (y) ∧ 1 − k

2

}
∧
{
λE (p) ∧ λF (q) ∧ 1 − k

2

}
∧ 1 − k

2

}
≤
∨

a=xy

∨
c=pq

{
{λE (x) ∧ λF (y) ∧ λE (p) ∧ λF (q)} ∧ 1 − k

2

}
≤
∨

a=xy

∨
c=pq

{
λE (x) ∧ λF (y) ∧ λF (q) ∧ 1 − k

2

}
.

Since a = xy and c = pq, so abc = (xy) b (pq) = (x (yb) p) q and we have

∨
a=xy

∨
c=pq

{
λE (x) ∧ λF (y) ∧ λF (q) ∧ 1 − k

2

}
≤

∨
abc=(x(yb)p)q

{{
λE (x) ∧ λF (y) ∧ 1 − k

2

}
∧ λF (q)

}
.

Since E = ⟨λE , µE⟩ is an interval valued (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal
of S we have

λE (x (yb) p) ≥ λE (x) ∧ λE (yb) ∧ 1 − k

2
.
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So, ∨
abc=(x(yb)p)q

{{
λE (x) ∧ λF (y) ∧ 1 − k

2

}
∧ λF (q)

}

≤
∨

abc=(x(yb)p)q

{
λE (x (yb) p) ∧ λF (q) ∧ 1 − k

2

}
=
(
λE ◦ 1−k

2
λF

)
(abc) .

Thus,(
λE ◦ 1−k

2
λF

)
(abc) ≥

(
λE ◦ 1−k

2
λF

)
(a) ∧

(
λE ◦ 1−k

2
λF

)
(c) ∧ 1 − k

2

and ((
µE ◦ 1−k

2
µF

)
(a) ∨

(
µE ◦ 1−k

2
µF

))
(c) ∨ 1 − k

2

=

∧
a=xy

{
µE (x) ∨ µF (y) ∨ 1−k

2

}
∨∧

c=pq

{
µE (p) ∨ µF (q) ∨ 1−k

2

}
∨ 1−k

2

=
∧

a=xy

∧
c=pq

{ {
µE (x) ∨ µF (y) ∨ 1−k

2

}
∨{

µE (p) ∨ µF (q) ∨ 1−k
2

}
∨ 1−k

2

}
≤
∧

a=xy

∧
c=pq

{
µE (x) ∨ µF (y) ∨ µE (p) ∨ µF (q) ∨ 1 − k

2

}
≤
∧

a=xy

∧
c=pq

{
µE (x) ∨ λF (y) ∨ µF (q) ∨ 1 − k

2

}
Since a = xy and c = pq, so abc = (xy) b (pq) = (x (yb) p) q and we have∧

a=xy

∧
c=pq

{
µE (x) ∨ µF (y) ∨ µF (q) ∨ 1 − k

2

}
≤

∧
abc=(x(yb)p)q

{{
µE (x) ∨ µF (y) ∨ 1 − k

2

}
∨ λF (q)

}
.

Since E = ⟨λE , µE⟩ is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S we have

µE (x (yb) p) ≥ µE (x) ∨ µE (yb) ∨ 1 − k

2
.

So, ∧
abc=(x(yb)p)q

{{
µE (x) ∨ µF (y) ∨ 1 − k

2

}
∨ µF (q)

}

≤
∧

abc=(x(yb)p)q

{
µE (x (yb) p) ∨ µF (q) ∨ 1 − k

2

}
=
(
µE ◦ 1−k

2
µF

)
(abc) .
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Thus,(
µE ◦ 1−k

2
µF

)
(abc) ≤

(
µE ◦ 1−k

2
µF

)
(a) ∨

(
µE ◦ 1−k

2
µF

)
(c) ∨ 1 − k

2
.

Hence, A = E ◦ 1−k
2
F is an intutionistic (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal

of S.

For any intutionstic fuzzy set F = ⟨λF , µF ⟩ in S and t ∈ (0, 1], r ∈ [0, 1), we
denote F(t,r) = {x ∈ S : ⟨x; (t, r)⟩ qkF} and [F ](t,r) = {x ∈ S : ⟨x; (t, r)⟩ ∈ ∨qkE}.

Obviously, [F ](t,r) = F(t,r) ∪ U(t,r), where U(t,r), F(t,r) and [F ](t,r) are called
∈-level set, qk-level set and ∈ ∨qk-level set of F = ⟨λF , µF ⟩ respectively.

Theorem 3.31. An IFS F = ⟨λF , µF ⟩ of S is an (∈,∈ ∨qk)-intuitionistic fuzzy
left (resp. right) ideal of S if and only if for all t ∈ (0, 1] and r ∈ [0, 1), the set
U(t,r) ̸= ∅ is a left (resp. right) ideal of S.

Proof. Let F = ⟨λF , µF ⟩ be an (∈,∈ ∨qk)-intuitionistic fuzzy left ideal of S
and U(t,r) ̸= ∅ for all t ∈ (0, 1] and r ∈ [0, 1). Let y ∈ U(t,r) and x ∈ S. Then,
λF (x) ≥ t and λF (x) ≤ r. Since

λF (xy) ≥ λF (x) ∧ λF (b) ∧ 1 − k

2
≥ t ∧ 1 − k

2
≥ t

and

µF (xy) ≤ µF (x) ∨ µF (y) ∨ 1 − k

2
≤ r ∨ 1 − k

2
≤ r.

So, xy ∈ U(t,r). Hence U(t,r) ̸= ∅ is a left ideal of S.

Conversely, Let F = ⟨λF , µF ⟩ be an intutionistic fuzzy set in a way that
U(t,r) ̸= ∅ is a left ideal of S. Assume that there exists x, y ∈ S such that

λF (xy) < λF (y) ∧ 1−k
2 and µF (xy) > µF (x) ∨ 1−k

2 . We choose t ∈ (0, 1] and

r ∈ [0, 1), then λF (xy) < t < λF (y) ∧ 1−k
2 and µF (xy) > r > µF (x) ∨ 1−k

2 .
Then y ∈ U(t,r), but xy /∈ U(t,r), which is a contradiction. Hence, λF (xy) ≤
λF (y) ∧ 1−k

2 and µF (xy) ≥ µF (x) ∨ 1−k
2 .

Theorem 3.32. An IFS F = ⟨λF , µF ⟩ of S is an (∈,∈ ∨qk)-intuitionistic fuzzy
bi-ideal of S if and only if for all t ∈ (0, 1] and r ∈ [0, 1), the set U(t,r) ̸= ∅ is a
bi-ideal of S.

Proof. Proof of the Theorem follows from Theorem 3.31.

Theorem 3.33. An IFS F = ⟨λF , µF ⟩ of S is an (∈,∈ ∨qk)-intuitionistic fuzzy
(1, 2)-ideal of S if and only if for all t ∈ (0, 1] and r ∈ [0, 1), the set U(t,r) ̸= ∅
is a (1, 2)-ideal of S.

Proof. Proof of the Theorem follows from Theorem 3.31.
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Theorem 3.34. An IFS F = ⟨λF , µF ⟩ of S is an (∈,∈ ∨qk)-intuitionistic
fuzzy subsemigroup of S if and only if for all t ∈ (0, 1] and r ∈ D[0, 1), the set
[F ](t,r) ̸= ∅ is a subsemigroup of S.

Proof. Let x, y ∈ [F ](t,r) . Then, λF (x) ≥ t and µF (x) ≤ r or λF (x)+t +k > 1
and µF (x) + r+ k < 1, and λF (y) ≥ t and µF (y) ≤ r or λF (y) + t +k > 1 and
µF (y) + r + k < 1, thus we have the following four cases:

(i) λF (x) ≥ t and µF (x) ≤ r, and λF (y) ≥ t and µF (y) ≤ r,

(ii) λF (x) ≥ t and µF (x) ≤ r and λF (x) + t +k > 1 and µF (y) + r+ k < 1,

(iii) λF (x)+ t+k > 1 and µF (y)+r+k < 1, and λF (y) ≥ t and µF (y) ≤ r,

(iv) λF (x) + t + k > 1 and µF (y) + r + k < 1, and λF (y) + t + k > 1 and
µF (y) + r + k < 1.

For the first case, by Theorem 3.10 (i) , it implies that

λF (xy) ≥ λF (x) ∧ λF (y) ∧ 1 − k

2
= t ∧ 1 − k

2
=

{
1−k
2 , if t > 1−k

2

t, if t ≤ 1−k
2

and

µF (xy) ≤ µF (x) ∨ µF (y) ∨ 1 − k

2

= r ∨ 1 − k

2
=

{
1−k
2 , if s < 1−k

2

r, if r ≤ 1−k
2

and hence, λF (xy) + t + k > 1−k
2 + 1−k

2 + k = 1 and µF (xy) + r + k <
1−k
2 + 1−k

2 + k = 1 which implies that (xy) (t, r) qkF or xy ∈ F(t,r). Hence

xy ∈ U(t,r) ∪ F(t,r) = [F ](t,r). For the second case we assume that t > 1−k
2 and

r < 1−k
2 . Then 1−t < 1−k

2 and 1−r > 1−k
2 . If λF (x) ≥ λF (y)∧ 1−k

2 and µF (x) ≤
µF (y)∨ 1−k

2 , then λF (x) ≥ λF (y)∧ 1−k
2 > 1−t and µF (y) ≤ µF (y)∨ 1−k

2 < 1−r
and if λF (y) > λF (y)∧1−k

2 and µF (x) < µF (y)∨1−k
2 , then λF (xy) ≥ λF (x) ≥ t

and µF (xy) ≤ µF (x) ≤ r. Hence, xy ∈ U(t,r) ∪ F(t,r) = [F ](t,r) . Now suppose

that t ≤ 1−k
2 and r ≥ 1−k

2 . Then 1 − t ≥ 1−k
2 and 1 − r ≤ 1−k

2 . If λF (y) ≥
λF (x) ∧ 1−k

2 and µF (y) ≤ µF (x) ∨ 1−k
2 , then λF (xy) ≥ λF (y) ∧ 1−k

2 ≥ t

and µF (x) ≤ µF (y) ∨ 1−k
2 ≤ r and if λF (y) < λF (x) ∧ 1−k

2 and µF (y) >

µF (x) ∨ 1−k
2 , then λF (xy) ≥ λF (y) ≥ 1 − t and µF (xy) ≤ µF (y) ≤ 1 − r.

Hence, ab ∈ U(t,r) ∪ F(t,r) = [F ](t,r) . We have similar result for the case (iii) .

For the case four, if t > 1−k
2 and r < 1−k

2 . Then1 − t < 1−k
2 and 1 − r > 1−k

2 .
Hence,

λF (xy) ≥ λF (x) ∧ λF (y) ∧ 1 − k

2

=

{
1−k
2 > 1 − t, if λF (x) ∧ λF (y) ≥ 1−k

2

λF (x) ∧ λF (y) > 1 − t, if λF (x) ∧ λF (y) < 1−k
2
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and

µF (xy) ≤ µF (x) ∨ µF (y) ∨ 1 − k

2

=

{
1−k
2 < 1 − r, if µF (x) ∨ µF (y) ≤ 1−k

2

µF (x) ∨ µF (y) > 1 − r, if µF (x) ∨ µF (y) > 1−k
2

and hence xy ∈ F(t,r) ⊆ [F ](t,r) . If t ≤ 1−k
2 and r ≥ 1−k

2 , then 1−k
2 ≤ 1 − t and

1−k
2 ≥ 1 − r. Thus,

λF (xy) ≥ λF (x) ∧ λF (y) ∧ 1 − k

2

=

{
1−k
2 ≥ t, if λF (x) ∧ λF (y) ≥ 1−k

2

λF (x) ∧ λF (y) > 1 − t, if λF (x) ∧ λF (y) < 1−k
2

and

µF (xy) ≥ µF (x) ∧ µF (y) ∧ 1 − k

2

=

{
1−k
2 ≤ r, if µF (x) ∨ µF (y) ≤ 1−k

2

µF (x) ∨ µF (y) < 1 − r, if µF (x) ∨ µF (y) > 1−k
2

which implies that xy ∈ U(t,r) ∪ F(t,r) = [F ](t,r) .

Conversely, assume that F = ⟨λF , µF ⟩ is not an (∈,∈ ∨qk)-intuitionistic
fuzzy subsemigroup of S. Then, there exists x, y ∈ S such that λF (xy) <
λF (x) ∧ λF (y) ∧ 1−k

2 and µF (xy) > µF (x) ∨ µF (y) ∨ 1−k
2 . Let

t =
1

2

[
λF (xy) + λF (x) ∧ λF (y) ∧ 1 − k

2

]
and

r =
1

2

[
µF (xy) + µF (x) ∨ µF (y) ∨ 1 − k

2

]
.

Then,

λF (xy) < t < λF (x) ∧ λF (y) ∧ 1 − k

2

and

µF (xy) > r > µF (x) ∨ µF (y) ∨ 1 − k

2
.

Which implies that x, y ∈ [F ](t,r) and xy ∈ [F ](t,r) . Hence, λF (xy) ≥ t and
µF (xy) ≤ r or λF (xy) + t + k > 1 and µF (xy) + r + k < 1, which is con-
tradiction. Therefore, we have λF (xy) ≥ λF (x) ∧ λF (y) ∧ 1−k

2 and µF (xy) ≤
µF (x) ∨ µF (y) ∨ 1−k

2 . Thus, F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-intuitionistic fuzzy
subsemigroup of S.
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Theorem 3.35. An IFS F = ⟨λF , µF ⟩ of S is an (∈,∈ ∨qk)-intuitionistic fuzzy
left (resp. right) ideal of S if and only if for all t ∈ (0, 1] and r ∈ [0, 1), the set
[F ](t,r) ̸= ∅ is a left (resp. right) ideal of S.

Proof. Proof of the Theorem follows from Theorem 3.34.

Theorem 3.36. An IFS F = ⟨λF , µF ⟩ of S is an (∈,∈ ∨qk)-intuitionistic fuzzy
bi-ideal of S if and only if for all t ∈ (0, 1] and r ∈ [0, 1), the set [F ](t,r) ̸= ∅ is
a bi-ideal of S.

Proof. Proof of the Theorem follows from Theorem 3.34.

Theorem 3.37. An IFSF = ⟨λF , µF ⟩ of S is an (∈,∈ ∨qk)-intuitionistic fuzzy
(1, 2)-ideal of S if and only if for all t ∈ (0, 1] and r ∈ [0, 1), the set [F ](t,r) ̸= ∅
is a (1, 2)-ideal of S.

Proof. Proof of the Theorem follows from Theorem 3.34.

Theorem 3.38. Every (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S is an (∈,∈
∨qk)-intuitionistic fuzzy (1, 2)-ideal of S.

Proof. Straightforward.

Theorem 3.39. In a regular semigroup every (∈,∈ ∨qk)-intuitionistic fuzzy bi-
ideal of S is an (∈,∈ ∨qk)-intuitionistic fuzzy left (resp. right) ideal of S.

Proof. Suppose S is regular, then every bi-ideal of S is left (resp. right) ideal
of S. Let F = ⟨λF , µF ⟩ be an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S and
x, y ∈ S, xSx is a bi-ideal of S. Then aSa is a right ideal of S. Since S is
regular, thus we have ab ∈ (aSa)S ⊆ aSa, this implies that xy = xyx for some
y ∈ S. Also since F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of
S. It implies that

λF (xy) = λF (xyx) ≥ λF (x) ∧ λF (x) ∧ 1 − k

2
≥ λF (x) ∧ 1 − k

2

and

µF (xy) = µF (xyx) ≤ µF (x) ∨ µF (x) ∨ 1 − k

2
≤ µF (x) ∨ 1 − k

2
.

Hence, F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-intuitionistic fuzzy right ideal of S.

Theorem 3.40. In a regular semigroup every (∈,∈ ∨qk)-intuitionistic fuzzy
(1, 2)-ideal of S is an (∈,∈ ∨qk)-intuitionistic fuzzy left bi-ideal of S.

Proof. Let S be a regular semigroup and F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-
intuitionistic fuzzy (1, 2)-ideal of S. Let a, b, x ∈ S. Since S is regular, we
have ax ∈ (aSa)S ⊆ aSa, this implies that ax = asa for some s ∈ S. Thus

λF (axb) = λF ((asa)b) = λF (ax(ab)) ≥ λF (a) ∧ λF (a) ∧ λF (b) ∧ 1 − k

2
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and µF (axb) = µF ((asa)b) = µF (ax(ab)) ≤ µF (a)∨µF (a)∨µF (b)∨ 1−k
2 . Hence,

F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.

Theorem 3.41. Let F = ⟨λF , µF ⟩ is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal
of S. If S is completely regular and λF (a) ≤ 1−k

2 , and µF (a) ≥ 1−k
2 for all

a ∈ S, then F (a) = F
(
a2
)
for all a ∈ S.

Proof. Straightforward.

4. Conclusion

It is recognized that semigroups are basic algebraic structures in several applied
branches like automata and formal languages, coding theory, finite state ma-
chines and others. Due to these prospects of applications, semigroups are now
widely studied in fuzzy setting. An intuitionistic fuzzy set is more substantial
and brief to designate the essence of fuzziness. Intuitionistic fuzzy set theory is
more appropriate than the fuzzy set theory for dealing with imperfect knowledge
in several problems. In the structural study of semigroup, we notified that intu-
itionistic fuzzy ideals with superior properties continuously play an significant
role. The intuitionistic fuzzy point of a semigroup S is basic tools to define the
algebraic subsystems of S. So, we combined the above notions and initiated new
types of intuitionistic fuzzy bi-ideals and (1, 2)-ideals of semigroups which are
said to be an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal and (∈,∈ ∨qk)-intuitionistic
fuzzy (1, 2)-ideal. The results in the paper are generalizations of results about
ordinary (∈,∈ ∨q)- intuitionistic fuzzy ideals in semigroups. In future, we will
focus on the following topics:

(1) Characterizations of regular semigroups by the properties of (∈,∈ ∨qk)-
intuitionistic fuzzy ideals

(2) We will define (∈,∈ ∨qk)-intuitionistic fuzzy (interior, prime, general-
ized bi, prime bi) ideals of a semigroup and characterize different classes of
semigroups by the properties of (∈,∈ ∨qk)-intuitionistic-fuzzy ideals. In future
we will extend our study to other algebraic structures like ring theory, module
theory, soft semigroups etc.
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Abstract. Let A be an abelian group and let α be an automorphism of A. In
this paper we show that if the restriction of α to any p-component Ap of A is of the
form: α�Ap = πidAp + ρ, where p is a prime number, π a p-adic invertible number and
ρ ∈ Hom(Ap, A

1) with A1 is the first subgroup Ulm of the group A. Then α satisfies
the weak extension property.

Keywords: abelian groups, p-groups, torsion groups, automorphism group.

1. Introduction

The study of the characterization of automorphisms having the property of ex-
tension had begun by P. E Schupp showed, in [12], that the extension property
in the category of groups, characterizes the inner automorphisms. M. R. Pet-
tet gives in, [10], a simpler proof of Schupp’s result and shows that the inner
automorphisms of a group are also characterized by the lifting property in the
category of groups. In [8] M. Dugas and R. Gobel gave another simpler proof
of Schupp’s result, using only the elementary theory of groups. In [2] L. Ben
Yakoub shows that the result of Schupp is not valid in general for algebras on a

∗. Corresponding author
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commutative ring. It is not yet known whether this result holds true for algebras
(of finite dimensions) on a commutative field. In [3] L. Ben Yakoub and M. P.
Malliavin show that the property of extension also characterizes derivations in
associative algebras for some algebras quantum properties. In this article, we
will define the property of the weak extension by:

An automorphism α of an abelian group A has the weak extension property
if for all abelian group B for all monomorphism λ : A −→ B and if there exists
an element m ∈ N∗ such that the restriction of λ to mA is an isomorphism from
mA to mB, then there exists α̃ ∈ Aut(B) such that the following diagram is
commutative:

A
λ−→ B

α ↓ ↓ α̃
A

λ−→ B

In other words: α̃λ = λα. By way of example, any automorphism of an abelian
group without torsion possesses the property of the weak extension (see [1],
[16]).

2. Main result

Theorem 2.1. Let A be an abelian group and let α be an automorphism of A.
If the restriction of α to any p-component Ap of A is of the form: α�Ap =

πidAp + ρ, where p is a prime number, π a p-adic invertible number and ρ ∈
Hom(Ap, A

1) with A1 is the first subgroup Ulm of A. Then α satisfies the weak
extension property.

Before giving proof of this theorem, we will need certain results.

Lemma 2.2. Let TA be the torsion part of A. If α1 is the restriction of α to TA
then α1 is an automorphism of TA. Moreover, α1 satisfies the weak extension
property.

Proof. Let x ∈ TA. There exists n ∈ N∗ such that nx = 0, whence nα(x) =
α(nx) = 0, we deduce that α1(TA) ⊆ TA.

On the other hand, ∀y ∈ TA, there exists x ∈ TA such that y = α(x); If 0 =
my = mα(x) for some m ∈ N∗, then α(mx) = 0 implies mx = 0, then x ∈ TA.
We conclude that α(TA) = TA, consequently α1 = α�TA

is an automorphism of
TA. Let (TA)p be the p-component of the torsion group TA. From the above
assumptions, α1�(TA)p

= π id(TA)p +ρ where π is an invertible p-adic number and

ρ ∈ Hom((TA)p, (TA)1p) with (TA)1p the first subgroup Ulm of the group (TA)p.
Therefore, according to the characterization of the automorphisms possessing
the weak extension property in the category of torsion abelian groups see, [15],
we deduce that α1 = α�TA

satisfies the weak extension property.

Proposition 2.3. Let λ : A → A′ be a monomorphism of abelian groups and
let λ�m0A be the restriction of λ to m0A such that λ�m0A ∈ Isom(m0A;m0A

′)
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where m0 ∈ N∗. If TA and TA′ are respectively the torsion parts of A and A′.
So:

(i) λ1 : TA → TA′ is a monomorphism.

(ii) There exists an automorphism α′ of TA′ which makes switch the following
diagram:

TA
λ1−→ TA′

α1 ↓ ↓ α′

TA
λ1−→ TA′

Proof. (i) It suffices to prove that: λ(TA) ⊆ TA′ .

Let a ∈ TA; There exists m ∈ N∗ such that ma = 0, hence mλ(a) = 0, we
deduce that λ(TA) ⊆ TA′ .

(ii) From the assumptions we have: m0A ≃ m0A
′ where m0 ∈ N∗.

The proposition 8.37 (see [18], p: 295) shows that for m0 ∈ N∗: T (m0A) ≃
T (m0A

′), hencem0TA ≃ m0TA′ , so for somem0 ∈ N∗: λ1�m0TA
∈ Isom(m0TA;m0TA′)

and since the automorphism α1 ∈ Aut(TA) satisfies the weak extension property,
then there exists an automorphism α′ ∈ TA′ such that α′λ1 = λ1α1.

Lemma 2.4. Let A′ be an abelian group and λ : A→ A′ an monomorphism. If
λ(A) = A1 and if α2 = λαλ−1, then, α2 is an automorphism of A1 which makes
switch the following diagram:

A
λ−→ A1

α ↓ ↓ α2

A
λ−→ A1

Proof. Since λ : A→ A′ is a monomorphism and λ(A) = A1, then, λ : A→ A1

is an isomorphism, consequently, α2 = λαλ−1 is an automorphism of A1 and we
have: α2λ = λα.

Proposition 2.5. Let λ : A → A′ be a monomorphism of abelian groups and
let λ�m0A be the restriction of λ to m0A such that λ�m0A ∈ Isom(m0A;m0A

′)
where m0 ∈ N. If TA and TA′ are respectively the torsion parts of A and A′; So:

1. A′ = A1 + TA′;

2. A1 ∩ TA′ = TA1;

3. λ(TA) = TA1.

Proof. 1) Since λ : A → A′ is a monomorphism and λ(A) = A1, then
λ : A→ A1 is an isomorphism.

Hence λ(m0A) = m0λ(A) = m0A1. And since λ�m0A ∈ Isom(m0A;m0A
′).

So λ(m0A) = m0A
′ = m0A1. Let x ∈ A′, hence m0x ∈ m0A

′ = m0A1 which
implies that there exists a1 ∈ A1 ⊂ A′ such that m0x = m0a1. Therefore
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m0(x− a1) = 0 and consequently x− a1 ∈ TA′ . And since x = a1 + x− a1 with
a1 ∈ A1 and x− a1 ∈ TA′ therefore A′ ⊂ A1 + TA′ . On the other hand A1 ⊂ A′

and TA′ ⊂ A′ therefore A1 + TA′ ⊂ A′. We conclude that A′ = A1 + TA′ .

2) Since A1 ⊂ A′, then TA1 ⊂ TA′ ; of plus TA1 ⊂ A1, we deduce that
TA1 ⊂ A1 ∩ TA′ . On the other hand, for all x ∈ A1 ∩ TA′ , then, x ∈ TA′ ; There
exists n ∈ N∗ such that nx = 0. Since x ∈ A1, therefore x ∈ TA1 , consequently,
A1 ∩ TA′ = TA1 .

3) Let x ∈ TA; There exists m ∈ N∗ such that mx = 0, whence 0 = λ(mx) =
mλ(x), so λ(x) ∈ TA1 , we deduce that λ(TA) ⊂ TA1 . Now either x ∈ TA1 ; There
exists m ∈ N∗ such that mx = 0. Since TA1 ⊂ A1 = λ(A), then x = λ(a) where
a ∈ A. So 0 = mx = mλ(a) = λ(ma). Thus ma = 0, hence a ∈ TA which
implies that x ∈ λ(TA). It is concluded that λ(TA) = TA1 .

3. The proof of theorem 2.1

Let A be an abelian group and let α be an automorphism of A.

Let A′ be an abelian group and λ : A→ A′ a monomorphism.

TA, TA1 and TA′ are Respectively the torsion parts of A, A1 and A′.

We define the endomorphism α3 of the group A′ by: (α3)�A1
= α2 and

(α3)�TA′
= α′.

The endomorphism α3 is well defined. Indeed, if a1 + b1 = a2 + b2 where
a1, a2 ∈ A1 and b1, b2 ∈ TA′ then a1 − a2 = b2 − b1 ∈ A1 ∩ TA′ = TA1 = λ(TA).
This implies that there exists a ∈ TA such that a1−a2 = b2− b1 = λ(a). Hence,{

α2(a1 − a2) = α2λ(a) = λα(a),

α′(b2 − b1) = α′λ(a) = λα1(a) = λα(a).

Therefore, α2(a1−a2) = α′(b2−b1), i.e, α2(a1)+α′(b1) = α2(a2)+α′(b2). Hence
α3(a1 + b1) = α3(a2 + b2). Moreover α3 is an automorphism of A′. Indeed:

Injection. Let a′ = a1 + b1 ∈ A′ where a1 ∈ A1 and b1 ∈ TA′ such that
a′ ∈ Ker(α3).

First case. If we have a1 ∈ TA′ . Then a1 + b1 ∈ TA′ , consequently 0 =
α3(a1 + b1) = α′(a1 + b1). And since α′ ∈ Aut(TA′) then a′ = a1 + b1 = 0.

Second case. If we have a1 /∈ TA′ . Then since b1 ∈ TA′ , Whence there
exists m ∈ N∗ such that mb1 = 0, so 0 = mα3(a

′) = α3(ma
′) = α3(ma1 +

mb1) = α3(ma1) = α2(ma1) which implies that ma1 = 0 because α2 ∈ Aut(A1),
consequently a1 ∈ TA1 ⊂ TA′ which is absurd.

Surjection. Let a′ = a2 + b2 ∈ A′ where a2 ∈ A1 and b2 ∈ TA′ , since α2 ∈
Aut(A1) and α′ ∈ Aut(TA′), then{

∃a1 ∈ A1 : α−1
2 (a1) = a2,

∃b1 ∈ TA′ : α′−1(b1) = b2.
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So α3(a2 + b2) = α2(a2) +α′(b2) = α2α
−1
2 (a1) +α′α′−1(b1) = a1 + b1. Therefore

α3 ∈ Aut(A′). In addition the automorphism α3 of group A′ commutes the
following diagram:

A
λ−→ A′

α ↓ ↓ α3

A
λ−→ A′

Indeed, according to proposition 0.3 and lemma 0.4 we have: α2λ = λα and
α′λ = λα, so

α3λ(a) = α3λ(a) = (α2 + α′)λ(a) = α2λ(a) + α′λ(a) = λα2(a) + λα′(a)

= λ(α2 + α′)(a) = λα3(a).

We conclude that α satisfies the weak extension property.
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Abstract. In this paper, we study the operator equation AB = λBA for a bounded
linear operators A,B on a complex Hilbert space. We focus on algebraic relations
between different operators that include normal, M -hyponormal, quasi ∗-paranormal
and other classes.
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quasi ∗-paranormal.

1. Introduction

Throughout, we will denote by B(H) the complex Banach algebra of all bounded
linear operators on a infinite dimensional complex Hilbert space H. We denote
the range and the kernel of A ∈ B(H) by R(A) and N(A) respectively.
Recall that an operator A ∈ B(H) is said to be:

• positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H

• self-adjoint if A = A∗

∗. Corresponding author
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• isometry if A∗A = I, which equivalent to the condition ∥Ax∥ = ∥x∥ for
all x ∈ H

• normal if A∗A = AA∗

• unitary A∗A = AA∗ = I (i.e. A is an onto isometry)

• quasinormal if A(A∗A) = (A∗A)A

• binormal if (A∗A)(AA∗) = (AA∗)(A∗A) [3]

• subnormal if A has a normal extension

• hyponormal if A∗A ≥ AA∗, which equivalent to the condition ∥A∗x∥ ≤
∥Ax∥ for all x ∈ H [15]

• M -hyponormal if A∗A ≥MAA∗, where M ∈ R and M ≥ 1 which equiva-
lent to the condition ∥A∗x∥ ≤M∥Ax∥ for all x ∈ H [20]

• p-hyponormal if (A∗A)p ≤ (AA∗)p, where 0 < p ≤ 1 [1]

• class A if |A|2 ≤ |A2|, where |A| = (A∗A)
1
2

• paranormal if ∥Ax∥2 ≤ ∥A2x∥∥x∥ for all x ∈ H [4]

• k-paranormal if ∥Ax∥k ≤ ∥Akx∥∥x∥k−1 for all x ∈ H and k ≥ 2

• ∗-paranormal if ∥A∗x∥2 ≤ ∥A2x∥∥x∥ for all x ∈ H [10]

• quasi ∗-paranormal if ∥A∗Ax∥2 ≤ ∥A3x∥∥Ax∥ for all x ∈ H [12]

• log-hyponormal if A invertible and satisfies log(A∗A) ≥ log(AA∗) [16]

• p-quasihyponormal if A∗[(A∗A)p − (AA∗)p]A ≥ 0 , where 0 < p ≤ 1 [2]

• normoloid if ∥A∥ = r(A)

• quasinilpotent if r(A) = 0, where r(A) = lim ∥An∥
1
n .

We can notice that A is hyponormal if A is p-hyponormal with p = 1. By
Löwner-Heinz inquality p-hyponormal is q-hyponormal for every 0 < q ≤ p ≤ 1
[14]. Also we can notice that A is paranormal if A is k-paranormal with k = 2.
It known that invertible p-hyponormal is log-hyponormal. We can consider
log-hyponormal operator as 0-hyponormal [16]. It is well known that for any
operators A,B and C we have

A∗A− 2λB∗B + λ2C∗C ≥ 0∀λ > 0 ⇔ ||Bx||2 ≤ ||Ax||||Cx|| for allx ∈ H.

Thus we have
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• A is quasi ∗-paranormal if and only if A∗[(A∗)2A2−2λAA∗ +λ2]A ≥ 0 for
all λ > 0.

• A is ∗-paranormal if and only if (A∗)2A2 − 2λAA∗ + λ2 ≥ 0 for all λ > 0.

We have also the following inclusions:

• quasinormal ⊆ binormal

• class A ⊆ paranormal

• hyponormal ⊆ *-paranormal ⊆ quasi ∗-paranormal

• invertible p-hyponormal ⊆ log-hponormal ⊆ paranormal.

• self-adjoint ⊆ normal ⊆ quasinormal ⊆ subnormal ⊆ hyponormal

• hyponormal ⊆ p-hyponormal ⊆ p-quasihyponormal ⊆ class A.

For a scalar λ, two operators A and B in B(H) are said be λ-commute if AB =
λBA. Recently many authors have studied this equation for several classes of
operators, for example:

• In [11] the authors have proved that if an operator in B(H) λ-commutes
with a compact, then this operator has a non-trivial hyperinvariant sub-
space.

• In [8] Conway and Prajitura characterized the closure and the interior of
the set of operators that λ-commute with a compact operator.

• In [19] Zhang ,Ohawada and Cho have studied the properties of an operator
λ-commutes with a paranormal.

• In [5] Brooke, Busch and Pearson showed that if AB is not quasinilpotent,
then |λ| = 1, and if A or B is self-adjoint then λ ∈ R.

• In [18] Yang and Du gave a simple proofs and generalizations of this re-
sults, particulary if AB is bounded below if and only if both A and B are
bounded below.

• In [14] Schmeger generalized this results to hermitian or normal elements
of a complex Banach algebra.

• In [6] Cho, Duggal, Harte and Ota generalized some Schmeger’s results.

The aim of this paper is to study the situation for binormal, M -hyponormal,
quasi ∗-paranormal operators. Again other related results are also given.
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2. Main results

We begin with the following result.

Lemma 2.1. Let A ∈ B(H) be quasi ∗-paranormal. If A is quasinilpotent, then
A = 0.

Proof. Let A ∈ B(H) be quasi ∗-paranormal, then we have

∥A∗Ax∥ = ∥A3x∥2∥Ax∥2 for all x ∈ H.

Therefore ∥Ax∥4 = ⟨A∗Ax, x⟩2 ≤ ∥A∗Ax∥2∥x∥2 ≤ ∥A3x∥∥Ax∥∥x∥2.
Thus ∥Ax∥3 ≤ ∥A3x∥∥x∥2 for all x ∈ H, whence A is 3-paranormal. By [17,

Lemma 1], then every k-paranormal is normaloid. Thus we conclude that A is
normaloid and hence r(A) = ∥A∥. On the other hand A is quasinilpotent, then
we obtain ∥A∥ = r(A) = 0. Therefore A = 0.

Corollary 2.1. Let A ∈ B(H) be ∗-paranormal.
If A is quasinilpotent, then A = 0.

Proof. By Lemma 2.1 and since every ∗-paranormal is also quasi ∗-paranormal.

Theorem 2.1. Let A,B ∈ B(H) and λ ∈ C such that AB = λBA ̸= 0, A is
quasinormal and B is normal. If |λ| = 1, then AB is quasinormal.

Proof. Assume that AB = λBA ̸= 0, then B∗A∗ = λ̄A∗B∗. Since B and λB
are normal operators and by Fuglede-Putnam Theorem, then BA∗ = λA∗B and
AB∗ = λ̄B∗A. Moreover we have

AB[(AB)∗AB] = [AB][B∗A∗AB]

= [λBA]B∗A∗AB

= λB[AB∗]A∗AB

= λB[λ̄B∗A]A∗AB

= |λ|2[BB∗][AA∗A]B

= [B∗B][A∗AA]B

= B∗[BA∗]AAB

= B∗[λA∗B]AAB

= B∗A∗[λBA]AB

= B∗A∗[AB]AB

= [(AB)∗AB]AB.

Therefore AB is quasinormal.

Theorem 2.2. Let A,B ∈ B(H) and λ ∈ C such that AB = λBA ̸= 0, A is
binormal and B is normal. If |λ| = 1, then AB is binormal.
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Proof. Since B and λB are normal operators and by Fuglede-Putnam Theorem,
then we have BA∗ = λA∗B and AB∗ = λ̄B∗A. Therefore we obtain

AB(AB)∗(AB)∗AB = A[BB∗]A∗B∗A∗AB

= A[B∗B]A∗B∗A∗AB

= [AB∗]BA∗[B∗A∗]AB

= [λ̄B∗A]BA∗[λ̄A∗B∗]AB

= (λ̄)2B∗[AB]A∗A∗[B∗A]B

= (λ̄)2B∗[λBA]A∗A∗[
1

λ̄
AB∗]B

= |λ|2B∗B[AA∗A∗A]B∗B

= B∗B[A∗AAA∗]B∗B

= B∗[BA∗]AA[A∗B∗]B

= B∗[λA∗B]AA[
1

λ̄
B∗A∗]B

=
λ

λ̄
B∗A∗[BA]AB∗[A∗B]

= λ2B∗A∗[
1

λ
AB]AB∗[

1

λ
BA∗]

= B∗A∗ABA[B∗B]A∗

= B∗A∗ABA[BB∗]A∗

= (AB)∗ABAB(AB)∗,

then AB is binormal.

Theorem 2.3. Let A,B ∈ B(H) and λ ∈ C such that AB = λBA ̸= 0.

Suppose that A is k-paranormal and B is isometry, then the following state-
ments are equivalent:

1. AB is k-paranormal

2. σ(AB) ̸= {0}

3. |λ| = 1.

Proof. Suppose that A is k-paranormal andB is isometry with AB = λBA ̸= 0.

We first show that (1) ⇒ (2). Suppose that AB is k-paranormal.

If AB is quasinilpotent (σ(AB) = {0}). Since every k-paranormal is isom-
etry, then we obtain ∥AB∥ = r(AB) = 0 and hence AB = 0 and this is a
contradiction with AB ̸= 0. Therefore AB is not quasinilpotent and hence
σ(AB) ̸= {0}.

We prove that (2) ⇒ (3). Suppose that σ(AB) ̸= {0}, then

(1) r(AB) ̸= 0.
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Since AB = λBA ̸= 0 and by [5, Proposition 1], then σ(AB) = σ(BA) =
λσ(AB). Hence

(2) r(AB) = |λ|r(AB).

Therefore by (1) and (2) we obtain |λ| = 1. Finally we show that (3) ⇒ (1).
Suppose that |λ| = 1, for any unit vector x ∈ H we have

∥(AB)x∥k = ∥A(Bx)∥k

≤ ∥Ak(Bx)∥∥Bx∥k−1 (A is k − paranormal)

≤ ∥AkBx∥ (B is isometry).

Hence

(3) ∥(AB)x∥k ≤ ∥AkBx∥.

On the other hand by induction we show that (AB)k = λ
k(k−1)

2 Bk−1AkB for

every k ∈ N∗. For k = 1 we have (AB)1 = λ
1(1−1)

2 B1−1A1B. Assume that

(AB)k = λ
k(k−1)

2 Bk−1AkB for k ≥ 2. Finally we have

(AB)k+1 = AB(AB)k = (λBA)(λ
k(k−1)

2 Bk−1AkB)

= λ
k(k−1)

2
+1BABk−1AkB

= λ
k(k−1)

2
+1B(AB)Bk−2AkB

= λ
k(k−1)

2
+1B(λBA)Bk−2AkB

= λ
k(k−1)

2
+2B2ABk−2AkB

:

:

:

= λ
k(k−1)

2
+kBkABk−kAkB

= λ
(k+1)k

2 BkAk+1B.

We conclude that (AB)k = λ
k(k−1)

2 Bk−1AkB, for every k ∈ N∗. Then for every
unit vector x ∈ H we obtain

∥(AB)kx∥ = ∥λ
k(k−1)

2 Bk−1AkBx∥

= |λ|
k(k−1)

2 ∥Bk−1AkBx∥
= ∥AkBx∥ (Bk−1 is isometry and |λ| = 1).

Hence

(4) ∥(AB)kx∥ = ∥AkBx∥ for any unit vectorx.

Finally by (3) and (4) we conclude that ∥(AB)x∥k ≤ ∥AkBx∥ = ∥(AB)kx∥, for
any unit vector x. Therefore AB is k-paranormal.
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Theorem 2.4. Let A,B ∈ B(H) and λ ∈ C such that AB = λBA ̸= 0. Then

1. if A∗ is M1-hyponormal and B is M2-hyponormal, then |λ| ≤ (M1M2)
1
2

2. if A is M1-hyponormal and B∗ is M2-hyponormal, then |λ| ≥ (M1M2)
− 1

2 .

Proof. Let A,B ∈ B(H) and λ ∈ C such that AB = λBA ̸= 0.

1. Since we have

|λ|∥BA∥ = ∥λBA∥
= ∥AB∥

= ∥B∗A∗AB∥
1
2 (∥T∥ = ∥TT ∗∥

1
2

≤M
1
2
1 ∥B

∗AA∗B∥
1
2 (A∗ isM1 − hyponormal : A∗A ≤M1AA

∗)

≤M
1
2
1 ∥A

∗B∥ (∥T ∗T∥
1
2 = ∥T∥)

≤M
1
2
1 ∥A

∗BB∗A∥
1
2 (∥T∥ = ∥TT ∗∥

1
2 )

≤ (M1M2)
1
2 ∥A∗B∗BA∥

1
2 (B isM2 − hyponormal:BB∗≤M2B

∗B)

≤ (M1M2)
1
2 ∥BA∥ (∥T ∗T∥

1
2 = ∥T∥).

Therefore |λ|∥BA∥ ≤ (M1M2)
1
2 ∥BA∥ Hence |λ| ≤ (M1M2)

1
2 .

2. Since AB = λBA and λ ̸= 0, then BA = λ−1AB and by first implication
we obtain |λ−1| ≤ (M2M1)

1
2 and hence |λ| ≥ (M2M1)

− 1
2 .

Corollary 2.2. Let A,B ∈ B(H) and λ ∈ C such that AB = λBA ̸= 0. Then

1. if A∗ and B are hyponormal, then |λ| ≤ 1

2. if A and B∗ are hyponormal, then |λ| ≥ 1.

Proof. By Theorem 2.4 and we take M1 = M2 = 1.

Theorem 2.5. Let A,B ∈ B(H) and λ ∈ C such that AB = λBA ̸= 0.
If A∗ is M1-hyponormal and B is M2-hyponormal, then A∗B and BA∗ are

M1M2|λ|2-hyponormal.

Proof. Let A,B ∈ B(H) and λ ∈ C such that AB = λBA ̸= 0. Then

(A∗B)∗A∗B = B∗AA∗B

≥ M1B
∗A∗AB

≥ M1λ̄A
∗B∗λBA

≥ M1|λ|2A∗B∗BA

≥ M1|λ|2A∗M2BB
∗A

≥ M1M2|λ|2(B∗A)∗B∗A.
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Therefore A∗B is M1M2|λ|2-hyponormal.

In the same way we obtain BA∗ is M1M2|λ|2-hyponormal.
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Abstract. Let R be a prime ring and U be a nonzero lie ideal of R. A symmetric
bi-additive mapping D(., .) : R × R → R is called a symmetric bi-derivation and d is
a trace of D. In this paper we shall show that U ⊆ Z(R) such that R admitting the
trace d satisfying the several conditions of symmetric left bi-derivation.
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symmetric bi-additive mapping, symmetric left bi-derivation.

1. Introduction

The concept of a symmetric bi-derivation has been introduced by Maksa.Gy in
[5, 6]. A classical result in the theory of centralizing mappings is a theorem first
proved by E. Posner [8] which stated that the existence of a nonzero centralizing
derivation on a prime ring R implies that R is commutative. Vukman.J [9, 10]
has studied some results concerning symmetric bi-derivations on prime and semi
prime rings. In [1] Argac, Yenigul and in [7] Muthana obtained the similar type
of results on lie ideals of R. In this paper we proved some results in symmetric
left bi-derivations in prime rings.

Throughout this paper R will be associative. We shall denote by Z(R)
the center of a ring R. Recall that a ring R is prime if aRb = (0) implies
that a = 0 or b = 0. We shall write [x, y] for xy − yx. The symbol x ◦ y
stands for anti commutator xy + yx. An additive map d : R → R is called

∗. Corresponding author
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derivation if d (xy) = d (x) y + xd(y) holds for all pairs x, y ∈ R.A mapping
B (., .) : R×R→ R is said to be symmetric if B (x, y) = B(y, x) holds for all
pairs x, y ∈ R. A mapping map f : R → R defined by f (x) = B(x, x), where
B (., .) : R×R→ R is a symmetric mapping, is called a trace of B. It is obvious
that, in case B (., .) : R×R→ R is symmetric mapping which is also bi-additive
(i. e. additive in both arguments) the trace of B satisfies the relation f (x+ y) =
f (x) + f (y) + 2B(x, y) for all x, y ∈ R. We shall use also the fact that the
trace of a symmetric bi-additive mapping is an even function. A symmetric
bi-additive mapping D (., .) : R × R → R is called a symmetric bi-derivation if
D (xy, z) = D (x, z) y + xD(y, z) is fulfilled for all x, y, z ∈ R.Obviously, in
this case also the relation D (x, yz) = D (x, y) z + yD(x, z) x, y, z ∈ R. A
symmetric bi-additive mapping D (., .) : R×R→ R is called a symmetric left bi-
derivation if D (xy, z) = xD (y, z)+yD(x, z) for all x, y, z ∈ R. Obviously, in
this case also the relation D (x, yz) = yD (x, z) + zD(x, y) for all x, y, z ∈ R.
A mapping f : R→ R is said to be commuting on R if [f (x) , x] = 0 holds for all
x ∈ R. A mapping f : R→ R is said to be centralizing on R if [f (x) , x] ∈ Z(R)
is fulfilled for all x ∈ R. A ring R is said to be n-torsion free if whenever na = 0
with a ∈ R then a = 0, where n is nonzero integer.

We shall frequently use the following identities and several well known facts
about the semiprime rings without specific mention.

[xy, z] = x[y, z] + [x, z]y;

[x, yz] = y [x, z] + [x, y] z;

x ◦ yz = (x ◦ y) z − y [x, z] = y (x ◦ z) + [x, y] z;

xy ◦ z = x (y ◦ z) − [x, z] y = (x ◦ z) y + x[y, z].

Remark 1. Let U be a square closed lie ideal of R. Notice that xy + yx =
(x+ y)2 − x2 − y2, for all x, y ∈ U . Since x2 ∈ U , for all x ∈ U xy + yx ∈ U
for all x, y ∈ U . Hence we find that 2xy ∈ U for all x ∈ U . Therefore,
for all r ∈ R, we get 2r [x, y] = 2 [x, ry] − 2 [x, r] y ∈ U and 2 [x, y] r =
2 [x, ry] − 2 [y, r] y ∈ U so that 2R [U,U ] ⊆ U and 2 [U,U ]R ⊆ U .

This remark will be freely used in the whole paper without specific reference.

Lemma 1 (4, Corollary 2.1). Let R be a 2-torsion free semiprime ring, U a Lie
ideal of R such that U ̸⊆ Z(R) and a, b ∈ U .

(i) if aUa = {0}, then a = 0;
(ii) if aUa = {0} (Ua = {0}), then a = 0;
(iii) if U is a square closed Lie ideal and aUb = {0}, then ab = 0 and

ba = 0.

Lemma 2 (1, Theorem 3). Let R be 2-torsion free prime ring and U be a
nonzero Lie ideal of R. Let B : R × R → R be a symmetric bi-derivation and
f be the trace of B be such that:

(i) f (U) = 0, then U ⊆ Z(R) or f = 0;
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(ii) f (U) ⊆ Z(R) and U be a square closed Lie ideal, then U ⊆ Z(R) or
f = 0.

Lemma 3 (3, Lemma 1). Let R be a 2-torsion free semiprime ring and U be a
Lie ideal of R. Suppose that [U, U ] ⊆ Z(R), then U ⊆ Z(R).

Lemma 4 (2, Lemma 4). Let R be a 2-torsion free prime ring and U ̸⊆ Z(R)
be a Lie ideal of R and a, b ∈ R, if aUb = {0} then a = 0 and b = 0.

Lemma 5. Let R be a 2-torsion free prime ring and U be a square closed lie
ideal of R. Suppose that D : R × R → R is a symmetric left bi-derivation
and d the trace of D such that [d (x) , y] ∈ Z(R), for all x, y ∈ U , then either
U ⊆ Z(R) or d = 0.

Proof. Suppose on the contrary that U ̸⊆ Z(R)

(1) We have [d (x) , y] ∈ Z(R), for all x, y ∈ U.

We replace y by 2yz in (1), we get

[d (x) , 2yz] ∈ Z(R),

2y [d (x) , z] + 2 [d (x) , y] z ∈ Z(R),

y [d (x) , z] + [d (x) , y] z ∈ Z(R), for all x, y, z ∈ U.

This implies that [[d (x) , y] z + y [d (x) , z] , r] = 0, for all x, y, z ∈ U and
r ∈ R

(2) [d (x) , y ][z, r] + [ y, r] [d (x) , z] = 0, for all x, y, z ∈ U and r ∈ R.

We replacing r by 2yt in (2), we get

(3) [y, z] [d (x) , z] = 0 for all x, y, z ∈ U.

We replacing y by 2yt in (3), we get

[2yt, z] [d (x) , z] = 0,

2 [y, z] t [d (x) , z] + 2y [t, z] [d (x) , z] = 0,

[y, z ]t[ d (x) , z] = 0, for all x, y, z, t ∈ U,

[y, z ]U [ d (x) , z] = 0, for all x, y, z, t ∈ U.

Thus in view of Lemma 4 we find that for each pair of x, y, z ∈ U either [y, z] =
0 or [d (x) , z] = 0 For each z ∈ U , let A1 = {y ∈ U/ [y, z] = 0} and
B1 = {x ∈ U/ [f (x) , z] = 0}. Hence A1 and B1 are the additive subgroups of
U whose unionis U . By Brauer’s trick, we have either U = A1 or U = B1. If
U = A1, then [y, z] = 0 for all y, z ∈ U and have U ⊆ Z(R) a contradiction.
On the other hand if U = B1 then [d (x) , z] = 0, for all x, z ∈ U and hence
f (U) ⊆ CR (U) = Z(R) then by Lemma 2, we get d = 0. This completes the
proof of the lemma.
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Theorem 6. Let R be a 2-torsion free prime ring and U be a square closed lie
ideal of R. Suppose that D : R × R → R is a symmetric left bi-derivation and
d the trace of D. If [d (x) , x] = 0, for all x ∈ U , then either U ⊆ Z(R) or
d = 0.

Proof. Suppose on the contrary that U ̸⊆ Z(R)

(4) Since we have given that [d (x) , x] = 0, for all x, y ∈ U

We replacing x by x + y in (4), we get d(x+ y), x + y] = 0, [d(x) + d(y)+
2D(x, y), x + y] = 0, [d(x), x] + [d(x), y] + [d(y), x] + [d(y), y]+2[D(x, y), x]+
2[D(x, y), y] = 0. By using (4), in the above equation we get

(5) [d(x), y]+[d(y), x]+2[D(x, y), x]+2[D(x, y), y] = 0 for all x, y ∈ U

We replacing x by −x in (5), we get

[d(−x), y]+[d(y),−x]+2[D(−x, y),−x]+2[D(−x, y), y] = 0,(6)

[d(x), y] − [d(y), x] + 2[D(x, y), x] − 2[D(x, y), y] = 0, for all x, y ∈ U.

By adding (5) and (6), we get

(7) [d (x) , y] + 2 [D (x, y) , x] = 0, for all x, y ∈ U.

We replacing y by 2yz in (7), we get

[d(x), 2yz] + 2[D(x, 2yz), x] = 0,

2y[d(x), z] + 2[d(x), y]z + 4[yD(x, z) + zD(x, y), x] = 0,

2y[d(x), z] + 2[d(x), y]z + 4[yD(x, z), x] + 4[zD(x, y), x] = 0,

2y[d(x), z] + 2[d(x), y]z + 4[y, x]D(x, z) + 4y[D(x, z), x]

+ 4[z, x]D(x, y) + 4z[D(x, y), x] = 0,

2y[d(x), z] + 2z[d(x), y] + 4[y, x]D(x, z) + 4y[D(x, z), x]

+ 4[z, x]D(x, y) + 4z[D(x, y), x] = 0,

2y([d(x), z] + 2[D(x, z), x]) + 2z([d(x), y] + 2[D(x, y), x])

+ 4[y, x]D(x, z) + 4[z, x]D(x, y) = 0.

By using (4) in the above equation we get

4[y, x]D(x, z) + 4[z, x]D(x, y) = 0,(8)

[y, x]D(x, z) + [z, x]D(x, y) = 0, for all x, y, z ∈ U.

We replace z by x in (8) we get

[y, x ]D (x, x) +[x, x]D (x, y) = 0,(9)

[y, x]D (x, x) = 0, for all x, y ∈ U.
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We replacing y by 2yz in (9), we get [2yz, x]D (x, x) = 0, 2 [y, x] zD (x, x) +
2y [z, x]D (x, x) = 0.

By using (9) in the above equation we get 2[y, x]zD(x, x) = 0, [y, x]zD(x, x) =
0, for all x, y, z ∈ U , this gives [y, x]UD(x, x) = 0, for all x, y ∈ U . By Lemma
4 for each x ∈ U either [y, x] = 0 or D(x, x) = 0, for all x, y ∈ U . In the first
case it fallows that by Lemma 3, x ∈ Z(R) for all x ∈ U . Thus if x /∈ Z(R) then
D(x, x) = 0. Let x, z ∈ U such that x ∈ Z(R) and z /∈ Z(R). Hence x+z /∈ Z(R)
and x− z /∈ Z(R). Thus D(x+ z, x+ z) = 0 and D(x− z, x− z) = 0. Adding
the above two relations, we get 2D(x, x) = 0, since R is 2-torsion free ring, we
get D(x, x) = 0. Thus for all x ∈ U , D(x, x) = 0 and by Lemma 2, d = 0.

Theorem 7. Let R be a 2-torsion free prime ring and U be a square closed lie
ideal of R. Suppose that D : R×R→ R is a symmetric left bi-derivation and
d the trace of D such that d ([x, y])− [d (x) , y] ∈ Z(R), for all x, y ∈ U . Then
either U ⊆ Z(R) or d = 0.

Proof. Suppose on the contrary that U ̸⊆ Z(R). We have

(10) d ([x, y]) − [d (x) , y] ∈ Z(R), for all x, y ∈ U.

We replace y by y + z in (10), we get d([x, y + z]) − [d(x), y + z] ∈ Z(R),
d([x, y]+[x, z])−[d(x), y]−[d(x), z] ∈ Z(R), d([x, y])+d([x, z])+2D([x, y], [x, z])−
[d(x), y] − [d(x), z] ∈ Z(R). By using (10) in the above equation we get

(11) D ([x, y] , [x, z]) ∈ Z(R), for all x, y, z ∈ U

We replace z by y in (11), we get D ([x, y] , [x, y]) ∈ Z(RD ([x, y] , [x, y]) ∈
Z(R), for all x, y ∈ U

(12) d ([x, y]) ∈ Z (R) , for all x, y ∈ U

By subtracting (10) from (12) we get [d (x) , y] ∈ Z(R), for all x, y ∈ U By
using Lemma 5, we get the required result.

Theorem 8. Let R be a 2-torsion free prime ring and U be a square closed lie
ideal of R. Suppose that D : R×R→ R is a symmetric left bi-derivation and
d the trace of D such that d (x ◦ y) − [d (x) , y] ∈ Z (R), for all x, y ∈ U . Then
either U ⊆ Z (R) or d = 0.

Proof. Suppose on the contrary that U ̸⊆ Z (R). We have

(13) d (x ◦ y) − [d (x) , y] ∈ Z(R), for all x, y ∈ U.

We replace y by y + z in (13), we get, d (x ◦ y + z) − [d (x) , y + z] ∈ Z(R),
d (x ◦ y) + d (x ◦ z) + 2D (x ◦ y, x ◦ z)− [d (x) , y]− [d (x) , z] ∈ Z(R). By using
(13) in the above equation we get 2D (x ◦ y, x ◦ z) ∈ Z(R)

(14) D (x ◦ y, x ◦ z) ∈ Z(R), for all x, y, z ∈ U
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We replace z by y in (14), we get D (x ◦ y, x ◦ y) ∈ Z(R), for all x, y ∈ U

(15) d (x ◦ y) ∈ Z(R), for all x, y ∈ U.

By subtracting (13) from (15), we get [d (x) , y] ∈ Z(R), for all x, y ∈ U . By
using Lemma 5, we get the required result.

Theorem 9. Let R be a 2-torsion free prime ring and U be a square closed lie
ideal of R. Suppose that D : R×R→ R is a symmetric left bi-derivation and
d the trace of D such that d (x) ◦ y − [d (x) , y] ∈ Z(R), for all x, y ∈ U . Then
either U ⊆ Z(R) or d = 0.

Proof. Suppose on the contrary that U ̸⊆ Z(R). We have

(16) d (x) ◦ y − [d (x) , y] ∈ Z(R), for all x, y ∈ U.

d (x) y+ yd (x)− d (x) y+ yd (x) ∈ Z(R), 2yd (x) ∈ Z(R), yd (x) ∈ Z(R), for all
x, y ∈ U , [yd (x) , r] = 0, for all x, y ∈ U and r ∈ R.

(17) y [d (x) , r] + [y, r] d (x) = 0, for all x, y ∈ U and r ∈ R.

We replace y by 2yt in (17), we get 2ty [d (x) , r]+[2ty, r] d (x) = 0, 2ty [d (x) , r]+
2t [y, r] d (x) + 2 [t, r] yd (x) = 0. By using (17) in the above equation we get
[t, r] yd (x) = 0, for all x, y, t ∈ U and r ∈ R, [t, r]Ud (x) = 0, for all x, t ∈ U
and r ∈ R. By using Lemma 4 we get either [t, r] = 0 or d (x) = 0, for all
x, t ∈ U and r ∈ R. If [t, r] = 0 then U ⊆ Z(R) a contradiction. Hence if
d (x) = 0 for all x ∈ U , then by Lemma 2, we get d = 0.

Theorem 10. Let R be a 2-torsion free prime ring and U be a square closed lie
ideal of R. Suppose that D : R×R→ R is a symmetric left bi-derivation and d
the trace of D and g : R→ R is any mapping such that [d (x) , y] − [x, g (x)] ∈
Z(R), for all x, y ∈ U . Then either U ⊆ Z(R) or d = 0.

Proof. Suppose on the contrary that U ̸⊆ Z (R). We have

(18) [d (x) , y] − [x, g (y)] ∈ Z(R), for all x, y ∈ U.

We replace x by x+ z in (18), we get [d (x+ z) , y] − [x+ z, g (y)] ∈ Z(R)

[d (x) , y] + [d (z) , y] + 2 [D (x, z) , y] − [x, g (y)] − [z, g (y)] ∈ Z(R)

By using (18) in the above equation we get 2 [D (x, z) , y] ∈ Z(R)

(19) [D (x, z) , y] ∈ Z(R) for all x, y, z ∈ U

We replace z by x in (19), we get [D (x, x) , y] ∈ Z(R), for all x, y ∈ U ,
[d (x) , y] ∈ Z(R), for all x, y ∈ U . Hence by Lemma 3, we get the required
result.
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Theorem 11. Let R be a 2-torsion free prime ring and U be a square closed lie
ideal of R Suppose that D : R×R→ R is a symmetric left bi-derivation and d
the trace of D and g : R→ R is any mapping such that d (x)◦d (y)− [d (x) , y] ∈
Z(R), for all x, y ∈ U . Then either U ⊆ Z (R) or d = 0.

Proof. Suppose on the contrary that U ̸⊆ Z(R). We have

(20) d (x) ◦ d (y) − [d (x) , y] ∈ Z (R) , for all x, y ∈ U.

We replace y by y + z in (20), we get d (x) ◦ d (y + z) − [d (x) , y + z] ∈ Z(R),
(x)◦d (y)+d (x)◦d (z)+2d (x)◦D (y, z)− [d (x) , y]− [d (x) , z] ∈ Z(R), for all
x, y, z ∈ U . By using (20) in the above equation we get 2d (x)◦D (y, z) ∈ Z(R)

(21) d (x) ◦D (y, z) ∈ Z(R)

We replace z by y in (21), we get d (x) ◦D (y, y) ∈ Z(R)

(22) d (x) ◦ d (y) ∈ Z (R) , for all x, y ∈ U

By subtracting (20) from (22), we get [d (x) , y] ∈ Z (R), for all x, y ∈ Z (R).
Thus by using Lemma 1, we get the required result.

Theorem 12. Let R be a 2-torsion free prime ring and U be a square closed lie
ideal of R. Suppose that D : R×R→ R is a symmetric left bi-derivation and d
the trace of D and g : R→ R be any mapping such that d (x) y−xg (y) ∈ Z (R),
for all x, y ∈ U , then either U ⊆ Z(R) or d = 0.

Proof. Suppose on the contrary that U ̸⊆ Z(R). We have

(23) d (x) y − xg (y) ∈ Z(R), for all x, y ∈ U

We replace x by x+ z (23), we get d (x+ z) y − (x+ z) g (y) ∈ Z(R)

(24) d (x) y+ d (z) y+ 2D (x, z) y− xg (y)− zg (y) ∈ Z(R) for all x, y, z ∈ U.

By using (23) in (24), we get 2D (x, z) y ∈ Z (R)

(25) D (x, z) y ∈ Z(R), for all x, y, z ∈ U.

We replace z by x in (25), we get D (x, x) y ∈ Z (R), d (x) y ∈ Z(R), for all
x, y ∈ U

(26) [d (x) y, r] = 0, for all x, y ∈ U and r ∈ R

We replace y by 2yt in (26), we get [d(x)2yt, r] = 0, 2[d(x)y, r]t+2d(x)y[t, r] =
0. By using (26) in the above equation, we get 2d(x)y[t, r] = 0, 2d(x)y[t, r] = 0,
for all x, y ∈ U and r ∈ R, 2d(x)U [t, r] = 0, for all x, y, t ∈ U and r ∈ R,
d(x)U [t, r] = 0, for all x, t ∈ U and r ∈ R.

By using Lemma 4, we get either [t, r] = 0 or d (x) = 0 for all x, t ∈ U and
r ∈ R.

If [t, r] = 0 then U ⊆ Z (R) a contradiction. Hence if d (x) = 0 , for all
x ∈ U , then by Lemma 2, we get d = 0.
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Theorem 13. Let R be a 2-torsion free prime ring and U be a square closed
lie ideal of R. Suppose that D : R × R → R is a symmetric left bi-derivation
and d the trace of D such that d (x) y − xg (y) ∈ Z(R), for all x, y ∈ U , then
either U ⊆ Z (R) or d = 0.

Proof. Suppose on the contrary that U ̸⊆ Z (R). We have

(27) d (xy) − d (x) y − xd (y) ∈ Z(R).

We replace x by x + z in (27), we get d((x+ z)y) − d(x+ z)y − (x+ z)d(y) ∈
Z(R), d(xy + zy)−d(x+ z)y−(x+ z)d(y) ∈ Z(R), d(xy)+d(zy)+2D(xy, zy)−
d(x)y − d(z)y − 2D(x, z)y − xd(y) − zd(y) ∈ Z(R), for all x, y, z ∈ U .

By using (27) in the above equation, we get 2D (xy, zy) − 2D (x, z) y ∈
Z(R),

(28) D (xy, zy) −D (x, z) y ∈ Z (R) , for all x, y, z ∈ U.

We replace z by x in (28), we get D (xy, xy) −D (x, x) y ∈ Z (R),

(29) d (xy) − d (x) y ∈ Z (R) , for all x, y ∈ U.

We replace y by y + z in (29), we get d (x (y + z)) − d (x) (y + z) ∈ Z (R),
d (xy + xz) − d (x) (y + z) ∈ Z (R), d (xy) + d (xz) + 2B (xy, xz) − d (x) y −
d (x) z ∈ Z (R), for all x, y, z ∈ U .

By using (29) in the above equation, we get

(30) B (xy, xz) ∈ Z (R) , for all x, y, z ∈ U.

We replace z by y in (30), we get D (xy, xy) ∈ Z (R),

(31) d (xy) ∈ Z (R) , for all x, y ∈ U.

By subtracting (29), from (31), we get d (x) y ∈ Z (R), for all x, y ∈ Z (R),
[d (x) y, r] = 0, for all x, y, z ∈ U and r ∈ R

(32) [d (x) , r] y + d (x) [y, r] = 0, for all x, y, z ∈ U and r ∈ R.

We replace r by d(x) in (32), we get [d (x) , d (x)] y + d (x) [y, d (x)] = 0,

(33) d (x) [y, d (x)] = 0.

We replace y by 2yz in (33), we get d(x)[2yz, d(x)] = 0, 2d(x)[y, d(x)] +
2d(x)y[z, d(x)] = 0. By using (33) in the above equation we get 2d(x)y[z, d(x)] =
0.

(34) d (x) y [z, d (x)] = 0, for all x, y, z ∈ U.

Multiplying (34) left by z we get

(35) zd (x) y [z, d (x)] = 0 for all x, y, z ∈ U.
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We replace y by 2zy in (34), we get d (x) 2zy [z, d (x)] = 0

(36) d (x) zy [z, d (x)] = 0, for all x, y, z ∈ U.

By combining (35) and (36), we get [z, d(x)]y[z, d(x)] = 0, [z, d(x)]U [z, d(x)] =
{0}. By using Lemma 1, we get [z, d(x)] = 0, for all x, z ∈ U and by Lemma
5, we get d = 0.
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Abstract. We propose a new approach to determine the shortest path in a vague
network(VN), a network in which vertices and edges remain crisp but each edge (i, i+1)
has an associated weight, which is a vague number of the form [Rit, Rif ] for each i. For
each VN, we associate two vague networks called true and false limit fuzzy networks
having the same set of vertices and edges but each edge (i, i + 1) is attached with a
vague weight Rit and Rif respectively. We exhibit that the shortest path of weight
w = [wt, wf ] an vague number in VN, the path for which the shortest path of weight
wt in the true fuzzy network coincides with the shortest path of weight wt in the true
limit vague network. The concept is illustrated with the help of a simple situation and
the validation of mathematical verification is provided.
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1. Introduction

Graph theory has found its importance in many real time problems. Recent ap-
plications in graph theory is quite interesting analysing any complex situations
and moreover in engineering applications. It has got numerous applications on
operations research, system analysis, network routing, transportation and many
more. In 1975, Rosenfeld [22] discussed the concept of fuzzy graphs whose ideas
are implemented by Kauffman [16] in 1973. The fuzzy relation between fuzzy
sets were also considered by Rosenfeld who developed the structure of fuzzy
graphs, obtaining various analagous results of several graph theoretical con-
cepts. Bhattacharya [4] gave some remarks of fuzzy graphs. The complement of
fuzzy graphs was introduced by Mordeson [17]. Atanassov introduced the con-
cept of intuitionistic fuzzy relation and intuitionistic fuzzy graphs [2, 3, 28, 29].
Talebi and Rashmanlou [41] studied the properties of isomorphism and com-
plement of interval-valued fuzzy graphs. They defined isomorphism and some
new operations on vague graphs [42, 43]. Borzooei and Rashmalou analysed
new concepts of vague graphs [5], degree of vertices in vague graphs [6], more
results on vague graphs [7], semi global domination sets in vague graphs with
application [8] and degree and total degree of edges in bipolar fuzzy graphs with
application [9]. Rashmanlou et.al. defined the complete interval-valued fuzzy
graphs [23]. Rashmanlou and Pal studied intuitionistic fuzzy graphs with cate-
gorical properties [28], some properties of highly irregular interval-valued fuzzy
graphs [27], more results on highly irregular bipolar fuzzy graphs [29], balanced
interval-valued fuzzy graphs [25] and antipodal interval-valued fuzzy graphs [24].
Samanta and Pal investigated fuzzy k-competition and p-competition graphs,
and concept of fuzzy planar graphs in [20, 21, 30]. Also they introduced fuzzy
tolerance graph [39], bipolar fuzzy hypergraphs [40] and given several properties
on it. Pal and Rashmanlou [19] defined many properties of irregular interval-
valued fuzzy graphs. Ganesh et al. [12, 13] analysed the properties of Regular
product vague graphs and product vague line graphs.

In graph theory the shortest path problem is the problem of finding a path
between two vertices such that sum of the weight of its constituent edges is
minimized. An example is finding the shortest way to get from one location
to another on a road map. The vertices(or nodes) represents the locations and
are weighted by the time needed to travel that segment and the edges(or links)
represents the roads leading to various places connected through out the des-
tination point. The shortest path problem has transportation, communication
routing and scheduling. Now, in any network path the arc length may represent
time or cost. Therefore in the real world, it can be considered to be a fuzzy
set.To analyse any complete information we make intensive use of graphs and
its properties. For working on partial information or incomplete information
or to handle the systems containing the elements of uncertainty we understand
that fuzzy logic and its involvement in graph theory is applied.
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We analyse the shortest path of any source to destination using vague net-
works(VN). We consider the directed network consisting of a finite set of vertices
and finite set of edges. It is assumed that there is only one edge between any two
vertices. The fuzzy shortest problem was first analysed by Dubois and Prade [11]
. They used Floyd’s algorithm and Ford’s algorithm to treat the fuzzy shortest
path problem. Although in their method of shortest length could be obtained
but sometimes the corresponding path in the network does not exist. [15]Klein
proposed a dynamical programming recursion based fuzzy algorithm [10] and
later developed by many researchers. Recently, the concept of Interval valued
fuzzy matrices(IVFM) as a generalization of fuzzy matrix was introduced by
Shyamal and Pal [38], by extending the max-min operations on Fuzzy algebra
F = [0, 1] for elements a, b ∈ F, a+ b = max{a, b} and a.b = min{a, b}. Let Fmn

be the set of all m×n fuzzy matrices over the fuzzy algebra with support [0, 1],
ie., the matrices whose entries are intervals and all the intervals are subintervals
of the interval [0, 1], then max{ai, bi} = [max{aiL, biL},max{aiU , biU}]. In ear-
lier works, represented Interval Valued Fuzzy Matrices A = (aij) = ([aijL, aijU ])
where each aij is a subinterval of the interval [0, 1] as the interval matrix
A = [AL, AU ] whose ijth entry is the interval [aijL, aijU ], where the lower limit
AL = (aijL) and the upper limit AU = (aijU ) are fuzzy matrices such that the
AL ≤ AU that is aijL ≤ aijU under the usual ordering of real numbers. In this
paper, we adopt a similar technique to determine the shortest path for an vague
network (VN), that is the path in which the sum of the weight of its constituent
edges is minimized, by way of constructing two vague networks corresponding
to the true and false limits for an VN as a generalisation of fuzzy shortest path
technique presented in [15].Meenakshi et al. [18] determined the shortest path
in interval-valued fuzzy networks. Sahoo et al. [31, 32, 33, 34, 35] analysed
about different types of product on intuitionistic fuzzy graphs, intuitionistic
fuzzy competition graph, intuitionistic fuzzy tolerance graph with application,
product on intuitionistic fuzzy graphs and degree, covered and paired domina-
tion in intuitionistic fuzzy graphs. We propose a new approach to determine the
shortest path in VN in which the edges representing the roads connecting the
cities and each edge (i, i+1) has an associated weight representing the traffic on
the road connecting the cities i and i+ 1, which is an vague number of the form
Ri = [RiT , RiF ] for each i and we apply the technique used in [15] to determine
the shortest path in true and false limits of the fuzzy networks. We have defined
the shortest path of VN as the path for which the shortest path in true limit
vague network coincides with the shortest path in false limit vague networks
and weight [wT , wF ] where wT and wF are the weights of the shortest path for
true and false networks respectively.In this work we analyse the shortest path
of vague networks using DP recursion algorithm. For further terminologies, the
readers are referred to [1-6,14,15].
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2. Preliminaries

A graph (V,E) be a set of points V and a set of pairs of these points E. The
set V refers to the vertices of the graph and the set E refers to the edges of the
graph. An edge is denoted by a pair of vertices {i, j}. If E is changed to a set of
ordered pairs of distinct elements of V , then G : (V,E) is a directed graph and
E is the set of ordered pairs (i, j) . The ordered pairs (i, j) are referred to as
arcs or edges and an arc goes from vertex i to vertex j. An arc (i, i) is referred
to as a loop. A path from a vertex s to a vertex t is a sequence of arcs of the
form (p, i1), (i1, i2)...(ik, q).

If each arc (i, j) has an associated weight or length Cij , then an (p, q) path
has an associated weight or length equal to sum of the weights of the constituent
arcs in the path. This in turn gives rise to the shortest path problem, which is
to find the path with minimal weight between two vertices p and q. There are
different ways to find one shortest path for a network. Some of the more general
methods such as the labeling algorithm follow from dynamic progamming. It is
assumed that graphs for the models to be presented or directed graphs, that is
graph without cycles.

For an acyclic directed graphs G : (V,E) with N vertices numbered from 1
to N such that ’1’ is the source and ’N’ is the sink, a dynamic programming(DP)
formulation for the shortest path problem is given as in

(2.1) fi(Si+1) = min
xi

(Ri(Xi, Si+1) + fi−1(S1)),

where fi−1(Si) denotes the optimal value of the objective function corresponding
to the last i−1 stages and Si is the input to the stage i−1, Xi denotes the vector
of decision variable at stage i, Ri(Xi, Si+1) is the return function of the stage i
and fi(Si+1) denotes the optimal value of the objective function corresponding to
the last i stages and Si+1 is the input to the stage i. Throughout the algorithm,
vertex i is labeled with f(i), and labels allow the determination of the path.

Through Belman’s principle of optimality this recursion is very flexible and
has many applications. One obvious flexibility is that the sum in can be replaced
by almost any binary operator and the recursion will hold in . for the fuzzy
optimization problems under that max-min composition, the sum in is the fuzzy
addition and is reformulated as

(2.2) fi(Si+1) = min
xi

(Ri(Xi, Si+1) + fi−1(S1)).

3. Shortest path of an VN

A vague network includes nodes and directed links. Each node represents
a city. Each directed links (i, i + 1) connects city i to i + 1 . Let Xi =
{X1, X2, X3, ..., Xi−1} denotes the vector of decision variable at stage i and
Si = {S1, S2, ..., Si+1} is the input to the stage i − 1. fi−1 denotes the fuzzy
optimal value of the objective function corresponding to the last i− 1 stages.
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If Xi : Ri → Si+1 , then it indicates that the degree of relevance from stage
i to stage i+ 1 is Ri , where Ri is a sub interval of [0, 1] . Let Ri = [RiT , RiF ].

Since Ri is an interval of [0, 1], Rit,Rif
, Ri(Xi, Si+1) is the weight of the

corresponding arc (i, i + 1). For this vague network(VN), let us construct two
networks which we call as true limit vague network (V N)T and false limit vague
network (V N)F with the same set of nodes and links, the weight of the corre-
sponding arc (i, i+ 1) in the lower limit vague network is RiT and in the upper
limit vague network in RiF .

The vague shortest path networks can also be viewed in terms of the Dynamic
programming (DP) recursion given in equation (2.1) . This recursion is very
close to Ford’s Algorithm and is easily extended to vague numbers as in equation
(2.2). Then the DP recursion for lower vague network is

(3.1) fiT (Si+1) = min
Xi

{max[RiT (Xi, Si+1), f(i−1)T (Si)]},

where f(i−1)T (Si) denotes the optimal value of the objective function corre-
sponding to the last i − 1 stages Si is the input to the stage i − 1 of lower
vague networks (V N)t , Xi denotes the vector of decision variable at stage i,
RiT (Xi, Si+1) is the return function of the stage i and fiT (Si+1) denotes the
optimal value of the objective function corresponding to the last i stages and
Si+1 is the input to the stage i of lower vague networks (V N)T . DP recursion
for upper vague network is

(3.2) fiF (Si+1 = min
Xi

{max[RiF (Xi, Si+1), f(i−1)F (Si)]}.

Let us define DP recursion for Interval valued fuzzy network as,

(3.3) fi−1(Si) = [f(i−1)T (Si), f(i−1)F (Si)].

Then by recursion

(3.4) fi(Si+1) = [f(i−1)T (Si+1), f(i−1)F (Si+1)].

By previous equations we get the equation

fi(Si+1) = [min
Xi

{max[RiT (Xi, Si+1), f(i−1)T (Si)]},

min{max[RiF (Xi, Si+1), f(i−1)F (Si)]}
= [min

Xi

{max{RiT (Xi, Si+1), RiF (Xi, Si+1)], [f(i−1)T (Si), f(i−1)F (Si)}}](3.5)

= [min
Xi

{max[RiF (Xi, Si+1), fi−1(Si)]}],

where fi(Si+1) denotes the optimal value of the objective function corresponding
to the last i stages and Si+1 is the input to the stage i of vague networks (VN)
, f(i−1)(Si) denotes the optimal value of the objective function corresponding to
the last i − 1 stages and Si is the input to the stage i − 1 of vague networks
(VN) , Xi denotes the vector of decision variable at stage i , Ri(Xi, Si+1) is the
return function of the stage i of vague networks (VN).
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Definition 3.1. Shortest path in VN = Shortest path in true limit vague network
(V N)T = Shortest path in false limit vague network (V N)F . Weight of the
shortest path of V N = [WT ,WF ] where WT and WF are weights of the fuzzy
shortest path in (V N)T and (V N)F respectively.

Algorithm.

Step 1: Identify the decision variables and specify objective function to be op-
timized for vague networks.

Step 2: Decompose the network into a number of smaller sub intervals. Iden-
tify the stage variable at each stage and write down the vague transformation
function as a function of the state variable and decision variable at the next
stage.

Step 3: Write down a general recursive relationship for completing the vague
optimal policy of VN by using the interval valued fuzzy dynamic programming
recursion in (3.4) and (3.7).

Step 4: Construct appropriate stage to show the required values of the return
function at each Stage in VN.

Step 5: Determine the overall fuzzy optimal decision or policy and its value
at each stage of an VN.

Step 6: We get the shortest path of IVFN.
Now, At

N be the vague networks, representing the weight of N during time
interval t.

(3.6) At
N = [At

NT , A
T
NF ],

where At
NT is the true limit (RiT ) of the vague network and AT

NF is false limit
(RiF ) of the vague network. Then,

(3.7) shortest path in At
N = shortest path in At

NT = shortest path in At
NF .

Weight of the shortest path of VN =

[Weight of the shortest path in At
NT ,(3.8)

Weight of the shortest path in At
NF ].

We shall illustrate the technique with a simple example and provide the
mathematical verification.

Example 3.1. We consider a network N = (V,E) consisting n nodes (cities)
and m edges (roads) connecting the cities of a country. If we measure the
crowdness that is traffic of the roads of the network for particular time duration.
It is quite tough to measure the crowdness in a duration as it is not fixed, but
varies from time to time. So, appropriate technique to grade the crowdness
deals with an interval and not a fixed point. Hence we use the concept of vague
measures true and false limits to analyse the crowdness range.
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The network N is a vague network in which the weight of each arc (i, i+ 1)
depends upon the crowdness.

Suppose that we want to select the shortest highway route(path) between
two cities. The following route network provices the possible routes between
the starting city at node 1 and the destination city at node 7. The routes
pass through intermediate cities designated by nodes 2 to 6. By using our

representation , At
N = [At

NT , A
t
NF ] Now we apply the algorithm to find a path

between city 1 to city 7 which is minimum among all the paths between city 1
to city 7.

(i) Shortest path for the true limit vague network.

First we decompose the true limit vague network into sub networks or
stages as Now S1 is the state in which the node 1 lies also, S1 has only state
value S1 = 1. State S2 has only three possible values say 2,3 and 4 cor-
responding to stage 1 and so on. Possible alternative paths from one stage



174 P.K. KISHORE KUMAR, S. LAVANYA, H. RASHMANLOU and M.N. JOUYBARI

to the other will be called decision variables by Xi the decision which takes
from Si−1 to Si. The return or the gain which obviously being the func-
tion of decision will be denoted by RiT (Xi, Si+1) . Here RiT (Xi, Si+1) can
be identified with the true limit of the corresponding arc. By equation we have
fiT (Si+1) = minXi{max[RiT (Xi, Si+1), f(i−1)T (Si)]}. Now initially for i = 0,
fi(Si+1) = f0(S1) = f0(1) = 0.

For Stage 1, (i=1), f1(S2)= minX1{max[R1T (X1, S2), f0(S1)]}
= minX1 [R1T (X1, S2)].

Now tabulating the date for f1(S2)
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S1 S2 Xi RiT (X1, S2) f1(S2) fuzzy optimal policy

1 2 1-2 0.2 0.2 1-2
3 1-3 0.4 0.4 1-3
4 1-4 0.3 0.3 1-4

For Stage 2 (i = 2), f2(S3) = minX2{max[R2T (X2, S3), f1(S2)]}.

S2 S3 X2 R2T (X2, S3) max(R2, f1) f2(S3) fuzzy optimal policy

2 2-5 0.1 0.2 0.2 2-5

3 5 3-5 0.4 0.4 0.4 3-5
3-6 0.3 0.4 0.4 3-6

4 6 4-5 0.3 0.3 0.3 4-5
4-6 0.4 0.4 0.4 4-6

For last stage 3 (i = 3), f3(S4) = minX3{max[R3L(X3, S4), f2(Sx)]}.

S2 S3 X2 R2T (X2, S3) max(R2, f1) f2(S3) fuzzy optimal policy

5 5-7 0.2 0.4 0.4 5-7

6 7 6-7 0.4 0.4 0.4 6-7

Therefore, for the true limit vague network of the shortest path from city 1
to city 7 is 1→ 4→ 6→ 7
Weight of the shortest path WT = (0.2, 0.1, 0.4).

(ii) Shortest path for the false limit fuzzy matrices. Decompose the false
limit fuzzy network into sub network or stage as follows

Similarly we have to find the false limit of the shortest path. HereRiF (Xi, Si+1)
can be defined with the false limit of the corresponding arc.
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By equation we have, fiF (Si+1) = minXi{max[RiF (Xi, Si+1), f(i−1)F (Si)]}.
Now, initially for i = 0, fi(Si+1) = f0(S1) = f0(1) = 0.

For Stage 1(i = 1), f1(S2) = minX1{max[R1F (X1, S2), f0(S1)]}
= minX1 [R1F (X1, S2)].

Now tabulating the data for f1(S2)

S1 S2 Xi RiT (X1, S2) f1(S2) fuzzy optimal policy

1 2 1-2 0.4 0.4 1-2
3 1-3 0.5 0.5 1-3
4 1-4 0.6 0.6 1-4

For stage 2 (i = 2), f2(S3) = minX2{max[R2(X2, S3), f1(S2)]}.

S2 S3 X2 R2T (X2, S3) max(R2, f1) f2(S3) fuzzy optimal policy

2 2-5 0.3 0.4 0.4 2-5

3 5 3-5 0.6 0.5 0.6 3-5
3-6 0.5 0.5 0.5 3-6

4 6 4-5 0.7 0.6 0.7 4-5
4-6 0.4 0.6 0.6 4-6

For last stage 3 (i = 3), f2(S4) = minX3{max[R3(X3, S4), f2(S3)]}.

S2 S3 X2 R2T (X2, S3) max(R2, f1) f2(S3) fuzzy optimal policy

5 5-7 0.5 0.4 0.5 5-7

6 7 6-7 0.6 0.5 0.6 6-7

Therefore the shortest path from city 1 to city 7 for the false limit vague
network is 1→ 2→ 5→ 7. Weight of the shortest path WF = (0.4, 0.3, 0.6).

Now we conclude by equation. Shortest path in At
N = Shortest path in

At
NT = Shortest path in At

NF = 1 → 2 → 5 → 7, ie.., W = [WT ,WF ] =
[(0.2, 0.1, 0.4), (o.4, 0.3, 0.6)] = ([0.2, 0.4], [0.1, 0.3], [0.4, 0.6]).

Therefore the shortest path of V N is 1→ 2→ 5→ 7

4. Conclusion

In this work we construct two vague networks namely (FN)T and (FN)F with
the associated weight RiT and RiF respectively. Since the vertex sets and edge
sets are same for VN, (FN)T and (FN)F and weight of the each node (i, i+ 1)
in VN is an interval of the form Wi = [WiT ,WiF ] . We conclude that the
shortest path for an VN is the path for which the shortest path in true limit
vague network coincides with the shortest path in false limit vague network and
weight is [WT ,WF ] where WT andWF are the weights of the shortest path for
true and false limit vague networks.
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Abstract. Intuitionistic fuzzy graphs is a highly growing research area as it is the
generalization of the fuzzy graphs. In this paper, we introduce the concept of Interval-
valued Intuitionistic fuzzy graphs(IVIFG), we also analyse some properties of IVIFG
based on morphism such as weak isomorphism, co-weak isomorphism and some concepts
on automorphism.
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1. Introduction

Graph theory has found its importance in many real time problems. Recent ap-
plications in graph theory is quite interesting analysing any complex situations
and moreover in engineering applications. It has got numerous applications

∗. Corresponding author
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on operations research, system analysis, network routing, transportation and
many more. To analyse any complete information we make intensive use of
graphs and its properties. For working on partial information or incomplete
information or to handle the systems containing the elements of uncertainty
we understand that fuzzy logic and its involvement in graph theory is applied.
In 1975, Rosenfeld [21] discussed the concept of fuzzy graphs whose ideas are
implemented by Kauffman [18] in 1973. The fuzzy relation between fuzzy sets
were also considered by Rosenfeld who developed the structure of fuzzy graphs,
obtaining various analagous results of several graph theoretical concepts. Bhat-
tacharya [4] gave some remarks of fuzzy graphs. The complement of fuzzy
graphs was introduced by Mordeson [19]. Atanassov introduced the concept of
intuitionistic fuzzy relation and intuitionistic fuzzy graphs [2, 3, 32, 33]. Talebi
and Rashmanlou [36] studied the properties of isomorphism and complement of
interval-valued fuzzy graphs. They defined isomorphism and some new oper-
ations on vague graphs [37, 38]. Borzooei and Rashmalou analysed new con-
cepts of vague graphs [5], degree of vertices in vague graphs [6], more results
on vague graphs [7], semi global domination sets in vague graphs with appli-
cation [8] and degree and total degree of edges in bipolar fuzzy graphs with
application [9]. Rashmanlou et.al., defined the complete interval-valued fuzzy
graphs [24]. Rashmanlou and Pal studied intuitionistic fuzzy graphs with cate-
gorical properties [29], some properties of highly irregular interval-valued fuzzy
graphs [28], more results on highly irregular bipolar fuzzy graphs [30], balanced
interval-valued fuzzy graphs [26] and antipodal interval-valued fuzzy graphs [25].
Samanta and Pal investigated fuzzy k-competition and p-competition graphs,
and concept of fuzzy planar graphs in [21, 22, 31] . Also they introduced fuzzy
tolerance graph [34], bipolar fuzzy hypergraphs [35] and given several properties
on it. Pal and Rashmanlou [20] defined many properties of irregular interval-
valued fuzzy graphs. Ganesh et al. [10, 11] analysed the properties of Regular
product vague graphs and product vague line graphs. The article has been com-
posed of four sections. Ganesh et al. [12, 13, 14, 15] has analysed some concepts
on faces and dual of m-polar fuzzy graphs, regular bipolar fuzzy graphs, iso-
morphic properties of m-polar fuzzy graphs and novel concepts on strongly edge
irregular m-polar fuzzy graphs.In section 1,we introduce the survey of Interval-
valued intuitionistic fuzzy graphs. In section 2 we define the preliminaries of
Intuitionistic fuzzy graphs and basic definitions, definition of IVIFG. In section
3 we define automorphic IVIFG and analyse the concepts of weak and co-weak
isomorphic properties of IVIFG.For further terminologies, the readers are re-
ferred to [1-6,12,13].

2. Preliminaries

A fuzzy graph G=(V,σ,µ) where V is the vertex set, σ is a fuzzy subset of V
and µ is a membership value on σ such that µ(u,v) ≤ σ(u) ∧ σ(v) for every
u,v ∈ V.The underlying crisp graph of G is denoted by G∗ = (σ∗, µ∗), where
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σ = sup ρ(σ) = {x ∈ V : σ(x) > 0}andµ = sup ρ(µ) = {(x, y) ∈ V × V :
µ(x, y) > 0}. H = (σp;µp) is a fuzzy subgraph of G if there exists X ⊆ V such
that, σp : X → [0, 1] is a fuzzy subset andµp : X ×X → [0, 1] is a fuzzy relation
on σp such that µ(u,v) ≤ σ(u) ∧ σ(v), for all x,y ∈ X.

Definition 2.1. By an interval-valued fuzzy graph of a graph G we mean a
pair G∗ = (A,B) where A = [µ−A, µ

+
A] and µB : V × V → [0, 1] are bijective

such that membership value of nodes and edges are distinct and µB(x, y) ≤
µv(x) ∧ µv(y)∀x, y ∈ V

Definition 2.2. An interval [µ − ε, µ + ε] is said to be an ε-neighborhood of
any membership value(ie., corresponding to any nodes or edges) µ for any ε
satisfying the following conditions.

(i) ε ≯ min{µv(vi), µe(eij)};
(ii) ε ≯ 1−max{µv(vi), µe(eij)};
(iii) ε 6= d(µ(x), µ(y))or 12d(µ(x), µ(y)) where d(µ(x), µ(y)) = |µ(x) − µ(y)|

and µ(x), µ(y) are the membership or nodes or edges.

Definition 2.3. By an interval-valued intuitionistic fuzzy graph of a graph G
we mean a pair G∗ = (A,B) where A = [(µ−A, µ

+
A), (ν−A , ν

+
A )] and µe : V × V →

[0, 1] and νe : V × V → [0, 1] are bijective such that true and false membership
value of nodes and edges are distinct and µe(x, y) ≤ µv(x) ∧ µv(y)∀x, y ∈ V ,
νe(x, y) ≥ νv(x) ∨ νv(y)∀x, y ∈ V

Definition 2.4. An interval-valued intuitionistic fuzzy graph(IVIFG) is said to
be strong for the lower and upper bounds (µ−, µ+) and (ν−, ν+) of the edges and
vertices satisfying the following conditions µe(x, y) = µv(x) ∧ µv(y)∀x, y ∈ V ,
νe(x, y) = νv(x) ∨ νv(y)∀x, y ∈ V

Definition 2.5. Let G = (V,E) be an IVIFG. Then the degree of a vertex v
is defined by d(v) = (dµ(v), dν(v)) where dµ(v) =

∑
u6=v(µ

−
e (v, u), µ+e (v, u)) and

dν(v) =
∑

u6=v(ν
−
e (v, u), ν+e (v, u))

Definition 2.6. Let G = (V,E) be an IVIFG. Then the total degree of a ver-
tex v is defined by td(v) = (tdµ(v), tdν(v)) where tdµ(v) =

∑
u6=v(µ

−
e (v, u) +

µ−v (v), µ+e (v, u)+µ+v (v)) and tdν(v) =
∑

u6=v(ν
−
e (v, u)+ν−v (v), ν+e (v, u)+ν+v (v))

Definition 2.7. Let G = (V,E) be an IVIFG. If all the vertices of G have same
degree then G is said to be regular IVIFG.

Definition 2.8. Let G = (V,E) be an IVIFG. Then the order of G is defined
as O(G) = [

∑
v∈V µ

−
v (v),

∑
v∈V µ

+
v (v)], [

∑
v∈V ν

−
v (v),

∑
v∈V ν

+
v (v)]

Definition 2.9. Let G = (V,E) be an IVIFG. Then the size of G is defined as
S(G) = [

∑
u6=v µ

−
e (v, u),

∑
u6=v µ

+
e (v, u)], [

∑
u6=v ν

−
e (v, u),

∑
u6=v ν

+
e (v, u)]

Remark 2.1. In any IVIFG G, we have∑
v∈V

dG(v) = 2{(
∑
u6=v

µ−e (v, u),
∑
u6=v

µ+e (v, u)]), (
∑
u6=v

ν−e (v, u),
∑
u6=v

ν+e (v, u))} = 2S(G).
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Definition 2.10. Let G = (V,E) be an IVIFG. Let eij ∈ B be an edge of G
where eij has its lower and upper bounds µ−e , ν

−
e and µ+e , ν

+
e . Then the degree

of an edge eij defined as dµ(eij) = dµ(vi) + dµ(vj) − 2µe(eij) and dν(eij) =
dν(vi) + dν(vj) − 2νe(eij), for all its the vertices having the lower and upper
bounds µ−, ν− and µ+, ν+ respectively.

Definition 2.11. Let G = (V,E) be an IVIFS. Let eij ∈ B be an edge of
G where eij has its lower and upper bounds µ−e , ν

−
e and µ+e , ν

+
e . Then the to-

tal degree of an edge eij defined as tdµ(eij) = dµ(eij) + µ(eij) and tdν(eij) =
dν(eij) + ν(eij), for all the lower and upper bounds µ−, ν− and µ+, ν+ respec-
tively.

3. Automorphic IVIFG

In this section we introduce the isomorphic properties of IVIFG.

Example 3.1. The below figure represents the IVIFG G of a crisp graph G∗

Throughout this work G∗ is a crisp graph and G is a IVIFG.

Definition 3.1. Let G1 and G2 be the IVIFGs. A homomorphism f : G1 → G2

is a mapping f : V1 → V2 which satisfies the following conditions:

(i) µ−A1
(x1) ≤ µ−A2

(f(x1)), µ
+
A1

(x1) ≤ µ+A2
(f(x1));

(ii) ν−A1
(x1) ≥ ν−A2

(f(x1)), ν
+
A1

(x1) ≥ ν+A2
(f(x1));

(iii) µ−B1
x1y1 ≤ µ−B2

(f(x1f(y1)), µ
+
B1
x1y1 ≤ µ+B2

(f(x1f(y1));

(iv) ν−B1
x1y1 ≥ ν−B2

(f(x1f(y1)), ν
+
B1
x1y1 ≥ ν+B2

(f(x1f(y1)), for all x1 ∈
V1, x1y1 ∈ E1.

Definition 3.2. Let G1 and G2 be the IVIFGs. An isomorphism f : G1 → G2

is a bijective mapping f : V1 → V2 which satisfies the following conditions:

(i) µ−A1
(x1) = µ−A2

(f(x1)), µ
+
A1

(x1) = µ+A2
(f(x1));
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(ii) ν−A1
(x1) = ν−A2

(f(x1)), ν
+
A1

(x1) = ν+A2
(f(x1));

(iii) µ−B1
(x1y1) = µ−B2

(f(x1f(y1)), µ
+
B1

(x1y1) = µ+B2
(f(x1f(y1));

(iv) ν−B1
(x1y1) = ν−B2

(f(x1f(y1)), ν
+
B1

(x1y1) = ν+B2
(f(x1f(y1)), for all x1 ∈

V1, x1y1 ∈ E1.

Definition 3.3. Let G1 and G2 be the IVIFGs. Then a weak isomorphism
f : G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following
conditions:

(i) f is a homomorphism;

(ii) µ−A1
(x1) = µ−A2

(f(x1)), µ
+
A1

(x1) = µ+A2
(f(x1));

(iii) ν−A1
(x1) = ν−A2

(f(x1)), ν
+
A1

(x1) = ν+A2
(f(x1)).

It is clear that a weak isomorphism maintains only the weights of the nodes.

Example 3.2. Consider the IVIFGs G1 and G2 of G∗1 and G∗2 respectively,

A map f : V1 → V2 defined by f(u1) = v3, f(u2) = v1 and f(u3) = v2. Then we
have:

µ−A1
(u1) = µ−A2

(v3), µ
+
A1

(u1) = µ+A2
(v3),

ν−A1
(u1) = ν−A2

(v3), ν
+
A1

(u1) = ν+A2
(v3).

µ−A1
(u2) = µ−A2

(v1), µ
+
A1

(u2) = µ+A2
(v1),

ν−A1
(u2) = ν−A2

(v1), ν
+
A1

(u2) = ν+A2
(v1).

µ−A1
(u3) = µ−A2

(v2), µ
+
A1

(u3) = µ+A2
(v2),

ν−A1
(u3) = ν−A2

(v2), ν
+
A1

(u3) = ν+A2
(v2).
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But we see that:

µ−B1
(u1u2) = µ−B2

(v3v1), µ
+
B1

(u1u2) 6= µ+B2
(v3v1),

ν−B1
(u1u2) 6= ν−B2

(v3v1), ν
+
B1

(u1u2) 6= ν+B2
(v3v1)

µ−B1
(u1u3) = µ−B2

(v3v2), µ
+
B1

(u1u3) 6= µ+B2
(v3v2),

ν−B1
(u1u3) = ν−B2

(v3v2), ν
+
B1

(u1u3) 6= ν+B2
(v3v2)

µ−B1
(u3u2) = µ−B2

(v2v1), µ
+
B1

(u3u2) 6= µ+B2
(v2v1),

ν−B1
(u3u2) = ν−B2

(v2v1), ν
+
B1

(u3u2) 6= ν+B2
(v2v1).

Hence the map is a weak isomorpism but not an isomorphism.

Definition 3.4. Let G1 and G2 be the IVIFGs. Then a co-weak isomorphism
f : G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following
conditions:

(i) f is a homomorphism;
(ii) µ−B1

(x1y1) = µ−B2
(f(x1)f(y1)), µ

+
B1

(x1y1) = µ+B2
(f(x1)f(y1));

(iii) ν−B1
(x1y1) = ν−B2

(f(x1)f(y1)), ν
+
B1

(x1y1) = ν+B2
(f(x1)f(y1)), for all x1 ∈

V1, x1y1 ∈ E1.

It is clear that a co-weak isomorphism maintains only the weights of the
arcs.

Example 3.3. Consider the IVIFGs G1 and G2 of G∗1 and G∗2 respectively,

A map f : V1 → V2 defined by f(u1) = v3, f(u2) = v1 and f(u3) = v2. Then we
have:

µ−A1
(u1) = µ−A2

(v3), µ
+
A1

(u1) = µ+A2
(v3),

ν−A1
(u1) 6= ν−A2

(v3), ν
+
A1

(u1) = ν+A2
(v3).

µ−A1
(u2) 6= µ−A2

(v1), µ
+
A1

(u2) = µ+A2
(v1),

ν−A1
(u2) = ν−A2

(v1), ν
+
A1

(u2) 6= ν+A2
(v1).

µ−A1
(u3) 6= µ−A2

(v2), µ
+
A1

(u3) 6= µ+A2
(v2),

ν−A1
(u3) 6= ν−A2

(v2), ν
+
A1

(u3) 6= ν+A2
(v2).
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But we see that

µ−B1
(u1u2) = µ−B2

(v3v1), µ
+
B1

(u1u2) = µ+B2
(v3v1),

ν−B1
(u1u2) = ν−B2

(v3v1), ν
+
B1

(u1u2) = ν+B2
(v3v1)

µ−B1
(u1u3) = µ−B2

(v3v2), µ
+
B1

(u1u3) = µ+B2
(v3v2),

ν−B1
(u1u3) = ν−B2

(v3v2), ν
+
B1

(u1u3) = ν+B2
(v3v2)

µ−B1
(u3u2) = µ−B2

(v2v1), µ
+
B1

(u3u2) = µ+B2
(v2v1),

ν−B1
(u3u2) = ν−B2

(v2v1), ν
+
B1

(u3u2) = ν+B2
(v2v1).

Hence the map is a co-weak isomorpism but not an isomorphism.

Remark 3.1. 1. If G1 = G2 = G, then the homomorphism f over itself is
called an endomorphism. An Isomorphism f over G is called an automor-
phism.

2. Let A = (µ−A, µ
+
A, ν

−
A , ν

+
A ) be an IVIFG with an underlying set V . Let

Aut(G) be the set of all bipolar intuitionistic automorphism of G. Let
e : G→ G be a map defined by e(x) = x, for all x ∈ V clearly e ∈ Aut(G).

3. If G1 = G2, then the weak and co-weak isomorphishms actually become
isomorphic.

4. If f : V1 → V2 is a bijective map then f−1 : V1 → V2 is also a bijective
map.

Definition 3.5. An Interval-valued intuitionistic fuzzy set A = (µ−A, µ
+
A, ν

−
A , ν

+
A )

in a semigroup S is called a interval-valued intuitionistic subsemigroup of S if
it satisfies the following conditions:

µ−B(xy) ≤ (µ−A(x) ∧ µ−A(y)) , µ+B(xy) ≤ (µ+A(x) ∧ µ+A(y))
ν−B (xy) ≥ (ν−A (x) ∨ µ−A(y)) , ν+B (xy) ≥ (ν+A (x) ∨ ν+A (y)), for all x, y ∈ S.

Definition 3.6. An Interval-valued intuitionistic fuzzy set A = (µ−A, µ
+
A, ν

−
A , ν

+
A )

in a group G is called a interval-valued intuitionistic fuzzy subgroup of a group
G if it is a interval-valued intuitionistic fuzzy sub-semigroup of G and satisfies
µ−A(x−1) = µ−A(x), µ+A(x−1) = µ+A(x), ν−A (x−1) = ν−A (x), ν+A (x−1) = ν+A (x)

We now show how to associate an interval-valued intuitionistic fuzzy group
with a interval-valued intuitionistic fuzzy graph in a natural way.

Proposition 3.1. Let G = (A,B) be an IVIFG and let Aut(G) be the set of all
automorphisms of G. Then (Aut(G), ◦) forms a group.

Proof. We have the following conditions:

µ−A((φ ◦ ψ)(x)) = µ−A(φ(ψ(x))) ≤ µ−A(φ(x)) ≥ µ−A(x),

µ+A((φ ◦ ψ)(x)) = µ+A(φ(ψ(x))) ≤ µ+A(φ(x)) ≥ µ+A(x),

ν−A ((φ ◦ ψ)(x)) = ν−A (φ(ψ(x))) ≥ ν−A (φ(x)) ≥ ν−A (x),

ν+A ((φ ◦ ψ)(x)) = ν+A (φ(ψ(x))) ≥ ν+A (φ(x)) ≥ ν+A (x),
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µ−B((φ ◦ ψ)(x))(φ ◦ ψ)(y))) = µ−B(φ(ψ(x)))φ(ψ(y)) ≤ µ−B(φ(x)φ(y)) ≤ µ−B(xy),

µ+B((φ ◦ ψ)(x))(φ ◦ ψ)(y))) = µ+B(φ(ψ(x)))φ(ψ(y)) ≤ µ+B(φ(x)φ(y)) ≤ µ+B(xy),

ν−B ((φ ◦ ψ)(x))(φ ◦ ψ)(y))) = ν−B (φ(ψ(x)))φ(ψ(y)) ≥ ν−B (φ(x)φ(y)) ≥ ν−B (xy),

ν+B ((φ ◦ ψ)(x))(φ ◦ ψ)(y))) = ν+B (φ(ψ(x)))φ(ψ(y)) ≥ ν+B (φ(x)φ(y)) ≥ ν+B (xy).

Thus φ ◦ ψ ∈ Aut(G). Clearly, Aut(G) satisfies associativity under the
operation ◦ , φ ◦ e = e ◦ φ.

µ−A(φ−1) = µ−A(φ),µ+A(φ−1) = µ+A(φ),ν−A (φ−1) = ν−A (φ),ν+A (φ−1) = ν+A (φ), for
all φ ∈ Aut(G).

Hence (Aut(G), ◦) forms a group.

Now we state some propositions without their proofs as follows.

Proposition 3.2. Let G = (A,B) be an IVIFG and let Aut(G) be the set of all
automorphisms of G. Let g = (µ−g , µ

+
g , ν

−
g , ν

+
g ) be an interval-valued intuition-

istic fuzzy set in Aut(G) defined by

µ−g (φ) = inf{µ−B(φ(x), φ(y)) : (x, y) ∈ V × V },
µ+g (φ) = inf{µ+B(φ(x), φ(y)) : (x, y) ∈ V × V },
ν−g (φ) = sup{ν−B (φ(x), φ(y)) : (x, y) ∈ V × V },
ν+g (φ) = sup{ν+B (φ(x), φ(y)) : (x, y) ∈ V × V },

for all φ ∈ Aut(G). Then g = (µ−g , µ
+
g , ν

−
g , ν

+
g ) is an interval-valued intuitionis-

tic fuzzy group on Aut(G).

Proposition 3.3. Every interval-valued intuitionistic fuzzy group has an em-
bedding into the interval-valued intuitionistic fuzzy group of the group of auto-
morphisms of some IVIFG.

We now prove that the isomorphism (weak isomorphism) between IVIFG is
an equivalence solution (partial order relation).

Proposition 3.4. Let G1, G2, G3 be IVIFGs. Then the isomorphism between
these IVIFGs is an equivalence relation.

Proof. Reflexivity property is obvious. To prove the symmetry, let f : V1 → V2
be an isomorphism of G1 onto G2. Then f is bijective map defined by

(3.1) f(x1) = x2, ∀x1 ∈ V1

satistying the following conditions:
(i) µ−A1

(x1) = µ−A2
(f(x1)), µ

+
A1

(x1) = µ+A2
(f(x1));

(ii) ν−A1
(x1) = ν−A2

(f(x1)), ν
+
A1

(x1) = ν+A2
(f(x1));

(iii) µ−B1
(x1y1) = µ−B2

(f(x1)f(y1)), µ
+
B1

(x1y1) = µ+B2
(f(x1)f(x2));

(iv) ν−B1
(x1y1) = ν−B2

(f(x1)f(y1)), ν
+
B1

(x1y1) = ν+B2
(f(x1)f(x2)), for all x1 ∈

V1, x1y1 ∈ E1.
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Since f is bijective from 3.1 it follows that: f−1(x2) = x1, for all x2 ∈ V2.
Thus:

(i) µ−A1
(f−1(x2)) = µ−A2

(x2), µ
+
A1

(f−1(x2)) = µ+A2
(x2);

(ii) ν−A1
(f−1(x2)) = ν−A2

(x2), ν
+
A1

(f−1(x2)) = ν+A2
(x2), for all x2 ∈ V2;

(iii) µ−B1
(f−1(x2y2)) = µ−A2

(x2y2), µ
+
A1

(f−1(x2y2)) = µ+A2
(x2y2);

(iv) ν−B1
(f−1(x2y2)) = ν−A2

(x2y2), ν
+
A1

(f−1(x2y2)) = ν+A2
(x2y2), for all x2y2 ∈

E2.

Hence a bijective map f−1 : V2 → V1 is an isomorphism from G2 onto G2.

To prove the transitivity, let f : V1 → V2 and g : V2 → V3 be the isomor-
phisms of G1 onto G2 and G2 onto G3, respectively. Then g ◦ f : V1 → V3 is a
bijective map from V1 and V3, where (g◦f)(x1) = g(f(x1)), for all x1 ∈ V1. Since
a map f : V1 → V2 defined by f(x1) = x2, for all x1 ∈ V1 is an isomorphism, so
we have

µ−A1
(x1) = µ−A2

(f(x1)) = µ−A2
(x2),

µ+A1
(x1) = µ+A2

(f(x1)) = µ+A2
(x2),

ν−A1
(x1) = ν−A2

(f(x1)) = ν−A2
(x2),(3.2)

ν+A1
(x1) = ν+A2

(f(x1)) = ν+A2
(x2), ∀x1 ∈ V1.

µ−B1
(x1y1) = µ−B2

(f(x1)f(y1)) = µ−B2
(x2y2),

µ+B1
(x1y1) = µ+B2

(f(x1)f(y1)) = µ+B2
(x2y2),

ν−B1
(x1y1) = ν−B2

(f(x1)f(y1)) = ν−B2
(x2y2),(3.3)

ν+B1
(x1y1) = ν+B2

(f(x1)f(y1)) = ν+B2
(x2y2), ∀x1y1 ∈ E2.

Since a map g : V2 → V3 defined by g(x2) = x3 for x2 ∈ V2 is an isomorphism,
We have

µ−A2
(x2) = µ−A3

(g(x2)) = µ−A3
(x3),

µ+A2
(x2) = µ+A3

(g(x2)) = µ+A3
(x3),

ν−A2
(x2) = ν−A3

(g(x2)) = ν−A3
(x3),(3.4)

ν+A2
(x2) = ν+A3

(g(x2)) = ν+A3
(x3),∀x2 ∈ V2.

µ−B2
(x2y2) = µ−B3

(g(x2)g(y2)) = µ−B3
(x3y3),

µ+B2
(x2y2) = µ+B3

(g(x2)g(y2)) = µ+B3
(x3y3),

ν−B2
(x2y2) = ν−B3

(g(x2)g(y2)) = ν−B3
(x3y3),(3.5)

ν+B2
(x2y2) = ν+B3

(g(x2)g(y2)) = ν+B3
(x3y3).
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From 3.2 and 3.4 and f(x1) = x2,x1 ∈ V1, we have

µ−A1
(x1) = µ−A2

(f(x1)) = µ−A3
(g(x2)) = µA3(g(f(x1)),

µ+A1
(x1) = µ+A2

(f(x1)) = µ+A3
(g(x2)) = µA3(g(f(x1)),

ν−A1
(x1) = ν−A2

(f(x1)) = ν−A3
(g(x2)) = νA3(g(f(x1)),(3.6)

ν+A1
(x1) = ν+A2

(f(x1)) = ν+A3
(g(x2)) = νA3(g(f(x1)),∀x1 ∈ V1.

From 3.3 and 3.5, we have

µ−B1
(x1y1) = µ−B2

(f(x1)f(y1)) = µ−B2
(x2y2) = µ−B3

(g(x2)g(y2))

= µ−B3
(g(f(x1))g(f(y1)),

µ+B1
(x1y1) = µ+B2

(f(x1)f(y1)) = µ+B2
(x2y2) = µ+B3

(g(x2)g(y2))

= µ+B3
(g(f(x1))g(f(y1)),(3.7)

ν−B1
(x1y1) = ν−B2

(f(x1)f(y1)) = ν−B2
(x2y2) = ν−B3

(g(x2)g(y2))

= ν−B3
(g(f(x1))g(f(y1)),

ν+B1
(x1y1) = ν+B2

(f(x1)f(y1)) = ν+B2
(x2y2) = ν+B3

(g(x2)g(y2))

= ν+B3
(g(f(x1))g(f(y1)), ∀x1y1 ∈ E1.

Thus, we prove that g ◦ f is an isomorphism between G1 and G3.
Hence the proof.

Proposition 3.5. Let G1, G2, G3 be IVIFGs. Then the weak isomorphism
between these IVIFGs is a partial order relation.

Proof. Reflexive property is obvious.
To prove the antisymmetry, let f : V1 → V2 be a weak isomorphism of G1

onto G2. Then f is a bijective map defined by f(x1) = x2, for all x1 ∈ V1
satisfying the following

(i) µ−A1
(x1) = µ−A2

(f(x1)), µ
+
A1

(x1) = µ+A2
(f(x2)),

(ii) ν+A1
(x1) = ν+A2

(f(x1)), ν
+
A1

(x1) = ν+A2
(f(x2)),

(iii) µ−B1
(x2y2) ≤ µ−B2

(f(x1)f(y1)), µ
+
B1

(x1y1) ≤ µ+B1
(f(x1)f(y1),(3.8)

(iv) ν−B1
(x2y2) ≥ ν−B2

(f(x1)f(y1)), ν
+
B1

(x1y1)

≥ ν+B1
(f(x1)f(y1).x1 ∈ V1,∀x1y1 ∈ E1.

Let g : V2 → V1 be a weak isomorphism of G2 onto G1. Then g is a bijective
map defined by g(x2) = x1, for all satisfying

µ−A2
(x2) = µ−A1

(g(x2)), µ
+
A2

(x2) = µ+A1
(g(x2)),

ν−A2
(x2) = ν−A1

(g(x2)), ν
+
A2

(x2) = ν+A1
(g(x2)), ∀x1 ∈ V2

µ−B2
(x2y2) ≤ µ−B1

(g(x2)g(y2)), µ
+
B1

(x2y2) ≤ µ+B1
(g(x2)g(y2),(3.9)

ν−B2
(x2y2) ≥ ν−B1

(g(x2)g(y2)), ν
+
B1

(x2y2) ≥ ν+B1
(g(x2)g(y2), ∀x2y2 ∈ E2.
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The inequalities 3.8 and 3.9 holds on the finite sets V1 and V2 only when G1 and
G2 have the same number of edges and the corresponding edges have weight.
Hence G1 and G2 are identical.

To prove the transitivity, let f : V1 → V2 and g : V2 → V3 be the isomor-
phisms of G1 onto G2 and G2 onto G3, respectively. Then g ◦ f : V1 → V3 is
a bijective map from V1 and V3, where (g ◦ f)(x1) = g(f(x1)), for all x1 ∈ V1.
Since a map f : V1 → V2 defined by f(x1) = x2, for all x1 ∈ V1 is a weak
isomorphism, so we have

µ−A1
(x1) = µ−A2

(f(x1)) = µ−A2
(x2),

µ+A1
(x1) = µ+A2

(f(x1)) = µ+A2
(x2),

ν−A1
(x1) = ν−A2

(f(x1)) = ν−A2
(x2),(3.10)

ν+A1
(x1) = ν+A2

(f(x1)) = ν+A2
(x2),∀x1 ∈ V1.

µ−B1
(x1y1) ≤ µ−B2

(f(x1)f(y1)) = µ−B2
(x2y2)

µ+B1
(x1y1) ≤ µ+B2

(f(x1)f(y1)) = µ+B2
(x2y2)

ν−B1
(x1y1) ≥ ν−B2

(f(x1)f(y1)) = ν−B2
(x2y2)(3.11)

ν+B1
(x1y1) ≥ ν+B2

(f(x1)f(y1)) = ν+B2
(x2y2), ∀x1y1 ∈ E1.

Since a map g : V2 → V3 defined by g(x2) = x3 for x2 ∈ V2 is a weak isomor-
phism, We have

µ−A2
(x2) = µ−A3

(g(x2)) = µ−A3
(x3),

µ+A2
(x2) = µ+A3

(g(x2)) = µ+A3
(x3),

ν−A2
(x2) = ν−A3

(g(x2)) = ν−A3
(x3),(3.12)

ν+A2
(x2) = ν+A3

(g(x2)) = ν+A3
(x3), ∀x2 ∈ V2.

µ−B2
(x2y2) ≤ µ−B3

(g(x2)g(y2)) = µ−B3
(x3y3),

µ+B2
(x2y2) ≤ µ+B3

(g(x2)g(y2)) = µ+B3
(x3y3),

ν−B2
(x2y2) ≥ ν−B3

(g(x2)g(y2)) = ν−B3
(x3y3),(3.13)

ν+B2
(x2y2) ≥ ν+B3

(g(x2)g(y2)) = ν+B3
(x3y3), ∀x1y1 ∈ E1.

From 3.10 and 3.12 and f(x1) = x2,x1 ∈ V1, we have

µ−A1
(x1) = µ−A2

(f(x1)) = µ−A3
(g(x2)) = µA3(g(f(x1)),

µ+A1
(x1) = µ+A2

(f(x1)) = µ+A3
(g(x2)) = µA3(g(f(x1)),

ν−A1
(x1) = ν−A2

(f(x1)) = ν−A3
(g(x2)) = νA3(g(f(x1)),(3.14)

ν+A1
(x1) = ν+A2

(f(x1)) = ν+A3
(g(x2)) = νA3(g(f(x1)),∀x1 ∈ V1.



NEW CONCEPTS IN INTERVAL-VALUED INTUITIONISTIC FUZZY GRAPHS 191

From 3.11 and 3.13, we have

µ−B1
(x1y1) ≤ µ−B2

(f(x1)f(y1)) = µ−B2
(x2y2) = µ−B3

(g(x2)g(y2))

= µ−B3
(g(f(x1))g(f(y1)),

µ+B1
(x1y1) ≤ µ+B2

(f(x1)f(y1)) = µ+B2
(x2y2) = µ+B3

(g(x2)g(y2))

= µ+B3
(g(f(x1))g(f(y1)),

ν−B1
(x1y1) ≥ ν−B2

(f(x1)f(y1)) = ν−B2
(x2y2)(3.15)

= ν−B3
(g(x2)g(y2))

= ν−B3
(g(f(x1))g(f(y1)),

ν+B1
(x1y1) ≥ ν+B2

(f(x1)f(y1)) = ν+B2
(x2y2) = ν+B3

(g(x2)g(y2))

= ν+B3
(g(f(x1))g(f(y1)),∀x1y1 ∈ E1.

Thus, we prove that g ◦ f is a weak isomorphism between G1 and G3. Hence
the proof.

4. Conclusion

Interval-valued intuitionistic fuzzy graph have numerous application in the real
life systems and real life applications where the level of information inherited
in the system varies with respect to time and have different level of precision.
Most of the actions in real life situations are time dependent and also ambigous
in partial information, symbolic models in expert system are more effective than
traditional methods to identify the upper and lower bounds of the true and false
membership values in an interval. In this paper, we introduced the concept of
automorphism on IVIFG. Also we investigate the properties of morphism on
IVIFG.
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Abstract. Linear codes are an important class of codes. They are the most studied
codes from a mathematical point of view. In this work, we propose linear codes in
unitary space, then describe a way for finding a new parity check matrix of linear codes
in unitary space. In the end, we give a decoding procedure for linear codes in unitary
space.

Keywords: linear codes, generator matrix, parity check matrix, unitary space.

1. Introduction

Among all types of codes, linear codes are studied the most. Since linear codes
are vector spaces, their algebraic structure often make them easier to describe,
encode, and decode than nonlinear codes. The code alphabet for linear codes
is a finite field, although sometimes other algebraic structures can be used to
define codes that are also called linear.

Let Fn
q denote the vector space of all n-tuples over the finite field Fq. An

(n,M)-code C over Fq is a subset of Fn
q of sizeM . If C is a k-dimensional subspace

of Fn
q , then C will be called an [n, k]-linear code over Fq. The linear code C has

qk codewords. If C has the minimum distance d, then C is an [n, k, d]-linear
code over Fq. The Hamming weight of a vector V is the number of its non-zero
entries and is denoted by wH(v). We have wH(v) = dH(v, 0). The minimum
weight of the code C is the minimum non-zero weight among all codewords of
C, wmin(C) = min0̸=x∈C(wH(x)).

It is customary to put the codewords of a basis for a linear code C into a
matrix. A generator matrix for an [n, k]-code C is any k × n matrix G whose
rows form a basis for C. Also a parity check matrix of a linear code C is a matrix
H whose columns form a basis for the dual code C⊥.

∗. Corresponding author
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Moreover, a code is of practical use only if an efficeint decoding scheme can
be applied to it. For linear codes, syndrome decoding is an efficient way to
decode them. In fact, let C be an [n, k, d]-linear code over Fq, then for any
v ∈ Fn

q , the syndrome of v is the word S(v) = vHt.
Now, we want to describe linear codes in unitary space. This paper is or-

ganized as follows: In the second section, we mention some notes about linear
codes and their minimum distance. In the third section, we introduce unitary
space, linear codes in unitary space, then find a new parity-check matrix of lin-
ear codes in unitary space. Also we assert syndrome decoding of linear codes
in unitary space. Finally we conclude with the summary of the main results of
this paper.

2. Preliminaries

A linear code C of lenght n and dimension k over Fq is often called a q-ary
[n, k]-code or an [n, k]-code. It is also an (n, qk)-linear code. If the distance d of
C is known, it is also sometimes referred to as an [n, k, d]-linear code.

Definition 2.1. Let x be a word in Fn
q . The (Hamming) weight of x, denoted

by w(x), is defined to be the number of non-zero coordinates in x, i.e. w(x) =
d(x, 0), where 0 is the zero word.

An important invariant of a code is the minimum distance between code-
words. The (Hamming) distance d(x, y) between two vectors x, y ∈ Fn

q is defined
to the number of coordinates in which x and y differ.

Lemma 2.2 (5, Lemma 5.1). If x, y ∈ Fn
q , then d(x, y) = w(x− y).

The (minimum) distance of a code C is the smallest distance between distinct
codewords and is important in determining the error-correcting capability of C.
In fact, the (minimum) distance of C is denoted by d(C), where

d(C) = min{d(x, y) | x, y ∈ C, x ̸= y}.

Theorem 2.3 (7, Theorem 4.3.8). Let C be a linear code over Fq. Then d(C) =
w(C).

Theorem 2.4 (5, Theorem 5.5). Let G be a generator matrix of an [n, k]-code,
then G can be transformed to the standard form [Ik|A], where Ik is the k × k
identity matrix and A is a k × (n− k) matrix.

Since the generator matrix of a linear code has full row rank, it is quite
obvious that any linear code is equivalent to a linear code that has a generator
matrix in standard form.

Definition 2.5. Let C be an [n, k]-code over GF (q) and a is any vector in V .
Then the set a+ C is defined by a+ C = {a+ x | x ∈ C}, is called a coset of C.
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Theorem 2.6 (5, Theorem 6.4). Suppose that C is an [n, k]-code over GF (q),
then:

1. every vector of V (n, q) is in some coset of C,

2. every coset contains exactly qk vectors,

3. two cosets either are disjoint or coinside.

H is the generator matrix of some codes, called the dual or orthogonal of C
and denoted C⊥. Notice that C⊥ is an [n, n− k]-code. In fact,

C⊥ = {x ∈ Fn
q | x.c = 0, ∀c ∈ C}.

If G is in standard form [Ik|A], one can take H = [−At|In−k]. Also we have
HGt = 0.

Theorem 2.7 (5, Theorem 7.5). Let C be an [n, k]-code on V (n, q), then (C⊥)⊥ =
C.

3. Linear codes in unitary space

In this section, we want to introduce linear codes in unitary space and some of
their properties.

Definition 3.1. A bilinear form on a vector space V over a field F is a function
<,>: V × V −→ F that satisfies

< λu+ µv,w >= λ < u,w > +µ < v,w >,

< u, λv + µw >= λ < u, v > +µ < u,w >,

for all u, v, w ∈ V and λ, µ ∈ F.
It is symmetric, if < u, v >=< v, u > for all u, v ∈ F. It is skew-symmetric,

if < u, v >= − < v, u >, for all u, v ∈ F. It is also an alternating, if < v, v >= 0
for all v ∈ F.

Definition 3.2. A conjugate symmetric sesquilinear form on V over a field F
that has an automorphism σ of order 2, is a function <,>: V × V −→ F that
satisfies < λu + µv,w >= λ < u,w > +µ < v,w >, and < u, v >=< v, u >σ,
for all u, v, w ∈ V and λ, µ ∈ F.

If X ⊆ V , then define the subspace X⊥ = {v ∈ V | < x, v >= 0, ∀x ∈ X}.
The set X⊥ is called the radical of <,> and is denoted Rad(<,>). We say that
<,> is non-degenerate if Rad(<,>) = 0.

A non-degenerate conjugate symmetric sesquilinear form is called a unitary
form. A vector space V together with a unitary form is called unitary space and
is denoted by (V,<,>U ).

A vector v ∈ V is called isotropic if < v, v >U= 0. A subspace W of V is
called totally isotropic if <,>U restricted to W is zero.
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Theorem 3.3 (3, Theorem 18.1). All automorphisms GF (qm) over GF (q) are
σ0, σ1, . . . , σm−1, where σj(α) = αqj , α ∈ GF (qm), 0 ≤ j ≤ m− 1. As a result

Aut(
GF (qm)

GF (q)
) ∼= Zm.

By Theorem 3.3, for non-degenerate unitary space (V,<,>U ) with dim(V ) =
n over F, we have F = GF (q2) and σ(a) = aq = a (a ∈ F).

Definition 3.4. If V is a unitary space with form<,>U , then an isometry g of V
is an invertible linear transformation of V that satisfies < ug, vg >U=< u, v >U

for all u, v ∈ V .

Definition 3.5. Let (V,<,>U ) be a unitary space and B = {v1, . . . , vn} be an
ordered basis of V . Then B = (bij)1≤i,j≤n in which bij =< vi, vj >U , 1 ≤ i, j ≤
n is called matrix of form <,>U related to basis B. Hence for every x, y ∈ V ,
we can write

x =
n∑

i=1

xivi, y =
n∑

j=1

yjvj .

such that xi, yj ∈ F, 1 ≤ i, j ≤ n. Therefore

< x, y >U= <

n∑
i=1

xivi,

n∑
j=1

yjvj >U =

n∑
i,j=1

xi < vi, vj >U yj
σ

=

n∑
i,j=1

xibijyj
σ=xtByσ.

Proposition 3.6 (6, Proposition 2.3.2). Let V be a 2n-dimensional unitary vec-
tor space with unitary form <,>U . Then there is a basis v1, . . . , vn, w1, . . . , wn

of V such that for all i, j, we have

< vi, vj >U=< wi, wj >U= 0, < vi, wj >U= δij .

Such a basis for a unitary vector space V is called a unitary basis.

Definition 3.7. Assume that (V,<,>U ) is a non-degenerate unitary space with
dim(V ) = n over field GF (q2). With choosing unitary basis, a unitary form can
be described for x = (x1, . . . , xn) and y = (y1, . . . , yn), x, y ∈ V by

< x, y >U= x1y1 + x2y2 + · · · + xnyn =

n∑
i=1

xiyi.
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3.1 The dual code in a non-degenerate unitary space

In a non-degenerate unitary space V (n, q), if for u, v ∈ V (n, q), < u, v >U= 0,
then u and v are called orthogonal.

The dual code of a linear code C in V (n, q) is denoted by C⊥U . In fact, it is
the set of those vectors of V (n, q) which are orthogonal to every codeword of C,
i.e. C⊥U = {v ∈ V (n, q)| < u, v >U= 0, ∀u ∈ C}. It is easy to check that C⊥U is
a linear code.

Let G be a generator matrix of C. A vector v of V (n, q) belongs to C⊥U if
and only if u is orthogonal to every row of G. It means that v ∈ C⊥U if and only
if < v, u >U= 0, for every row u of G.

Lemma 3.8. Let (V,<,>U ) be a non-degenerate unitary space of finite dimen-
sion. If W is a subspace of V , then

dimW⊥U = dimV − dimW

Proof. Let V ∗ be the dual space of vector space V . The map ϕ, where

ϕ : V −→ V ∗

v 7−→ ϕv

and ϕv(w) =< v,w >U , ∀w, v ∈ V is a inversable linear transformation.
Let {w1, w2, . . . , wk} be a basis for W . We claim that the elements of ϕwi ∈

V ∗, 1 ≤ i ≤ k are independent. Assume that

k∑
i=1

λiϕwi = 0, λi ∈ F,

then

k∑
i=1

λiϕwi(v) =

k∑
i=1

λi < wi, v >U=<

k∑
i=1

λiwi, v >U= 0, ∀v ∈ V.

Since (V,<,>U ) is non-degenerate, it follows that

k∑
i=1

λiwi = 0 =⇒ λi = 0, for 1 ≤ i ≤ n.

Therefore the elements of ϕwi , (1 ≤ i ≤ k) are distinct independent. As a result

W⊥U = {x ∈ V | < wi, x >U= 0, ∀wi, 1 ≤ i ≤ k}
= {x ∈ V | ϕwi(x) = 0, ∀wi, 1 ≤ i ≤ k}
= {x ∈ V | x ∈ kerϕwi , ∀wi, 1 ≤ i ≤ k}

=
k∩

i=1

kerϕwi .

But ϕwi is a non-zero functional and the dimension of its kernel is dimV − 1.
Because ϕwi , (1 ≤ i ≤ k) are independent, it yields that
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dim (
∩k

i=1 kerϕwi) = dimV − k.

The proof is complete.

If C is an [n, k]-code on V (n, q), then C⊥U is an [n, n− k]-code.

Theorem 3.9. Let C be an [n, k]-code on V (n, q), then (C⊥U )⊥U = C.

Proof. Since every vector of C is orthogonal to every vector of C⊥U , so C ⊆
(C⊥U )⊥U . On the other hand,

dim ((C⊥U )⊥U ) = n− dim (C⊥U ) = n− (n− k) = k = dim (C),

thus (C⊥U )⊥U = C.

For a vector u ∈ V (n, q) and a (l × n) matrix B with rows r1, r2, . . . , rl, we
define u.B = (< u, r1 >U , < u, r2 >U , . . . , < u, rl >U ).

Definition 3.10. A parity check matrix HU for an [n, k]-code C on V (n, q) is
a generator matrix of C⊥U .

HU is an (n− k) × n matrix satisfying < h, g >U= 0 for every row h of HU

and row g of generator matrix G, i.e. g.HU = 0.

From Lemma 3.8 and Theorem 3.9, if HU is a parity check matrix of an
[n, k]-code C, then C = {x ∈ V (n, q) | x.HU = 0}

Theorem 3.11. If G = [Ik|A] is the generator matrix of an [n, k]-code C, then
a parity check matrix of C is HU = [B|In−k] where A = (aij)k×(n−k), B =
(bkt)(n−k)×k and bkt = −atk.

Proof. HU has the size required of a parity-check matrix and its rows are
linearly independent. It is enough to show that every row of HU is orthogonal
to every row of G.

Let u be the ith row of HU and v is the jth row of G. Then

v = (0, . . . , 0,

jth︷︸︸︷
1 , 0, . . . , 0, aj×1, aj×2, . . . , aj×(n−1), aj×n),

u = (−a1×i,−a2×i, . . . ,−aj×i, . . . ,−ak×i, 0, . . . ,

(k+i)th︷︸︸︷
1 , 0, . . . , 0).

Therefore < v, u >U= −aj×i + aj×i = 0. For other rows of HU and G, it is
similar.
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3.2 Syndrome decoding

Let Let HU be a parity check matrix of an [n, k]-code C. Then for any vector
v ∈ V (n, q), the 1× (n− k) row vector S(v) = vHU is called the syndrome of v.

If the columns of HU are H1,H2, . . . ,Hn−k, then

S(v) = (< v,H1 >U , < v,H2 >U , . . . , < v,Hn−k >U ).

Also S(v) = 0 if and only if v ∈ C.

Proposition 3.12. Two vectors u and v are in the same coset of C if and only
if they have the same syndrome.

Proof. For two arbitrary vectors u and v in V (n, q), u and v are in the same
coset

⇐⇒ u+ C = v + C
⇐⇒ u− v ∈ C
⇐⇒ (u− v)HU = 0

⇐⇒ (< u− v,H1 >U , . . . , < u− v,Hn−k >U ) = 0,

Hi (1 ≤ i ≤ n− k) is ith column of HU

⇐⇒ (< u,H1 >U , . . . , < u,Hn−k >U ) = (< v,H1 >U , . . . , < v,Hn−k >U )

⇐⇒ uHU = vHU

⇐⇒ S(u) = S(v).

Theorem 3.13. Let C be an [n, k]-code with parity check matrix HU . For each
codeword of Hamming weight t, there exist t-columns of HU which are linearly
dependent. Conversely if there exist t-columns linearly dependent of HU , then
there exists a codeword of Hamming weight t in C.

Proof. Assume that the parity check matrix HU is in the form HU = (H1,H2,
. . . , Hn), where Hi represents the ith column of HU . Given a codeword v =
(v1, v2, . . . , vn) ∈ C, we have 0 = vHU = (v1H1, v2H2, . . . , vnHn)t. This implies
that C has a vector v of weight t if and only if HU has t-columns linearly
dependent.

Corollary 3.14. Let C be an [n, k]-code with the parity check matrix HU , then
the minimum distance of C is equal to the smallest number of columns of HU

that are linearly independent.

The vector having minimum weight in a coset is called the coset leader.
From group theory, we know that if C is an [n, k]-code over GF (q), then

V (n, q) is partitioned into disjoint cosets of C as follows: V (n, q) = (0 + C) ∪
(e1 + C) ∪ . . . ∪ (er + C), where r = qn−k − 1.
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We may choose 0, e1, . . . , er to be the coset leader.

Now we present a method to partition the 2n vectors of V (n, q) to 2n

2k
= 2n−k

cosets. We place the elements of C in a row with the vector 0 as left most element.
Select from the remaining vector, a vector e1 of minimum weight, then form the
second row by placing e1 under 0 and e1+x under x for each x ∈ C. We continue
this process untill we have used all elements of V (n, q). Now we have an array
of rows and columns. This is called a standard array of C.

If v1 = 0, v2, . . . , v2k are the codewords of C, in Figure 1, we show a standard
array of C.

Coset Leader
v1=0 v2 . . . vj . . . v2k
e2 e2 + v2 . . . e2 + vj . . . e2 + v2k
e3 e3 + v2 . . . e3 + vj . . . e3 + v2k
...

...
...

...
e2n−k e2n−k + v2 . . . e2n−k + vj . . . e2n−k + v2k

Figure 1. Standard array for an [n, k] − code.

We know that the syndrome of a vector in V (n, q) is an (n−k)-tuple and there
is one to one correspondence between a coset leader and a syndrome. We form
a decoding table which consists of 2n−k coset leaders and their corresponding
syndromes. The steps of the decoding of a received vectors are as follows:

1. Get the syndrome of v, vHU ,

2. Determind the coset leader el whose its syndrome is vHU ,

3. Decode the received vector v into v − el.

Example 3.15. Write F4 = {0, 1, α, α2}. Let C be the F4-linear code with
generator matrix

G =

 1 0 0 1 α α
0 1 0 α 1 α
0 0 1 α α 1

 .

Since σ(α) = α2 = α, the parity check matrix of C is

HU =

 −1 −α2 −α2 1 0 0
−α2 −1 −α2 0 1 0
−α2 −α2 −1 0 0 1

 .

By Corollary 3.14, the minimum distance of the code is 3, so it is possible to
correct the error patterns of weight 1 or 0. Hence all vectors of weight 1 or 0 can
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be used as coset leader. The correcable error patterns and their corresponding
syndromes are given in Table 1.

Syndrome Coset Leader
(1, α, α) (1,0,0,0,0,0)
(α, 1, α) (0,1,0,0,0,0)
(α, α, 1) (0,0,1,0,0,0)
(1,0,0) (0,0,0,1,0,0)
(0,1,0) (0,0,0,0,1,0)
(0,0,1) (0,0,0,0,0,1)

Table 1: Decoding Table for the F4-linear code C.

Assume that the codeword v = (0, 1, 0, α, 1, α) is transmitted and w =
(0, 1, 1, α, 1, α) is received. We compute the syndrome of w. We have

wHU = (0, 1, 1, α, 1, α)

 −1 −α2 −α2 1 0 0
−α2 −1 −α2 0 1 0
−α2 −α2 −1 0 0 1

 = (α, α, 1).

From Table 1, we see that (α, α, 1) is the syndrome of the coset leader e =
(0, 0, 1, 0, 0, 0). Hence (0, 0, 1, 0, 0, 0) is assumed to be the error pattern and w
is decoded into: v = w − e = (0, 1, 1, α, 1, α) − (0, 0, 1, 0, 0, 0) = (0, 1, 0, α, 1, α).

Example 3.16. Let C be a code over GF (9) with parity check matrix

HU =

(
1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8

)
.

Suppose that v = (v1, v2, . . . , v8) is the codeword transmitted and w = (w1, w2, . . . ,
w8) is the received vector.

Assume that a single error has occurred such that the error magnitude
is k and the error position is l. Then (w1, w2, . . . , w8) = (v1, . . . , vl−1, vl +
k, vl+1, . . . , v8). The syndrome is

(s1, s2) = wHU = (1w1 + 1w2 + 1w3 + 1w4 + 1w5 + 1w6 + 1w7 + 1w8,

1w1 + 2w2 + 3w3 + 4w4 + 5w5 + 6w6 + 7w7 + 8w8).

s1 = 1w1 + 1w2 + 1w3 + 1w4 + 1w5 + 1w6 + 1w7 + 1w8

= 1v1 + 1v2 + 1v3 + 1v4 + 1v5 + 1v6 + 1v7 + 1v8 + k ≡ k (mod 9)

s2 = 1w1 + 2w2 + 3w3 + 4w4 + 5w5 + 6w6 + 7w7 + 8w8

= 1v1 + 2v2 + 3v3 + 4v4 + 5v5 + 6v6 + 7v7 + 8v8 + lk ≡ lk (mod 9).

Since σ(α) = α2 = α, we have

s1 = w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8

= v1 + v2 + v3 + v4 + v5 + v6 + v7 + w8 + k ≡ k (mod 9)

s2 = w1 + 4w2 + 7w4 + 7w5 + 7w7 + w8

= v1 + 4v2 + 7v4 + 7v5 + 7v7 + v8 + lk ≡ lk (mod 9).
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With simple computation, we see that the error position l is given by ( s2s1 )
and the error magnitude k is given by s1.

After calculating the syndrome (s1, s2), the decoding scheme is as follows:
1. If (s1, s2) = (0, 0), then w is a codeword and we assume that there is no

errors,
2. Suppose s1 ̸= 0 , s2 ̸= 0. We assume that a single error has occurred

which is corrected by subtracting s1 from the ( s2s1 )th entry of w,
3. If s1 = 0 or s2 = 0 but not both, it follows that there are at least two

errors.
For example, if received vector is w = 21513412, we get s1 = 1 and s2 = 7,

so ( s2s1 ) = 4. Thus the 4th digit should have been 1 − 1 = 0, i.e. transmitted
vector is 21503412.

4. Conclusion

In this work, we investigated unitary space and linear codes in unitary space.
Also, we mentioned a new parity check matrix of linear codes in unitary space
and syndrome decoding of linear codes. For further research, it would be natural
to generalized our presented results for linear codes in orthogonal space.
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Abstract. In this paper we modify the heat equation with the inclusion of a delta
function contribution and find the solution of such an equation. It is found that there
is an abrupt rise in the temperature across the board.

1. Introduction

The heat equation [1, 2] is a type of second order partial differential equation
used to study the distribution of heat, or, more precisely the variation in tem-
perature in a specific region in accordance with time. In this paper, we examine
the scenario where in a large body of water, say a lake or a flooded region,
there is a sudden rise in the temperature at some instant. The temperature
rises momentarily to an extreme value. This could happen if one drops a device
(e.g., a bomb of a few kilotons) [3, 4]. At that instant of time, the sharp rise of
temperature is beyond the usual temperature variations.

In the next section, we commence by introducing the one dimensional heat
equation and modify it with a delta function contribution which represents a
singularity due to it’s properties. Then, we solve it by the original methodology
used by Fourier himself and others [5, 6, 7] in order to find out the exact nature
of the modified equation. In the third section, we discuss the opposite case of
sudden and catastrophic cooling.

2. The modified heat equation

Here, we would like to observe how we can explain the phenomenon of a sudden
and catastrophic temperature rise in a very small time interval, −ϵ < t < +ϵ, by

∗. Corresponding author



206 B.G. SIDHARTH and ABHISHEK DAS

resorting to the heat equation. It is to be borne in mind that the negative sign
in the lower limit signifies the time before the instant of the blast. Let Θ(x, t)
denote the temperature at a position x and instant t in a long, thin thermally
conducting rod of length d that extends from x = 0 to x = d in 1D. We assume
that the sides of the rod are insulated so that heat energy neither enters nor
leaves the rod through its sides. Also, we assume that heat energy is neither
created nor destroyed in the interior of the rod and there are no radiative losses.
Then, the temperature Θ(x, t) abides by the heat equation given as [2]

(1) α
∂2Θ

∂x2
=
∂Θ

∂t
, ∀ 0 < x < d, ∀ t ≥ 0,

where α = k
cpρ

, k being the thermal conductivity, cp being the specific heat ca-
pacity and ρ being the mass density of the material under consideration. With-
out loss of generality, we consider the one dimensional case: it’s generalization
to 3D is immediate. We would like to propose the following modified form of
equation (1) by adding an extra term to the right hand side

(2) α
∂2Θ

∂x2
= {1 − δ(t)}∂Θ

∂t
,

where δ(t) represents the Dirac delta as a function of time and the negative sign
is due to the fact that we consider the heat equation moments before the blast
and the temperature rises radically. It should be observed that in the modified
equation (2) the derivative with respect to time (t) suddenly reaches a very high
value because of the introduction of the delta function which in physical terms
can be looked upon as a device which artificially triggers such an steep rise in
the temperature.

As we stated earlier, the objective of the current work is to find out what
are the new solutions due to this extra term. Using separation of variables as
[5, 6]

Θ(x, t) = X(x)T (t)

one can solve (2) in terms of x and t. Now, suppose the temperature and the
boundaries of the rod are kept fixed as 0. Then, we have the following boundary
conditions:

Θ(0, t) = 0, ∀ t > 0,

Θ(d, t) = 0, ∀ t > 0.

Now, considering the fact that

Θ(x, t) = X(x)T (t)

is a solution for the heat equation (2), we must have

αX(x)T ′(t) = {(1 − δ(t))}X(x)T ′(t)
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which implies that

(3)
X ′′

X(x)
=

{(1 − δ(t))}
α

T ′(t)

T (t)
= ξ,

where ξ is some constant. Now, from (3) we have the following two equations
which are to be solved.

X ′′(x) − ξX(x) = 0

and

T ′(t) − αξ

1 − δ(t)
T (t) = 0.

It is obvious that we will have two cases depending on ξ being zero or nonzero.
We shall consider both cases below.

Case-1: ξ = 0.
Now, for ξ = 0, the solution in terms of x is simply given by

(4) X(x) = a1 + a2x

and for the solution in terms of t is given by

(5) T (t) = a3.

Therefore the solution to the heat equation (2) is given by

(6) Θ(x, t) = a3(a1 + a2x),

where a1, a2 and a3 are integration constants. Now, let us impose the boundary
conditions mentioned before. The first boundary condition, Θ(0, t) = 0, is
satisfied when we have

X(0) = 0

which in turn is satisfied when we have

a1 = 0.

Again, the second boundary condition, Θ(d, t) = 0, is satisfied when we have

X(d) = 0

which is satisfied only when we have

a1 + da2 = 0 ⇒ a2 = 0.

Hence, the boundary conditions are satisfied when we have

a1 = a2 = 0
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which implies that in general
X(x) = 0.

But, this will make the whole solution of the heat equation (2) to be trivial and
of no fruitful result. Thus, we discard the case of ξ = 0.

Case-2: ξ ̸= 0
In this case, we have the general solution in terms of x as

X(x) = a1e
√
ξx + a2e

−
√
ξx.

Now, the first boundary condition is satisfied when we have

X(0) = 0

which in turn is satisfied when

a1 + a2 = 0 ⇒ a1 = −a2.

Again, the second boundary condition is satisfied when we have

X(d) = 0

which again is satisfied only when

a1e
√
ξd + a2e

−
√
ξd = 0 ⇒ a1[e

√
ξd − e−

√
ξd] = 0

since, a1 = −a2. From this we obtain

e
√
ξd = e−

√
ξd ⇒ e2

√
ξd = 1

which implies that we have√
ξ =

nπ

d
i⇒ ξ = −n

2π2

d2
,

where n is some integer. Thus, the general solution in terms of x can be written
as

(7) X(x) = a1[e
inπx

d − e−
inπx

d ] = 2ia1 sin(
nπx

d
).

Now, let us delve into finding the general solution in terms of t. We have

dT (t)

dt
− αξ

1 − δ
T (t) = 0.

From this we can write ∫
{1 − δ(t)}dT (t)

T (t)
= αξ

∫
dt
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which yields

(8) ln[T (t)] +

∫
δ(t)dT (t)

T (t)
= αξt+ c.

Now, let us consider the second term on the left hand side. We can integrate it
by parts such that we have∫

δ(t)dT (t)

T (t)
= δ(t)

∫
dT (t)

T (t)
−
∫

d

dT (t)
{δ(t)} ln[T (t)]dT (t)

which gives ∫
δ(t)dT (t)

T (t)
= δ(t) ln[T (t)] −

∫
d{δ(t)}
dT (t)

ln[T (t)]dT (t).

It is to be noted that the integration constant will be merged with the integration
constant (c) to make it c′, on the right hand side of equation (8). Now, we would
like to define the following terms

ω(t) =

∫
d{δ(t)}
dT (t)

ln[T (t)]dT (t)

and
σ(t) = δ(t) ln[T (t)].

Again, it is conspicuous that the delta function depends explicitly on the variable
time (t) only and hence

d{δ(t)}
dT (t)

=
∂δ(t)

∂T (t)
= 0

and thus, ω(t) = 0. Therefore, we are left with the improper function σ(t).
Now, we know that the delta function has the following property

δ(t) = 0, ∀ t ̸= 0,

δ(t) = L, when t = 0,

where, L is arbitrarily very large. Using this property of the delta function, the
function σ(t) can be defined as follows

σ(t) = 0, ∀ t ̸= 0,

σ(t) = R, when t = 0,

where, R is extremely large. Thus, from equation (8) we have

ln[T (t)] − σ(t) = αξt+ c′

which gives the general solution in terms of t as

(9) T (t) = a3e
αξt+σ(t),
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where a3 = ec
′
. Thus, the partial solutions (7) and (9) finally yield the solution

for the heat equation (2) as

(10) Θ(x, t) = χn sin(
nπx

d
)e−

αn2π2

d2
t+σ(t),

where χn = 2ia1a3. Here, it is easy to see that at the moment of the blast when
t = 0, we have

(11) Θ(x, 0) = χn sin(
nπx

d
)eR

and since R is extremely large, the value of Θ is very large, i.e., we have an
abrupt and extreme rise in the temperature of the medium. Interestingly, there
is a sudden change in the system due to the abrupt phenomenon of the bomb
blast [3, 4]. Now, far away from the instant t = 0, the heat equation is the
same as the original equation (1). As we already mentioned in the beginning of
this section, our work encompasses a small time interval, namely, −ϵ < t < +ϵ.
Now, it is to be noted that this mathematical formulation can be extended to
higher dimensions too.

Now suppose, in a flooded region the spread (or length) of the water body
is d and at instant t = 0 an explosion device (just to vaporize the water) is
detonated. Then, from (10) it is obvious that the temperature Θ(x, t) will
be infinite. Practically, this means that we would achieve an extremely high
temperature. Also, in equation (11) we see that since the trigonometric function,
sin(nπxd ), is bounded, the temperature rise at the instant, t = 0, is independent
across the position x. So, irrespective of the coordinate we have a great amount
of temperature. This can be very useful to evaporate unnecessary water bodies
emanating from floods or other reasons.

3. Sudden decrease

Now, let us consider a sudden temperature drop in a localized area. To take
this into account, we modify equation (2) by replacing the {−δ(t)} with {+δ(t)},
such that we have

α
∂2Θ

∂x2
= {1 + δ(t)}∂Θ

∂t
.

In this case, proceeding with the same methodology we would have the solution
as

Θ(x, t) = χn sin(
nπx

d
)e−

αn2π2

d2
t−σ(t).

Thus at the instant, t = 0 (in the interval, −ϵ < t < +ϵ), we have

Θ(x, 0) = χn sin(
nπx

d
)e−R,

where R is again an arbitrarily large number. Therefore, there would be a
sudden precipitous localized cooling. This would, for instance, represent an
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extreme climate scenario or even a cryogenic device. However, we can only
draw a qualitative conclusion, as of now. In the case of climate,the problem is
very complex, as is well known [8, 9, 10, 11, 12, 13].

4. Discussion

Now, it is known that since (10) is the solution to the modified heat equation
(2), one has

(12) Θ(x, t) =

∞∑
n=1

χn sin(
nπx

d
)e−

αn2π2

d2
t+σ(t).

Now, if we denote the solution at t = 0 as

Θ(x, 0) = f(x)

then the constants χn are given by

χn =
2

d

∫ d

0
f(x) sin(

nπx

d
)dx.

However, the most important conclusion of the current paper is embodied in
equation (11) of the preceding section. The instant, t = 0, is the key feature in
the solution of the modified heat equation (2). As we have already mentioned
in the preceding section, for all instants of time after the blast, i.e. for t > 0,
the heat equation and it’s solution presume their original form without the
singularity.

Our work could have immediate practical results based on what we have
shown and also the introduction of the delta function in the parabolic second
order differential equation could inspire similar approaches in other cases too.
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Abstract. As the mobile Internet develops rapidly, it is playing an increasingly im-
portant role in people’s daily life nowadays. Mobile ends such as mobile phones and
pads lift the time and place limitations of applications (APPs) and APP users spend
more time on mobile ends than on the PC end. This paper mainly studies the business
models of mobile APPs. Firstly, the theoretical basis related to this study is described.
Then, taking a reading APP-QQ reading as an example, we studies its business model
from the aspects of industrial chain model, profit model, communication channels and
market positioning and makes a multi - level fuzzy comprehensive evaluation on it.
Finally, suggestions are put forward to solve the problems found by evaluation. The
study of the business model of reading apps is conducive to the development of new
functions of reading software to protect readers’ loyalty.

Keywords: internet, mobile end, reading APP, business model.

1. Introduction

Today, the rapid development of mobile Internet has opened a new journey of
the development of the Internet [1]. Mobile Internet brings mobile Internet
operators, end manufacturers and software developers together to form a com-
plex collaborative and competitive ecosystem which creates a large number of
mobile APPs which are the research objects in this paper. On this subject,
domestic and foreign scholars have carried out some researches. Luo Min et
al [2] suggested that a business model was a set composed by the organization
itself, employees, shareholders, customers and supply chain partners to obtain
excess profits, providing explicit external assumptions and internal resources.
Xia Yunfeng [3] divided products into two abstract parts of core and premium
and proposed that the business model of an enterprise was composed of the
potential energy model and the premium model. Magretta [4] believed that the
business model and business process system was closely related and it solved the
four basic questions about the business experience. After presenting the four
constituent elements of a business model, Dubosson et al. [5] evaluated these
quantitative indicators using a balanced scorecard. All the above researches
were carried out based on the business model while this paper took a reading
APP as an example to see big things from small ones. By learning form the
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recommendations of the QQ reading APP, a new path can be directed for the
future development of mobile APPs.

2. Related theories

2.1 Overview of business model

Business model integrates all the factors required in the operation of an en-
terprise [6] to realize the maximum value of customers and form a complete
and efficient operation system with its unique core competiveness. By satisfy-
ing the requirements and realizing the values of customers through the optimal
implementation form, it also enables the system to reach the goal of obtaining
sustained profits. Usually, business models include operation model, profitabil-
ity model, and advertising revenue model. Ostwald and Pinnie [7] held that the
business model consists of four latitudes (customer, provider, infrastructure and
financial viability) and nine elements (cost structure, revenue source, impor-
tant cooperation, value proposition, core resources, channel access, customer
relationship and segmentation, etc). This paper takes a reading APP as an
example to describe the development process of mobile reading APPs.

2.2 Multi-level fuzzy evaluation method

Fuzzy comprehensive evaluation [8] is a comprehensive evaluation method based
on fuzzy mathematics to solve fuzzy problems and the ones which are difficult
to be quantified, which was first put forward in 1965 by an automatic control
expert Chad. Also, it is an evaluation method that integrates both accurate
and inaccurate analyses which is applied in various fields. In complex systems,
there are different levels of factors to consider. Hence, the evaluation factors are
divided into several categories according to their attributes. Firstly, evaluation
is carried out on each category of factors. Then, all the evaluation results are
combined for a comprehensive evaluation. The main steps are as follows:

(1) Establishment of evaluation factor indicator system [9]. According to a
certain property, the evaluation factor is divided into multiple plates.

(2) Determination of the evaluation matrix. Evaluate each small factor by
a single level to obtain an evaluation matrix.

(3) Determination of factor weight. Use the expert survey method to deter-
mine the weight of the evaluation index.

(4) Evaluation implementation. Calculate the final comprehensive evalua-
tion value according to the relevant formulas and evaluation matrixes.
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3. Business model of the QQ reading APP

3.1 Industrial chain model

3.1.1 Upstream of the industry chain

In the upstream of an industry chain are normally manufacturers who provide
content of the APP. In the QQ reading APP, it mainly includes authors, pub-
lishers, intermediate agents, etc. Today’s domestic publishers are divided into
journal publishers and electronic publishers [10]. Journal publishers integrate
the content into a database and provide readers with paid resources. Elec-
tronic publishers make paper books into e-books or audio books which are then
uploaded to reading software for users to read. Original literature websites pub-
lish the network literature created by network authors and provide them on the
website to authors with fees charged.

3.1.2 Midstream of the industry chain

In the midstream of an industry chain often locates the content publishers, who
upload the final work to the releasing platform after getting digital licenses
for copyright and content resources, pricing and integration. Located between
content providers and service providers and vendors, content publishers play a
mainstay role in the whole industry chain [11].

3.1.3 Downstream of the industry chain

In the downstream of the industry chain lie the vendors. Connecting service
providers with consumers, content vendors are mainly engaged in service sales
business. With the QQ reading APP itself a vendor, some film and television
enterprises are also vendors. Readers can subscribe to the books or network
literature works which they are interested in via the QQ reading APP. As for
the film and television enterprises, they can select the works which they like to
make them into TV series or films.

3.2 Profit mode

The QQ reading APP has the following profit models [12]: (1) free reading and
advertising revenue. (2) part free and part charged with original price. (3) book
download charges. (4) monthly service charges. Some books or their sections
are free for users to read, which attracts more readers. Excellent literary works
can guide readers to support the authorized editions which charge for fees. Once
readers have a good impression on the APP, they will not easily quit. Thus, the
loyalty of readers is improved.
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3.3 Communication channel

(1) Interpersonal propagation. Readers share their feelings or thoughts about
the books they read on social platforms such as QQ or Wechat APPs to reach
the purpose of recommendation.

(2) Organization propagation. Information interaction between readers can
be realized on the reviewing square of the APP by bringing readers who like the
same type of works together to make the readers find a sense of belonging and
thus improve their loyalty [13].

(3) Social propagation. By means of the functions of sharing and comment-
ing of the APP, more readers can be attracted, which improves the popularity
of the APP.

3.4 Market positioning

To have a good sales market, market positioning and customer segmentation [14]
should be first carried out for the APP. According to the survey, people with
different age, gender, income and class have different preference on literature
works. Table 1 is a survey of the preferences of different people.

Figure 1: Reader segmentation

As shown in table 1, students, female white collars and male and female book
lovers with discretion ability occupy a large percentage. Therefore, the market
positioning of the APP is novels, art and human and social science books.

4. Evaluation on the APP with fuzzy evaluation method

4.1 Fuzzy evaluation results

An evaluation team with 10 members was selected to carry out evaluation on
each project module of the APP. The satisfaction degree of evaluation is: very
satisfied (95), satisfied (85), average (75), poor (65) and very poor (55). In
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addition, score 55 indicates unqualified. The detailed evaluation results are
shown in table 2.

Figure 2: Reader segmentation

According to the indicators, the proportion of evaluation modules was 0.21,
0.15, 0.28, 0.08, 0.2 and 0.08 respectively. Then, evaluation was performed based
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on the secondary evaluation on the results of first evaluation on the matrix of
table 2, with the formulas as follows:

Ep =
ΣE

n
, n ∈ 1, 2, k, 10,(1)

Epw = Ep ∗W,(2)

Ez = ΣEpw.(3)

E refers to the evaluation value, Ep refers to the average evaluation value, Epw

refers to the weighted average value, W refers to the weight and Ez refers to the
comprehensive evaluation value. The calculation results are as below:

B1 = [0.18, 0.08, 0.18, 0.02, 0.11]


0.1 0.9 0 0 0
0.1 0.2 0.7 0 0
0.1 0.7 0.2 0 0
0.7 0.1 0.1 0.1 0
0.1 0.3 0.4 0.1 0


= (0.12, 0.37, 0.18, 0.01, 0)(4)

B2 = [0.12, 0.09, 0.05, 0.15]


0.6 0.3 0.1 0 0
0 0.1 0.03 0.6 0

0.1 0.1 0.2 0.6 0
0.1 0.1 0.7 0.1 0


= (0.09, 0.07, 0.13, 0.1, 0)(5)

B3 = [0.173, 0.14, 0.115, 0.041, 0.099, 0.041, 0.066, 0.033, 0.123, 0.024]

0.3 0.6 0.1 0 0
0.1 0.7 0.2 0 0
0.7 0.1 0.1 0.1 0
0.3 0.3 0.2 0.2 0
0.7 0.1 0.2 0 0
0 0.4 0.4 0.2 0

0.6 0.3 0 0.1 0


= (0.29, 0.35, 0.16, 0.06, 0.12)(6)

B4 = [0.08 0.32 0.32 0.2 0.08]
0 0.3 0.6 0.1 0
0 0.3 0.6 0.1 0

0.4 0.5 0.1 0 0
0 0 0.4 0.6 0
0 0.2 0.6 0.2 0

 = (0.13, 0.3, 0.4, 0.18, 0)(7)
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B5 = [0.07, 0.121, 0.111, 0.121, 0.09, 0.08, 0.02, 0.181, 0.181, 0.02]

0.7 0.2 0.1 0 0
0 0 0 0 10

0.8 0.2 0 0 0
0.1 0.6 0.3 0 0
0 0.1 0.9 0 0
0 0.5 0.4 0.1 0
0 0.7 0.2 0.1 0
0 0.7 0.3 0 0

0.8 0.2 0 0 0


= (0.29, 0.34, 0.14, 0.1, 0.12).(8)

B6 = [1][0 0 0.7 0.30] = (0, 0, 0.7, 0.3, 0)(9)

B1, B2, B3, B4, B5, B6 refer to evaluation quantization values of each element
in each section. Then, the first and secondary comprehensive evaluation values
can be obtained:

B = (0.21, 0.15, 0.28, 0.08, 0.2, 0.08)



0.12 0.37 0.18 0.01 0
0.09 0.07 0.13 0.1 0
0.29 0.35 0.16 0.06 0.12
0.13 0.3 0.4 0.18 0
0.29 0.34 0.14 0.1 0.12

0 0 0.7 0.3 0


= (0.18, 0.28, 0.22, 0.09, 0.06)(10)

E1 = (0.12, 0.37, 0.18, 0.01, 0)(95, 85, 75, 65, 55)T = 57,(11)

E2 = (0.09, 0.07, 0.13, 0.1, 0)(95, 85, 75, 65, 55)T = 31,(12)

E3 = (0.29, 0.35, 0.16, 0.06, 0.12)(95, 85, 75, 65, 55)T = 80,(13)

E4 = (0.13, 0.3, 0.4, 0.18, 0)(95, 85, 75, 65, 55)T = 80,(14)

E5 = (0.29, 0.34, 0.14, 0.1, 0.12)(95, 85, 75, 65, 55)T = 80,(15)

E6 = (0, 0, 0.7, 0.3, 0)(95, 85, 75, 65, 55)T = 72(16)

E1, E2, E3, E4, E5, E6 refer to the first comprehensive evaluation values.
Then, the total value of secondary comprehensive evaluation can be ob-

tained, as follows:

(17) Ez = (0.18, 0.28, 0.22, 0.09, 0.06)(95, 85, 75, 65, 55)T = 68.

5. Fuzzy comprehensive evaluation analysis

As shown in equation (13), (14), (15) and (16), the fuzzy evaluation values of
“bookshelf”, “social function” and “feedback” are high, with obvious advan-
tages. Hence, only improvement is needed to strengthen the reading function
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of the APP. As shown in equation (11), the “book town” function is yet to be
perfected to meet the requirements of readers. As shown in equation (12), the
“business management” function of the APP needs improvement on both dis-
count scale and payment means. That is to say, there are more selections on
payment means, which should be simplified as much as possible [15] to reduce
the imitation on payment software. As for the discount aspect, the number of
books which are free in a limited time should be increased. As shown in table
2, the “eye protection mode” function in the “reading function” module should
be implemented; the “cover page display”, “book assorting” and “background
change” functions in the “bookshelf” part should be adjusted according to the
readers’ requirement; the “book searching” function should be perfected; The
”cloud sync” feature can be turned on in the ”social” section, and other not ideal
features should be improved; as for the “feedback” section, its functions are not
prominent and should be strengthened, which is helpful for the improvement of
the software according to the opinions put forward by readers.

With the multi-level fuzzy comprehensive evaluation method, the advantages
and disadvantages of the APP are displayed clearly. Therefore, new functions
should be added to the APP to perfect it. Especially for the “business manage-
ment” part, its score is only 31, which is far much lower than the average value
and unqualified. The reason for this is that readers show resistance psychology
[16] to paid reading because they previously enjoy free reading with no attention
paid to the copyright problem. Meanwhile, the growing number of network writ-
ers has somehow caused the decline of the quality of network literature works,
which makes the readers lose confidence to paid reading.

6. Conclusion

In order to study the business model of mobile APPs, this paper takes the QQ
reading APP as an example and analyzes its reading characteristics and modules.
Then, its business module is studied from the aspects of industrial chain model,
profit model, communication channels and market positioning. For the problems
existing in the APP, such as copyright issues, imperfect functions, undesirable
page layout and book classification confusion, they will be solved in the near
future considering Tencent’s strong financial and technical strength.

In the future, the QQ reading APP will develops towards a diversified di-
rection and rely more on advertising to profit, with perfected functions. For
example, eye protection model is an inevitable trend. Under the current situa-
tion that mobile APPs are facing bottle necks, especially in profit mode aspect,
the future trend of the QQ reading APP can be learnt by mobile APPs, i.e.,
they should rely more on advertising. Therefore, the emphasis on the studies of
future business modes of mobile APPs should be put on their profit modes.
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Abstract. We discuss in this paper the elementary and basic characters of Gn(q).
The paper highlights the main idea that every irreducible character of Gn(q) appears
uniquely in the basic characters. In particular we determine the elementary and basic
characters of G3(q) for any q. As examples, the theory is also applied to G3(2), G3(3)
and G4(2).
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1. Introduction and notations

The study of the irreducible characters of Gn(q), a Sylow p-subgroup of GL(n, q)
has attracted much attention over the years. By inducing linear characters of
some special subgroups of Gn(q), Andre in [2] introduced the notion of elemen-
tary characters. These characters were also known to Lehrer (see [8]). The basic
characters are a special product of some of these elementary characters and their
constituents form a partition of all the irreducible characters of Gn(q) (see for
example [2]).

The group Gn(q) is given by

Gn(q) = {(aij) ∈ GL(n, q)|aij = 0, j < i, aii = 1 and aij ∈ Fq, 1 ≤ i < j ≤ n},

that is a group of upper triangular matrices with 1,s in the major diagonal
and other entries coming from Fq, where Fq is the Galois field of q elements
with F∗

q and F+
q being the multiplicative and additive groups respectively. The

∗. Corresponding author
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group Gn(q) can be written as a split extension N :G where N is an elementary
abelian p-group pk(n−1) and G is the group Gn−1(q). We use this fact to apply
the method of Fischer matrices in constructing the character tables. The method
of Coset Analysis by Moori [10] is used for the determination of the conjugacy
classes.

By λij(α)Gn(q), we will mean the induction of λij(α) to Gn(q) where α ∈ F∗
q

and λij(α) : Gij −→ C∗ is a linear character of Gij . The Gij are special
subgroups of Gn(q) where (i, j) ∈ Φ(n) = {(i, j)|1 ≤ i < j ≤ n}. We identify a
particular type of subsets of Φ(n) denoted by D as the basic subsets. To each
basic subset D we can associate a function φ : D −→ F∗

q such that φ((i, j)) ∈ F∗
q

(see for instance Subsection 3.2 ) and thereby denote the basic characters by
ξD(φ). This is the standard notation as used in [2].

In Section 2 we briefly describe the method of constructing the elementary
and basic characters of Gn(q). Using Fischer matrices we obtain the character
tables of G3(2) and G3(3) in Sections 3 and 4. The elementary and basic char-
acters of these groups are discussed in Subsections 3.1, 3.2 and 4.1. We have
the main Theorem 4.2 on the elementary and basic characters of G3(q) proved
in Subsection 4.2. The character table of G4(2), its elementary and basic char-
acters are discussed in Section 5. For general notation we use ATLAS [4] and
Isaacs [6].

2. Elementary and basic characters

In this section we briefly describe the elementary and basic characters of Gn(q).
We use the notation as in [2]. Basic characters have also been described in [7]
as super characters.

Definition 2.1. Let

Gn(q) = {(aij) ∈ GL(n, q)|aij = 0, j < i, aii = 1 and aij ∈ Fq, 1 ≤ i < j ≤ n},

be a Sylow p − subgroup of GL(n, q). We set Φ(n) = {(i, j)|1 ≤ i < j ≤ n} be
the set of pairs for the position of aij ∈ Fq in a matrix of Gn(q). The elements
of Φ(n) are called positive roots.

Definition 2.2. By fixing i for 1 ≤ i ≤ n, define the ith − row of Gn(q) to be
the set

ri(n) = {(i, j) ∈ Φ(n)|i < j ≤ n}.
Similarly by fixing j the jth − column of Gn(q) is the set

cj(n) = {(i, j) ∈ Φ(n)|1 ≤ i < j}.

Using the elements of Φ(n), we define

Gij = {(xab) ∈ Gn(q)|xib = 0 i < b < j},

Gij are subgroups of Gn(q). The irreducible characters of Gn(q) that were
constructed by Lehrer [8] are described in Proposition 2.1 following here below.
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Proposition 2.1. Let α ∈ F∗
q and ψo be a non-trivial irreducible character of

F+
q considered as an additive group. Let λij(α) : Gij −→ C∗ be a function such

that λij(α)(x) = ψo(α(xij)) for all x ∈ Gij where x = (xab). Then λij(α) is a
linear character of Gij and furthermore ξij(α) = λij(α)Gn(q) is an irreducible
character of Gn(q).

Proof. See [8].

The following definitions are from [2].

Definition 2.3. The characters λij(α)Gn(q), as given in Proposition 2.1, are
called the (i, j)th elementary characters associated with α.

Definition 2.4. Let D ⊆ Φ(n) such that |D ∩ ri(n)| ≤ 1 and |D ∩ cj(n)| ≤ 1.
Let φij : D −→ F∗ be a function, then

ξD(φ) =
∏

(i,j)∈D

ξij(φ(i, j))

is a character of Gn(q) called the basic character of Gn(q) and the subset D
is called a basic subset of Φ(n).

3. Elementary and basic characters of G3(2)

We first construct the character table of G3(2) by using Fischer matrices. For
details on coset analysis and Fischer matrices the readers are referred to ([1],
[9], [10], [11]). The elementary and basic characters are discussed in Subsections
3.1 and 3.2. Table 1 gives the conjugacy classes of G3(2) computed using the
coset analysis technique.

classes of G2(2) classes of G3(2) |CG3(2)(g)|
(1a) (1A) 23

(2A) 23

(2C) 22

(2a) (2C) 22

(4A) 22

Table 1: The Conjugacy Classes of G3(2)

The inertia factor groups are; H1 = H2 = G ∼= Z2 and H3 = {1}.
The Fischer matrices on the representatives of the classes of G are given

below

M(1a) =

|CḠ(1A)| |CḠ(2A)| |CḠ(2B)|( )|CH1(1a)| 2 1 1 1
|CH2(1a)| 2 1 1 −1
|CH3(1a)| 1 2 −2 0

,
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M(2a) =

|CḠ(2C)| |CḠ(4A)|( )
|CH1(2a)| 2 1 1
|CH2(2a)| 2 1 −1

.

Note that character tables of the inertia factor groups H1 and H2 are 2 ×
2 invertible matrices. Thus, by multiplying (usual matrix multiplication) the
partial character tables of the inertia factor groups H1, H2 and H3 by the
corresponding rows of the Fischer matrices above, we obtain[

1
1

] [
1 1 1

]
=

[
1 1 1
1 1 1

]
,

[
1
1

] [
1 1 −1

]
=

[
1 1 −1
1 1 −1

]
,[

1
] [

2 −2 0
]

=
[
2 −2 0

]
.

Similarly we obtain [
1

−1

] [
1 1

]
=

[
1 1

−1 −1

]
,[

1
−1

] [
1 −1

]
=

[
1 −1

−1 1

]
.

The character table of G3(2) is given below as Table 2.

[cl(g)] 1A 2A 2B 2C 4A
CG(g) 8 8 4 4 4

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1

χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1

χ5 2 −2 0 0 0

Table 2: The Character Table of G3(2)

3.1 Elementary characters of G3(2)

We apply in this Subsection the ideas of [2] to our group G3(2) to identify its
elementary and basic characters. We will later apply the same theory to G3(3),
G4(2) and G3(q) in general (see Subsections 4.1, 4.2, 4 and 5). For α = 1 and
using the character table of F2, we have ψo, the fixed non-trivial irreducible
character of F2, given by say χ2.

We also have that

Φ(3) = {(i, j)|1 ≤ i < j ≤ 3} = {(1, 2), (1, 3), (2, 3)}.
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The subgroups Gij are G12 = G23 = G3 and

G13 =

{1 0 b
0 1 c
0 0 1

 | b, c ∈ F2

}

which is the group Z2 × Z2.
Thus λij(α) : Gij −→ C∗, such that λij(α)(x) = ψo(αx13) for all x ∈ G13.

We then have that

λij(1)(x) = ψo(x13) = 1 if x13 = 0

− 1 if x13 = 1.

The character λ13(1)G3(2) is an irreducible character of G3(2) of degree

[G3(2) : G13] = 2.

Using the character table of G3(2) in Table 2, we identify λ13(1)G3(2) = χ5.
Since we need

(q − 1)(
n(n− 1)

2
) = (2 − 1)(

3(3 − 1)

2
) = 3

elementary characters, we have two more elementary characters to be induced
from G12 and G23 and clearly they are both of degree 1. We also have that
λ12(1)(x), λ23(1)(x) ∈ {1,−1}. Using the character table and the structure of
the conjugacy class representatives of G3(2), we easily identify λ12(1)G3 = χ3

and λ23(1)G3 = χ2. Hence the three elementary characters of G3(2) are χ2, χ3

and χ5 of degrees 1, 1 and 2 respectively.

3.2 Basic characters of G3(2)

To calculate the basic characters of G3(2), we first identify the basic subsets
of Φ(3). Since Φ(3) = {(1, 2), (1, 3), (2, 3)}, there are 8 subsets of Φ(3). The
following subsets are basic D1 = ∅, D2 = {(1, 2)}, D3 = {(1, 3)}, D4 = {(2, 3)},
D5 = {(1, 2), (2, 3)}.

Remark 3.1. For the group G3(2), we have r1(3) = {(1, 2), (1, 3)}, r2(3) =
{(2, 3)}, c1(3) = ∅, c2(3) = {(1, 2)} and c3(3) = {(1, 3), (2, 3)}. It is clear that
|Ds ∩ ri(3)| ≤ 1 and |Ds ∩ cj(3)| ≤ 1 for all s ∈ {1, 2, 3, 4, 5}, i ∈ {1, 2} and
j ∈ {2, 3}. Thus Ds is basic.

We now use the formula

(1) ξD(φ) =
∏

(i,j)∈D

ξi,j(φ(i, j))

for the basic characters where φ : D −→ F∗
q . By definition ξ∅(φ) = χ1 is the

trivial character of G3(2). In this way we have the basic characters of G3(2),
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namely

ξD1(φ) = χ1,

ξD2(φ) = ξ12(φ(1, 2)) = ξ12(1) = λ12(1)G3 = χ3,

ξD3(φ) = ξ13(φ(1, 3)) = ξ13(1) = λ13(1)G3 = χ5,

ξD4(φ) = ξ23(φ(2, 3)) = ξ23(1) = λ23(1)G3 = χ2,

ξD5(φ) = ξ12(φ(1, 2)) × ξ23(φ(2, 3)) = ξ12(1) × ξ23(1)

= λ12(1)G3 × λ23(1)G3 = χ2 × χ3 = χ4.

Table 3 below gives the basic characters of G3(2) decomposed in terms of its
irreducible characters viz. χ1, χ2, χ3, χ4 and χ5.

basic characters χ1 χ2 χ3 χ4 χ5

ξ∅(φ) 1 0 0 0 0
ξD2(ϕ) 0 0 1 0 0
ξD3(ϕ) 0 0 0 0 1
ξD4(ϕ) 0 1 0 0 0
ξD5(ϕ) 0 0 0 1 0

Table 3: The Constituents of the Basic Characters of G3(2)

We observe from Table 3 above that all the basic characters of G3(2) are
irreducible.

4. Elementary and basic characters of G3(3)

We have that G3(3) = 32:3 and F3 = {0, 1,−1}. From the character table of
G3(q) in [3], we have that

• 2q − 1 = 2(3) − 1 = 5 inertia groups,

• q2 + q − 1 = 32 + 3 − 1 = 11 conjugacy classes,

• q2 = 32 = 9 irreducible characters of degree 1,

• q − 1 = 3 − 1 = 2 irreducible characters of degree 3.

To find the conjugacy classes of G3(3), we use the method of coset analysis. Let
G3(3) = N :G, where G ∼= Z3 and the conjugacy class representatives of G are
{1a, 3a, 3b}. Table 4 following here below, gives the conjugacy classes of G3(3).

Theorem 4.1. The group G3(3) has the following conjugacy classes as listed in
Table 4 below, where the upper cases label conjugacy classes of G3(3) and lower
cases are reserved for its subgroups (inertia factor groups).

Proof. An application of the coset analysis method.
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classes of G classes of G3 |CG3(g)|
(1a) (1A) 33

(3A) 33

(3B) 33

(3C) 32

(3D) 32

(3a) (3E) 32

(3F ) 32

(3G) 32

(3a) (3H) 32

(3I) 32

(3J) 32

Table 4: The Conjugacy Classes of G3(3)

The structure of the inertia factor groups is H1 = Z3 = H2 = H3 and
H4 = {1} = H5. We obtain the following character table for G ∼= Z3 as in Table

5, where a =
−1

2
+

√
3

2
i and ā is the complex conjugate.

[g] 1a 3a 3b
CG(g) 3 3 3

χ1 1 1 1
χ2 1 a ā
χ3 1 ā a

Table 5: The Character Table of G ∼= Z3

Thus using the general form of the Fischer matrix in [3], we have

M(1a) =



|CḠ3
(1A)| |CḠ(3A)| |CḠ(3B)| |CḠ(3C)| |CḠ(3D)|

|CH1(1a)| 3 1 1 1 1 1
|CH2(1a)| 3 1 1 1 a ā
|CH3(1a)| 3 1 1 1 ā a
|CH4(1a)| 1 3 b b̄ 0 0
|CH5(1a)| 1 3 b̄ b 0 0

.

In the above Fischer matrix, a = −1
2 +

√
3
2 i and b = −3

2 − 3
√
3

2 i.

The other Fischer matrices are given below, where a and ā are as in the
Fischer matrix above

M(3a) =


|CḠ3

(3E)| |CḠ(3F )| |CḠ(3G)|
|CH1(3a)| 3 1 1 1
|CH2(3a)| 3 1 a ā
|CH3(3a)| 3 1 ā a

,
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M(3b) =


|CḠ3

(3H)| |CḠ(3I)| |CḠ(3J)|
|CH1(3b)| 3 1 1 1
|CH2(3b)| 3 1 a ā
|CH3(3b)| 3 1 ā a

.
Thus, for instance, on the classes (1A), (3A), (3B), (3C) and (3D), the

character values are obtained by multiplying the partial character tables of the
inertia factor groups by the corresponding rows of the Fischer matrices and we
obtain 1

1
1

 [1 1 1 1 1
]

=

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 ,
1

1
1

 [1 1 1 a ā
]

=

1 1 1 a ā
1 1 1 a ā
1 1 1 a ā

 ,
1

1
1

 [1 1 1 ā a
]

=

1 1 1 ā a
1 1 1 ā a
1 1 1 ā a

 ,
[
1
] [

3 b b̄ 0 0
]

=
[
3 b b̄ 0 0

]
,

[
1
] [

3 b̄ b 0 0
]

=
[
3 b̄ b 0 0

]
.

In this manner we can obtain the character table of G3(3) given as in Table 6.

[g] 1A 3A 3B 3C 3D 3E 3F 3G 3H 3I 3J

|CG(g)| 33 33 33 32 32 32 32 32 32 32 32

χ1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 a a a ā ā ā
χ3 1 1 1 1 1 ā ā ā a a a

χ4 1 1 1 a ā 1 a ā 1 a ā
χ5 1 1 1 a ā a ā 1 ā 1 a
χ6 1 1 1 a ā ā 1 a a ā 1

χ7 1 1 1 ā a 1 ā a 1 ā a
χ8 1 1 1 ā a a 1 ā ā a 1
χ9 1 1 1 ā a ā a 1 a 1 ā

χ10 3 b b 0 0 0 0 0 0 0 0

χ11 3 b b 0 0 0 0 0 0 0 0

Table 6: The Character Table of Ḡ = G3(3)
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[cl(g)] 0 1 −1
|CF2(g)| 3 3 3

χ1 1 1 1
χ2 1 a ā
χ3 1 ā a

Table 7: The Character Table of F3

4.1 Elementary characters of G3(3)

We now consider the field F3 = {0, 1,−1}. Then α ∈ {1,−1} and using the
character table of F3 as in Table 7, we fix ψo = χ2.

In Table 7 we have a = −1
2 +

√
3
2 i.

We also have that

Φ(3) = {(i, j)|1 ≤ i < j ≤ 3} = {(1, 2), (1, 3), (2, 3)}.

The subgroups Gij are G12 = G23 = G3 and

G13 =

{1 0 b
0 1 c
0 0 1

 | b, c ∈ F3

}
,

which is the group Z3 × Z3. Thus λij(α) : Gij −→ C∗, such that λij(α)(x) =
ψo(αx13) for all x ∈ G13.

For instance, for α = 1 we have

λij(1)(x) = ψo(x13) = 1 if x13 = 0,

= a if x13 = 1,

= ā if x13 = −1,

where a = −1
2 +

√
3
2 i and ā is its complex conjugate. The character λ13(α)G3(3)

is an irreducible character of G3(3) of degree

[G3(3) : G13] = 3.

Using the character table of G3(3) in Table 6, we identify λ13(1)G3(3) = χ11 and
λ13(−1)G3(3) = χ10.

Since we need

(q − 1)(
n(n− 1)

2
) = (3 − 1)(

3(3 − 1)

2
) = 6

elementary characters, we have four more elementary characters to be induced
from G12 and G23 and they are all of degree 1. We also have that λ12(α)(x),
λ23(α)(x) ∈ {1, a, ā}. For instance, by using the character table and the structure
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[g] 1A 3A 3B 3C 3D 3E 3F 3G 3H 3I 3J

λ12(1)G3 1 1 1 1 1 a a a ā ā ā

Table 8: The Values of λ12(1)(x)

of the conjugacy class representatives of G3(3) we have the values of λ12(1)G3(3)

on the conjugacy class representatives of G3(3) as in Table 8.
We easily identify λ12(1)G3(3) = χ2, λ12(−1)G3(3) = χ3, λ23(1)G3(3) = χ4 and

λ23(−1)G3(3) = χ7. Hence the six elementary characters of G3(3) are χ2, χ3, χ4,
χ7, χ10 and χ11.

4.2 Basic characters of G3(3)

As in Subsection 3.2, the basic subsets of Φ(3) are D1 = ∅, D2 = {(1, 2)},
D3 = {(1, 3)}, D4 = {(2, 3)}, D5 = {(1, 2), (2, 3)}. By definition ξ∅(φ) = χ1 is
the trivial character of G3(3). In this way we have the basic characters of G3(3),
namely

ξD1(φ) = χ1,

ξD2(φ) = ξ12(φ(1, 2)) = ξ12(1) = λ12(1)G3 = χ2,

ξD2(φ) = ξ12(φ(1, 2)) = ξ12(−1) = λ12(−1)G3 = χ3,

ξD3(φ) = ξ13(φ(1, 3)) = ξ13(1) = λ13(1)G3 = χ10,

ξD3(φ) = ξ13(φ(1, 3)) = ξ13(−1) = λ13(−1)G3 = χ11,

ξD4(φ) = ξ23(φ(2, 3)) = ξ23(1) = λ23(1)G3 = χ4,

ξD4(φ) = ξ23(φ(2, 3)) = ξ23(−1) = λ23(1)G3 = χ7,

ξD5(φ) = ξ12(φ(1, 2)) × ξ23(φ(2, 3)) = ξ12(1) × ξ23(1)

= λ12(1)G3 × λ23(1)G3 = χ2 × χ4 = χ5,

ξD5(φ) = ξ12(φ(1, 2)) × ξ23(φ(2, 3)) = ξ12(−1) × ξ23(−1)

= λ12(−1)G3 × λ23(−1)G3 = χ3 × χ7 = χ9,

ξD5(φ) = ξ12(φ(1, 2)) × ξ23(φ(2, 3)) = ξ12(−1) × ξ23(1)

= λ12(−1)G3 × λ23(1)G3 = χ3 × χ4 = χ6,

ξD5(φ) = ξ12(φ(1, 2)) × ξ23(φ(2, 3)) = ξ12(1) × ξ23(−1)

= λ12(1)G3 × λ23(−1)G3 = χ2 × χ7 = χ8.

Thus all the irreducible characters of G3(3) are basic characters. In general,
we have the following Theorem 4.2.

Theorem 4.2. All the irreducible characters of G3(q) are basic characters.

Proof. From Φ(3), we have the groups G12 = G3(q), G13 = Zq ×Zq and G23 =
G3(q). The characters λ13(α)G3(q) are irreducible characters of G3(q) of degree
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|G3(q) : G13| = q. Thus associated with α, we have q − 1 elementary characters
of G3(q) of degree q. Since ξD3(φ) = λ13(α)G3(q), we have q− 1 basic characters
arising this way. This accounts for the q − 1 irreducible characters of G3(q) of
degree q. The basic subsetsD2 andD4 both give rise to λ12(α)G3(q) = λ12(α) and
λ23(α)G3(q) = λ23(α) respectively. Thus we have 2q−2 basic characters of degree
1. For the basic subset D5 we have ξD5(φ) = λ12(α)G3(q) × λ23(α)G3(q). This
gives us q2−2q+1 basic characters of degree 1. The basic subset D1 contributes
1 irreducible character that is χ1. We then have (q2−2q+1)+(2q−2)+1 = q2,
therefore accounting for the q2 linear characters of G3(q).

5. The group G4(2)

We determine the character table of G4(2), its elementary and basic characters.

5.1 The character table of G4(2)

Applying coset analysis we obtain the following conjugacy classes of G4(2) listed
in Table 9.

classes of G classes of G4(2) |CG4(g)|
(1a) (1A) 26

(2A) 26

(2B) 25

(2C) 24

(2a) (2D) 25

(2E) 25

(4A) 24

(2b) (2F ) 24

(2G) 24

(4B) 23

(2c) (2H) 24

(2I) 24

(4C) 24

(4D) 24

(4a) (4E) 23

(4F ) 23

Table 9: The Conjugacy Classes of G4(2)

We now calculate the Fischer matrices. Since G has four orbits on the
conjugacy classes of N , it also has four orbits on Irr(N). We check the lengths
of these orbits on Irr(N). Note that the trivial character is fixed. We now have
the lengths w + u+ s = 7, thus from the maximal subgroups of G, we get that
w = 1, u = 2 and s = 4. In this case, the lengths are the same as those on
the conjugacy classes of G. Note that N ∼= V3(2), the vector space of dimension
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3 over 2 elements. We know that Irr(23) is the dual of V3(2) denoted by V ∗.
In this case V3(2) ∼= V ∗ is a G-module. Hence the inertia factor groups are
H1 = G = H2, H3 = Z2, and for H4 we note that there are two subgroups, V4
and Z4 of G of index 2. Hence we ought to determine which one stabilizes the
representative from the orbit with 2 elements.

By writing, G =< a, b >= {1, a, a2, a3, b, ab, a2b, a3b} ∼= D8, we have (V4)1 =
{1, a2, b, a2b} and (V4)2 = {1, a2, ab, a3b}. We identify H4 to be (V4)1, that is
the point stabilizer of the orbit with 2 elements. The character table of H4 and
the fusion of H4 into G are given in Table 10 and Table 11 respectively.

[g] 1 a2 b a2b
CG(g) 4 4 4 4

χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 −1 1 −1
χ4 1 −1 −1 1

Table 10: The Character Table of H4

classes of H4 classes of G3(2)

1 1a
a2 2a
b 2c
a2b 2c

Table 11: The Fusion of the Classes from H4 to G

The character table of H1 = G = G3(2) ∼= D8 is given in Table 12 following
below.

[cl(g)] 1a 2a 2b 2c 4a
CG(g) 8 8 4 4 4

χ1 1 1 1 1 1
χ2 1 1 1 −1 −1

χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1

χ5 2 −2 0 0 0

Table 12: The Character Table of H1

Note that H3 =< x >∼= Z2, where x comes from the 2b class of G ∼= D8.
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In the following, we discuss the calculation of Fischer matrices. The Fischer
matrix M(1a) has the form:

M(1a) =


|CḠ(1A)| |CḠ(2A)| |CḠ(2B)| |CḠ(2C)|

|CH1(1a)| 8 1 1 1 1
|CH2(1a)| 8 1 a d g
|CH3(1a)| 2 4 b e h
|CH4(1a)| 4 2 c f i

,
We use the column orthogonalities to obtain the values of a, b and c. We

have 8 + 8|a|2 + 2|b|2 + 4|c|2 = 64 so that 4|a|2 + |b|2 + 2|c|2 = 28. Similarly
8 + 8a + 8b+ 8c = 0, we obtain a = 1, b = −4 and c = 2. we can compute the
other unknown entries of M(1a) in the same way and we obtain d = 1, e = 0,
f = −2, g = −1, h = 0 and i = 0.

By similar computations, we obtain

M(2a) =


|CḠ(2D)| |CḠ(2E)| |CḠ(4A)|

|CH1(2a)| 8 1 1 1
|CH2(2a)| 8 1 1 −1
|CH4(2a)| 4 2 −2 0

,

M(2b) =


|CḠ(2F )| |CḠ(2G)| |CḠ(4B)|

|CH1(2b)| 4 1 1 1
|CH2(2b)| 4 1 1 −1
|CH3(2b)| 2 2 −2 0

,

M(2c) =


|CḠ(2H)| |CḠ(2I)| |CḠ(4C)| |CḠ(4D)|

|CH1(2c)| 4 1 1 1 1
|CH2(2c)| 4 1 −1 1 −1
|CH4(2c)| 4 1 1 −1 −1
|CH4(2c)| 4 1 −1 −1 1

,

M(4a) =

( |CḠ(4E)| |CḠ(4F )|
|CH1(4a)| 4 1 1
|CH2(4a)| 4 1 -1

)
.

To obtain the character table of G4(2) we multiply the appropriate partial char-
acter tables of the inertia factor groups by the appropriate rows of the Fischer
matrices. Thus for the classes (1A), (2A), (2B) and (2C) of Ḡ = G4(2), by
using rows of M(1a) and first columns of the character tables of inertia factor
groups, we have 

1
1
1
1
2

 [1 1 1 1
]

=


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
2 2 2 2

 ,
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1
1
1
1
2

 [1 1 1 −1
]

=


1 1 1 −1
1 1 1 −1
1 1 1 −1
1 1 1 −1
2 2 2 −2

 ,
[
1
1

] [
4 −4 0 0

]
=

[
4 −4 0 0
4 −4 0 0

]
,


1
1
1
1

 [2 2 −2 0
]

=


2 2 −2 0
2 2 −2 0
2 2 −2 0
2 2 −2 0

 .
Similarly for the classes 2D, 2E and 4A, we have

1
1
1
1
−2

 [1 1 1
]

=


1 1 1
1 1 1
1 1 1
1 1 1
−2 −2 −2

 ,


1
1
1
1
−2

 [1 1 −1
]

=


1 1 −1
1 1 −1
1 1 −1
1 1 −1
−2 −2 2

 ,


1
1
−1
−1

 [2 −2 0
]

=


2 −2 0
2 −2 0
−2 2 0
−2 2 0

 .
Thus continuing in this manner, we obtain the full character table of G4(2)

as shown in Table 13.

5.2 The Elementary characters of G4(2)

As in section 3.1, we take F2 = {0, 1}. Then α = 1 and ψo = χ2, the non-trivial
irreducible character of F2. We have that

Φ(4) = {(i, j)|1 ≤ i < j ≤ 4} = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

The subgroups Gij are G12 = G23 = G34 = G4(2) and

(2) G13 =

{
1 0 b c
0 1 d e
0 0 1 f
0 0 0 1

 | b, c, d, e, f ∈ F2

}
.
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[g] 1A 2A 2B 2C 2D 2E 4A 2F 2G 4B 2H 2I 4C 4D 4E 4F
|CG(g)| 26 26 25 24 25 25 24 24 24 23 24 24 24 24 23 23

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
χ3 1 1 1 1 1 1 1 −1 −1 −1 1 1 1 1 −1 −1
χ4 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 1 1
χ5 2 2 2 2 −2 −2 −2 0 0 0 0 0 0 0 0 0

χ6 1 1 1 −1 1 1 −1 1 1 −1 1 −1 1 −1 1 −1
χ7 1 1 1 −1 1 1 −1 1 1 −1 −1 1 −1 1 −1 1
χ8 1 1 1 −1 1 1 −1 −1 −1 1 1 −1 1 −1 −1 1
χ9 1 1 1 −1 1 1 −1 −1 −1 1 −1 1 −1 1 1 −1
χ10 2 2 2 −2 −2 −2 2 0 0 0 0 0 0 0 0 0

χ11 4 −4 0 0 0 0 0 2 −2 0 0 0 0 0 0 0
χ12 4 −4 0 0 0 0 0 −2 2 0 0 0 0 0 0 0

χ13 2 2 −2 0 2 −2 0 0 0 0 2 0 −2 0 0 0
χ14 2 2 −2 0 2 −2 0 0 0 0 −2 0 2 0 0 0
χ15 2 2 −2 0 −2 2 0 0 0 0 0 2 0 −2 0 0
χ16 2 2 −2 0 −2 2 0 0 0 0 0 −2 0 2 0 0

Table 13: The Character Table of Ḡ = G4(2)

Using GAP [5], this group is isomorphic to a split extension of the form 24:2
and using the IdSmallGroup(G13) function, this is the group number 27 on the
GAP list for groups of order 32.

(3) G14 =

{
1 0 0 c
0 1 d e
0 0 1 f
0 0 0 1

 | c, d, e, f ∈ F2

}

which is the group Z2 ×D8 and

(4) G24 =

{
1 a b c
0 1 0 e
0 0 1 f
0 0 0 1

 | a, b, c, e ∈ F2

}
,

this is of the form (Z2 ×D8):Z2, it is the group number 49 on the GAP list for
groups of order 32.

We get

(q − 1)(
n(n− 1)

2
) = (2 − 1)(

4(4 − 1)

2
) = 6

elementary characters. Three of these are the elementary characters λ12(1)(x)G4(2),
λ23(1)(x)G4(2), λ34(1)(x)G4(2) all of degree 1. The character table and struc-
ture of the conjugacy class representatives of G4(2) allow us to identify these
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three elementary characters as λ12(1)(x)G4(2) = χ6, λ23(1)(x)G4(2) = χ3 and
λ34(1)(x)G4(2) = χ2. We now identify the last three elementary characters
λ13(1)(x)G4(2), λ14(1)(x)G4(2) and λ24(1)(x)G4(2).

We consider G13. The structure of G13 is known from the relation 2. We
use GAP [5] to construct G13 as a subgroup of G4(2). We have the following
conjugacy classes of G13 computed using GAP [5] in Table 14.

classes of G13(2) 1a 2a 2b 2c 4a 2d 2e 2f 2g 4b 2h 2i 4c 2j
CG13(x) 32 8 32 16 8 32 32 16 16 8 16 16 8 16
[cl(x)] 1 4 1 2 4 1 1 2 2 4 2 2 4 2

Table 14: The Conjugacy Classes of G13

Using GAP [5], we get the fusions of the conjugacy classes of G13 to the
conjugacy classes of G4(2) as in Table 15 below.

classes of G13 classes of G4(2) λ
G4(2)
13 (y)

1a 1A 2

2a 2H 2

2b 2D 2
2e

2c 2F 0
2i

2d 2A 2

2f 2G 0
2j

2g 2B −2

2h 2E −2

4a 4E 0
4c

4b 4C −2

Table 15: The Fusion of Classes of G13 to G4(2)

With the information about fusions as in Table 15 above, we calculate the
permutation character (1G13)G4(2) = χ1+χ6. Since λ13(1)(x) = 1 or λ13(1)(x) =
−1 according as x13 = 0 or x13 = 1, we can induce the character λ13(1)(x)
by the induction formula to obtain the values as in Table 15 above on the
classes of G4(2). Note that for any c ∈ G4(2) not listed in Table 15, we have
that λ13(1)G4(2)(c) = 0. Using the character table of G4(2), we then identify
λ13(1)G4(2) = χ13. The same analysis applies in identifying λ14(1)G4(2) = χ11

and λ24(1)G4(2) = χ5. Therefore the six elementary characters of G4(2) are
λ12(1)(x)G4(2) = χ6, λ23(1)(x)G4(2) = χ3, λ34(1)(x)G4(2) = χ2, λ13(1)G4(2) =
χ13, λ14(1)G4(2) = χ11 and λ24(1)G4(2) = χ5.
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5.3 Basic characters of G4(2)

To calculate the basic characters of G4(2), we first identify the subsets of Φ(4)
which are basic. Since

Φ(4) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},

there are 64 subsets of Φ(4). The following subsets are basic D1 = ∅, D2 =
{(1, 2)}, D3 = {(1, 3)}, D4 = {(1, 4)}, D5 = {(2, 3)}, D6 = {(2, 4)}, D7 =
{(3, 4)}. In addition, we have 7 basic 2-subsets of Φ(4), namely D8 = {(1, 2),
(2, 3)}, D9 = {(1, 2), (2, 4)}, D10 = {(1, 2), (3, 4)}, D11 = {(1, 3), (2, 4)}, D12 =
{(1, 3), (3, 4)}, D13 = {(1, 4), (2, 3)}, D14 = {(2, 3), (3, 4)} and only one 3-subset,
namely D15 = {(1, 2), (2, 3), (3, 4)}. Note that none of the 4-subsets and 5-
subsets is basic.

By definition ξ∅(φ) = χ1 is the trivial character of G4(2). In this way, we
have the basic characters of G4(2), namely

ξD1(φ) = χ1,

ξD2(φ) = ξ12(φ(1, 2)) = ξ12(1) = λ12(1)G4 = χ6,

ξD3(φ) = ξ13(φ(1, 3)) = ξ13(1) = λ13(1)G4 = χ13,

ξD4(φ) = ξ14(φ(1, 4)) = ξ14(1) = λ14(1)G4 = χ11,

ξD5(φ) = ξ23(φ(2, 3)) = ξ23(1) = λ23(1)G4 = χ3,

ξD6(φ) = ξ24(φ(2, 4)) = ξ24(1) = λ24(1)G4 = χ5,

ξD7(φ) = ξ12(φ(3, 4)) = ξ34(1) = λ34(1)G4 = χ2.

ξD8(φ) = ξ12(φ(1, 2)) × ξ23(φ(2, 3)) = λ12(1)G4 × λ23(1)G4 = χ6 × χ3,

ξD9(φ) = ξ12(φ(1, 2)) × ξ24(ϕ(2, 4)) = λ12(1)G4 × λ24(1)G4 = χ6 × χ5,

ξD10(φ) = ξ12(φ(1, 2)) × ξ34(φ(3, 4)) = λ12(1)G4 × λ34(1)G4 = χ6 × χ2,

ξD11(φ) = ξ13(φ(1, 3)) × ξ24(φ(2, 4)) = λ13(1)G4 × λ24(1)G4 = χ13 × χ5,

ξD12(φ) = ξ13(φ(1, 3)) × ξ34(ϕ(3, 4)) = λ13(1)G4 × λ34(1)G4 = χ13 × χ2,

ξD13(φ) = ξ14(φ(1, 4)) × ξ23(φ(2, 3)) = λ14(1)G4 × λ23(1)G4 = χ11 × χ3,

ξD14(φ) = ξ23(φ(2, 3)) × ξ34(φ(3, 4)) = λ23(1)G4 × λ34(1)G4 = χ3 × χ2,

ξD15(φ) = ξ12(φ(1, 2)) × ξ23(φ(2, 3)) × ξ34(φ1‘(3, 4))

= λ12(1)G4 × λ23(1)G4 × λ34(1)G4 = χ6 × χ3 × χ2.

Table 16 below gives a summary of the basic characters of G4(2) decomposed
in terms of its irreducible characters. We observe from Table 16 that except
ξD11(ϕ), all the other basic characters are its irreducible characters.
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basic characters χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15 χ16

ξ∅(φ) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ξD2(φ) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
ξD3(φ) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
ξD4(φ) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
ξD5(φ) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
ξD6(φ) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
ξD7(φ) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ξD8(φ) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
ξD9(φ) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
ξD10(φ) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
ξD11(φ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
ξD12(φ) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
ξD13(φ) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
ξD14(φ) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
ξD15(φ) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 16: The Constituents of The Basic Characters of G4(2)
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Abstract. The existence of a solution of the problem with local homogeneous two-
point in time conditions for nonhomogeneous PDE of the second order in time and
generally infinite order in spatial variables was investigated in the classes of entire
functions. The case when the characteristic determinant of the problem is identically
zero was studied. We proposed the differential-symbol method of constructing the
solution of the problem.

Keywords: characteristic determinant of a problem, two-point local conditions,
differential-symbol method.

1. Introduction

The problems with n-point in time conditions (n ∈ N\{1}) for PDE are gener-
alization of multipoint problems for ODE which are known in the literature as
the Vallee-Poussin problems [1]. The multipoint problems for PDE are ill-posed
and their solvability is connected with problem of small denominators (below
estimation of the so-called characteristic determinant). Papers (see [2, 3, 4] and
bibliography in them) are devoted to research of the multipoint in time problems
in the bounded domains based on the metric approach.

The spaces of functions which allow exponential growth as the classes of
unique solvability of the multipoint problem for PDE in unbounded layer are
studied in the papers [5, 6, 7].

The differential-symbol method of solving the problem with initial and two-
point in time conditions for PDE is proposed in the works [8, 9, 10]. In these
papers, classes of entire functions and classes of quasipolynomials as the classes
of unique solvability of the problems are dedicated.

∗. Corresponding author
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The work [11], in particular, is devoted to constructing the polynomial so-
lutions of the system of PDE with constant coefficients.

This paper is the continuation of researches [12, 13, 14, 15]. It is devoted to
research of existence of solutions of the problem with local homogeneous two-
point in time conditions for nonhomogeneous PDE of the second order with
respect to time variables when the characteristic determinant is identically zero.

2. Problem statement

In the domain (t, x) ∈ R1+s, x = (x1, . . . , xs), s ∈ N, we investigate a solvability
of the problem

(2.1) L
( ∂
∂t
,
∂

∂x

)
U(t, x) ≡ ∂2U

∂t2
+ 2 a

( ∂
∂x

)∂U
∂t

+ b
( ∂
∂x

)
U = f(t, x),

(2.2)
l0∂U(t, x) ≡ A1

( ∂
∂x

)
U(0, x) +A2

( ∂
∂x

)∂U
∂t

(0, x) = 0,

l1∂U(t, x) ≡ B1

( ∂
∂x

)
U(h, x) +B2

( ∂
∂x

)∂U
∂t

(h, x) = 0, h > 0.

In equation (2.1) f(t, x) is given nonzero function, a
(

∂
∂x

)
and b

(
∂
∂x

)
are the

following differential expressions

a
( ∂
∂x

)
=

∞∑
|k|=0

ak
∂k

∂xk
, b

( ∂
∂x

)
=

∞∑
|k|=0

bk
∂k

∂xk
,

where ak, bk ∈ C, k = (k1, . . . , ks) ∈ Zs
+, |k| = k1 + . . . + ks,

∂k

∂xk = ∂|k|

∂x
k1
1 ...∂xks

s

,

moreover their symbols a(ν) and b(ν) are entire functions (in particular, they
can be polynomials), ν = (ν1, . . . , νs) ∈ Cs.

The differential polynomials with complex coefficients A1

(
∂
∂x

)
, A2

(
∂
∂x

)
,

B1

(
∂
∂x

)
and B2

(
∂
∂x

)
in local two-point conditions (2.2) are presented, moreover

the corresponding symbols A1 (ν), A2 (ν), B1 (ν) and B2 (ν) for each ν ∈ Cs

satisfy the inequality(
|A1 (ν)|2 + |A2 (ν)|2

)(
|B1 (ν)|2 + |B2 (ν)|2

)
̸= 0.

The solution of problem (2.1), (2.2) is understood as entire function of the
following form

U(t, x) =
∑

k̃∈Z1+s
+

u
k̃
tk0xk, k̃ = (k0, k), u

k̃
∈ C,

of variables t and x, which satisfy equation (2.1) in R1+s and conditions (2.2)
in Rs.
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For ODE

L
( d
dt
, ν
)
T (t, ν) = 0, ν ∈ Cs,

we consider the fundamental system of solutions
{
T0 (t, ν) , T1 (t, ν)

}
normal at

the point t = 0 and write the determinant:

(2.3) ∆ (ν) =

∣∣∣∣∣∣
l0νT0(t, ν) l0νT1(t, ν)

l1νT0(t, ν) l1νT1(t, ν)

∣∣∣∣∣∣ ,
where

l0νT0(t, ν) ≡ A1(ν), l0νT1(t, ν) ≡ A2(ν),

l1νTj(t, ν) ≡ B1 (ν)Tj(h, ν) +B2 (ν)
dTj
dt

(h, ν), j ∈ {0, 1}.

The determinant ∆ (ν) is the characteristic determinant of problem (2.1),
(2.2).

Let’s establish the solvability of problem (2.1), (2.2) in the class of entire
functions when characteristic determinant (2.3) of the problem is identically
zero.

3. The conditions of existence of solution of the problem

Since a(ν) and b(ν) are entire functions then [16] the functions T0(t, ν) and
T1(t, ν) are entire functions in vector-parameter ν ∈ Cs for all t ∈ R. So the
function ∆(ν) (as superposition of entire functions) is entire function too.

Let’s consider the function

(3.1) Φ (t, λ, ν) =
eλt − T0 (t, ν) − λT1 (t, ν)

L (λ, ν)
,

which is the solution of Cauchy problem

L

(
d

dt
, ν

)
Φ = eλt, Φ (0, λ, ν) = 0,

∂Φ (t, λ, ν)

∂t

∣∣∣∣
t=0

= 0.

The function (3.1) is the quasipolynomial of variable t, besides Φ (t, λ, ν) is
entire function of the first order in parameter λ and entire function of order p̄
in the set of parameters ν1, . . . , νs. Here p̄ = max {pa, pb/2}, where pa and pb
are degrees of a (ν) and b (ν) accordingly if a (ν) and b (ν) are polynomials, and
p̄ = ∞ if a (ν) or b (ν) is not polynomial.

We introduce some classes of entire functions. These classes depend on value
p where p = max{p̄, 1} ∈ [1; +∞].

Ap′ is the class of entire functions φ(x) the order of which is less than p′,
where 1/p+ 1/p′ = 1, if 1 < p < +∞;

Ap′ = A1 is the class of entire functions φ(x) of exponential type if p = ∞;
Ap′ = A∞ is the class of entire functions φ(x) if p = 1.
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By Ap′ , denote the class of entire functions U(t, x) which for each fixed t ∈ R
belong to Ap′ .

Let’s show that in the case ∆ (ν) ≡ 0 in Cs the solution of problem (2.1),
(2.2) exists under some conditions on the function f(t, x) and it can be found
by the formula

(3.2) U (t, x) = f

(
∂

∂λ
,
∂

∂ν

){
eν·xΦ (t, λ, ν)

}∣∣∣
λ=0, ν=O

,

in which ν · x = ν1x1 + . . .+ νsxs.

We consider the function Φ1(λ, ν) = l1νΦ(t, λ, ν), where

l1νΦ(t, λ, ν) ≡ B1(ν)Φ(h, λ, ν) +B2(ν)
∂Φ

∂t
(h, λ, ν).

Theorem 3.1. Let for two-point problem (2.1), (2.2), in which ∆ (ν) ≡ 0 in Cs

the following condition is satisfied:

for all x ∈ Rs and f ∈ Ap′ the identity

(3.3) f

(
∂

∂λ
,
∂

∂ν

){
eν·xΦ1(λ, ν)

}∣∣∣
λ=0, ν=O

≡ 0

is fulfilled.

Then the solution of problem (2.1), (2.2) in the class Ap′ exists and it can
be obtained by formula (3.2).

Proof. First we note that the result of action of the differential expression
f
(

∂
∂λ ,

∂
∂ν

)
onto the function eν·xΦ (t, λ, ν) in formula (3.2) is entire function of

the first order in λ and of the order p in the set of variables ν1, . . . , νs.

Further we define the differential expression f
(

∂
∂λ ,

∂
∂ν

)
for entire function

f (t, x) of the class Ap̄′ by differential expression of infinite order by replacing in
the Maclaurin expansion of the function f (t, x) the variables t and the vector-
parameter x by ∂

∂λ and ∂
∂ν accordingly. Then the expression in the right side

of formula (3.2) is the series that defines after setting λ = 0 and ν = O en-
tire function U (t, x) which belongs to the class Ap′ for each fixed t [17], i. e.
U (t, x) ∈ Ap′ .

Let’s prove that the function (3.2) satisfy the equation (2.1):

L

(
∂

∂t
,
∂

∂x

)
U (t, x) = f

(
∂

∂λ
,
∂

∂ν

) {
eν·xL

(
d

dt
, ν

)
Φ (t, λ, ν)

}∣∣∣∣
λ=0, ν=O

= f

(
∂

∂λ
,
∂

∂ν

){
eλt+ν·x

}∣∣∣
λ=0, ν=O

= f (t, x) .
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In addition, from the condition Φ (0, λ, ν) =
∂Φ

∂t
(0, λ, ν) = 0 we get

l0∂U (t, x) = f

(
∂

∂λ
,
∂

∂ν

)(
A1

(
∂

∂x

){
Φ (0, λ, ν) eν·x

}) ∣∣∣∣∣
λ=0,ν=O

+ f

(
∂

∂λ
,
∂

∂ν

) (
A2

(
∂

∂x

){
∂Φ

∂t
(0, λ, ν) eν·x

})∣∣∣∣
λ=0,ν=O

≡ 0.

Since the identity (3.3) is fulfilled, we show that function (3.2) satisfy the
second condition in (2.2):

l1∂U (t, x) = f

(
∂

∂λ
,
∂

∂ν

){
B1

( ∂
∂x

){
Φ (h, λ, ν) eν·x

}}∣∣∣
λ=0, ν=O

+ f

(
∂

∂λ
,
∂

∂ν

) {
B2

( ∂
∂x

){∂Φ

∂t
(h, λ, ν) eν·x

}}∣∣∣∣
λ=0, ν=O

= f

(
∂

∂λ
,
∂

∂ν

){
B1(ν)

{
Φ (h, λ, ν) eν·x

}}∣∣∣
λ=0, ν=O

+ f

(
∂

∂λ
,
∂

∂ν

) {
B2(ν)

{∂Φ

∂t
(h, λ, ν) eν·x

}}∣∣∣∣
λ=0, ν=O

= f

(
∂

∂λ
,
∂

∂ν

){
eν·xΦ1(λ, ν)

}∣∣∣
λ=0, ν=O

≡ 0.

The theorem is proved.

Remark 3.2. Solution (3.2) of problem (2.1), (2.2) in the class Ap′ is nonunique,
because null-space of the problem in the same class is nontrivial [12].

4. Examples

Let’s establish the conditions of solvability of two-point problem (2.1), (2.2) for
the specific examples.

Example 4.1. In the domain (t, x) ∈ R2 we investigate the problem of finding
the solutions of the equation

(4.1)

[
∂2

∂t2
+ 2

∂2

∂t∂x
+ 1 +

∂2

∂x2

]
U (t, x) = f(t, x),

that satisfy local two-point conditions

(4.2)
∂U

∂x
(0, x) +

∂U

∂t
(0, x) = 0,

∂U

∂x
(π, x) +

∂U

∂t
(π, x) = 0.

� This problem is the problem (2.1), (2.2), in which a (ν) = ν, b(ν) = 1+ν2,
h = π, A1(ν) = B1(ν) = ν, A2(ν) = B2(ν) = 1, p̄ = p = 1.
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The fundamental system of solutions of ODE[
d2

dt2
+ 2ν

d

dt
+ 1 + ν2

]
T (t, ν) = 0

normal at the point t = 0 has the form

T0 (t, ν) = e−νt [ν sin t+ cos t] , T1 (t, ν) = e−νt sin t.

The characteristic determinant of problem (4.1), (4.2) yields

∆ (ν) =

∣∣∣∣ ν 1
−νe−πν −e−πν

∣∣∣∣ ≡ 0.

The condition of existence (3.3) of solution of problem (4.1), (4.2) according
to Theorem 3.1 is following:

for f ∈ A∞ such identity

f

(
∂

∂λ
,
∂

∂ν

) {
e−νπ (λ+ ν)

e(λ+ν)π + 1

(λ+ ν)2 + 1
eνx

}∣∣∣∣∣
λ=ν=0

≡ 0

holds in R.
For example, this identity is satisfied for the function of form f (t, x) = ex−t.

The solution of problem (4.1), (4.2) for this function can be found by formula
(3.2):

U (t, x) = f

(
∂

∂λ
,
∂

∂ν

){
eνxΦ (t, λ, ν)

}∣∣∣
λ=ν=0

=
{
eνxΦ (t, λ, ν)

}∣∣∣
λ=−1, ν=1

=
e−t − T0 (t, 1) + T1 (t, 1)

L (−1, 1)
ex = ex−t − ex−t cos t.

Note that obtained solution of problem (4.1), (4.2) is nonunique. For exam-
ple, the solution of problem (4.1), (4.2) is function of the form U (t, x) = ex−t,
and it is also the sum of this function with arbitrary elements of null-space of
the problem. Let’s note that elements of the null-space of problem (4.1), (4.2)
have the form

U (t, x) = φ (x− t) cos t,

where φ is arbitrary twice continuously differentiable function in R. �
Example 4.2. Let’s investigate the existence conditions of the solution of the
two-point problem in domain t ∈ R, x = (x1, x2, x3) ∈ R3 for nonhomogeneous
differential-functional equation

(4.3)
∂2

∂t2
U (t, x) + 2

∂

∂t
U (t, x+ ω) + 2U (t, x+ ω) − U (t, x) = f (t, x)

with homogeneous local conditions

(4.4) U(0, x) +
∂U

∂t
(0, x) = 0, U(1, x) +

∂U

∂t
(1, x) = 0,

where ω = (1, 1,−1) is the displacement vector in spatial coordinates.
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� Differential-functional equation (4.3) we can write as the differential equa-
tion of infinite order[

∂2

∂t2
+ 2 eω·

∂
∂x
∂

∂t
+ 2 eω·

∂
∂x − 1

]
U (t, x) = f(t, x).

For this problem, we have a (ν) = eω·ν , b (ν) = 2 eω·ν − 1, ν = (ν1, ν2, ν3),
A1 (ν) = A2 (ν) = B1 (ν) = B2 (ν) = 1, s = 3, h = 1, p̄ = p = ∞.

The fundamental system of solutions of ODE[
d2

dt2
+ 2 eω·ν

d

dt
+ 2 eω·ν − 1

]
T (t, ν) = 0

normal at the point t = 0 has the form

(4.5)

T0(t, ν) = e−teω·ν
{
eω·ν

sinh [t(eω·ν − 1)]

eω·ν − 1
+ cosh [t(eω·ν − 1)]

}
,

T1(t, ν) = e−teω·ν sinh [t(eω·ν − 1)]

eω·ν − 1

(in particular, if eω·ν = 1 we obtain T0(t, ν) = e−t(t+ 1), T1(t, ν) = te−t).
For problem (4.3), (4.4), we have:

∆ (ν) =

∣∣∣∣∣∣∣
1 1

e−eω·ν sinh [eω·ν − 1]

eω·ν − 1
e−eω·ν sinh [eω·ν − 1]

eω·ν − 1

∣∣∣∣∣∣∣ ≡ 0.

The condition of existence of solutions of problem (4.3), (4.4) according to
theorem 3.1 is following:

for f ∈ A1 such identity

(4.6) f

(
∂

∂λ
,
∂

∂ν

) {
eλ − e−2eω·ν+1

λ− 1 + 2eω·ν
eν·x

}∣∣∣∣
λ=0, ν=O

≡ 0

holds in R3.
Condition (4.6) is satisfied, in particular, if the right-hand side of equation

(4.3) has the form:
f(t, x) = cos[2πt]e−t+x2+x3 .

Really,

cos
[
2π

∂

∂λ

]
e
− ∂

∂λ
+ ∂

∂ν2
+ ∂

∂ν3

{
eν·xΦ1(λ, ν)

}∣∣∣
λ=0, ν=O

=
1

2

{
eν·xΦ1(λ, ν)

}∣∣∣
λ=2πi−1, ν=(0,1,1)

+
1

2

{
eν·xΦ1(λ, ν)

}∣∣∣
λ=−2πi−1, ν=(0,1,1)

=
1

2
ex2+x3

{eλ − e−1

λ+ 1

}∣∣∣
λ=2πi−1

+
1

2
ex2+x3

{eλ − e−1

λ+ 1

}∣∣∣
λ=−2πi−1

≡ 0.
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So for function f(t, x) = cos[2πt]e−t+x2+x3 problem (4.3), (4.4) has solution
in A1, which can be found by formula (3.2):

U (t, x) = f

(
∂

∂λ
,
∂

∂ν

){
eν·xΦ (t, λ, ν)

}∣∣∣
λ=0, ν=O

=
1

2

{
eν·xΦ(t, λ, ν)

}∣∣∣
λ=2πi−1,ν=(0,1,1)

+
1

2

{
eν·xΦ(t, λ, ν)

}∣∣∣
λ=−2πi−1, ν=(0,1,1)

=
1

4π2
e−t+x2+x3

{
1 − cos[2πt]

}
.

Let’s note that obtained solution of problem (4.3), (4.4) is only partial solu-
tion, because it is found to within elements of the null-space of the problem of
form

U (t, x) = φ (x) e−t,

where φ is arbitrary continuously function in R3. �

5. Conclusions

We found the condition of existence of solution of the problem in the class of
entire functions for nonhomogeneous PDE of second order with respect to time
variable, in which homogeneous local two-point conditions are imposed, and in-
finite order with respect to spatial variables in the case when the characteristic
determinant identically equals to zero. We showed examples for which the solu-
tions of two-point problems exist. These solutions are constructed by using the
differential-symbol method.
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Abstract. The present Cantor’s set theory has limitations. In various ways, it cannot
well represent realities because an element x, in Cantor’s sense, is either in or not in
X. Even, when x ∈ X, it can only occur once; no repetition is allowed. But so many
real life problems are only well represented by sets which allow repetition(s), such as
multiset. Such cases arise in, though not limited to, database query, chemical structures
and computer proramming.

In this paper, we have some results on the algebraic structure of multisets and some
properties of their multicosets.

Keywords: multisets, multigroups, submultiset, multicoset.

1. Introduction

So many real life problems are only well represented by sets which allow repeti-
tion(s), such as multiset. Such cases occur very frequently in chemical sciences
and computer programming.

The notion can be traced to Dedekind[4]. In the recent time, Nazmul et al
has put algebraic group structure on multisets[8]. Related algebraic properties
as in the classical group can now be studied.

∗. Corresponding author
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In this paper, we have some results on the algebraic structure of multisets
and some characterisations.

2. Preliminaries

In this paper, we shall use X to denote a non-empty set.

Definition 2.1. A multiset M drawn from a set X is denoted by the count
function CM : X −→ IN ∪{0} defined by CM (x) = n ∈ IN , the (multiplicity) or
number of occurrence of x in M , where IN is the set of positive integers.

Example 2.2. Let set X = {1, 2, 3, 4}. Then M = {1, 1, 1, 2, 2, 3, 3, 3} is a
multiset over X with CM (1) = 3, CM (2) = 2, CM (3) = 3 and CM (4) = 0.

Definition 2.3. Let multisets A and B be drawn from X. A is said to be a
submultiset of B and is denoted A ⊆ B if CA(x) ≤ CB(x).

Definition 2.4. The root set or support of a multiset M , which is denoted by
M∗, is the set which contains the distinct elements in the multiset. Hence, M∗

is the set of x ∈M such that CM (x) > 0.

Definition 2.5. Consider a multiset M over a set X.

(1) It is simple if the cardinality of its root is 1;

(2) It is regular if CM (x) = CM (y), ∀x, y ∈M ;

(3) The peak element x ∈M is such that CM (x) ≥ CM (y), ∀y ∈M ;

(4) The intersection of two multisets A and B is denoted by CA(x)∩CB(x) =
min{CA(x), CB(x)} and their union is denoted by

CA(x) ∪ CB(x) = max{CA(x), CB(x)};

(5) A and B are equal if and only if CA(x) = CB(x).

[X]α is the set of all the multisets whose elements have the multiplicity of
not more than α. MS(X) is the set of all multisets over X. An empty multiset
ϕ is such that Cϕ(x) = 0, ∀x ∈ X. Cardinality of a multiset M is denoted by

|M | =
∑

CM (x), ∀x ∈M .

Definition 2.6. Let X be a group and e ∈ X its identity. Then, ∀x, y ∈ X, a
multiset M drawn from X is called a multigroup if

(1) CM (xy) ≥ CM (x) ∧ CM (y);

(2) CM (x−1) ≥ CM (x).
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The implication of Definition 2.6 is that CM (x) = CM ((x−1)−1) ≥ CM (x−1).
Thus, CM (x) = CM (x−1). So, CM (e) ≥ CM (x) ∧ CM (x−1) = CM (x). We shall
call MG(X) the set of all multigroups over X.

Example 2.7. Let G = {e, a, b, ab} be Klein 4 group. Then

(1) A = {e, e, e, a, a} is a multigroup;

(2) B = {e, e, e, a, a, b, b} is not a multigroup since 0 = CB(ab) � CB(a) ∧
CB(c) = 2.

Definition 2.8. A multigroup M over X is called abelian if CM (xy) = CM (yx),
∀x, y ∈ X.

Definition 2.9. Let A,B ∈MS(X).

(1) A ◦B is a multiset associated with

CA◦B(x) =
∨

{CA(y) ∧ CB(z) : y, z ∈ X,x = yz};

(2) A−1 is a multiset associated with

CA−1(x) = CA(x−1), ∀x ∈ X;

(3) An = {x : CA(x) ≥ n};

(4) [n]x is a multiset containing only x in n times;

(5) The complement of the multiset M ∈ [X]α denoted by M ′ is such that

CM ′(x) = α− CM (x);

(6) nA = {xn : x ∈ A}, where n is the multiplicity of each element that
appears from A.

Proposition 2.10 ([8]). Let A,B ∈MS(X) and m,n ∈ IN .

(1) If A ⊆ B, then An ⊆ Bn;

(2) If m ≤ n, then Am ⊇ An;

(3) (A ∩B)n = An ∩Bn;

(4) (A ∪B)n = An ∪Bn;

(5) A = B if and only if An = Bn, ∀n ∈ IN .

Proposition 2.11 ([8]). Let X be a group and A ∈ MG(X). Then, An, for
n ∈ IN , is a subgroup of X.
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Proposition 2.12 ([8]). Let X be a group and A ∈ MS(X). Then, A ∈
MG(X) if and only if the following conditions are satisfied:

(1) A ◦A ⊆ A and A−1 ⊆ A (or A ⊆ A−1 or A−1 = A) or

(2) A ◦A−1 ⊆ A.

Remark 2.13. It has been established in [8] that the intersection of multigroups
is again a multigroup. It was also illustrated that the union of multigroups needs
not be a multigroup. It is later shown in this paper the condition necessary and
sufficient for the union of multigroups to be a multigroup.

We shall state the following proposition by Nazmul et al in [8] and make
some comments on its inadequacy. Later in this work, we shall state the correct
form.

Proposition 2.14 ([8]). Let A ∈MS(X).Then the following are equivalent:

(1) CA(xy) = CA(yx);

(2) CA(xyx−1) = CA(y);

(3) CA(xyx−1) ≥ CA(y);

(4) CA(xyx−1) ≤ CA(y).

Remark 2.15. Note that with Proposition 2.14(2), properties (3) and (4) are
very trivial. So it is only necessary to state (1) and (2) and devise a better
proof.

Definition 2.16 ([8]). Let X be a group and e its identity. Also, let H ∈
MG(X) and x ∈ X.

(1) [CH(e)]x ◦H is called a left multicoset of H in X denoted by xH;

(2) H ◦ [CH(e)]x is called a right multicoset of H in X denoted by Hx.

Proposition 2.17 ([8]). Let A ∈ MS(X). The following assertions are equiv-
alent.

(1) CA(xy) = CA(yx), ∀x, y ∈ X;

(2) A ◦B = B ◦A, ∀A,B ∈MS(X).

Proposition 2.18 ([8]). Let H ∈ AMG(X) and define X/H = {xH : x ∈ X}.
Then the following assertions hold:

(1) (xH) ◦ (yH) = (xy)H, ∀x, y ∈ X;

(2) If xH = x1H and yH = y1H then (xy)H = (x1y1)H;
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(3) (X/H, ◦) is a group;

(4) X/H ≃ X/H∗.

Proposition 2.19 ([8]). Let H ∈ AMG(X). If xH = yH, then CH(x) =
CH(y), ∀x, y ∈ X.

Remark 2.20. It will be shown later that the results in Propositions 3.25 and
3.33 of [8] fail.

3. Some properties of multigroup and abelian multigroup

We now begin to introduce some new results in the following sections.

Proposition 3.1. Let A ∈MS(X). Then, A ∈MG(X) if and only if A◦A−1 =
A.

Proof. Let A ∈MG(X). Then for any x, y ∈ X,

CA(yz) ≥ {CA(y) ∧ CA(z)} ⇒ CA(yz) =
∨

{CA(y) ∧ CA(z)}.

Note that

CA◦A−1(x) =
∨

{CA(y) ∧ CA−1(z) : x = yz}

=
∨

{CA(y) ∧ CA(z−1) : x = yz}

=
∨

{CA(y) ∧ CA(z) : x = yz}
= CA(yz)

= CA(x).

Conversely, let A = A ◦A−1.

CA(xy−1) = CA◦A−1(xy−1)

=
∨

{CA(x) ∧ CA−1(y−1)}

=
∨

{CA(x) ∧ CA((y−1))−1}

=
∨

{CA(x) ∧ CA((y)}.

But ∨
{CA(x) ∧ CA((y)} ≥ {CA(x) ∧ CA((y)}.

Nazmul et al in [8] have shown that the intersection of multigroups is also
a multigroup and have also illustrated with an example that the union of a
multigroup is not a multigroup. In what follows, the condition necessary for the
union of two multigroups to be a multigroup is stated and proved.
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Proposition 3.2. Let A,B ∈ MG(X), Then A ∪ B ∈ MG(X) if CA(a) =
CA(b) = CA(ab) or CB(a) = CB(b) = CB(ab), ∀a ∈ A, b ∈ B.

Proof.

CA∪B(ab) = CA(ab) ∨ CB(ab)

≥ [(CA(a) ∧ CA(b)) ∨ (CB(a) ∧ CB(b))]

= CA(a) ∨ (CB(a) ∧ CB(b))

= CA∪B(a) ∧ CA∪B(b).

In what follows, a revision of Proposition 3.24 of [8] is made as earlier re-
marked in Remark 2.15.

Proposition 3.3. Let A ∈ MG(X). Then CA(xy) = CA(yx) if and only if
CA(xyx−1) = CA(y).

Proof. Assume CA(xy) = CA(yx). Then

CA(xyx−1) = CA(x(yx−1)) = CA((x−1)xy) = CA(y).

Also, assume CA(xyx−1)=CA(y). Then CA(yx)=CA(x(yx)x−1)=CA(xy).

Recall the definition of an abelian multigroup from Definition 2.8. Aslo,
Example 3.27 in [8] has shown that every multigroup over an abelian group X
is an abelian multigroup. The following example shows that the group X needs
not be an abelian for it to have an abelian multigroup over it.

Example 3.4. Let X = S3 = {e, (12), (13), (23), (123), (132)}, where e is the
identity of X.

A = {e, e, e, (12), (12), (13), (13), (23), (23), (123), (123), (132), (132)}

is a multigroup. Indeed, it is an abelian multigroup since

CA((12)(13)) = CA((123)) = CA((132)) = CA((13)(12)).

But
(123) = (12)(13) ̸= (13)(12) = (132).

4. Some properties of multicosets

In this section, X is a group, e its identity and H ∈MG(X). Also, an alternative
and a rather easier approach is provided to the concept of multicoset. Note
that the multiset [CH(e)]x is a simple multiset in which x is counted as much
as e is counted in H ∈ MG(X). Recalling the Definition 2.9 of A ◦ B, the
left multicoset [CH(e)]x ◦H can be worked out, though a bit tedious than the
alternative presented in this section.



MULTIGROUPS AND MULTICOSETS 257

Definition 4.1. Let (X, ∗) be a group and H = {y1, y2, y3 · · · , yn} ∈ MG(X).
Then

x ∗H = {x ∗ y1, x ∗ y2, x ∗ y3, · · · , x ∗ yn}

is called the left multicoset [CH(e)]x ◦H.

Example 4.2. Consider the multiplicative group of units. LetH = {1, 1, 1,−1,−1,
i, i,−i,−i}. [CH(e)]i = {i, i, i} and [CH(e)]i ◦H = x ∗H = {1, 1,−1,−1,−i,−i,
i, i, i}. Obviously, x ∗H needs not be a multigroup.

Remark 4.3. Note that

CxH(x) = CH(e) = CH(x−1x).

Then,
CxH(y) = CH(x−1y).

We simply use xH for x ∗H henceforth except otherwise is necessary.

Proposition 4.4. H = yH if and only if CxH(x) = CH(y), ∀x, y ∈ X.

Proof. Assume that H = yH. Then

CxH(x) = CH(e) = CH(y−1y) = CyH(y) = CH(y).

Conversely, assume that CxH(x) = CH(y). Then

CH(y) = CxH(x) = CH(e) = CH(y−1y) = CyH(y).

Example 4.5. Let X = S3. If y = (12) and

H = {e, e, e, (12), (12), (12), (13), (13), (123), (123)},

it is obvious that H = yH and Proposition 4.4 can be verified, noting that the
choice of x and y can be varied.

We recall that Proposition 3.32 of [8] (herein as Proposition 2.19) requires
that H should be an abelian multigroup and that xH = yH for it to be regular.
But the following result shows that H needs not be abelian.

Proposition 4.6. xH = yH if and only if CH(x−1y) = CxH(x), ∀x, y ∈ X, in
which case, xH, and indeed H, is regular.

Proof. Assume that xH = yH. Then, H = x−1yH and let z = x−1y.
CxH(x) = CH(z) = CH(x−1y) by Proposition 4.4. Hence, CxH(x) = CxH(y).
Thus, both xH and H are regular.

Conversely, assume CxH(x) = CH(x−1y), ∀x, y ∈ X. CyH(y) = CH(e) =
CxH(x) = CH(x−1y) = CxH(y).
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Remark 4.7. With the foregoing properties, relation can be defined on the
elements of multigroups over x.

Proposition 4.8. If we define x ∼ y as CH(x−1y) = CxH(x), for any x, y ∈ X,
then ∼ is an equivalence relation on X.

Proof. (1) Reflexivity: x ∼ x since CH(x−1x) = CH(e) = CxH(x).
(2) Symmetricity: Let x ∼ y. Then, CH(x−1y) = CxH(x) = CH(e) =

CH(y−1y)CyH(y) = CH(y−1x). Thus, y ∼ x.
(3) Transitivity: Let x ∼ y and y ∼ z. Then, CH(x−1y) = CxH(x) and

CH(y−1z) = CyH(y). Let x−1y = h1, y
−1z = h2 ∈ H, then, y = xh1, z = yh2 =

xh1h2 = xh ∈ xH. Thus, x−1z = h ∈ H. Hence, CH(x−1z) = CxH(x) ⇒ x ∼
z.

The following result shows that multicosets are invariant for regular multi-
group H over a group X the support of H is X.

Proposition 4.9. Let H ∈ MG(X) be regular such that H∗ = X. Then, for
any x, y ∈ X, the following are equivalent:

(1) xH = H = Hx;

(2) xH = Hy;

(3) xHy = xyH = yxH = H.

Proof. (1) ⇒ (2): CxH(x) = CH(x) = CyH(x).
(2) ⇒ (3): Since x, y ∈ H,xy, yx ∈ H. By (2), xyH = yxH and by (1),

xyH = H = yxH. CxHy(x) = CH(x−1xy−1) = CH(y−1) = CyH(e) = CH(e) =
CxH(x) = CH(x).

(3) ⇒ (1): Since xyH = yxH = H, xH = H. CxH(x) = CH(e) =
CH(xx−1) = CxH(x) = CHx(x), where e is the identity of X.

Remark 4.10. If xH = Hx, then H is normal.

Proposition 4.11. Every regular multigroup is abelian but the converse is not
true in general.

Proof. Let H be regular multiset over a group X. Since x and y are arbitrary
in H, if xy = z ∈ H so is yx = w ∈ H. Then, CH(xy) = CH(z) = CH(w) =
CH(yx). H is abelian. But if H = {e, e, e, (132), (132), (123), (123)}, where e is
the identity of X, it is abelian but CH(x) ̸= CH(y), ∀x, y ∈ H.

Proposition 4.12. Let H ∈MG(X) and X = {xi}ki=1. Then,

∪xiH = ∪n{xi}, ∀xi ∈ X,

where n = CH(e), e is the identity of X and | ∪ xiH| = n|X|. Besides, ∪xiH is
regular.
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Proof. ∀x ∈ X, C∪xiH(x) = ∨CxiH(x) = CH(e) = n = Cn{x}(x) = ∨Cn{xi}(x) =
C∪n{xi}(x). Note that since C∪xiH(x) = n ∀x ∈ X, ∪xiH is regular. Further-
more,

| ∪ xiH| =

k∑
j=1

C∪xiH(zj) =

k∑
j=1

∨C∪xiH(wi) = CH(e)|X| = n|X|.

Example 4.13. Let X = S3 and H = {e, e, (12), (12)} = eH, where e is the
identity of X.

(13)H = {(13), (13), (132), (132)};

(23)H = {(23), (23), (123), (123)};

(12)H = {e, e, (12), (12)};

(132)H = {(132), (132), (13), (13)}

and (123)H = {(123), (123), (23), (23)}. Then,

∪xH = {e, e, (12), (12), (13), (13), (23), (23), (132), (132), (123), (123)}.

In classical group theory, xH ̸= yH ⇒ xH ∩ yH = ∅, but, in multigroup
theory, xH ̸= yH ; xH ∩ yH = ∅ but rather implies that CH(x) ̸= CH(y). In
what follows, we show by means of counter examples that the result of Proposi-
tion 3.25 of [8] fails. Subsequently, we also show that the result of Proposition
3.33 of [8] fails, since its proof is based on the former.

Example 4.14. Consider a multiset

A = {e, e, (12), (12), (12), (13), (13), (123), (123), (132), (132)}.

This is such that CA(xy) = CA(yx). Then Consider a multiset B = {(13), (13)}.
A ◦B = {e, e, (13), (13), (123), (123)} and B ◦A = {e, e, (13), (13), (132), (132)}.
Thus, A ◦B ̸= B ◦A as claimed by [8].

It can be observed that the result can be true if X is an abelian group.
Alternatively, if X is not an abelian group, ∀b ∈ B, CA(b) ̸= 0.

Example 4.15. Let H = {e, e, (12), (12)} as in Example 4.13. This is regular
and also abelian. But {(12), (12), (23), (23), (123), (123)} = (13)H ◦ (23)H ̸=
[(13)(23)]H = (123)H = {(23), (23), (123), (123)}. Thus, (xH) ◦ (yH) ̸= (xy)H
as claimed by [8]. Furthermore, (13)H = (132)H and (23)H = (123)H but
(13)(23)H = (123)H ̸= eH = (132)(123)H. Also, (X/H, ◦) is not a group since

(13)H ◦ (23)H = {(12), (12), (23), (23), (123), (123)} /∈ {xH : x ∈ X}.
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1. Introduction and preliminaries

If (X ; ∥·∥) is a normed linear space, then

(1.1)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

∥xi∥,

for any vectors xi ∈ X , i ∈ {1, ..., n}. Inequalities of this kind have been called
triangle inequality. A number of mathematicians have investigated the inequal-
ity (1.1) in various settings. Farenick [13] have investigated the triangle inequal-
ity over matrix algebras in Hilbert C∗-modules. We also refer to interesting
papers by Shrawan et al. [15] and Dadipour et al. [6]. Some versions of the
triangle inequality with simple conditions for the case of equality are presented
in [5, 14].

The first to consider the problem of obtaining reverses for the triangle in-
equality in the more general case of Hilbert and Banach spaces were Diaz and
Metcalf [7] who showed that in an inner product space H over the real or complex
number field, the following reverse of the triangle inequality holds

(1.2) r
n∑

i=1

∥xi∥ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
provided

0 ≤ r ≤ ∥xi∥ ≤ Re ⟨xi, e⟩
for k ∈ {1, . . . , n}, where e ∈ H is a unit vector, i.e. ∥e∥ = 1.

Another reverse of the generalized triangle inequality in Hilbert space was
given in [10, Theorem 5] as follows:

Theorem 1.1. Let (H; ⟨·, ·⟩) be an inner product space, xi ∈ H, for all i ∈
{1, ..., n} and pi ≥ 0 with

∑n
i=1 pi = 1 (probability distribution). If there exists

constants ri > 0, i ∈ {1, ..., n} , so that∥∥∥∥∥∥xi −
n∑

j=1

pjxj

∥∥∥∥∥∥ ≤ ri

for all i ∈ {1, ..., n} , then

(1.3)
n∑

i=1

pi∥xi∥2 −

∥∥∥∥∥
n∑

i=1

pixi

∥∥∥∥∥
2

≤
n∑

i=1

pir
2
i .

Some other interesting reverses of the triangle inequality for the case of
Hilbert space can be found in [12]. For related results, see also [1, 2, 3, 4, 8, 16].

The motivation of this paper is to extend some generalizations of the reverse
triangle inequality like (1.3), in the framework of Hilbert C∗-modules (see The-
orem 2.1). We also improve inequality (1.2) in a similar framework (this will be
considered in Theorem 3.1).
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At the end of this section, we would like to recall some notions, which will
be used in the forthcoming sections. Let A be a C∗-algebra. A pre-Hilbert A-
module is a linear space X which is a right A-module together with an A-valued
mapping ⟨·, ·⟩ : X × X → A with following properties:

(a) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0;

(b) ⟨x, λy + z⟩ = λ ⟨x, y⟩ + ⟨x, z⟩;

(c) ⟨x, ya⟩ = ⟨x, y⟩ a;

(d) ⟨x, y⟩∗ = ⟨y, x⟩;

for all x, y, z ∈ X , a ∈ A and λ ∈ C. It is straightforward that a C∗-algebra
valued inner product is conjugate-linear in the first variable. We can define a

norm on X by ∥x∥ = ∥⟨x, x⟩∥
1
2 . If X is complete with respect to this norm,

then X is called a Hilbert A-module. The absolute value of x ∈ X is defined as
the square root of ⟨x, x⟩, and it is denoted by |x|. It is worthwhile to point out
that this is not actually an extension of a norm, in general, since it may happen
that the triangle inequality does not hold.

Throughout the article, A and X are C∗-algebra and Hilbert A-module
respectively. A C∗-algebra is called unital if A has a unit 1A and for each a ∈ A
we have a.1A = a. For convenience, in unital C∗-algebra A we write a instead
of a.1A.

2. On the generalized reverses of the triangle inequality

We start our work by presenting a reverse of the triangle inequality for Hilbert
C∗-modules.

Theorem 2.1. Let X be a Hilbert A-module and xi ∈ X for all i ∈ {1, ..., n},
and pi are positive elements in real number field such that

∑n
i=1 pi = 1. If there

exist positive elements ri, i ∈ {1, ..., n} in A, so that

(2.1)

∣∣∣∣∣∣xi −
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≤ r2i

for i ∈ {1, .., n}, then

(2.2)
n∑

i=1

pi|xi|2 −

∣∣∣∣∣
n∑

i=1

pixi

∣∣∣∣∣
2

≤
n∑

i=1

pir
2
i .

Proof. According to (2.1) we have

(2.3) ⟨xi, xi⟩ − 2Re

⟨
xi,

n∑
j=1

pjxj

⟩
+

⟨
n∑

j=1

pjxj ,

n∑
j=1

pjxj

⟩
≤ r2i .
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Multiply (2.3) by pi ≥ 0, and sum over i from 1 to n, to get

n∑
i=1

pi ⟨xi, xi⟩ − 2Re

⟨
n∑

i=1

pixi,

n∑
j=1

pjxj

⟩
+

⟨
n∑

j=1

pjxj ,

n∑
j=1

pjxj

⟩
≤

n∑
i=1

pir
2
i .

This says that

n∑
i=1

pi|xi|2 − 2Re

⟨
n∑

i=1

pixi,

n∑
j=1

pjxj

⟩
+

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≤
n∑

i=1

pir
2
i ,

this inequality is equivalent with

n∑
i=1

pi|xi|2 −

∣∣∣∣∣
n∑

i=1

pixi

∣∣∣∣∣
2

≤
n∑

i=1

pir
2
i ,

which is inequality (2.2).

As a consequence of Theorem 2.1 we have the following generalization of the
reverse triangle inequality in the framework of Hilbert C∗-modules.

Proposition 2.1. Let pi,ri and xi for all i ∈ {1, ..., n} be as in the statement
of Theorem 2.1, then

(2.4) Re

(
n∑

i=1

pi |xi|

)∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

pixi

∣∣∣∣∣
2

+
1

2

n∑
i=1

pir
2
i .

Proof. From (2.3) we obviously have

(2.5) |xi|2 +

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≤ 2 Re

⟨
xi,

n∑
j=1

pjxj

⟩
+ r2i ,

for all i ∈ {1, ..., n}. Whence

2 Re |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤ |xi|2 +

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

.

Here we exploited the fact that for each a, b ∈ A, 2 Re ab∗ ≤ |a|2+|b|2. Therefore

2 Re |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤ 2 Re

⟨
xi,

n∑
j=1

pjxj

⟩
+ r2i

for all i ∈ {1, ..., n}. Arguments similar to the ones used in the proof of Theorem
2.1 give us (2.4).
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Remark 2.1. In particular, if A be a commutative C∗-algebra, by utilizing the
inequality 2 |a| |b| ≤ |a|2 + |b|2, we can obtain from (2.5) the following result:

n∑
i=1

pi |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

pixi

∣∣∣∣∣
2

+
1

2

n∑
i=1

pir
2
i .

One more consequence of Theorem 2.1 is the following result:

Proposition 2.2. Let pi,ri and xi for all i ∈ {1, ..., n} be as in the statement
of Theorem 2.1 with the additional assumption that A is commutative. Then

2√
n

n∑
i=1

√
pi |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
 ≤ 2

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

+

n∑
i=1

pir
2
i .

Proof. If we multiply (2.5) by pi > 0 and sum over i from 1 to n, we get

n∑
i=1

pi|xi|2 +

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

+

n∑
i=1

pir
2
i .

We now use the fact that 2 |a| |b| ≤ |a|2 + |b|2. Thus,

n∑
i=1

pi|xi|2 +

n∑
i=1

1

n

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

=

n∑
i=1

pi|xi|2 +
1

n

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

≥ 2√
n

n∑
i=1

√
pi |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣


for all i ∈ {1, ..., n}. This is the same as saying that

2

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
2

+
n∑

i=1

pir
2
i ≥ 2√

n

n∑
i=1

√
pi |xi|

∣∣∣∣∣∣
n∑

j=1

pjxj

∣∣∣∣∣∣
.

3. The case of a unit vector

The following refinement of the Diaz-Metcalf result may be stated as well:

Theorem 3.1. Let X be a Hilbert A-module. Suppose that xi ∈ X for all
i ∈ {1, . . . , n} satisfy the condition
(3.1)(

n∑
i=1

r1 |xi|

)2

≤

(
n∑

i=1

Re ⟨e, xi⟩

)2

,

(
n∑

i=1

r2 |xi|

)2

≤

(
n∑

i=1

Im ⟨e, xi⟩

)2

,
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for each i ∈ {1, . . . , n}, where e be a unit vector in X and r1, r2 are positive
elements in C∗-algebra A. Then

(3.2)
√
r21 + r22

n∑
i=1

|xi| ≤

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ .
Proof. We can simply exploit the Cauchy-Schwarz inequality and find the up-
per bound

(3.3)

∣∣∣∣∣
⟨
e,

n∑
i=1

xi

⟩∣∣∣∣∣
2

≤ ∥e∥2
∣∣∣∣∣

n∑
i=1

xi

∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣
2

.

We can rewrite the first term as∣∣∣∣∣
⟨
e,

n∑
i=1

xi

⟩∣∣∣∣∣
2

=

∣∣∣∣∣
n∑

i=1

Re ⟨e, xi⟩ + i

(
n∑

i=1

Im ⟨e, xi⟩

)∣∣∣∣∣
2

=

(
n∑

i=1

Re ⟨e, xi⟩

)2

+

(
n∑

i=1

Im ⟨e, xi⟩

)2

.

On the other hand, from (3.1) we infer that

r21

(
n∑

i=1

|xi|

)2

≤

(
n∑

i=1

Re ⟨e, xi⟩

)2

and

r22

(
n∑

i=1

|xi|

)2

≤

(
n∑

i=1

Im ⟨e, xi⟩

)2

.

Adding these two inequalities to inequality (3.3), we deduce the desired inequal-
ity (3.2).

Remark 3.1. If A is a commutative C∗-algebra, then we can replace conditions
(3.1) with

0 ≤ r1 |xi| ≤ Re ⟨e, xi⟩ , 0 ≤ r2 |xi| ≤ Im ⟨e, xi⟩ .

We can apply Theorem 3.1 to derive some new operator inequalities. We only
give the following such results. Notice that, if B (H) denote the C∗-algebra of
all bounded linear operators on a complex Hilbert space H, then B (H) becomes
a B (H)-module if the inner product of elements A,B ∈ B (H) is defined by
⟨A,B⟩ = A∗B.

Corollary 3.1. Let Ai ∈ B (H) for all i ∈ {1, . . . , n} satisfy the condition

0 ≤ B1 |Ai| ≤ ReAi, 0 ≤ B2 |Ai| ≤ ImAi,



268 A. Mansoori, M.E. Omidvar, H.R. Moradi and S.S. Dragomir

for each i ∈ {1, . . . , n} and B1, B2 are positive operators in B (H), then√
B2

1 +B2
2

n∑
i=1

|Ai| ≤

∣∣∣∣∣
n∑

i=1

Ai

∣∣∣∣∣ .
In particular, for i ∈ {1, 2} we have

(3.4)
√
B2

1 +B2
2 (|A1| + |A2|) ≤ |A1 +A2| .

The following reverse of the generalized triangle inequality also holds. Before
we proceed, we need the following lemma:

Lemma 3.1. Let A be a C∗-algebra and let a ∈ A.

(a) If a is self adjoint, then a ≤ |a|.

(b) If a is normal, then |Re a| ≤ |a|.

Theorem 3.2. Let X be a Hilbert A-module, and e be a unit vector in X . If
⟨e,
∑n

i=1 xi⟩ and ri are normal and positive elements in A for i ∈ {1, ..., n}
respectively, and xi ∈ X for all i ∈ {1, ..., n}, such that

(3.5) |xi| − Re ⟨e, xi⟩ ≤ ri,

for each i ∈ {1, ..., n}, then

(3.6)

n∑
i=1

|xi| −

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

ri.

Proof. If we sum in (3.5) over i from 1 to n, then we get

(3.7)

n∑
i=1

|xi| ≤ Re

⟨
e,

n∑
i=1

xi

⟩
+

n∑
i=1

ri.

A little calculation shows that

Re

⟨
e,

n∑
i=1

xi

⟩
≤

∣∣∣∣∣Re

⟨
e,

n∑
i=1

xi

⟩∣∣∣∣∣ (by Lemma 3.1 (a))(3.8)

≤

∣∣∣∣∣
⟨
e,

n∑
i=1

xi

⟩∣∣∣∣∣ (by Lemma 3.1 (b))

≤ ∥e∥

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ (by Cauchy-Schwarz inequality)

=

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ .
Combining (3.7) and (3.8), we get (3.6).
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Theorem 3.2 immediately yields:

Corollary 3.2. If we consider H as a C-module, then from (3.6) we can obtain
the following reverse trangle inequality

n∑
i=1

∥xi∥ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ri,

where ri are positive elements in R for {1, . . . , n} (see [11] and also [9, Theorem
44]).

Remark 3.2. If A is a commutative C∗-algebra, then the assumption ⟨e,
∑n

i=1 xi⟩
are normal is not necessary.

Another consequence of our discussion is the following.

Corollary 3.3. Let Ai ∈ B (H), for each i ∈ {1, . . . , n} and
∑n

i=1Ai be normal.
If Bi are positive operators in B (H) for all i ∈ {1, . . . , n} such that

|Ai| − ReAi ≤ Bi,

for each i ∈ {1, . . . , n}, then
n∑

i=1

|Ai| −

∣∣∣∣∣
n∑

i=1

Ai

∣∣∣∣∣ ≤
n∑

i=1

Bi.

In particular, for i ∈ {1, 2} we have

|A1| + |A2| − |A1 +A2| ≤ B1 +B2.

Now we present a useful lemma, which is applied in the next theorem.

Lemma 3.2. Let A be a C∗-algebra and a, b in A be positive elements and
ab = ba, then

(3.9)
√
ab ≤ a+ b

2
.

The next theorem is known; see [9, Theorem 50]. The proof given here is
different, and in the spirit of our discussion.

Theorem 3.3. Let A be a unital C∗-algebra and X be a Hilbert A-module and
let e ∈ X be such that |e| = 1 and xi ∈ X , i ∈ {1, ..., n}. If Mi > mi > 0 for all
i ∈ {1, ..., n}, are such that

(3.10)

∣∣∣∣xi − Mi +mi

2
e

∣∣∣∣2 ≤ (Mi +mi)
2,

then
n∑

i=1

|xi| −

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

(Mi −mi)
2

Mi +mi
.
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Proof. It follows from left side of inequality (3.10) that⟨
xi −

Mi +mi

2
e, xi −

Mi +mi

2
e

⟩
= |xi|2 − (Mi +mi) Re ⟨xi, e⟩ +

∣∣∣∣Mi +mi

2

∣∣∣∣2.
Using the substitutions a = |xi|2 and b =

∣∣∣Mi+mi
2

∣∣∣2 in (3.9), this can be rewritten
as

2 |xi|
∣∣∣∣Mi +mi

2

∣∣∣∣ ≤ |xi|2 +

∣∣∣∣Mi +mi

2

∣∣∣∣2
or, after rearranging terms,

|xi| − Re ⟨xi, e⟩ ≤
(Mi −mi)

2

Mi +mi
.

Hence by Theorem 3.2 we obtain

n∑
i=1

|xi| −

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

(Mi −mi)
2

Mi +mi
.

The validity of this inequality is just Theorem 3.3.

Another result of this type is the following one:

Theorem 3.4. Let A be a unital C∗-algebra and X be a Hilbert A-module and
let e ∈ X be such that |e| = 1 and xi ∈ X , i ∈ {1, ..., n}. If Mi ≥ 0 for all
i ∈ {1, ..., n}, are such that

(3.11)

∣∣∣∣xi − Mi

2
e

∣∣∣∣2 ≤M2
i ,

then

(3.12)
n∑

i=1

|xi|2 − Re

⟨
n∑

i=1

Mixi, e

⟩
≤ 3

4

n∑
i=1

M2
i .

Proof. A short calculation reveals that

(3.13)

⟨
xi −

Mi

2
e, xi −

Mi

2
e

⟩
= |xi|2 +

∣∣∣∣Mi

2

∣∣∣∣2 |e| − 2 Re

⟨
xi,

Mi

2
e

⟩
.

According to (3.13) validity of (3.11) implies

|xi|2 +

∣∣∣∣Mi

2

∣∣∣∣2 |e| − 2 Re

⟨
xi,

Mi

2
e

⟩
≤M2

i

which on simplification reduces to

|xi|2 − Re ⟨Mixi, e⟩ ≤
3

4
M2

i .

Summing over all terms then yields (3.12).
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The following particular case is of interest:

Theorem 3.5. Let X be a Hilbert A-module and e1, e2, ..., en be a sequence of
unit vectors in X such that ⟨ei, ej⟩ = 0 for i ̸= j ≤ n, and let xi ∈ X for
all i ∈ {1, ..., n}, and pi are positive elements in real number field such that∑n

i=1 pi = 1. If there exist constants positive elements ri in A so that∣∣∣∣∣∣xi −
n∑

j=1

pj ⟨ej , xj⟩ ej

∣∣∣∣∣∣
2

≤ r2i ,

for all i ∈ {1, ..., n} , then

(3.14)
n∑

i=1

pi|xi|2 −
n∑

j=1

|pj ⟨ej , xj⟩|2 ≤
n∑

i=1

pir
2
i .

Proof. A straightforward computation shows that⟨
xi −

n∑
j=1

pj ⟨ej , xj⟩ ej , xi −
n∑

j=1

pj ⟨ej , xj⟩ ej

⟩

= ⟨xi, xi⟩ +

⟨
n∑

i=1

piei ⟨ei, xi⟩,
n∑

j=1

pjej ⟨ej , xj⟩

⟩
− 2

n∑
j=1

|pj ⟨ej , xj⟩|2

= ⟨xi, xi⟩ +

n∑
i=1

n∑
j=1

pipj⟨ei, xi⟩∗ ⟨ej , ej⟩ ⟨ej , xj⟩ − 2

n∑
j=1

|pj ⟨ej , xj⟩|2

= |xi|2 +

n∑
i=1

p2j ⟨ej , xj⟩
∗ ⟨ej , ej⟩ ⟨ej , xj⟩ − 2

n∑
j=1

|pj ⟨ej , xj⟩|2

= |xi|2 +

n∑
j=1

p2j ⟨ej , xj⟩
∗ ⟨ej , xj⟩ − 2

n∑
j=1

|pj ⟨ej , xj⟩|2

= |xi|2 −
n∑

j=1

|pj ⟨ej , xj⟩|2.

Using this one can see that

(3.15) |xi|2 −
n∑

j=1

|pj ⟨ej , xj⟩|2 ≤ r2i .

If we multiply (3.15) by pi ≥ 0 and sum over i from 1 to n, we obtain

n∑
i=1

pi|xi|2 −
n∑

i=1

|pi ⟨ei, xi⟩|2 ≤
n∑

i=1

pir
2
i

which finishes the proof.
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Corollary 3.4. With the substitution pi = 1
n , i ∈ {1, ..., n}, (3.14) becomes

n∑
i=1

|xi|2 −
1

n

n∑
i=1

|⟨ei, xi⟩|2 ≤
n∑

i=1

r2i .
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Abstract. The biclique partition number of a graph G, bp(G) is the minimum number
of complete bipartite subgraphs needed to partition the edge set of G. Let r(G) =
max{n+(G), n−(G)} where n+(G), n−(G) are the number of positive and the number
of negative eigenvalues of the adjacency matrix of G, respectively. A graph G satisfying,
bp(G) = r(G) is called an eigensharp graph. In this paper we apply Pollak and Graham
Theorem to find the biclique partition number of the line graph of complete graph and
its complement, the line graph of complete bipartite graph and its complement and the
line graph of a tree graph and we discuss the eigensharp property of these graphs. Also
we identify the biclique partition number of the kth−power graph of paths and cycles.

Keywords: graph, clique, biclique, biclique partition number, line graph, complete
graph, complete bipartite graph, tree graph, kth-power of a path, kth-power of a cycle.

1. Introduction

All graphs in this paper are finite undirected simple graphs. For a graph G =
(V (G), E(G)), the set V (G) denotes the set of vertices and E(G) denotes the
set of edges. The order of a graph G is equal to the cardinality of V (G) and
is denoted by |G|. The distance between two vertices u and v in G, denoted
by d(u, v), is the length of a shortest path between u and v in G. A clique is
a complete subgraph. A biclique is a complete bipartite subgraph. The set of
eigenvalues of A(G), the adjacency matrix of G, is called the spectrum of G and
is written spec(G). If λi ,1 ≤ i ≤ k, are the distinct eigenvalues of A(G) with
multiplicity mi, then we write

spec(G) =

(
λ1 λ2 ... λk
m1 m2 ... mk

)
.

Covering of a graph by a certain type of subgraphs is an important con-
cept. It has been studied by different authors. There are several types of graph
covering, including path covering, tree covering, clique covering and biclique

∗. Corresponding author
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covering. In this paper, we’ll focus on the biclique partition covering of a graph.
The biclique partition covering of a graph has been studied by several authors,
see [2], [3], [4], [6] and [7].

A biclique partition of a graphG is a collection of bicliques ofG that partition
the edge set of G. Similarly, a biclique cover of G is a collection of bicliques that
cover the edge set of G. The minimum cardinality of a biclique partition of a
graph G is called the biclique partition number, denoted by bp(G). Note that
bp(G) ≤ n−1. This holds because for any graph G with n vertices stars on n−1
vertices form a biclique partition for G. In 1971, Graham and Pollak [6] proved
that bp(Kn) = n− 1. Witsenhausen (cf. [6]), showed that for a graph G with n
vertices, the biclique partition number bp(G) is bounded below as follows:

bp(G) ≥ max{n+(G), n−(G)}

where n+(G), n−(G) are the number of positive and the number of neg-
ative eigenvalues of the adjacency matrix of G, respectively. Suppose that
max{n+(G), n−(G)} = r(G). A graph G satisfying, bp(G) = r(G) is called
an eigensharp graph, see [7].

Given a graph G, an independent set is a subset of the vertex set of G
such that no two vertices are adjacent. The independence number α(G) is the
cardinality of a largest set of independent vertices. A maximum independent set
with the largest number of vertices in a given graph G is denoted by I(G), (i.e.
α(G) = |I(G)|). A star Sn is a tree with (n+ 1) vertices with one vertex having
degree n, and the other n vertices having degree 1. In Sn the vertex of degree
n is called the center of the star. The star graph Sn is therefore isomorphic to
the complete bipartite graph K1,n. Because every star is a complete bipartite
graph, the vertex cover number of G is an upper bound of bp(G), and moreover
one can easily prove that if G is a graph on n vertices then bp(G) ≤ n− α(G).
For a graph G when the biclique partition covering of minium cardinality is a
collection of stars we use star center to represent the star, K1,n. In this paper we
will consider the edges of Kn partitioned into n− 1 bicliques using edge-disjoint
stars.

In this paper, Graham and Pollak Theorem is the cornerstone of our results.
We study the biclique partition number for several classes of graphs. In section
2, we study the biclique partition number of the line of any complete graph
and its complement, the line graph of any complete bipartite graph and its
complement. We characterize when these graphs are eigensharp depending on
the set of edges incident with v generate a clique in L(G) of order degree(v).
The cliques of L(G) in this way partition the edge set of L(G), and we apply
Graham and Pollak Theorem to calculate the biclique partition number of these
graphs. In section 3, we discuss the biclique partition number of the line graph
of a tree graph, by noting that the line graph of a tree graph is a connected
block graph in which each cutpoint is on exactly two blocks. Also we applied
Graham and Pollak Theorem on these blocks to calculate the biclique partition
number of the line graph of a tree graph.
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Finally, the biclique partition number of the kth−power of paths and cycles
are characterized.

2. The biclique partition number for some families of line graphs

In this section, the biclique partition number of the line graphs of complete
graphs and their complements, and that of line graphs of complete bipartite
graphs and their complements are completely characterized. Moreover, the bi-
clique partition number of the line graph of trees is calculated.

Definition. Let G be a simple graph with n vertices and m edges. The line
graph L(G) of G is the simple graph whose vertex set is the set of edges of G
and for any a, b ∈V (L(G)) the vertices a and b are adjacent in L(G) if and
only if a and b have a common vertex in G.

For a graph G and a vertex v in G with degree(v) ≥ 2, the set of edges
incident to v generate a clique in L(G) of order degree(v). The cliques of L(G)
in this way partition the edges of L(G), and this partition helps us to find the
biclique partition number of the line graph using Graham and Pollak Theorem.
Each vertex of L(G) belongs to exactly two cliques which are the two cliques
corresponding to the two endpoints of the corresponding edge in G. We will
study the biclique partition number of line graph of some families of graphs and
investigate when they have the eigensharp property. It is easy to show that
the line graph of a star graph, L(Sn) = Kn, and therefore bp(L(Sn)) = n − 1,
and so L(Sn) is eigensharp. Trees are eigensharp, see [7]. Also paths Pn are
eigensharp and the complements of paths are eigensharp too, see [2]. We note
that L(Pn) = Pn−1, so line graph of path and its complement are eigensharp.
The line graph of a cycle Cn is isomorphic to Cn, which is eigensharp when
n ̸= 4k with k > 2, see [7]. Moreover, its complement is eigensharp, see [2].

2.1 The graphs L(Kn) and their complement L(Kn)

The line graph of Kn, L(Kn) is a graph with

(
n

2

)
vertices and n

(
n− 1

2

)
edges.

Suppose that the vertices V (Kn) = {u1, u2, . . . , un}. In Kn, we denote the edge
between ui and uj by ui,j . Therefore V (L(Kn)) = {ui,j : 1 ≤ i < j ≤ n}. Then
two distinct vertices in L(Kn)are adjacent if their labels share exactly one digit.
So, when n is even, then the set I(L(Kn)) = {u1,2 , u3,4 , u5,6 , . . . , un−3,n−2 , un−1,n}
is a maximum independent set in L(Kn), and if n is odd then the set I(L(Kn)) =
{u1,2 , u3,4 , u5,6 , . . . , un−2,n−1} is a maximum independent set in L(Kn), which is
of order

⌊
n
2

⌋
. The vertex ui has degree (n − 1) in Kn, so we have in L(Kn), n

cliques of order (n − 1), say Bi : 1 ≤ i ≤ n, where V (Bi) = {ui,j : 1 ≤ j ≤ n,
i ̸= j, }. Take any edge in L(Kn), then this edge comes from two adjacent
edges in Kn, suppose that the common vertex is ui and the ends of these two
edges in Kn are uj and uk respectively, the edge in L(Kn) that is incident with
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vertex ui,jand u
i,k

, so this edge belongs to exactly one member from the family
{Bi}ni=1. So the family {Bi}ni=1 forms a partition of the edges of L(Kn), and
clearly V (Bi ) ∩ V (Bj ) =

{
ui,j

}
.

To get a better understanding of the computation of bp(L(Kn)), we give the
following example of the characterization of L(K4) and L(K5).

Example 1. As we explained earlier, the family {Bi}4i=1 forms a partition
of the edge set of L(K4). Each Bi is a clique of order 3, and also V (B1) =
{u1,2 , u1,3 , u1,4}, V (B2) = {u2,1 , u2,3 , u2,4}, V (B3) = {u3,1 , u3,2 , u3,4} and V (B4) =
{u4,1 , u4,2 , u4,3}. It is clear that I(L(K4)) = {u1,2 , u3,4}. By Graham and Pollak
Theorem, bp(Bi) = 2. So we need two vertices to cover each Bi by biclique
partiton of minimum cardinality. Let H be the induced subgraph of L(K4) such
that V (H) = V (L(K4)) − I(L(K4)) = {u1,3 , u1,4 , u2,3 , u2,4}. Then for B1, the
number of vertices having label 1 is 2, which we need to cover B1by stars, and
the same for other cliques B2, B3 and B4, and therefore bp(L(K4)) = |H| = 4.

Example 2. The family {Bi}5i=1 forms a partition of the edge set of L(K5).
Each Bi is a clique of order 4, and also V (B1) = {u1,2 , u1,3 , u1,4 , u1,5}, V (B2) =
{u2,1 , u2,3 , u2,4 , u2,5}, V (B3) = {u3,1 , u3,2 , u3,4 , u3,5}, V (B4) = {u4,1 , u4,2 , u4,3 , u4,5}
and, V (B5) = {u5,1 , u5,2 , u5,3 , u5,4}. It is clear that I(L(K5)) = {u1,2 , u3,4}. By
Graham and Pollak Theorem, bp(Bi) = 3. So we need three vertices to cover
each Bi by biclique partiton of minimum cardinality. Let H be the induced sub-
graph of L(K5) such that V (H) = V (L(K5)) − I(L(K5)) = {u1,3 , u1,4 , u1,5 , u2,3 ,
u2,4 , u2,5 , u3,5 , u4,5}. Then forB1the number of vertices having label 1 is 3 vertices,
which covers B1by stars, and the same for other cliques B2, B3, B4. But for B5

there are 4 vertices having label 5, it is not possible to dispense with any one of
them, because we need u1,5 , u2,5 , u3,5 and u4,5to cover B1, B2, B3 and B4 respec-
tively by stars covering and therefore, bp(L(K5))=|H|=8.

In general for L(Kn), we will get the following theorem.

Theorem 3. For the graph L(Kn), bp(L(Kn)) =
(
n
2

)
−
⌊
n
2

⌋
.

Proof. In L(Kn) the family {Bi}ni=1 forms a partition of E(L(Kn)), where Bi

is clique of order (n − 1). Let H be the induced subgraph of L(Kn) such that
V (H) = V (L(Kn))− I(L(Kn)). We claim that the vertices of H give a biclique
partition of minimum cardinality. Take any Bi in L(Kn), by Graham and Pollak
Theorem, bp(Bi) = n− 2, so we need exactly (n− 2) vertices from Bi (i.e. the
vertices have label i ) to cover it by biclique partition of minimum cardinality.
Since V (Bi) = {ui,j : 1 ≤ j ≤ n, i ̸= j}. There are four cases for Bi, 1 ≤ j ≤ n.

Case 1. If i is odd, and i < n , then ui,i+1 ∈ I(L(Kn)), and therefore
ui,i+1 /∈ H.

Case 2. If i is even, and i < n, then ui−1,i ∈ I(L(Kn)), and therefore
ui−1,i /∈ H.
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Case 3. If n is even, and i = n , then un−1,n ∈ I(L(Kn)), and therefore
un−1,n /∈ H.

Thus for the three cases we conclude that for any Bi in L(Kn), only remained
exactly (n − 2) vertices have label i that belong to H and so Bi is covered by
stars which is a biclique partition of minium cardinality.

Case 4. If n is odd, and i = n, thenH contains the vertices un,1 , un,2 , . . . , un,n−1

having label n, and it is not possible to dispense with any one of them, because
we need un,1 , un,2 , . . . , un,n−1 to cover B1, B2, . . . , Bn−1respectively by biclique
partition of minimum cardinality. Hence

bp(L(Kn)) = |H| =

(
n

2

)
−
⌊n

2

⌋
.

On the other hand,

spec(L(Kn)) =

(
2n− 4 n− 4 −2

1 n− 1 n(n−3)
2

)
,

see [1], and hence when n = 5, then r(L(Kn)) = n and if n ≥ 6, then r(L(Kn)) =
n(n−3)

2 . So, L(Kn) is not eigensharp for n ≥ 4 and it is eigensharp when n < 4.

Now we show that the complement of L(Kn) is eigensharp, consider the
following theorem.

Theorem 4. The complement of L(Kn), L(Kn), is eigensharp.

Proof. We will show that bp(L (Kn)) = r(L (Kn)), we know that

spec(L (Kn)) =

(
2n− 4 n− 4 −2

1 n− 1 n(n−3)
2

)
,

see [1]. Since L (Kn) is (2n− 4)−regular,

spec(L (Kn)) =


(
n

2

)
− (2n− 4) − 1 3 − n 1

1 n− 1 n(n−3)
2

 ,

see[1]. Hence r(L (Kn)) = n+(L (Kn)) =

(
n− 1

2

)
, and therefore bp(L (Kn)) ≥(

n− 1

2

)
. In fact equality is achieved. The graph L (Kn) has maximum inde-

pendent set of order n− 1 (i.e. α( L (Kn)) = n− 1), since in Kn each vertex is
incident to n− 1 edges, and these edges are pairwise adjacent vertices in L(Kn)
and so they are nonadjacent vertices in L (Kn). These edges are the largest set of

pairwise nonadjacent vertices in L (Kn). And so bp(L (Kn)) ≤
(
n

2

)
− (n− 1) =(

n− 1

2

)
. Thus bp(L (Kn)) =

(
n− 1

2

)
and therefore L(Kn) is eigensharp.
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2.2 The graph L(Kn,m) and their complement L(Kn,m)

First, we will characterize the graph L(Kn,m) and we assume that 2 ≤ n ≤ m.
The complete bipartite graph Kn,m, has two maximal independent sets Xn, Ym
where Xn = {x1, . . . , xn} and Ym = {y1, . . . , ym}. In Kn,m each edge is incident
with one vertex from Xn and one vertex from Ym, we may say that the vertex
set is V (L(Kn,m)) = {ui,j : 1 ≤ i ≤ n , 1 ≤ j ≤ m } and ui,j represents the
edge in Kn,m between xi and yj . Now, in L(Kn,m) the vertex ui,j is adjacent
to uk,h if and only if i = k or j = h. In Xn each xi has degree m, so we have
in L(Kn,m), n cliques of order m, denoted by B(Hi) : 1 ≤ i ≤ n, induced by
Hi = {ui,1, ui,2, . . . , ui,m} . Since Xn is an independent set in Kn,m, we have
Hi ∩ Hj = φ, for all i ̸= j , 1 ≤ i, j ≤ n. On the other hand Ym is an
independent set, so we have m cliques of order n say B(Vi), induced by Vi =
{u1,i, u2,i, . . . , un,i} and Vi ∩ Vj = φ, i ̸= j, 1 ≤ i, j ≤ m. Since each edge
connects one vertex from Xn and one vertex from Ym, we have Hi ∩ Vj = ui,j .

Now we want to compute the biclique partition number of L(Kn,m).

Theorem 5. For the graph L (Kn,m) , bp(L (Kn,m)) = n (m− 1), where m ≥
n ≥ 2.

Proof. In L (Kn,m) the family {B(Hi)}ni=1 is a family of disjoint cliques each
of order m. Suppose Ai : 1 ≤ i ≤ n is a biclique partition of B(Hi), we need
(m − 1) distinct vertices for each member of {B(Hi)}ni=1to cover it by stars,
therefore |Ai| = m− 1. Taking Ai in this way, A1 = {u1,2, u1,3, . . . , u1,m} , A2 =
{u2,1, u2,3, . . . , u2,m} , . . . , Ai = {ui,1, ui,2, ui,3, . . . , ui,i−1, ui,i+1, . . . , ui,m} , . . . ,
An = {un,1, un,2, . . . , un,n−1, un,n+1, . . . , un,m}, (i.e. we take all vertices of B(Hi)
and we leave the vertex ui,i). We will prove that {Ai}ni=1 is a biclique partition
of minium cardinality for L(Kn,m). First, Ai is biclique partition of B(Hi) for
each 1 ≤ i ≤ n, because |Ai| = m − 1 and Ai ∩ Aj = φ : 1 ≤ i, j ≤ n ,
i ̸= j. Second, for any B(Vj) : 1 ≤ j ≤ m, we have bp (B(Vj) ) = n − 1. Take
the induced subgraph by the vertices {ui,j : 1 ≤ i ≤ n, i ̸= j} ⊆ B(Vj) which
contains n − 1 vertices, so it covers all B(Vj) by stars covering, and for all
1 ≤ i ≤ n, ui,j ∈ Ai , so {ui,j : 1 ≤ i ≤ n, i ̸= j} ⊆

∪n
i=1Ai. This gives us

{Ai}ni=1 is a family of stars which cover B(Vj): 1 ≤ j ≤ m. So, we have {Ai}ni=1

is a biclique partition of minimum cardinality for L(Kn,m). Therefore we have
bp (L(Kn,m)) =

∑n
i=1 |Ai| = n (m− 1) = n (m− 1) .

Question. Is L(Kn,m) eigensharp?

To answer this question we will use the spectrum of the cartesian product
Kn × Km, see [ 1]. In fact, Kn × Km is isomorphic to the line graph of the
complete bipartite graph Kn,m, L(Kn,m). Now, the spectrum of Kn × Km is
equal to

spec (L (Kn,m)) =

(
m+ n− 2 m− 2 n− 2 −2

1 n− 1 m− 1 (m− 1) (n− 1)

)
.
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Thus r (L (Kn,m)) = (m− 1)(n− 1). So, L (Kn,m) is not eigensharp.
In the following theorem we determine the biclique partition number of the

graph L (Kn,m).

Theorem 6. For the graph L (Kn,m), bp(L (Kn,m)) = m (n− 1), where m ≥
n ≥ 2.

Proof. Recall that for the graph L (Kn,m) , V (L (Kn,m)) = {ui,j : 1 ≤ i ≤ n, 1 ≤
j ≤ m}, it easy to show that in L (Kn,m) the vertices ui,j and u

k,l
are adjacent

if and only if k ̸= i and l ̸= j. Also E(L (Kn,m)) = {ui,juk,l
: k ̸= i and l ̸= j},

therefore the sets Hi = {ui,1, ui,2, . . . , ui,m} : 1 ≤ i ≤ n, is an independent set of

vertices in L (Kn,m).

Now to calculate bp(L (Kn,m)), consider the pairwise disjoint family S =
{Hi}ni=1. Let F be the induced subgraph in L (Kn,m) such that V (F ) = z =
Hk ∪ Hj for some k ̸= j ,1 ≤ j, k ≤ n. The adjacency matrix of z is A (z) =[
O B
BT O

]
, it is clear that B is the adjacenay matrix of Km, (i.e. B = A(Km)).

Since z is a bipartite graph, λ is an eigenvalue of multiplicity p if and only if
−λ is an eigenvalue of multiplicity p. So,

spec(z) =

(
m− 1 −1 1 1 −m

1 m− 1 m− 1 1

)
and therefore r(z) = m. So, bp(z) ≥ m. The induced subgraph z is partitioned
into K1,m−1,K2,m−1, . . . ,Km,m−1. Take one set of Hk or Hj it will cover the
induced subgraph z by m stars. So, bp(F ) = m. Since any induced subgraph of
L (Kn,m) that contains two disjoint members of S, the biclique partition number
that covers by stars must be m. Therefore, it can be proved by induction on
Hi : 1 ≤ i ≤ n that bp(L (Kn,m)) =

∑n−1
i−1 |Hi| = m(n− 1), by showing that we

need {Hi}n−1
i=1 to cover L (Kn,m) by stars. Hence we get the result.

For eigensharpness property of L (Kn,m), we find the spectrum of L (Kn,m).
Since L (Kn,m) is (m+ n− 2)-regular graph,

spec(L (Kn,m)) =

(
mn−m− n+ 1 1 −m 1 − n 1

1 n− 1 m− 1 (m− 1) (n− 1)

)
,

therefore r
(
L (Kn,m)

)
= (m − 1)(n − 1) + 1, and this shows that L (Kn,m) is

not eigensharp.

3. The biclique partition number of the line graph of a tree graph
L(T )

In this section, we obtain the biclique partition number of the line graph of a
tree of order n, L(T ).
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Definition. A block graph is a graph in which every biconnected component
(block) is a maximal clique.

Theorem 7 ([5]). A graph is the line graph of a tree if and only if it is a
connected block graph in which each cutpoint is exactly on two blocks.

Suppose that B1, B2, . . . , Bk are the blocks of L(T ) of orders ni : 1 ≤ i ≤ k,
and ni ≥ 2. Let H be an induced subgraph containing two blocks from L(T )
say Bi and Bj such that Bi and Bj are not disjoint. The block Bi and Bj have
a unique cut vertex in common, say h. Then to compute bp(H), we will look
to bp(Bi) and bp(Bj). We know that bp(Bi) = ni − 1 and bp(Bj) = nj − 1,
suppose that the vertex set of biclique partition of minium cardinality for Bi =
{u1, . . . , un−1} and the vertex set of biclique partition of minium cardinality for
Bj = {v1, . . . , vn−1}, so to cover H by biclique partition, we can take star cover
of {u1, . . . , un−1}∪{v1, . . . , vn−1}. To find a biclique partition of minium number
of H. TakeV (Bi) ∩ V (Bj) = {h}, h ∈ {u1, . . . , un−1} and h ∈ {v1, . . . , vn−1};
because h covers all edges incident with h in Bi and all edges incident with h in
Bj . Therefore the biclique partition number of H equal to (ni−1)+(nj−1)−1.
The result easily extended to all blocks in L(Tn), because each cutpoint is exactly
in two blocks. Thus we have the following theorem.

Theorem 8. If L(T ) has r cutpoints, such that degree (r) > 3, then bp(L(T )) =
bp(B1) + ...+ bp(Bk) − r =

∑k
i=1(ni − 1) − r.

We do not know whether the graph L(T ) is an eigensharp graph or not.

4. The biclique partition number of kth-power of path and cycle
graphs

This section focuses on the biclique partition numbers of kth−power graph of
paths and cycles. For any positive integer k and a connected graph G, a new
graph, Gk, called the kth−power of G, can be defined as follows: V (Gk) = V (G)
and two distinct vertices u and v in Gk are adjacent if the distance between u
and v in G is less than or equal to k. In this section, we will calculate the
biclique partition numbers of the kth−power of a path, P k

n , and the kth−power
of a cycle, Ck

n.

The kth-power of path graph P k
n . First, we describe the kth−power

graph of a path, P k
n . Then we will determine the biclique partition number of

the kth−power graph of a path P k
n , using Graham and Pollak Theorem. Suppose

that the vertices of V (P k
n ) = {i : 1 ≤ i ≤ n}. The vertices i and j are adjacent

if and only if d(i, j) ≤ k. Let H be the induced subgraph containing (k + 1)
consecutive vertices. Clearly, the induced subgraph of these vertices in P k

n is a
maximal clique of order k + 1.

First, we will assume that (k + 1) divides n. Suppose n
k+1 = m, so we can

divide the vertices of P k
n into pairwise disjoint family of subgraphs {Hi}mi=1,
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each of them has (k + 1) consecutive vertices H1 = {1, 2, . . . , k + 1} ,H2 =
{k + 2, . . . , 2(k + 1)} , . . . , Hm = {(m−1)(k+1)+1, . . . ,m(k+1)}. So, {Hi}mi=1

is a family of pairwise disjoint cliques each of them has order (k+1). We rename
the vertices of Hi in order to be used to calculate bp

(
P k
n

)
. Suppose that Hi =

{vi,1, vi,2, . . . , vi,k+1} , and we call vi,1 the first element. Now we will study the
relation between Hi and Hi+1 : 1 ≤ i < m. Let vi,j be a vertex in Hi, then vi,j
is adjacent to all vertices in Hi, and vi+1,p ∈ Hi+1 : p < j ≤ k + 1, because
d (vi,j , vi+1,p) ≤ k. So, the first element vi,1 is not adjacent to any vertex in
Hi+1.

In the following theorem we determine the biclique partition number of, P k
n ,

assuming that (k + 1) divides n.

Theorem 9. For the graph P k
n , if (k + 1) | n, then bp

(
P k
n

)
= k

k+1n.

Proof. Suppose n
k+1 = m. So, we can divide the vertices of P k

n into disjoint
family, {Hi}mi=1 of cliques of order (k + 1). By Graham and Pollak Theorem,
bp(Hi) = k. Let Xi = {vi,2, . . . , vi,k+1} be a biclique partition of minimum
cardinality of Hi. Now we claim that

∪m
i=1Xi is a biclique partition of minium

cardinality for P k
n . Since {Hi}mi=1 is a family of disjoint cliques. Clearly, we need

Xi to partition the edges of each Hi as star covering. Also these stars cover
the edges between Hi and Hi+1. Then

∪m
i=1Xi partition the edges in E(P k

n ).
Also, using Graham and Pollak Theorem this is the least number needed. Thus
bp(P k

n ) =
∑m

i=1 |Xi| = kn
k+1 .

On the other hand when n is not a multiple of k + 1, by division algorithm
n = (k + 1)m+ r, 0 < r < k + 1. Hence we get the following theorem.

Theorem 10. For the graph P k
n , bp

(
P k
n

)
= km+(r−1), where n = (k+1)m+r,

1 ≤ r ≤ k.

Proof. From the assumption,
⌊

n
k+1

⌋
= m. So, as in the previous theorem the

first m(k + 1) vertices can be covered by disjoint family of m cliques each of
order k+ 1. The edges can be covered by

∪m
i=1Xi as a star covering. While the

last r vertices induce a clique, R, of order r. By, Graham and Pollak Theorem,
we need at least r − 1 vertices to partition the edges of this clique. The edges
between the clique Hm and R are covered by stars of Hm. Hence we get the
result.

The kth-power of cycle graph Ck
n. First, we describe the kth−power of

a cycle, Ck
n. Then we will determine the biclique partition number of kth−power

of cycle, Ck
n, using Graham and Pollak Theorem. Let O be the induced subgraph

containing (k + 1) consecutive vertices. Clearly, the induced subgraph of these
vertices in Ck

n is a maximal clique of order k + 1.

Using division algorithm n = (k + 1)m + r, 0 ≤ r < k + 1. Therefore we
can divide the vertices of Ck

n into disjoint family of vertices each consists of
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k+ 1 except the last one with r vertices. These member of this family induce a
maximal cliques. So, we have (m + 1) disjoint cliques. By Graham and Pollak
Theorem we need at least km vertices to cover all edges in the first m cliques,
we need r − 1 vertices to cover the last clique of order r. But stars with these
vertices as their centers do not cover all edges in Ck

n, when r ̸= 0; because edges
between O1 and the last clique are not covered. So, we need all vertices of the
last clique, (i.e. r vertices), to cover all edges. Hence bp

(
Ck
n

)
= km + r. Thus

we get the following theorem

Theorem 11. For the graph Ck
n, bp

(
Ck
n

)
= km + r, where n = (k + 1)m + r,

1 ≤ r ≤ k.
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1. Introduction

In [4], Guo and Qi presented a double inequality involving the exponential and
logarithmic functions, as follows:

(1) ln
ex − ey

x− y
<

(x− 1)ex − (y − 1)ey

ex − ey
< ln

ex + ey

2
,

where x and y are arbitrary real numbers with x ̸= y.

∗. Corresponding author
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In [4], the authors also mentioned that the idea of establishing inequality (1)
was motivated by the following two inequalities [1, p. 352]:

(2) e
x+y
2 <

ex − ey

x− y
<
ex + ey

2
,

(3)
x+ y

2
<

(x− 1)ex − (y − 1)ey

ex − ey
,

where x and y are arbitrary real numbers with x ̸= y.
Guo and Qi [4] proved the inequality (1) by the method of mathematical

analysis. In this paper, we give a new proof of inequality (1) using the ma-
jorization inequalities (introduced by Hardy et al. [2]) and Schur-convexity
(introduced by Schur [3]). As an application of inequality (1), we establish a
comparison result of the Stolarsky means for different parameters.

2. Definitions and Lemmas

In this section, we need to introduce some definitions and lemmas relating to
the theory of majorization inequalities.

Definition 1. [5, 6] Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

1. x is said to be majorized by y (in symbols x ≼ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i]
for k = 1, 2, . . . , n−1 and

∑n
i=1 xi =

∑n
i=1 yi, where x[1] ≥ x[2] ≥ · · · ≥ x[n]

and y[1] ≥ y[2] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending
order. Furthermore, x is said to be strictly majorized by y (in symbols
x ≺ y) if x is not permutation of y.

2. Let Ω ⊂ Rn, f : Ω → R is said to be a strictly Schur-convex function on
Ω if x ≺ y on Ω implies f (x) < f (y) . f is said to be a strictly Schur-
concave function on Ω if and only if −f is strictly Schur-convex function
on Ω.

Definition 2 ([5, 6]). Let Ω ⊆ Rn. Ω is said to be a convex set if x,y ∈ Ω,
0 ≤ α ≤ 1 implies αx+(1−α)y = (αx1 + (1 − α)y1, . . . , αxn + (1 − α)yn) ∈ Ω.

Lemma 1 ([5, 6]). Let Ω ⊂ Rn is symmetric and has a nonempty interior convex
set. Ω0 is the interior of Ω. f : Ω → R is continuous on Ω and differentiable in
Ω0. Then f is the strictly Schur-convex (Schur-concave) function, if and only
if f is symmetric on Ω and

(4) (x1 − x2)

(
∂f

∂x1
− ∂f

∂x2

)
> 0(< 0, respectively)

holds for any x ∈ Ω0 and x1 ̸= x2.
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3. The proof of inequality (1)

Let us first deal with the left-hand inequality of (1), which reads as follows:

Proposition 1. For arbitrary real numbers x, y with x ̸= y, we have

(5) ln
ex − ey

x− y
<

(x− 1)ex − (y − 1)ey

ex − ey
.

Proof. By the L’Hospital rule, it is easy to find that

lim
x→y

[
ln
ex − ey

x− y
− (x− 1)ex − (y − 1)ey

ex − ey

]
= 0.

Thus, we define a function f(x, y) by

f(x, y) =

{
ln ex−ey

x−y − (x−1)ex−(y−1)ey

ex−ey , x ̸= y

0, x = y.

Note that the inequality (5) is symmetrical with respect to variables x and
y. To prove inequality (5), it is sufficient to prove that f(x, y) < 0 for x > y.

Let us now discuss the Schur-convexity of f(x, y) on Ω = {(x, y) : x > y,
x, y ∈R}.

Differentiating f(x, y) with respect to x gives

∂f

∂x
=

ex

ex − ey
− 1

x− y
− xex(ex − ey) − ex[(x− 1)ex − (y − 1)ey]

(ex − ey)2

=
e2x − ex+y − e2x − (y − x− 1)ex+y

(ex − ey)2
− 1

x− y

=
(x− y)ex+y

(ex − ey)2
− 1

x− y
.

Similarly to the above, we have

∂f

∂y
=

(y − x)ex+y

(ex − ey)2
− 1

y − x
.

Hence,

∆1 := (x− y)

(
∂f

∂x
− ∂f

∂y

)
= 2

[
(x− y)2ex+y

(ex − ey)2
− 1

]
.

It is easy to observe that

(x− y)2ex+y

(ex − ey)2
− 1 < 0 ⇐⇒ ex+y <

(
ex − ey

x− y

)2

,
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which is equivalent to, a known result, the left-hand side inequality of (2).
Hence, we obtain ∆1 < 0. By Lemma 1, we conclude that f(x, y) is strictly
Schur-concave on Ω. Further, from an evident majorization relationship(

x+ y

2
,
x+ y

2

)
≺ (x, y),

along with the definition of Schur-concave function, we deduce that

0 = f

(
x+ y

2
,
x+ y

2

)
> f(x, y),

which implies the desired inequality (5). The proof of Proposition 1 is complete.

Let us now verify the validity of the right-hand inequality of (1), which is
stated by Proposition 2 below.

Proposition 2. For arbitrary real numbers x, y with x ̸= y, we have

(6)
(x− 1)ex − (y − 1)ey

ex − ey
< ln

ex + ey

2
.

Proof. By using the L’Hospital rule, it is not difficult to verify that

lim
x→y

[
ln
ex + ey

2
− (x− 1)ex − (y − 1)ey

ex − ey

]
= 0.

Thus, we define a function g(x, y) by

g(x, y) =

{
ln ex+ey

2 − (x−1)ex−(y−1)ey

ex−ey , x ̸= y

0, x = y.

Because the inequality (6) is symmetrical with respect to variables x and y,
in order to prove inequality (6), it is enough to prove that g(x, y) > 0 for x > y.

In the following we discuss the Schur-convexity of g(x, y) on Ω={(x, y) : x>y,
x, y ∈R}.

Direct computation gives

∂g

∂x
=

ex

ex + ey
− xex(ex − ey) − ex[(x− 1)ex − (y − 1)ey]

(ex − ey)2

=
ex

ex + ey
− e2x − (x− y + 1)ex+y

(ex − ey)2

and
∂g

∂y
=

ey

ex + ey
− e2y − (y − x+ 1)ex+y

(ex − ey)2
.
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Therefore,

∆2 : = (x− y)

(
∂g

∂x
− ∂g

∂y

)
= (x− y)

[
ex − ey

ex + ey
+

−e2x + e2y + 2(x− y)ex+y

(ex − ey)2

]
=

4ex+y(x− y)2

(ex + ey)(ex − ey)2

(
ex + ey

2
− ex − ey

x− y

)
=

4ex+y(x− y)2

(ex + ey)(ex − ey)2

(
ex + ey

2
− 1

x− y

∫ x

y
etdt

)
.

Recall the well-known Hermite-Hadamard inequality for a convex function
ψ on the interval [x, y] :

(7)
1

x− y

∫ x

y
ψ(t)dt ≤ ψ(x) + ψ(y)

2
.

If we take ψ(t) = et, then we have a strict inequality of (7), that is,

1

x− y

∫ x

y
etdt <

ex + ey

2
.

Hence, we obtain ∆2 > 0, this implies that g(x, y) is strictly Schur-convex
on Ω. Then, from (

x+ y

2
,
x+ y

2

)
≺ (x, y),

it follows that

0 = g

(
x+ y

2
,
x+ y

2

)
< g(x, y),

which implies the required inequality (6). The Proposition 2 is proved.

4. An application to the Stolarsky mean

In order to demonstrate the application of inequality (1), we establish a com-
parison result of the Stolarsky means for different parameters.

Let (x, y) ∈ R2
+. The Stolarsky mean of (x, y) is defined in [7] as

E(a, b;x, y) =



(
b

a
· y

a − xa

yb − xb

)1/(a−b)

, ab(a− b)(x− y) ̸= 0,(
1

a
· ya − xa

ln y − lnx

)1/a

, a(x− y) ̸= 0, b = 0;

1

e1/a

(
xx

a

yya

)1/(xa−ya)

, a(x− y) ̸= 0, a = b;

√
xy, a = b = 0, x ̸= y;

x, x = y.
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We have the following inequalities for the Stolarsky mean E(a, b;x, y).

Proposition 3. Let u, v be arbitrary positive numbers with u ̸= v. Then

(8) E(1, 0;u, v) < E(1, 1;u, v) < E(2, 1;u, v).

Proof. Taking ex = u and ey = v in the inequality (1), we obtain

ln

(
u− v

lnu− ln v

)
<

(lnu− 1)u− (ln v − 1)v

u− v
< ln

u+ v

2

(9) ⇐⇒ u− v

lnu− ln v
<

1

e

(
uu

vv

)1/(u−v)

<
u+ v

2
.

Obviously, the inequality (9) can be equivalently transformed to the desired
inequality (8) according to the definition of E(a, b;x, y) described above. This
proves Proposition 3.
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Press, London, 1952.
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Abstract. In this paper we show that if Λ ⊂ M is a closed invariant set and p ∈
Λ is a hyperbolic saddle periodic point satisfying condition A with real and positive
eigenvalues, then Λ is not horseshoe-like.
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1. Introduction

Bowen in his remarkable survey on Anosov diffeomorphism has proved that
C1+-diffeomorphisms do not have fat horseshoes, these are horseshoes of posi-
tive Lebesgue measure. In contrast, he gave an example of a totally disconnected
horseshoe on sphere S2 of positive volume. On the other hand, Bowen has proved
that a basic set (locally maximal hyperbolic set with a dense orbit) of a C2 dif-
feomorphism which attracts a set with positive volume, necessarily attracts a
neighborhood of itself [3 Theorem 4.11]. In particular, the unstable manifolds
through points of this set must be contained in it, and consequently C2 diffeo-
morphisms have no horseshoes with positive volume. In this context A.Fakhari
and M.Soufi proved that any partially hyperbolic horseshoe-like attractor of a
C1 -generic diffeomorphism has zero volume [4]. As well they constructed a C1–
diffeomorphism with a partially hyperbolic horseshoe-like attractor of positive
volume. In this paper we show that under some conditions there is no horseshoe-
like in the context of C1-diffeomorphisms. Indeed we show that if Λ ⊂ M is a
closed invariant set and p ∈ Λ is a hyperbolic saddle periodic point satisfying
condition A with real and positive eigenvalues, then Λ is not horseshoe-like.

Let f : M → M be a diffeomorphism of a compact connected Riemannian
manifold M . A set Λ is said to be invariant relative to f if f(Λ) = Λ.

For a point x ∈M the stable set of x is

W s(x) = {y ∈M : d(fk(x), fk(y))→ 0 as k → +∞}

and the unstable of x is

W u(x) = {y ∈M : d(fk(x), fk(y))→ 0 as k → −∞}.
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Let O(p) be a hyperbolic periodic orbit of f , then the dimension of unstable
manifold of p is called index of p.

A compact invariant set Λ is said to be horseshoe-like if there are local stable
and local unstable manifolds through all its points which intersect Λ in a Cantor
set.

A splitting TΛM = E ⊕ F of the tangent bundle restricted to an invariant
set Λ is dominated splitting if there is a constant 0 < λ < 1 such that for some
choice of a Riemannian metric on M

‖Df | Ex‖.‖Df−1 | Ff(x)‖ ≤ λ, for every x ∈ Λ.

Λ is partially hyperbolic, if additionally E is uniformly contracting or F is uni-
formly expanding, i.e there exists 0 < λ < 1 such that

‖Df | Ex‖ ≤ λ or ‖Df−1 | Ff(x)‖ ≤ λ.

A compact invariant set Λ is called hyperbolic if there is a Df -invariant splitting
TΛM = Es ⊕ Eu of the tangent bundle restricted to Λ and a constant λ < 1
such that (for some choice of a Riemannian metric on M) for every x ∈ Λ

‖Df | Esx‖ < λ

and

‖Df−1 | Eux‖ < λ.

Alves and Pinheiro have studied nonuniformly expanding partially hyper-
bolic sets for C1+ diffeomorphisms [1]. They have proved that if non-uniformly
expanding condition holds for a positive Lebesgue set of points, then Λ contains
some local unstable disk. As a corollary, they deduced the non-existence of par-
tially hyperbolic horseshoe like sets of positive volume. Also, Pacifico et al. have
tried to construct Lorenz attractor of positive volume in the C1-topology. The
same result have obtained in the context of the volume preserving diffeomor-
phism. Indeed Xia proved in [2] that if an invariant set Λ of a volume-preserving
C1+-diffeomorphism f with positive volume has a dominated splitting E ⊕ F ,
with E is uniformly contractive, then Λ contains stable leaves of almost every
point. This argument leads to another proof of the classical result toward the
ergodicity of C1+ volume-preserving Ansosov diffeomorphisms without using the
Hopf argument.

2. Main theorems

In this section we present a condition that an invariant set satisfying it, is not
horseshoe-like.
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Definition. Let Λ be an invariant set. We say that a point p ∈ M satisfies
condition A if there are a local chart h at p and sequences {xn} and {wn} ⊂ TpM ,
wn =

∑m
i=1 λ

wn
i vi such that for 1 ≤ i ≤ m,

limn→∞
λwni −λ

wn+1
i

λ
wn+1
i

= 0

λ
wn+1

i < λwni
limn→∞ λ

wn
i = 0

h−1(wn) = xn ∈ Λ,

where {v1, v2, ..., vm} is a basis of TpM .

Remark. In the above definition λwni is a notation relative to wn as a scaler.
Indeed for any α ∈ TpM , since {v1, v2, ..., vm} is a basis of TpM , so one can
write α =

∑m
i=1 λ

α
i vi where λαi for 1 ≤ i ≤ m, are scalers.

Example 1. Let f : M → M be a C1-diffeomorphism on a C∞-manifold M
with dimM = 2 and p ∈M be a hyperbolic fixed point of f . Let f at p in local
chart be as f(x, y) = (4x, 1

8y) and {(xn, yn)} be a sequence such that xn = 1
n ,

yn → 0 as the following figure.

If Λ is a closed invariant set containing p and {(xn, yn)} ⊂ Λ, then p satisfies
condition A, since xn+1 < xn, xn−xn+1

xn+1
→ 0 and xn → 0.

Definition. Let Λ be a close invariant subset of the compact manifold M. A
point p ∈ Λ is said to be topologically dense point if

lim
δ→0

1

δ
max {ε > 0 | Bε(x) ∩ Λ = ∅, ∀x ∈ Bδ(p)} = 0

where Br(z) = {x ∈M | d(z, x) < r}.
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Example 2. Let f ∈ Diff1(M) and Λ ⊂M be a closed invariant set which is
not a perodic point containing a saddle fixed point p ∈ Λ which is topologically
dense and whose eigenvalues are real and positive.

p is topologically dense therefore for every m ∈ N there are positive integers
εm, δm such that εm

2δm
→ 0 asm→ +∞ andBδm(x)∩Λ 6= ∅ for every x ∈ B2δm(p).

Thus by induction we find sequence {qm} ⊆ Λ such that d(qm, qm+1) = εm and
d(qm, p) = 2δm (see the following Figure ). So by taking suitable charts we can
suppose that p = 0 and limm→∞

qm−qm+1

qm
= 0. Therefore p satisfies condition

A.

The following theorem shows that Example 2 is a prototype structures for
an invariant set to be not horseshoe-like.

Theorem 1. Let f ∈ Diff1(M) and Λ ⊂ M be a closed invariant set which
is not a periodic point. Suppose Λ contains a saddle fixed point p satisfying
condition A with real and positive eigenvalues. Then Λ is not horseshoe-like.

Proof. We show that there is a connected component in Λ which is not consist
of a single point. So Λ is not a Cantor set and hence it is not horseshoe-
like. Since p is a hyperbolic point, there is an ε0 > 0 and a homeomorphism
h : Bε0(p)→ TpM such that

h(p) = 0(1)

Dpfoh = hof.(2)

There exists ε′ > 0 such that{
v ∈ TpM | ‖v‖ < ε′

}
= h(Bε0(p)).

Let {λ̃i | 1 ≤ i ≤ s} be the set of all eigenvalues of Dpf which norm greater than
1. Denote by {λ̃i | s+ 1 ≤ i ≤ m} the set of all eigenvalues of Dpf which norm
less than 1 and let {v1, . . . , vs} and {vs+1, . . . , vm} be the set of eigenvectors of
{λ̃i | 1 ≤ i ≤ s} and {λ̃i | s+ 1 ≤ i ≤ m} respectively. Put

L̄ =

{
m∑
i=1

λivi | 0 < λi <
ε′

2m

}
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and

L =

{
s∑
i=1

λivi | 0 < λi <
ε′

2s

}
.

We can see that h−1(L̄) and h−1(L) ⊂ Bε0(p). Since p is a saddle point with
condition A, there are sequences {xn} and {wn} ⊂ TpM , wn =

∑m
i=1 λ

wn
i vi such

that for 1 ≤ i ≤ s, we have

(1.3)


limn→∞

λwni −λ
wn+1
i

λ
wn+1
i

= 0

λ
wn+1

i < λwni
limn→∞ λ

wn
i = 0

h−1(wn) = xn ∈ Λ

Let z ∈ L. For every s + 1 ≤ i ≤ m there exists Ni ∈ N such that for any
n ≥ Ni, 0 < λwni < δ

2M(m−s) where

M = max{λ̃i | 1 ≤ i ≤ m}.

Put N0 = max{Ni | s+1 ≤ i ≤ m}. Since z ∈ L, we can consider z =
∑s

i=1 λ
z
i vi

such that 0 < λi <
ε′

2s . For every k > N0 put

mk = min

{
m | λwm+1

i <
λzi + δ

2s

λ̃ki

}
for 1 ≤ i ≤ s. So

λ
wmk+1

i <
λzi + δ

2s

λ̃ki
≤ λwmki

for 1 ≤ i ≤ s.
We claim that there exists k0 > N0 such that for 1 ≤ i ≤ s,

λ
wmk0+1

i >
λzi − δ

2s

λ̃k0i
.

Suppose our claim is not true. Hence for every k > N0 and some 1 ≤ i ≤ s

λ
wmk+1

i ≤
λzi − δ

2s

λ̃ki
<
λzi + δ

2s

λ̃ki
≤ λwmki .

So

λ
wmk
i − λ

wmk+1

i

λ
wmk+1

i

≥

2δ

2sλ̃k
i

λzi+ δ
2s

2sλ̃ki
=

2δ

λzi + δ
2s

> 0

that contradicts (1.3). Hence there exists n0 > N0 such that

λzi − δ
2s

λ̃n0
i

< λ
wmn0+1

i <
λzi + δ

2s

λ̃n0
i
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for 1 ≤ i ≤ s. This shows that

s∑
i=1

∣∣∣λ̃n0
i λ

ymn0+1

i − λzi
∣∣∣ < δ

2
.

Hence we have∥∥∥∥∥Dfn0

(
m∑
i=1

λ
wmn0+1

i vi

)
− z

∥∥∥∥∥
=

∥∥∥∥∥
s∑
i=1

λ̃n0
i λ

wmn0+1

i vi +

m∑
i=s+1

λ̃n0
i λ

wmn0+1

i vi −
s∑
i=1

λzi vi

∥∥∥∥∥
≤

∥∥∥∥∥
s∑
i=1

λ̃n0
i λ

wmn0 +1vi −
s∑
i=1

λzi vi

∥∥∥∥∥+

∥∥∥∥∥
m∑
s+1

λ̃n0
i λ

wmn0 +1

i vi

∥∥∥∥∥ =: B

Since for s+ 1 ≤ i ≤ m, λ̃n0
i < 1 and 0 < λwmn0 +1 < δ

2M(m−s) . Hence

B ≤
s∑
i=1

∣∣∣λ̃n0
i λ

wmn0 +1

i − λzi
∣∣∣+

m∑
i=s+1

∣∣∣λ̃n0
i λ

wmn0 +1

i

∣∣∣
<
δ

2
+

(m− s)δ
2(m− s)M

< δ.

This shows that Dfn0

(∑m
i=1 λ

wmn0 +1

i vi

)
∈ Bδ(z). This shows that for every

x ∈ h−1(L) there is sequence such that

Dpf
m(vnm) −→ h(x)

{h(vnm) = xnm} ⊂ Λ

since h−1 ◦Dpf ◦ h = f so

fm(xnm) −→ x.

Λ is closed and invariant so we have x ∈ Λ. Hence h−1(L) ⊂ Λ. Note that
h−1(L) is connected component. Hence Λ is not like horseshoe.
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Abstract. In the present paper, the non-linear stability of the triangular libration
point (L4) in the restricted three-body problem(R3BP) when less massive primary is
a heterogeneous triaxial rigid body has been studied with the assumption that the
primary has N layers having different densities. Following the procedure of Birkhoff’s
normalization, we normalized the Hamiltonian up to second order and the co-ordinates
(x, y) are expanded in double D’Alembert series. The non-linear stability of the tri-
angular libration point is discussed by applying Moser’s modified version of Arnold’s
theorem (1961) as well as following the procedure as adopted by Bhatnagar and Hallan
(1983). It is observed that Moser’s theorem is applicable in the range of linear stability,
except for three mass ratios depending upon heterogeneous triaxial rigid body.
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1. Introduction

The restricted three-body problem (R3BP) concerned the motion of the in-
finitesimal mass under the gravitational influence of two finite bodies: There
are two masses, called primaries, moving in circular orbits around their com-
mon center of mass. There is another mass, which is infinitesimal, moving in
the plane of motion of the primaries such that it does not influence the motion
of the primaries but is influenced by them. To describe the motion of the third
mass is called the circular restricted problem. In case the primaries move in
elliptical orbits instead of circular orbits, the problem is known as pseud re-
stricted problem. R3BP has been stated by many authors. In the restricted
three-body problem, distinct particular solutions exist. These particular solu-
tions are known as Lagrangian points and in the bi-dimensional system, five
Lagrangian points exist. Three of these are the collinear points and the other
two are the triangular points. Several authors have investigated the stability
of these points in linear sense and found that the collinear points are unstable
where as non collinear points are stable in the some range.

Many mathematicians and astronomers have discussed non-linear stability
by taking different aspects of the restricted three-body problem and made valu-
able contributions. Deprit and Deprit (1967) discussed the stability of the tri-
angular Lagrangian points. Bhatnagar and Hallan(1983) studied the effect of
perturbations in Coriolis and Centrifugal force on the nonlinear stability of the
equilibrium points in the restricted problem of three bodies . Gyorgyey (1985)
investigated on the non-linear stability of motions around L5 in the elliptic
restricted problem of three bodies. Krzysztof et al. (1991) studied about the li-
bration points in the restricted photo-gravitational three-body problem. Sharma
et al. (1997) discussed on the effect of oblateness on the non-linear stability of
L4 in the restricted three-body problem. Esteban et al. (2001) analyzed the
rotating stratified heterogeneous oblate spheroid in Newtonian physics. Jain et
al. (2001) studied on the non-linear stability of L4 in the restricted three-body
problem when the primaries are triaxial rigid bodies. Andres et al.(2001) stud-
ied the non-linear stability of the equilibria in the gravity field of a finite straight
segment. Chandra et al. (2004) discussed the effect of oblateness on the non-
linear stability of the triangular liberation points of the restricted three-body
problem in the presence of resonances. Aggarwal et al. (2006) investigated the
Non-linear stability of L4 restricted three-body problem for radiated axes sym-
metric primaries with resonances. Kushvah et al.(2007) studied the non-linear
stability in the generalized photo-gravitational restricted three-body problem
with Poynting-Robertson drag. Singh (2011) examined the non-linear stabil-
ity in the restricted three-body problem with oblate variable mass. Ishwar et
al. (2012) investigated the non-linear stability in photo-gravitational non-planer
R3BP with oblate smaller primary. Jain et al. (2014) studied the non-linear
stability of L4 in the restricted problem when the primaries are finite straight
segment under resonances. Ansari (2017 a, b) investigated the dynamical be-
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havior in the restricted three-body problem with perturbations. Shalini et al.
(2016, 2017) studied the stability of L4 in the R3BP by taking the smaller
primary is a heterogeneous spheroid with layers.

In the present work, we propose to discuss the R3BT with the assumption
that the massive primary is a point mass and less massive primary is a hetero-
geneous triaxial rigid body with N layers, having different densities ρi and axes
(ai, bi, ci), (i = 1, 2, 3, . . . , N) respectively. The main objective of this paper is
to study of the stability of libration point L4 in non-linear sense. For this we
will apply Moser’s modified version of Arnold’s theorem (1961) and procedure
as adopted by Bhatnagar and Hallan (1983).

This paper should be read in conjunction with the papers by Bhatnagar and
Hallan (1983) and Shalini (2017). As to save space, we are not mentioning the
values of various variables given in those papers, although they are used in this
paper.

This paper is organized as follows: In section Introduction we have reviewed
the literature related to R3BP under different perturbations. In section Equa-
tions of motion we have derived the potential of heterogeneous triaxial rigid
body with N layers and mean motion of the primaries and further, formulated
the equations of motion of the proposed system. Section Location of Triangu-
lar Points,we have obtained the coordinates of non-collinear libration points.
Section First order normalization, deals with the first order normalization. In
section Second order normalization, we have determined the second order nor-
malization. In section Second order coefficients in the frequencies, we have
found the second order frequencies. In section Stability, we have checked the
non-linear stability of triangular libration points. Section Conclusion, contains
the conclusion of the obtained results.

2. Equations of motion

Let m1 and m2 (m1 > m2) be the two masses of the primaries at P1 and
P2 respectively as shown in Fig. (1) are moving in circular orbits around their
common center of mass O which is taken as the origin, OP1 = 1−µ and OP2 = µ,
as the distances of primaries from the center of mass. Let m1 be point mass
and m2 a heterogeneous triaxial rigid body with N layers having axes (ai, bi,
ci) (ai > bi > ci) and densities ρi. An infinitesimal mass m3 which is much
less than masses of the primaries is moving in the plane of motion of m1 and
m2. Let −→r , −→r1 and −→r2 as the distances of infinitesimal mass, first primary and

second primary from center of mass respectively.
−→
F1 and

−→
F2 are the gravitational

forces acting on m3 due to m1 and m2 respectively. Also let us consider that
the principal axes of heterogeneous triaxial rigid body remain parallel to the
synodic axes Oxyz throughout the motion and the equatorial plane of m2 is
coincide with the plane of motion of m1 and m2.(Fig.1(a), (b)) The equation of
motion of m3 in the vector form is



300 ABDULLAH A. ANSARI, KUMARI SHALINI and ZIYAD A. ALHUSSAIN

(a)

X

x

Yy

P m3 (x, y)

r

O m1 ( ,0)

m2 ( -1,0)

r1

r2

F2

F1

nt

(b)

ρ1

ρ2
ρ3ρ4ρN

P

Figure 1: (a): Configuration of the restricted three-body problem with m2 as
heterogeneous triaxial rigid body, (b): Heterogeneous triaxial rigid
body with N Layers

(1) m3(
∂2−→r
∂t2

+ 2−→ω × ∂−→r
∂t

+
∂−→ω
∂t

×−→r + −→ω × (−→ω ×−→r )) =
−→
F ,

where −→r =
−−→
OP , −→ω = n k̂ = angular velocity = constant,

−→
F = total force acting

on m3.

The gravitational potential of the heterogeneous triaxial rigid body of mass
m2, with N layers of densities ρi and axes (ai, bi, ci), ρi < ρi+1, ai < ai+1,
bi < bi+1, ci < ci+1 at the point P is

(2) V2 = VNN + V(N−1)N + . . .+ V2N + V1N (say),

where VNN , V(N−1)N , . . . , V2N , V1N , are the potential of the triaxial rigid body
of densities ρNN , ρ(N−1)N , ......, ρ2N , ρ1N , for the regions N,N −1, . . . , 1, respec-
tively. Here, VNN = V ′

NN − V ′
N(N−1)(say), where V ′

NN = potential of the triax-

ial rigid body of axes (aN , bN , cN ) with homogeneous density ρN throughout at
P,= −4πρNG

3r2
aNbNcN [1 + 1

10r22
(2a2N − b2N − c2N − 3

r22
(a2N − b2N )y2)], and V ′

N(N−1) =

potential of the triaxial rigid body of axes (aN−1, bN−1, cN−1) with homogeneous
density ρN throughout at P = −4πρNG

3r2
aN−1bN−1cN−1[1 + 1

10r22
(2a2N−1 − b2N−1 −

c2N−1 −
3
r22

(a2N−1 − b2N−1)y
2)].

Thus,

(3)

VNN=−4πρNG
3r2

[aNbNcN{1+ 1
10r22

(2a2N−b2N−c2N− 3
r22

(a2N − b2N )y2)}
−aN−1bN−1cN−1{1+ 1

10r22
(2a2N−1−b2N−1−c2N−1−

3
r22

(a2N−1−b2N−1)y
2)}].
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Similarly, we can find V(N−1)N , . . . , V2N , V1N , and substituting in Eq.(2), we
have

(4) V2 = −m2G

r2
− k′1G

2r32
+
k′2Gy

2

2r52
.

where

k′1 =
4π

3

N∑
i=1

((ρi − ρi+1)aibiciσi,1), k′2 =
4π

3

N∑
i=1

((ρi − ρi+1)aibiciσi,2),

σi,1 =
(2a2i−b2i−c2i )

5 , σi,2 =
(a2i−b2i )

5 , σN+1 ̸= 0.

Hence, the total potential at P due to m1 and m2 is given by V = −m1G
r1

−
m2G
r2

− k′1G

2r32
+

k′2Gy2

2r52
.

Let us fix the units of mass,length and time with the assumption that the
gravitational constant G, the sum of the masses and the distance between both
primaries be equal to unity.

Then the equations of motion in Synodic co-ordinates system and dimen-
sionless variables are

(5)

{
ẍ− 2nẏ = ∂Ω

∂x

ÿ + 2nẋ = ∂Ω
∂y

where Ω = n(x
2+y2

2 ) + 1−µ
r1

− µ
r2

+ k1
2r32

− 3k2y2

r52
, r21 = (x− µ)2 + y2, r22 = (x− µ+

1)2 + y2,

k1 =
4π

3

N∑
i=1

((ρ′i − ρ′i+1)a
′
ib

′
ic

′
iσ

′
i,1), k2 =

4π

3

N∑
i=1

((ρ′i − ρ′i+1)a
′
ib

′
ic

′
iσ

′
i,2),

σ′i,1 =
(2a

′2
i −b

′2
i −c

′2
i )

5R2 , σ′i,2 =
(a

′2
i −b

′2
i )

5R2 , a′i = ai
R , b

′
i = bi

R , c
′
i = ci

R , ρ
′
i = ρi

M , ρ′N+1 ̸= 0,
M = m1 +m2, k1, k2 << 1, R = dimensional distance between the primaries.

2.1 Mean motion

The potential of the triaxial rigid body is −(m2G
R + k1G

2R3 ). Let the distances of
m1 and m2 from the center of mass O be a′ and b′ respectively. Since m1 and
m2 are moving in circular orbits about O, we have m1a

′n2 = (m2G
R2 + 3k1G

2R4 )m1

and m2b
′n2 = (m2G

R2 + 3k1G
2R4 )m1.

Adding these equations, we have n2 = ( m2G
(a′+b′)3 + 3k1G

2(a′+b′)5 )(m1+m2
m2

). Using

the dimensionless variables, we get the mean motion as

(6) n = 1 + ck1,

where c = 3
4µ .
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3. Locations of triangular points

The locations of triangular libration points are solutions of the Eq. (5) obtained
by making all the derivatives equals to zero (i.e.Ωx = 0 and Ωy = 0). i.e.:

nx− (1 − µ)(x− µ)

r31
− µ(x− µ+ 1)

r32
− (3k1)(x+ 1 − µ)

2r52

+
(15k2)(x+ 1 − µ)y2

2r72
= 0,(7)

And

(8) (n− (1 − µ)

r31
− µ

r32
− 3k1

2r52
− 3k2

r52
+

15k2y
2

2r72
)y = 0.

From equation (8), we have two cases, either y = 0, or

(9) (n− (1 − µ)

r31
− µ

r32
− 3k1

2r52
− 3k2

r52
+

15k2y
2

2r72
) = 0.

The collinear libration points are the solution of the equation (7), when y = 0.
The non-collinear libration points are the solutions of the equations (7) and (9).

If we put k1 = k2 = 0 in equations (7) and (8), we get the classical case of the
R3BP and consequently. r1 = r2 = 1 is the required solution. Now, we discuss
only the location of libration point L4. For this, we suppose that the solution of
the above equations when y ̸= 0 are r1 = 1 + π, r2 = 1 + π′ , π, π′ ≪ 1. Putting
the values of r1 and r2 in the equations r21 = (x−µ)2 +y2, r22 = (x−µ+1)2 +y2

and solving, we get x = µ− 1
2 − (π − π′), y =

√
3
2 − 1√

3
(π + π′).

Now, we substitute the values of r1, x, y in equations (7) and (9) and rejecting
the second and higher order terms of π and π′, we get the co-ordinates of the
stationary points L4(x, y) and L5(x,−y) as x = µ − 1

2 + p1k1 + p2k2, y =
√
3
2 + p3k1 + p4k2, respectively, where p1 = −1

2µ , p2 = 7µ−11
8µ(µ−1) , p3 = 3−4cµ

6
√
3µ
,

p4 = 11−5µ

8
√
3µ(µ−1)

.

4. First order normalization

Following the procedure as adopted by Bhatnagar and Hallan (1983) to derived
the first order normalization. The Lagrangian function of the equation(5) is
given by

(10) Γ =
1

2
{ẋ2 + ẏ2 +n2(x2 + y2) + 2n(xẏ− yẋ)}+

1 − µ

r1
+
µ

r2
+
k1
2r32

− 3k2y
2

2r52
.
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Now shifting the origin to L4(x, y), and expanding Γ in power series of x and y,
it can be expressed as Γ = Γ0 + Γ1 + Γ2 + Γ3 + Γ4 + ..., where

Γ0 =
1

8
(11 + γ2 + t1k1 − 9k2),

Γ1 =
−ẋ
2

(
√

3 + t2k1 + 2p4k2) −
ẏ

2
(γ + t3k1 − 2p2k2)

+ x(t4k1 + t5k2) + y(t6k1 + t7k2),

Γ2 =
1

2
(ẋ2 + ẏ2) + n(xẏ − yẋ) − 3

32
(8
√

3γ + t8k1 + t9k2)xy

+
1

64
(72 + t10k1 + t11k2)y

2 +
1

64
(24 + t12k1 + t13k2)x

2,

Γ3 =
3

32
(−2

√
3 + t14k1 + t15k2)y

3 +
x3

32
(−14γ + t16k1 + t17k2)y

2

− 3xy2

32
(−22γ + t18k1 + t19k2) +

3x2y

64
(2
√

3 + t20k1 + t21k2)x
2,

Γ4 =
x4

512
(−148 + t22k1 + t23k2) +

3y4

256
(2 + t24k1 + t25k2)y

2

− 15xy3

64
(6
√

3γ + t26k1 + t27k2) +
5x3y

64
(10

√
3γ + t28k1 + t29k2)

+
1

64
(1 + t30k1 + t31k2)x

2y2,

all the values of ti, (i = 1, 2, ...31) are refer in Appendix.
Corresponding to the Lagrangian function Γ given by equation (5), the

Hamiltonian function is given by H = −Γ + pxẋ+ pyẏ, where px and py are the
momenta coordinates and given by px = ∂Γ

∂ẋ = ẋ−ny, py = ∂Γ
∂ẏ = ẏ+nx. Finally,

the Hamiltonian function becomes H(x, y, px, py) = 1
2(p2x + p2y) +n(ypx−xpy)−

1−µ
r1

− µ
r2
− k1

2r32
+ k2y2

2r52
. Applying the following translation x→ (x− γ

2p1k1+p2k2),

y → (y +
√
3
2 p3k1 + p4k2), px → px − n(

√
3
2 + p3k1 + p4k2), py → py + n(−γ

2 +
p1k1 + p2k2), One can find the Hamiltonian H as H =

∑∞
k=0Hk, where Hk =

the sum of the terms of kth degree homogenous in variables x, y, px, py.
Now

H0 = −Γ0,

H1 =
1

64
(−40 − 12(11 + 11γp1 − 3

√
3p3)k1

+ (141 − 132γp2 + 36
√

3p4)k2),

H2 =
1

2
(p2x + p2y) + n(ypx − xpy) + Ex2 + Fy2 + 2Gxy,(11)

H3 = −Γ3,

H4 = −Γ4,

where E = 1
64(8 + c1k1 + c2k2), F = 1

64(−40 + c3k1 + c4k2), G = 3
16(8

√
3γ +

c5k1 + c6k2), c1 = 12(−1 + 7γp1), c2 = 3(45 + 28γp2 + 4
√

3p4), c3 = −12(11 +
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11γp1 − 3
√

3p3), c4 = 141 − 132γp2 + 36
√

3p4, c5 = 4(−5
√

3 +
√

3p1 − 11γp3),
c6 = 65

√
3 + 4

√
3p2 − 44γp4).

To investigate the stability of motion as in Whittaker (1965), we consider
the following set of linear equations in the variables x and y

− λpx =
∂H2

∂x
= 2Ex+Gy − npy,

− λpy =
∂H2

∂y
= 2Fy +Gx− npx,(12)

λx =
∂H2

∂px
= px + ny,

λy =
∂H2

∂py
= py − nx, i.e.AX = 0,

where

A =


2E G λ −n
G 2F n λ
−λ n 1 0
−n −λ 0 1

 , X =


x
y
px
py

 .

The equation (12) will have a non-zero solution if and only if Det(A) = 0,
which implies that λ4 + 2λ2(E + F + n2) + FE −G2 − 2n2(E + F ) + n4 = 0.

and so the characteristic equation corresponding to Hamiltonian H2 given in
equation(11) is given by 16λ4 +(16+2(−36+32c−12γp1 +9

√
3p3)k1−6(−23+

4γp2 − 4
√

3p4)k2)λ
2 + 27(1 − γ2) + 4(252 + 384c+ 540γ − 288γp1 + 18

√
3(−3 +

22γ2)p3)k1 + 4(−819 − 1755γ − 288γp2 + 36
√

3(−3 + 11γ2)p4)k2 = 0,
The stability of Libration point L4 is assured only when the discriminant of

the characteristic equation is greater than zero, implying that µ < µc = µ0 −
(3.76183..)k1+(10.825...)k2, where µ0 = 0.0385208965 . . .WhenD > 0, the roots
±iω′

1 and ±iω′
2 (ω′

1 and ω′
2 being long/short-periodic frequencies) are related to

each other as ω
′2
1 + ω

′2
2 = 1 + p5k1 + p6k2, ω

′2
1 ω

′2
2 = 27

16(1 − γ2) + p7k1 + p8k2,

(0 < ω
′
1 < ω

′
2 <

1√
2
), where p5 = 1

8(−36 + 32c−12γp1 + 9
√

3p3), p6 = −3
8 (−23 +

4γp2 − 4
√

3p4), p7 = 1
64(252 + 384c + 540γ − 288γp1 + 18

√
3(−3 + 22γ2)p3),

p8 = 1
64(−819 − 1755γ − 288γp2 + 36

√
3(−3 + 11γ2)p4).

It is observed that the perturbed frequencies (ω′
1, ω

′
2) are related to the

unperturbed one (ω1, ω2) as ω′
1 = ω1(1 + pk1 + p′k2), ω

′
2 = ω2(1 + qk1 + q′k2),

where p =
27p5−27γ2p5−16p7ω2

2
54(1−γ2)k2

, p′ =
27p6−27γ2p6−16p8ω2

2
54(1−γ2)k2

, q =
27p5−27γ2p5−16p7ω2

1
54(−1+γ2)k2

,

q′ =
27p6−27γ2p6−16p8ω2

1
54(−1+γ2)k2

, k2 = 2ω2
1 − 1 = 1 − 2ω2

2,

Following the method given in Whittaker (1965), we use a canonical trans-
formation from the phase space (x, y, px, py) into the phase space of the angles
(ϕ1, ϕ2) and the actions (I1, I2), so that the Hamiltonian H2 be normalized.

(13) X = JT,
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where

X =


x
y
px
py

 , T =


Q1

Q2

P1

P2

 ,
J = (a

′
ij)1≤i,j≤4, Qi = (

2Ii
ω′
i

)
1
2 sinϕi, Pi = (2Iiω

′
i)

1
2 cosϕi, (i = 1, 2).

Now, we have calculated all the elements of J and we obtain a′ij = aij(1 +

αijk1 + α′
ijk2), i, j = 1, 2, 3, 4, where a11 = a12 = 0, a13 = l1

2ω1k1
, a14 = l2

2ω2k2
,

a21 = −4ω1
l1k

, a22 = −4ω2
l2k

, a23 = 3
√
3γ

2ω1l1k
, a24 = 3

√
3γ

2ω2l2k
, a31 = −ω1m1

2l1k
, a32 = −ω2m2

2l2k
,

a33 = 3
√
3γ

2ω1l1k
, a34 = 3

√
3γ

2ω2l2k
, a41 = 3

√
3γω1

2l1k
, a42 = 3

√
3γω2

2l2k
, a43 = n1

2ω1l1k
, a44 =

n2
2ω2l2k

, and all the values of αij and α′
ij , i, j = 1, 2, 3, 4, are given in Appendix.

The transformation changes the second order part of the Hamiltonian into
the normal form H2 = ω′

1I1−ω′
2I2 and the general solutions of the corresponding

equations of motion are Ii = Constant (i = 1, 2), ϕ1 = ω′
1t+ Constant, ϕ2 =

ω′
2t+ Constant.

5. Second order normalization

Moser’s conditions are utilized for transforming the Hamiltonian to the Birkhoff’s
normal form with the help of double D’Alembert’s series. Here we wish to per-
form Birkhoff’s normalization for which the co-ordinates (x, y) are to be ex-
panded in double D’Alembert series:

x =
∑
n≥1

B1,0
n , y =

∑
n≥1

B0,1
n ,

where the homogeneous components B1,0
n and B0,1

n of degree n in
√
I1,

√
I2 are

of the form ∑
0≤m≤n

I
1

2(n−m)

1 I
1

2(n−m)

2

∑
(i,j)

(Cn−m,m,i,j cos(iϕ1 + jϕ2)

+ Sn−m,m,i,j sin(iϕ1 + jϕ2)).(14)

The double summation over the indices i and j is such that (a) i runs over those
integers in the interval 0 ≤ i ≤ n−m that have the same parity as n−m (b) j
runs over those integers in the interval −m ≤ j ≤ m that have the same parity
as m. I1 and I2 are to be regarded as constants of integration and ϕ1, ϕ2 are to
be determined as linear functions of time such that

ϕ̇1 = ω′
1 +

∑
n≥1

f2n(I1, I2), ϕ̇2 = −ω′
2 +

∑
n≥1

g2n(I1, I2),
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where f2n and g2n are of the form

f2n =
∑

0≤m≤n

f ′2(n−m),2mI
n−m
1 Im2 , g2n =

∑
0≤m≤n

g′2(n−m),2mI
n−m
1 Im2 .

The first order components B1,0
1 and B0,1

1 are the values of x and y given

by equation(14). The second order components B1,0
2 and B0,1

2 are solutions of

the partial differential equations ∆1∆2B
1,0
2 = Φ2 and ∆1∆2B

0,1
2 = Ψ2, where

∆i = (D2 + ω
′2
i ), (i = 1, 2), D = ω′

1
∂

∂ϕ1
− ω′

2
∂

∂ϕ2
.

Φ2 = X2(D
2 − 1

32(72 + t10k1 + t11k2)) + Y2(2nD + 3
32(8

√
3γ + t8k1 + t9k2)),

Ψ2 = Y2(D
2 − 1

32(24 + t12k1 + t13k2))−X2(2nD− 3
32(8

√
3γ + t8k1 + t9k2)), and

X2 and Y2 are homogeneous components of order 2 obtained on substituting
x = B1,0

1 +B1,0
2 , y = B0,1

1 +B0,1
2 , in ∂Γ3

∂x ,
∂Γ3
∂y .

6. Second order coefficients in the frequencies

To make use of Moser’s modified version of Arnold’s theorem (1961), it is nec-
essary to reduce the Hamiltonian to its normalized form. So, we performed
the first and second order normalization. We have found the second order co-
efficients in the frequencies. For this we have obtained the partial differential
equations which are satisfied by the third order homogeneous components of the
fourth order part of Hamiltonian H4 and second order polynomials in the fre-
quencies. Following the iterative procedure of Bhatnagar and Hallan (1983), we
note that the third order components B0,1

3 and B1,0
3 can be obtained by solving

the partial differential equations

(15)

{
∆1∆2B

1,0
3 = Φ3 − 2f2P − 2g2Q,

∆1∆2B
0,1
3 = Ψ3 − 2f2U − 2g2V,

where

Φ3 = X3(D
2 − 1

32
(72 + t10k1 + t11k2)) + Y3(2nD +

3

32
(8
√

3γ + t8k1 + t9k2)),

P =
∂

∂ϕ1
{(ω′

1

∂B1,0
1

∂ϕ1
− nB0,1

1 )(ω
′2
1

∂2

∂ϕ1
− 1

32
(72 + t10k1 + t11k2))

+ (ω′
1

∂B0,1
1

∂ϕ1
− nB1,0

1 )(2nω′
1

∂

∂ϕ1
+

3

32
(8
√

3γ + t8k1 + t9k2))},

Q =
∂

∂ϕ2
{(−ω′

2

∂B1,0
1

∂ϕ2
− nB0,1

1 )(ω
′2
2

∂2

∂ϕ2
− 1

32
(72 + t10k1 + t11k2))

+ (−ω′
2

∂B0,1
1

∂ϕ2
− nB1,0

1 )(−2nω′
2

∂

∂ϕ2
+

3

32
(8
√

3γ + t8k1 + t9k2))},
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Ψ3 = Y3(D
2 − 3

32
(24 + t12k1 + t13k2)) −X3(2nD − 3

32
(8
√

3γ + t8k1 + t9k2)),

U =
∂

∂ϕ1
(ω′

1

∂B0,1
1

∂ϕ1
− nB1,0

1 )(D2 − (
3

4
+

3k1
8

+ (
3

2
+

√
3

8
− 21γ

16
)k2))

+ (ω
′
1

∂2B1,0
1

∂ϕ1
− nB0,1

1 )(2nD − (
3
√

3γ

4
− 15

√
3k1

8
+

11k1γ

8
+

3
√

3k2
16

)),

V =
∂

∂ϕ2
(ω′

2

∂B1,0
1

∂ϕ1
− nB0,1

1 )(2nD − (
3
√

3γ

4
− 15

√
3k1

8
+

11k1γ

8
+

3
√

3k2
16

))

− (ω
′
2

∂2B1,0
2

∂ϕ2
− nB1,0

1 )(D2 − (
3

4
+

3k1
8

+ (
3

2
+

√
3

8
− 21γ

16
)k2)),

and X3 and Y3 are homogeneous components of order 3 obtained on substituting
x = B1,0

1 +B1,0
2 , y = B0,1

1 +B0,1
2 in ∂Γ3

∂x +∂Γ4
∂x and ∂Γ3

∂y +∂Γ4
∂y . The components

B0,1
3 and B1,0

3 are not required to be found out. We find the coefficients of Cosϕ1,
Sinϕ1, Cosϕ2 and Sinϕ2 in the right-hand sides of equation(15), they are the
critical terms. We eliminate these terms by properly choosing the coefficients in
the polynomials f2 = f

′
2,0I1 + f

′
0,2I2, g2 = g

′
2,0I1 + g

′
0,2I2, where

f
′
2,0 =

Coefficient of Cos ϕ1inΦ3

2(Coefficient of Cosϕ1inP )
= A(say),

f
′
0,2 = g

′
2,0 =

Coefficient of Cosϕ2inΦ3

2(Coefficient of Cosϕ2inQ)
= B(say),

g
′
0,2 =

Coefficient of Cosϕ2inΨ3

2(Coefficient of Cosϕ2inQ)
= C(say).

7. Non-linear stability

Now the condition is K1ω
′
1 +K2ω

′
2 ̸= 0, for all pairs (K1,K2) of rational integers

such that |K1|+ |K2| ≤ 4.

We calculate, K1ω
′
1 +K2ω

′
2 = 0, ⇔ ω

′
1

ω
′
2

= −K1
K2
.

Here, we have, 0 < ω2 <
1√
2
< ω1 < 1, and so 0 < ω′

2 <
1√
2
< ω′

1 < 1

(|K1| << 1, |K2| << 1).
So, we have

(16)
ω

′
1

ω
′
2

> 1

equation (16) to be true, K1 and K2 are of opposite signs and −K1
K2

> 1.
Therefore, K1, K2 can have the following values, K1 = 1,K2 = −2; K1 =

−1,K2 = 2. K1 = 1,K2 = −3; K1 = −1,K2 = 3.

Case-I. When K1 = 1,K2 = −2; K1 = −1,K2 = 2. Equation (16) gives

(17)
ω

′
1

ω
′
2

= 2, i.e.ω
′
1 − 2ω

′
2 = 0.



308 ABDULLAH A. ANSARI, KUMARI SHALINI and ZIYAD A. ALHUSSAIN

Solving equations (14) and (17) and putting γ = 1 − 2µ, we get

µ′1 = (0.024293897 . . .) + (2.08929 . . .)k1 + (4.69455 . . .)k2.

Case-II. When K1 = 1,K2 = −3; K1 = −1,K2 = 3.

Equation (16) gives

(18)
ω

′
1

ω
′
2

= 3, i.e.ω
′
1 − 3ω

′
2 = 0.

Solving equations (14) and (18) and putting γ = 1 − 2µ, we get

µ′2 = (0.013516016 . . .) + (2.01103 . . .)k1 + (4.70867 . . .)k2.

Hence for the values µ′1 and µ′2 of the mass ratio condition (a) of Moser’s
theorem is not satisfied.

The normalized Hamiltonian up to fourth order is written as H = ω1I1 +
ω2I2 + 1

2(AI21 + 2BI1I2 + CI22 ) + . . .

The determinant D occurring in condition (a) of Moser’s theorem is

D =

∣∣∣∣∣∣
A B ω′

1

B C −ω′
2

ω′
1 −ω′

2 0

∣∣∣∣∣∣ = −(Aω
′2
2 + 2Bω

′
1 + Cω

′2
1 ).

Following the iterative procedure of Bhatnagar and Hallan (1983), we ob-
served that Moser’s second condition is violated for the unperturbed problem
(i.e. for k1 = k2 = 0 ) when µ3 = 0.0109137 . . . When k1, k2 ̸= 0, we take
µ

′
3 = µ3 + Xk1 + X ′k2 such that D = 0. It is also observed that the condition

(b) of Moser’s theorem is satisfied i.e. D ̸= 0, if in the interval0 < µ < µc, the
mass ratio does not take the value µ

′
3 = µ3+Xk1+X ′k2, where X = 40.917 . . . ,

X ′ = 607.324 . . ..

8. Conclusion

E. P. Esteban and S. Vazquez have studied the rotating stratified heterogeneous
oblate spheroid in Newtonian Physics by taking three layers. But we have taken
the smaller primary with mass m2 a heterogeneous triaxial rigid body with
N layers having different densities ρi and axes (ai, bi, ci), (i = 1, 2, 3, 4, . . . , N)
respectively in the restricted three-body problem. We have found that there
exist five stationary solutions (called libration points) of the equations of motion.
Three of them are collinear and two are triangular equilibrium points.

We also observed that in the non-linear sense, collinear points are unstable
for all mass ratios µ, and triangular points are stable in the range of linear
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stability 0 < µ < µc, µ < µc = µ0 − (3.76183 . . .)k1 + (10.825 . . .)k2, Where,
µ0 = 0.0385208965 . . . except for three mass ratios

µ′1 = (0.0242939 . . .) + (2.08929 . . .)k1 + (4.69455 . . .)k2,

µ′2 = (0.013516016 . . .) + (2.01103 . . .)k1 + (4.70867 . . .)k2,

µ′3 = (0.0109366 . . .) + (40.917 . . .)k1 + (607.324 . . .)k2,

at which Moser’s theorem does not apply.

Here, if we take k1 = k2 = 0, then the values of µ
′
1, µ

′
2 and µ

′
3 agree with

those found by Deprit and Deprit (1967).
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Appendix.

t1 = 2(2 + 3c+ cγ2),
t2 =

√
3c+ 2p3,

t3 = cγ − 2p1,
t4 = 3 + 4cγ − 3p1 + 3

√
3γp3,

t5 = 3(15 + 4p2 − 4
√

3γp4),
t6 = (−3

√
3 + 4

√
3c− 4

√
3γp1 + 9p3),

t7 = 3(7
√

3 − 4
√

3γp2 + 12p4),
t8 = 4(−5

√
3 +

√
3p1 − 11γp3),

t9 = 4
√

3p2 − 44γp4 + 65
√

3,
t10 = 33 + 16c+ 33γp1 − 9

√
3p3,

t11 = −47 + 44γp2 − 12
√

3p4,
t12 = 3 + 16c− 21γp1 − 3

√
3p3,

t13 = −3(45 + 28γp3 + 4
√

3p4),
t14 = −15

√
3 − 15

√
3γp1 + p3),

t15 = 40
√

3 − 15
√

3γp2 + p4,
t16 = 25 − 37p1 + 25

√
3γp3,

t17 = −37p2 + 25
√

3γp4,
t18 = 85 − 41p1 + 45

√
3γp3,

t19 = −40 − 41p2 + 45
√

3γp4,
t20 = −15

√
3 + 25

√
3γp1 + 41p3),

t21 = 25
√

3γp2 + 41p4,
t22 = 10(−57 + 23γp1 + 57

√
3p3),

t23 = 10(23γp2 + 57
√

3p4),
t24 = 5(37 + 37γp1 + 11

√
3p3),

t25 = 5(−272 + 37γp2 + 11
√

3p4),
t26 = −35

√
3 + 23

√
3p1 − 37γp3,

t27 = 56
√

3 + 23
√

3p2 − 37γp4,
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t28 = −21
√

3 + 57
√

3p1 + 43γp3,
t29 = 57

√
3p2 − 43γp4,

t30 = −60(−93 + 43γp1 + 69
√

3p3,
t31 = 15(1965 + 172γp2 + 276

√
3p4,

α13 = −1
32k2l2(3+4ω2

1)
{−6336c− 864p+ 45c1 + 832p7 + (1536c+ 2304p− 16c1 −

832p5 − 256p7)ω
2
1 + (5376p− 3072c− 16c1 + 256p5)ω

4
1 + (39− 12ω2

1)c5c7}, α′
13 =

−1
32k2l1(3+4ω2

1)
{864q+ 45c2 + 832p8 + (2304q− 16c2− 832p6− 256p6)ω

2
1 + (5376q−

16c2 + 256p6)ω
4
1 + 1024ω6

1 + (39 − 12ω2
1)c5c7},

α21 = −ω1

8k3l21(3+4ω2
1)
{3168c−864p−9c1+320p7+(6336c−1152p−40c1+320p5−

727p7)ω
2
1+(−768p−512c−16c1+768p5)ω

4
1+(1024c−1024p)ω6

1−(15+36ω2
1)c6c7},

α′
21 = −ω1

8k3l21(3+4ω2
1)
{−864q−9c2−320p8+(−1152q−40c2+320p6−728p8)ω

2
1+

(−768q − 16c2 + 768p6)ω
4
1 − 1024qω6

1 − (15 − 36ω2
1)c6c7},

α23 = −1
64k3l31c7

{108864c+23328p+(101376c−41472p+15552p5)ω
2
1−(151296p+

116736c−14080p5)ω
4
1 + (147456c−48128p−27648p5)ω

6
1 + (−49152c+ 20480p+

4096p5)ω
8
1 − 16384pω10

1 + (−729 + 660ω2
1 + 1296ω4

1 − 192ω6
1)c5c7 − 67p7(243 +

220ω2
1 − 432ω4

1 + 64ω6
1) − c1(243 + 936ω2

1 − 64ω4
1 + 384ω6

1 + 256ω8
1)},

α′
23 = −1

64k3l31c7
{−23328q + (41472q − 15552p6)ω

2
1 + (151296q − 14080p6)ω

4
1 +

(48128q + 27648p6)ω
6
1 − (20480q + 4096p6)ω

8
1 + 16384qω10

1 − (729 + 660ω2
1 −

1296ω4
1 + 192ω6

1)c6c7 + 64p8(243 + 220ω2
1 − 432ω4

1 + 64ω6
1) + c2(243 + 936ω2

1 −
64ω4

1 + 384ω6
1 + 256ω8

1)},
α31 =

−ω2
1

64k3l31
{38592c−864p+(−40704c−11520p+4928p5)ω

2
1+(5120c−3840p−

51200p5)ω
4
1 + (−4096c+ 16384p+ 1024p5)ω

6
1 + 4096ω8

1 + 16384qω10
1 + (−231 +

240ω2
1+48ω4

1)c5c7+64p7(−70+80ω2
1+16ω4

1)+c1(−333+284ω2
1+336ω4

1+64ω6
1)},

α′
31 =

−ω2
1

64k3l31
{−864q−(11520q−4928p6)ω

2
1+(−3840q−3120p6)ω

4
1+(16384q−

1024p6)ω
6
1 + 4096ω8

1 + (−231 + 240ω2
1 + 48ω4

1)c6c7 + 64p8(−77 + 80ω2
1 + 16ω4

1) +
c2(−333 + 284ω2

1 + 336ω4
1 + 64ω6

1)},
α33 = 1

64k3l31c7
{−85536c − 23328p + (−120384c + 41472p − 15552p5)ω

2
1 +

(151296p+64512c−14080p5)ω
4
1 +(−137216c+48128p+27648p5)ω

6
1 +(24576c−

20480p− 4096p5)ω
8
1 + 16384(p− c)ω10

1 + (729 + 660ω2
1 − 1296ω4

1 + 192ω6
1)c5c7 −

64p7(243 + 220ω2
1 − 432ω4

1 + 64ω6
1) + c2(243 + 936ω2

1 − 64ω4
1 + 384ω6

1 + 256ω8
1)},

α′
33 = −1

64k3l31c7
{−23328q + (41472q − 15552p6)ω

2
1 − (151296q − 14080p6)ω

4
1 +

(48128q + 27648p6)ω
6
1 + (−20480q − 4096p6)ω

8
1 + 16384qω10

1 + (729 + 660ω2
1 −

1296ω4
1 + 192ω6

1)c6c7 + 64p8(243 + 220ω2
1 − 432ω4

1 + 64ω6
1) + c2(243 + 936ω2

1 −
64ω4

1 + 384ω6
1 + 256ω8

1)},
α41 =

−ω2
1

64k3l31c7
{108864c−23328p+(101376c−3456p+15552p5)ω

2
1+(−116736c−

46848p+ 14080p5)ω
4
1 + (147456c− 68608p− 27648p5)ω

6
1 + (−49152c+ 69632p+

4096p5)ω
8
1 + 16384pω10

1 + (−729 − 660ω2
1 + 1296ω4

1 − 192ω6
1)c5c7 − 64p7(243 +

220ω2
1 − 432ω4

1 + 64ω6
1) − c1(243 + 936ω2

1 − 64ω4
1 + 384ω6

1 + 256ω8
1)},

α′
41 =

−ω2
1

64k3l31c7
{23328q + (−3456q + 15552p6)ω

2
1 + (−46848q + 14080p6)ω

4
1 +

(−68608q− 27648p6)ω
6
1 + (69632q+ 4096p5)ω

8
1 + 16384qω10

1 + (−729 − 660ω2
1 +
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1296ω4
1 − 192ω6

1)c6c7 − 64p8(243 + 220ω2
1 − 432ω4

1 + 64ω6
1) − c2(243 + 936ω2

1 −
64ω4

1 + 384ω6
1 + 256ω8

1)},
α43 = 1

64k3l31
{4928c+ 7776p+ (−15552c− 10368p+ 7488p5)ω

2
1 + (−5376c−

48384p− 1536p5)ω
4
1 + (35840c− 24576p− 7168p8)ω

6
1 − 4096(c− p)ω8

1 + (−351 +
72ω2

1 + 336ω4
1)c5c7 + 64p7(−117 + 24ω2

1 + 112ω4
1) + 3c1(−135 + 12ω2

1 + 176ω4
1 +

64ω6
1)},
α′
43 = 1

64k3l31
{7776q−(10368q−7488p6)ω

2
1 +(48384q−1536p5)ω

4
1 +(24576q−

7168p6)ω
6
1 +4096qω8

1 +(−351+72ω2
1 +336ω4

1)c6c7+64p8(−117+24ω2
1 +112ω4

1)+
3c2(−135 + 12ω2

1 + 176ω4
1 + 64ω6

1)},
The values of αij and α′

ij for j = 1, 2, can be obtained from those for j = 1, 3,
respectively by replacing ω1 by ω2, l1 by l2, m1 by m2 and n1 by n2 whenever
they occur, keeping k unchanged.
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Abstract. In this paper we introduce and study the notion of weakly θI-preopen sets
and weakly θI-precontinuous functions to obtain a decomposition of continuity. We also
investigate their fundamental properties.
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1. Introduction

The concept of ideals in general topological spaces was introduced and studied
by Hamlett and Jankovic [9] (see also [10], [11]) and Vaidyanathaswamy [33]and
other papers. Newcomb [27], Rancin [29], Samuels [31] and Hamlet et al. ([9],
[10], [11]) motivated the research by applying topological ideals to generalize the
most basic properties in general topology. Jankovic and Hamlet [18] introduced
the notion of I-open sets in ideal topological space. El-Monsef et al.[25] further
investigated I-open sets and I-continuous functions in ideal topological space.
Some new forms of I-open sets are introduced in [7] (see [15]) and other papers.
Yuksel et al. [35] and Acikgoz et al.[1] have investigated some new classes
of functions in ideal topological spaces. Hatir and Noiri [15] introduced the

∗. Corresponding author
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notions of weakly semi-I-open sets and weakly semi-I-continuous functions in
ideal topological space. Q.L.Shi [30] initiated and elaborated the notion of
weakly α-I-open sets, weakly α-I-continuous, weakly α-I-open, weakly α-I-closed
functions and weakly α-I-paracompact spaces in ideal topological spaces. In
2013 Mustafa and Al-Ghour [26] defined the notion of weakly b-I-open sets,
weakly b-I-continuous, weakly b-I-open and weakly b-I-closed functions in ideal
topological spaces. Quite recently in [4]some new forms of θI-open sets have
introduced and studied and a new decomposition of continuity is obtained by
Al-Omari and Noiri. The concept of θI-open sets is based on θ-open sets due to
Veličko [34]. A set A is said to be θ-open [34], if every point of A has an open
neighborhood whose closure is contained in A.

This new concept of θI-preopen sets motivated me to generalize this notion
as weakly θI-preopen sets. The main theme of the present paper is to devise and
elaborate the concept of weakly θI-preopen sets and to obtain new decomposition
of continuity in ideal topological spaces. This paper is organized as follows, in
section 3 we define weakly θI-preopen sets and establish its interrelationships
with some other generalized open sets and also study its characterizations. In
section 4 we define and study strong θpre-t-I sets, strong θpre-B-I sets and θB-
sets. In section 5 we introduce and investigate weakly θI-precontinuous and
weakly θI-preirresolute functions in ideal topological spaces.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) will denote topological spaces with no
separation properties assumed. Cl(V ) and Int(V ) will denote the closure and
the interior of V in X, respectively, for a subset V of a topological space (X, τ).
C(X) denotes the collection of closed subsets of X. An ideal I on a nonempty
set X is a nonempty collection of subsets of X which satisfies the following:

1. V ∈ I and U ⊂ V implies U ∈ I,

2. V ∈ I and U ∈ I implies V ∪ U ∈ I.

The pair (X, τ , I) of a topological space (X, τ) and an ideal I on X is called an
ideal topological space or simply an ideal space. It is important that a family
of sets is a filter if and only if the family of the complements of these sets is an
ideal. One connection between an ideal and the topology on a given ideal space
arises through the concept of the local function on a subset. Given a topological
space (X, τ) with an ideal I on X and if P(X) is the collection of all subsets of
X, a set operator (.) :P(X) → P(X) called a local function of A with respect
to τ and I, is defined as follows: for A ⊆ X, A∗(I, τ) = {x ∈ X: (U ∩ A) /∈ I,
for every U ∈ τ(x) }, where τ(x) = {U ∈ τ : x ∈ U} [33] (c.f. [18], [19]). A
Kuratowski closure operator Cl∗(A) = A ∪ A∗(I, τ) induces a topology τ∗(I, τ)
called the ∗-topology which is finer than τ . It is generated by the base β(I, τ)
= {U\ I : U ∈ τ and I ∈ I }. In general β(I, τ) is not always a topology as
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shown in [18]. We will write A∗ for A∗(I, τ) and τ∗ for τ∗(I, τ). In general X∗

is a proper subset of X. Hayashi [17] used the hypothesis X = X ∗ and Samuels
[31] used the hypothesis τ ∩ I = ϕ.

Although these two conditions are equivalent due to [18] and therefore the
ideal topological spaces satisfying this hypothesis are called as Hayashi-Samuels
spaces ([19], [33], [17]).

Now we recall some definitions and results which are used in this paper.

Definition 1. A subset A of a topological space (X, τ) is said to be

1. preopen [22] if A ⊂ Int(Cl(A)),

2. semi-open [20] if A ⊂ Cl(Int(A)),

3. α-open [23] if A ⊂ Int(Cl(Int(A))),

4. β-open [24] if A ⊂ Cl(Int(Cl(A))),

5. b-open [5] if A ⊂ Int(Cl(A)) ∪ Cl(Int(A)),

6. a t-set [32] if Int(A) = Int(Cl(A)),

7. a B-set [32] if A = U ∩ V , where U ∈ τ and V is a t-set,

8. a t-I-set [12] if Int(A) = Int(Cl∗(A)),

9. a BI-set [12] if A = U ∩ V , where U ∈ τ and V is a t-I-set,

10. a strong t-I-set [14] if Int(A) = sCl(Int(Cl∗(A))),

11. a strong BI-set [14] if A = U ∩V , where U is an open set and V is a strong
t-I-set.

The θ-interior [34] of A in X is the union of all θ-open subsets contained
in A and is denoted by Intθ(A). The complement of a θ-open set is said to
be θ-closed. The θ-closure of A is defined as Clθ(A) = {x ∈X: (Cl(U)∩ A)
̸= ϕ, for all U ∈ τ(x)} and a set A is θ-closed if and only if A = Clθ(A). All
θ-open sets form a topology on X which is coarser than τ and denoted by τθ.
A topological space (X, τθ) is regular if and only if τ = τθ. The θ-closure of
a given set need not be a θ-closed set. A point x ∈ X is called a θ-I-closure
point of A if (Cl∗(U) ∩ A) ̸= ϕ for each open set U containing x. The set of
all θI-closure points of A is called the θI-closure of A and denoted by ClθI(A) =
{x ∈ X : (Cl∗(U)∩A) ̸= ϕ for all U ∈ τ(x) }. A subset A is said to be θI-closed
if ClθI(A) = A. The complement of a θI-closed set is called a θI-open set. In
other words A is said to be θI-open if ClθI(X \A) = X \A.

Definition 2 ([3]). Let (X, τ , I) be an ideal topological space. A point x ∈ X is
called a θI-interior point of A if there exists an open set containing x such that
U ⊆ Cl∗(U) ⊆ A. The set of all θI-interior points of A is called the θI-interior
of A and denoted by IntθI(A). A is θI-open if and only if A=IntθI(A).
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The following results are useful in the sequel:

Lemma 1 ([18]). Let (X, τ,I) be an ideal topological space and A, B be any two
subsets of X. Then the following properties hold:

1. If A ⊆ B, then A∗ ⊆ B∗;

2. If A∗ = Cl(A∗) ⊆ Cl(A);

3. (A∗)∗ ⊆ A∗;

4. (A ∪ B)∗ = A∗ ∪ B∗.

5. If U ∈ τ , then U ∩ A∗ ⊂ (U ∩A)∗.

Lemma 2 ([4]). Let (X, τ , I) be an ideal topological space and A be a subset of
X. Then the following properties hold.

1. If A is open, then Cl(A) = ClθI(A) = Clθ(A).

2. If A is closed, then Int(A) = IntθI(A) = Intθ(A).

Definition 3. A subset A of an ideal topological space (X, τ , I) is said to be

1. I-open [25] if A ⊂ Int(A∗).

2. α-I-open [12] if A ⊆ Int(Cl∗(Int(A)))

3. pre-I-open [7] if A ⊆ Int(Cl∗(A)).

4. semi-I-open,[12] if A ⊆ Cl∗(Int(A)).

5. β-I-open [15] if A ⊆ Cl(Int(Cl∗(A))).

6. θI-preopen [4] if A ⊆ Int(ClθI(A))).

7. θI-semi-open [4] if A ⊆ Cl(IntθI (A)),

8. θI-β-open [4] if A ⊆ Cl(Int(ClθI(A))).

9. θI-α-open [4] if A ⊆ Int(Cl(IntθI(A))).

10. weakly semi-I-open [16] if A ⊂ Cl∗(Int(Cl(A))).

11. weakly pre-I-open [14] if A ⊂ sCl(Int(Cl∗(A)).

12. weakly b-I-open [26] if A ⊆ Cl∗(Int(Cl(A))) ∪ Cl(Int(Cl∗(A))).

Lemma 3 ([13]). For a subset A of a topological space (X, τ), the following
properties hold:

1. sCl(A) = A ∪ Int(Cl(A)),

2. If A is open then sCl(A) = Int(Cl(A)).
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3. Weakly θI-preopen sets

Definition 4. A subset A of an ideal topological space (X, τ , I) is said to be
weakly θI-preopen if A ⊆ sCl(Int(ClθI(A))).

The family of all weakly θI-preopen sets of the space (X, τ,I ) will be denoted
by WθIPO(X, τ).

Theorem 1. For any subset A of an ideal topological space (X, τ , I), the fol-
lowing properties hold:

1. Every θI-preopen set is weakly θI-preopen.

2. Every weakly θI-preopen set is θI-β-open.

3. Every preopen set is θI-preopen and hence weakly θI-preopen .

Proof. Let A be any subset of an ideal topological space (X, τ , I).
1. Suppose A is θI-preopen. By using the definition of a θI-preopen set,

we have A ⊆ Int(ClθI(A)) ⊆ sCl(Int(ClθI (A))).This shows that A is weakly
θI-preopen. This shows that A is weakly θI-preopen.

2. Suppose A is weakly θI-preopen then we have A ⊆ sCl(Int(ClθI(A))) ⊆
Cl(Int(ClθI(A)))). This implies that A is θI-β-open.

3. Suppose A is preopen then we have A ⊆ Int(Cl(A)) ⊆ Int(ClθI (A))) and
therefore A is θI-preopen and hence A is weakly θI-preopen.

3.1 Interrelationship

The following diagram will describe the interrelations among a weakly θI-preopen
set and some other existing open sets in an ideal topological space. None of these
implications is reversible as shown by examples given below.

α− open // preopen

wwooo
ooo

ooo
ooo

oo
// β − open

��
θI − preopen // weakly θI − preopen // θI − β − open

Example 1. Let X = {a, b, c, d}, τ = {X,ϕ, {a, b}, {b, c}, {a, b, c}, {b}, {b, c, d}}
and I = P (X), then (X, τ , I) is an ideal topological space.

C(X) = {X,ϕ, {c, d}, {a, d}, {d}, {a, c, d}, {a}}. Let A = {b, d} be any sub-
set of X, then ClθI({b, d}) = {b, d} and Int({b, d}) = {b} and A = {b, d} ( {b}.
This implies that A is not a θI -preopen set. But sCl({b}) = {b} ∪ X = X,
consequently A = {b, d} ⊆ X. This shows that A is weakly θI -preopen.

Example 2. Let X = {a, b, c, d}, τ = {X,ϕ, {b}, {b, c, d}, {c, d}} and I = P (X),
then (X, τ , I) is an ideal topological space. C(X) = {X,ϕ, {a, c, d},{a, b},
{a}}. Let A = {a, b} is β-open and hence θI-β-open. Because cl(int(cl(A))) =
int(cl(A)) = Cl(Int(ClθI ({a, b}))) = {a, b} = A. But A = {a, b} is not weakly
θI-preopen, since sCl(Int(ClθI ({a, b}))) = {b}, which is not containing {a, b}.
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Example 3. LetX = {a, b, c, d}, τ = {X,ϕ, {a, b, c}, {a, c, d}, {a}, {a, b}, {a, c}}
and I = {ϕ, {d}}, then (X, τ , I) is an ideal topological space.

C(X) = {X,ϕ, {d}, {c, d}, {b, c, d}, {b}, {b, d}}. Let A = {c} be any subset of
X, which is weakly θI -preopen, as ClθI({c}) = X and sCl(Int(ClθI({c})) = X,
which contains {c}. But it is not preopen, since A * Int(Cl({c})) = ϕ.

Theorem 2. Let (X, τ , I) be an ideal topological space. Let V, A and Aα be
the subsets of X. Then

1. If Aα is weakly θI-preopen for each α ∈ ∧, then ∪α∈∧Aα is weakly θI-
preopen.

2. If A is weakly θI-preopen and V is α-open, then A∩V is weakly θI-preopen.

Proof. 1. Since Aα is weakly θI-preopen for each α∈∧, Aα⊆sCl(Int(ClθI(Aα)))
for each α ∈ ∧. Therefore Aα ⊆ sCl(Int(ClθI(∪α∈∧Aα))) for each α ∈ ∧ and
∪α∈∧Aα ⊆ sCl(Int(ClθI(∪α∈∧Aα))).

Hence ∪α∈∧Aα is weakly θI -preopen.
2. A ∩ V ⊆ sCl(Int(ClθI(A))) ∩ Int(Cl(Int(V )))

= Int(Cl(Int(ClθI(A))) ∩ Int(Cl(Int(V )))
= Int[Cl(Int(ClθI(A)) ∩ Cl(Int(V ))]
= Int[Cl[Int(ClθI(A)) ∩ (Int(V ))]]
= sCl[Int(ClθI(A) ∩ Int(V ))]
⊆ sCl[Int(ClθI(A ∩ Int(V ))] ⊆ sCl[Int(ClθI (A ∩ V ))].

Therefore (A∩V ) ⊆ sCl(Int(ClθI(A∩V )). This shows that A∩V is weakly
θI-preopen.

Theorem 3. For an ideal topological space (X, τ , I) and A ⊆ X, we have:

1. If I = ϕ, then A is θI-open if and only if A is θ-open.

2. If I = P (X), then A is θI-preopen if and only if A is preopen.

Proof. 1. Sufficiency- It follows directly from [4].
Necessity-If I = ϕ, then A∗ = Cl(A) and therefore ClθI (A) = Clθ.
2. Sufficiency- It follows from the Theorem 1.
Necessity-If I = P (X), then A∗ = ϕ, therefore ClθI (A) = Cl(A), which

implies the preopeness of A.

Definition 5. A subset of an ideal topological space (X, τ , I) is said to be
weakly θI-preclosed if its complement is weakly θI-preopen.

Theorem 4. A subset A of an ideal topological space (X, τ , I) is said to be
weakly θI-preclosed if and only if sInt(Cl(IntθI(A))) ⊂ A.

Proof. Let A be a weakly θI-preclosed subset of the ideal topological space (X,
τ , I), then X \ A is weakly θI-preopen and hence (X \ A) ⊆ sCl(Int(ClθI(X \
A))) = X\sInt(Cl(IntθI(A))). This implies (X\A) ⊆ (X\(sInt(Cl(IntθI(A)))).



WEAKLY θI-PREOPEN SETS AND DECOMPOSITION OF CONTINUITY 319

Hence we have sInt(Cl(IntθI(A))) ⊆ A. Conversely, suppose sInt(Cl(IntθI((A)))
⊆ A, then X \A ⊆ X \ sInt(Cl(IntθI(A))) = sCl(Int(ClθI(X \A))) and hence
(X \A) is weakly θI-preopen. Therefore A is weakly θI-preclosed.

Remark 1. The finite intersection of weakly θI-preopen sets need not be weakly
θI-preopen.

Example 4. Let X = {a, b, c, d}, τ = {X,ϕ, {a, b, c}, {a, b}} and

I = {ϕ, {a}, {b}, {a, b}} then (X, τ , I) is an ideal topological space. The family
of closed subsets of X, C(X) = {X,ϕ, {d}, {c, d}}. Then A = {a, d} and
B = {b, d} are weakly θI-preopen, but their intersection A ∩B = {d} is not
weakly θI-preopen. Since A * sCl(Int(ClθI ({d}))) = ϕ.

Lemma 4. For two subsets A and U of an ideal topological space (X, τ , I), the
following is true: U ∩ ClθI(A) ⊆ ClθI(U ∩A) if U is θI-open.

Proof. Let x ∈ U ∩ClθI(A). Then for every θI-open set V containing x, V ∩U
is a θI-open set containing x and hence (V ∩ U) ∩ A ̸= ϕ. This implies that
x ∈ ClθI(U ∩A) and therefore we get the desired result.

Lemma 5 ([18]). Let (X, τ , I) be an ideal topological space and B be any subset
of X such that B ⊂ A ⊂ X. Then B∗(τ |A, I|A) = B∗(τ, I) ∩A.

If (X, τ , I) is an ideal topological space and A is subset of X; we denote by
τ |A the relative topology on A and I|A = {A ∩ I : I ∈ I} is an ideal on A.

Lemma 6 ([16]). Let (X, τ , I) be an ideal topological space, A ⊂ X and U ∈ τ .
Then Cl∗(A) ∩ U = Cl∗U (A ∩ U).

Theorem 5. Let (X, τ , I) be an ideal topological space and A ⊆ U ∈ τ then
A is weakly θI-preopen in (X, τ , I)if and only if A is weakly θI-preopen in (U,
τ |U , I|U).

Proof. Necessity. Let A be any weakly θI-preopen set in (X, τ , I), then we have
A ⊆ sCl(Int(ClθI(A))) = Int(Cl(Int(ClθI(A)))) as Int(ClθI(A)) is an open set.

Now A = U ∩A ⊆ U ∩ Int(Cl(Int(ClθI(A))))
= Int(U ∩ Int(Cl(Int(ClθI(A)))), being an open set.
= IntU (U ∩ Int(Cl(Int(ClθI(A))))
⊂ IntU (U ∩ Cl(U ∩ Int(ClθI(A)))))
⊆ IntU (ClU (U ∩ Int(ClθI(A)))
= sClU (Int(U ∩ (ClθI(A))))
⊂ sClU (IntU (U ∩ (ClθI(A)))
= sClU (IntU ((ClθI)U )(A)))) by Lemma 6. This shows that A is weakly θI-
preopen in (U, τ | U, I | U).

Sufficiency. Let A be weakly θI-preopen in (U, τ | U , I | U). Then we have
A ⊂ sClU (IntU ((ClθI)U )(A))))
= sClU (IntU (ClθI(A) ∩ U)))
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= sClU (U ∩ Int(ClθI(A) ∩ U))), by Lemma 6
= sClU (Int(ClθI(A) ∩ U))) = IntU (ClU (Int(U ∩ (ClθI(A))))
= IntU (U ∩ Cl(Int(U ∩ (ClθI(A))))
= U ∩ Int(Cl(Int(ClθI(A))))
⊆ Int(Cl(Int(ClθI(A))))
= sCl(Int(ClθI(A)))).

This implies that A is weakly θI-preopen in (X, τ, I)

Corollary 1. Let( X, τ , I) be an ideal topological space. If U ∈ τ and A is
weakly θI-preopen, then U ∩A is weakly θI-preopen in (U, τ |U, I|U).

Proof. Since U ∈ τ and A is weakly θI-preopen in (X, τ, I).

Since every open set is alpha-open, therefore by by Theorem 2, U ∩ A is
weakly θI-preopen in (X, τ , I). Since U ∈ τ and by Theorem 5, U ∩A is weakly
θI-preopen in (U, τ |U, I|U).

Definition 6. [8] A space (X, τ) is called submaximal if every dense subset of
X is open.

Lemma 7. [21] If (X, τ) is submaximal, then PO(X, τ) = τ .

Corollary 2. If (X, τ) is submaximal, then for any ideal I on X, θIPO(X) =
τ .

Proof. It follows directly from the fact that every preopen set is θI-preopen.

Remark 2. If (X, τ) is submaximal, then for any ideal I on X, WθIPO(X) =
τ .

Theorem 6 ([4]). Let (X, τ , I) be an ideal topological space. The following are
equivalent;

1. The θI-closure of every θI-open subset of X is θI-open;

2. Cl(IntθI(A)) ⊆ Int(ClθI(A)) for every subset A of X;

3. θIPO(X) ⊆θISO(X);

4. The θI-closure of every θI-β-open subset of X is θI-open;

5. θIβO(X) ⊆θIPO(X).

Definition 7. A subset A of an ideal topological space (X, τ , I) is called θI-dense
if ClθI(A) = X.

Remark 3. Every θI-dense subset of an ideal topological space (X, τ , I) is
θI-preopen.

Proof. It is obvious.
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Theorem 7. For a subset A of an ideal topological space (X, τ , I), the following
properties are equivalent:

1. θIPO(X) ⊆θISO(X),

2. Every θI-dense subset of X is θI-semiopen,

3. IntθI(A) is θI-dense for every θI-dense subset A,

4. IntθI[θI-Fr(A)]= ϕ for every subset A,

5. θIβO(X) ⊆θISO(X),

Proof. (1) ⇒ (2)It follows directly from the Remark 3.

(2) ⇒ (3) Let A be θI -dense, then A is θI -semiopen. Therefore A ⊆
Cl(IntθI(A)) ⊆ ClθI(IntθI(A)) ⊆ ClθI(ClθI)(A) = ClθI(A) = X, as A is θI -
dense, we have ClθI(IntθI(A)) = X. Thus IntθI(A) is θI-dense.

(3) ⇒ (4) Suppose A be any subset of X, we have X = ClθI(A) ∪ (X \
ClθI(A)) = ClθI(A) ∪ IntθI(X \ A) ⊆ ClθI(A) ∪ ClθI(IntθI(X \ A)) = ClθI(A ∪
IntθI(X \ A)). This shows that A ∪ IntθI(X \ A) is θI -dense and therefore
IntθI (A∪IntθI(X\A)) is θI-dense. IntθI [(A∪IntθI(X\A))∩((X\A)∪IntθI(A))]
= X\ θI-Fr(A). Since X\ ( θI-Fr(A) ) is the intersection of the two θI-dense
sets therefore X\ ( θI-Fr(A) ) is θI-dense.

(4) ⇒ (5) Let A ∈ θIβO(X). Then by (4) and Theorem 3.15 of [4] A ∈
θISO(X).

(5) ⇒ (1) It is obvious.

Definition 8. A space (X, τ) is extremally disconnected [36] if the closure of
every open set in X is open.

Theorem 8. If a topological space (X, τ) is extremally disconnected and A ∈
θISO(X), then A ∈ θIαO(X).

Proof. Let A ∈ θISO(X), then we have A ⊆ Cl(IntθI(A)). Since X is ex-
tremally disconnected, we have Cl(IntθI(A)) = Int(Cl(IntθI(A))). Hence A ⊆
Cl(IntθI(A)) = Int(Cl(IntθI(A))).

Theorem 9. If a topological space (X, τ) is extremally disconnected and A ∈
θIβO(X), then A ∈WθIPO(X).

Proof. Let A ∈ θIβO(X), then we have A ⊆ Cl(Int(ClθI(A))). Since X is
extremally disconnected, we have Cl(Int(ClθI(A))) = Int[Cl(Int(ClθI(A)))].
Therefore A ⊆ Cl(Int(ClθI(A)))= Int[Cl(Int(ClθI(A)))] = sCl(Int(ClθI(A))).
This implies that A ∈WθIPO(X).
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4. Strong θpre-t-I-sets

Definition 9. A subset of an ideal topological space is called a

1. Strong θpre-t-I-set if sCl(sInt(ClθI(A))) = Int(A).

2. θpre-t-I-set [4] if Int(ClθI(A))) = Int(A).

Theorem 10. Let A and B be subsets of an ideal topological space (X, τ , I). If
A and B are strong θpre-t-I-sets, then A ∩B is a strong θpre-t-I-set.

Proof. Since A and B are strong θpre-t-I-sets, then we have sCl(sInt(ClθI(A))) =
Int(A) and sCl(sInt(ClθI(B))) = Int(B).

Now Int(A ∩B) ⊆ Int(ClθI(A ∩B)))
⊆ sInt(ClθI(A ∩B)))
⊆ sCl(sInt(ClθI (A ∩B)))
⊆ sCl(sInt[(ClθI(A)) ∩ (ClθI (B))]))
⊆ sCl[(sInt(ClθI(A)))) ∩ (sInt(ClθI(B)))]
⊆ sCl(sInt(ClθI (A)))) ∩ sCl(sInt(ClθI(B)))
= Int(A) ∩ Int(B) = Int(A ∩B).

Therefore sCl(sInt(ClθI (A∩B))) = Int(A∩B) and hence A∩B is a strong
θpre-t-I-set.

Theorem 11. Every strong θpre-t-I-set is a θpre-t-I-set.

Proof. Let A be any strong θpre-t-I-set, then we have sCl(sInt(ClθI (A)))) =
Int(A).

Therefore Int(ClθI (A))) ⊆ sCl(sInt(ClθI (A)))) = Int(A) ⊆ Int(ClθI (A)))
and hence Int(ClθI (A))) = Int(A).

Theorem 12. For a subset A of an ideal topological space (X, τ , I), the following
properties are equivalent:

1. A is regular open.

2. sCl(Int(ClθI (A))) = A and A is open.

3. A is a strong θpre-t-I-set and weakly θI-preopen.

Proof. (1) ⇒ (2) Since A is regular open, we have Int(Cl(A)) = A and A is
open. Therefore by Lemma 2, we have ClθI (A) = Cl(A).

Hence sCl(Int(ClθI (A))) = sCl(lnt(Cl(A))) = sCl(A) = A ∪ Int(Cl(A)) =
A ∪A = A.

(2) ⇒ (3) It is direct from the definition.
(3) ⇒ (1) Let A be strong θpre-t-I-set and weakly θI -preopen, then we

have A ⊆ sCl(Int(ClθI (A))) and sCl(Int(ClθI (A))) = Int(A). We have A ⊆
sCl(Int(ClθI (A))) = Int(A) ⊆ A, then A is open. Therefore by Lemma 3,
A = sCl(Int(Cl(A))) = Int(Cl(Int(Cl(A)))) = Int(Cl(A))). Hence A is regu-
lar open.
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5. Strong θpre-B-I-sets and θB sets

Definition 10. A subset A of an ideal topological space (X, τ , I) is called

1. a strong θpre-B-I set if A = U ∩ V , where U ∈ τ and and V is a strong
θpre-t-I-set.

2. a θpre-B-I set [4] if there exist U ∈ τ and a θpre-t-I-set V in X such that
A = U ∩ V .

Theorem 13. For a subset A of an ideal topological space (X, τ , I), the following
properties hold:

1. If A is a strong θpre-t-I-set, then it is a strong θpre-B-I set.

2. If A is a strong θpre-B-I set, then it is a θpre-B-I set.

Proof. 1. Let A be a strong θpre-t-I-set, then we have sCl(sInt(ClθI(A))) =
Int(A). A = A∩X and X is open. This implies that A is a strong θpre-B-I set.

2. Let A be a strong θpre-B-I set, then we have A = U ∩ V , where U is an
open set and V is strong θpre-t-I-set. By Theorem 11, V is θpre-t-I-set and hence
A is a θpre-B-I set.

Definition 11. [4] A subset A of an ideal topological space (X, τ , I) is called
a θAset if A = U ∩ V , where U ∈ τ and V is strongly θI-semi-closed i.e.V is
θI-semi-closed and Int(ClθI (A)) = Cl(IntθI(A)).

Definition 12. [4] A subset A of an ideal topological space (X, τ , I) is said to
be θI-β-closed if Int(Cl(IntθI(A)))) ⊆ A.

Definition 13. A subset A of an ideal topological space (X, τ , I) is called a
θB-set if A = U ∩ V , where U ∈ τ and V is θI-β-closed.

Theorem 14. Every θA-set is θB-set.

Proof. Let V be strongly θI-semi-closed, then Int(ClθI(V ))⊆V and Int(ClθI(V ))
= Cl(IntθI(V )). Now Int(Cl(IntθI(V )))
= Int(Int(ClθI(V )))
⊆ Int(ClθI(V )) ⊆ V . We get Int(Cl(IntθI(V )))) ⊆ V . Therefore V is θI-α-
closed. This implies that every θA-set is θB-set.

But the converse of Theorem 14 need not be true as shown by the following
example.

Example 5. Let X = {a, b, c, d}, τ = {X,ϕ, {a, b, c}, {a, c}} and I = {ϕ, {a, c}}
then (X, τ , I) is an ideal topological space. C(X) = {X,ϕ, {d}, {b, d}}. If
A = {a, b} then we can write A as A = X ∩A, where X is an open set and A is
θI -β-closed, since Int(Cl(IntθI (A))) = ϕ ⊆ A. Hence A is θB-set. But A is not
a θA-set, since A is not a θI-semi-closed, as Int(ClθI(A)) = X * A.
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Theorem 15. For a subset A of an ideal topological space (X, τ , I), the following
properties are equivalent:

1. A is open.

2. A is preopen and a θB-set.

3. A is θI-preopen and a θB-set.

4. A is weakly θI-preopen and a θB-set.

5. A is θI-β-open and a θB-set.

6. A is weakly θI-preopen and a strong θpre-B-I-set.

Proof. Here (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) follows from Theorem 1.

(5) ⇒ (1) It follows directly from Theorems 1, 6 and 14.

(1) ⇒ (6): It is obvious.

(6) ⇒ (1): Let A be weakly θI-preopen and a strong θpre-B-I-set, then
we have A ⊆ sCl(Int(ClθI(A)))) and A = U ∩ V , where U is open and V
is a strong θpre-t-I-set so that sCl(sInt(ClθI(V )))) = Int(V ). Hence we get
A = A ∩ U ⊆ sCl(Int(ClθI(A)))) ∩ U = {(sCl(Int(ClθI(U ∩ V ))))) ∩ U}
⊆ {sCl(Int(ClθI(U))))} ∩ {sCl(Int(ClθI(V ))))} ∩ U
= {sCl(Int(ClθI(V ))))} ∩ U
⊆ {sCl(sInt(ClθI(V ))))} ∩ U
= (Int(V ) ∩ U) ⊆ (V ∩ U) = A.
Thus A is an open set.

6. Weakly θI-precontinuous

Definition 14. A function f : (X, τ, I) → (Y, σ) is said to be

1. precontinuous [22] if preimage of every open set in Y is preopen in X.

2. θI-α-continuous if the preimage of every open set in Y is θI-α-open in X.

3. θI-precontinuous [4] if the preimage of every open set in Y is θI-preopen
in X.

4. θI-β-continuous [4] if the preimage of every open set in Y is a θI-β-open
in X.

5. θpre-B-I -continuous [4] if the preimage of every open set in Y is a θpre-B-
I-set.

6. θA-continuous [4] if the preimage of every open set in Y is a θA set.

Definition 15. A function f : (X, τ, I) → (Y, σ) is said to be
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1. weakly θI-precontinuous if the preimage of every open set in Y is weakly
θI-preopen in X.

2. strong θpre-t-I-continuous if the preimage of every open set in Y is a
strongly θpre-t-I-set.

3. strong θpre-B-I-continuous if the preimage of every open set in Y is a
strongly θpre-B-I-set.

4. θB-continuous if the preimage of every open set in Y is a θB-set.

Theorem 16. 1. Every θI-precontinuous function is weakly θI-precontinuous.

2. Every precontinuous function is weakly θI-precontinuous.

3. Every weakly θI-precontinuous function is θI-β-continuous.

4. Every θA-continuous function is θB-continuous.

Proof. It follows directly from the Theorems 1 and 14.

The converse of (1)-(3) in Theorem 16 need not be true as shown in the
following three examples.

Example 6. Let X = {a, b, c, d}, τ = {X,ϕ, {a}, {a, b}, {a, c, d}} and I = P(X)
then (X, τ , I) is an ideal topological space. C(X) = {ϕ,X, {b, c, d}, {c, d}, {b}}.
Let Y = {1, 2, 3, 4} and σ = {Y, ϕ, {1, 2}, {1, 2, 3}} then (Y, σ) is a topological
space. Let f : (X, τ, I) → (Y, σ) be the function defined as f(a) = 2,f(b) =
3,f(c) = 4, f(d) = 1. Then f is weakly θI-precontinuous function but it is
not θI-precontinuous. Since the preimage of every open set in Y is weakly θI-
preopen but it is not θI-preopen in X. For, let A = {1, 2}, then the preimage
f−1({1, 2}) = {a, d} is weakly θI-preopen but it is not θI-open.

Example 7. Let X = {a, b, c, d}, τ = {X,ϕ, {a}, {a, c}, {c}} and I = {ϕ, {a}}
then (X, τ , I) is an ideal topological space. C(X)={ϕ,X, {b, c, d}, {a, b, d}, {b, d}}.
Let Y = {1, 2, 3, 4}, σ = {Y, ϕ, {2}, {2, 3}, {2, 4}, {2, 3, 4}} then (Y, σ) is a topo-
logical space. Let f : (X, τ, I) → (Y, σ) be a function defined as f(a) = 2,
f(b) = 3, f(c) = 1, f(d) = 4. Then f is weakly θI-precontinuous function but
it is not precontinuous, since the preimage of every open set in Y is weakly
θI-preopen but it is not preopen in X. For, let A = {2, 3}, then its preimage
f−1({2, 3}) = {a, b} is not a preopen in X.

Example 8. Let X = {a, b, c, d}, τ = {X,ϕ, {a}, {a, b}, {b}, {a, b, d}} and
I = {ϕ, {a}, {b}, {a, b, }} then (X, τ , I) is an ideal topological space. C(X) =
{ϕ,X, {b, c, d}, {a, c, d}, {c, d}, {c}}. Let Y = {1, 2, 3, 4} and σ = {Y, ϕ, {1}, {1, 2},
{1, 3}, {1, 2, 3}} then (Y, σ) is a topological space. Let f : (X, τ, I) → (Y, σ)
be the function defined as f(a) = 4, f(b) = 1, f(c) = 2, f(d) = 3. Then f is
θI-β-continuous but it is not weakly θI-precontinuous. Since the preimage of
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every open set in Y is θI-β-continuous but it is not weakly θI-preopen in X. For,
let A = {1, 2}, then its preimage f−1({1, 2}) = {b, c} is not a weakly θI-preopen
set but it is θI-β-open in X.

Example 9. LetX = {a, b, c, d}, τ = {X,ϕ, {a, b, c}, {a, c}} and I = {ϕ, {a, c, }}
then (X, τ , I) is an ideal topological space. C(X) = {ϕ,X, {d}, {b, d}}. Let
Y = {1, 2, 3, 4} and σ = {Y, ϕ, {2}, {2, 3}} then (Y, σ) is a topological space.
Let f : (X, τ, I) → (Y, σ) be the function defined as f(a) = 3, f(b) = 2, f(c) = 4,
f(d) = 1. Then f is θB-continuous but it is not θA-continuous, since the preim-
age of every open set in Y is a θB-set but it is not a θA-set. For, let A = {2, 3},
its preimage f−1({2, 3} = {a, b} is θI-β-closed but it is not θI-semiclosed in
X as X = X ∩ A where X is open and A is θI-β-closed(for θB-set) or strong
θI-semiclosed in X(for θA-set).

Definition 16. Let A be a subset of the space (X, τ , I) and let x ∈ X. Then
A is called a weakly θI-preneighborhood of x if there exists a weakly θI-preopen
set V containing x such that V ⊆ A.

Theorem 17. For a function f : (X, τ, I) → (Y, σ), the following properties are
equivalent:

1. f is weakly θI-precontinuous.

2. For each x ∈ X and for each U ∈ σ containing f(x), f−1(U) is weakly
θI-preneighborhood of x.

Proof. (1) ⇒ (2) Suppose x ∈ X and U is any open set in Y such that f(x) ∈ U .
By Theorem 18 there exists a weakly θI-preopen set M containing x in X such
that f(M) ⊆ U ; hence x ∈ M ⊆ f−1(U). Therefore f−1(U) is weakly θI-
preneighborhood of x.

(2) ⇒ (1) Let U be any open set in Y and x ∈ f−1(U). Since f−1(U) is
weakly θI-preneighborhood of x, therefore there exists a weakly θI -preopen set
Mx such that x ∈Mx ⊂ f−1(U). Thus we have f−1(U) =

∪
{Mx : x ∈ f−1(U)}

and hence f−1(U) is weakly θI -preopen in X.

Theorem 18. For a function f : (X, τ, I) → (Y, σ), the following properties are
equivalent:

1. f is is weakly θI-precontinuous.

2. For each x ∈ X and each V ∈ σ containing f(x), there exists a weakly
θI-preopen set U containing x such that f(U) ⊂ V .

3. For each x ∈ X and each V ∈ σ containing f(x), ClθI(f
−1(V )) is weakly

θI-preneighborhood of x.

4. The inverse image of each closed set in Y is weakly θI-preclosed.
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Proof. (1) ⇒ (2) Let x ∈ X and let V be any open set in Y such that f(x) ∈ V .
Set P = f−1(V ). By (1) P is weakly θI-preopen and therefore x ∈ P implies
that f(P ) ⊂ V .

(2) ⇒ (3) Since V is open in Y and f(x) ∈ V , then by (2) there ex-
ists a weakly θI-preopen set P containing x such that f(P ) ⊂ V . Therefore
x ∈ P ⊆ sCl(Int(ClθI(P ))) ⊆ sCl(Int(ClθI(f

−1(V )))) ⊆ ClθI(ClθI(f
−1(V ))) =

ClθI(f
−1(V )). This shows that ClθI(f

−1(V )) is a weakly θI-preneighborhood of
x.

(3) ⇒ (1) Let V be any open set in Y and x ∈ f−1(V ). By (3), ClθI (f−1(V )
is weakly θI-preneighborhood of x, there exists a weakly θI-preopen set Ux in
X such that x ∈ Ux ⊆ ClθI (f−1(V ). Hence ClθIf

−1(V ) ⊆
∪

x∈f−1(V ) Ux. This

implies that f−1(V ) is weakly θI-preopen in X and therefore f is weakly θI-
precontinuous.

(1) ⇔ (4) It is obvious.

Theorem 19. If f : (X, τ, I) → (Y, σ) is any weakly θI-precontinuous function
and U ∈ τ , then the restriction f | U : (U, τ | U, I | U) → (Y, σ) is weakly
θI-precontinuous.

Proof. Let V be any open set in Y. Since f is weakly θI-precontinuous, f−1(V )
is weakly θI-preopen. Since U is open, by Corollary 1, U ∩ f−1(V ) is weakly θI-
preopen in (U, τ | U, I | U). Since (f | U)−1(V ) = U ∩ f−1(V ) and (f | U)−1(V )
is weakly θI-preopen in (U, τ | U, I | U). This implies that (f | U) is weakly
θI-precontinuous function.

Theorem 20. Let f : (X, τ, I) → (Y, σ) be a function and {Uα : α ∈ τ}be an
open cover of X. Then f is weakly θI-precontinuous if and only if the restriction
(f | Uα):(Uα, τ | Uα, I | Uα) is weakly θI-precontinuous for each α ∈ △.

Proof. Necessity. It follows directly from the Theorem 19.
Sufficiency. Let V be any open set in Y. Since (f | Uα) is a weakly θI-

precontinuous for each α ∈ △, (f | Uα)−1(V ) is a weakly θI-preopen set in
(Uα, τ | Uα, I | Uα). Hence by Theorem 5 (f | Uα)−1(V ) is weakly θI-preopen
in (X, τ , I). Moreover we consider f−1(V ) = X ∩ f−1(V ) =

∪
α∈△( Uα ∩

f−1(V ))=
∪

α∈△(f | Uα)−1(V ). By using Theorem 2,
∪

α∈△(f | Uα)−1(V ) is
weakly θI-preopen in (X, τ , I).

Therefore f−1(V ) is weakly θI-preopen in (X, τ , I). Hence f is weakly θI-
precontinuous.

Theorem 21. A function f : (X, τ, I) → (Y, σ) is weakly θI-precontinuous if
and only if the function g : X → X × Y , defined by g(x) = (x, f(x)) for each
x ∈ X, is weakly θI-precontinuous.

Proof. Necessity. Let f be weakly θI-precontinuous. Let x ∈ X and R be any
open neighborhood of g(x) in X × Y . Then there exists an open set P × Q in
X × Y such that g(x) = (x, f(x)) ∈ (P × Q) ⊆ R. By assumption f is weakly
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θI-precontinuous and there exists a weakly θI-preopen set P0 in X containing x
such that f(P0) ⊂ Q. By Theorem 2 P∩P0 is weakly θI-preopen and g(P∩P0) ⊂
(P ×Q) ⊂ R. This implies that g is weakly θI-precontinuous.

Sufficiency.Suppose that the function g is weakly θI -precontinuous Let x ∈ X
and Q be any open set in Y containing f(x). Then X×Q is open in X×Y . Since
g is weakly θI-precontinuous, by hypothesis there exits a weakly θI-preopen set
P containing x such that g(P ) ⊂ X×Q and hence we get f(P ) ⊂ Q. This shows
that f is weakly θI-precontinuous.

Definition 17. A function f : (X, τ, I) → (Y, σ, J) is said to be weakly θI-
preirresolute if f−1(V ) is weakly θI-preopen in (X, τ , I) for every weakly θJ-
preopen set V in (Y, σ, J).

Theorem 22. Let f : (X, τ, I) → (Y, σ, J) and g : (Y, σ, J) → (Z, ρ) be two
functions, then the following properties hold:

1. if f is weakly θI-precontinuous and g is continuous, then g ◦ f is weakly
θI-precontinuous.

2. if f is weakly θI-preirresolute and g is weakly θI-precontinuous then g ◦ f
is weakly θI-precontinuous.

Proof. It is obvious from the definitions.

7. Decompositions of continuity

Theorem 23. For a function f : (X, τ, I) → (Y, σ), the following properties are
equivalent:

1. f is continuous;

2. f is precontinuous and θB-continuous;

3. f is θI-precontinuous and θB-continuous;

4. f is weakly θI-precontinuous and θB-continuous;

5. f is θI-β-continuous and θB-continuous;

6. f is weakly θI-precontinuous and strongly θpre-B-I-continuous.

Proof. It follows directly from Theorem 15.
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[3] M. Akdaǧ, θ-I-open sets, Kochi J. Math., 3 (2008), 217-229.

[4] A. Al-Omari, T. Noiri, Decompositions of continuity in ideal topological
spaces, Anal. St. Univ. ”Al.I. Cuza” Iasi(S.N.) Mat., 60 (2014), 37-49.
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Abstract. An object-oriented method of road extraction is proposed for high-resolution
remote sensing imagery aiming to its characteristics. At first, bilateral filter is used in
original imagery to smooth detail information and retain road edge; then it proposes
an improved Fuzzy C-Means algorithm combined with the neighborhood information in
order to deal with outliers better, so the imagery is segmented to independent objects
by improved FCM algorithm; and then it filters every objects by geometric feature, after
that it connects road segments to get network by region growing algorithm and executes
post-processes by morphology method. The experiments show that the method can ex-
tract the road target efficiently from high resolution imagery with higher accuracy.

Keywords: high-resolution remote sensing imagery, road extraction, object-oriented,
FCM, shape filter.

1. Introduction

Extracting different kinds of ground objects in remote sensing imageries (RS im-
agery) is an important method in constructing and updating geo-database. As
main artificial ground objects in modern traffic system, roads are all-important
identified objects and accurate road extraction plays a key role in GIS up-
dating, city observation and planning and so on. According to the degree
of human-computer interaction, there are two kinds of extraction methods:
semi-automatic and automatic method. Semi-automatic extraction obtains seed
points, road width and direction by human-computer interaction. Ribbon snake
model [1] and ZiplockSnake model [2] are classic semi-automatic methods which
take advantage of geometric and radiation feature meanwhile. Literature [3]
proposes a semi-automatic method based on mean-shift algorithm that can ex-
tract center line accurately. In this method the seed points are chose artificially.

∗. Corresponding author
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As a main research domain, automatic methods extract road objects intelli-
gently and automatically through machine learning algorithms [4]. The paper
[5] can extract the road from the three-dimensional transportation network in-
cluding overpass by fuzzy inference with very big time costing. A new method
based on Expand Kalman filter and particle filter is proposed in [6] by which all
road junctions can be detected, but the result seriously depends on the choice
of model parameter. In short, extracting road network accurately and quickly
from RS imagery is still a very difficult task because of complex and different
road circumstance and occlusion due to shadow and other objects in the road.

The above algorithms could be classified to pixel-oriented road extraction
method in which pixel is considered as independent individual and pixels’ re-
lationship are separated. In contrast, object-oriented methods consider that
imagery is composed by objects that include important semantic information
and relationship [7]. Besides spectral feature, high resolution RS imagery owns
abundant spatial structure and texture information. The paper proposes an
object-oriented method based on improved FCM for road extraction in high
resolution RS imagery. At first, it achieves the purpose of “retaining edges and
denoising” by bilateral filter. Then the paper proposes an improved Fuzzy C-
Means (FCM) algorithm which eliminates its sensibility to noise by introduce
neighborhood information to distance measurement and membership degree. It
extracts road segments as road seeds through shape filter in segmented objects
and then connects these road seeds into road network by region growing al-
gorithm. At last, mathematical morphology methods are used to repair road
and extract center line. The experiments prove efficiency and accuracy of the
method.

2. Object-oriented road extraction based on improved FCM and
shape filter

The difficulty of road extraction is that road feature would be affected by sensor
type, spectral resolution and spatial resolution. In general, road has geometrical
feature, radiate feature, topological features and context feature which obviously
know from other ground objects. The paper obtains segmented objects using
cluster algorithm by taking advantage of radiate feature, and does shape filter-
ing by taking advantage of geometrical feature, at last connects road segments
according to topological features. The algorithm flow is shown in Figure 1.

2.1 Bilateral filtering pre-process

More abundant details are provided by high resolution RS imagery, but some
ground objects such as pedestrians, vehicles and traffic lines would be the noise
disturbance in road extraction and then decrease the extraction accuracy. There-
fore, imagery pre-process is necessary in order to smooth noise. In the pre-
process, full retaining of road edge information is very useful in extraction at
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Figure 1: Flow chart of road extraction

the same time of smoothing noise. As a consequence, bilateral filter [8] is a
very good choice for RS imagery pre-process. In the region with gradual change
of imagery, bilateral filter will translate to Gaussian low-pass filters because of
smaller intensity difference between neighborhood pixels. In the region with
drastic change of imagery, original intensity value will be replaced by weighted
mean of similar intensity value near the edge points. So it can achieve the pur-
pose of smoothing the imagery and retaining edge information at meanwhile.
Just like Gaussian filter, bilateral filter utilizes local weighted mean, but its
weighting coefficient in 2-dimension neighborhood is a nonlinearity combination
of space proximity factor ωs and intensity similarity factor ωr .For a center pixel
f(x, y), the weight ω(i, j) of pixel f(i, j) in its neighborhood Nx,y is:

ωs(i, j) = e
− |i−x|2+|j−y|2

2σs2 ,(1)

ωr(i, j) = e
− |f(i,j)−f(x,y)|2

2σ2
r ,(2)

ω(i, j) = ωr(i, j)ωr(i, j).(3)

In format (1) and (2), σs and σr are variances of two smooth factors respec-
tive by which control degree of attenuation of smooth factors. In the region with
gradual change of imagery, bilateral filter will translate to Gaussian low-pass fil-
ters because smaller intensity difference between neighborhood pixels. In the
region with drastic change of imagery, original intensity value will be replaced
by weighted mean of similar intensity value near the edge points. So it can
achieve the purpose that smoothing the imagery and retaining edge information
at meanwhile.

2.2 Imagery cluster segmentation

2.2.1 Fuzzy C-means cluster algorithm

The radiation features of road include: there are bigger gradient in two edges;
gray value of road region is consistent and obvious different from non-road region
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such as trees and buildings and so on. Hence, Fuzzy C-Means cluster algorithm
[9] could be adapted to obtain all different objects by segmenting imagery. Fuzzy
C-Means cluster algorithm is unsupervised classification method that applies
fuzzy theory to clustering analysis and indicates level that a sample belongs
to every group by membership degree without absolute “belonging to” or “not
belonging to” concept. By application of fuzzy theory, FCM cluster algorithm
can get better result comparing to other “hard classification” methods. The
objective function of FCM is

J(U, V ) =

n∑
k=1

c∑
i=1

(uik)m ∥xk − vi∥2 ,(4)

dik = ∥xk − vi∥ is Euclidean distance between cluster center vi and sample
xk m ∈ (1,∞) is fuzzy weighted index number. The parameter uik describes
the membership degree of sample xk which belongs to cluster center vi and is
normalized by

∑i=1
c uik = 1, ∀k ∈ {1, 2, ..., n} .The algorithm searches cluster

centers V and membership matrix U iteratively in order to minimize objective
function J :

uik =
1

c∑
j=1

( ∥xk−vi∥
∥xk−vj∥)

2
m−1

1 ≤ i ≤ c, 1 ≤ k ≤ n,(5)

vi =

n∑
k=1

(uik)mxk

n∑
k=1

(uik)m
1 ≤ i ≤ c.(6)

In imagery segmentation, cluster process use color values of three channels
as samples feature and initialize cluster center or membership matrix.

2.2.2 Improved FCM combining neighborhood information

There are some shortages in traditional FCM algorithm: 1⃝ The choice of ini-
tial cluster centers will influence the algorithm performance; 2⃝ The algorithm
is sensitive to isolated points and illumination and noise will affect segmenta-
tion result. Therefore traditional FCM method cannot eliminate noise influence
from isolated points. The accuracy of later road extraction will be reduced
because that objects from inefficient segmentation method are not accurate
enough. Consequently, an improved FCM method is proposed in paper that
combines spatial distance information and neighborhood gray difference infor-
mation.

The standard FCM algorithm does not take influence from neighborhood
pixels to center point into account when it computes distance between the pixel
and cluster center from which FCM is sensitive to isolated points. Through
analysis to standard FCM, the clustering performance depends on membership
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degree uik and distance dik between the cluster center and the point to be classi-
fied. For this reason, the paper introduces neighborhood information to simplex
Euclidean distance and corresponding membership degree uik as well. Whether
the pixel belongs to road region is relative to its spatial position in road detection
of remote sensing imagery. An isolated point has bigger probability to be a road
edge if all neighborhoods belong to road. The paper adjusts average weighted
value to new weighted value that combines spatial neighborhood information
and neighborhood gray difference information in the round, by which influence
from neighborhood to center pixel becomes smaller with the increase of their
spatial Euclidean distance and with the increase of their gray difference value.
The distance dNk

ik combining neighborhood information and neighborhood gray
difference information is defined by format (7):

dNk
ik = ∥xk− vi∥ +

∑
l∈Nk

wl ∥xl− vi∥.(7)

If the overlarge weight is given to neighborhood information, the segment preci-
sion will reduce. In order to keep the balance between neighborhood information
and gray difference, we split the weight equally.So wl is defined as

wl = 1 − 1

2

 dkl∑
l∈Nk

dkl
+

Skl∑
l∈Nk

Skl

 .(8)

The parameter Nk is the selected window with N ×N size. The parameter
dkl is Euclidean distance between center pixel k and the pixel l that fall into
Nk . The parameter Skl is gray difference value between l and k . We can see
from (8) that the weight is equally split between distance information and gray
difference information.

Therefore, cluster center vNi and membership degree uNik can be defined by
follow formats:

uNik =
1

c∑
j=1

( ∥xk−vi∥+
∑

l∈Nk

wl∥xk−vi∥

∥xk−vj∥+
∑

l∈Nk

wl∥xk−vj∥

) 2
m−1

1 ≤ i ≤ c, 1 ≤ k ≤ n,(9)

vNi =

n∑
k=1

(
uNik
)m

xk

n∑
k=1

(
uNik
)m 1 ≤ i ≤ c, 1 ≤ k ≤ n.(10)

The new objective function is

(11) JN (U, V ) =
n∑

k=1

c∑
i=1

(uNik)m ∥xk− vNi ∥2.
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The improved FCM algorithm can be used in handling remote sensing im-
agery including noise. When noise point is center pixel, it can adjust its mem-
bership automatically to avoid mistaken classification as a result of influence
from a number of normal neighborhoods. At mean while, the algorithm can
reduce influence from neighborhood noise points to normal pixels classification
maximally so that enhance ability of noise suppression and decrease false alarm
rate. The algorithm process is:

(1) Determination of parameters: classification number C , weighted index
number m , termination error ε and iteration number loop ;

(2) Initialize membership matrix U =
[
uik

N
]
c×n

;

(3) Compute objective function value JN (U, V ) . If difference value from last
objective function value is lesser than ε or iterations times reach to threshold ,
the algorithm process will stop. Otherwise, the flow go to the step(4);

(4) Compute new cluster centers vNi , then return to step (3).

The improved FCM algorithm can be used in handling RS imagery including
noise. The Figure 1(a) is original image that to be segmented with 466 × 540
size. There are some outliers in the original image. These outliers will lead to
too fragmentized segment result that is not conducive to extract objects in RS
imagery. The Figure 1(b) and Figure 1(c) are segment results of traditional FCM
and our improved FCM method respectively. Obviously, in improved FCM al-
gorithm the outliers can be managed better due to combination of neighborhood
information.

Figure 2: Segmented results of traditional FCM and our improved FCM method
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2.3 Object filtering combining shape feature

The road has some distinguishing features comparing to other ground objects.
For example, total area is not too small and it is always spindly and so on. There-
fore, specific shape features could be used in filtering segmented objects in order
to obtaining candidate road segments. The following features can be utilized
in shape filtering such as AreaS, Length-width ratioR, Filling degreeF ,Shape
factore,LengthL and WidthW .

AreaS: pixel total number of every segmented object. We can set area
threshold to exclude disturbed objects that are too small. The threshold Ts can
be set by combining resolution of remote sensing imagery.

Length-width ratio R : R(R = Lext/Wext) is the length-width ratio of mini-
mum bounding rectangle of segmented objects.

Filling degree F : F = S/Sest . It is the pixels ratio in object and minimum
bounding rectangle at mean while.

Shape factore: It describes the perimeter of unit area of object. The bigger
e value indicates more complicated shape, and vice versa. For example, e value
of circle is 12.6, e value of square is 16 and triangle is 20.8.

Length L and Width W : L and W is length and width of object mini-
mum bounding rectangle corresponding. The two features can filter other lathy
ground objects such as rivers and building roof.

2.3.1 Road network connection

The topological property of road means that road segment will constitute con-
nected road network without sudden interruption. Therefore, the road segments
obtained by shape filtering should be connected to network. The region grow
algorithm [10] can be used to construct road network.

At first, some seed points from edges of candidate road segments are selected
randomly. Then the method searches pixels of 4-neighborhood from every seed
point. The pixels whose gray difference is smaller than threshold T will be added
to increased region. Then this pixel will be a new seed point and same search
process will begin from it. The process is repeated until all seed points can not
satisfied the condition. The method can merger similar regions furthest and
then connect candidate road segments ideally. The algorithm flow is showed in
figure 2.

2.3.2 Extraction of road center line

After obtaining road network, we should thin road to gain center lines. There
are some holes in the extracted road surface resulted from spectral difference
and they will be closed-loops after thinning. It is necessary to carry post-process
to them. At first, close and dilation operation of morphology are used to fill
holes. Then the thinning process will get good result. After thinning we remove
short lines (burrs) by method of iterative endpoints removing [11].



OBJECT-ORIENTED ROAD EXTRACTION BASED ON IMPROVED FCM ... 339

Figure 3: flow chart of region grow algorithm

3. Experiments and result analysis

At first, it choices a RS imagery of the urban area of Zhejiang from World View
satellite with 0.3m spatial resolution and 280 × 430 size in 2012 as the first
experiment data. As shown in Figure3 (a), the imagery includes different kinds
ground object such as house roof, grassland, soil and roads and so on. At the
same time, there is a long and narrow area in the imagery that has same spectral
feature with road area. Generally, N is equal to 2 (the half width of bilateral
filter). It means the size of filter window is 5 × 5. When σs = 2 and σr = 0.1
, the imagery can get the better result of retaining edges and reducing noise
by repeating experiments and summarize. The cluster number k of Improved
FCM is equal to 5.The fuzzy weighted index M = 2 . All parameters of shape
filter are set by repeating experiments respectively: the area threshold=20; the
Length-width ratio R = 5 ; Filling degree F = 0.4 ; the Shape factor e = 18 ;
The Length L = 50 and Width W = 10.

The original imagery is handled by graying process and bilateral filter. From
the pre-processed imagery in Figure 3(b), it can be seen that vehicles and pedes-
trians in the road are blurred and edges of road and buildings are retained well.
Figure 3(c) is segmented result by improved FCM after 100 times iteration. The
Figure 3(d) is the binary imagery after extracting road objects and threshold-
ing. Then, every connected region is filtered by shape feature. The roughly
extracted roads are showed in Figure 3(e). The road segments are connected
to network by region growing algorithm which is showed in Figure 3(f). After
final post-process by morphological method, the road center line is extracted as
showed in Figure 3(g). Because of efficient pre-process by bilateral filter and
more accurate segmentation by improved FCM algorithm, the method can ex-
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tract main road correctly through getting rid of the ground objects that have
same spectral feature to roads.

Figure 4: Results of experiment in urban road

In order to verify universality of the algorithm, the second experiment ex-
tracts the roads from RS imagery of rural circumstance. The original imagery
with 660×396 size is showed in Figure 4(a). In the imagery, there are woodland
and farmland with vegetational cover, bare land and roads. In the bottom right
of road, a part of bare land has similar spectral feature to road. The half width
of bilateral filter is 2(the size of its window is 5 × 5 ). Through repeating ex-
periments and summarize, we get better result when σs = 2 and σr = 0.1 . The
cluster number k of Improved FCM is 4.In the similar way, mis equal to 2. All
parameters of shape filter are set by repeating experiments respectively: the area
threshold=60; the Length-width ratio R = 8; Filling degree F = 0.4; the Shape
factor e = 18; The Length L = 80 and Width W = 20. The result imagery after
bilateral filtering is showed in Figure4 (b). Figure4 (c) is clustered imagery and
Figure4 (d) is binaryzation process result to segmented road respectively. The
Figure 4(e) is obtained after shape filtering and holes filling by morphological
method to binaryzation imagery. The experiment cuts the step of road network
connection because that successive road network has been finished. Finally, the
center line of road is showed in Figure 4(f) after thinning and eliminating burrs.
The efficiency of eliminating burrs is ideal in this experiment because of the
regular shape of the road. Therefore, the method can extract completed road
from RS imagery in rural scene as well.

4. Conclusions and future work

The paper proposes an object-oriented road extraction method in high reso-
lution RS imagery, which introduces the improved FCM algorithm combining
neighborhood information in extraction process. The improved FCM algorithm
adjusts average weighted value to new weighted value that combines spatial
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Figure 5: Results of experiment in rural road

neighborhood information and neighborhood gray difference information in the
round. The experiment result indicated that it can deal with outliers better
compared to traditional FCM which will avoid too fragmentized segment result
that is not conducive to extract objects in RS imagery. The paper obtains in-
dependent objects by improved FCM through imagery segmentation and then
generates road network combining geometric features and topology features.
At last, the extracted road is repaired and thinned by morphological method.
Through experiments and analysis, the proposed method can extract road goal
from imagery clearly and completely. In future work, other features should be
taken into account in objects segmentation and the self-adapting mechanism for
threshold selection should be established combining machine learning method.
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[8] C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images,
International Conference on Computer Vision, 1998.

[9] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms,
Kluwer Academic Publishers, 1981.

[10] X.Q. Lei, W. Wang, J. Lai, A method of road extraction from high-resolution
remote sensing images based on shape features, Acta Geodaetica et Carto-
graphica Sinica, 2009.

[11] W.X. Wang, L.F. Jia, The method of removing burrs in skeleton extraction,
Journal of Guangdong University of Technology, 2014.

Accepted: 1.03.2018



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 41–2019 (343–352) 343

RESEARCH ON THE OPTIMIZATION OF PATH
INFORMATION IN THE PROCESS OF LOGISTICS
DISTRIBUTION BY IMPROVED ANT COLONY
ALGORITHM

Jiaxin Wang
Foundamental Education School

Beijing Polytechnic

Beijing, 100176

China

wjiaxin086@163.com

Abstract. Whether the logistics distribution path is reasonable determines distri-
bution speed and distribution efficiency. In this research, the ant colony algorithm is
introduced in detail, and a mathematical model of the algorithm is established for the
characteristics of logistics distribution problems, and the algorithm is further improved
and optimized on convergence rate and global searching ability. The experimental re-
sults showed that the improved algorithm optimized the logistics distribution path and
could find the optimal path scheme quickly and effectively, proving that it is feasible
and promising in the optimization of logistics distribution paths.

Keywords: ant colony algorithm, logistics distribution, path optimization.

Introduction

Ant colony algorithm was initially proposed by M. Dorigo [1], which is a heuristic
search algorithm [2] based on population optimization that can find the best
path to the destination through active feedback and distributed collaboration
with a strong vitality. Research and optimization of ant colony algorithm are of
great importance to network routing and urban transport systems.

The ant colony algorithm has been involved in many combinatorial opti-
mization problems, from quadratic assignment problem [3], job-shop scheduling
problem to protein folding problem and vehicle routing problem [4], which shows
its practicability. Though playing a great role in the optimization of logistics
distribution, the algorithm faces some difficulties. Qi [5] processed the routing
problem of vehicles taking advantages of simulated annealing and ant colony
optimization. In the first stage, simulated annealing provided a good initial so-
lution for ant colony optimization. In the second stage, the near-optimal solution
was searched in local scope using iterated local search. In this way, the routes
of vehicles were optimized, which made logistics management more scientific.
In the study of Guo [6], the development of robots and route planning algo-
rithm were analyzed, and the advantages and disadvantages of the traditional
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intelligent route planning were emphatically studied. The route planning prob-
lem of robots was studied using ant colony algorithm, and some solutions were
put forward. The largest difficulty is in logistics management actually, as there
are more and more limitations and requirements on transport and distribution
plans [7]. If different search options were used, the results obtained will vary.
Chang et al. [8] put forward a multi-objective genetic algorithm based on greedy
search which could regulate the allocation of available resources and automati-
cally generate various feasible emergency logistics schedules for decision-makers
to minimize the logistics time and cost in distribution planning and made an
optimization analysis on logistics management using different algorithms.

As the algorithm is applied in practice more and more frequently, the sys-
tem complexity increases [9], with more and more data to be processed, under
which circumstance single or one or two intelligent methods cannot well solve
problems. Hence, in this design, we improved the algorithm and carried out
simulation analysis to solve the path optimization problem of logistics distribu-
tion, hoping to develop optimal transport and distribution plans, saving time
and consumption.

1. Ant colony algorithm

1.1 Principle and basic model of the algorithm

In nature, ants are randomly distributed. Once an ant finds food, it will leave a
pheromone trail before returning to the nest, following which other ants can find
the food. In this way, the pheromones on the path will be gradually strength-
ened. Nevertheless, as time goes by, the pheromones begin to evaporate and the
appeal falls, resulting in a longer time for other ants to follow the trail to find
food. As a result, shorter paths are more favorable for ants to follow, leaving
a greater pheromone density on the paths. In addition, pheromone can avoid
convergence to local optimal solution [10]. If there is no evaporation at all,
the path which the first ant seeks will be too attractive, which will limit the
exploration of solutions.

In general, when an ant finds a good path from the nest to the food source
(ie, a short path), the other ants are more likely to follow the path, eventually
leading all the ants to follow the path. The idea of ant colony algorithm is to
solve problems by simulating the behavior of ants [11]. The basic steps of the
ant colony algorithm are as follows:

Set the number of ants in the ant colony to be Q, the distance between
client i and j to be dij and degree of intimacy, visibility, between them to be
xij , ηij = 1/dij , the heromone concentration between them to be τij . Then,
at time point t, the probability of ant k to move from client i to client j is as
follows:

(1) pkij(t) =
τij(t)

α · ηij(t)β∑
k∈Ak

τik(t)α · ηik(t)β
, j ∈ Ak, 0, j /∈ Ak.
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Where Ak refers to a collection of customer points that have not yet been
accessed, which is changing in the evolution process. α, β refer to the roles of
pheromones and heuristic factors accumulated in movement in path selection.
The pheromone update rules on the relevant path are as follows:

τij(t+ n) = ρ · τij(t) + ∆τij ,(2)

∆τij(t+ x) =

Q∑
k=1

∆τkij .(3)

Where ρ refers to the information retention level.
Taking a twin bridge model as an example, suppose that the remaining

pheromones of ants are proportional to the number of ants in an asymmetric
bridge. Meanwhile, suppose a short bridge to be A and a long bridge to be B
and Am and Bm respectively refer to the number of ants that cross the bridges
(Am + Bm = m). If the ants arrive at the front of the two bridges, then the
probability of crossing bridge A by the m+ 1 time is as below:

(4) PA(m) =
(Am + k)k

(Am + k)k + (Bm + k)k
.

Where A and B are parameters that are used to match the actual data, and
the probability meets the following condition:

(5) PB(m) = 1 − PA(m).

1.2 Improvement and optimization of ant colony algorithm

The genetic algorithm begins with a solution to the group problem, and each
group contains a certain number of individuals [12], and the entities of these
individuals are genetically encoded. The algorithm simplifies the situation that
the coding work is based on the theory of ”survival of the fittest” and is repeated
until an approximate optimal solution is found. Genetic algorithms are mainly
used for selection, crossover and variant operations [13] and evolve and generate
new generations according to optimization principles. Besides, it performs se-
lection of functions based on the degree of fitness and crosses the parental body
to produce new individuals on which mutation is realized, which is circulated
until the best solution is produced.

The ant colony algorithm has a global search function and can be com-
bined with other algorithms, with good adaptability and robustness as well as
good parallel processing performance. However, the algorithm is prone to be
restricted to the local best solution and tends to be affected by initial parame-
ters [14]. Similarly, the genetic algorithm has strong adaptability and versatility,
global optimization performance and parallel processing performance, it also has
good scalability. Hence, the combination of the two algorithms is conductive to
improve the convergence rate of the algorithm.
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Symbol definition: si,j refers to the distance between client i and client
j(i, j = 0, 1, 2, . . . , L), when i, j = 0, it refers to the distribution center; Sk
refers to the maximum travel distance of vehicle k; nk refers to the number of
customers assigned to vehicle k, when nk = 0, it means that vehicle k is not
involved in distribution; Gk refers to a collection of customer points of vehicle
k(k = 1, 2, . . . ,K), when nk = 0, Gk = ∅, when nk ̸= 0, {r1k, r2k, . . . , rnkk ⊂
{1, 2, . . . , L}, where gik indicates that the order of the customer point in the
distribution line of vehicle k is i.

The constraint condition of the optimized algorithm is:

1)

nk∑
i=1

qrik
≤ Qk;nk ̸= 0,(6)

2)

nk∑
i=1

Sgki−1 ,rik
+ sgnk k,0 ≤ Sk;nk ̸= 0,(7)

3)Gk1 ∩Gk2 = ∅; k1 ̸= k2,(8)

4)

k∑
k=1

Gk = {1, 2, . . . , L}; 0 ̸= nk ≤ L,

K∑
k=1

nk = l,(9)

The optimization goal is as follows:

(10) minZ =

k∑
k=1

[
nk∑
i=1

sgi−1
k ,rik

+ sgnk ,0

]
◦ sgnnk,

where

(11) sgnnk =

{
0, nk ≥ 1

1, nk = 0.

The update rule is:

τij(t+ s) = ρ ◦ τij(t) + ∆τij ,(12)

∆τij =

K∑
k=1

∆τkij .(13)

By combining the two algorithms to solve the problem of logistics optimiza-
tion, the optimal solution of the path can be calculated, and the advantages of
the two algorithms can be fully exploited to avoid some defects. The convergence
curves of the two at each moment are shown in Figure 1.

The basic idea of the genetic ant colony algorithm is to calculate the mini-
mum total convergence time first; before the most appropriate time, using the
good randomness of the genetic algorithm and its faster convergence rate, the
ant colony algorithm has stronger parallel processing capacity and higher effi-
ciency and can be applied for the exploration of the optimal path in logistics
and distribution.
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Figure 1: Curves of convergence rate

2. Overview of logistics distribution problems

Logistics needs to be organized and implemented in detail. In the general busi-
ness sense, logistics and distribution is the management process between logistics
[15] so as to meet the requirements of customers or enterprises. Logistics man-
agement objects cover food, materials, animals, equipment and liquids as well
as abstract items such as time and information. Physical logistics usually in-
volves the integration of information flow, material handling, production, pack-
aging, inventory, transportation, warehousing and transport safety. Logistics
distribution problem is part of the supply chain management, the distribution
organizational procedures formulated to complete the distribution task and the
basic content of system management [16]. The main flow of logistics is shown
in Figure 2.

Figure 2: Logistics distribution flow chart

As shown in Figure 2, logistics distribution is systematic and orderly, and
whether the distribution path is reasonable has great impact on distribution rate
and cost. Therefore, taking a reasonable method to determine the distribution
path is very important work in the distribution process [17].
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3. Experimental simulation and analysis

To verify the practical feasibility of the optimized algorithm, this study sim-
ulates the logistics distribution process in Beijing. The distribution programs
of 10 districts in Beijing is selected (specific orientation is simulated accord-
ing to Google map, with variations), which are Xicheng, Dongcheng, Haid-
ian, Chaoyang, Fengtai, Mentougou, Shijingshan, Fangshan, Tongzhou, Daxing
(numbered 0, 1, 2, . . . , 9), with the following assumptions:

(1) The distance from the distribution center to the city where the customer
is located and the amount of tasks that the city needs to deliver are known.

(2) Ignore the impact of weather, traffic and other factors on transport; there
are interconnected roads between cities.

(3) All customer demand form is the same, with land transport adopted.

(4) Take Xicheng District as the center, with star connection as the starting
connection mode (as shown in Figure 3).

Figure 3: The logistics distribution network map in Beijing

The logistics distribution network map in Beijing

Table 1. Distance matrix between districts in Beijing (in kilometers)
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Assume that the distance between the distribution points is shown in Table 1.
A total of 10 vehicles (a maximum load capacity of 2 tons) need to be deployed
for distribution, all of which starts form Xicheng District and returns to Xicheng
District from the original path after distribution. Therefore, the total vehicle
delivery distance is:

L =

n∑
i−1

loi,

where loi refers to the distance between the Xicheng District to the i-th district
and the total distance is 339.4 km. In order to minimize the delivery time,
shorten the distance, improve efficiency as much as possible, this paper applies
the improved algorithm to optimize the actual distribution path in Beijing.
First of all, the area around the Xicheng District is divided into three areas by
the direction, which are then optimized accordingly, as shown in figure 4. The
distance between the starting point of Xicheng District and the distribution
points of other districts and the distance between districts are shown in table 1.

Target description: minimum travel distance: minZ.

Description of the constraints:

(1) The maximum carrying capacity of the distribution vehicle is q = 10
tons.

(2) The amount of goods required in each district is ui = 2 tons.

(3) Each district uses only one vehicle.

(4) After distribution, each vehicle must return to the cargo center of Xicheng
District.

The other parameters are initialized as follows: α = 1, β = 5, ρ = 0.7, Q =
5, maximum number of iterations NC = 200. Run the genetic ant colony
algorithm, the solutions are: the number of vehicles = 3, the total vehicle travel
distance is 289.3 km. The optimized path is shown in Figure 4.

Figure 4: Logistics distribution network optimization diagram in Beijing
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The optimized algorithm optimized the distribution path in Beijing, with
the number of vehicles required for delivery reduced from 10 to 3 and the total
distance traveled by the vehicle shorted from 339.4 kilometers to 289.3 kilome-
ters, which effectively reduced the cost of logistics courier companies. Therefore,
the algorithm has practical application value.

4. Conclusion

With the development of market economy, the logistics and distribution industry
develops rapidly and more and more enterprises see the importance of logistics
distribution in their production and sales process. To achieve the purpose of
the vehicle’s energy-saving and emission reduction, the key is to achieve the
optimization of the logistics and distribution path [18]. The genetic ant colony
algorithm combines the advantages of both, making it more flexible and more
widely used.

In this paper, the ant colony algorithm and the genetic algorithm are ef-
fectively combined to explore the optimization of the transport vehicle path.
The experimental results showed that the proposed algorithm not only solved
the redundancy of the genetic algorithm which was easy to occur in the loop
phenomenon, but also could solve the shortcomings of the early loop iteration
of the algorithm. Still, shortcomings exist in this algorithm. For example, many
actual influential factors are neglected in the experiment, which in fact play
certain roles in real operation. Therefore, further studies are needed in the near
future.
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Reis, Modeling wine preferences by data mining from physicochemical prop-
erties, Decision Support Systems, 47 (2009), 547-553.

[5] C. Qi, Vehicle routing optimization in logistics distribution using hybrid ant
colony algorithm, Telkomnika Indonesian Journal of Electrical Engineering,
11 (2013), 5308-5315.



RESEARCH ON THE OPTIMIZATION OF PATH INFORMATION ... 351

[6] G. Yue, X. Shen, Z. Zhu, Research on the mobile robots intelligent path
planning based on ant colony algorithm application in manufacturing logis-
tics, International Journal of Computer Science & Information Technolo, 6
(2014), 11.

[7] F.S. Chang, J.S. Wu, C.N. Lee et al., Greedy-search-based multi-objective
genetic algorithm for emergency logistics scheduling, ESWA, 41 (2014),
2947-2956.

[8] D.W. Hosmer, S. Lemeshow, Applied logistic regression, 2nd ed., New York,
Wiley, 2000.

[9] Y. Marinakis, G. Dounias, Nature inspired intelligence in medicine: ant
colony optimization for pap-smear diagnosis, International Journal on Ar-
tificial Intelligence Tools, 17 (2008), 279-301.

[10] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, B. Bae-
sens, Classification with ant colony optimization, IEEE Transactions on
Evolutionary Computation, 11 (2007), 651-665.

[11] V.E. Neagoe, Decorrelation of the color space, feature/decision fusion, and
concurrent neural classifiers for color pattern recognition, in Proc. Interna-
tional Conference on Image Processing, Computer Vision & Pattern Recog-
nition (ICPV’08), Las Vegas, Nevada, USA, July 14-17, 2008, 28-34.

[12] N.Z. Nejad, A.H. Bakhtiary, M. Analoui, A classification using unstructured
rules and ant colony optimization, in Proc. of the International MultiCon-
ference of Engineers and Computer Scientists 2008, (IMECS 2008), vol. I,
Hong Kong, March, 2008, 19-21.

[13] R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with an ant colony
optimization algorithm, IEEE Transactions on Evolutionary Computation,
6 (2002), 321-332.

[14] Aini, Asghar, Alehipour, Amir, Speeding up the Floyd-Warshall algorithm
for the cycled shortest path problem, Applied Mathematics Letters, 25
(2011), 1-5.

[15] H.R. Maier, A.R. Simpson, A.C. Zecchin, Ant colony optimization for de-
sign of water distribution systems, Journal of Water Resources Planning
and Management, 129 (2003), 200-209.

[16] Edward Keedwell, Soon-Thiam Khu, Novel cellular automata approach to
optimal water distribution network design, ASCE. Journal of Computing in
Civil Engineering, 20 (2006), 49-56.

[17] Z.S. Liu, J.H. Shen, An adaptive ant colony algorithm for vehi clerou tin g
problem based on the evenness of solution, Journal of System Simulation,
17 (2005), 1079-1083.



352 JIAXIN WANG

[18] M.M. Akon, D. Goswami, S.A. Jyoti, Routing in telecommunication net-
work with controlled ant population, Proceedings of the First IEEE Con-
sumer Communications and Networking Conference, New York, NY, USA:
Institute of Electrical and Electronics Engineers Inc., 2004, 665-667.

Accepted: 8.03.2018



ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS – N. 41–2019 (353–357) 353

THE 1-PLANARITY OF INTERSECTION GRAPH OF
IDEALS OF A RING

Eman A. AbuHijleh∗

Department of Basic Sciences, Al-Zarka University College,
Al-Balqa Applied University
Zarqa 313, Jordan
emanhijleh@bau.edu.jo

Manal Al-Labadi
Department of Mathematics, Faculty of Art and Sciences,
University of Petra
Amman, Jordan
manal.allabadi@uop.edu.jo

Hasan Al-Ezeh
Department of Mathematics, School of Science

The University of Jordan

Amman 11942, Jordan

alezehh@ju.edu.jo

Abstract. A graph G = (V (G), E(G)) is called 1-planar if it can be drawn in the
plane such that every edge of the graph is cut by at most one other edge of the graph.
For any ring R, the ideal intersection graph of R, denoted by G(R), is the graph whose
vertices are the nontrivial proper ideals of R and two distinct vertices are adjacent if
they have nontrivial intersection. In this paper, we characterize when the intersection
graph G(R) of a ring R, is 1-planar.

Keywords: intersection graph of ideals of a ring, 1-planar graph, artinian ring.

1. Introduction

Through out this paper a graph means a finite simple graph, i.e. a graph
without loops and multiple edges. Recall that a graph is called planar, if it can
be drawn in the plane with nonintersecting edges except of the ends. Always
it is interesting to characterize when a graph is planar. One generalization of
planar graphs is called 1-planar. A graph is called 1-planar if it can be drawn in
the plane with every edge is cut in at most one point except of the ends. This
class of graphs is interesting in computer sciences, especially in networks. It
was studied extensively in literature, see [3], [7], and [8]. The following lemma,
summarizes the 1-planarity of a graph G with seven vertices or less, see [7].

Lemma 1. The graph K7 − K3 is the unique 7-vertex minimal non 1-planar
graph.

∗. Corresponding author
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All rings, R, in this paper are commutative with unity 1 ̸= 0. A local ring
R, is a ring with only one maximal ideal, say M . An Artinian ring R is the

direct product of a finite number of Artinian local rings, R =
m∏
i=1

Ri. Moreover,

every ideal of Ri is finitely generated. For an Artinian local ring R with unique
maximal ideal M , there exists a least positive integer k such that Mk = 0. In
this case we say that the local ring R has nilpotency index k, see [2].

Let G(R) be the ideal intersection graph of a ring R, with vertices are the
proper nontrivial ideals of the ring R, and two vertices are adjacent if they
intersect nontrivially. Akbari et. al. [1] proved that, R is Artinian if G(R)
is finite. Moreover, if G(R) is finite and connected, then diam(G(R)) ≤ 2.
From now on, it is enough to consider Artinian rings, to characterize when the
intersection graph G(R), is 1-planar.

The idea behind introducing the intersection graph, G(R), of a ring R is
to study the interrelationship between algebraic properties of the ring R and
the graph theoretic properties of the graph G(R). So, G(R) was investigated by
many authors in literature, see [1], [4] and [9]. Jafari and Rad in [6] characterized
when the intersection graph, G(R), of ideals of a ring R is planar. Here in the
same spirit we characterize when the intersection graph G(R), is 1-planar.

For undefined notions and terminology, the reader is referred to [2] and [5].

2. The 1-planarity of intersection graph G(R)

As the first result, we characterize when an Artinian ring, which is the direct
product of at least three local rings, is 1-planar.

Theorem 1. Let R =
∏m

i=1Ri, for m ≥ 3. The graph G(R) is 1-planar if and
only if R is the product of three fields.

Proof. Firstly, assume that m = 3 and that R1, R2, and R3 are fields. Then
G(R) has exactly six vertices. So, G(R) is 1-planar. But, if at least one of R1,
R2, and R3 is not a field, say R1, with nontrivial maximal ideal M1. Then G(R)
has at least the following vertices R1 ×R2 × {0}, R1 × {0} × {0}, M1 × {0} ×
{0}, M1×R2×{0}, R1×{0}×R3, M1×{0}×R3, M1×R2×R3. These vertices
induce the complete subgraph K7. Hence, by Lemma 1, the result follows.

Secondly, assume that m > 3, then |G(R)| ≥ 7 and K7 is an induced sub-
graph of G(R). Thus, by lemma 1, G(R) is non 1-planar graph.

Lemma 2. Let R be a direct product of a field, say F1, and a local ring, say
R2. Then G(R) is 1-planar if and only if G(R2) is isomorphic to K1, K2, or
P3.

Proof. Assume that G(R2) is isomorphic to K2, then there is an ideal I1 of
R2 such that {0} ( I1 ( M ( R2, and V (G(R)) = V (G(F1 × R2)) = {F1 ×
{0}, F1 × I1, F1 × M, {0} × I1, {0} × M, {0} × R2}. Then |G(R)| = 6,
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hence G(R) is 1-planar. While, if G(R2) is isomorphic to K1 then |G(R)| < 6.
Moreover, if G(R2) is isomorphic to P3, then there are two ideals I1 and I2 of
R2 such that {0} ( I1 (M ( R2, {0} ( I2 (M ( R2, and I1 ∩ I2 = ∅. Hence,
G(R) = G(F1 ×R2) is 1-planar, see Figure 1.

Figure 1: G(R) = G(F1 ×R2), where G(R2) is isomorphic to P3

On the other hand, assume that |G(R2)| = 3 but not isomorphic to P3, then
G(R2) is isomorphic to K3, where {0} ( I1 ( I2 ( M ( R2. Then the set of
vertices F1×M, F1×I1, F1×I2, {0}×I1, {0}×I2, {0}×M, {0}×R2, induces
a subgraph isomorphic to K7 in the graph G(R). Hence, by Lemma 1, G(R) is
non 1-planar.

Moreover, assume that |G(R2)| ≥ 4, then the simplest connected intersection
graph of G(R2), is a star graph with three edges, R2 is local ring. Though,
we have three mutually disjoint, say I1, I2, I3, non trivial and non maximal
ideals, that are subsets of maximal ideal, say M . Then the set of vertices
{0} × R2, {0} ×M, {0} × I1, F1 ×M, F1 × I1, F1 × I2, F1 × I3, induce a
subgraph isomorphic to K7 − P2 in the graph of G(R). Hence, by Lemma 1,
G(R) is non 1-planar.

Lemma 3. Let R be a direct product of two local rings, R = R1 ×R2, that are
not fields. Then G(R) is 1-planar if and only if each Ri has only one proper
nontrivial ideal.

Proof. If both rings R1 and R2 has at most one nontrivial proper ideal, say
M1 and M2 respectively. Then G(R) has at most the following vertices {0} ×
R2, {0} ×M2, M1 × {0}, M1 × R2, R1 × {0}, M1 ×M2, and R1 ×M2. The
graph of G(R) is isomorphic to a subgraph of K7 − C4. Hence by Lemma 1,
G(R) is 1-planar.

On the other hand, if both R1 and R2 are not fields with one of them has
at least two nontrivial proper ideals, say I ⊂ M2 ⊂ R2, and R1 has M1 ̸= 0,
then G(R) has at least seven mutually adjacent vertices, namely {0}×M2, R1×
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M2, R1×I, {0}×I, M1×R2, M1×M2, and M1×I. These induce the complete
subgraph K7. Hence, by Lemma 1, G(R) is non 1-planar.

Now, we summarize the case when R is the direct product of two local rings.

Theorem 2. For R = R1 × R2, G(R) is 1-planar if and only if one of the
following holds:

1. R1 is a field and G(R2) is isomorphic to a path of length at most three.

2. Each Ri has at most one proper non trivial ideal.

Finally, we consider the local Artinian rings.

Theorem 3. If a ring R is a local ring whose maximal ideal is principal, then
G(R) is 1-planar if and only if |G(R)| ≤ 6

Proof. Let R be a local ring whose maximal ideal is principal. Then R is a
chained principal ideal ring. So, G(R) is a complete graph. Hence, by Lemma
1, the result follows.

Theorem 4. Let R be a local non principal ideal ring, whose maximal ideal has
exactly two generators x and y. Then G(R) is 1-planar if and only if either
M2 = 0, or M4 = 0 with M =< x, y > and x2 = 0 = y2.

Proof. If either M2 = 0, or M4 = 0 with M =< x, y > and x2 = 0 = y2. Then
|G(R)| ≤ 5, hence by Lemma 1, G(R) is 1-planar.

Conversely, assume that M has nilpotency index 4 with M =< x, y > and
x4 = 0 = y2. Then G(R) has a subgraph, that is induced by the vertices
< x, y >, < x2, y >, < x2 >, < x3, y >, < x3 >, < x >, and < xy >, which is
isomorphic to the complete K7. Moreover, assume that M has nilpotency index
equals 3 with M =< x, y > and x3 = 0 = y3. Then G(R) has the subgraph, say
G1, that is induced by the vertices < x >,< y >,< x2 >,< x, y >,< x, y2 >,
< x2, y >, and < x2, y2 >, that is isomorphic to the graph K7 − P2. Now,
assume that M has nilpotency index equals r with r ≥ 5 and M =< x, y >,
then G(R) has a subgraph that is isomorphic to K7. Hence, for all these cases,
G(R) is non 1-planar by Lemma 1.

Theorem 5. Let R be a local ring with maximal ideal M , that can’t be generated
by less than three generators. Then G(R) is 1-planar if and only if M2 = 0 and
M =< x, y, z >.

Proof. If M =< x, y, z > and M2 = 0, then G(R) has at most the following
vertices < x >, < y >, < z >, < x, y >, < x, z >, < y, z >, < x, y, z >.
Then the graph of G(R) is isomorphic to a proper subgraph of K7 − k3, hence
by Lemma 1, G(R) is 1-planar.

Assume that R is a local ring with maximal ideal M with three generators
or more. If the nilpotency index of M equals r with r ≥ 3. Then |G(R)| ≥ 8
and G(R) has a subgraph isomorphic to G1, that is defined in the proof of the
previous theorem. Hence the result follows.
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Abstract. With the expansion of the E-commerce industry, the coverage of goods is
becoming increasingly wider. Moreover, foreign E-commerce industries have gradually
expanded to the Chinese market, resulting in higher requirements of domestic consumers
on the safety, variety and cost performance of foreign products. Therefore, how to make
the sales of cross-border E-commerce more stable and keep the balance of cross-border
E-commerce inventory and sales is an urgent problem to be solved. As traditional modes
are not suitable for foreign E-commerce industries, a personalized recommendation
system with favorable big data processing capacity is needed to address the problem.
This paper introduced a common personalized recommendation system and applied the
collaborative filtering algorithm as the main algorithm of the system to solve problems in
practice. The results showed that the improved collaborative filtering recommendation
system could meet the requirement of the times and was worth being promoted.

Keywords: large data, cross-border E-commerce, personalized recommendation sys-
tem.

Introduction

Cross-border E-commerce refers to an international commercial activity through
which transaction bodies of different countries reach deals, make payments and
cross - border deliveries via e-commerce platform. Though the development and
popularization of computer technology and information technology has brought
convenience to peoples life in recent years, it has also caused some problems due
to the imperfect cross - border E-commerce development system and the short-
age of professional staffs, which have been studied by some experts. Wang W [1]
believed that cross-border E-commerce was an important way to export Chinese
products, an effective method to solve the logistic problems should be sought,
and government investment and information exchange should be enhanced. He
also proposed a new E-commerce operation mode to reduce human labor and
realize the rational use of labor resources [2]. Holding that the traditional rec-
ommendation algorithm had high requirement on accuracy and was not easy
to implement, Song S et al. [3] put forward a user-based Slope One algorithm.
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Zhou X et al. [4] argued that in a society where information was exploded, it was
difficult for users to find information of interest to them, and it was difficult for
users to obtain information with low page views, which were common problems
in the development of the E-commerce industry, among which information over-
load problem was the most important and most urgent problem to be solved.
Therefore, the personalized recommendation technology was introduced to help
improve users shopping experience, increase user stickiness, and promote the
E-commerce site sales.

1. Cross-border E-commerce under the big data background

With the advent of the Internet age and the continuous accumulation of ap-
plication system data, there are more and more digital products and Internet
costumers, which produces rich big data resources [5]. In this study, the Hadoop
architecture was applied to analyze massive amounts of data. Besides, the core
problems of big data recommendation were considered.

At present, the personalized recommendation system is divided into collabo-
rative filtering recommendation, content-based recommendation and recommen-
dation based on association rules [6]. Collaborative filtering recommendation is
the earliest and most widely used personalized recommendation technology [7]
which mainly includes user-based collaborative filtering and item-based collab-
orative filtering. In addition, there are also content-based personalized recom-
mendation system [8] and rule-based personalized recommendation system [9].
In this study, the improved user-based recommendation algorithm was used to
solve the problems. The Hadoop distributed computer was used to sort and
store user commodity log. Cross-border E-commerce personalized recommen-
dation services include recommendation of the products which customers may
like, new products and relevance of commodities. The specific process is as
follows:

Figure 1: The architecture of the personalized recommendation system

As shown in Figure 1, Hadoop cluster data processing center is responsible
for storage and processing of user feedback information; Business server cluster
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is the main equipment for the business management of the whole system which
periodically transmits the data content of the terminal equipment to the Hadoop
processing center via the network; Push server cluster transmits recommenda-
tion and private messages to the target user at regular intervals.

Recommended algorithm module

1.1 User-Based collaborative filtering algorithm

The user-based collaborative filtering algorithm is the earliest, most widely used
and successful recommendation algorithm. In this algorithm, users who have
similar interest as user A are found firstly. Then, the items which these users
like and are not known to user A are recommended to user A:

(1) Find the user cluster which has the similar interest as the target user.

(2) Recommend items which have been evaluated by users with similar in-
terests to the target user, expressed as:

p(u,m) =
∑

v∈S(u,K)∩N(m)

,

where S(u,K) refers to K users who have similar interest as user u,N(m) refers
to the user cluster which evaluates item m, wuv refers to the interest similar
degree between user u and user v, and rvm refers to the interest of user v to
item m.

1.2 Item-Based collaborative filtering algorithm

The item-based collaborative filtering algorithm is based on the assumption
that the items similar to the ones favored by a user will also be favored by
the user. The algorithm has the similar recommendation procedures as the
user-based recommendation algorithm, including similarity degree calculation
and score prediction. There are three commonly used predictive models for the
item-based collaborative filtering algorithm:

(1) Weight similarity calculation method

Pui =

∑
j∈Ineighbor

sim(i, j) ·Ruj∑
j∈Ineighbor

sim(i, j)
.

(2) Return model prediction method

Rj = αRi + β + ε.

(3) Park adopted prediction method

Pui = Ri +

∑
j∈Ineighbor

sim(i, j) · (Ruj−Rj
)∑

j∈Ineighbor
(|sim(i, j)|)

,
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where Pui refers to the predicted score of user u to item i, Ineighbor refers to
item i’s neighborhood item cluster, Ruj refers to the score of user u to item j,
and Ri and Rj refers to the average values of the score clusters of item i and j.

1.3 Hybrid recommendation algorithm

Many mathematical algorithms can solve some professional problems in life [10,
11]. Hybrid recommendation algorithm is introduced in order to solve the cold
start and data sparse problem in the traditional collaborative filtering method.
It combines user-based algorithm with item-based algorithm and can calculate
similarity more accurately. When predicting scores, it considers both control
factor and balance factor and carries out recommendation based on the compre-
hensive results. To obtain more accurate predicting results, the control factor
λ(0 ≤ λ ≤ 1) was combined with the balance factors mu and mi.

The calculation formula of the balance factor mu is

mu =
∑

um∈N(u)

(sim(um, u))2∑
um∈N(u) sim(um, u)

.

The calculation formula of the balance factor mi is

mi =
(sim(in, i))

2∑
in∈N(i) sim(in, i)

.

Based on the combination of the balance factors mu and mi, and the control
factor λ, parameters au and ai were added. The definitions of the two parameters
were:

au =
mu × λ

mu × l +mi × (1− λ)
,

ai =
mi × (1− l)

mu × λ+mi × (1− l)
.

It can be known from the above formulas that au + ai = 1.

When neither the user neighbor cluster N(u) nor the item-based neighbor
cluster is an empty set, the score is:

P (ru,i) = tu × Pu(ru, i) + Pi(ru, i).

1.4 Evaluation indicators of the recommendation system

To determine whether a recommendation system meets the requirements, nor-
mally three indicators, i.e. precision indicator, recall indicator and MAE (mean
absolute error) indicator, are applied [12]. The precision indicator is a basic
and commonly used indicator to evaluate the recommendation system currently.
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The precision rate of the Top-N recommendation system can be determined by
precision and recall indicators [13], and its definition was:

Precision =

∑
u∈U |Re(u) ∩ Te(u)|∑

u∈U |Re(u)|
,

where Re(u) refers to the linked list recommended based on the user training
set, and Te(u) refers to the linked list recommended based on the user test set

Recall =

∑
u∈U |Re(u) ∩ Te(u)|∑

u∈U |Te(u)|
.

The above two formulas suggested that there is mutual effect between pre-
cision and recall, one rises and the other decreases. In practical situation, a
comprehensive evaluation indicator which combines both indicators should be
applied.

F1 =
2× Precision×Recall
Precision+Recall

,

Emeasure =
1

α(1/Precision) + (1− α)(1/Recall)
.

The larger the F1, the better the recommendation effect.
MAE evaluates the precision of the predication score based on the size of

difference between the prediction score and the actual score. For example, the
scoring item number of user x in the test item set is Tx, the actual scoring set is
{x1, x2, x3, . . . , xn}, and the prediction scoring set is {p1, p2, p3, . . . , pru}; then
the calculation formula for MAEx is:

MAEx =

∑Tx
i=1 |ui − pi|

Tx
.

For the recommendation system, the MAE calculation result of all users in
the system is:

MAE =

∑M
u=1MAEu

M
.

According to the above equation, the greater the deviation of the prediction
score from the actual score, the greater the MAE value.

2. Application of personalized algorithms

2.1 The improved collaborative filtering algorithm

In the multi-personalized recommendation system, the collaborative filtering
algorithm is one of the most widely used algorithms. The traditional user-based
algorithm recommends products to users based on the interest of similar uses on
products. The application of the traditional user-based algorithm will greatly
reduce the precision because of the multiple categories and wide coverage of



RESEARCH ON PERSONALIZED RECOMMENDATION ALGORITHM ... 363

Table 1. Cross-border E-commerce scoring table

cross-border E-commerce products. In Table 1, there are 7 users and 6 products.
Item 1, 2 and 6 are home products while item 3, 4 and 5 are digital products.
Firstly, the traditional collaborative filtering algorithm was applied to predict
R7,6. The users which were similar to user 7 were selected, i.e. {User4, User5,
User6}. Then the interest of user 7 to item 6 was determined based on the
interest of these users to item 6, R7,6 = 1.

The prediction of the interest of user 7 to home products was the target;
however the similarity of interest between these users and user 7 obtained before
was on digital products, which might lead to the inaccuracy of the prediction
values.

To avoid this problem, a user-based multi-interest collaborative filtering al-
gorithm was proposed. Based on the interest of a user on a product, it was
known that the similar users were {User1, User2, User3}, and then R7,6 = 4
was obtained. The proposed algorithm considered the direct correlation be-
tween users and products based on different attributes of products, suggesting
higher accuracy and practicability.

2.2 The application of the improved algorithm in cross-border
E-commerce

2.2.1 Characteristics of cross-border E-commerce

Compared to the traditional E-commerce, cross-border E-commerce requires
more effective product recommendation [14] because consumers have higher re-
quirements on products with clearer aim. The consumer group of cross-border
E-commerce is global, and the anonymous browsing of products by users can
increase difficulty to information collection [15]. Therefore, the traditional E-
commerce personalized recommendation method and algorithm are no longer
applicable to the environment in which cross-border E-commerce is located.
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2.2.2 Cross-border E-commerce user group

The user group of cross-border E-commerce is large, which includes cross-border
online shopping users, pragmatism users, fashion users, entry users and potential
users. The consumption levels of those users are shown in Figure 2.

Figure 2: Proportion of consumption number of different user groups

As shown in Figure 3, the contribution of cross-border online shopping users
is the highest, which is the reason why mainstream websites take them as key
consumers. Besides, pragmatism users rank the second and fashion users the
third. Nevertheless, potential users, though have the largest scale, have the
smallest contribution. For the prevention of the cold start problem [16], the
system will allow customers to choose their own interested category of goods
when they log in for the first time, known as explicit interest. In addition,
merchants can judge users interest on a product based on the information such
as the browsing, forwarding and collecting information of the product of the
users. According to different behavior of users, evaluation is made, which is
called hidden interest.

To effectively determine the interests of users, we combined explicit interest
with hidden interest and obtained a comprehensive calculation formula:

Ru,i = λReu,i + βRiu,i,

where Reu,i is explicit interest and Riu,i is hidden interest; the range of Reu,i
and Riu,i is between 0-5 level, and the comprehensive interest range of a product
is also between 0-5 level.
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Figure 3: Proportion of sum of consumption of different user groups

According to the formula, recommendation results could be obtained. Firstly,
the category of product was determined. Then, all the products belonging to
the category were listed. Afterwards, the Top-N user was selected from neigh-
bors by calculating neighbor y that has the similar interest as user u. Then, the
interest of user u on the product was calculated:

Pu,j = Ru +
∑
i∈y

w(u, i)(Ri,j −R),

where w(u, i) refers to the similarity between user u and i. Ranking is performed
based on the size of similarity and the Top-N product is recommended to user
u.

2.2.3 Effect analysis of improved algorithm

In this study, the data of four months released by an E-commerce corporate was
taken as the research subjects.

After processing the data in Table 2, Table 3 was obtained.

Then, the offline results of the data were tested using the aforementioned
recall and precision formulas.

As shown in Table 4, the recommendation results of the improved algorithm
were better than the results of the traditional algorithm.
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Table 2. User behavior data

Table 3. Processed data

3. Conclusion

This paper systematically introduced the classification of personalized recom-
mendation systems and analyzed several collaborative filtering algorithms and
their evaluation indexes. Besides, the improved algorithm was applied to the
product recommendation of cross-border E-commerce. Nevertheless, there are
rooms for further improvement and research, which is expected to be realized
in future studies.
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Abstract. The impact of Indian National Satellite-3D (INSAT-3D) retrieved thermo-
dynamic profiles (temperature and humidity) on Weather Research Forecasting (WRF)
model forecast is examined in this study. The extreme rainfall event which occurred
during July 25-26, 2015 over the North central part of India is taken as the case study.
The analysis obtained after assimilation is compared with the European Centre for
Medium-Range Weather Forecasts (ECMWF) analysis. Obtained results show quite
good improvement in humidity and temperature analysis when compared with ECMWF
analysis. Positive improvements are observed in 24 h WRF model predicted rainfall on
assimilation of INSAT-3D temperature and humidity profiles.

Keywords: INSAT-3D, WRF model, forecast, analysis, rainfall.

1. Introduction

Rainfall is an important parameter that changes in scales from few meters to
several of kilo meters. The significance of exact rainfall delineate and forecast
are broadly recognized. The precision of Numerical Weather Prediction (NWP)
relies on the nature of the initial conditions. Atmospheric observation from
various sources (Radar, Satellite, Aircraft, Radiosonde, etc.) are utilized to in-
troduce operational weather prediction models. An evaluation of the nature of
the precipitation outline is essential to comprehend the qualities and inadequa-
cies of current forecast/assimilation frameworks and furthermore in perspective
of future climate/weather projection. The role of satellite observations in NWP
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models have been growing rapidly due to the increase of number of weather
satellites. The NWP models have been developed from the last decades with
the continuous process in both data assimilation techniques and numerical model
[1]. Data assimilation is the technique in which observations of the original sys-
tem are incorporated into the model state of a numerical model of that system.
The aim of data assimilation is to produce a model state that is as close to the
‘original’ state as possible, i.e. one that describes the observed reality in the
optimum way, which is referred to as the analysis.

Due to their high spatial and transient determination, geostationary satellite
instruments give real time data about the advancement of the climate wonders
over the observing domain, when contrasted with polar-orbiting satellite in-
struments. Nonetheless, geostationary satellite instruments have bring down
unearthly determination and are accordingly less equipped for giving vertical
soundings of the climate than polar-orbiting satellite instruments [2]. India suc-
cessfully launched on 26th July 2013 INSAT-3D satellite at 82o E. INSAT-3D
carried out two meteorological instruments, that is the sounder and the imager
[3]. The six channels with imager has, one within electromagnetic range and five
inside the infrared (IR) region and nineteen sounder channels, one within visible
band of reflected solar energy and eighteen IR channel measures emitted energy.
The sounder instrument gives vertical structure of the environment. With the
dispatch of INSAT-3D, barometrical soundings are workable interestingly over
a moderately information scanty region, for example, the Indian Ocean from
a geostationary stage. Atmospheric thermodynamic conditions over the Ara-
bian Sea and the Bay of Bengal impact the climate frameworks over the Indian
region. The INSAT-3D data, especially sounder data, can possibly contribute
fundamentally to mesoscale climate guaging over the Indian region [2].

Precipitation digestion is considered as one of the essential ways to deal with
enhanced the climate figures. Rainfall perception incorporates the atmospheric
information as far as winds, temperature and specific humidity and further-
more adds to the model atmospheric spending plan. A few numerical modeling
research have demonstrated that precipitation data enhanced the climate esti-
mate [1, 4, 5, 6]. Various affectability examinations for rainfall assimilation have
been performed at different forecast/explore focuses like in European Centre for
Medium-Range Weather Forecasts (ECMWF) [7] and National Centers for En-
vironmental Prediction (NCEP) [5, 8]. For some reasons, rainfall assimilation is
an additional unpredictable issue distinguished to assimilation of convectional
or on the other hand clear-sky satellite brilliance [10]. Marecal and Mahfouf
[11] in 2000, exhibited that nudging of rain rate enhanced the dampness inves-
tigation and diminished the turn-up issue. As a result of deficient spread of
rain measures and ground-based radars, satellite-recovered precipitation is one
of the significant wellspring of precipitation perception. Treadon [8] in 1997,
assimilated the satellite-recovered precipitation rate in the NCEP 3D-Var data
assimilation framework. Lekhadiya and Jana [9] in 2018, shows the different
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physical paramererization options and it has ability to predict rainfall predic-
tion using WRF model.

There are two ways to deal with NWP modeling system with different types
of observation. The first one is the data-denial approach. It is the effect of
different types of observation on forecast and analysis quality of NWP modeling
system which is verified by performing two different side-by-side assimilation
experiments. i.e. Control run;CNT and experiment run;EXP. In the CNT run
all the observation assimilated and in EXP run only particular observation as-
similated which gives best appropriate results and the effect of two experiment
(CNT and EXP) are performed in different way [12, 13, 14, 15]. In the sec-
ond approach, the adjoint of the NWP framework is utilized to evaluate the
effect of specific types of observation [16, 17, 18]. Be that as it may, we utilized
here data-denial Observing System Experiments (OSEs) with different sets of
measurements which is computationally extremely costly on the grounds that
requires an extensive number of analyses.

The objective of this study is to evaluate the impact of assimilation of
INSAT-3D temperature and humidity profiles on WRF model forecast. An ex-
treme rainfall event which occurred on 25th July 2015 in north Madhya Pradesh
and adjoining regions is taken as the case study.

2. Model description and assimilation methodology

2.1 WRF model

The model utilized as a part of this study is WRF version 3.7. The WRF model
is a cutting edge mesoscale numerical weather prediction model intended to
meet both research needs and operational forecasting. The subtle elements of
the WRF model can be found on the site (http://www.wrf-model.org). WRF is
a restricted region, compressible, and nonhydrostatic primitive equation model.
It has different physical parameterization schemes [19]. There are two dynamic
solvers in the WRF modeling system: the Advanced Research WRF (ARW)
solver grew firstly at NCAR (National Center for Atmospheric Research), and
the Nonhydrostatic Mesoscale Model (NMM) solver created at National Cen-
ters for Environmental Prediction (NCEP). Here we have utilised the ARW
dynamic solver. We have used Arakawa C-grid staggering for horizontal grid
and the completely compressible system of equations [20]. The territory follow-
ing hydrostatic weight with vertical framework streching was utilised in vertical.
The time split incorporation utilizes a third order Runge-Kutta scheme with lit-
tle time ventures for acoustic and gravity wave modes. The parametrization
schemes utilized as a part of this experiment comprised of WRF Single Mo-
ment (WSM) 6-class graupel conspire for microphysics, the New Kain-Fritsch
[21] cumulus convection parameterization scheme and Yonsei University (YSU)
planetary boundary layer scheme. The model domain (see Fig. 1) contained
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330 × 320 framework focuses with 30 km spatial determination. The model had
36 vertical levels with the highest point level at 10 hPa.

Figure 1: The model domain used in this study for WRF experiment

2.2 Assimilation methodology

The WRF three-dimensional variational (3D-Var) data assimilation framework
is utilised as a part of this experiment. It is equipped with assimilating infor-
mation from a wide range of observational stages got from conventional source
as well as satellites. The WRF 3D-Var technique comprises of finding the most
likely atmospheric state (i.e. analysis) by limiting a cost function (J(x)) given
as

(1) J(x)=Jb + Jo=
1

2
(x− xb)TB−1(x− xb)+

1

2
(H(x)−yo)TR−1(H(x)−yo).

The gradient of the cost function J(x) with respect to x is given as

(2) ∇xJ(x) = B−1(x− xb) + HTR−1(H(x)− yo).

As shown in Eq. (1), the cost function is characterised as the summed squa-
red separation of the present state (x) to the background state (xb) and to the
perceptions (yo) in which the agitators are weighted by the inverse of error co-
variance matrices. In Eq. (1), H is the (forward) perception administrator that
maps model state to perception space. The covariance matrices of background
error (B) and perception error (R) are expected Gaussian. These errors are
additionally expected impartial and uncorrelated to each other. The setup of
the WRF 3D-Var framework depends on an incremental plan turning in a mul-
tivariate incremental research inside the WRF model space. The incremental
cost function minimization is accomplished in a preconditioned control variable
space. The preconditioned manipulate variables applied as a part of this experi-
ment are humidity, velocity potential, stream-function and unbalanced pressure.
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Information of contrasts between 24 h and 12 h forecasts are utilised to evalu-
ate background error covariances matrix by the National Meteorological Center
(NMC) technique [22, 23]. Portrayal of the horizontal aspect of historical past
blunders on a level plane homogeneous and isotropic recursive channels. The
vertical component is hooked up through projection onto climatologically ar-
rived on the midpoint of eigenvectors of vertical error evaluated by the NMC
strategy [24]. Within WRF 3D-Var, all perception errors are thought to be
uncorrelated in space and time. The corner to corner components of those co-
variance matrices are contrast for perceptions (in present case, temperature and
humidity).

3. Data used

The temperature and humidity profiles are retrieved from INSAT-3D data at
43 pressure levels and the retrieved data is available at L2B product from
Meteorological & Oceanographic Satellite Data Archival Centre (MOSDAC)
(www.mosadc.gov.in). The spatial resolution of data is 10 km at nadir. The
data is available hourly. The retrieved temperature and humidity profiles for
25th July, 2015 are taken and data file is in the form of Hierarchical Data Format-
5 (HDF5) which is dumped for the variable temperature, specific humidity, lat-
itude, longitude and pressure levels in binary form. Combining all binary files
to a single file and converting it into American Standard Code for Information
Interchange (ASCII) format, which is readable for OBSPROC and subsequently
for 3D-Var. Using them with GFS data file and processed through WRFDA.
Model initial conditions and lateral boundary conditions are taken from NCEP
analysis at every six hours with 0.5o × 0.5o horizontal resolution and 26 vertical
levels. The lateral boundary conditions must first be modified to reflect differ-
ence between background forecast and analysis. The model forecast verification
is done with temperature and humidity profiles from ECMWF analysis. For
rainfall forecast verification Global Satellite Mapping of Precipitation (GSMaP)
data is used.

4. Case study

An extreme rainfall event which occurred on 25th July, 2015 in North-Madhya
Pradesh, central India is taken as the case study. The 24 h accumulated rainfall
from GSMaP during 0000 UTC 25 - 0000 UTC 26 July 2015 is shown in Fig.
2. From Fig. 2, we can see that there was 160 mm rainfall in 24 h over North-
Madhya Pradesh.

4.1 Experimental setup

Two experiments were performed for this study, the Control (CNT) and the
Experiment (EXP). In the CNT run, only GFS analysis is taken as the model
initial condition, while in EXP run, the INSAT-3D retrieved temperature and
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Figure 2: 24 h accumulated rainfall(mm) map from GSMaP during 0000 UTC
25 July 2015 - 0000 UTC 26 July 2015

humidity profiles are assimilated and GFS analysis are taken as model boundary
conditions. The WRF model then run with the obtained analysis from CNT
and EXP run to provide 24 h forecast.

WPS Real WRF ARWPost 24 h

Flowchart 1: Control Run

WPS Real WRFDA

Assimilation of INSAT-3D temperature and humidity

WRF ARWPost 24 h

Flowchart 2: Experiment Run

5. Results and discussion

5.1 Impact on analysis

5.1.1 Overview of the fit to observations

The principal correlation that we made can be portrayed as an once-over to verify
everything seems to be good or sanity check i.e. it is basic test to rapidly assess
whether a claim or the after-effect of a figuring can be valid. The INSAT-3D
analysed temperature and humidity data are plotted as a function of observed
temperature and humidity respectively and compared with the first guess. In
an effective assimilation, the investigation called as analysis departure (O-A)
are smaller than the first guess departure (O-B); subsequently the analysis bet-
ter matches the perceptions. The histogram plots of the first-guess and anlysis
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departures for temperature and humidity are shown in Fig. 3 and Fig. 4 re-
spectively. The first-guess departures (O-B) for temperature has a Root Mean
Square Deviation (RMSD) of about 0.4063 while the analysis depatures (O-A)
has the RMSD of about 0.6831. The first-guess departure for humidity is found
to have RMSD of about 0.2899 while analysis departures have the RMSD of
about 9.2491e-04. The analysis bias and RMSD are altogether lower than their
background counterparts. From Fig. 3 and Fig. 4, it is clear that the analysis
is closer to the observations than the background.

Figure 3: Histogram of the Temperature(K) (a) first guess departures (O-B)
and (b) analysis departures (O-A)

Figure 4: Histogram of the Humidity(gm/kg) (a) first guess departures (O-B)
and (b) analysis departures (O-A)

5.1.2 Comparision with ECMWF analysis

The 24 h analysed specific humidity and temperature from both the experi-
ments (CNT and EXP) are verified against the ECMWF analysis valid at 0000
UTC 25th July, 2015. The vertical profiles of the domain averaged RMSD of
the temperature and specific humidity with respect to the ECMWF analysis.
Temperature and Humidity for both EXP and CNT runs are shown in Fig. 5(a)
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and Fig. 5(b) respectively. The RMSD values for the EXP runs for both tem-
perature and humidity are less than the corresponding CNT values suggesting
that the assimilation of the INSAT-3D temperature and humidity profiles have
improved the analysis in EXP run.

(a) (b)

Figure 5: Domain averaged vertical profiles of the RMSD of (a) temperature
and (b) humidity for CNT and EXP runs calculated with respect to
the ECMWF analysis valid at 0000 UTC 25th July 2015

5.2 Impact on forecast

5.2.1 Comparison with ECMWF analysis

The 24 h predicted temperature and specific humidity from both the experi-
ments (CNT and EXP) are verified against the ECMWF analysis. The spatial
distribution of the forecast improvement for the 24 h forecasted temperature and
specific humidity on 26th July 2015 are shown in Fig. 6 and Fig. 7 repectively.
The assimilation of INSAT-3D temperature and specific humidity profiles show
significant improvement in temperature and specific humidity throughout the
domain. A few pockets of negative improvement are also observed. The verti-
cal profiles of RMSD, for both CNT and EXP run, in 24 h forecast of specific
humidity and temperature are shown in Fig. 8(a) and Fig. 8(b) respectively.

5.2.2 Rainfall Comparison with GSMaP rainfall

The 24 h precipitation forecast is verified against the observation from GSMaP.
Here we examined the spatial distribution of 24 h accumulated rainfall. The
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Figure 6: Spatial distribution of the temperature forecast improvement during
0000 UTC 26th July 2015

Figure 7: Spatial distribution of the specific humidity forecast improvement dur-
ing 26th July 2015

CNT minus GSMaP rainfall map is shown in Fig. 9(a), while EXP minus
GSMaP rainfall map is shown in Fig. 9(b). The spatial distribution of the
rainfall improvement parameter Fig. 9(c), clearly shows that the assimilation
of temperature and specific humidity profiles from INSAT-3D data improved
the accumulated rainfall prediction over whole Madhya Pradesh and its adjoin-
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(a) (b)

Figure 8: Domain averaged vertical profile of the RMSD of 24 h (a) Tempera-
ture and (b) Humidity forecast for CNTForcast and EXPForcast runs
calculated with respect to the ECMWF analysis valid at 0000 UTC
26th July 2015

Figure 9: Spatial distribution of 24 h accumulated rainfall forecast improvement
parameter in the form (a) CNT minus GSMaP rainfall map, (b) EXP
minus GSMaP rainfall map and (c) rainfall improvement

ing regions. Overall, the plots suggests that accumulated rainfall prediction is
improved on assimilation of thermodynamic profiles from INSAT-3D.
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6. Conclusion

In this investigation, WRF model has been utilized to assimilate the precipi-
tation information during 25 - 26 July, 2015 over North central part of India.
Assimilation have been done to compare GFS analysis with ECMWF rainfall,
GFS forecast with ECMWF rainfall as well as compared with GFS analysis
and GSMaP rainfall. The results shows quite good improvement in tempera-
ture and specific humidity forecasts. It demonstrate that rainfall assimilation
enhances the rainfall forecast. Thus, assimilation of rainfall observation in the
NWP model can be seen as a positive advancement for enhancing the accuracy
of numerical modeling for short-range weather forecast.
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Abstract. This paper investigates the application of the meshless local radial ba-
sis functions collocation method (LRBFCM) for the numerical solution of fractional
integro-differential equation and two-dimensional fractional Volterra integral equation.
Unlike the traditional global RBF collocation method, dividing the collocation of the
problem in the global domain into many local regions, and therefore, the ill-conditioning
of the problem is reduced and becomes highly stable. Here, we use the multiquadric
(MQ) radial basis function that includes a shape parameter, which plays an important
role in the accuracy of method. Scaling of the shape parameter to make local RBF ap-
proximation insensitive is performed by particle swarm optimization (PSO) algorithm.
Some test problems are studied and the numerical results shows the efficiency of the
method.

Keywords: fractional calculus, local meshless methods, fractional integral-differential
equations, collocation methods, optimal shape parameter.

1. Introduction

Meshless methods are very attractive and effective for solving boundary value
problems, because they involve simple preprocessing, arbitrary node distribu-
tion and flexibility of placing nodes at arbitrary locations. Also, they are easily
extendable to higher dimensional problems. These methods may use strong form
[1, 2, 3] or weak form of governing equations [4, 5, 6, 7]. Also, these methods may
treat the problem locally [8, 9, 10, 11] or globally [12]. Since the final matrix ob-

∗. Corresponding author
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tained in global methods are usually full and ill conditioned, local methods were
proposed in the literature. Local multiquadric approximation (LMQ) method
[13, 8, 14] and the finite collocation approach (FC) [9, 15] are among the popular
local methods which use strong form equations. These local methods reduce the
problem into many local sub-problems and finally assemble all these local equa-
tions into the final global matrix. Therefore, the final global matrix obtained
by LMQ and FC methods are sparse. In this paper we use the multiquadric
(MQ) radial basis function. Kansa [16] applied MQ functions for scattered data
approximation in and presented a new approach to solve PDEs [17]. MQ was
employed as a spatial approximation scheme for Hyperbolic, parabolic and the
elliptic Poisson’s equation. This function has a free parameter (c) called shape
parameter. This parameter plays an important role for the accuracy of the
method, and is achieved by various techniques. The particle swarm optimiza-
tion (PSO) algorithm is applied to obtain the optimum value of this parameter.
In this paper our aim is to suggest and apply the local RBF method based on
multi-quadratics for the numerical solutions of the fractional integro-differential
equation and fractional integral equations. These equations form an important
part of applied mathematics, which links with many theoretical and practical
fields. The concept of the fractional derivative was introduced in the middle of
the 19th century by Riemann and Liouville. Many physical and biological mod-
els are formulated using fractional differentials. So, in recent years the number
of publications about the fractional calculus has rapidly increased [4, 11, 18].
This paper is organized as follows: In Section 2, the basic defnitions in fractional
calculus and fractional integral equation which is needed in the next sections
are presented. In Section 3, the local RBF method for discretizing fractional
integral and integro-differential equations is described. Section 4 is devoted to
introducing particle swarm optimization algorithm for finding optimal shape
parameters. Numerical results are given in Section 5. Our conclusions are sum-
merized in Section 6.

2. Basic definitions

In this section, we give some basic deffnitions and properties of the fractional
calculus theory which are used further in this paper [18, 19].

Let f(x) be a function defined on (a, b), then we have the following defini-
tions:

Definition 1. The Riemann-Liouville(R-L) fractional integration operator of
order α ≥ 0 of a function f is defined as:

Iαf(x) =

{
1

Γ(α)

∫ x
a

f(t)
(x−t)1−αdt, α > 0, x > 0,

f(x), α = 0,

where Γ(.) is the gamma function and I is the fractional integral.
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Definition 2. The Riemann - Liouville fractional derivative of f(x) is:

RDαf(x) =

{
1

Γ(m−α)
dm

dxm

∫ x
a

f(t)
(x−t)−m+1+αdt, x > 0, m− 1 ≤ α < m,

fm(x), α = m,

where m = ⌈α⌉ is the smallest integer such that m > α and dm/dxm denotes
the standard derivatives of integer order.

Definition 3. The Caputo fractional derivative of f(x) is:

Dαf(x) =

{
1

Γ(m−α)

∫ x
a

f (m)(t)
(x−t)−m+α+1dt, x > 0,m− 1 ≤ α < m,

fm(x), α = m.

The Caputo operator Dα advantages for fractional differential equations (FDEs)
with initial conditions. The two definitions of Riemann-Liouville and Caputo
are not equivalent and their relation is correlated by the following expression,

RDαf(x) = Dαf(x) +

m−1∑
k=0

f (k)(a)Φk−α+1(x− a).

Φα(x) =

{
xα−1, x > 0,

0, x ≤ 0.

Definition 4. The left-sided mixed Riemann-Liouville integral of order r =
(r1, r2) for the function u(x, y) is defined as

(1) (Irθu)(x, y) =
1

Γ(r1)

1

Γ(r2)

∫ x

a

∫ y

a
(x− s)r1−1(y − t)r2−1u(s, t)dsdt,

where r ∈ (0,∞) × (0,∞), θ = (0, 0) and u ∈ L1(J). So, we have the following:

(1) (Iθθu)(x, y) = u(x, y),

(2) (Irθu)(x, y) =
∫ x
a

∫ y
a u(s, t)dsdt where r = (1, 1) and for all (x, y) ∈ J ,

(3) (Irθu)(x, 0) = (Irθu)(0, y) = 0 for x ∈ [0, a], y ∈ [0, b],

(4) Let λ, ω ∈ (−1,∞) then (Irθx
λyω) = Γ(λ+1)Γ(ω+1)

Γ(λ+r1+1)Γ(ω+r2+1)x
λ+r1yω+r2 for all

(x, y) ∈ J .

For more information about the left-sided mixed Riemann-Liouville integral
see also [20].

Two-dimensional fractional Volterra integral equation is difined as follows:

u(x, y) − 1

Γ(r1)

1

Γ(r2)

∫ x

a

∫ y

a
(x− s)r1−1(y − t)r2−1K(x, y, s, t, u(s, t))dsdt

= g(x, y).(2)
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3. Discretization by LRBF-MQ

In this section, the local RBF method is used as a technique for approximation
of boundary value problems and fractional integral equations . To illustrate the
local RBF method, we consider the following boundary value problem:

(3)

{
L(u(x)) = f(x), x ∈ Ω,

B(u(x)) = h(x), x ∈ ∂Ω,

where L and B denote the linear partial differential operator and boundary oper-
ation respectively. Ω ⊂ Rn is a bounded domain, and ∂Ω denotes its boundary.
In the local RBF method, we consider a set of N scattered nodal points in the
domain and on the boundary that is represented by Ξ = {xk}Nk=1. Then, to
approximate the unknown solution u at an arbitrary point xk, k = 1, ..., N , we
consider a local region Ωx around this point, called the domain of influence of
point xk, covering a number of n nodal points as shown in Fig.1. The solution

Figure 1. Influence domain Ωx of a node x embracing 8 neighboring nodes.

u(x) can be approximated by a localized formulation as follows:

(4) ũ(x) =

n∑
j=1

λjϕj(x),

where

ϕj(x) =
√

∥x− xj∥2 + c2,

is the multiquadric(MQ), n is the number of nodal points fallen with in the
influence domain Ωx of x. The parameter c > 0 is known as the shape param-
eter, and describes the relative width of the RBFs around their centers. This
parameter plays an important role for the accuracy of the method. In most ar-
ticles, the authors choose this shape parameter by trial and error or some other
techniques [21, 22]. Here the particle swarm optimization algorithm is applied
to obtain the optimum value of this parameter which is explained in the next
section.
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To obtain the values of the coefficients λj , we can first evaluate Eq. (4) at
all nodal points xi; i = 1, 2, ..., n in each influence domain. If all the collocation
points are distinct, and ϕ(x) is a positive definite, it can be proved that the
matrix Φ = (ϕ(∥xki − xkj ∥2)) is non-singular. Hence, the unknown coefficients in
Eq. (4) have the following matrix form:

(5) λk = Φ−1uk,

where λk = (λk1, λ
k
2, ..., λ

k
n)T , uk = (u(xk1), u(xk2), ...., u(xkn))T . Then the approx-

imate solution ũ(xk) can be revise according to the given nodal values u(xkj ) at
influence domain xk:

(6) ũ(xk) = Φkλk = ΦkΦ−1uk = Ψkuk,

where Φk = (ϕ(∥xk − xkj ∥2)), and Ψk = ΦkΦ−1 = [ψ1, ψ1, ..., ψn]. The functions
ψi, i = 1, 2, ..., n are called the shape functions for the local RBF interpolation.
Fractional derivatives DαΨ can be computed as follows:

Using Eq (5),

(7) Dα(u(x)) = Dα[

n∑
j=1

λjϕj(x)] = Dα[

n∑
j=1

Φ−1ϕj(x)ũ] = [Φ−1Dα(∆k(x))]ũ,

where Dα∆k(x) = [Dαϕ1(x), Dαϕ2(x), ..., Dαϕn(x)] and ũ = (ũ(x1), ũ(x2), ...,
ũ(xn)).

Finally, corresponding to each node, a local equation will be obtained and all
these equations should be assembled in a global final system. When assembling
the local equations in the final global system, the ith row of the global matrix
is a vector with n non-zero elements [0, ..., ϑ(ψ1), 0, ..., ϑ(ψ2), 0, ..., ϑ(ψn), 0, ..., 0]
in which ϑ(ψi) is equal either L(ψi) or B(ψi) depending on operator that acts
on ψi. then Substituting these vectors into Eq. (3), yields[

LΨ
BΨ

]
ũ = [b],

which in general is the following system of equations:

Au = b.

Note that the number of columns, which ψk is located, is the global num-
ber of node k in all callocation node. In other words, this row is the exten-
sion of vector by patching zeros into entries associated with the nonselected
[ϑ(ψ1), ϑ(ψ2), ..., ϑ(ψn)] nodes in the Ωxi .

By solving the above mentioned linear sparse system of equations, we get
the approximate solutions ũ at all of the collocation points.

Similarly for two-dimensional fractional integral equation we have:

(8) u(p) ≃
n∑

γ=0

λγϕ(∥p− pγ∥) = λTφ(p),
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then we have

(9) λ = φ−1u,

where p = (x, y) and pγ = (xγ , yγ) ∈ R2. The dependence on the RBF expansion
coefficients can be removed from Eq. (9) by the following:

(10) u(pk) ≃
n∑

γ=0

λγϕ(∥pk − psγ∥) = Φkλk = ΦkΦ−1uk = Ψuk,

substituting Eqs. (9) and (10) in Eq. (2) we have:

Ψuk − 1

Γ(r1)Γ(r2)

∫ x

a

∫ y

a
(x− s)r1−1(y − t)r2−1

·K(x, y, s, t,Φ−1ϕ(s, t)ũ)dsdt = g(x, y).(11)

Substituting the given collocation points in the above equation and applying
Legendre quadrature integration formula, we obtain

Ψũ− 1

Γ(r1)Γ(r2)

m∑
k=0

m∑
l=0

wkwl(xi − ξk)r1−1(yj − τl)
r2−1

·K(xi, yj , ξk, τj ,Φ
−1ϕ(ξk, τl)ũ) = g(xi, yj).(12)

4. Choosing a Shape Parameter

In RBFs interpolation, different shape parameters correspond to different ap-
proximation results. In this section presented particle, swarm optimization algo-
rithm (PSO) for optimizing shape parameters with respect to error in an global
and local RBF interpolation is applied.

4.1 Particle swarm optimization algorithm (PSOA)

PSOA was firstly proposed by Eberhart and Kennedy (1995) based on the pop-
ulation (swarm) of particles [23]. Each particle is associated with velocity that
indicates where the particle is traveling. The process is such that a group of
particles in the particle swarm optimization algorithm are initially created ran-
domly and by updating the generations, they try to find the optimal solution.
In a bunch of N particles, the position of the ith particle in the search space is
located under the influence of a n-dimensional spatial vector of Eq.(13).

(13) Xi = (xi1, xi2, ..., xin)T ∈ S,

The velocity vector of this particle is as Eq. (14).

(14) Vi = (vi1, vi2, ..., vin)T ∈ S,
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The best position of the ith particle is represented by the Eq. (15).

(15) Pbesti = (Pbesti1, Pbesti2, ..., Pbestin)T ∈ S.

In each step, each particle is updated using the two best values. First situation is
the best one that a particle can achieve so far. This position is known and stored
as PBEST . The best alternative used by the algorithm is the best situation
ever achieved by the particle population. The other most appropriate value
used by the algorithm, the best position ever has been achieved by the particle
population. this position is shown by GBEST . After finding the best values, the
speed and location of each particle is updated using Eqs. (16) and (17).

(16) Vi,t+1 = ωVi,t + c1r1(P
best
i,t −Xi,t) + c2r2

(17) Xi,t+1 = Xi,t + Vi,t+1.

Vi,t and Xi,t are respectively the velocity vectors and the position of the particle
i in the repetition t. ω is a stationary coefficient 1 and 2 are acceleration
coefficients the implementation of optimization algorithm particles are usually
considered 2. Also r1 and r2 are two nonlinear stochastic numbers between 0
and 1. The condition for stopping the PSO algorithm is usually considered to
be such that, if the difference between two consecutive results is less than a
certain value, the algorithm is stopped or a certain number of repetitions are
considered for the algorithm [24].

Here, the error is considered to be the objective function, and we find the
optimal shape parameter by finding the least error in the repetitions of the PSO
algorithm.

LRBF implementation.

The step-wise procedure for the implementation of LRBF collocation method
is as follows:

Step 1: Selection of scattered nodal points in the domain and on the bound-
ary.

Step 2: Consider a local region around each collocate point, called the do-
main of influence including the point itself and n− 1 other points.

Step 3: Applying local interpolation on each subdomain, Upon computing
Φ−1, the coefficient vector calculated by λk = Φ−1uk.

Step 4: Approximated function, u(xk) , (xk is center subdomain) expressed
in terms of the nodal values at each subdomain. That is ũ(xk) = Ψkuk.

Step 5: Finally,corresponding to each node a local equation will be obtained
and all these equations should be assembled in a final global system.

Step 6: Finding the optimal shape parameter with the pso algorithm.

Step 7: Solving linear sparse system of equations, we get the approximate
solutions u at all of the collocation points.
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5. Numerical experiment

Test problems that we consider in this section consist of fractional integro-
differential equation with the nonlocal boundary conditions, Bagley-Torvik equa-
tion and two-dimensional Volterra integral equation of fractional order. Accu-
racies of the numerical results are measured by infinity norm error ∥e∥∞ or root
mean square (RMS) error defined by:

δer = ∥e∥∞ = max{|uN (xi) − u∗(xi)|}, xi ∈ X,

and

RMS =

∑
zi∈Z

(uNxi − u∗(xi))
2

|X|

1/2

,

where uN is the numerical solution, u∗ is the exact solution and X is the number
of testing nodes.

Remark. 1) Number of infuence domain points is selected based on the factors
of accuracy and cost of calculations.

2) In PSO, population size is set to 10 and maximum number of iterations
is selected 100.

3) The method is implemented in MATLAB and the numerical experi-
ments are performed using a laptop with an Intel(R) Core(TM) i5-3230M, CPU
2.60GHz, and 4 GB RAM.

5.1 Example 1.

Consider the following fractional integro-differential equation [19].

(18) RD
5
4u(x) = (cosx− sinx)u(x) + f(x) +

∫ x

0
sintu(t),

with the nonlocal conditions

u(0) + u(1) + (
e+ 1

e+ 2
)u′(0) +

1

2
u′(1) − 8

∫ 1

0
tu(t) = 0,

2u(0) + 2u(1) + (
e

e+ 1
)u′(0) − u′(1) = 0.

By choosing f(x) = 8
3

x
3
4

Γ( 3
4
)
− 2 cosx − 2x sinx + x2 sinx + 2, the exact solution

of above problem is u(x) = x2.
Numerical results versus the numbers of nodal points and stencil with op-

timal shape parameter are shown in Tabel 1. Fig. 2 presents the RMS error
versus the number of the nodal points and stencil with optimal shape parameter.
Fig. 3 shows the error curves for local and global RBF methods with 100 nodal
points and optimal shape parameter. According to Tabel 1 and Figures 2 and
3, the local method is often just as accurate as the global RBF method.
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Table 1: Numerical results with different number of nodal

points by optimal neighborhood node and optimal shape parameter c and CPU time (seconds) for Ex.1.

LRBF GRBF

N n δer RMS CPU(s) δer RMS CPU(s)

20 7 1.33× 10−4 8.9799× 10−4 1.80 5.44× 10−3 2.5962× 10−3 4.17
30 7 5.45× 10−4 1.4264× 10−4 1.97 4.04× 10−3 1.7907× 10−3 5.67
50 11 3.38× 10−4 8.6699× 10−5 3.50 4.08× 10−3 1.7942× 10−3 12.12
80 16 1.36× 10−4 6.9852× 10−5 6.23 4.04× 10−3 2.0904× 10−3 26.13
100 17 5.85× 10−5 3.7125× 10−5 8.41 4.24× 10−3 2.7614× 10−3 39.30
150 21 8.18× 10−5 2.1590× 10−5 14.99 4.13× 10−3 2.2810× 10−3 85.90
200 25 5.45× 10−5 2.9491× 10−5 23.22 4.16× 10−3 1.7991× 10−3 149.35
250 32 3.84× 10−4 2.0969× 10−4 36.58 4.17× 10−3 4.0903× 10−3 239.13
300 35 2.92× 10−4 8.4034× 10−5 48.24 4.49× 10−3 4.2043× 10−3 339.24

Fig. 2. RMS error versus N for Ex. 1.

5.2 Example 2.

Consider the following Bagley-Torvik equation [25]

(19) u(2)(x)+θDαu(x)+σu(x) = f(x),

where

f(x) = (λ− 1)(λx−λ+ 2)xλ−3 + θ
(λ− 1)!

Γ(λ− α)
(
λx

λ− α
− 1)xλ−α−1 + σxλ−1(x− 1).

The exact solution for various values of θ = 0.5, σ = 1 and λ = 5 and α = 0.3
is u(x) = xλ−1(x− 1).

Results for different values of the nodal points and the optimal stencil shown
in the Table 2. Fig.4 presents the RMS error versus the number of the nodal
points and Also, exact solution and approximate solution for various values α
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Fig. 3. Absolute errors for local and global RBF methods with optimal shape parameter for Ex.1.

Table 2: Numerical results with different number of nodal points and optimal shape parameter c for

Ex.2.
LRBF GRBF

N n δer RMS δer RMS

30 9 4.9909× 10−4 2.0626× 10−4 9.8453× 10−5 9.8248× 10−5

50 12 8.9333× 10−5 1.2044× 10−5 4.4596× 10−5 4.4521× 10−6

80 16 6.2402× 10−5 2.5866× 10−6 1.3771× 10−6 3.3757× 10−6

100 19 5.5600× 10−6 6.2525× 10−7 2.4027× 10−6 2.4027× 10−6

150 39 5.7572× 10−6 8.9533× 10−7 1.2282× 10−6 1.1645× 10−6

200 35 6.3928× 10−5 5.7164× 10−6 1.1907× 10−6 1.0134× 10−6

250 26 1.2551× 10−5 2.0264× 10−5 2.2545× 10−5 1.5756× 10−6

300 33 8.0320× 10−5 3.6287× 10−4 2.1676× 10−5 1.4436× 10−5

presented in Fig. 5. Table 2 Shows that for the less number of collocation points,
global RBFs method is better than local RBF method, but with increasing
collocation points, the performance of the local RBFs method is better [25].

5.3 Example 3.

Consider the following Bagley-Torvik equation [26].

(20) u(2)(x)+θDαu(x) = −1−e(x−1),

In general, the exact solution of the problem is not known. However, for α = 1,
θ = −1, the problem has exact solution is u(x) = x(1 − ex−1).

Table 3 shows the numerical results at different the numbers of nodal points
and stencil with optimal shape parameter. Approximate solutions with various
α are presented in Fig. 6. RMS error and absolute error versus the number of
the nodal points are shown in Fig. 7. Considering the results, accuracy of the



392 MEHDI SAFINEJAD and MAHMOUD MOHSENI MOGHADDAM

Fig. 4. Approximate solution obtained for Ex.2.

Fig. 5. RMS error versus N for Ex.2.

local method is more than the global method, and the local method is faster.
Better result is obtained with local RBF collocation method than the method
of [25].

Tabels 1 to 3 show that one of the advantages of using the optimal shape
parameter in the local and global RBFs methods is that the approximate values
obtained do not oscillate for the number of different nodal points.
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Table 3: Numerical results with different number of nodal points and optimal shape parameter c for

Ex.3.
LRBF GRBF

N n δer RMS δer RMS

20 6 3.7348× 10−7 4.4256× 10−7 4.9140× 10−7 1.9437× 10−7

30 6 3.0022× 10−7 1.7868× 10−7 7.5015× 10−7 2.2452× 10−7

50 6 1.5166× 10−7 6.9974× 10−8 1.9361× 10−7 8.5469× 10−8

80 11 1.3692× 10−7 2.5266× 10−8 3.1795× 10−6 1.0485× 10−6

100 20 1.1811× 10−7 1.9041× 10−8 8.5846× 10−6 3.1034× 10−6

150 21 3.0144× 10−7 2.5230× 10−8 9.0405× 10−6 2.2476× 10−6

200 21 4.5467× 10−7 4.7993× 10−7 3.0446× 10−6 1.9750× 10−6

250 21 4.6912× 10−6 1.2645× 10−7 1.0388× 10−6 1.6379× 10−6

Fig. 6. Numerical solutions of Ex.3 for various α.

Fig. 7. RMS errors and abselot error local and global RBF methods for Ex.3.

5.4 Example 4.

Consider the following two-dimensional nonlinear fractional Volterra integral
equation:

u(x, y) − 1

Γ(32)Γ(52)

[∫ x

0

∫ y

0
(x− s)

1
2 (y − t)

3
2
√
xyt[u(s, t)]2dtds

]
=

√
y

(
−1

180
x3y

7
2 +

√
x

3

)
,(21)
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Table 4: Numerical results obtained with different number of nodal points for Ex.4.
3× 3 stencil 5× 5 stencil

N δex RMS CPU(s) δex RMS CPU(s)

62 1.042× 10−2 5.8280× 10−3 127.5 8.5× 10−2 3.5273× 10−3 343.2
72 2.872× 10−2 1.2000× 10−3 188.2 4.6× 10−2 2.9653× 10−3 495.5
82 1.107× 10−2 3.6457× 10−4 311.1 3.0× 10−3 3.6065× 10−4 663.9
92 1.480× 10−3 2.6248× 10−4 534.0 2.9× 10−3 9.5724× 10−4 1603.0
102 2.072× 10−4 8.6700× 10−5 827.9 5.1× 10−3 3.3647× 10−4 2042.3
112 3.421× 10−4 9.2053× 10−5 961.5 4.2× 10−2 3.2812× 10−3 2973.6

In which the exact solution is u(x, y) =
√
3xy
3 . The results with optimal shape

parameter are presented in Table 4. Fig. 8 show the cross section of the approx-
imate solutions with N = 102, 3 × 3 stencils and fixed values of y. The results
obtained in Test problems (4) with local RBF method are more accurate than
the results obtained in [27].
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Fig. 8. Cross section of approximate solution obtained with N = 102 and 3× 3 stencils for Ex. 4

5.5 Example 5.

Consider the two-dimensional fractional Volterra integral equation:

u(x, y) − 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1√xystu(s, t)dsdt = f(x, y),

f(x, y) = x3(y2 − y) − 1

60
x

11
2 y

7
2 (3y − 4).

We applied the presented method for various values of r1 and r2. For r1 =
r2 = 1, the exact solution is given as u(x, y) = x3(y2 − y). Note that as r1 and
r2 approach to 1, the numerical solution converges to the analytical solution
u(x, y) = x3(y2 − y). Table 5 compares the absolute errors with 100 number
of nodal points, 3 × 3 stencil between the local RBFs method and method [28].
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Table 5: Numerical results obtained with 100 number of nodal points, with 3× 3 and optimal shape

parameter c for Ex.5.
r1 = r2 = 0.8 r1 = 0.8, r2 = 0.95

x=y δer Error [28] δer Error [28]

0.0 0.0 3.544× 10−4 0.0 3.068× 10−3

0.1 8.4684× 10−7 1.388× 10−3 1.2140× 10−6 1.240× 10−3

0.2 1.1030× 10−7 8.772× 10−4 4.5487× 10−5 1.166× 10−3

0.3 1.6701× 10−6 1.407× 10−3 4.0259× 10−4 1.863× 10−3

0.4 2.0687× 10−5 1.153× 10−3 9.4018× 10−4 5.133× 10−3

0.5 1.2684× 10−5 5.673× 10−3 1.2354× 10−3 4.848× 10−3

0.6 4.8970× 10−4 9.748× 10−3 2.1018× 10−3 8.742× 10−3

0.7 1.2566× 10−4 1.089× 10−3 2.9120× 10−3 9.716× 10−3

0.8 1.3564× 10−3 7.730× 10−3 3.3028× 10−3 6.411× 10−3

0.9 3.4802× 10−3 1.222× 10−3 4.2901× 10−3 2.162× 10−4

Fig. 9. Graphs of approximate solution (a) and absolute error (b) with r1 = 0.8 and r2 = 0.95 for

Ex.5.

Graphs of approximate solution and absolute error with r1 = 0.8, r2 = 0.95,
N = 100 and 3 × 3 stencil are given in Fig. 9. The results obtained in this
paper, with local RBF method are more accurate than the results obtained in
[28].

6. Conclusion

A meshless local RBF method was proposed to solve fractional integro-differential
equation and two-dimensional fractional Volterra integral equation. In one-
dimensional problems, by increasing the number of collocation points to find an
optimal and more stable response, the number of nodes in local domain of influ-
ence increases. Numerical results showed that in the two dimensional fractional
integral equations the local RBF method is much more efficient than the global
RBF method, so, it can be concluded that local RBF method is more suitable
for high dimensional problems.

The effectiveness of the method has the following reasons:

1) The use of the strong form equation and collocation approach made the
method simpler than similar methods.
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2) Using the locallization approach, the matrix operations required only the
inversion of matrices of small size and the final global matrix became sparse.

So the method is suitable for large-scale and complicated problems.
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Abstract. The concept of involution in semigroups was given by Nordahl et al [13].
In this paper, we introduce involution in Γ-semigroups. Also, we define bi-Γ-ideals
in Γ-semigroups with involution and prove many interesting results characterizing Γ-
semigroups with involution by using bi-Γ-ideals.

Keywords: Γ-semigroups, involution, quasi-Γ-ideal, bi-Γ-ideal.

1. Introduction and preliminaries

An involution semigroup S will mean a bijection x → x⋆ of S onto itself, sat-
isfying (a⋆)⋆ = a, (ab)⋆ = b⋆a⋆. If we consider involutions on various algebraic
structures, it is generally needed that the defined involution is also an antiau-
tomorphism of the underlying algebraic structures of period two. In that sense,
involutions depict a fixed kind of internal symmetry of such systems. The nat-
ural example of an algebraic involution is the transposition of matrices in the
algebra of matrices over a ring. Furthermore, an involution can be taken as
a fundamental operation, and consequently, a part of the algebra on which it
acts. For example, an involution semigroup is a triple (S, ·, ⋆) such that (S, ·)
is a semigroup, while ⋆ is an involution on S such that (xy)⋆ = y⋆x⋆ holds for
all x, y ∈ S. In a similar fashion, if (S,+, ·) is a semiring, then (S,+, ·, ⋆) is

∗. Corresponding author
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called an involution semiring, provided that ⋆ is an involution of S satisfying
the identities (x+ y)⋆ = x⋆ + y⋆, (xy)⋆ = y⋆x⋆. If it requires that semirings may
be equipped with a zero 0, and/or an identity 1, then the involution satisfies
0⋆ = 0 and 1⋆ = 1. The motivation for investigation of involution semigroups
arises from a wide range of involution rings, involution algebras, by leaving
the additive structure. Γ-semigroups with involution is in a quite fascinating
way strongly related to various classes of ideals like Γ-ideals, quasi-Γ-ideals and
bi-Γ-ideals. Abbasi et al. [8] defined the involution in po-Γ-semigroups and
studied many results on prime, semiprime and weakly prime ideals in involu-
tion po-Γ-semigroups. Furthermore, they characterized intra-regular involution
po-Γ-semigroups. Various varieties of semigroups and algebras have unary oper-
ations imposed on them, including the classes of groups, inverse semigroups [6],
cellular algebras [5], algebras [2], [6], [9], [15], primitive involution rings [7, 10]
and regular ⋆-semigroups [13]. Scheiblich [4] constructed examples of bands for
which two involutions lead to non-isomorphic regular ⋆-semigroups. For other
results and examples, we refer [2],[3], [11], [12] and [14].
For Γ-semigroups, we refer [1]. In order to prove our main results, we introduce
the following definitions and examples:

Definition 1.1. Let A and Γ be any two nonempty sets. If there exists a
mapping A × Γ × A → A such that aγb ∈ A∀a, b ∈ A and γ ∈ Γ and A⋆ ⊆ A.
Then A is called Γ-semigroup with involution.

Example 1.1. Let A =

{
x : x =

(
a b
b a

)
: a, b ∈ R

}
and γ =

(
1 0
0 1

)
.

∗ : A∗ → A
s.t. x∗ → xT

Then A is a Γ-semigroup with involution as A× Γ ×A −→ A and AT ⊂ A.

Example 1.2. Let us consider A = (0, 2] and ∗ : A→ A such that
a∗ → 1/a∀a ∈ A.
Then it is not a semigroup. If we define Γ = {1/4n : n ∈ N}. Then A is a
Γ-semigroup with involution ⋆.

Definition 1.2. Let S be a Γ-semigroup with involution ⋆. A sub-Γ-semigroup
B of a Γ-semigroup S with involution ⋆ is called a bi-Γ-ideal of S with involution
if BΓSΓB ⊆ B and B⋆ ⊆ B.

Example 1.3. Let S =

{
x : x =

(
a b
b a

)
: a, b ∈ R

}
and γ =

(
1 0
0 1

)
.

Then S is a Γ-semigroup with involution, where

∗ : A∗ → A
s.t. x∗ → xT

Let A =

{
x : x =

(
α α
α α

)
: α ∈ R

}
. Then A is a bi-Γ-ideal of S.
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Definition 1.3. A non-empty subset Q of a Γ-semigroup S with involution ⋆ is
called a quasi-Γ-ideal of S if
QΓS ∩ SΓQ ⊆ Q and Q⋆ ⊆ Q.

2. Γ-semigroups with involution

In this section, we prove a number of important results concerning characteri-
zations of Γ-semigroups with involution using bi-Γ-ideals.

Theorem 2.1. Every quasi-Γ-ideal of a Γ-semigroup S with involution ⋆ is a
bi-Γ-ideal of a Γ-semigroup S with involution ⋆.

Proof. Let Q be a quasi-Γ-ideal of a Γ-semigroup S with involution ⋆. Then
QΓS ∩ SΓQ ⊆ Q and Q⋆ ⊆ Q. Now, QΓSΓQ ⊆ QΓSΓS ⊆ QΓS.
Also, QΓSΓQ ⊆ SΓSΓQ ⊆ SΓQ. This implies that QΓSΓQ ⊆ QΓS ∩ SΓQ.
This further implies that QΓSΓQ ⊆ Q and Q⋆ ⊆ Q. Hence, Q is a bi-Γ-ideal of
a Γ-semigroup S with involution.

Theorem 2.2. Let S be a Γ-semigroup with order preserving involution ⋆.
Then:
(1) (xΓsΓy)⋆ = y⋆ΓSΓx⋆, for any x, y ∈ S.
(2) (SΓxΓS)⋆ = SΓx⋆ΓS, for any x ∈ S.

Proof. Let t ∈ (xΓsΓy)⋆. By definition, t⋆ ∈ xΓsΓy, t⋆ ∈ xβsγy for some s ∈ S
and β,γ ∈ Γ. This implies that
t ∈ (xβsγy)⋆ ⊆ y⋆βs⋆γx⋆ ⊆ y⋆ΓSΓx⋆, because ⋆ is an order preserving involu-
tion. Thus (xΓsΓy)⋆ ⊆ y⋆ΓSΓx⋆.
On the other hand if t ∈ y⋆ΓSΓx⋆, then for some s ∈ S, and β, γ ∈ Γ, we
have t ∈ y⋆βs⋆γx⋆. This implies that t⋆ ∈ xβs⋆ ⊆ xΓsΓy. As t ∈ (xΓsΓy)⋆.
Therefore, y⋆ΓSΓx⋆ ⊆ (xΓsΓy)⋆.
Consequently, (xΓsΓy)⋆ = y⋆ΓSΓx⋆.
(2) The proof is similar to (1).

Theorem 2.3. (1) Suppose that A is a sub-Γ-semigroup of a Γ-semigroup S
with involution ⋆, s ∈ S and (sΓAΓs) ∩ A ̸= ∅, then (sΓAΓs) ∩ A is bi-Γ-ideal
of A.
(2) Let S be a Γ-semigroup with involution and T a non-empty subset of S.
Then, T ∪ TΓSΓT is the bi-Γ-ideal of S with involution ⋆.

Proof.

(1)(sΓAΓs ∩A)ΓAΓ(sΓAΓs ∩A) ⊆ [(sΓAΓs)ΓA ∩AΓA]Γ(sΓAΓs ∩A)

⊆ [(sΓAΓs)ΓA ∩A]Γ(sΓAΓs ∩A)

⊆ [[(sΓAΓsΓA)Γ(sΓAΓs)] ∩ [AΓ(sΓAΓs)ΓA ∩A)]]

⊆ [(sΓAΓs) ∩ (AΓsΓAΓs)] ∩A
⊆ (sΓAΓs ∩A).
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Hence (sΓAΓs) ∩A is a bi-Γ-ideal of A.
Now

[(sΓAΓs ∩A)]⋆ ⊆ (sΓAΓs)⋆ ∩A⋆

⊆ [(sΓA)Γs]⋆ ∩A⋆

⊆ s⋆Γ(sΓA)⋆ ∩A⋆

⊆ s⋆Γ(A⋆Γs⋆) ∩A⋆

⊆ (sΓAΓs) ∩A.

Hence (sΓAΓs) ∩A is bi-Γ-ideal of A with involution.
(2) Let B = T ∪ TΓSΓT . Then T ⊆ B. So

BΓSΓB = (T ∪ TΓSΓT )ΓSΓ(T ∪ TΓSΓT )

⊆ [T (ΓSΓ)(T ∪ TΓSΓT )] ∪ [TΓSΓT (ΓSΓ)(T ∪ TΓSΓT )]

⊆ [T (ΓSΓ)T ∪ T (ΓSΓ)TΓSΓT ] ∪ [TΓSΓT (ΓSΓ)T ∪ TΓSΓT (ΓSΓ)TΓSΓT ]

⊆ [TΓSΓT ∪ TΓSΓT ] ∪ [TΓSΓT ∪ TΓSΓT ]

= TΓSΓT ∪ T ∪ TΓSΓT = B.

Hence B = T ∪ TΓSΓT is bi-Γ-ideal. Consider:

(T ∪ TΓSΓT )⋆ ⊆ T ⋆ ∪ (TΓSΓT )⋆

⊆ T ∪ [(TΓS)ΓT ]⋆

⊆ T ∪ [T ⋆Γ(TΓS)⋆]
⊆ T ∪ [T ⋆Γs⋆ΓT ⋆]
⊆ T ∪ TΓSΓT.

Hence T ∪ TΓSΓT is a bi-Γ-ideal with involution.

Theorem 2.4. Let S be a Γ-semigroup with order preserving involution ⋆. Then
the following statements hold:
(1) If {A⋆

i : i ∈ I} is a family of left(resp., right) Γ-ideals of S, then the
intersection ∩A⋆

i ̸= ∅ is a left (resp.,right)Γ-ideals of S.
(2) If {A⋆

i : i ∈ I} is a family of bi-Γ-ideals of S, then the intersection ∩A⋆
i ̸= ∅

is a bi-Γ-ideal of S.
(3) If {A⋆

i : i ∈ I} is a family of quasi-Γ-ideal of S, then the intersection ∩A⋆
i ̸= ∅

is a quasi-Γ-ideal of S.

Proof. (1) Let {A⋆
i : i ∈ I} be a family of left-Γ-ideals of S. Then SΓA⋆

i ⊆ A⋆
i .

Consider:
SΓ ∩A⋆

i ⊆ SΓA⋆
i

⊆ A⋆
i for all i ∈ I

⊆ ∩A⋆
i

(2) Let {A⋆
i : i ∈ I} be a family of bi-Γ-ideals of S. Then A⋆

i ΓSΓA⋆
i ⊆ A⋆

i . Now
consider:

∩A⋆
i ΓSΓ ∩A⋆

i ⊆ A⋆
i ΓSΓA⋆

i

⊆ A⋆
i for all i ∈ I

⊆ ∩A⋆
i .
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(3) Let {A⋆
i : i ∈ I} be a family of quasi-Γ-ideals of S. Then A⋆

i ΓS∩SΓA⋆
i ⊆ A⋆

i .
Consider ∩A⋆

i ΓS ∩ SΓ ∩A⋆
i ⊆ A⋆

i ΓS ∩ SΓA⋆
i ⊆ A⋆

i for all i ∈ I ⊆ ∩A⋆
i .

Theorem 2.5. Let S be a Γ-semigroup with order preserving involution ⋆.
Then:

(1) A⋆ is a left (resp.,right) Γ-ideal for any right (resp.,left) Γ-ideal A of S.

(2) B⋆ is a bi-Γ-ideal for any bi-Γ-ideal B of S.

(3) Q⋆ is a quasi-Γ-ideal for any quasi-Γ-ideal Q of S.

Proof. (1) Let A be right-Γ-ideal of S. Then AΓS ⊆ A and S⋆ = S. Consider:

SΓA⋆ = S⋆ΓA⋆ = (AΓS)⋆ ⊆ A⋆.

Thus A⋆ is a left-Γ-ideal of S.

(2) Let B be a bi-Γ-ideal of S. This implies BΓSΓB ⊆ B and S⋆ = S.

Now consider B⋆ΓSΓB⋆ = B⋆ΓS⋆ΓB⋆ = (BΓSΓB)⋆ ⊆ B⋆. Hence B⋆ is a
bi-Γ-ideal of S.

(3) Let Q be quasi-Γ-ideal of S. Then QΓS ∩ SΓQ ⊆ Q and S⋆ = S. Now
consider

Q⋆ΓS ∩ SΓQ⋆ ⊆ Q⋆ΓS⋆ ∩ S⋆ΓQ⋆

⊆ S⋆ΓQ⋆ ∩Q⋆ΓS⋆

⊆ (QΓS)⋆ ∩ (SΓQ)⋆

⊆ (QΓS ∩ SΓQ)⋆

⊆ Q⋆.

Hence Q⋆ is a quasi-Γ-ideal of S.

Theorem 2.6. Let S be a Γ-semigroup with involution ⋆. If A = A⋆ΓA⋆, then
A⋆ ∩B⋆ = AΓB for any Γ-ideals A and B of S.

Proof. Let A and B be two Γ-ideals of S. By Theorem 2.5, A⋆ and B⋆ are
Γ-ideals of S. Now we have AΓB ⊆ AΓS ⊆ A = A⋆ΓA⋆ ⊆ A⋆. Similarly,
AΓB ⊆ SΓB ⊆ B = B⋆ΓB⋆ ⊆ B⋆. Thus AΓB ⊆ A⋆ ∩B⋆.
On the other hand, A⋆ ∩ B⋆ is a Γ-ideal of S. This implies that A⋆ ∩ B⋆ =
(A⋆ ∩B⋆)⋆Γ(A⋆ ∩B⋆)⋆ = (A ∩B)Γ(A ∩B) ⊆ AΓB. So A⋆ ∩B⋆ = AΓB.
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Abstract. Evolutionary dynamics of a two-gene model for chemical reactions, cor-
responding to gene expression and regulation, has been studied in detail. Bifurcation
analysis has been carried out to understand behavior of steady state solutions leading
to chaotic evolution for different cases. Numerical simulations have been performed and
measurable quantities like Lyapunov exponents, topological entropies and correlation
dimensions have been calculated for certain sets of parameter values. These measures
explain complexity and chaotic nature of evolution.
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1. Introduction

Mathematical equations dealing with natural and biological systems are nonlin-
ear in nature and are mostly in complicated form. Nonlinearity can be defined
by parameters involved in these systems. Behavior of such systems can be under-
stood during evolution by varying parameters under different initial conditions.
Computers have added much to the numerical study of this subject by producing
many exciting and interesting results. A simple system evolves in simple ways
but a complex or complicated system evolves in complicated ways and between
simplicity and complexity there cannot be a common ground [1]. Complex sys-
tems have features like cascading failures, far from energetic equilibrium, often
exhibit hysteresis, bistability, may be nested, network of multiplicity, emergent
phenomena and some more properties. All these are related to the nonlinearity.
A systematic evolutionary description and emergence of chaos can be obtained
in the beginning chapters of the book edited by Hao-Bin-Lin [2]. Chaos and

∗. Corresponding author
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irregular phenomena may not require very complicated equations. During evo-
lution, biological systems may display the properties like complexity and chaos.
Complexity can be viewed via its systematic nonlinear properties and it is due
to the interaction among multiple agents within the system [3, 4]. Chaotic sys-
tems display varied forms of attractors, depending on different sets of parameter
values. Complexity and chaos observed in a system can be well understood by
measuring elements like Lyapunov exponents (LCEs), topological entropies, cor-
relation dimension etc. Topological entropy, a non-negative number, provides a
perfect way to measure complexity of a dynamical system. For a system, more
topological entropy signifies more complexity. Actually, it measures the expo-
nential growth rate of the number of distinguishable orbits as time advances
[5, 6, 7]. Since complexity and chaos appear mostly in nonlinear systems, it is
necessary to find certain measure of the quantities causing these. Positive mea-
sure of LCEs signifies presence of chaos [8, 9, 10, 11]. Measure of topological
entropy signifies the complexity [5, 11, 12, 13], and the correlation dimension
provides the dimensionality of the attractor of the system [14, 16].

While dealing with natural systems, principles of nonlinear dynamics have
been extensively used in diverse areas of sciences. In biochemical context non-
linear equations are obtained from chemical reactions appearing in a two-gene
model [6, 15]. Here, chemical reactions are assumed to correspond to gene ex-
pression and regulation.

The studies performed in the present article deal with a two-gene Andrecut-
Kauffman model [6]. In this two-dimensional discrete system, dynamical vari-
ables describe the evolution of the concentration levels of transcription factor
proteins. To study the characteristics of complex nature of evolutionary phe-
nomena, bifurcation diagrams have been drawn by varying a certain parameter.
Then, some numerical investigations are carried forward to obtain LCEs, topo-
logical entropies and correlation dimensions for different sets of parameters of
the system. Results obtained are shown through graphics. Finally, the complex
nature of evolutions has been discussed on the basis of results obtained through
this study.

2. Two-gene Andrecut-Kauffman system

In the present study, we consider a two-dimensional map proposed by Andrecut
and Kauffmann [6, 7]. The map was used to investigate the dynamics of two-gene
models for chemical reactions corresponding to gene expression and regulation.
The discrete dynamical variables, denoted by xn and yn, describe the evolutions
of the concentration levels of transcription factor proteins. The map is given by
the following pair of difference equations:

(1)

xn+1 =
a

1 + (1 − b)xtn + bytn
+ cxn,

yn+1 =
a

1 + (1 − b)ytn + bxtn
+ dyn,
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with parameters a = 25, b = 0.1, c = d = 0.18, and t = 3, one obtains four
different fixed points with coordinates (2.30409, 2.30409), (−2.52688, 2.44162),
(2.44162,−2.52866), (−2.39464,−2.39464), and all are unstable.

For c ̸= d, and when a = 25, b = 0.1, c = 0.18, d = 0.42, and t = 3,
again, four unstable fixed points exist as (2.2832, 2.5413), (−2.5458, 2.6566),
(2.4613,−2.7288), and (−2.3744,−2.61705). Threrefore, for all of these cases,
orbit with initial point taken nearby any of the fixed points may be unstable
and may be chaotic as well.

We intend to investigate certain dynamic behavior of system (1) for cases
when c = d and when c ̸= d for evolutions showing irregularities due to presence
of chaos and complexity.

3. Numerical simulations

Performing various numerical simulations, the dynamics of evolution have been
investigated by obtaining bifurcation diagrams, calculating LCEs, topological
entropy and correlation dimensions of the system for different cases. For the
values of control parameters within the system the following ranges have been
proposed: a ∈ [0, 50], c ∈ [−0.4, 0.4], b = 0.1, d = 0.5, t = 3, 4, 5.

Taking c = d, bifurcation diagrams are drawn along the directions x and y,
by varying c for cases t = 3, 4, 5 and certain fixed values of other parameters
as show in Fig. 1. Then, plots of attractors have been obtained for parameters
a = 25, b = 0.1, t = 3 and (i) for regular case c = d = 0.32 and (ii) for chaotic
case c = d = 0.18 and shown in Fig. 2. In each case when t = 3, 4, 5, bifurcations
show period doubling leading to chaos and then to regularity. Also, bistability
and folding nature of phenomena are appearing here.

3.1 Lyapunov Exponents and Topological Entropies

For chaotic evolution, when a = 25, b = 0.1, t = 3, c = d = 0.18, LCEs are
obtained and their plots are shown in Fig. 3. Numerical investigations further
proceeded for calculation of topological entropies. In Fig. 4, plots of topological
entropies are presented for t = 3, 4, 5 and for different ranges of parameter c.
Analysis of these plots, gives an impression that for the case t = 3, system shows
enough complexity in the range 0.05 ≤ c ≤ 0.23. For the case t = 4, the system
shows high complexity in the range 0 ≤ c ≤ 0.22 and in the case t = 5, high
complexity appears in 0 ≤ c ≤ 0.44.

In Fig. 6, plots of LCEs for chaotic evolution for different cases discussed
above are shown in the upper row and plots of topological entropies are shown
in the lower row for these cases. For all the plots, parameters a = 25 and b = 0.1
are common. Here, topological entropy plots are drawn for different ranges of
parameter c.
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3.2 Correlation Dimensions

Correlation dimension gives its measure of dimensionality. Chaotic evolutions
in dynamical systems are characterized by a chaotic set, “strange attractor”,
which has fractal structure. Being one of the characteristic invariants of non-
linear system dynamics, the correlation dimension actually gives a measure of
complexity for the underlying attractor of the system. A statistical method
can be used to determine correlation dimension. It is an efficient and practical
method in comparison to other methods, like box counting etc. The procedure
to obtain correlation dimension follows from some steps calculation [14, 17, 16].

Extending further the numerical study, the correlation dimensions of system
(1) have been calculated for various chaotic cases discussed above. For this the
method used is that of Martelli with Mathematica codes [16]. In briefly, the
method can be described as follows:

Consider an orbit O(xi) = {x1,x2,x3,x4, . . .} of a map f : U → U , where U
is an open bounded set in Rn. To compute correlation dimension of O(xi), for
a given positive real number r, we form the correlation integral,

(2) C(r) = lim
n→∞

1

n(n− 1)

n∑
i̸=j

H(r − ∥xi − xj∥)

where

H(x) =

{
0, x < 0

1, x ≥ 0

is the unit-step function. The summation indicates the number of pairs of
vectors closer to r when 1 ≤ i, j ≤ n and i ̸= j. C(r) measures the density of
pair of distinct vectors xi and xj that are close to r. The correlation dimension
Dc of O(x1) is then defined as

(3) Dc = lim
r→0

logC(r)

log(r)

To obtain Dc, logC(r) is plotted against log(r), Fig. 8, and then we find a
straight line fitted to this curve. The intercept of this straight line on y-axis
provides the value of the correlation dimension Dc.

Computation of correlation dimension has been carried out for all the cases
described in this article for different set of values of parameters as shown in
Table 1.

4. Discussion

Two-gene Andrecut-Kauffmann system represented by map (1) has been studied
carefully to understand chaotic phenomena during its evolution together with
complexities present in the system. Investigation is made for cases t = 3, 4, 5
only but one can extend it for cases t > 6 also. Bifurcation plots in Fig. 1 and
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t a b c d dimension
3 25 0.1 0.18 0.18 3.81869
4 25 0.1 0.18 0.18 3.05258
5 25 0.1 0.18 0.18 3.11754
3 25 0.1 0.28 0.12 3.16201
4 25 0.1 0.28 0.12 3.96724
5 25 0.1 0.28 0.12 4.05859
3 35 0.1 0.20 0.20 3.80410
4 35 0.1 0.20 0.20 3.41640
5 35 0.1 0.20 0.20 4.73368

Table 1: Table showing correlation dimension for different set of parameter val-
ues.

in Fig. 5, show the phenomena of period doubling and bistability in all these
cases. Chaotic evolutions with periodic windows are clearly visible. Presence of
complexity in the system can be observed by plots of topological entropies in
Fig. 3, Fig. 4 and Fig. 6. Variations of topological entropies can be observed
in 3D plots shown in Fig. 7. Numerical values of correlation dimensions, shown
in Table 1, provide approximate dimensionality of chaotic attractors.

List of Figures
Figure 1: Three cases of bifurcations along x-axis (A,C,E) and y-axis (B,D,F ) for map (1)

when c = d are shown: (A) t = 3, a = 25, b = 0.1 and 0 ≤ c ≤ 0.5; (B) t = 3, a = 25, b = 0.1

and 0 ≤ c ≤ 0.5; (C) t = 4, a = 35, b = 0.1 and 0 ≤ c ≤ 0.65; (D) t = 4, a = 35, b = 0.1 and

0 ≤ c ≤ 0.65; (E) t = 5, a = 25, b = 0.1 and 0 ≤ c ≤ 0.5; (F ) t = 5, a = 25, b = 0.1 and

0 ≤ c ≤ 0.5.
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Figure 2: Time series, phase plane attractors and LCEs for regular (A,B,C)
and chaotic (D,E, F ) case of map (1). Parameter values are taken as: (A) time
series for a = 25, b = 0.1, t = 3, c = d = 0.32; (B) phase plane attractors
for a = 25, b = 0.1, t = 3, c = d = 0.32; (C) LCEs for a = 25, b = 0.1, t =
3, c = d = 0.32; (D) time series for a = 25, b = 0.1, t = 3, c = d = 0.18; (E)
phase plane attractors for a = 25, b = 0.1, t = 3, c = d = 0.18; (F ) LCEs for
a = 25, b = 0.1, t = 3, c = d = 0.18.

Figure 3: Plots of LCEs for chaotic evolution of map (1). Parameter values
are a = 25, b = 0.1, t = 3, c = d = 0.18 while evolving from initial point (2.1, 2.1).

Figure 4: Plots of topological entropy for map (1) when c = d. The three
different cases arise for the following values: (A) t = 3, a = 25, b = 0.1 and 0 ≤
c ≤ 0.5; (B) t = 4, a = 35, b = 0.1 and 0 ≤ c ≤ 0.65; (C) t = 5, a = 25, b = 0.1
and 0 ≤ c ≤ 0.8.
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Figure 5: Bifurcation plots along x-axis (A,C,E) and y-axis (B,D,F ) when
c ̸= d for different ranges of parameter c: (A) t = 3, a = 25, b = 0.1 and d = 0.2;
(B) t = 3, a = 25, b = 0.1 and d = 0.2; (C) t = 4, a = 25, b = 0.1 and d = 0.3;
(D) t = 4, a = 25, b = 0.1 and d = 0.3; (E) t = 5, a = 25, b = 0.1 and d = 0.2;
(F ) t = 5, a = 25, b = 0.1 and d = 0.2.

Figure 6: The plots for LCEs (A,B,C) and topological entropies (D,E, F )
are shown here. Parameter values are taken as: (A) t = 3, a = 25, b = 0.1, c =
0.2 and d = 0.15; (B) t = 4, a = 25, b = 0.1, c = 0.2 and d = 0.15; (C) t = 5, a =
25, b = 0.1, c = 0.28 and d = 0.12; (D) t = 3, a = 25, b = 0.1 and d = 0.15;
(E) t = 4, a = 25, b = 0.1 and d = 0.15; (F ) t = 5, a = 25, b = 0.1 and d = 0.15.
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Figure 7: Three-dimensional plots for topological entropy variations. Param-
eter values are taken as: (A) t = 3, a = 25, b = 0.1, 0 ≤ c ≤ 0.5 and 0 ≤ d ≤ 0.5;
(B) t = 4, a = 25, b = 0.1, 0 ≤ c ≤ 0.5 and 0 ≤ d ≤ 0.5; (C) t = 5, a = 25, b =
0.1, 0 ≤ c ≤ 0.5 and 0 ≤ d ≤ 0.5. Figure 8: Plot of correlation integral curve for

the case t = 3. Parameter values are a = 25, b = 0.1, c = 0.28, d = 0.12.
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Abstract. Let G be a 2-edge-connected simple graph on n ≥ 15 vertices, and let
A denote an abelian group with the identity element 0. If a graph G∗ is obtained by
repeatedly contracting nontrivial A-connected subgraphs of G until no such a subgraph
left, we say G can be A-reduced to G∗. In this paper, we prove that if for every
uv ̸∈ E(G), |N(u)∪N(v)|+ δ(G) ≥ n, then G is not Z3-connected if and only if G can
be Z3-reduced to one of {C3,K4,K

−
4 , L}, where L is obtained from K4 by adding a new

vertex which is joined to two vertices of K4. Our results extend the early theorem by
Li et al. (Graphs and Combin., 29 (2013): 1891-1898).

Keywords: neighborhood unions, minimum degree, Z3-connectivity, 3-flow.

1. Introduction

Graphs in this paper are finite, loopless, and may have multiple edges. Termi-
nology and notation not defined here are from [1].

For S ⊆ V (G), let NS(v) denote the set of vertices in S that are adjacent
to v in G and dS(v) = |NS(v)|. If S = V (G), we write N(v) = NG(v), N [v] =
N(v) ∪ {v} and d(v) = dG(v). For a vertex v, N(v) is called the neighborhood
of v. For two subsets A,B ⊆ V (G), let eG(A,B) (e(A,B) for short) denote
the number of edges with one endpoint in A and the other endpoint in B. For
simplicity, if H1 and H2 are two subgraphs of G, we write e(H1,H2) instead of
e(V (H1), V (H2)). A complete graph on n vertices is denoted by Kn, and K−

n

is the graph obtained from Kn by deleting one edge. A k-cycle, denoted by Ck,
is a cycle of length k. For simplicity, we use δ to denote δ(G), the minimum
degree of G.

∗. Corresponding auhtor
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Let G be a graph, and let D be an orientation of G. If an edge e ∈ E(G) is
directed from a vertex u to a vertex v, then let tail(e) = u and head(e) = v. For a
vertex v ∈ V (G), let E+(v) denote the set of edges with tail v and E−(v) the set
of edges with head v. Let A denote an (additive) abelian group with the identity
element 0 and let A∗ = A − {0}. We define F (G,A) = {f |f : E(G) → A} and
F ∗(G,A) = {f |f : E(G) → A∗}.

Given a function f ∈ F (G,A), define ∂f : V (G) → A by

∂f(v) =
∑

e∈E+(v)

f(e) −
∑

e∈E−(v)

f(e),

where “
∑

” refers to the addition in A. The value ∂f(v) is known as the net
flow out of v under f .

For a graph G, a function b : V (G) → A is an A-valued zero-sum function
on G if

∑
v∈V (G) b(v) = 0. The set of all A-valued zero-sum functions on G

is denoted by Z(G,A). Given b ∈ Z(G,A), a function f ∈ F ∗(G,A) is an
(A, b)-nowhere-zero flow if G has an orientation D such that ∂f = b. A graph
G is A-connected if for every b ∈ Z(G,A), G admits an (A, b)-nowhere-zero
flow. A nowhere-zero A-flow is an (A, 0)-nowhere-zero flow. More specifically, a
nowhere-zero k-flow is a nowhere-zero Zk-flow, where Zk is the cyclic group of
order k. Tutte [18] proved that G admits a nowhere-zero A-flow with |A| = k if
and only if G admits a nowhere-zero k-flow.

An edge is contracted if it is deleted and its two ends are identified into a
single vertex. Let H be a connected subgraph of G. Let G/H denote the graph
obtained from G by contracting all edges of H and deleting all the loops. A
graph G is A-reduced if it contains no nontrivial A-connected subgraph. We say
that a graph G∗ is an A-reduction of G if G∗ is A-reduced and if G∗ can be
obtained from G by contracting all maximally A-connected subgraphs of G. It
is known that the A-reduction of a graph is A-reduced and an A-reduction of a
reduced graph is itself.

Integer flow problems were introduced by Tutte [17, 18]. Group connectivity
was introduced by Jaeger et al. [7] as a generalization of nowhere-zero flows.
The following conjecture is due to Jaeger et al..

Conjecture 1.1. ([7]) Every 5-edge-connected graph is Z3-connected.

Recently, Thomassen [16] confirmed the weak 3-flow conjecture, and Lovász
et al. [13] proved that every 6-edge-connected graph is Z3-connected. However,
Conjecture 1.1 is still open.

On the other hand, degree conditions, local structure and forbidden sub-
graphs are used to investigate the existence of nowhere-zero 3-flows and Z3-
connectivity of graphs. One can find sufficient conditions for the existence of
nowhere-zero 3-flows and Z3-connectivity, and such conditions are related with
ones for hamiltonian graphs. It is known that every graph which contains a
hamiltonian cycle admits a nowhere-zero 4-flow and there are infinite graphs
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containing a hamiltonian cycle do not admit a nowhere-zero 3-flow [15]. For the
literature, some results can be seen in [8, 14, 19, 20, 21].

In this paper, we still focus on the neighborhood unions condition, which was
first introduced by Faudree et al. [6] as sufficient conditions for the existence of
hamiltonian graphs. Faudree et al. [6] proved that if G is a 2-connected simple
graph on n ≥ 3 vertices such that |N(u) ∪N(v)| ≥ (2n − 1)/3 for each pair of
nonadjacent vertices u and v, then G is hamiltonian. For this Faudree et al.’s
result, the first author and X. Li proved that if |N(u) ∪ N(v)| ≥ ⌈2n3 ⌉ for any
pair of nonadjacent vertices u and v, then G is Z3-connected if and only if G
cannot be Z3-reduced one of four specified graphs {C3,K4,K

−
4 , L}, where G is

a 2-edge-connected graph. On the other hand, Faudree et al. [5] proved that
if G is a graph on n vertices such that |N(u) ∪ N(v)| + δ ≥ n for each pair of
nonadjacent vertices u and v, then G is hamiltonian, which improved the result
of Faudree et al. [6]. Motivated by above observations, we present the following
theorem in this paper.

Theorem 1.2. Let G be a 2-edge-connected simple graph on n ≥ 15 vertices.
If |N(u) ∪ N(v)| + δ ≥ n for every uv ̸∈ E(G), then G is not Z3-connected if
and only if G can be Z3-reduced to one of {C3,K4,K

−
4 , L}, where L is obtained

from K4 by adding a new vertex which is joined to two vertices of K4.

2. Proof of the main result

For simplicity, define F to be the set of all 2-edge-connected simple graphs on
n ≥ 15 vertices such that G ∈ F if and only if |N(u) ∪N(v)| + δ ≥ n for each
uv /∈ E(G).

In order to prove Theorem 1.2, we need some lemmas. Some results [2, 3, 8, 9]
on group connectivity are summarized as follows.

Lemma 2.1 ([2, 3, 8, 9]). Let A be an abelian group. Then the following results
are known:

(1) K1 is A-connected.

(2) If e ∈ E(G) and if G is A-connected, then G/e is A-connected.

(3) If H is a subgraph of G and if both H and G/H are A-connected, then
G is A-connected.

(4) Each even wheel is Z3-connected and each odd wheel is not.

(5) Let G be a simple graph and H a nontrivial subgraphs of G. If H is
Z3-connected, then |V (H)| ≥ 5.

(6) Let H be a Z3-connected subgraph of G. If e(v, V (H)) ≥ 2 for v ∈
V (G−H), then the subgraph induced by V (H) ∪ {v} is Z3-connected.

Let G be a graph and let u, v, w be three vertices of G with uv, uw ∈ E(G).
G[uv,uw] is defined to be the graph obtained from G by deleting two edges uv
and uw and adding one edge vw. It is clear that dG[uv,uw]

(u) = d(u) − 2.
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Lemma 2.2 ([2, 9]). Let A be an abelian group. Let G be a graph and let
u, v, w be three vertices of G with d(u) ≥ 4 and uv, uw ∈ E(G). If G[uv,uw] is
A-connected, then so is G.

Next we give two Theorems of Z3-connectivity about degree conditions,
which are important to prove our main Theorem.

Theorem 2.3 (Theorem 1.8 of [14]). If G is a simple graph satisfying the Ore-
condition with at least three vertices, then G is not Z3-connected if and only if
G is one of the 12 specified graphs shown in Fig. 1.
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Fig. 1: 12 specified graphs for Theorem 2.3

Theorem 2.4 (Theorem 1.5 of [10]). Let G be a 2-edge-connected simple graphs
on n ≥ 14 vertices. If |N(u)∪N(v)| ≥ ⌈2n3 ⌉ for every uv ̸∈ E(G), then G is not
Z3-connected if and only if G can be Z3-reduced to one of {C3,K4,K

−
4 , L}.

Lemma 2.5 ([13]). Every 6-edge-connected graph is Z3-connected.

Before proving Theorem 1.2, we summarize some characterizes of graphs in
F with δ ≥ ⌊n3 ⌋ + 1.

Lemma 2.6. Suppose that G ∈ F with δ ≥ ⌊n3 ⌋ + 1. If G contains a nontrivial
Z3-connected subgraph, then G is Z3-connected.

Proof. Assume that H is the maximum nontrivial Z3-connected subgraph of
G. If H = G, then we are done. Otherwise H is a proper subgraph of G. Let
G′ = G/H and let v′ denote the new vertex which H is contracted to. By the
choice of H, each vertex of V (G − H) has at most one neighbor in V (H). It
follows that G′ is a simple graph. Since G is 2-edge-connected, G′ is 2-edge-
connected, and so dG′(v′) ≥ 2.

We claim that |V (H)| > ⌊n3 ⌋ + 1. Firstly, we prove it for n ≥ 21. Suppose
otherwise that |V (H)| ≤ ⌊n3 ⌋ + 1. By Lemma 2.1(5), 5 ≤ |V (H)| ≤ ⌊n3 ⌋ + 1.
Assume |V (H)| = t. Thus H contains at most t(t−1)/2 edges. Since δ ≥ ⌊n3 ⌋+1,
dG′(v′) ≥ t(⌊n3 ⌋ + 1) − t(t − 1) = t(⌊n3 ⌋ + 2) − t2. Define a real value function
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f(t) = t(⌊n3 ⌋ + 2) − t2 − (n − t) = t(⌊n3 ⌋ + 3) − t2 − n, where t ∈ [5, ⌊n3 ⌋ + 1].
When t ∈ [5, ⌊n3 ⌋ − 1], it is easy to verify that f(t) > 0. In this case, we get
dG′(v′) > n − t = |V (G′ − v′)|. This contradicts that G′ is a simple graph.
This implies that t = ⌊n3 ⌋ or ⌊n3 ⌋ + 1. We firstly assume that t = ⌊n3 ⌋. In
this case, note that f(⌊n3 ⌋) = 3⌊n3 ⌋ − n and dG′(v′) ≥ 2⌊n3 ⌋ ≥ 14. Let u
and v be two adjacent vertices of N(v′). By the choice of H and Lemma 2.1
(4), |(NG′(u) ∩ NG′(v)) ∩ N(v′)| ≤ 1. When (NG′(u) ∩ NG′(v)) ∩ N(v′) =
{w}, then NG′(u) ∪ NG′(v) has 2⌊n3 ⌋ − 4 vertices in N(v′) other than w since
dG′(u) + dG′(v) ≥ 2⌊n3 ⌋ + 2. It is easy to see that G′

[uw,vw] contains a 2-cycle.
Iteratively contracting 2-cycles generated in the processing leads eventually to a
K1, which is Z3-connected. By Lemma 2.2 and 2.1(3), G is Z3-connected. When
(NG′(u) ∩NG′(v)) ∩N(v′) = ∅, we know that |NG′(u) ∪NG′(v)| ≥ 2⌊n3 ⌋. Let z
be a neighbor of u in N(v′). It is easy to see that G′

[zu,zv′] contains a 2-cycle.
Iteratively contracting 2-cycles generated in the processing leads eventually to
a K1, which is Z3-connected. Therefore G is Z3-connected by Lemmas 2.2 and
2.1(3). Now we assume that |V (H)| = ⌊n3 ⌋ + 1. Clearly G′ − v′ = G − H.
In this case, dG′(v′) ≥ (⌊n3 ⌋ + 1)(⌊n3 ⌋ + 2) − (⌊n3 ⌋ + 1)2 = ⌊n3 ⌋ + 1. Hence
dG′(x)+dG′(y) ≥ 2(⌊n3 ⌋+1) ≥ n− (⌊n3 ⌋+1)+1 ≥ |G′| for each two nonadjacent
vertices x and y in G′ and |V (G′)| ≥ dG′(v) + 1 ≥ ⌊n3 ⌋ + 2 ≥ 7. By Lemmas 2.3
and 2.1 (3), G is Z3-connected.

Now we claim that |V (H)| ≥ ⌊n3 ⌋ + 2 for 15 ≤ n ≤ 20. Similarly, we
get 5 ≤ |V (H)| ≤ ⌊n3 ⌋ + 1. For 15 ≤ n ≤ 17, note that ⌊n3 ⌋ = 5. In this
case, the proof is similarly to the case |V (H)| = ⌊n3 ⌋, ⌊

n
3 ⌋ + 1 for n ≥ 21.

Therefore |V (H)| ≥ ⌊n3 ⌋ + 2 for 15 ≤ n ≤ 17. For 18 ≤ n ≤ 20, we firstly
verify that |V (H)| ̸= 5. Suppose otherwise that |V (H)| = 5. Since δ ≥ 7,
d(v′) ≥ 15. If n = 18 or 19, then d(v′) ≥ |G − H|. It contradicts that G′

is simple. If n = 20, then we get N(v′) = V (G) − V (H). Let x, y ∈ N(v′)
be two adjacent vertices in G′. Consider the graph G′

[xv′,xy]. It is easy to

see that G′
[xv′,xy] contains at least five 2-cycles with one common vertex v′.

Iteratively contracting 2-cycles generated in the processing leads eventually to
the graph G′′. Denote the new vertex by v′′. If G′′ = K1, then G′ is Z3-
connected by Lemmas 2.2 and 2.1 (3). We may assume that G′′ ̸= K1. It is
easy to verify that dG′′−v′′(v) ≥ 6 for v ∈ V (G′′) − {x, v′′}. This implies that
G′′−v′′ satisfies Ore-condition. Therefore, G′′−v′′ is Z3-connected by Theorem
2.3. By Lemmas 2.1 and 2.2, G′ is Z3-connected. Thus, G is Z3-connected
by Lemma 2.1. Then we get |V (H)| ≥ ⌊n3 ⌋ = 6 for 18 ≤ n ≤ 20. When
|V (H)| = ⌊n3 ⌋or ⌊n3 ⌋ + 1 for 18 ≤ n ≤ 20, the proof is similarly to the case
n ≥ 21. Therefore, |V (H)| ≥ ⌊n3 ⌋ + 2.

Thus, we may assume that |V (H)| ≥ ⌊n3 ⌋ + 2. Note that |V (G′ − v′)| =
n− |V (H)| ≤ n− ⌊n3 ⌋ − 2 = ⌈2n3 ⌉ − 2. Since e(v,H) ≤ 1 for each v ∈ V (G−H)
and n ≥ 15, δ(G′ − v′) ≥ ⌊n3 ⌋ ≥ 5. Hence dG′−v′(x) + dG′−v′(y) ≥ 2δ(G′ − v′) ≥
2⌊n3 ⌋ ≥ |V (G′−v′)| for every two nonadjacent vertices x and y of G′−v′. Hence
G′ − v′ satisfies the Ore-condition. Since δ(G′ − v′) ≥ 5, G′ − v′ is Z3-connected
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by Lemma 2.3. For e(v′, V (G−H)) ≥ 2, G′ is Z3-connected by Lemma 2.1 (6).
Therefore, G is Z3-connected by Lemma 2.1 (3).

Lemma 2.7. Let G ∈ F and δ ≥ ⌊n3 ⌋ + 1. If G contains no Z3-connected
subgraph, then G is 6-edge-connected.

Proof. Suppose that E0 = (X,Y ) is minimum edge cut of the graphG such that
|X| is smallest. If e(X,Y ) ≥ 6, then we have done. Otherwise we assume that
2 ≤ e(X,Y ) ≤ 5. Now we claim that G[X] contains a Z3-connected subgraph.
Note that ⌊n3 ⌋ + 1 ≤ |X| ≤ n

2 . Without loss of generality, we assume that
x1, x2, . . . , xl ∈ X are incident to the edge of E0, where 1 ≤ l ≤ 5. When
l = 1, we consider the graph H = G[X − {x1}]. Since X − x1 is not adjacent
to any vertex of Y , δ(H) ≥ ⌊n3 ⌋ ≥ 5. Thus, dH(x) + dH(y) ≥ 2⌊n3 ⌋ ≥ |H|
for nonadjacent two vertices x, y in H. By Theorem 2.3, H is Z3-connected.
When l = 2, we consider the graph H = G[X − {x1, x2}]. In this case δ(H) ≥
⌊n3 ⌋−1 ≥ 4. Therefore, for nonadjacent two vertices x, y in H, dH(x)+dH(y) ≥
2(⌊n3 ⌋ − 1) = 2⌊n3 ⌋ − 2 ≥ |H|. Thus H is Z3-connected by Theorem 2.3. When
l = 3, 4, 5, it is easy to verify that G[X] satisfies the Ore-condition. Therefore,
by Theroem 2.3, G[X] is Z3-connected. It contradicts that G contains no Z3-
connected subgraph. This complete the proof of the lemma.

Proof of Theorem 1.2 If |N(u) ∪N(v)| ≥ ⌈2n3 ⌉ for every pair of nonadjacent
vertices u and v of G, then G is Z3-connected or can be Z3-reduced to one of
{C3,K4,K

−
4 , L} by Theorem 2.4. Therefore, in the following, we may assume

that there are at least a pair of nonadjacent vertices u and v such that |N(u) ∪
N(v)| ≤ ⌈2n3 ⌉ − 1.

SinceG is 2-edge-connected, δ ≥ 2. When 2 ≤ δ ≤ ⌊n3 ⌋, |N(u)∪N(v)| ≥ ⌈2n3 ⌉
for each uv /∈ E(G). In this case we are done. Therefore, without loss of
generality, we may assume that δ(G) ≥ ⌊n3 ⌋ + 1. If G contains a nontrivial
Z3-connected graph, then G is Z3-connected by Lemma 2.6. If G contains
no nontrivial Z3-connected graph, then, by Lemma 2.7, G is 6-edge-connected.
Thus, by Lemma 2.5, G is Z3-connected. This complete the proof of the theorem.
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for variant contractive mappings in the framework of incomplete ordered metric spaces.
Few examples have been given to illustrate the new concepts and results.

Keywords: t-property, ordered metric space, fixed point.

1. Introduction and preliminaries

Uniqueness of fixed points for contraction mappings in complete metric spaces
was proved long ago in 1922 by Banach [10]. It was popular by the name of
Banach Contraction Principle. This has played a pivotal role in the evolution of
fixed point theory. This principle has been generalized in framework of different
spaces, see [4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 28]. In 2004, Ran-
Reuring [26], Nieto and Rodŕıguez-López [24] and many others have generalized
Banach Contraction Principle in the setting of ordered metric spaces, see [2,
3, 5, 6, 8, 9, 25, 27, 29, 30]. In this article, t-property of partially ordered
metric spaces has been introduced.Using this concept, we present some fixed
point results for variant contraction mappings.

Definition 1.1 ([7]). An ordered metric space (X, d,≼) is said to be O-complete
if every increasing Cauchy sequence in X converges in X. In an ordered met-
ric space, completeness implies O-completeness, but the converse is not true in
general.

Now, we introduce some definitions.

Definition 1.2. Let (X,≼) be any ordered set and x, y ∈ X. Such x is called a
strict upper bound of y, if y ≼ x and y ̸= x. We denote it by y ≺ x.

Definition 1.3. Let (X, d,≼) be any ordered metric space. X has the t-property
if every strictly increasing Cauchy sequence {xn} in X has a strict upper bound
in X, i.e., there exists u ∈ X such that xn ≺ u.

We present the following examples illustrating Definition 1.3.

Example 1.1. Let X = R,Q, (a, b], a, b ∈ R be equipped with the natural
ordering ≤ and the usual metric. Then X has t-property.

Example 1.2. Let X = {(x, y) : x, y ∈ Q}. We define ≼ in X by (x1, x2) ≼
(y1, y2) iff x1 ≤ y1 and x2 ≤ y2. Let d be the Euclidean metric on X. Then
(X, d,≼) has the t-property.

Example 1.3. Let X = C[a, b] be equipped with the metric d defined as

d(f, g) =
∫ b
a | f − g | dx. Then (X, d) is not a complete metric space. Now,

we define ≼ in X as: f ≼ g iff f(x) ≤ g(x), for each x ∈ [a, b]. Obviously,
(C[a, b], d,≼) has t-property.

In the following example, the increasing Cauchy sequence does not have any
strict upper bound.
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Example 1.4. Let us consider X = {(x, y, z) : x, y, z ∈ Q with max{x, y, z} <√
2}. Endow X with the Euclidean metric on R3. Define ≼ in X by (x1, y1, z1) ≼

(x2, y2, z2) if x1 ≤ x2, y1 ≤ y2 and z1 ≤ z2. Consider xn = (qn, qn, qn) in X such
that q0 = 1 and {qn} is strictly increasing in Q. We have that qn <

√
2 for all

n ≥ 0. Also, {xn} is a strictly increasing Cauchy sequence in X, but it does not
have any strict upper bound in X.

Remark 1.1. Mention that every totally ordered complete metric space has t-
property provided that there exists a strictly increasing Cauchy sequence. But,
every metric space having t-property is not complete. This fact is described In
Example 1.1 (except the case R), Example 1.2 and Example 1.3.

2. Main Result

In all our given results, the completeness of the metric space is omitted. To
overcome this lack, we require that the space has the t-property. Our first fixed
point result is

Theorem 2.1. Let (X, d,≼) be an ordered metric space satisfying the t-property.
Let f : X → X be a self-mapping. Assume that f is monotonic non-decreasing.
Further, if
(1) there exists x0 ∈ X such that x0 ≼ f(x0);
(2) for all x, y ∈ X with x ≺ y,

(1) d(y, f(y)) ≤ αd(x, f(x)),

where α ∈ (0, 1). Then f has at least one fixed point in X. Moreover, every
strict upper bound of a fixed point is also a fixed point.

Proof. By assumption (1), we have x0 ≼ f(x0). If x0 = f(x0), the proof is
completed. Otherwise, choose x1 = f(x0) such that x0 ≺ x1. By monotonicity
of f , we have f(x0) ≼ f(x1), that is, x1 ≼ f(x1). If x1 = f(x1), the proof
is completed. Otherwise, choose x2 = f(x1) such that x1 ≺ x2. Again, by
monotonicity of f , we have f(x1) ≼ f(x2). Continuing in this process, we get a
strictly increasing sequence {xn} in X such that

(2) xn+1 = f(xn).

As x0 ≺ x1, by (1), we have

(3) d(x1, f(x1)) ≤ αd(x0, f(x0)).

Again as x1 ≺ x2, by (1), we have

(4) d(x2, f(x2)) ≤ αd(x1, f(x1)).

Using (3) in (4), we get

d(x2, f(x2)) ≤ α2d(x0, f(x0)).
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Continuing in this way, we get

(5) d(xn, f(xn)) ≤ αnd(x0, f(x0)).

Now, we show that {xn} is a Cauchy sequence in X. For n < m, by using
triangular inequality, (2) and (5), we get

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm),

= d(xn, f(xn)) + d(xn+1, f(xn+1)) + ...+ d(xm−1, f(xm−1)),

≤ αnd(x0, f(x0)) + αn+1d(x0, f(x0)) + ...+ αm−1d(x0, f(x0)),

≤ (αn + αn+1 + ...+ αm−n−1)d(x0, f(x0)),

≤ αn

1 − α
d(x0, f(x0)).

This shows that {xn} is an increasing Cauchy sequence in X, which has the
t-property, so there exists u ∈ X such that xn ≺ u for all n. Thus, from (1) and
(5), we have

d(u, f(u)) ≤ αd(xn, f(xn)) ≤ αn+1d(x0, f(x0)) → 0, as n→ ∞.

Thus f(u) = u. Hence u is a fixed point of f . Now, let k be any strict upper
bound of u in X, that is, u ≺ k. By (1), we have

d(k, f(k)) ≤ αd(u, f(u)) = 0,

so k = f(k), that is, k is also a fixed point of f in X.

Example 2.1. Let X = {an : an+1 = 3an + 1 for n ≥ 0 and a0 = −1} ∪
(−1, 0]. Then X = {...,−41,−14,−5,−2,−1} ∪ (−1, 0]. Endow X with the
usual metric on R and the natural ordering ≤. Clearly, (X, d,≼) has the t-
property. Define f : X → X by

f(x) =

{
3x+ 1, ifx < −1,

x, ifx ≥ −1.

Obviously, f is non-decreasing. Now, it remains to prove that f satisfies (1). Let
x, y ∈ X with x < y. If y ≥ −1, then f(y) = y, so d(y, f(y)) = 0 and the proof
is completed. Assume now that x < y ≤ −2. Then d(y, f(y)) = −(2y + 1) and
d(x, f(x)) = −(2x+ 1). It should be noted that for x, y ∈ X with x < y ≤ −2,
we have y ≥ 5

12x. Then

d(y, f(y)) = −(2y + 1)

≤ −5

6
x− 1

= −1

2
[
5x+ 6

3
]

≤ −1

2
(2x+ 1)

= αd(x, f(x)),
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where α = 1
2 ∈ (0, 1). Hence all the conditions of Theorem 2.1 are satisfied.

Therefore f has at least one fixed point in X. In fact, any element in the set
[0, 1] is a fixed point of f .

On the other hand, neither Banach Contraction, nor Kannan-type and nor
Chatterjea-type contraction holds. Indeed, by taking x = −5 and y = −2, we
have

d(f(x), f(y)) > kd(x, y) for all k ∈ (0, 1),

d(d(x), f(y)) > k[d(x, f(x)) + d(y, f(y)] for all k ∈ (0,
1

2
),

and

d(d(x), f(y)) > k[d(x, f(y)) + d(y, f(x)] for all k ∈ (0,
1

2
).

Theorem 2.2. Let (X, d,≼) be an O-complete ordered metric space. Let f :
X → X be a self-mapping such that f is continuous and monotonic non-
decreasing. Further if
(1) there exists x0 ∈ X such that x0 ≼ f(x0).
(2) for all x, y ∈ X with x ≺ y, x ̸= f(x) and for any α ∈ (0, 12),

(6) d(y, f(y)) ≤ α[d(x, y) + d(f(x), f(y)].

Then f has at least one fixed point in X.

Proof. As Theorem 2.1, we construct a strictly increasing sequence {xn} in X
such that

(7) xn+1 = f(xn).

As x0 ≺ x1, by using (6) and (7), we have

d(x1, f(x1)) ≤ α[d(x0, x1) + d(f(x0), f(x1)]

= αd(x0, f(x0)) + αd(x1, f(x1)).(8)

Then

(9) d(x1, f(x1)) ≤
α

1 − α
d(x0, f(x0)).

Again as x1 ≺ x2, by using (6) and (7), we have

d(x2, f(x2)) ≤ α[d(x1, x2) + d(f(x1), f(x2)],

= αd(x1, f(x1)) + αd(x2, f(x2)).(10)

Then
d(x2, f(x2)) ≤

α

1 − α
d(x1, f(x1)).

By using (9),

d(x2, f(x2)) ≤ (
α

1 − α
)2d(x0, f(x0)).
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Continuing this process, we get

(11) d(xn, f(xn)) ≤ (
α

1 − α
)nd(x0, f(x0)).

As 0 < α < 1
2 , we get 0 < k = α

1−α < 1. (11) becomes

(12) d(xn, f(xn)) ≤ knd(x0, f(x0)).

As Theorem 2.1, {xn} is an increasing Cauchy sequence in X. Since (X, d) is
O-complete, there exists u ∈ X such that

(13) lim
n→∞

xn = u.

Since f is continuous,

(14) lim
n→∞

f(xn) = f(u).

Taking n→ ∞ in (12) and making use of (13) and (14), we obtain d(u, f(u)) = 0.
Hence u is a fixed point of f in X.

Now, we are going to prove Theorem 2.2 when f is not continuous.

Definition 2.1 (SICU-property). An ordered metric space (X, d,≼) is said to
have SICU-property, if every strictly increasing convergent sequence has the limit
as it’s strict upper bound, i.e., if {xn} is strictly increasing convergent sequence
with xn → x⇒ xn ≺ x, for all n.

Example 2.2. Let X = Rn endowed with Euclidean metric and ≼ is defined
as (x1, x2, ..., xn) ≼ (y1, y2, ..., yn), if xi ≤ yi, for all i = 1, 2, ..., n. Then Rn has
SICU-property.

Theorem 2.3. In Theorem 2.2, if we leave the continuity of f , but assume that
(X, d,≼) has SICU-property, then f has at least one fixed point in X.

Proof. Going through same lines of proof in Theorem 2.2, we get xn → u such
that xn ≺ u. Thus, by using triangular inequality and (6), we have

d(u, f(u)) ≤ α[d(xn, u) + d(f(xn), f(u)],

≤ α[d(xn, u) + d(f(xn), xn) + d(xn, u) + d(u, f(u))].

Then

d(u, f(u)) ≤ α

1 − α
[2d(xn, u) + d(xn, f(xn))].

By using (12) and taking n→ ∞, we have d(u, f(u)) ≤ 0. Thus f(u) = u.
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Example 2.3. Let X = R2 be endowed with the Euclidean metric. Consider
(x, y) ≼ (u, v) iff x ≤ u and y ≤ v. Then (X, d,≼) is O-complete and has
SICU-property.Take A = {1, 3, 5, 7, ...} as the set of all positive odd numbers.
Let E ⊂ X defined by E = {(a, b) : a ∈ A and 0 < b < 1}. Clearly, for all
(a, b), (c, d) ∈ E such that (a, b) ≺ (c, d), we have

a+
3

2
≤ c.

Define f : R2 → R2 by

f(x, y) =

{
(x, 1), if (x, y) ∈ E

(x, y), if (x, y) ∈ Ec.

It is easy to verify that f is non-decreasing. We show that f satisfies (6). For
any x = (x1, y1), y = (x2, y2) ∈ X with x ≺ y and x ̸= f(x), there exist only
two cases:
(i) x ∈ E and y ∈ Ec,
(ii) x, y ∈ E.

Case (i). y ∈ Ec, so y = f(y), that is, d(y, f(y)) = 0. Hence (6) holds.
Case (ii) x = (x1, y1), y = (x2, y2) ∈ E. Then 0 < y1, y2 < 1. Also, by

definition of E, we have x2 − x1 ≥ 3
2 . Also,

d(y, f(y)) = d((x2, y2), (x2, 1)) = (1 − y2) < 1,

and

d(x, y) = d((x1, y1), (x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2 ≥ (x2 − x1).

Similarly, d(f(x), f(y)) = (x2 − x1). Taking α = 1
3 ∈ (0, 12), we have

α[d(x, y) + d(f(x), f(y)] ≥ 1

3
2(x2 − x1) ≥

2

3

3

2
= 1 > d(y, f(y)).

All the conditions of Theorem 2.3 are satisfied. Thus f has a fixed point in X.
Any elemnt in Ec is a fixed point of f .

Example 2.4. Let X = {an : an+1 = 5an + 1 for n ≥ 0 and a0 = −1} ∪
(−1, 0]. Then X = {...,−94,−19,−4,−1} ∪ (−1, 0]. Endow X with the usual
metric on R and the natural ordering ≤. Then (X, d,≼) is an O-complete
ordered metric space and satisfies the SICU-property. Define f : X → X by

f(x) =

{
5x+ 1, if x ≤ −1,

x, if x > −1.

Then f is non-decreasing. We shall prove that f satisfies (6). Let x, y ∈ X with
x < y. If y > −1, then d(y, f(y)) = 0 and so (6) holds. Assume that x < y ≤ −1.



t-PROPERTY OF METRIC SPACES AND FIXED POINT THEOREMS 429

Then d(y, f(y)) = −(4y + 1), d(x, y) = (y − x) and d(f(x), f(y)) = 5(y − x).
It should be noted that for x, y ∈ X with x < y ≤ −1, we have y ≥ x

3 or
−2x ≥ −6y. Taking α = 1

3 ∈ (0, 12), we get

α[d(x, y) + d(f(x), f(y))] = 2y − 2x ≥ 2y − 6y = −4y ≥ −(4y + 1) = d(y, f(y)).

Thus all the conditions of Theorem 2.3 are satisfied, and hence there exists a
fixed point of f in X. Any x ∈ [−1, 0] is a fixed point of f .

Example 2.5. Let X = {a1, a2, a3, a4} be any ordered set where ≼ is defined
as: ai ≼ aj iff i ≤ j. If we define a metric d : X ×X → [0,∞) by

d(ai, ai) = 0, ∀i = 1, 2, 3, 4.

d(ai, ai+1) = d(ai+1, ai) = 1, for i = 1, 2, 3

d(ai, ai+2) = d(ai+2, ai) = 2, for i = 1, 2

d(a1, a4) = d(a4, a1) = 3.

Note that (X, d,≼) is a finite ordered metric space. We define f : X → X by
f(a1) = a2, f(a2) = a2, f(a3) = a4, f(a4) = a4. If ai ≼ aj for all i ≤ j, then
f is a monotonic non-decreasing mapping. Let x, y ∈ X such that x ≺ y with
x ̸= f(x). Take x = a1 and y = a3. Otherwise, y = f(y), so d(y, f(y)) = 0
and the proof is completed in this case. For x = a1 and y = a3, We have
d(x, y) = d(a1, a3) = 2, d(f(x), f(y)) = d(f(a1), f(a3)) = d(a2, a4) = 2 and
d(y, f(y)) = d(a3, a4) = 1. Taking α = 1

3 ∈ (0, 12), then

d(y, f(y)) ≤ α[d(x, y) + d(f(x), f(y))].

For x ≺ y = a3, a4, we have d(y, f(y)) = 0. Thus all conditions of Theorem 2.2
are satisfied. The elements a2 and a4 are fixed points of f .

Here, neither Banach Contraction, nor Kannan-type contraction and nor
Chatterjea-type contraction is satisfied. This can be proved by taking x = a1
and y = a3.

Now, let Φ be set of all functions ϕ : [0,∞) → [0,∞) satisfying:
(i) ϕ is non-decreasing;
(ii) ϕ(t) < t, ∀t > 0;
(iii) lim

r→t+
ϕ(r) < t, ∀t > 0.

We state the following known lemma.

Lemma 2.1 ([1]). Let ϕ ∈ Φ and {un} be a given sequence such that un → 0+

as n→ ∞. Then ϕ(un) → 0+ as n→ ∞. Also ϕ(0) = 0.

Theorem 2.4. Let (X, d,≼) be any ordered metric space having the t-property
and f : X → X be a monotonic non-decreasing self-mapping. Assume for all
x, y ∈ X with x ≺ y, we have

(15) d(y, f(y)) ≤ ϕ(d(x, f(x))),
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where ϕ ∈ Φ. Suppose that the series
∑

n≥1 ϕ
n(t) converges for all t > 0. If

there exists x0 ∈ X such that x0 ≼ f(x0), then f has at least one fixed point in
X. Moreover, every strict upper bound of fixed point of f is again a fixed point
of f .

Proof. As Theorem 2.1 and without loss of generality, we construct a strictly
increasing sequence {xn} in X such that

(16) xn+1 = f(xn).

We take Dn = d(xn, f(xn)). Since xn ̸= f(xn) ∀n, we have Dn > 0 for all n. As
xn ≺ xn+1 for all n, using (15), we get

(17) Dn+1 = d(xn+1, f(xn+1)) ≤ ϕ(d(xn, f(xn))) = ϕ(Dn) < Dn.

This shows that {Dn} is a monotonic decreasing sequence in R+, so there exists
r ≥ 0 such that

(18) lim
n→∞

Dn = r.

From (17), we have

(19) lim
n→∞

ϕ(Dn) = r.

Suppose that r > 0. By (19) and lim
r→t+

ϕ(r) < t for t > 0, we get

r = lim
n→∞

ϕ(Dn) = lim
Dn→r+

ϕ(Dn) < r,

which is a contradiction, that is, r = 0, i.e.,

(20) lim
n→∞

Dn = 0.

From (15)
d(x1, f(x1)) ≤ ϕ(d(x0, f(x0))).

Repeating this process n times, we get

Dn = d(xn, f(xn)) ≤ ϕn(d(x0, f(x0))), for all n ≥ 1.

Since
∑

n≥1 ϕ
n(t) converges for all t > 0, we have that

∑
n≥1Dn converges. We

shall show that {xn} is a Cauchy sequence in X. As {xn} is strictly decreasing
sequence, for n,m ∈ N with n < m, we have by using (15), (16) and (20)

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

= d(xn, f(xn)) + d(xn+1, f(xn+1)) + ...+ d(xm−1, f(xm−1))

= Dn +Dn+1 + ...+Dm−1 ≤
∞∑
k=n

Dk → 0, as n→ ∞.
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Thus {xn} is a monotonic increasing Cauchy sequence in X, which has the t-
property, so there exists u ∈ X such that xn ≺ u for all n. By using (15) and
(19), we have

d(u, f(u)) ≤ ϕ(d(xn, f(xn))) = ϕ(Dn) → 0, as n→ ∞.

This shows that u is a fixed point of f in X. Let z ∈ X be any strict upper
bound of u, i.e., u ≺ z. By using (15) and Lemma 2.1, we have

d(z, f(z)) ≤ ϕ(d(u, f(u))) = ϕ(0) = 0.

Hence z is also a fixed point of f in X.
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Abstract. The operations of cubic sum, cubic product, cubic intersection, cubic union
are given in MV-algebras, and the concepts of cubic MV-ideals and cubic prime MV-
ideals in MV-algebras are introduced. Then some characterizations of cubic MV-ideals
and cubic prime MV-ideals are obtained. The image set of cubic prime MV-ideals
is proved to be a chain under the order relation ≼ by discussing the properties of
cubic prime ideals, and the cubic prime MV-ideal theory and extension theorem of MV-
algebras are presented. Finally, the quotient structure of cubic MV-ideals is constructed
by cubic cosets, and three isomorphism theorems concerning the quotient of cubic MV-
ideals are presented by using the notion of invariant cubic sets.

Keywords: MV-algebra, cubic MV-ideal, cubic prime MV-ideal, quotient structure.

1. Introduction

Non-classical logic systems which lay logical foundation for dealing with uncer-
tain information processing and fuzzy information in computer science, have
become one of the most active research directions in artificial intelligence field.
The study of logic algebraic systems not only promotes the development of
non-classical mathematical logics, but also enriches the content and methods of
algebras. MV-algebras were introduced by Chang [1] as the algebraic counter-
part of  Lukasiewicz infinite-valued calculus, and MV-algebras entered deeply in
many areas of mathematics and logics. The notions of pseudo MV-algebras [2]

∗. Corresponding author
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and generalized MV-algebras [3] as two non-commutative but equivalent gener-
alizations of MV-algebras have independently appeared, and they are used for
algebraic foundations of non-commutative fuzzy logic.

Ideal theory is a very effectively tool to study logical algebras and the com-
pleteness of the corresponding nonclassical logics. On the one hand, ideals are
closely related to congruence relations with which one can associate quotient
algebras; on the other hand, the sets of provable formulas in the correspond-
ing inference systems from the point of view of uncertain information can be
described by fuzzy ideals of those algebraic semantics. A number of researches
have motivated to develop nonclassical logics, and also to enrich the ideal the-
ory of algebras [4, 5, 6]. In addition, based on the fuzzy set theory introduced
by Zadeh, the related fuzzy structures (i.e., the fuzzification) of ideals in MV-
algebras were further studied [7, 8]. Hedayati [9] extended the notions of fuzzy
ideals to (∈,∈ ∨q)-fuzzy (implicative) ideals in pseudo MV-algebras by using the
concept of quasicoincidence of a fuzzy value with a fuzzy set. Using falling shad-
ows theory, [10] proposed the concept of falling fuzzy (implicative) ideals which
as a generalization of a T∧-fuzzy (implicative) ideal in MV-algebras. Moreover,
based on the concept of the soft set, [11] established the int-soft ideal theory in
pseudo MV -algebras.

Using a fuzzy set and an interval-valued fuzzy set, Jun et al. [12] introduced
a new notion, called a cubic set, and investigated several properties, then they
applied the cubic theory to BCK/BCI-algebras, and proposed cubic P-ideals
and cubic α-ideals [13, 14]. Continue the Jun’s work in [15], Khan et al. [16]
introduced the concepts of cubic h-ideals, cubic h-bi-ideals and cubic h-quasi-
ideals in hemirings, and provided some basic properties. Combining cubic sets
and soft sets, [17] introduce the notions of cubic soft o-subalgebras and (closed)
cubic soft ideals in BCK/BCI-algebras, and investigate related properties.

The paper aims to investigate ideals of MV-algebras based on the cubic the-
ory. The concepts of cubic MV-ideals and cubic prime MV-ideals in MV-algebras
are given, and some characterizations of them are present by the introduced cu-
bic operations. Inspired by the fuzzy prime filter theorem in [18], the cubic
prime MV-ideal theorem is provided in MV-algebras. A congruence relation
on an MV-algebra is constructed via a cubic MV-ideal. Furthermore, a quo-
tient structure of MV-algebras is constructed by cubic cosets, and some certain
isomorphism theorems are proved by using the notion of invariant cubic sets.

2. Preliminaries

In this section, we will provide basic terminologies and notations of MV-algebras
which are necessary for the understanding of subsequent results.

An algebra (M,⊕,¬, 0) of type (2, 1, 0) is called an MV-algebra if it satisfies
the following axioms: for any x, y, z ∈M ,

(MV1) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z,



436 YONGWEI YANG, YONGZHAO WANG and XIAOLONG XIN

(MV2) x⊕ y = y ⊕ x,

(MV3) x⊕ 0 = x,

(MV4) ¬¬x = x,

(MV5) x⊕ ¬0 = ¬0,

(MV6) ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

Let (M,⊕,¬, 0) be an MV-algebra, for any x, y ∈M , we put 1 = ¬0, x⊗y =
¬(¬x⊕¬y), x→ y = ¬x⊕y, x⊖y = x⊗¬y, x∨y = ¬(¬x⊕y)⊕y = (x⊖y)⊕y,
x∧y = ¬(¬x∨¬y) = (x⊕¬y)⊗y. In what follows, unless mentioned otherwise,
(M,⊕,¬, 0) is an MV-algebra and will often be referred to by its support set
M .

Proposition 2.1 ([19, 20]). Let (M,⊕,¬, 0) be an MV-algebra. Then the fol-
lowing assertions are valid: for any x, y, z, s, t ∈M ,

(1) x ≤ y if and only if ¬x⊕ y = 1 if and only if x⊖ y = 0;

(2) x⊖ y ≤ z if and only if x ≤ y ⊕ z;

(3) x⊗ ¬x = 0, x⊕ ¬x = 1, (x⊖ y) ∧ (y ⊖ x) = 0;

(4) x⊗ y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y;

(5) x⊖ y = ¬y ⊖ ¬x, x⊖ z ≤ (x⊖ y) ⊕ (y ⊖ z);

(6) (x⊕ s) ⊖ (y ⊕ t) ≤ (x⊖ y) ⊕ (s⊖ t);

(7) if x ≤ y, then ¬y ≤ ¬x, x⊗ z ≤ y ⊗ z and x⊕ z ≤ y ⊕ z;

(8) (x ∨ y) ⊖ y = x⊖ y, x⊖ (x ∧ y) = x⊖ y.

Let (M,⊕,¬, 0) be an MV-algebra and I a nonempty set of M . Then I
is called an ideal of M if it satisfies: for any x, y ∈ M , (1) x, y ∈ I implies
x⊕ y ∈ I; (2) x ≤ y and y ∈ I imply x ∈ I. An ideal I is proper iff I ̸= M . We
say that an ideal P is prime iff it is proper and satisfies for any x, y ∈M , either
x⊖ y ∈ P or y ⊖ x ∈ P .

Filters, the order duals of lattice ideals, have a variety of applications in
logic and topology. Since MV-algebra M is a lattice, we can give the notion of
lattice filters. A nonempty subset F of M is called a lattice filer if it satisfies:
for any x, y ∈ M , (1) x, y ∈ F implies x ⊕ y ∈ F ; (2) x ≤ y and x ∈ F imply
y ∈ F [21].

Let M1 and M2 be MV-algebras. A function f : M1 → M2 is a homomor-
phism iff it satisfies the following conditions: for any x, y ∈ M1, (1) f(0) = 0,
(2) f(x⊕ y) = f(x) ⊕ f(y), (3) f(¬x) = ¬f(x).

Now we will recall the concept of interval-valued fuzzy sets. A closed subin-
terval ã = [a−, a+] of a closed unit interval [0, 1] is called an interval number,
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where 0 ≤ a− ≤ a+ ≤ 1. Denote by D[0, 1] the set of all interval numbers.
We define the operations ∧, ∨, ≥, ≤ and = in case of two elements in D[0, 1].
Consider two elements ã1 = [a−1 , a

+
1 ], ã2 = [a−2 , a

+
2 ] in D[0, 1], then

(1) ã1 ≥ ã2 if and only if a−1 ≥ a−2 and a+1 ≥ a+2 ;

(2) ã1 ≤ ã2 if and only if a−1 ≤ a−2 and a+1 ≤ a+2 ;

(3) ã1 = ã2 if and only if a−1 = a−2 and a+1 = a+2 ;

(4) ã1 ∧ ã2 = [min{a−1 , a
−
2 },min{a+1 , a

+
2 }];

(5) ã1 ∨ ã2 = [max{a−1 , a
−
2 },max{a+1 , a

+
2 }];

(6) rinfi∈Λãi = [inf
i∈Λ

a−i , inf
i∈Λ

a+i ], where ãi ∈ D[0, 1], i ∈ Λ;

(7) rsupi∈Λãi = [sup
i∈Λ

a−i , sup
i∈Λ

a+i ], where ãi ∈ D[0, 1], i ∈ Λ;

other operations > and < can be defined analogously.
An interval-valued fuzzy set (briefly, IVF-set) µ̃A defined on a nonempty set

X is given by
µ̃A = {(x, [µ−A(x), µ+A(x)])|x ∈ X},

where µ−A(x) ≤ µ+A(x) for all x ∈ X. Then the ordinary fuzzy sets µ−A : X → [0, 1]
and µ+A : X → [0, 1] are called a lower fuzzy set and an upper fuzzy set of µ̃A,
respectively.

3. Cubic MV-ideals of MV-algebras

In this section, we define some cubic operations on MV-algebras, then introduce
a new notion called cubic MV-ideal of MV-algebras and study several properties
of it.

Definition 3.1 ([12, 13]). Let X be a nonempty set. A cubic set A in X as an
object having the following form:

A = {(x, µ̃A(x), λA(x))|x ∈ X},

which is briefly denoted by A = (µ̃A, λA), where µ̃A = [µ−A, µ
+
A] is an IVF set

in X and λA is a fuzzy set in X. In order to facilitate our subsequent discussion,
for any x ∈ X, the number A(x) = (µ̃A(x), λA(x)) is called a cubic element,
where the numbers µ̃A(x) and λA(x) represent, respectively, the membership
degree and non-membership degree of the element x to the set A, and µ+A(x) +
λA(x) ≤ 1.

For two cubic elements A(x) and A(y) of the cubic set A, we give the fol-
lowing operations:

(1) A(x) ≼ A(y) if and only if µ̃A(x) ≤ µ̃A(y), λA(x) ≥ λA(y);
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(2) A(x) ≺ A(y) if and only if µ̃A(x) < µ̃A(y), λA(x) > λA(y);

(3) A(x) ≽ A(y) if and only if µ̃A(x) ≥ µ̃A(y), λA(x) ≤ λA(y);

(4) A(x) ≻ A(y) if and only if µ̃A(x) > µ̃A(y), λA(x) < λA(y);

(5) A(x) = A(y) if and only if µ̃A(x) = µ̃A(y), λA(x) = λA(y);

(6) A(x) YA(y) = (µ̃A(x) ∨ µ̃A(y), λA(x) ∧ λA(y));

(7) A(x) ZA(y) = (µ̃A(x) ∧ µ̃A(y), λA(x) ∨ λA(y)).

If Ai = (µ̃Ai , λAi) (i ∈ Λ) are cubic elements, where Λ is an index set, then
we define:

supi∈ΛAi =

(
rsupi∈Λµ̃Ai , inf

i∈Λ
λAi

)
.

Let X be a nonempty set and A a nonempty subset of X. The cubic char-
acteristic function of A is defined as χA = {(x, µ̃χA(x), λχA(x))|x ∈ X}, where

µ̃χA(x) =

{
[1, 1], x ∈ A,

[0, 0], otherwise,
λχA(x) =

{
0, x ∈ A,

1, otherwise.

Let A = (µ̃A, λA) and B = (µ̃B, λB) be two cubic sets of X, we put A ⊑ B
if and only if A(x) ≼ B(x) for any x ∈ X; A @ B if and only if A(x) ≺ B(x) for
any x ∈ X.

In what follows, we introduce the operations ~ and } which provide interest-
ing further characterizations of cubic MV-ideals in the subsequent discussions.

Definition 3.2. Let A = (µ̃A, λA) and B = (µ̃B, λB) be two cubic sets of M .
Then:

(1) the cubic sum ~ of A and B is defined as

A~B = {(x, (A~B)(x))|x ∈M} := {(x, (µ̃A+µ̃B)(x), (λA+λB)(x))|x ∈M},

where (A~B)(x) = sup{A(y) ZA(z)|x = y ⊕ z, y, z ∈M}.

(2) the cubic product ~ of A and B is defined as

A}B = {(x, (A}B)(x))|x ∈M} := {(x, (µ̃A◦µ̃B)(x), (λA◦λB)(x))|x ∈M},

where (A}B)(x) = sup{A(y) ZA(z)|x = y ⊗ z, y, z ∈M}.

Inspired by [16], we can also give the intersection and union of two cubic sets
as follows. Let A and B be cubic sets of an MV-algebra M . The intersection
and union of A and B, denote by A ⊓B and A ⊔B respectively, are cubic sets:

A ⊓B = {(x,A(x) ZB(x))|x ∈M} := {(x, (µ̃A d µ̃B)(x), (λA e λB)(x))|x ∈M},
A ⊔B = {(x,A(x) YB(x))|x ∈M} := {(x, (µ̃A e µ̃B)(x), (λA d λB)(x))|x ∈M}.
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Lemma 3.3. For any cubic sets A, B, C, D and E in an MV-algebra M , then
we have:

(1) A~ (B ⊔ C) = (A~B) ⊔ (A~ C);

(2) A} (B ⊔ C) = (A}B) ⊔ (A} C);

(3) A~ (B ⊓ C) = (A~B) ⊓ (A~ C);

(4) A} (B ⊓ C) = (A}B) ⊓ (A} C);

(5) A ⊔ (B ⊓ C) = (A ⊔B) ⊓ (A ⊔ C);

(6) A ⊓ (B ⊔ C) = (A ⊓B) ⊔ (A ⊓ C);

(7) A~ (B ~ C) = (A~B) ~ C;

(8) A} (B } C) = (A}B) } C;

(9) if D ⊑ A, E ⊑ B, then D ~ E ⊑ A~B;

(10) if D ⊑ A, E ⊑ B, then D } E ⊑ A}B.

Proof. (5), (6), (9) and (10) are straightforward. The proofs of (2), (3) and (4)
are similar to that of (1), and the proof of (8) is similar to that of (7), therefore,
we only give the proofs of (1) and (7).

(1) For any x ∈ M , assume that there exist y, z ∈ X such that x = y ⊕ z,
then

(µ̃A + (µ̃B d µ̃C))(x) = rsup {µ̃A(y) ∧ (µ̃B d µ̃C)(z)|x = y ⊕ z}
= rsup {µ̃A(y) ∧ (µ̃B(z) ∨ µ̃C(z))|x = y ⊕ z}
= rsup {(µ̃A(y) ∧ µ̃B(z)) ∨ (µ̃A(y) ∧ µ̃C(z))|x = y ⊕ z}
= rsup {(µ̃A(y) ∧ µ̃B(z)} ∨ rsup {(µ̃A(y) ∧ µ̃C(z)|x = y ⊕ z}
= (µ̃A + µ̃B)(x) ∨ (µ̃A + µ̃C)(x)

= ((µ̃A + µ̃B) d (µ̃A + µ̃C))(x),

(λA + (λB e λC))(x) = inf {max {λA(y), (λB e λC)(z)} |x = y ⊕ z}
= inf {max {λA(y),min {λB(z), λC(z)}} |x = y ⊕ z}
= inf {min {max {λA(y), λB(z)} ,max {λA(y), λC(z)}} |x = y ⊕ z}
= min{inf{max{λA(y), λB(z)}|x=y ⊕ z}, inf{max{λA(y), λC(z)}|x = y ⊕ z}}
= min {(λA + λB)(x), (λA + λC)(x)}
= ((λA + λB) e (λA + λC))(x).

Hence, A~ (B ⊔ C) = (A~B) ⊔ (A~ C)
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(7) For any x ∈ M , assume that there exist y, z ∈ M such that x = y ⊕ z,
then

(µ̃A + (µ̃B + µ̃C))(x) = rsupx=y⊕z {µ̃A(y) ∧ (µ̃B + µ̃C)(z)}
= rsupx=y⊕z

{
µ̃A(y) ∧ rsupz=z1⊕z2 {µ̃B(z1) ∧ µ̃C(z2)}

}
= rsupx=y⊕z

{
rsupz=z1⊕z2 {µ̃A(y) ∧ µ̃B(z1) ∧ µ̃C(z2)}

}
= rsupx=y⊕(z1⊕z2) {µ̃A(y) ∧ µ̃B(z1) ∧ µ̃C(z2)} ,

((µ̃A + µ̃B) + µ̃C)(x) = rsupx=y⊕z {(µ̃A + µ̃B)(y) ∧ µ̃C(z)}
= rsupx=y⊕z

{
rsupy=y1⊕y2 {µ̃A(y1) ∧ µ̃B(y1)} ∧ µ̃C(z)

}
= rsupx=y⊕z

{
rsupy=y1⊕y2 {µ̃A(y1) ∧ µ̃B(y2) ∧ µ̃C(z)}

}
= rsupx=(y1⊕y2)⊕z {µ̃A(y1) ∧ µ̃B(y2) ∧ µ̃C(z) ∈M} ,

since x = y⊕ (z1⊕z2) = (y1⊕y2)⊕z, then (µ̃A +(µ̃B + µ̃C))(x) = ((µ̃A + µ̃B)+
µ̃C)(x).

(λA + (λB + λC))(x) = inf
x=y⊕z

{max {λA(y), (λB + λC)(z)}}

= inf
x=y⊕z

{
max

{
λA(y), inf

z=z1⊕z2
{max {λB(z1), λC(z2)}}

}}
= inf

x=y⊕z

{
inf

z=z1⊕z2
{max {λA(y), λB(z1), λC(z2)}}

}
= inf

x=y⊕(z1⊕z2)
{max {λA(y), λB(z1), λC(z2)}} ,

((λA + λB) + λC)(x)

= inf
x=y⊕z

{max {(λA + λB)(y), λC(z)}}

= inf
x=y⊕z

{
max

{
inf

y=y1⊕y2
{max {λA(y1), λB(y2)}} , λC(z)

}}
= inf

x=y⊕z

{
inf

y=y1⊕y2
{max {λA(y1), λB(y2), λC(z)}}

}
= inf

x=(y1⊕y2)⊕z
{max {λA(y1), λB(y2), λC(z)}} ,

since x = y ⊕ (z1 ⊕ z2) = (y1 ⊕ y2) ⊕ z, hence

inf
x=y⊕(z1⊕z2)

{max {λA(y), λB(z1), λC(z2)}}

= inf
x=y⊕(z1⊕z2)

{max {λA(y), λB(z1), λC(z2)}} ,

and so (λA + (λB + λC))(x) = ((λA + λB) + λC)(x).
Therefore A~ (B ~ C) = (A~B) ~ C.

Lemma 3.4. Let A and B be nonempty subsets of an MV-algebra M . Then
the followings hold:
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(1) A ⊆ B if and only if χA ⊑ χB;

(2) χA ⊔ χB = χA∪B, χA ⊓ χB = χA∩B;

(3) χA ~ χB = χA⊕B, where A⊕B = {x⊕ y|x ∈ A, y ∈ B};

(4) χA } χB = χA⊗B, where A⊗B = {x⊗ y|x ∈ A, y ∈ B}.

Proof. (1) and (2) is obviously, the proof of (4) is similar to that of (3), here
we only need to prove (3). For any x ∈M , we consider two cases.

(i) if x ∈ A⊕ B, then there exist y1 ∈ A and z1 ∈ B such that x = y1 ⊕ z1.
Then µ̃χA⊕B (x) = [1, 1]. Since (µ̃χA+µ̃χB )(x) = rsup {µ̃χA(y) ∧ µ̃χB (z)|x = y ⊕ z}
≥ µ̃χA(y1)∧ µ̃χB (z1) = [1, 1], then (µ̃χA + µ̃χB )(x) = [1, 1] = (µ̃χA⊕B (x), and so,
µ̃χA⊕B (x) = [1, 1].

(λχA+λχB )(x) = inf
x=y⊕z

{max {λχA(y), λχB (z)}} ≤ max {λχA(y1), λχB (z1)} =

0, therefore (λχA + λχB )(x) = 0 = λχA⊕B (x).
(ii) if x /∈ A ⊕ B, then there exist y1 ∈ M\A or z1 ∈ M\A such that

x = y1⊕ z1, then (µ̃χA + µ̃χB )(x) = rsup {µ̃χA(y) ∧ µ̃χB (z)|x = y ⊕ z} = [0, 0] =
µ̃χA⊕B (x), and (λχA+λχB )(x) = inf

x=y⊕z
{max {λχA(y) ∧ λχB (z)}} = 1 = λχA⊕B (x).

Therefore, we have χA ~ χB = χA⊕B.

Definition 3.5. Let A = (µ̃A, λA) be a cubic set of an MV-algebra M . Then A
is called a cubic MV-ideal of M if it satisfies the following conditions: for any
x, y ∈M , if (1) A(x) ZA(y) ≼ A(x⊕ y); (2) x ≤ y implies A(y) ≼ A(x).

For better understanding the notion of cubic MV-ideals, we illustrate it by
the following example.

Example 3.6. Let M = {0, a, b, 1} be a set such that 0 < a < 1 and 0 < b < 1.
The operations ⊕ and ¬ are defined as follows:

⊕ 0 a b 1

0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

¬ 0 a b 1

1 b a 0

then (M,⊕,¬, 0) is an MV-algebra. Define a cubic set A = (µ̃A, λA) in M as
follows:

µ̃A(x) =


[0.8, 0.9], x = 0,

[0.3, 0.4], x = a,

[0.2, 0.5], x = b,

[0.1, 0.3], x = 1;

λA(x) =


0.1, x = 0,

0.5, x = a,

0.4, x = b,

0.6, x = 1,

it is to check that A is a cubic MV-ideal of M .
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(2) Let I be an ideal of MV-algebra M , Γ1 = (α̃1, β1) and Γ2 = (α̃2, β2) be
cubic elements such that (α̃1, β1) ≺ (α̃2, β2). Define a function as follows:

IΓ2
Γ1

(x) =

{
Γ2, x ∈ I,

Γ1, x /∈ I.

Routine calculation shows that IΓ2
Γ1

is a cubic MV-ideal of M . Here the cubic

set IΓ2
Γ1

is called the generalized cubic characteristic function of I.

Proposition 3.7. Let A be a cubic set of an MV-algebra M . Then A is a cubic
MV-ideal of M if and only if for any x, y ∈M ,

(1) A(x) ≼ A(0);

(2) A(y) ZA(x⊖ y) ≼ A(x).

Proof. The sufficiency is very clear, we now give the proof of the necessity. For
any x, y ∈ M , if x ≤ y, then A(x) ≽ A(y) Z A(x ⊖ y) = A(y) Z A(0) = A(y).
Notice that (x ⊕ y) ⊖ y ≤ x, we have A((x ⊕ y) ⊖ y) ≽ A(x), and A(x ⊕ y) ≽
A(y)ZA((x⊕ y)⊖ y) ≽ A(x)ZA(y), therefore A is a cubic MV-ideal of M .

Note that the concept of level sets in the fuzzy set theory, Khan et al. [16]
give the notion of cubic level sets which serves as a bridge between of cubic sets
and crisp sets.

Let A = (µ̃A, λA) be a cubic set of a nonempty set X, r ∈ [0, 1] and [s, t] ∈
D[0, 1] such that r + t ≤ 1. The set

L(A; ([s, t], r)) = {x ∈ X|µ̃A(x) ≥ [s, t], λA(x) ≤ r}

is called a ([s, t], r)-cubic level set of A. The proof of the next proposition is
obviously, and will be omitted.

Proposition 3.8. Let A = (µ̃A, λA) be a cubic set of M . Then the following
statements are equivalent:

(1) A is a cubic MV-ideal;

(2) for any r ∈ [0, 1], [s, t] ∈ D[0, 1] and r+ t ≤ 1, the nonempty cubic level set
L(A; ([s, t], r)) is an ideal of M .

Analogues to the notion of cubic MV-ideals, we can present the notion of
cubic lattice filters as follows.

Let A = (µ̃A, λA) be a cubic set of an MV-algebra M . Then A is called
a cubic lattice filter of M if it satisfies that for any x, y ∈ M , A(x) Z A(y) =
A(x ∧ y). It is easy verify that if A is a cubic lattice filter of M , then for
any r ∈ [0, 1], [s, t] ∈ D[0, 1] and r + t ≤ 1, the nonempty cubic level set
L(A; ([s, t], r)) is a lattice filter of M .
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Theorem 3.9. Let A = (µ̃A, λA) be a cubic set of an MV-algebra M . Then A
is a cubic MV-ideal of M if and only if z ⊖ x ≤ y implies A(x) Z A(y) ≼ A(z)
for any x, y, z ∈M .

Proof. Assume that A is a cubic MV-ideal of M and there exist x, y, z ∈ M
such that z ⊖ x ≤ y, then A(z ⊖ x) ≽ A(y). In view of Proposition 3.7, we have
A(z) ≽ A(x) ZA(z ⊖ x) ≽ A(x) ZA(y).

Conversely, it follows immediately from 0 ⊖ x = 0 ≤ x that A(0) ≽ A(x) Z
A(x) = A(x). Notice that x⊖(x⊖y) ≤ y, we obtain that A(x) ≽ A(y)ZA(x⊖y).
Thus A is a cubic MV-ideal of M .

Proposition 3.10. Let A be a cubic set of an MV-algebra M . Then A is a
cubic MV-ideal of M if and only if for any x, y ∈M ,

(1) A(x) ZA(y) ≼ A(x⊕ y);

(2) A(y) ≼ A(x⊗ y).

Proof. The proof will be complete if we show that (2) is equivalent to the
condition (2) of Definition 3.5. Assume that A is a cubic MV-ideal of M , since
x⊗ y ≤ y for any x, y ∈M , then we get the condition (2) of Proposition 3.10.

Conversely, suppose that the condition (2) of Proposition 3.10 holds. For
any x, y ∈ M , if x ≤ y, then (¬y ⊕ x) ⊗ y = x ∧ y = x, and hence A(x) =
A((¬y ⊕ x) ⊗ y) ≽ A(y), therefore (2) of Definition 3.5 is valid.

Proposition 3.11. Let A be a cubic MV-ideal of M . Then the following results
hold: for any x, y, z ∈M ,

(1) if A(x⊖ y) = A(0), then A(y) ≼ A(x);

(2) A(x ∨ y) = A(x) ZA(y);

(3) A(x⊕ y) = A(x) ZA(y);

(4) A(x) ZA(¬x) = A(0);

(5) A(x⊖ y) ZA(y ⊖ z) ≼ A(x⊖ z).

Proof. (1) Since A is a cubic MV-ideal of M , then we have A(y) ZA(x⊖ y) =
A(y) ≼ A(x) by Proposition 3.7.

(2) Using (x ∨ y) ≤ x ⊕ y and together with Theorem 3.9, we obtain that
A(x)ZA(y) ≼ A(x∨y). As for the reverse inequality, from x, y ≤ x∨y, we have
A(x ∨ y) ≼ A(x) and A(x ∨ y) ≼ A(y), and so A(x ∨ y) ≼ A(x) Z A(y). Hence
(2) is valid.

(3) Since (x∨y) ≤ x⊕y, one more application of Definition 3.5 yields A(x⊕
y) ≼ A(x ∨ y) = A(x) Z A(y). The reverse inequality follows from Proposition
3.10, which completes the proof of (3).

(4) is a consequence of (3).
(5) is immediately from Proposition 2.1 (5) and Theorem 3.9.
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Theorem 3.12. Let A be a cubic set of M . Then A is a cubic MV-ideal of M
if and only if the following conditions are valid:

(1) A~A ⊑ A;

(2) χM }A ⊑ A.

Proof. Assume that A is a cubic MV-ideal of M and x is an element of M . We
will first show that (1) holds. Let x be expressed as x = y⊕z for some y, z ∈M .
Then we get that µ̃A(x) = µ̃A(y ⊕ z) ≥ µ̃A(y) ∧ µ̃A(z), λA(x) = λA(y ⊕ z) ≤
max{λA(y), λA(z)}. And so µ̃A(x) ≥ rsup {µ̃A(y) ∧ µ̃A(z)|x = y ⊕ z} = (µ̃A +
µ̃A)(x), λA(x) ≤ inf {max {λA(y), λA(z)} |x = y ⊕ z} = (λA + λA)(x), hence
A~A ⊑ A.

For any x ∈M , we have (µ̃χM ◦ µ̃A)(x) = rsup{µ̃χM (y)∧ µ̃A(z)|x = y⊗ z} =
rsup{[1, 1] ∧ µ̃A(z)|x = y ⊗ z} = rsup{µ̃A(z)|x = y ⊗ z} ≤ rsup{µ̃A(y ⊗ z)|x =
y ⊗ z} = µ̃A(x), and (λχM ◦ λA)(x) = inf{max{λχM (y), λA(z)}|x = y ⊗ z} =
inf{max{0, λA(z)}|x = y ⊗ z} = inf{λA(z)|x = y ⊗ z} ≥ inf{λA(y ⊗ z)|x =
y ⊗ z} = λA(x), therefore χM }A ⊑ A.

Conversely, suppose that A ~ A ⊑ A and χM } A ⊑ A. For any x, y ∈ M ,
we get that µ̃A(x ⊕ y) ≥ (µ̃A + µ̃A)(x ⊕ y) ≥ µ̃A(x) ∧ µ̃A(y) and λA(x ⊕ y) ≤
(λA + λA)(x ⊕ y) ≤ max {λA(x), λA(y)}, that is A(x) Z A(y) ≼ A(x ⊕ y). Due
to the fact that µ̃A(x ⊗ y) ≥ (µ̃χM ◦ µ̃A)(x ⊗ y) ≥ µ̃χM (x) ∧ µ̃A(y) = µ̃A(y)
and λA(x ⊗ y) ≤ (λχM ◦ λA)(x ⊗ y) ≤ max {λχM (x), λA(y)} = λA(y), that
is, A(y) ≼ A(x ⊗ y), we get that A is a cubic MV-ideal of M by Proposition
3.10.

Proposition 3.13. Let A and B be cubic MV-ideals of M . Then the following
results are valid:

(1) A ⊓B is a cubic MV-ideal of M ;

(2) if A~B is an inverse isotone mapping, then A~B is a cubic MV-ideal of
M .

Proof. (1) It is obviously.
(2) For any x, y, z ∈ M , if z ⊖ x ≤ y, that is, z ≤ x ⊕ y, according to

Proposition 3.11 (3), we have (A~B)(x)Z (A~B)(y) = sup{A(x1)ZB(x2)|x =
x1⊕x2}Zsup{A(y1)ZB(y2)|y = y1⊕y2} = sup{A(x1)ZB(x2)ZA(y1)ZB(y2)|x =
x1⊕x2, y = y1⊕y2} ≼ sup{(A(x1)ZA(y1))Z (B(x2)ZB(y2))|x⊕y = (x1⊕y1)⊕
(x2 ⊕ y2)} = sup{(A(x1 ⊕ y1)) Z (B(x2 ⊕ y2))|x⊕ y = (x1 ⊕ y1) ⊕ (x2 ⊕ y2)} =
(A~B)(x⊕ y) ≼ (A~B)(z). Thus A~B is a cubic MV-ideal of M .

Let X be a non-empty set and (α̃, β) a cubic element. For any x ∈ X, if
C(α̃,β)(x) = (α̃, β), then C(α̃,β) is called a constant cubic set of X. For the sake of
convenience, a nonconstant cubic MV-ideal is called a proper cubic MV-ideal.
We define the image set Im(A) of the cubic set A of X as: Im(A) = {A(x)|x ∈
X}.
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Definition 3.14. Let A be a proper cubic MV-ideal of M . For any x, y ∈M , if
A(x⊖ y) = A(0) or A(y ⊖ x) = A(0), then A is called a cubic prime MV-ideal.

In what follows we will show some characterizations of cubic prime MV-
ideals.

Proposition 3.15. Let A be a proper cubic MV-ideal of M . Then A is a
cubic prime MV-ideal of M if and only if for any r ∈ [0, 1], [s, t] ∈ D[0, 1] and
r + t ≤ 1, the nonempty cubic level set L(A; [s, t], r) is a prime ideal of M .

Proposition 3.16. Let A be a proper cubic MV-ideal of M . Then the following
assertions are equivalent:

(1) A is a cubic prime MV-ideal of M ;

(2) A(x ∧ y) = A(0) implies A(x) = A(0) or A(y) = A(0) for any x, y ∈M .

Proof. Assume that A is a cubic prime MV-ideal of M . Let A(x ∧ y) = A(0).
Notice that x ⊖ (x ∧ y) = x ⊖ y and A is a cubic MV-ideal of M , we have
A(x) ≽ A(x∧y)ZA(x⊖ (x∧y)) = A(x⊖ (x∧y)) = A(x⊖y) by Proposition 3.7,
and so A(0) ≽ A(x) ≽ A(x ⊖ y). Similarly A(0) ≽ A(y) ≽ A(y ⊖ x). From A
is a cubic prime MV-ideal, it follows that A(x⊖ y) = A(0) or A(y ⊖ x) = A(0),
hence A(x) = A(0) or A(y) = A(0).

Conversely, suppose that (2) is valid. For any x, y ∈M , (x⊖y)∧(y⊖x) = 0,
then A((x⊖ y)∧ (y⊖ x)) = A(0). Then A(x⊖ y) = A(0) or A(y⊖ x) = A(0) by
hypothesis, therefore A is a cubic prime MV-ideal.

Theorem 3.17. Let A be a proper cubic MV-ideal of M . Then A is a cubic
prime MV-ideal of M if and only if Im(A) is a chain under the order relation
≼, and A(x ∧ y) = A(x) YA(y) for any x, y ∈M .

Proof. Suppose that A is a cubic prime MV-ideal of M , then A(x⊖ y) = A(0)
or A(y ⊖ x) = A(0) for any x, y ∈ M . If A(x ⊖ y) = A(0), consider that
x ⊖ (x ⊖ y) ≤ x ∧ y, we get that A(x) ≽ A(x ⊖ y) Z A(x ∧ y) = A(x ∧ y) by
Theorem 3.9. Combining with A(x ∧ y) ≽ A(x) and A(x ∧ y) ≽ A(y), we have
A(x ∧ y) = A(x) and A(x) ≽ A(y). Similarly, if A(y ⊖ x) = A(0), we can prove
that A(x ∧ y) = A(y) and A(y) ≽ A(x). Hence, Im(A) is a chain under the
order relation ≼, and A(x ∧ y) = A(x) YA(y).

Conversely, due to the fact that (x ⊖ y) ∧ (y ⊖ x) = 0, we obtain that
A(0) = A((x⊖ y)∧ (y⊖x)) = A(x⊖ y)YA(y⊖x). Since Im(A) is a chain, then
A(0) = A(x⊖ y) or A(0) = A(y ⊖ x), thus A is a cubic prime MV-ideal.

Proposition 3.18. Let A,B be cubic sets of M . If A is a cubic prime MV-ideal
ofM , and B is a proper cubic MV-ideal ofM such that A ⊑ B and A(0) = B(0),
then B is a cubic prime MV-ideal of M .
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Proof. Since A is a cubic prime MV-ideal of M , then A(x ⊖ y) = A(0) or
A(y ⊖ x) = A(0) for any x, y ∈ M . If A(x ⊖ y) = A(0), from A ⊑ B and
A(0) = B(0) it follows that B(x ⊖ y) = B(0). Similarly, B(y ⊖ x) = B(0) if
A(y ⊖ x) = A(0). Thus, B is a cubic prime MV-ideal.

Proposition 3.19. Let A and C(α̃,β) be a cubic set and a constant cubic set of
M , respectively. If A is a cubic prime MV-ideal of M and (α̃, β) ≺ A(0), then
A ⊔ C(α̃,β) is a cubic prime MV-ideal of M .

Proof. For any x, y, z ∈M , if z⊖ x ≤ y, then A(z) ≽ A(x)ZA(y) by Theorem
3.9, and so (A ⊔ C(α̃,β))(z) = A(z) Y C(α̃,β)(z) ≽ (A(x) Z A(y)) ∨ C(α̃,β)(z) =
(A(x) Y C(α̃,β)(z)) Z (A(y) Y C(α̃,β)(z)) = (A(x) Y C(α̃,β)(x)) Z (A(y) Y C(α̃,β)(y)) =
(A⊔C(α̃,β))(x)Z (A⊔C(α̃,β))(y). Therefore, A⊔C(α̃,β) is a cubic MV-ideal of M .

Nextly, we will show that A ⊔ C(α̃,β) is prime. In view that A is a cubic
prime MV-ideal of M , and (α̃, β) ≺ A(0), we get that (A ⊔ C(α̃,β))(0) = A(0) Y
C(α̃,β)(0) = A(0) Y (α̃, β) = A(0) ̸= A(1), thus A ⊔ C(α̃,β) is a proper cubic MV-
ideal of M . Since (A ⊔ C(α̃,β))(0) = A(0) and A ⊑ A ⊔ C(α̃,β), then A ⊔ C(α̃,β) is
a cubic prime MV-ideal of M by Proposition 3.18 .

Definition 3.20. Let (α̃, β) be a cubic element, and X be a set of some cubic
elements. The cubic element (α̃, β) satisfies the chain property on X if it is
comparable with all elements of X.

Lemma 3.21. [19] Let I be an ideal of MV-algebra M and F ( ̸= ∅) be a lattice
filter of M with I ∩F = ∅. There is a prime ideal P of M such that I ⊆ P and
P ∩ F = ∅.

Inspired by the fuzzy prime filter theorem in [18], we give the cubic prime
ideal theorem in MV-algebras as follows.

Theorem 3.22. (Cubic Prime Ideal Theory ) Let A be a proper cubic MV-
ideal of M with A(0) ≺ ([1, 1], 0). Suppose that there is a cubic lattice filter
B of M such that A ⊓ B @ C(α̃,β), and (α̃, β) satisfies the chain property on
Im(A) ∪ Im(B), then there is a cubic prime MV-ideal D such that A ⊑ D and
D ⊓B ⊑ C(α̃,β).

Proof. Since A is a proper cubic MV-ideal, then L(A,A(0)) is a proper ideal
of M . Nextly, we consider the following three cases relative to the (α̃, β)-cubic
level sets of A and B:

Case (1): L(B; (α̃, β)) = ∅. It follows that B ⊑ C(α̃,β). Taking F = {0}, then
there is a prime ideal P of M such that L(A,A(0)) ⊆ P by Lemma 3.21. Here

we put D = P
([1,1],0)
A(0) , that is, D is the generalized cubic characteristic function

of the ideal P . And so D is a cubic prime MV-ideal of M , with A ⊑ D and
D ⊓B ⊑ C(α̃,β).

Case (2): L(A; (α̃, β)) = ∅. We obtain that A ⊑ C(α̃,β) and A(0) ≺ (α̃, β). If

P is the prime ideal given in case (1), and D = P
(α̃,β)
A(0) , then D is a cubic prime

MV-ideal of M , with A ⊑ D ⊑ C(α̃,β) and D ⊓B ⊑ C(α̃,β).



CHARACTERIZATIONS OF MV-ALGEBRAS IN TERMS OF CUBIC SETS 447

Case (3): L(A; (α̃, β)) ̸= ∅ and L(B; (α̃, β)) ̸= ∅. Then L(B; (α̃, β)) is a
lattice filter of M , and (α̃, β) ≼ A(0). From A ⊓ B @ C(α̃,β), we obtain that
L(A; (α̃, β)) ∩ L(B; (α̃, β)) = ∅, thus L(A; (α̃, β)) ̸= M , and so L(A; (α̃, β)) is
a proper ideal of M . By Lemma 3.21, it follows that there is a prime lattice
ideal P of M such that L(A; (α̃, β)) ⊆ P and L(B; (α̃, β)) ∩ P = ∅. We put

D = P
([1,1],0)
(α̃,β) , it is easy to see that D is a cubic prime MV-ideal of M , and

we will show that A ⊑ D and D ⊓ B ⊑ C(α̃,β). For any x ∈ M , if x ∈ P ,
then x /∈ L(B; (α̃, β)), and so A(x) ≼ ([1, 1], 0) = D(x) and B(x) ≺ (α̃, β),
hence (D ⊓ B)(x) ≺ (α̃, β) = C(α̃,β)(x); if x /∈ P , then x /∈ L(A; (α̃, β)), thus
A(x) ≺ (α̃, β) = C(α̃,β)(x) and (D ⊓ B)(x) ≼ (α̃, β) = C(α̃,β)(x). Therefore, in
any case we have A(x) ≼ C(α̃,β)(x) and (D ⊓B)(x) ≼ C(α̃,β)(x).

4. Quotient structures of MV-algebras based on cubic MV-ideals

In the section, we defined the quotient structure of cubic MV-ideals, then present
three isomorphism theorems concerning the quotient of cubic MV-ideals.

Let A = (µ̃A, λA) be a cubic MV-ideal of an MV-algebra M and x ∈M . The
cubic set Ax is called the cubic coset of A which is defined as: for any y ∈M ,

Ax(y) = A(x⊖ y) ZA(y ⊖ x).

We denote M/A the set of all cubic cosets with respect to A.

Lemma 4.1. Let A be a cubic MV-ideal of an MV-algebra M . Then the fol-
lowing assertions hold: for any x, y, z, s, t ∈M ,

(1) Ax = Ay if and only if A(x⊖ y) = A(y ⊖ x) = A(0);

(2) the set A∗ = {x ∈M |A(x) = A(0)} is an ideal of M ;

(3) Ax(y) = Ay(x);

(4) Ax(y) = A¬x(¬y);

(5) Ax(y) ZAy(z) ≼ Ax(z);

(6) Ax(y) ZAs(t) ≼ Ax⊕s(y ⊕ t).

Proof. (1) Suppose that Ax = Ay, then Ax(x) = Ay(x), it follows that A(x ⊖
x) = A(0) = A(y ⊖ x) ZA(x⊖ y). Thus A(x⊖ y) = A(y ⊖ x) = A(0).

Conversely, assume that A(x⊖ y) = A(y ⊖ x) = A(0). According to Propo-
sition 3.11 (5), we get that A(x ⊖ z) ≽ A(x ⊖ y) Z A(y ⊖ z) = A(y ⊖ z) and
A(z⊖x) ≽ A(z⊖y)ZA(y⊖x) = A(z⊖y). Hence Ax(z) = A(x⊖z)ZA(z⊖x) ≽
A(y ⊖ z) ZA(z ⊖ y) = Ay(z). Similarly, Ay(z) ≽ Ax(z), therefore Ax = Ay.

(2) and (3) are obviously.

(4) is immediately from Proposition 2.1 (5).
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(5) Since x ⊖ z ≤ (x ⊖ y) ⊕ (y ⊖ z) and z ⊖ x ≤ (y ⊖ x) ⊕ (z ⊖ y), then
A(x⊖ y)ZA(y⊖ z) ≼ A(x⊖ z) and A(y⊖ x)ZA(z⊖ y) ≼ A(z⊖ x) by 3.11 (3),
whence (5) follows form the monotonicity of Z.

(6) The proof of (6) is similar to that of (5).

As an immediate consequence of Lemma 4.1, we have

Proposition 4.2. Let A be a cubic MV-ideal of M . A relation ≡A on M is
defined as follows: for any x, y ∈M ,

x ≡A y if and only if A(x⊖ y) = A(y ⊖ x) = A(0),

Then ≡A is a congruence relation on M .

Given x ∈M , the equivalence class of x with respect to ≡A will be denoted
by [x]A and the quotient set M/ ≡A. Since ≡A is a congruence, defining the
operations on the set M/ ≡A as: ¬[x]A = [¬x]A and [x]A ⊕ [y]A = [x⊕ y]A for
any x, y ∈M . Then the system (M/ ≡A,⊕,¬, [0]A) becomes an MV-algebra.

The next corollary is an easy consequence of Lemma 4.1 and Proposition 4.2.

Corollary 4.3. Let A be a cubic MV-ideal of M . Then

(1) Ax = Ay if and only if x ≡A y, for any x, y ∈M ;

(2) A∗ = [0]A.

Let A be a cubic MV-ideal of an MV-algebra M . For any Ax, Ay ∈ M/A,
we define Ax ∨Ay = Ax∨y, Ax ∧Ay = Ax∧y, Ax ⊕Ay = Ax⊕y, ¬Ax = A¬x, and
the order ≤ on M/A by Ax ≤ Ay if and only if Ax ∨Ay = Ay.

Lemma 4.4. Let A be a cubic MV-ideal of M . Then Ax ≤ Ay if and only if
A(x⊖ y) = A(0).

Proof. For any x, y ∈ M , Ax ≤ Ay if and only if Ax ∨ Ay = Ax∨y = Ay if and
only if A(y ⊖ (x ∨ y)) = A((x ∨ y) ⊖ y) = A(0), that is, A(x⊖ y) = A(0).

Corollary 4.5. Let A be a cubic MV-ideal of M . Then Ax ≤ Ay if and only if
Ax ∧Ay = Ax.

Theorem 4.6. Let A be a cubic MV-ideal of M . Then (M/A,⊕,¬, A0) is an
MV-algebra, which is called a cubic quotient MV-algebra.

Proof. We can claim that the operations on M/A are well-defined. In fact, if
Ax = Ay and As = At, according to Corollary 4.3, we have that x ≡A y and
s ≡A t, and so x ⊕ s ≡A y ⊕ t, it follows that Ax⊕s = Ay⊕t. Similarly, we can
prove Ax∨s = Ay∨t and Ax∧s = Ay∧t. Then we can easily check that M/A is an
MV-algebra.

Theorem 4.7. Let A be a cubic MV-ideal of M . Then M/A ∼= M/ ≡A.
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Proof. Define a map φ : M/A → M/ ≡A by φ(Ax) = [x]A for any x ∈ M .
Assume that Ax, Ay ∈ M/A, then Ax = Ay if and only if x ≡A y, which
implies that φ is an one-to-one function. Obviously, φ is surjective. Moreover,
φ(Ax ⊕ Ay) = φ(Ax⊕y) = [x ⊕ y]A = [x]A ⊕ [y]A = φ(Ax) ⊕ φ(Ay), φ(¬Ax) =
φ(A¬x) = [¬x]A = ¬[x]A = ¬φ(Ax), thus φ is an isomorphism and the proof is
complete.

From the above theorem we immediately obtain:

Corollary 4.8. Let f : M1 → M2 be a homomorphism of MV-algebras and A
be a cubic MV-ideal of M with kerf = A∗. Then M/A ∼= f(M1).

Definition 4.9. Let A be a cubic MV-ideal of M and B a cubic set of M . A
cubic set B/A of the MV-algebra M/A is defined as follows: for any Ax ∈M/A,

(B/A)(Ax) = sup{B(y)|Ax = Ay, y ∈M},

and B/A is called a quotient cubic set of M/A.

Proposition 4.10. Let A,B be cubic MV-ideals of M . Then B/A is a cubic
MV-ideal of M/A.

Proof. For any x1, x2 ∈M , (B/A)(Ax1 ⊕Ax2) = (B/A)(Ax1⊕x2) = sup{B(y1⊕
y2)|Ax1⊕x2 = Ay1⊕y2} ≥ sup{B(y1)ZB(y2)|Ax1 = Ay1 , Ax2 = Ay2} = B/A(Ax1)Z
B/A(Ax2).

For any x1, x2 ∈ M such that Ax1 ≤ Ax2 , then Ax1 = Ax1 ∧ Ax2 , and
(B/A)(Ax1) = sup{B(y1)|Ax1 = Ay1} = sup{B(y1)|Ax1 = Ay1 , Ax2 = Ay2} =
sup{B(y1∧y2)|Ax1 = Ay1∧y2 , Ax2 = Ay2} ≥ sup{B(y2)|Ax2 = Ay2} = B/A(Ax2).

Thus B/A is a cubic MV-ideal of M/A.

Definition 4.11. Let f be a mapping from an MV-algebra M1 into an MV-
algebra M2, and A, B be cubic sets of M1 and M2, respectively. Then

(1) the inverse image f−1(B) of B under f is defined as f−1(B)(x) = B(f(x)),
for any x ∈M1;

(2) the image f(A) of A under f is defined as

f(A)(y) =

{
sup{A(x)|f(x) = y}, f−1(y) ̸= ∅,
([0, 0], 1), otherwise.

The following result can be easy proved together with Definition 3.5, and so
we omit the proof.

Proposition 4.12. Let f : M1 →M2 be a homomorphism of MV-algebras and
A, B be cubic MV-ideals of M1 and M2, respectively. Then

(1) the inverse image f−1(B) is a cubic MV-ideal of M1;
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(2) the image f(A) is a cubic MV-ideal of M2.

Proposition 4.13. Let A, B be cubic MV-ideals of an MV-algebra M and
φ : M → M/A a natural homomorphism, that is, φ(x) = Ax for any x ∈ M .
Then

(1) φ(B) = B/A for any cubic set B of M ;

(2) φ−1(B)/A = B for any cubic set B of M/A.

Proof. (1) For any Ax ∈M/A, we get that φ(B)(Ax) = sup{Bt|φ(t) = Ax, t ∈
M} = sup{Bt|At = Ax, t ∈M} = B/A(Ax). And therefore φ(B) = B/A.

(2) For any Ax ∈M/A, we obtain that (φ−1(B)/A)(Ax) = sup{φ−1(B)(t)|At

= Ax, t ∈ M} = sup{B(φ(t))|At = Ax, t ∈ M} = sup{B(At)|At = Ax, t ∈
M} = B(Ax). Thus φ−1(B)/A = B.

For the purpose of investigating homomorphism theorems of MV-algebras
based on cubic MV-ideals, we introduce the following notions.

Let f : M1 → M2 be a homomorphism of MV-algebras and A, B be cubic
MV-ideals of M1 and M2, respectively. If f(A) ⊑ B, we say that A is weakly
homomorphic to B, and we write A ∼ B. If f(A) = B, we say that A is
homomorphic to B, and we write A ≈ B. If f is bijective and f(A) = B, we
say that A is isomorphic to B, and we write A ∼= B.

As an immediate consequence of the above Proposition 4.13, we record here
the following result.

Corollary 4.14. Let A, B be cubic MV-ideals of M . Then B ≈ B/A.

Theorem 4.15. Let A, B be cubic MV-ideals of an MV-algebra M1, and f :
M1 → M2 be an epimorphism of MV-algebras such that kerf = A∗. Then
B/A ∼= f(B).

Proof. Define a map φ : M1/A→M2 by φ(Ax) = f(x) for any x ∈M1. Then
for any x1, x2 ∈ M1, we have that Ax1 = Ax2 if and only if x1 ⊖ x2, x2 ⊖ x1 ∈
A∗ = kerf if and only if f(x1 ⊖ x2) = f(x2 ⊖ x1) = f(0) = 0 if and only
if f(x1) = f(x2). Therefore φ is an one-to-one function. It follows that φ is
surjective due to the fact that f is a surjective function. For any x1, x2, x ∈M1,
φ(Ax1 ⊕ Ax2) = φ(Ax1⊕x2) = f(x1 ⊕ x2) = f(x1) ⊕ f(x2) = φ(Ax1) ⊕ φ(Ax2),
φ(¬Ax) = φ(A¬x) = f(¬x) = ¬f(x) = ¬φ(Ax), thus φ is a homomorphism.

Moreover, for any y ∈ M2, φ(B/A)(y) = sup{(B/A)(Ax)|φ(Ax) = y} =
sup{sup{B(z)|Az = Ax}|f(x) = y} = sup{B(z)|Az = Ax, f(x) = y}
= sup{B(z)|f(z) = f(x), f(x) = y} = f(B)(y), that is φ(B/A) = f(B). And
so B/A ∼= f(B).

Definition 4.16. Let f : M1 →M2 be a homomorphism of MV-algebras and A
be a cubic MV-ideal of M1. A is called an invariant cubic set with respect to f
if f(x1) = f(x2) implies A(x1) = A(x2), for any x1, x2 ∈M1.
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Proposition 4.17. Let f : M1 →M2 be a homomorphism of MV-algebras, and
A be a cubic MV-ideal of M1. Then A is invariant with respect to f if and only
if kerf ⊆ A∗.

Proof. Suppose that A is invariant with respect to f . For any x ∈ kerf , we
have f(x) = 0 = f(0), then A(x) = A(0), hence x ∈ A∗, and so kerf ⊆ A∗.

Conversely, assume that kerf ⊆ A∗. For any x1, x2 ∈M1, if f(x1) = f(x2),
according to the proof of Theorem 4.15 we get that x1⊖x2, x2⊖x1 ∈ kerf ⊆ A∗,
and so A(x1 ⊖ x2) = A(x2 ⊖ x1) = A(0). Noting that A is a cubic MV-ideal of
M1, then A(x2) ≼ A(x1) and A(x1) ≼ A(x2) by Proposition 3.11 (1). Therefore
A(x1) = A(x2), and thus A is invariant with respect to f .

Lemma 4.18. Let f : M1 →M2 be an epimorphism of MV-algebras, and A be
a cubic MV-ideal of M1 such that A is invariant with respect to f . Then for
any x1, x2 ∈M1, A

x1 = Ax2 if and only if f(A)f(x1) = f(A)f(x2).

Proof. Suppose that Ax1 = Ax2 , using Lemma 4.1 we obtain that A(x1⊖x2) =
A(x2⊖x1) = A(0). Since A is a cubic MV-ideal of M1 and f is an epimorphism,
it follows that f(A) is a cubic MV-ideal of M2 by Proposition 4.12. Then
f(A)(f(x1) ⊖ f(x2)) = f(A)(f(x1 ⊖ x2)) = f−1(f(A))(x1 ⊖ x2) = A(x1 ⊖ x2) =
A(0) = f(A)(0). Similarly, we can show that f(A)(f(x2) ⊖ f(x1)) = f(A)(0),
thus f(A)f(x1) = f(A)f(x2).

Conversely, let f(A)f(x1) = f(A)f(x2). It follows that f(A)(f(x1)⊖ f(x2)) =
f(A)(f(x1 ⊖ x2)) = f(A)(0) = A(0). And A(x1 ⊖ x2) = f−1(f(A))(x1 ⊖ x2) =
f(A)(f(x1⊖x2)) = A(0), analogously, A(x2⊖x1) = A(0). Hence Ax1 = Ax2 .

Theorem 4.19. Let f : M1 → M2 be an epimorphism of MV-algebras, and
A,B be cubic MV-ideals of M1. Then B/A ∼= f(B)/f(A).

Proof. Define h : M1/A → M2/f(A) by h(Ax) = f(A)f(x) for any x ∈ M1, it
follows from Lemma 4.18, we get that h is an one-to-one function. Note that f
is a surjective function, hence h is surjective. For any x1, x2, x ∈M1,

h(Ax1 ⊕ Ax2) = h(Ax1⊕x2) = f(A)f(x1⊕x2) = f(A)f(x1)⊕f(x2) = f(A)f(x1) ⊕
f(A)f(x2) = h(Ax1) ⊕ h(Ax2), h(¬Ax) = h(A¬x) = f(A)f(¬x) = f(A)¬f(x) =
¬h(Ax), thus h is a homomorphism.

Moreover, according to Definition 4.9, Definition 4.11 and Lemma 4.18, for
any x ∈M1, we obtain that

h−1(f(B)/f(A))(Ax) = (f(B)/f(A))(h(Ax)) = (f(B)/f(A))(f(A)f(x))

= sup{f(B)(y)|f(A)f(x) = f(A)y, y ∈M2}
= sup{sup{B(z)|f(z) = y, z ∈M1}|f(A)f(x) = f(A)y, y ∈M2}
= sup{B(z)|f(A)f(z) = f(A)x, z ∈M1}
= sup{B(z)|Az = Ax, z ∈M1} = (B/A)(Ax),

that is, h−1(f(B)/f(A)) = B/A. Due to the fact that h is isomorphic, we get
that h(B/A) = f(B)/f(A), hence B/A ∼= f(B)/f(A).
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Corollary 4.20. Let f : M1 → M2 be an epimorphism of MV-algebras, and
A,B be cubic MV-ideals of M2. Then f−1(B)/f−1(A) ∼= B/A.

Lemma 4.21. Let A,B be cubic MV-ideals of M and A ⊑ B. If A(0) = B(0),
then Bx = By if and only if (B/A)(Ax) = (B/A)(Ay), for any x, y ∈M .

Proof. For any x, y ∈ M , if Bx = By, then B(x ⊖ y) = B(y ⊖ x) = B(0).
And we have (B/A)(Ax⊖y) = sup{B(z)|Az = Ax⊖y, z ∈ M} ≽ B(x ⊖ y) =
B(0) = (B/A)(A0), thus (B/A)(Ax⊖y) = (B/A)(Ax ⊖Ay) = (B/A)(A0), which
means (B/A)(Ay) ≼ (B/A)(Ax) by Proposition 3.11 (1). Similarly, we can prove
(B/A)(Ax) ≼ (B/A)(Ay), hence (B/A)(Ax) = (B/A)(Ay).

Conversely, if (B/A)(Ax) = (B/A)(Ay), it follows that (B/A)(Ax⊖y) =
(B/A)(Ax ⊖ Ay) = sup{B(z)|Az = Ax⊖y, z ∈ M} = (B/A)(A0) = B(0) by
Proposition 3.11 (1). To prove Bx = By, we only need to show that B(x⊖ y) =
B(y⊖ x) = B(0). For any z ∈M , if Az = Ax⊖y, then A(z ⊖ (x⊖ y)) = A(0) by
Lemma 4.1 (1). Note that B is a cubic MV-ideal of M and A ⊑ B, from Proposi-
tion 3.7 (2) we get that B(x⊖y) ≽ B(z)ZB(z⊖(x⊖y)) = B(z)ZA(z⊖(x⊖y)) =
B(z)ZA(0) = B(z)ZB(0) = B(z). And so B(x⊖y) ≽ sup{B(z)|Az = Ax⊖y, z ∈
M} = B(0), thus B(x ⊖ y) = B(0). Similarly, we can show B(y ⊖ x) = B(0),
hence Bx = By.

Theorem 4.22. Let A,B,C be cubic MV-ideals of M and A ⊑ B. If A(0) =
B(0), then (C/A)/(B/A) ∼= C/B.

Proof. It is easy to prove that (C/A)/(B/A), C/B are cubic MV-ideals of
MV-algebras (M/A)/(B/A) and M/B, respectively.

Define h : (M/A)/(B/A) →M/B by h((B/A)A
x
) = Bx for any x ∈M , from

Lemma 4.21 we get that h is an one-to-one function. Obviously, h is surjective.
For any x1, x2, x ∈M ,

h((B/A)A
x1 ⊕ (B/A)A

x2
) = h((B/A)A

x1⊕Ax2
)

= h((B/A)A
x1⊕x2

) = Bx1⊕x2

= Bx1 ⊕Bx2 = h((B/A)A
x1

) ⊕ h((B/A)A
x2

),

and h(¬(B/A)A
x
)=h((B/A)¬A

x
)=h((B/A)A

¬x
)=B¬x = ¬Bx = ¬h((B/A)A

x
),

thus h is a homomorphism. Moreover, using Lemma 4.21 we have that: for any
x ∈ M , (C/A)/(B/A)((B/A)A

x
) = sup{(C/A)(Aw)|(B/A)A

w
= (B/A)A

x
, w ∈

M} = sup{sup{C(v)|Av = Aw, v ∈ M}|(B/A)A
w

= (B/A)A
x
, w ∈ M} =

sup{C(v)|(B/A)A
v

= (B/A)A
x
, v ∈ M} = sup{C(v)|Bv = Bx, v ∈ M} =

(C/B)(Bx)=(C/B)(h((B/A)A
x
))=h−1(C/B)((B/A)A

x
), that is, (C/A)/(B/A)

= h−1(C/B). Since h is isomorphic, we get that (C/A)/(B/A) ∼= C/B.

Theorem 4.23. Let A,B be cubic MV-ideals of M and A(0) = B(0). If A~B
is an inverse isotone mapping, then A/(A⊓B) ∼ (A~B)/B and A/(A⊓B) ∼
(A~B)/A.
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Proof. Since A~B is an inverse isotone mapping, it follows that A~B is a cubic
MV-ideal by Proposition 3.13. It is easy to obtain that A/(A ⊓B), (A~B)/B
are cubic MV-ideals of MV-algebras M/(A ⊓B) and M/B, respectively.

Define the map h : M/(A⊓B) →M/B by h((A⊓B)x) = Bx for any x ∈M .
For any x1, x2 ∈ M , if (A ⊓ B)x1 = (A ⊓ B)x2 , from Lemma 4.1 it follows that
(A ⊓ B)(x1 ⊖ x2) = (A ⊓ B)(x2 ⊖ x1) = (A ⊓ B)(0) = B(0), so we get that
B(x1 ⊖ x2) = B(x2 ⊖ x1) = B(0), thus Bx1 = Bx2 . hence h is an one-to-one
function. Obviously, h is surjective.

Moreover, for any x1, x2, x ∈ M , we have h((A ⊓ B)x1 ⊕ (A ⊓ B)x2) =
h((A ⊓ B)x1⊕x2) = Bx1⊕x2 = Bx1 ⊕ Bx2 = h((A ⊓ B)x1) ⊕ h((A ⊓ B)x2), and
h(¬(A ⊓ B)x) = h((A ⊓ B)¬x) = B¬x = ¬Bx = ¬h((A ⊓ B)x), thus h is a
homomorphism.

For any x ∈M ,

((A~B)/B)(Bx) = sup{A~B)(t)|Bt = Bx}
= sup{A(t1) ZB(t2)|t = t1 ⊕ t2, B

t = Bx} ≽ sup{A(t) ZB(0)|Bt = Bx}
= sup{A(t)|Bt = Bx},
h(A/(A ⊓B))(Bx) = sup{(A/(A ⊓B))((A ⊓B)z)|h((A ⊓B)z) = Bx}
= sup{(A/(A ⊓B))((A ⊓B)z)|Bz=Bx}=sup{A(t)|(A ⊓B)t=(A ⊓B)z, Bz=Bx}
≼ sup{A(t)|Bt = Bz, Bz = Bx} = sup{A(t)|Bt = Bx}.

It follows that h(A/(A ⊓ B))(Bx) ≼ ((A ~ B)/B)(Bx), hence h(A/(A ⊓ B)) ⊑
((A~B)/B), and so A/(A ⊓B) ∼ (A~B)/B. Similarly, we can prove A/(A ⊓
B) ∼ (A~B)/A.

Definition 4.24. The cubic MV-ideal A of an MV-algebra M has cubic sup-
property if for any nonempty subset H of M , there exists x0 ∈ H such that
A(x0) = sup{A(x)|x ∈ H}.
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Abstract. In 2008, Liu, Huang, Luo and Dai, proposed a (t, n) multi-point sharing
scheme by using self-pairings on the elliptic curves. The Liu’s scheme is not verifiable,
needs a secure channel and also there exists some restrictions in the number of secrets
to be shared. In this paper we propose a new verifiable multi-secret sharing scheme
which is based on that of Liu. In our scheme, there is no need to a secure channel and
also there is no limit on the number of secrets. Furthermore, to identify the cheaters,
the combiner can verify the secrets which have been sent by other participants during
the reconstruction phase.

Keywords: secret sharing, cryptography, elliptic curves, bilinear maps.

1. Introduction

Secret sharing schemes are important tools used in many cryptographic protocols
and security techniques. A secret sharing scheme consists of a dealer, who knows
a secret, a set P any of whose elements is called a participant, and a family A of
subsets of P , called an access structure. In such a scheme, the dealer distributes
shares among the participants in such a way that any A ∈ A is able to recover
the prescribed secret by pooling its members shares together, whereas any subset
of P not lying in A knows nothing about the secret. If P is of cardinality n, and
A consists of all subsets of P with at least t elements, then the scheme is referred
to as a (t, n)−threshold secret sharing scheme. Secret sharing schemes can be
used in many different domains such as secure data storage, secure multi-party
computational, group key management and secure information communication.
Secret sharing schemes for general access structures were proposed by Ito, Saito,
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and Nishizeki [17] in 1993, and more efficient schemes were introduced in, e.g.,
[1, 2, 5].

The first (t, n)-threshold secret sharing schemes were independently intro-
duced by Shamir [24] and Blakley [3]. Shamir’s scheme is based on the Lagrange
interpolating polynomial, while Blakley’s scheme is based on linear projective
geometry.

A Multi-secret sharing (MSS) scheme, is a scheme in which several secrets
are shared among participants and when any predetermined subset of them pool
their information, they will be able to reconstruct all the secrets. The first MSS
scheme was introduced by He and Dawson [15] in 1994, and was improved in
e. g., [7, 6, 12, 13, 14, 16, 21]. MSS scheme can be used in many different do-
mains, for example, launching intercontinental ballistic missiles, authenticating
electronic transactions and opening a bank vault.

In 1994, Jackson et al. [18] classified the MSS scheme into the following
two categories: the one-time-use schemes and the multi-use schemes. In a one-
time-use scheme, the dealer updates the information distributed amongst the
participants after reconstructing the secrets, while in a multi-use scheme, every
participant only needs to keep one shadow and use it iteratively. Because dis-
tributing shadows to the participants is costly and difficult, the implementation
of multi-use schemes is much better.

It should be noticed that the early secret sharing schemes were initiated on
the assumption that both the dealer and participants are honest. However, it
is very often in practice that a dishonest dealer distributes a fake shadow or a
malicious participant provides the other ones with some fake shares. Hence, to
remedy this pathology, the researchers were stimulated to work out the schemes
which have the capability of being verified. Indeed, a so-called verifiable secret
sharing (VSS) scheme is one in which all the participants are able to verify each
other and, of course, the dealer.

The first VSS scheme was introduced in 1985 by chore et. al. [10]. Thence-
forward, Harn [14] proposed a verifiable multi-secret sharing (VMSS) scheme in
1995. That immediately turned out to be of high computational costs. In fact,
Harn’s verification process needs any participant to solve a variety of equations.
Chen’s scheme [8], introduced in 1997, was one of the next attempts to improve
Harn’s scheme that, despite being of a partial success, was still a scheme with
rather high computational costs. Finally, Shao and Cao [25] introduced a new
efficient VMSS scheme based on YCH [29] and the hardness of discrete logarithm
problem.

In 2008 Chen et al. [9] proposed a threshold secret sharing scheme based
on bilinear maps. Chen’s scheme was a single secret sharing scheme based
on the idea of constructing a Vandermonde matrix to change the threshold.
Chen’s scheme was improved to a multi-secret sharing by Wang et al. [27].
They proposed a verifiable (t, n)-threshold multi-secret sharing scheme based
on bilinear maps; it was subject to the restriction that the number of secrets
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should not exceed the threshold. Afterwards, Eslami et al. [11] modified Wang’s
scheme and proposed a new one which dispelled the aforementioned restriction.

In 2008 Liu et. al. [22] presented a (t, n)−threshold multi-secret sharing
scheme by using self-pairing on an elliptic curve. It is worth pointing out that
the privilege of the usage of elliptic curves stands on the fact that solving dis-
crete logarithm problem over elliptic curves is usually difficult and far-reaching.
In Liu’s scheme the number of secrets, m, must be less than or equal to the
threshold t. Moreover, his scheme is not a verifiable one and, at the same time,
needs a secure channel.

In this paper we propose a verifiable (t, n)-threshold multi-secret sharing
scheme based on elliptic curves and bilinear maps. The approach we take here
is to try to exhibit a modified version of Liu’s scheme which, at the same time,
eliminates the need to restricting the number of secrets and does not require any
secure channel. Moreover, our scheme benefits from the fact that the combiner
(who can be one the participants) is also able to verify the shares pooled in the
reconstruction phase.

The rest of this paper is organized as follows: In Section 2, we summarize
the elementary notions of elliptic curves and bilinear maps. Review of Liu’s
scheme will be given in Section 3. Finally, Sections 4 and 5 are devoted to the
presentation of our scheme besides analysing it and comparing to some of the
schemes known in the literature.

2. Preliminaries

In this section, we will briefly provide the necessary background on elliptic
curves and bilinear maps. The reader could consult a standard text book on the
subject, e. g. [26, 28].

2.1 Elliptic curve cryptography

The elliptic curve cryptography (ECC) was suggested separately by Neal Koblitz
[19] and Victor S. Miller [23] in 1985. It should be pointed out that merely the
finite fields Fq where q is either a prime or q = 2n for some integer n, were firstly
involved. Recently, elliptic curve cryptography has attained much attention as
it has many advantages like a short key length and fast computation speed.
In this subsection, we will give the definitions and some elementary properties
of the elliptic curves. An elliptic curve E over the finite field Fq is defined by
Weierstrass equation

(2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ Fq and its discriminant, ∆ = −4a32a6+a22a
2
4+18a2a4a6−

4a34 − 27a26, is supposed to be nonzero. If q is not dividable by 2 or 3, then by
an appropriate change of variables, Eq. (2.1) can be reformulated as the short
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Weierstrass form

(2.2) y2 = x3 +Ax+B,

for A,B ∈ Fq.
The points on an elliptic curve together with an extra point O, which is called

the point at infinity, form a finite abelian group with an addition law. Indeed,
if P = (x1, y1) and Q = (x2, y2) are two points on E, then set P +Q = (x3, y3),
where {

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3) − y1

and

λ =


y2 − y1
x2 − x1

, P ̸= Q,

3x21 +A

2y1
, P = Q.

Discrete logarithm problem on elliptic curves
Throughout, we let q be some power of a prime and let the elliptic curve E

be defined by Eq. (2.2). Also, let E(Fq) = {(x, y) ∈ F2
q |y2 = x3+Ax+B}∪{O}.

Assume next that P ∈ E(Fq) and Q ∈ ⟨P ⟩, the subgroup generated by P . The
discrete logarithm problem on E is to find the integer k satisfying Q = kP .
In general, there is no polynomial time algorithm on log q to solve the discrete
logarithm problem on E(Fq). This is why the cryptographic schemes which are
based on elliptic curves have become valuable and interesting.

2.2 Bilinear maps

The definition of a bilinear map lies on the following two well-known problems
in cryptography; namely CDHP and DDHP. To state these problems, let G be a
cyclic additive group of order a prime number r with P as a generator. The so-
called computational Diffie-Hellman problem (CDHP) involves computing abP
for a given triple (P, aP, bP ) with a, b ∈ Z∗

r. Also the Decision Diffie-Hellman
problem (DDHP) concerns the decision on whether c = ab holds for a given
quadruple (P, aP, bP, cP ) with a, b, c ∈ Z∗

r.
We say that a groupG is a Gap Diffie-Hellman (GDH) group provided DDHP

in G is easy to solve while simultaneously, CDHP in G is hard to treat; see [4]
for more information.

Let G1 be a cyclic additive group of order a prime r, and let G2 be a cyclic
multiplicative group of the same order. We assume that the DDHP in G1 is
easy while it is hard in G2. Suppose moreover that CDHP in G1 and DLP G2

are hard to solve. A bilinear map is a map (or a pairing) e : G1×G1 → G2 with
the following properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ Z∗
r.

2. Non-Degeneracy: there exist P,Q ∈ G1 such that e(P,Q) ̸= 1.
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3. Computability: e is efficiently computable, i.e., there exists a polynomial
time algorithm to compute e(P,Q) ∈ G2, for all P,Q ∈ G1.

Pairing-based cryptography stands over the idea of using the construction
and properties of bilinear maps between two suitable groups. The strategy is
to exploit such maps to reduce a problem in one of the groups to a problem in
the second one in such a way that, compared to the original one, the resulting
problem is usually much more convenient to treat.

It should be emphasized that the existence of G1 and G2 with these proper-
ties follows from Weil pairing [28, 11.2] and Tate pairing [28, 11.3]. Indeed, one
can take for G1 an elliptic curve and for G2 the underlying field of G1.

Let K be a field, K its algebraic closure and let E = E(K) be an elliptic
curve over K. For l ̸= 0, let E[l] denote the subgroup of l−torsion points, which
contains all the points P with lP = O. If char(K) = 0 or char(K) = p where l
is not dividable by p, then E[l] can be represented as a direct sum of two cyclic
groups namely, E[l] ∼= Zl⊕Zl. If this is the case, let {G,H} be a generating set
for E[l]. Then any point in E[l] can be represented as a linear combination of G
and H. Consider two points P and Q in E[l], so that we have P = a1G+ b1H
and Q = a2G+ b2H, for integers a1, a2, b1, b2 ∈ [0, l− 1]. We can now define the
following pairing map for any two arbitrary integers α, β ∈ [0, l − 1]:

eα,β : E[l] × E[l] → E[l]
eα,β(P,Q) = (a1b2 − a2b1)(αG+ βH)

(2.3)

The trivial case when α = β = 0 has been excluded. The pairing eα,β is called
self-pairing because it maps E[l] × E[l] to E[l].

We notice that this is the particular pairing by means of which we will define
our proposed scheme in Section 4.

Theorem 2.1 ([20],Prop.3.1). The pairing eα,β has the following properties:

1. Identity: for all P ∈ E[l], eα,β(P, P ) = O.

2. Bilinearity: for all P,Q,R ∈ E[l], eα,β(P+Q,R) = eα,β(P,R)+eα,β(Q,R)
and eα,β(P,Q+R) = eα,β(P,Q) + eα,β(P,R).

3. Anti-symmetry: for all P ∈ E[l], eα,β(P,Q) = −eα,β(Q,P ).

4. Non-degeneracy: for all P ∈ E[l], eα,β(P,O) = O. Moreover, if eα,β(P,Q) =
O for all P ∈ E[l], then Q = O.

3. A Review of Liu’s scheme

In this section, we briefly introduce the scheme posed by Liu et. al. in [22] which
is actually a scheme for sharing points on an elliptic curve. This scheme consists
of the following phases: initialization, shadow distribution, point sharing and
point reconstruction. Below, we provide overview of any of these phases.
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Let D be a trusted dealer, and let U1, U2, . . . , Un be honest participants. The
dealer wants to distribute secrets M1,M2, . . . ,Mm between the participants such
that any group consisting of at least t participants can reconstruct all the secrets,
but no group of less than t participants can do.

3.1 Initialization

In Liu’s scheme, the dealer publishes public information on a public bulletin
which can be accessed by every participant. The dealer uses the following steps
to set up the parameters of the sharing scheme.

1. The dealer chooses an elliptic curve E over the finite field Fq where q =
pr, p being a large enough prime for which the DLP and ECDLP are
simultaneously hard in F∗

q and E(Fq) respectively. The dealer then chooses
a large prime l such that E[l] ⊆ E(Fqk) for some integer k.

2. The dealer D chooses a generating set {G,H} of E[l] and two integers
α, β ∈ [1, l − 1], which determine the pairing eα,β as defined before.

3. Finally, the dealer publishes {E, q, l, k, αG+ βH} in the public bulletin.

3.2 Shadow distribution

In this phase, the dealer D uses the following steps to distribute the shadows to
the participants. As stated before, this should be done in such a way that any
group consisting of at least t participants can reconstruct the shared points, but
no group with less than t participants can.

1. D considers the matrix A of size n× t as

A =


1 1 1 . . . 1
1 2 22 . . . 2t−1

...
...

...
...

1 n n2 . . . nt−1


2. The dealer randomly chooses t pairs of numbers a′i, b

′
i ∈ [1, l − 1] for 1 ≤

i ≤ t.

3. D computes

(a1, a2, . . . , an)T = A · (a′1, a
′
2, . . . , a

′
t)
T ,

(b1, b2, . . . , bn)T = A · (b′1, b
′
2, . . . , b

′
t)
T .

4. Finally, D sends (aj , bj) to user Uj through a secret channel for all 1 ≤
j ≤ n.
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3.3 Point sharing

After distributing the shadows, the dealer shares the points among all the par-
ticipants through the following steps:

1. To share m different points M1, . . . ,Mm, the dealer chooses ci, di ∈ [0, l−1]
randomly and computes Qi = ciG+ diH for all 1 ≤ i ≤ m .

2. The dealer computes Ri = eα,β(Qi, P
′
t) + Mi, for 1 ≤ i ≤ m, where

P ′
t = a′tG+ b′tH.

3. Finally, the dealer publishes {ci, di, Ri}, for 1 ≤ i ≤ m, in the public
bulletin.

3.4 Point reconstruction

Without loss of generality, we may assume by a relabeling that the participants
U1, U2, . . . , Ut want to reconstruct the secrets M1,M2, . . . ,Mm. Each participant
computes the pseudo share from his secret share and the public information. The
reconstructing procedure is as follows:

1. Each Uj downloads the pair of integers {ci, di} from the public bulletin
board, where 1 ≤ j ≤ t.

2. Each Uj computes Qi,j = eα,β(Qi, Pj), where Pj = ajG + bjH and Qi =
ciG+ diH, for 1 ≤ i, j ≤ t.

3. Each Uj multicasts the pseudo shadow Qi,j to U1, . . . , Uj−1, Uj+1, . . . , Ut,
for 1 ≤ j ≤ t.

4. Each participant Ui computes Ti =
∑t

k=1 ykQi,k, where yk = (
∏t

j=1,j ̸=k(k−
j))−1.

5. Each participant Ui downloads the point Ri from the public bulletin and
recovers Mi = Ri − Ti.

4. Proposed scheme

Recall that the MSS scheme proposed by Liu was based on the elliptic curves
cryptography, as pointed out earlier in the paper, is addressed to the fact that
solving the discrete logarithm problem on the elliptic curves is really a chal-
lenging and far-reaching problem to treat and this provides the scheme with a
rather high security in comparison to some of the other ones.

Nevertheless, from several points of view, it suffers from some deficiencies;
namely it needs a secure channel, it is not verifiable, and also there exists some
restrictions on the number of secrets to be shared. So it seems quite reasonable
and natural to deal with new technique in order to make Liu’s scheme into a
more satisfactory one.
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Here, we will make use of the elliptic curves and bilinear pairings to propose
a new verifiable (t, n)-threshold MSS scheme. The procedure can be divided into
four parts: Initialization phase, Point sharing phase, Point distribution phase,
Secret reconstruction and Verification phase.

In our proposed scheme, which is based on that of Liu, we will drop the
restriction on the number of secrets. Moreover, each participant will be able to
identify cheaters in the reconstruction phase by using bilinear maps, and since
any participant chooses his/her secret shadow by him/herself, there is no need
to a secure channel and the dealer can never distribute a fake shadow.

Let U1, U2, . . . , Un be the participants involved in the secret sharing process
and let K1,K2, . . . ,Km be the secrets to be shared.

4.1 Initialization phase

In the initialization phase, the dealer D publishes some public information on
the public bulletin which is accessible by every participant.

1. The Dealer D chooses an elliptic curve E over Fq, q = pr, where p is a
large prime such that the DLP and ECDLP are hard respectively in F∗

q

and E(Fq). The dealer then chooses E[l], a torsion subgroup of a large
prime order l. It is well-known that E[l] ⊆ E(Fqk), for some integer k.

2. D chooses a generating pair {G,H} ⊆ E[l] and a pair of integers α, β ∈
[1, l − 1]. The dealer then forms the pairing (2.3) and then computes
W = αG+ βH.

3. The dealer chooses a hash function h : E[l] → Z∗
l , and finally publishes

{E, p, l, G,H,W, h} on the public bulletin.

4.2 Point sharing phase

In this step, the dealer may use the following steps to distribute the shadows
to the participants; this distribution is subject to the prescribed conditions, as
pointed out before.

1. The dealerD maps the secretsK1,K2, . . . ,Km to a set of pointsM1,M2, . . . ,
Mm on the elliptic curve E.

2. D chooses private numbers a0, a1, b0, b1 ∈ [1, l−1] and computes the points
Q0 = a0G+ b0H and Pi = ai1G+ bi1H for i = 1, . . . ,m.

3. Corresponding to the secret Mi, the dealer publishes Ri = eα,β(Q0, Pi) +
Mi for i = 1, . . . ,m.

4.3 Point distribution phase

1. D chooses some d ∈ Z∗
l randomly and publishes G′ = dG.
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2. Each participant Ui selects the secret shadow si and publishes Gi = siG.

3. D considers the matrix

(4.1) A =


1 1 1 . . . 1
1 2 22 . . . 2n+3

...
...

...
...

1 (n− t+ 4) (n− t+ 4)2 . . . (n− t+ 4)n+3

 .
4. The dealer computes dsiG, and constructs the column vector

X = [h(ds1G), h(ds2G), . . . , h(dsnG), a0, b0, a1, b1]
T .

5. D publishes [I1, I2, . . . , In−t+4] where

A×X =


1 1 1 . . . 1
1 2 22 . . . 2n+3

...
...

...
...

1 (n− t+ 4) (n− t+ 4)2 . . . (n− t+ 4)n+3





h(ds1G)
...

h(dsnG)
a0
b0
a1
b1



=


I1
I2
...

In−t+4

 .(4.2)

4.4 Secret reconstruction and verification phase

It is clear that Eq. (4.2) is a system of (n− t+ 4) linear equations with (n+ 4)
unknowns. To reconstruct all the secrets, we need to know the values of a0, a1,
b0 and b1. Suppose that t-out-of-n participants U1, . . . , Ut intend to reconstruct
all the secrets. To this goal, assume Ui computes dsiG for i = 1, . . . , t. Firstly,
the combiner ensures verifiability of the shares by using the bilinearity property
of the pairing maps and checks if eα,β(dsiG,G) = eα,β(dG, siG). Then, the
combiner uses the public hash function h to compute h(dsiG), for i = 1, . . . , t
and generates the i-th row of the unknown’s matrix. Therefore, t unknowns of
Eq. (4.2) are computed and the combiner may now solve a system of (n− t+ 4)
equations and (n− t+ 4) unknowns to reconstruct a0, a1, b0 and b1. Finally, the
secrets can be obtained by putting Mi = Ri − eα,β(Q0, Pi), for i = 1, . . . ,m.

5. Security analysis phase

The security analysis of the proposed scheme goes ahead through the following
lines.

Theorem 5.1. Any t or more participants are able to reconstruct all the secrets.
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Proof. Without loss of generality, we suppose that U1, U2, . . . , Ut share their
secret shadows dsiG for i = 1, . . . , t. Then, Eq. (4.2) converts to a system of
n− t+4 equations and n− t+4 unknowns with the invertible coefficients matrix

(5.1) A′ =


1 . . . 1
2t . . . 2n+3

...
...

(n− t+ 4)t . . . (n− t+ 4)n+3

 .
(Indeed, the determinant of A′ might be calculated via det(A′) = 2t×· · ·× (n−
t + 4)t × det(A′′), for some Vandermonde matrix A′′.) Hence, the participants
obtain the secrets by computing the inverse matrix of A′.

Theorem 5.2. Any group of less than t participants cannot compute any of the
secrets.

Proof. Suppose, to the contrary, that this is the case. Then Eq. (4.2) reduces
to a system of n− t+ 4 equations and more than n− t+ 4 unknowns which has
certainly an infinite set of solutions.

The following theorem ensures that using a secure channel in order to share
the secrets is in fact not mandatory.

Theorem 5.3. The proposed scheme does not require a secure channel.

Proof. We must make sure that no participant’s shadow si might be grasped
from siG. In fact, if an attacker wants to compute si from siG, he/she must solve
a discrete logarithm problem in the elliptic curve E, which is hard according to
our assumptions.

Theorem 5.4. The dealers private key d cannot be obtained from the public
information dG.

Proof. The theorem follows from the argument provided in Theorem 5.3.

Finally, Theorem 5.5 below illustrates the verifiability of the proposed scheme.

Theorem 5.5. The shares provided by the participants in the reconstruction
phase can be verified.

Proof. Suppose that the participant Ui provides dsiG. During the reconstruc-
tion phase, this share can be verified, because as mentioned before, given siG
and dG, it is infeasible to compute dsiG in E; this follows from the hardness of
the Diffie-Hellman problem. Therefore, only the dealer and the participant Ui

are able to compute this value. By using the bilinearity property of the pairing
maps, the combiner can check whether eα,β(dsiG,G) = eα,β(dG, siG) holds. If
the verification passes, he/she accepts dsiG.

Table 1 provides a comparison between the proposed scheme in this paper
and some other one’s that are based on the techniques of elliptic curves and
pairings.
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Table 1: Comparison of some schemes based on elliptic curve and pairing
Scheme Chen [9] Liu [22] Wang [27] Proposed

Multi-secret No Yes Yes Yes

Number of secrets 1 t t unrestricted

Public parameters 2n− t+ 9 3m+ 5 2n+ 7 2n+m− t+ 11

Verifiability Yes No Yes Yes

Cheater detection Yes No No Yes

Cheater identification Yes No No Yes

Need a secure channel No Yes No No
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Abstract. We apply the notion of bipolar fuzzy translations of a bipolar-valued fuzzy
set to UP-algebras. For any bipolar-valued fuzzy set φ = (A;φ−, φ+) in a UP-algebra
A, the notions of bipolar fuzzy (α, β)-translations of φ = (A;φ−, φ+) of type I and of
type II are introduced, their basic properties are investigated and some useful examples
are discussed. The notions of extensions and of intensions of a bipolar-valued fuzzy
set are also studied. Moreover, we discuss the relation between the complement of a
bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal and
bipolar fuzzy strongly UP-ideal) and its level cuts.

Keywords: UP-algebra, bipolar fuzzy translation, bipolar fuzzy UP-subalgebra, bipo-
lar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal.

1. Introduction

Among many algebraic structures, algebras of logic form important class of alge-
bras. Examples of these are BCK-algebras [5], BCI-algebras [6], BCH-algebras
[3], K-algebras [1], KU-algebras [16], SU-algebras [12], UP-algebras [4] and oth-
ers. They are strongly connected with logic. For example, BCI-algebras intro-
duced by Iséki [6] in 1966 have connections with BCI-logic being the BCI-system
in combinatory logic which has application in the language of functional pro-
gramming. BCK and BCI-algebras are two classes of logical algebras. They
were introduced by Imai and Iséki [5, 6] in 1966 and have been extensively in-
vestigated by many researchers. It is known that the class of BCK-algebras is
a proper subclass of the class of BCI-algebras.

The notion of fuzzy sets of a set was first considered by Zadeh [22] in 1965.
The fuzzy set theories developed by Zadeh and others have found many appli-

∗. Corresponding author
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cations in the domain of mathematics and elsewhere. There are several kinds
of fuzzy set extensions in the fuzzy set theory, for example, intuitionistic fuzzy
sets, interval-valued fuzzy sets, vague sets, bipolar-valued fuzzy sets etc. The
notion of bipolar-valued fuzzy sets was first introduced by Lee [14] in 2000, is
an extension of fuzzy sets whose membership degree range is enlarged from the
interval [0, 1] to [−1, 0]. After the introduction of the notion of bipolar-valued
fuzzy sets by Lee [14], several researches were conducted on the generalizations
of the notion of bipolar-valued fuzzy sets and application to many logical al-
gebras such as: In 2008, Jun and Song [10] introduced the notions of bipolar
fuzzy subalgebras and bipolar fuzzy closed ideals in BCH-algebras. In 2009, Jun
and Park [9] introduced the notions of bipolar fuzzy regularities, bipolar fuzzy
regular subalgebras, bipolar fuzzy filters, and bipolar fuzzy closed quasi filters in
BCH-algebras. In 2011, Lee and Jun [13] introduced the notion of bipolar fuzzy
a-ideals of BCI-algebras. In 2012, Jun et al. [8] introduced the notions of bipo-
lar fuzzy CI-subalgebras, bipolar fuzzy ideals and (closed) bipolar fuzzy filters
in CI-algebras. In 2014, Muhiuddin [15] introduced the notions of bipolar fuzzy
KU-subalgebras and bipolar fuzzy KU-ideals in KU-algebras. In 2015, Senapati
[20] introduced the notion of bipolar fuzzy BG-subalgebras in BG-algebras. In
2016, Sabarinathan et al. [17] introduced the notion of bipolar valued fuzzy
ideals of BF-algebras. In 2017, Sabarinathan et al. [18] introduced the notion
of bipolar valued fuzzy H-ideals of BF-algebras.

Moreover, bipolar-valued fuzzy sets were extended to bipolar fuzzy transla-
tions in many algebras such as: In 2009, Jun et al. [7] introduced the notions
of bipolar fuzzy translations and bipolar fuzzy S-extensions of a bipolar fuzzy
subalgebra in BCK/BCI-algebras. In 2012, Sardar et al. [19] introduced the no-
tions of bipolar valued fuzzy translations and bipolar valued fuzzy S-extensions
of a bipolar valued fuzzy subsemigroup (bi-ideal) in semigroups.

In this paper, we apply the notion of bipolar fuzzy translations of a bipolar-
valued fuzzy set to UP-algebras. For any bipolar-valued fuzzy set φ = (A;φ−, φ+)
in a UP-algebra A, the notions of bipolar fuzzy (α, β)-translations of φ =
(A;φ−, φ+) of type I and of type II are introduced, their basic properties are
investigated and some useful examples are discussed. The notions of extensions
and of intensions of a bipolar-valued fuzzy set are also studied. Moreover, we
discuss the relation between the complement of a bipolar fuzzy UP-subalgebra
(resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal and bipolar fuzzy strongly
UP-ideal) and its level cuts.

2. Basic results on UP-algebras

Before we begin our study, we will introduce the definition of a UP-algebra.
An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra [4] where A is a

nonempty set, · is a binary operation on A, and 0 is a fixed element of A (i.e.,
a nullary operation) if it satisfies the following axioms: for any x, y, z ∈ A,

(UP-1) (y · z) · ((x · y) · (x · z)) = 0,
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(UP-2) 0 · x = x,

(UP-3) x · 0 = 0, and

(UP-4) x · y = 0 and y · x = 0 imply x = y.

From [4], we know that the notion of UP-algebras is a generalization of
KU-algebras.

Example 2.1 ([4]). Let X be a universal set. Define two binary operations ·
and ∗ on the power set of X by putting A ·B = B ∩A′ and A ∗B = B ∪A′ for
all A,B ∈ P(X). Then (P(X), ·, ∅) and (P(X), ∗, X) are UP-algebras and we
shall call it the power UP-algebra of type 1 and the power UP-algebra of type 2,
respectively.

In what follows, let A denote a UP-algebra unless otherwise specified. The
following proposition is very important for the study of UP-algebras.

Proposition 2.2 ([4]). In a UP-algebra A, the following properties hold: for
any x, y, z ∈ A,

(1) x · x = 0,

(2) x · y = 0 and y · z = 0 imply x · z = 0,

(3) x · y = 0 implies (z · x) · (z · y) = 0,

(4) x · y = 0 implies (y · z) · (x · z) = 0,

(5) x · (y · x) = 0,

(6) (y · x) · x = 0 if and only if x = y · x, and

(7) x · (y · y) = 0.

Definition 2.3 ([4]). A subset S of A is called a UP-subalgebra of A if the
constant 0 of A is in S, and (S, ·, 0) itself forms a UP-algebra.

Iampan [4] proved the useful criteria that a nonempty subset S of a UP-
algebra A = (A, ·, 0) is a UP-subalgebra of A if and only if S is closed under the
· multiplication on A.

Definition 2.4 ([4, 21]). A subset S of A is called

(1) a UP-filter of A if

(i) the constant 0 of A is in S, and

(ii) for any x, y ∈ A, x · y ∈ S and x ∈ S imply y ∈ S.

(2) a UP-ideal of A if
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(i) the constant 0 of A is in S, and

(ii) for any x, y, z ∈ A, x · (y · z) ∈ S and y ∈ S imply x · z ∈ S.

(3) a strongly UP-ideal of A if

(i) the constant 0 of A is in S, and

(ii) for any x, y, z ∈ A, (z · y) · (z · x) ∈ S and y ∈ S imply x ∈ S.

Guntasow et al. [2] proved the generalization that the notion of UP-subalgebras
is a generalization of UP-filters, the notion of UP-filters is a generalization of
UP-ideals, and the notion of UP-ideals is a generalization of strongly UP-ideals.
Moreover, they also proved that a UP-algebra A is the only one strongly UP-
ideal of itself.

3. Bipolar fuzzy (α, β)-translations in UP-algebras

Let X be the universe of discourse. A bipolar-valued fuzzy set [13] φ in X is an
object having the form

φ = {(x, φ−(x), φ+(x)) | x ∈ X}

where φ− : X → [−1, 0] and φ+ : X → [0, 1] are mappings. For the sake of
simplicity, we shall use the symbol φ = (X;φ−, φ+) for the bipolar-valued fuzzy
set φ = {(x, φ−(x), φ+(x)) | x ∈ X}, and use the notion of bipolar fuzzy sets
instead of the notion of bipolar-valued fuzzy sets.

We recall the definitions of bipolar fuzzy UP-subalgebras, bipolar fuzzy UP-
filters, bipolar fuzzy UP-ideals, and bipolar fuzzy strongly UP-ideals.

Definition 3.1 ([11]). A bipolar fuzzy set φ = (A;φ−, φ+) in A is called a
bipolar fuzzy UP-subalgebra of A if it satisfies the following properties: for any
x, y ∈ A,

(1) φ−(x · y) ≤ max{φ−(x), φ−(y)}, and

(2) φ+(x · y) ≥ min{φ+(x), φ+(y)}.

Definition 3.2 ([11]). A bipolar fuzzy set φ = (A;φ−, φ+) in A is called a
bipolar fuzzy UP-filter of A if it satisfies the following properties: for any x, y ∈
A,

(1) φ−(0) ≤ φ−(x),

(2) φ+(0) ≥ φ+(x),

(3) φ−(y) ≤ max{φ−(x · y), φ−(x)}, and

(4) φ+(y) ≥ min{φ+(x · y), φ+(x)}.
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Definition 3.3 ([11]). A bipolar fuzzy set φ = (A;φ−, φ+) in A is called a
bipolar fuzzy UP-ideal of A if it satisfies the following properties: for any x, y, z ∈
A,

(1) φ−(0) ≤ φ−(x),

(2) φ+(0) ≥ φ+(x),

(3) φ−(x · z) ≤ max{φ−(x · (y · z)), φ−(y)}, and

(4) φ+(x · z) ≥ min{φ+(x · (y · z)), φ+(y)}.

Definition 3.4 ([11]). A bipolar fuzzy set φ = (A;φ−, φ+) in A is called a
bipolar fuzzy strongly UP-ideal of A if it satisfies the following properties: for
any x, y, z ∈ A,

(1) φ−(0) ≤ φ−(x),

(2) φ+(0) ≥ φ+(x),

(3) φ−(x) ≤ max{φ−((z · y) · (z · x)), φ−(y)}, and

(4) φ+(x) ≥ min{φ+((z · y) · (z · x)), φ+(y)}.

Kawila et al. [11] proved the generalization that the notion of bipolar UP-
subalgebras is a generalization of bipolar UP-filters, the notion of bipolar UP-
filters is a generalization of bipolar UP-ideals, and the notion of bipolar UP-
ideals is a generalization of bipolar strongly UP-ideals. Moreover, they also
proved that a bipolar fuzzy set φ = (A;φ−, φ+) in A is constant if and only if
it is a bipolar fuzzy strongly UP-ideal of A.

3.1 Bipolar fuzzy (α, β)-translations of a bipolar fuzzy set of type I

Definition 3.5. The inclusion “⊆” is defined by setting, for any bipolar fuzzy
sets φ = (A;φ−, φ+) and ψ = (A;ψ−, ψ+) in A,

φ ⊆ ψ ⇔ φ−(x) ≥ ψ−(x) and φ+(x) ≤ ψ+(x) for all x ∈ A.

We say that ψ = (A;ψ−, ψ+) is a bipolar fuzzy extension of φ = (A;φ−, φ+),
and φ = (A;φ−, φ+) is a bipolar fuzzy intension of ψ = (A;ψ−, ψ+).

Definition 3.6. For any bipolar fuzzy set φ = (A;φ−, φ+) in A, we denote

⊥ := −1 − inf{φ−(x) | x ∈ A},
⊤ := 1 − sup{φ+(x) | x ∈ A}.

Let φ = (A;φ−, φ+) be a bipolar fuzzy set in A and (α, β) ∈ [⊥, 0] × [0,⊤].
By a bipolar fuzzy (α, β)-translation of φ = (A;φ−, φ+) of type I, we mean a
bipolar fuzzy set φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) where

φ−
(α,T1) : A→ [−1, 0], x 7→ φ−(x) + α,

φ+
(β,T1) : A→ [0, 1], x 7→ φ+(x) + β.
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Theorem 3.7. If a bipolar fuzzy set φ = (A;φ−, φ+) in A is a bipolar fuzzy
UP-subalgebra of A, then for all (α, β) ∈ [⊥, 0] × [0,⊤], a bipolar fuzzy (α, β)-
translation φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) of φ = (A;φ−, φ+) is a bipolar

fuzzy UP-subalgebra of A.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra of A.
For any (α, β) ∈ [⊥, 0] × [0,⊤] and for all x, y ∈ A, we have

φ−
(α,T1)

(x · y) = φ−(x · y) + α

≤ max{φ−(x), φ−(y)} + α

= max{φ−(x) + α, φ−(y) + α}
= max{φ−

(α,T1)
(x), φ−

(α,T1)
(y)}

and

φ+
(β,T1)

(x · y) = φ+(x · y) + β

≥ min{φ+(x), φ+(y)} + β

= min{φ+(x) + β, φ+(y) + β}
= min{φ+

(β,T1)
(x), φ+

(β,T1)
(y)}.

Hence, φT1

(α,β) = (A;φ−
(α,T1)

, φ+
(β,T1)

) is a bipolar fuzzy UP-subalgebra of A.

Theorem 3.8. If there exists (α, β) ∈ [⊥, 0] × [0,⊤] such that the bipolar fuzzy
(α, β)-translation φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) of φ = (A;φ−, φ+) is a

bipolar fuzzy UP-subalgebra of A, then φ = (A;φ−, φ+) is a bipolar fuzzy UP-
subalgebra of A.

Proof. Assume that φT1

(α,β) = (A;φ−
(α,T1)

, φ+
(β,T1)

) is a bipolar fuzzy UP-subalgebra

of A for (α, β) ∈ [⊥, 0] × [0,⊤] and for all x, y ∈ A, we have

φ−(x · y) + α = φ−
(α,T1)

(x · y)

≤ max{φ−
(α,T1)

(x), φ−
(α,T1)

(y)}

= max{φ−(x) + α, φ−(y) + α}
= max{φ−(x), φ−(y)} + α

and

φ+(x · y) + β = φ+
(β,T1)

(x · y)

≥ {φ+
(β,T1)

(x), φ+
(β,T1)

(y)}

= min{φ+(x) + β, φ+(y) + β}
= min{φ+(x), φ+(y)} + β.

Thus φ−(x · y) ≤ max{φ−(x), φ−(y)} and φ+(x · y) ≥ min{φ+(x), φ+(y)}.
Hence, φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra of A.
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Theorem 3.9. If a bipolar fuzzy set φ = (A;φ−, φ+) in A is a bipolar fuzzy UP-
filter of A then for all (α, β) ∈ [⊥, 0] × [0,⊤], a bipolar fuzzy (α, β)-translation
φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) of φ = (A;φ−, φ+) is a bipolar fuzzy UP-filter

of A.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy UP-filter of A. For any
(α, β) ∈ [⊥, 0]× [0,⊤] and let x ∈ A. Then φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x).
Thus

φ−
(α,T1)

(0) = φ−(0) + α ≤ φ−(x) + α = φ−
(α,T1)

(x)

and

φ+
(β,T1)

(0) = φ+(0) + β ≥ φ+(x) + β = φ+
(β,T1)

(x).

Next, let x, y ∈ A. Then φ−(y) ≤ max{φ−(x·y), φ−(x)} and φ+(y) ≥ min{φ+(x·
y), φ+(x)}. Thus

φ−
(α,T1)

(y) = φ−(y) + α

≤ max{φ−(x · y), φ−(x)} + α

= max{φ−(x · y) + α,φ−(x)) + α}
= max{φ−

(α,T1)
(x · y), φ−

(α,T1)
(x)}

and

φ+
(β,T1)

(y) = φ+(y) + β

≥ min{φ+(x · y), φ+(x)} + β

= min{φ+(x · y) + β, φ+(x) + β}
= min{φ+

(β,T1)
(x · y), φ+

(β,T1)
(x)}.

Hence, φT1

(α,β) = (A;φ−
(α,T1)

, φ+
(β,T1)

) is a bipolar fuzzy UP-filter of A.

Theorem 3.10. If there exists (α, β) ∈ [⊥, 0] × [0,⊤] such that the bipolar
fuzzy (α, β)-translation φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) of φ = (A;φ−, φ+) is

a bipolar fuzzy UP-filter of A, then φ = (A;φ−, φ+) is a bipolar fuzzy UP-filter
of A.

Proof. Assume that φT1

(α,β) = (A;φ−
(α,T1)

, φ+
(β,T1)

) is a bipolar fuzzy UP-filter of

A for (α, β) ∈ [⊥, 0] × [0,⊤] and let x ∈ A. Then

φ−(0) + α = φ−
(α,T1)

(0) ≤ φ−
(α,T1)

(x) = φ−(x) + α

and

φ+(0) + β = φ+
(β,T1)

(0) ≥ φ+
(β,T1)

(x) = φ+(x) + β.
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Thus φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x). Next, let x, y ∈ A. Then

φ−(y) + α = φ−
(α,T1)

(y)

≤ max{φ−
(α,T1)

(x · y), φ−
(α,T1)

(x)}

= max{φ−(x · y) + α,φ−(x) + α}
= max{φ−(x · y), φ−(x)} + α

and

φ−(y) + β = φ+
(β,T1)

(y)

≥ min{φ+
(β,T1)

(x · y), φ+
(β,T1)

(x)}

= min{φ−(x · y) + β, φ−(x) + β}
= min{φ−(x · y), φ−(x)} + β.

Thus φ−(y) ≤ max{φ−(x · y), φ−(x)} and φ−(y) ≥ min{φ−(x · y), φ−(x)}.
Hence, φ− = (A;φ−, φ+) is a bipolar fuzzy UP-filter of A.

Theorem 3.11. If a bipolar fuzzy set φ = (A;φ−, φ+) in A is a bipolar fuzzy
UP-ideal of A, then for all (α, β) ∈ [⊥, 0] × [0,⊤], a bipolar fuzzy (α, β)-
translation φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) of φ = (A;φ−, φ+) is a bipolar

fuzzy UP-ideal of A.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal of A. For any
(α, β) ∈ [⊥, 0]× [0,⊤] and let x ∈ A. Then φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x).
Thus

φ−
(α,T1)

(0) = φ−(0) + α ≤ φ−(x) + α = φ−
(α,T1)

(x)

and

φ+
(β,T1)

(0) = φ+(0) + β ≥ φ−(x) + β = φ−
(β,T1)

(x).

Next, let x, y, z ∈ A. Then φ−(x·z) ≤ max{φ−(x·(y ·z)), φ−(y)} and φ+(x·z) ≥
min{φ+(x · (y · z)), φ+(y)}. Thus

φ−
(α,T1)

(x · z) = φ−(x · z) + α

≤ max{φ−(x · (y · z)), φ−(y)} + α

= max{φ−(x · (y · z)) + α,φ−(y) + α}
= max{φ−

(α,T1)
(x · (y · z)), φ−

(α,T1)
(y)}

and

φ+
(β,T1)

(x · z) = φ+(x · z) + β

≥ min{φ+(x · (y · z)), φ+(y)} + β

= min{φ+(x · (y · z)) + β, φ+(y) + β}
= min{φ+

(β,T1)
(x · (y · z)), φ+

(β,T1)
(y)}.
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Hence, φT1

(α,β) = (A;φ−
(α,T1)

, φ+
(β,T1)

) is a bipolar fuzzy UP-ideal of A.

Theorem 3.12. If there exists (α, β) ∈ [⊥, 0] × [0,⊤] such that the bipolar
fuzzy (α, β)-translation φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) of φ = (A;φ−, φ+) is

a bipolar fuzzy UP-ideal of A, then φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal
of A.

Proof. Assume that φT1

(α,β) = (A;φ−
(α,T1)

, φ+
(β,T1)

) is a bipolar fuzzy UP-ideal of

A for (α, β) ∈ [⊥, 0] × [0,⊤] and let x ∈ A. Then

φ−(0) + α = φ−
(α,T1)

(0) ≤ φ−
(α,T1)

(x) = φ−(x) + α

and

φ+(0) + β = φ+
(β,T1)

(0) ≥ φ+
(β,T1)

(x) = φ+(x) + β.

Thus φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x). Next, let x, y, z ∈ A. Then

φ−(x · z) + α = φ−
(α,T1)

(x · z)

≤ max{φ−
(α,T1)

(x · (y · z)), φ−
(α,T1)

(y)}

= max{φ−(x · (y · z)) + α, φ−(y) + α}
= max{φ−(x · (y · z)), φ−(y)} + α

and

φ+(x · z) + β = φ+
(β,T1)

(x · z)

≥ min{φ+
(β,T1)

(x · (y · z)), φ+
(β,T1)

(y)}

= min{φ+(x · (y · z)) + β, φ+(y) + β}
= min{φ+(x · (y · z)), φ+(y)} + β.

Thus φ−(x · z) ≤ max{φ−(x · (y · z)), φ−(y)} and φ+(x · z) ≥ min{φ+(x · (y ·
z)), φ+(y)}. Hence, φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal of A.

Theorem 3.13. If a bipolar fuzzy set φ = (A;φ−, φ+) in A is a bipolar fuzzy
strongly UP-ideal of A, then for all (α, β) ∈ [⊥, 0]× [0,⊤], a bipolar fuzzy (α, β)-
translation φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) of φ = (A;φ−, φ+) is a bipolar

fuzzy strongly UP-ideal of A.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy strongly UP-ideal of
A. For any (α, β) ∈ [⊥, 0] × [0,⊤] and let x ∈ A. Then φ−(0) ≤ φ−(x) and
φ+(0) ≥ φ+(x). Thus

φ−
(α,T1)

(0) = φ−(0) + α ≤ φ−(x) + α = φ−
(α,T1)

(x)

and

φ+
(β,T1)

(0) = φ+(0) + β ≥ φ+(x) + β = φ+
(β,T1)

(x).
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Next, let x, y, z ∈ A. Then φ−(x) ≤ max{φ−((z · y) · (z · x)), φ−(y)} and
φ+(x) ≥ min{φ+((z · y) · (z · x)), φ+(y)}. Thus

φ−
(α,T1)

(x) = φ−(x) + α

≤ max{φ−((z · y) · (z · x)), φ−(y)} + α

= max{φ−((z · y) · (z · x))) + α, φ−(y) + α}
= max{φ−

(α,T1)
((z · y) · (z · x)), φ−

(α,T1)
(y)}

and

φ+
(β,T1)

(x) = φ+(x) + β

≥ min{φ+((z · y) · (z · x)), φ+(y)} + β

= min{φ+((z · y) · (z · x)) + β, φ+(y) + β}
= min{φ+

(β,T1)
((z · y) · (z · x)), φ+

(β,T1)
(y)}.

Hence, φT1

(α,β) = (A;φ−
(α,T1)

, φ+
(β,T1)

) is a bipolar fuzzy strongly UP-ideal of A.

Theorem 3.14. If there exists (α, β) ∈ [⊥, 0] × [0,⊤] such that the bipolar
fuzzy (α, β)-translation φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) of φ = (A;φ−, φ+) is

a bipolar fuzzy strongly UP-ideal of A, then φ = (A;φ−, φ+) is a bipolar fuzzy
strongly UP-ideal of A.

Proof. Assume that φT1

(α,β) = (A;φ−
(α,T1)

, φ+
(β,T1)

) is a bipolar fuzzy strongly

UP-ideal of A for (α, β) ∈ [⊥, 0] × [0,⊤] and let x ∈ A. Then

φ−(0) + α = φ−
(α,T1)

(0) ≤ φ−
(α,T1)

(x) = φ−(x) + α

and

φ+(0) + β = φ+
(β,T1)

(0) ≥ φ+
(β,T1)

(x) = φ+(x) + β.

Thus φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x). Next, let x, y, z ∈ A. Then

φ−(x) + α = φ−
(α,T1)

(x)

≤ max{φ−
(α,T1)

((z · y) · (z · x)), φ−
(α,T1)

(y)}

= max{φ−((z · y) · (z · x)) + α,φ−(y) + α}
= max{φ−((z · y) · (z · x)), φ−(y)} + α

and

φ+(x) + β = φ+
(β,T1)

(x)

≥ min{φ+
(β,T1)

((z · y) · (z · x)), φ+
(β,T1)

(y)}

= min{φ+((z · y) · (z · x)) + β, φ+(y) + β}
= min{φ+((z · y) · (z · x)), φ+(y)} + β.
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Thus φ−(x) ≤ max{φ−((z · y) · (z · x)), φ−(y)} and φ+(x) ≥ min{φ+((z · y) ·
(z · x)), φ+(y)}. Hence, φ = (A;φ−, φ+) is a bipolar fuzzy strongly UP-ideal of
A.

Remark 3.15. If φ = (A;φ−, φ+) is a bipolar fuzzy set in A, then for all
(α, β) ∈ [⊥, 0] × [0,⊤], φ−

(α,T1)(x) = φ−(x) + α ≤ φ−(x) and φ+
(β,T1)(x) =

φ+(x) + β ≥ φ+(x) for all x ∈ A. Hence, the bipolar fuzzy (α, β)-translation
φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1)) of φ = (A;φ−, φ+) is a bipolar fuzzy extension

of φ = (A;φ−, φ+) for all (α, β) ∈ [⊥, 0] × [0,⊤].

Lemma 3.16. Let φ = (A;φ−, φ+) and ψ = (A;ψ−, ψ+) be bipolar fuzzy sets
in A. If φT1

(α1,β1)
⊆ ψ for all (α1, β1) ∈ [⊥, 0]× [0,⊤], then there exists (α2, β2) ∈

[⊥, 0] × [0,⊤] with (α1, β1) ≤ (α2, β2), that is, α1 ≥ α2 and β1 ≤ β2 such that
φT1

(α1,β1)
⊆ φT1

(α2,β2)
⊆ ψ.

Proof. Assume that φT1

(α1,β1)
⊆ ψ for all (α1, β1) ∈ [⊥, 0]×[0,⊤]. Then ψ−(x) ≤

φ−
(α1,T1)

(x) and ψ+(x) ≥ φ+
(β1,T1)

(x) for all x ∈ A. Put α2 = α1 + sup{ψ−(x) −
φ−
(α1,T1)

(x)}. Then

sup{ψ−(x) − φ−
(α1,T1)

(x)} = sup{ψ−(x) − (φ−(x) + α1)}

≥ sup{−1 − (φ−(x) + α1)}
= −1 + sup{−φ−(x) − α1}
= −1 + sup{−φ−(x)} − α1

= −1 − inf{φ−(x)} − α1

= ⊥− α1,

so α2 = α1 + sup{ψ−(x)−φ−
(α,T1)

(x)} ≥ α1 +⊥−α1 = ⊥. Thus α2 ∈ [⊥, 0] and

α2 ≤ α1, so φ−
(α2,T1)

(x) ≤ φ−
(α1,T1)

(x) for all x ∈ A. Now for all x ∈ A, we have

φ−
(α2,T1)

(x) = φ−(x) + α2

= φ−(x) + α1 + sup{ψ−(x) − φ−
(α1,T1)

(x)}

≥ φ−
(α1,T1)

(x) + ψ−(x) − φ−
(α1,T1)

(x)

= ψ−(x).

Thus φ−
(α1,T1)

(x) ≥ φ−
(α2,T1)

(x) ≥ ψ−(x) for all x ∈ A. Put β2 = β1+inf{ψ+(x)−
φ+
(β1,T1)

(x)}. Then

inf{ψ+(x) − φ+
(β1,T1)

(x)} = inf{ψ+(x) − (φ+(x) + β1)}

≤ inf{1 − (φ+(x) + β1)}
= 1 + inf{−φ+(x) − β1}
= 1 + inf{−φ+(x)} − β1

= −1 − sup{φ+(x)} − β1

= ⊤− β1,
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so β2 = β1 + inf{ψ+(x)−φ+
(β1,T1)

(x)} ≤ β1 +⊤− β1 = ⊤. Thus β2 ∈ [0,⊤] and

β2 ≥ β1, so φ+
(β2,T1)

(x) ≥ φ+
(β1,T1)

(x) for all x ∈ A. Now for all x ∈ A, we have

φ+
(β2,T1)

(x) = φ+(x) + β2

= φ+(x) + β1 + inf{ψ+(x) − φ+
(β1,T1)

(x)}

≤ φ+
(β1,T1)

(x) + ψ+(x) − φ+
(β1,T1)

(x)

= ψ+(x).

Thus φ+
(β1,T1)

(x) ≤ φ+
(β2,T1)

(x) ≤ ψ+(x) for all x ∈ A. Hence, φT1

(α1,β1)
⊆

φT1

(α2,β2)
⊆ ψ.

Definition 3.17. Let φ = (A;φ−, φ+) and ψ = (A;ψ−, ψ+) be bipolar fuzzy
sets in A with φ ⊆ ψ. If φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra
(resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly
UP-ideal) of A, then ψ = (A;ψ−, ψ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
of A, and we say that ψ = (A;ψ−, ψ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
extension of φ = (A;φ−, φ+).

Theorem 3.18. If φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
of A, then the bipolar fuzzy (α, β)-translation φT1

(α,β) = (A;φ−
(α,T1), φ

+
(β,T1))

of φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-
filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) extension of φ =
(A;φ−, φ+).

Proof. It follows form Theorem 3.7 (resp., Theorem 3.9, Theorem 3.11, Theo-
rem 3.13) and Remark 3.15.

Theorem 3.19. If φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) of
A, then the bipolar fuzzy (α1, β1)-translation φ

T1
(α1,β1) = (A;φ−

(α1,T1), φ
+
(β1,T1))

of φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-
filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) extension of the
bipolar fuzzy (α2, β2)-translation φT1

(α2,β2) = (A;φ−
(α2,T1), φ

+
(β2,T1)) of φ =

(A;φ−, φ+) with (α1, β1) ≥ (α2, β2).

Proof. It follows form Theorem 3.7 (resp., Theorem 3.9, Theorem 3.11, Theo-
rem 3.13).

Theorem 3.20. Let φ = (A;φ−, φ+) be a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) of
A. For every bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-filter, bipolar



TRANSLATION AND DENSITY OF A BIPOLAR-VALUED FUZZY SET IN UP-ALGEBRAS 481

fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) extension ψ = (A;ψ−, ψ+) of the
bipolar fuzzy (α, β)-translation φT1

(α,β) = (A;φ−
(α,T1)

, φ+
(β,T1)

) of φ = (A;φ−, φ+)

there exists (k−, k+) ∈ [⊥, 0]× [0,⊤] such that (k−, k+) ≥ (α, β), that is, k− ≤ α
and k+ ≥ β, and ψ = (A;ψ−, ψ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
extension of bipolar fuzzy (k−, k+)-translation φT1

(k−,k+)
= (A;φ−

(k−,T1)
, φ+

(k+,T1)
)

of φ = (A;φ−, φ+).

Proof. It follows form Theorem 3.7 (resp., Theorem 3.9, Theorem 3.11, Theo-
rem 3.13) and Lemma 3.16.

3.2 Bipolar fuzzy (α, β)-translations of a bipolar fuzzy set of type II

Definition 3.21. For any bipolar fuzzy set φ = (A;φ−, φ+) in A, we denote

± := sup{φ−(x) | x ∈ A},
∓ := inf{φ+(x) | x ∈ A}.

Let φ = (A;φ−, φ+) be a bipolar fuzzy set in A and (α, β) ∈ [±, 0] × [0,∓].
By a bipolar fuzzy (α, β)-translation of φ = (A;φ−, φ+) of type II, we mean a
bipolar fuzzy set φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2)) where

φ−
(α,T2) : A→ [−1, 0], x 7→ φ−(x) − α,

φ+
(β,T2) : A→ [0, 1], x 7→ φ+(x) − β.

Theorem 3.22. If a bipolar fuzzy set φ = (A;φ−, φ+) in A is a bipolar fuzzy
UP-subalgebra of A, then for all (α, β) ∈ [±, 0] × [0,∓], a bipolar fuzzy (α, β)-
translation φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2)) of φ = (A;φ−, φ+) is a bipolar

fuzzy UP-subalgebra of A.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra of A.
For any (α, β) ∈ [±, 0] × [0,∓] and for all x, y ∈ A, we have

φ−
(α,T2)

(x · y) = φ−(x · y) − α

≤ max{φ−(x), φ−(y)} − α

= max{φ−(x) − α, φ−(y) − α}
= max{φ−

(α,T2)
(x), φ−

(α,T2)
(y)}

and

φ+
(β,T2)

(x · y) = φ+(x · y) − β

≥ min{φ+(x), φ+(y)} − β

= min{φ+(x) − β, φ+(y) − β}
= min{φ+

(β,T2)
(x), φ+

(β,T2)
(y)}.

Hence, φT2
(α,β) = (A;φ−

(α,T2), φ
+
(β,T2)) is a bipolar fuzzy UP-subalgebra of

A.



482 N. UDTEN, N. SONGSEANG and A. IAMPAN

Theorem 3.23. If there exists (α, β) ∈ [±, 0] × [0,∓] such that the bipolar
fuzzy (α, β)-translation φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2)) of φ = (A;φ−, φ+)

is a bipolar fuzzy UP-subalgebra of A, then φ = (A;φ−, φ+) is a bipolar fuzzy
UP-subalgebra of A.

Proof. Assume that φT2

(α,β) = (φ−
(α,T2)

, φ+
(β,T2)

) is a bipolar fuzzy UP-subalgebra

of A for (α, β) ∈ [±, 0] × [0,∓]. Then for all x, y ∈ A, we have

φ−(x · y) − α = φ−
(α,T2)

(x · y)

≤ max{φ−
(α,T2)

(x), φ−
(α,T2)

(y)}

= max{φ−(x) − α, φ−(y) − α}
= max{φ−(x), φ−(y)} − α

and

φ+(x · y) − β = φ+
(β,T2)

(x · y)

≥ min{φ+
(β,T2)

(x), φ+
(β,T2)

(y)}

= min{φ+(x) − β, φ+(y) − β}
= min{φ+(x), φ+(y)} − β.

Thus φ−(x · y) ≤ max{φ−(x), φ−(y)} and φ+(x · y) ≥ min{φ+(x), φ+(y)}.
Hence, φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra of A.

Theorem 3.24. If a bipolar fuzzy set φ = (A;φ−, φ+) in A is a bipolar fuzzy
UP-filter of A, then for all (α, β) ∈ [±, 0] × [0,∓], a bipolar fuzzy (α, β)-
translation φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2)) of φ = (A;φ−, φ+) is a bipolar

fuzzy UP-filter of A.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy UP-filter of A. For any
(α, β) ∈ [±, 0]× [0,∓] and let x ∈ A. Then φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x).
Thus

φ−
(α,T2)

(0) = φ−(0) − α ≤ φ−(x) − α = φ−
(α,T2)

(x)

and

φ+
(β,T2)

(0) = φ+(0) − β ≥ φ+(x) − β = φ+
(β,T2)

(x).

Next, let x, y ∈ A. Then φ−(y) ≤ max{φ−(x·y), φ−(x)} and φ+(y) ≥ min{φ+(x·
y), φ+(x)}. Thus

φ−
(α,T2)

(y) = φ−(y) − α

≤ max{φ−(x · y), φ−(x)} − α

= max{φ−(x · y) − α, φ−(x) − α}
= max{φ−

(α,T2)
(x · y), φ−

(α,T2)
(x)}
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and

φ+
(β,T2)

(y) = φ+(y) − β

≥ min{φ+(x · y), φ+(x)} − β

= min{φ+(x · y) − β, φ+(x) − β}
= min{φ+

(β,T2)
(x · y), φ+

(β,T2)
(x)}.

Hence, φT2

(α,β) = (A;φ−
(α,T2)

, φ+
(β,T2)

) is a bipolar fuzzy UP-filter of A.

Theorem 3.25. If there exists (α, β) ∈ [±, 0] × [0,∓] such that the bipolar
fuzzy (α, β)-translation φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2)) of φ = (A;φ−, φ+) is

a bipolar fuzzy UP-filter of A, then φ = (A;φ−, φ+) is a bipolar fuzzy UP-filter
of A.

Proof. Assume that φT2

(α,β) = (A;φ−
(α,T2)

, φ+
(β,T2)

) is a bipolar fuzzy UP-filter of

A for (α, β) ∈ [±, 0] × [0,∓] and let x ∈ A. Then

φ−(0) − α = φ−
(α,T2)

(0) ≤ φ−
(α,T2)

(x) = φ−(x) − α

and

φ+(0) − β = φ+
(β,T2)

(0) ≥ φ+
(β,T2)

(x) = φ+(x) − β.

Thus φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x). Next, let x, y ∈ A. Then

φ−(y) − α = φ−
(α,T2)

(y)

≤ max{φ−
(α,T2)

(x · y), φ−
(α,T2)

(x)}

= max{φ−(x · y) − α,φ−(x) − α}
= max{φ−(x · y), φ−(x)} − α

and

φ+(y) − β = φ+
(β,T2)

(y)

≥ min{φ+
(β,T2)

(x · y), φ+
(β,T2)

(x)}

= min{φ+(x · y) − β, φ+(x) − β}
= min{φ+(x · y), φ+(x)} − β.

Thus φ−(y) ≤ max{φ−(x), φ−(x · y)} and φ+(y) ≥ min{φ+(x), φ+(x · y)}.
Hence, φ = (A;φ−, φ+) is a bipolar fuzzy UP-filter of A.

Theorem 3.26. If a bipolar fuzzy set φ = (A;φ−, φ+) in A is a bipolar fuzzy
UP-ideal of A, then for all (α, β) ∈ [±, 0] × [0,∓], a bipolar fuzzy (α, β)-
translation φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2)) of φ = (A;φ−, φ+) is a bipolar

fuzzy UP-ideal of A.
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Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal of A. For any
(α, β) ∈ [±, 0]× [0,∓] and let x ∈ A. Then φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x).
Thus

φ−
(α,T2)

(0) = φ−(0) − α ≤ φ−(x) − α = φ−
(α,T2)

(x)

and

φ+
(β,T2)

(0) = φ+(0) − β ≥ φ+(x) − β = φ+
(β,T2)

(x).

Next, let x, y, z ∈ A. Then φ−
(α,T2)

(x · z) ≤ max{φ−
(α,T2)

(x · (y · z)), φ−
(α,T2)

(y)}
and φ+

(β,T2)
(x · z) ≥ min{φ+

(β,T2)
(x · (y · z)), φ+

(β,T2)
(y)}. Thus

φ−
(α,T2)

(x · z) = φ−(x · z) − α

≤ max{φ−(x · (y · z)), φ−(y)} − α

= max{φ−(x · (y · z)) − α,φ−(y) − α}
= max{φ−

(α,T2)
(x · (y · z)), φ−

(α,T2)
(y)}

and

φ+
(β,T2)

(x · z) = φ+(x · z) − β

≥ min{φ+(x · (y · z)), φ+(y)} − β

= min{φ+(x · (y · z)) − β, φ+(y) − β}
= min{φ+

(β,T2)
(x · (y · z)), φ+

(β,T2)
(y)}.

Hence, φT2

(α,β) = (A;φ−
(α,T2)

, φ+
(β,T2)

) is a bipolar fuzzy UP-ideal of A.

Theorem 3.27. If there exists (α, β) ∈ [±, 0] × [0,∓] such that the bipolar
fuzzy (α, β)-translation φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2)) of φ = (A;φ−, φ+) is

a bipolar fuzzy UP-ideal of A, then φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal
of A.

Proof. Assume that φT2

(α,β) = (A;φ−
(α,T2)

, φ+
(β,T2)

) is a bipolar fuzzy UP-ideal of

A for (α, β) ∈ [±, 0] × [0,∓] and let x ∈ A. Then

φ−(0) − α = φ−
(α,T2)

(0) ≤ φ−
(α,T2)

(x) = φ−(x) − α

and

φ+(0) − β = φ+
(β,T2)

(0) ≥ φ+
(β,T2)

(x) = φ+(x) − β.

Thus φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x). Next, x, y, z ∈ A. Then

φ−(x · z) − α = φ−
(α,T2)

(x · z)

≤ max{φ−
(α,T2)

(x · (y · z)), φ−
(α,T2)

(y)}

= max{φ−(x · (y · z)) − α, φ−(y) − α}
= max{φ−(x · (y · z)), φ−(y)} − α
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and

φ+(x · z) − β = φ+
(β,T2)

(x · z)

≥ min{φ+
(β,T2)

(x · (y · z)), φ+
(β,T2)

(y)}

= min{φ+(x · (y · z)) − β, φ+(y) − β}
= min{φ+(x · (y · z)), φ+(y)} − β.

Thus φ−(x · z) ≤ max{φ−(x · (y · z)), φ−(y)} and φ+(x · z) ≥ min{φ+(x · (y ·
z)), φ+(y)}. Hence, φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal of A.

Theorem 3.28. If a bipolar fuzzy set φ = (A;φ−, φ+) in A is a bipolar fuzzy
strongly UP-ideal of A, then for all (α, β) ∈ [±, 0]× [0,∓], a bipolar fuzzy (α, β)-
translation φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2)) of φ = (A;φ−, φ+) is a bipolar

fuzzy strongly UP-ideal of A.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy strongly UP-ideal of
A. For any (α, β) ∈ [±, 0] × [0,∓] and let x ∈ A. Then φ−(0) ≤ φ−(x) and
φ+(0) ≥ φ+(x). Thus

φ−
(α,T2)

(0) = φ−(0) − α ≤ φ−(x) − α = φ−
(α,T2)

(x)

and

φ+
(β,T2)

(0) = φ+(0) − β ≥ φ+(x) − β = φ+
(β,T2)

(x).

Next, let x, y, z ∈ A. Then φ−(x) ≤ max{φ−((z · y) · (z · x)), φ−(y)} and
φ+(x) ≥ min{φ+((z · y) · (z · x)), φ+(y)}. Thus

φ−
(α,T2)

(x) = φ−(x) − α

≤ max{φ−((z · y) · (z · x)), φ−(y)} − α

= max{φ−((z · y) · (z · x)) − α, φ−(y) − α}
= max{φ−

(α,T2)
((z · y) · (z · x)), φ−

(α,T2)
(y)}

and

φ+
(β,T2)

(x) = φ+(x) − β

≥ min{φ+((z · y) · (z · x)), φ+(y)} − β

= min{φ+((z · y) · (z · x)) − β, φ+(y) − β}
= min{φ+

(β,T2)
((z · y) · (z · x)), φ+

(β,T2)
(y)}.

Hence, φT2

(α,β) = (A;φ−
(α,T2)

, φ+
(β,T2)

) is a bipolar fuzzy strongly UP-ideal of A.
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Theorem 3.29. If there exists (α, β) ∈ [±, 0] × [0,∓] such that the bipolar
fuzzy (α, β)-translation φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2)) of φ = (A;φ−, φ+) is

a bipolar fuzzy strongly UP-ideal of A, then φ = (A;φ−, φ+) is a bipolar fuzzy
strongly UP-ideal of A.

Proof. Assume that φT2
(α,β) = (A;φ−

(α,T2), φ
+
(β,T2)) is a bipolar fuzzy strongly

UP-ideal of A for (α, β) ∈ [±, 0] × [0,∓] and let x ∈ A. Then

φ−(0) − α = φ−
(α,T2)

(0) ≤ φ−
(α,T2)

(x) = φ−(x) − α

and

φ+(0) − β = φ+
(β,T2)

(0) ≥ φ+
(β,T2)

(x) = φ+(x) − β.

Thus φ−(0) ≤ φ−(x) and φ+(0) ≥ φ+(x). Next, let x, y, z ∈ A. Then

φ−(x) − α = φ−
(α,T2)

(x)

≤ max{φ−
(α,T2)

((z · y) · (z · x)), φ−
(α,T2)

(y)}

= max{φ−((z · y) · (z · x)) − α,φ−(y) − α}
= max{φ−((z · y) · (z · x)), φ−(y)} − α

and

φ+(x) − β = φ+
(β,T2)

(x)

≥ min{φ+
(β,T2)

((z · y) · (z · x)), φ+
(β,T2)

(y)}

= min{φ+((z · y) · (z · x)) − β, φ+(y) − β}
= min{φ+((z · y) · (z · x)), φ+(y)} − β.

Thus φ−(x) ≤ max{φ−((z · y) · (z · x)), φ−(y)} and φ+(x) ≥ min{φ+((z · y) ·
(z · x)), φ+(y)}. Hence, φ = (A;φ−, φ+) is a bipolar fuzzy strongly UP-ideal of
A.

Remark 3.30. If φ = (A;φ−, φ+) is a bipolar fuzzy set in A and (α, β) ∈
[±, 0]×[0,∓], then φ−

(α,T2)(x) = φ−(x)−α ≥ φ−(x) and φ+
(β,T2)(x) = φ+(x)−

β ≤ β+(x) for all x ∈ A. Hence, the bipolar fuzzy (α, β)-translation φT2
(α,β) =

(A;φ−
(α,T2), φ

+
(β,T2)) of φ = (A;φ−, φ+) is a bipolar fuzzy intension of φ =

(A;φ−, φ+) for all (α, β) ∈ [±, 0] × [0,∓].

Lemma 3.31. Let φ = (A;φ−, φ+) and ψ = (A;ψ−, ψ+) be bipolar fuzzy sets
in A. If ψ ⊆ φT2

(α1,β1)
for (α1, β1) ∈ [±, 0] × [0,∓], then there exists (α2, β2) ∈

[±, 0] × [0,∓] with (α1, β1) ≤ (α2, β2) such that ψ ⊆ φT2

(α2,β2)
⊆ φT2

(α1,β1)
.

Proof. Assume that ψ ⊆ φT2

(α1,β1)
for (α1, β1) ∈ [±, 0]×[0,∓]. Then φ−

(α1,T1)
(x) ≤

ψ−(x) and φ+
(β1,T1)

(x) ≥ ψ+(x) for all x ∈ A. Put α2 = α1 + sup{φ−
(α1,T2)

(x) −
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ψ−(x)}. Then

sup{φ−
(α1,T2)

(x) − ψ−(x)} ≥ sup{φ−
(α1,T2)

(x)}

= sup{φ−(x) − α1}
= sup{φ−(x)} − α1

= ±− α1,

so α2 = α1 + sup{φ−
(α1,T2)

(x) − ψ−(x)} ≥ α1 + ± − α1 = ±. Thus α2 ∈ [±, 0]

and α2 ≤ α1, so φ−
(α2,T2)

(x) ≥ φ−
(α1,T2)

(x) for all x ∈ A. Now for all x ∈ A, we
have

φ−
(α2,T2)

(x) = φ−(x) − α2

= φ−(x) − (α1 + sup{φ−
(α1,T2)

(x) − ψ−(x)})

= φ−(x) − α1 − sup{φ−
(α1,T2)

(x) − ψ−(x)}

= φ−(x) − α1 + inf{ψ−(x) − φ−
(α1,T2)

(x)}

≤ φ−
(α1,T2)

(x) + ψ−(x) − φ−
(α1,T2)

(x)

= ψ−(x).

Thus φ−
(α1,T2)

(x) ≤ φ−
(α2,T2)

(x) ≤ ψ−(x) for all x ∈ A. Put β2 = β1 +

inf{φ+
(β1,T2)

(x) − ψ+(x)}. Then

inf{φ+
(β1,T2)

(x) − ψ+(x)} ≤ inf{φ+
(β1,T2)

(x)}

= inf{φ+(x) − β1}
= inf{φ+(x)} − β1

= ∓− β1,

so β2 = β1 + inf{φ+
(β1,T2)

(x)−ψ+(x)} ≤ β1 +∓− β1 = ∓. Thus β2 ∈ [0,∓] and

β2 ≥ β1, so φ+
(β2,T1)

(x) ≤ φ+
(β1,T2)

(x) for all x ∈ A. Now for all x ∈ A, we have

φ+
(β2,T2)

(x) = φ+(x) − β2

= φ+(x) − (β1 + inf{φ+
(β1,T2)

(x) − ψ+(x)})

= φ+(x) − β1 − inf{φ+
(β1,T2)

(x) − ψ+(x)}

= φ+(x) − β1 + sup{ψ+(x) − φ+
(β1,T2)

(x)}

≥ φ+
(β1,T2)

(x) + ψ+(x) − φ+
(β1,T2)

(x)

= ψ+(x).

Thus ψ+(x) ≤ φ+
(β2,T2)

(x) ≤ φ+
(β1,T2)

(x) for all x ∈ A. Hence, ψ ⊆ φT2

(α2,β2)
⊆

φT2

(α1,β1)
.
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Definition 3.32. Let φ = (A;φ−, φ+) and ψ = (A;ψ−, ψ+) be bipolar fuzzy
sets in A with ψ ⊆ φ. If φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra
(resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly
UP-ideal) of A, then ψ = (A;ψ−, ψ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
of A, and we say that ψ = (A;ψ−, ψ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
intension of φ = (A;φ−, φ+).

Theorem 3.33. If φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
of A, then the bipolar fuzzy (α, β)-translation φT2

(α,β) = (A;φ−
(α,T2), φ

+
(β,T2))

of φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-
filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) intension of φ =
(A;φ−, φ+).

Proof. It follows form Theorem 3.22 (resp., Theorem 3.24, Theorem 3.26, The-
orem 3.28) and Remark 3.30.

Theorem 3.34. If φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) of
A, then the bipolar fuzzy (α1, β1)-translation φ

T2
(α1,β1) = (A;φ−

(α1,T2), φ
+
(β1,T2))

of φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-
filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) intension of the
bipolar fuzzy (α2, β2)-translation φT2

(α2,β2) = (A;φ−
(α2,T2), φ

+
(β2,T2)) of φ =

(A;φ−, φ+) with (α1, β1) ≤ (α2, β2).

Proof. It follows form Theorem 3.22 (resp., Theorem 3.24, Theorem 3.26, The-
orem 3.28).

Theorem 3.35. Let φ = (A;φ−, φ+) be a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) of
A. For every bipolar fuzzy UP-subalgebra (resp., bipolar fuzzy UP-filter, bipolar
fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal) intension ψ = (A;ψ−, ψ+) of the
bipolar fuzzy (α, β)-translation φT2

(α,β) = (A;φ−
(α,T2)

, φ+
(β,T2)

) of φ = (A;φ−, φ+)

there exists (k−, k+) ∈ [±, 0]× [0,∓] such that (k−, k+) ≤ (α, β), that is, k− ≥ α
and k+ ≤ β, and ψ = (A;ψ−, ψ+) is a bipolar fuzzy UP-subalgebra (resp.,
bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal, bipolar fuzzy strongly UP-ideal)
intension of bipolar fuzzy (k−, k+)-translation φT2

(k−,k+)
= (A;φ−

(k−,T2)
, φ+

(k+,T2)
)

of φ = (A;φ−, φ+).

Proof. It follows form Theorem 3.22 (resp., Theorem 3.24, Theorem 3.26, The-
orem 3.28) and Lemma 3.31.
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3.3 Complement of a bipolar fuzzy set

In this part, we discuss the relation between the complement of a bipolar fuzzy
UP-subalgebra (resp., bipolar fuzzy UP-filter, bipolar fuzzy UP-ideal and bipolar
fuzzy strongly UP-ideal) and its level cuts.

Definition 3.36. Let φ = (A;φ−, φ+) be a bipolar fuzzy set in A. The bipolar
fuzzy set φ = (A;φ−, φ+) defined by: for all x ∈ A,

φ−(x) = −1 − φ−(x),

φ+(x) = 1 − φ+(x),

is called the complement of φ = (A;φ−, φ+) in A.

Definition 3.37. Let φ = (A;φ−, φ+) be a bipolar fuzzy set in A and for any
(t−, t+) ∈ [−1, 0] × [0, 1]. The sets

NL(φ; t−) = {x ∈ A | φ−(x) ≤ t−}

and

NU (φ; t−) = {x ∈ A | φ−(x) ≥ t−}

are called the negative lower t−-cut and the negative upper t−-cut of φ =
(A;φ−, φ+), respectively. The sets

PL(φ; t+) = {x ∈ A | φ+(x) ≤ t+}

and

PU (φ; t+) = {x ∈ A | φ+(x) ≥ t+}

are called the positive lower t+-cut and the positive upper t+-cut of φ = (A;φ−, φ+),
respectively.

Lemma 3.38. Let a, b, c ∈ R. Then the following statements hold:

(1) a− min{b, c} = max{a− b, a− c}, and

(2) a− max{b, c} = min{a− b, a− c}.

Proof. (1) If min{b, c} = b, then c ≥ b. Thus a−c ≤ a−b, so max{a−b, a−c} =
a− b = a− min{b, c}. Similarly, if min{b, c} = c, then

max{a− b, a− c} = a− c = a− min{b, c}.

(2) If max{b, c} = b, then b ≥ c. Thus a − b ≤ a − c, so min{a − b, a − c} =
a− b = a− max{b, c}. Similarly, if max{b, c} = c, then

min{a− b, a− c} = a− c = a− max{b, c}.
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Theorem 3.39. Let φ = (A;φ−, φ+) be a bipolar fuzzy set in A. Then φ =
(A;φ−, φ+) is a bipolar fuzzy UP-subalgebra of A if and only if for all (t−, t+) ∈
[−1, 0] × [0, 1], NU (φ; t−) and PL(φ; t+) are UP-subalgebras of A if NU (φ; t−)
and PL(φ; t+) are nonempty.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra of A.
Let (t−, t+) ∈ [−1, 0]×[0, 1] be such that NU (φ; t−) and PL(φ; t+) are nonempty.

(i) Let x, y ∈ NU (φ; t−). Then φ−(x) ≥ t− and φ−(y) ≥ t−, so t− is
a lower bound of {φ−(x), φ−(y)}. Since φ = (A;φ−, φ+) is a bipolar fuzzy
UP-subalgebra of A, we have φ−(x · y) ≤ max{φ−(x), φ−(y)}. By Lemma
3.38 (1), we have −1 − φ−(x · y) ≤ max{−1 − φ−(x),−1 − φ−(y)} = −1 −
min{φ−(x), φ−(y)}. Thus φ−(x · y) ≥ min{φ−(x), φ−(y)} ≥ t− and so x · y ∈
NU (φ; t−). Therefore, NU (φ; t−) is a UP-subalgebra of A.

(ii) Let x, y ∈ PL(φ; t+). Then φ+(x) ≤ t+ and φ+(y) ≤ t+, so t+ is an
upper bound of {φ+(x), φ+(y)}. Since φ = (A;φ−, φ+) is a bipolar fuzzy UP-
subalgebra of A, we have φ+(x · y) ≥ min{φ+(x), φ+(y)}. By Lemma 3.38 (2),
we have 1 − φ+(x · y) ≥ min{1 − φ+(x), 1 − φ+(y)} = 1 − max{φ+(x), φ+(y)}.
Thus φ+(x · y) ≤ max{φ+(x), φ+(y)} ≤ t+ and so x · y ∈ PL(φ; t+). Therefore,
PL(φ; t+) is a UP-subalgebra of A.

Conversely, assume that for all (t−, t+) ∈ [−1, 0] × [0, 1], NU (φ; t−) and
PL(φ; t+) are UP-subalgebras of A if NU (φ; t−) and PL(φ; t+) are nonempty.

(i) Let x, y ∈ A. Then φ−(x), φ−(y) ∈ [−1, 0]. Choose t− = min{φ−(x), φ−(y)}.
Thus φ−(x) ≥ t− and φ−(y) ≥ t−, so x, y ∈ NU (φ; t−) ̸= ∅. By assumption,
we have NU (φ; t−) is a UP-subalgebra of A and so x · y ∈ NU (φ; t−). Thus
φ−(x · y) ≥ t− = min{φ−(x), φ−(y)}. By Lemma 3.38 (1), we have

φ−(x · y) = −1 − φ−(x · y)
≤ −1 − min{φ−(x), φ−(y)}
= max{−1 − φ−(x),−1 − φ−(y)}
= max{φ−(x), φ−(y)}.

(ii) Let x, y ∈ A. Then φ+(x), φ+(y) ∈ [0, 1]. Choose t+ = max{φ+(x), φ+(y)}.
Thus φ+(x) ≤ t+ and φ+(y) ≤ t+, so x, y ∈ PL(φ; t+) ̸= ∅. By assumption,
we have PL(φ; t+) is a UP-subalgebra of A and so x · y ∈ PL(φ; t+). Thus
φ+(x · y) ≤ t+ = max{φ+(x), φ+(y)}. By Lemma 3.38 (2), we have

φ+(x · y) = 1 − φ+(x · y)
≥ 1 − max{φ+(x), φ+(y)}
= min{1 − φ+(x), 1 − φ+(y)}
= min{φ+(x), φ+(y)}.

Hence, φ = (A;φ−, φ+) is a bipolar fuzzy UP-subalgebra of A.

Theorem 3.40. Let φ = (A;φ−, φ+) be a bipolar fuzzy set in A. Then φ =
(A;φ−, φ+) is a bipolar fuzzy UP-filter of A if and only if for all (t−, t+) ∈
[−1, 0] × [0, 1], NU (φ; t−) and PL(φ; t+) are UP-filters of A if NU (φ; t−) and
PL(φ; t+) are nonempty.
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Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy UP-filter of A. Let
(t−, t+) ∈ [−1, 0] × [0, 1] be such that NU (φ; t−) and PL(φ; t+) are nonempty.

(i) Let a ∈ NU (φ; t−). Then φ−(a) ≥ t−. Since φ = (A;φ−, φ+) is a bipolar
fuzzy UP-filter of A, we have φ−(0) ≤ φ−(a). Thus −1 − φ−(0) ≤ −1 − φ−(a),
so φ−(0) ≥ φ−(a) ≥ t−. Hence, 0 ∈ NU (φ; t−). Next, let x, y ∈ A be such that
x · y ∈ NU (φ; t−) and x ∈ NU (φ; t−). Then φ−(x · y) ≥ t− and φ−(x) ≥ t−, so
t− is a lower bound of {φ−(x · y), φ−(x)}. Since φ = (A;φ−, φ+) is a bipolar
fuzzy UP-filter of A, we have φ−(y) ≤ max{φ−(x · y), φ−(x)}. By Lemma 3.38
(1), we have −1−φ−(y) ≤ max{−1−φ−(x ·y),−1−φ−(x)} = −1−min{φ−(x ·
y), φ−(x)}. Thus φ−(y) ≥ min{φ−(x · y), φ−(x)} ≥ t− and so y ∈ NU (φ; t−).
Therefore, NU (φ; t−) is a UP-filter of A.

(ii) Let b ∈ PL(φ; t+). Then φ+(b) ≤ t+. Since φ = (A;φ−, φ+) is bipolar
fuzzy UP-filter of A, we have φ+(0) ≥ φ+(b). Thus 1 − φ+(0) ≥ 1 − φ+(b), so
φ+(0) ≤ φ+(b) ≤ t+. Hence, 0 ∈ PL(φ; t+). Next, let x, y ∈ A be such that
x · y ∈ PL(φ; t+) and x ∈ PL(φ; t+). Then φ+(x · y) ≤ t+ and φ+(x) ≤ t+, so t+

is an upper bound of {φ+(x·y), φ+(x)}. Since φ = (A;φ−, φ+) is a bipolar fuzzy
UP-filter of A, we have φ+(y) ≥ min{φ+(x · y), φ+(x)}. By Lemma 3.38 (2), we
have 1 − φ+(y) ≥ min{1 − φ+(x · y), 1 − φ+(x)} = 1 − max{φ−(x · y), φ+(x)}.
Thus φ+(y) ≤ max{φ+(x · y), φ+(x)} ≤ t+ and so y ∈ PL(φ; t+). Therefore,
PL(φ; t+) is a UP-filter of A.

Conversely, assume that for all (t−, t+) ∈ [−1, 0] × [0, 1], NU (φ; t−) and
PL(φ; t+) are UP-filters of A if NU (φ; t−) and PL(φ; t+) are nonempty.

(i) Let x ∈ A. Then φ−(x) ∈ [−1, 0]. Choose t− = φ−(x). Thus φ−(x) ≥ t−,
so x ∈ NU (φ; t−) ̸= ∅. By assumption, we have NU (φ; t−) is a UP-filter of A
and so 0 ∈ NU (φ; t−). Thus φ−(0) ≥ t− = φ−(x) and so φ−(0) = −1−φ−(0) ≤
−1 − φ−(x) = φ−(x).

(ii) Let x, y ∈ A. Then φ−(x · y), φ−(x) ∈ [−1, 0]. Choose t− = min{φ−(x ·
y), φ−(x)}. Thus φ−(x · y) ≥ t− and φ−(x) ≥ t−, so x · y, x ∈ NU (φ; t−) ̸= ∅.
By assumption, we have NU (φ; t−) is a UP-filter of A and so y ∈ NU (φ; t−).
Thus φ−(y) ≥ t− = min{φ−(x · y), φ−(x)}. By Lemma 3.38 (1), we have

φ−(y) = −1 − φ−(y)
≤ −1 − min{φ−(x · y), φ−(x)}
= max{−1 − φ−(x · y),−1 − φ−(x)}
= max{φ−(x · y), φ−(x)}.

(iii) Let x ∈ A. Then φ+(x) ∈ [0, 1]. Choose t+ = φ+(x). Thus φ+(x) ≤ t+,
so x ∈ PL(φ; t+) ̸= ∅. By assumption, we have PL(φ; t+) is a UP-filter of A
and so 0 ∈ PL(φ; t+). Thus φ+(0) ≤ t+ = φ+(x) and so φ+(0) = 1 − φ+(0) ≥
1 − φ+(x) = φ+(x).

(iv) Let x, y ∈ A. Then φ+(x · y), φ+(x) ∈ [0, 1]. Choose t+ = max{φ+(x ·
y), φ+(x)}. Thus φ+(x ·y) ≤ t+ and φ+(x) ≤ t+, so x ·y, x ∈ PL(φ; t+) ̸= ∅. By
assumption, we have PL(φ; t+) is a UP-filter of A and so y ∈ PL(φ; t+). Thus
φ+(y) ≤ t+ = max{φ+(x · y), φ+(x)}. By Lemma 3.38 (2), we have
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φ+(y) = 1 − φ+(y)
≥ 1 − max{φ+(x · y), φ+(x)}
= min{1 − φ+(x · y), 1 − φ+(x)}
= min{φ+(x · y), φ+(x)}.

Hence, φ = (A;φ−, φ+) is a bipolar fuzzy UP-filter of A.

Theorem 3.41. Let φ = (A;φ−, φ+) be a bipolar fuzzy set in A. Then φ =
(A;φ−, φ+) is a bipolar fuzzy UP-ideal of A if and only if for all (t−, t+) ∈
[−1, 0] × [0, 1], NU (φ; t−) and PL(φ; t+) are UP-ideals of A if NU (φ; t−) and
PL(φ; t+) are nonempty.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal of A. Let
(t−, t+) ∈ [−1, 0] × [0, 1] be such that NU (φ; t−) and PL(φ; t+) are nonempty.

(i) Let a ∈ NU (φ; t−). Then φ−(a) ≥ t−. Since φ = (A;φ−, φ+) is a bipolar
fuzzy UP-ideal of A, we have φ−(0) ≤ φ−(a). Thus −1 − φ−(0) ≤ −1 − φ−(a),
so φ−(0) ≥ φ−(a) ≥ t−. Hence, 0 ∈ NU (φ; t−).

(ii) Let x, y, z ∈ A be such that x · (y · z) ∈ NU (φ; t−) and y ∈ NU (φ; t−).
Then φ−(x · (y · z)) ≥ t− and φ−(y) ≥ t−, so t− is a lower bound of {φ−(x · (y ·
z)), φ−(y)}. Since φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal of A, we have
φ−(x ·z) ≤ max{φ−(x ·(y ·z)), φ−(y)}. By Lemma 3.38 (1), we have −1−φ−(x ·
z) ≤ max{−1 − φ−(x · (y · z)),−1 − φ−(y)} = −1 − min{φ−(x · (y · z)), φ−(y)}.
Thus φ−(x · z) ≥ min{φ−(x · (y · z)), φ−(y)} ≥ t− and so x · z ∈ NU (φ; t−).
Therefore, NU (φ; t−) is a UP-ideal of A.

(iii) Let b ∈ PL(φ; t+). Then φ+(b) ≤ t+. Since φ = (A;φ−, φ+) is a bipolar
fuzzy UP-ideal of A, we have φ+(0) ≥ φ+(b). Thus 1 − φ+(0) ≥ 1 − φ+(b), so
φ+(0) ≤ φ+(b) ≤ t+. Hence, 0 ∈ PL(φ; t+).

(iv) Let x, y, z ∈ A be such that x · (y · z) ∈ PL(φ; t+) and y ∈ PL(φ; t+).
Then φ+(x · (y · z)) ≤ t+ and φ+(y) ≤ t+, so t+ is an upper bound of {φ+(x ·
(y · z)), φ+(y)}. Since φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal of A, we
have φ+(x · z) ≥ min{φ+(x · (y · z)), φ+(y)}. By Lemma 3.38 (2), we have
1−φ+(x·z) ≥ min{1−φ+(x·(y ·z)), 1−φ+(y)} = 1−max{φ+(x·(y ·z)), φ+(y)}.
Thus φ+(x · z) ≤ max{φ+(x · (y · z)), φ+(y)} ≤ t+ and so x · z ∈ PL(φ; t+).
Therefore, PL(φ; t+) is a UP-ideal of A.

Conversely, assume that for all (t−, t+) ∈ [−1, 0] × [0, 1], NU (φ; t−) and
PL(φ; t+) are UP-ideals of A if NU (φ; t−) and PL(φ; t+) are nonempty.

(i) Let x ∈ A. Then φ−(x) ∈ [−1, 0]. Choose t− = φ−(x). Thus φ−(x) ≥ t−,
so x ∈ NU (φ; t−) ̸= ∅. By assumption, we have NU (φ; t−) is a UP-ideal of A
and so 0 ∈ NU (φ; t−). Thus φ−(0) ≥ t− = φ−(x) and so φ−(0) = −1−φ−(0) ≤
−1 − φ−(x) = φ−(x).

(ii) Let x, y, z ∈ A. Then φ−(x · (y · z)), φ−(y) ∈ [−1, 0]. Choose t− =
min{φ−(x · (y · z)), φ−(y)}. Thus φ−(x · (y · z)) ≥ t− and φ−(y) ≥ t−, so
x · (y · z), y ∈ NU (φ; t−) ̸= ∅. By assumption, we have NU (φ; t−) is a UP-ideal
of A and so x ·z ∈ NU (φ; t−). Thus φ−(x ·z) ≥ t− = min{φ−(x · (y ·z)), φ−(y)}.
By Lemma 3.38 (1), we have
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φ−(x · z) = −1 − φ−(x · z)
≤ −1 − min{φ−(x · (y · z)), φ−(y)}
= max{−1 − φ−(x · (y · z)),−1 − φ−(y)}
= max{φ−(x · (y · z)), φ−(y)}.

(iii) Let x ∈ A. Then φ+(x) ∈ [0, 1]. Choose t+ = φ+(x). Thus φ+(x) ≤ t+,
so x ∈ PL(φ; t+) ̸= ∅. By assumption, we have PL(φ; t+) is a UP-ideal of A
and so 0 ∈ PL(φ; t+). Thus φ+(0) ≤ t+ = φ+(x) and so φ+(0) = 1 − φ+(0) ≥
1 − φ+(x) = φ+(x).

(iv) Let x, y, z ∈ A. Then φ+(x · (y · z)), φ+(y) ∈ [0, 1]. Choose t+ =
max{φ+(x · (y · z)), φ+(y)}. Thus φ+(x · (y · z)) ≤ t+ and φ+(y) ≤ t+, so
x · (y · z), y ∈ PL(φ; t+) ̸= ∅. By assumption, we have PL(φ; t+) is a UP-ideal of
A and so x · z ∈ PL(φ; t+). Thus φ+(x · z) ≤ t+ = max{φ+(x · (y · z)), φ+(y)}.
By Lemma 3.38 (2), we have

φ+(x · z) = 1 − φ+(x · z)
≥ 1 − max{φ+(x · (y · z)), φ+(y)}
= min{1 − φ+(x · (y · z)), 1 − φ+(y)}
= min{φ+(x · (y · z)), φ+(y)}.

Hence, φ = (A;φ−, φ+) is a bipolar fuzzy UP-ideal of A.

Theorem 3.42. Let φ = (A;φ−, φ+) be a bipolar fuzzy set in A. Then φ =
(A;φ−, φ+) is a bipolar fuzzy strongly UP-ideal of A if and only if for all
(t−, t+) ∈ [−1, 0]× [0, 1], NU (φ; t−) and PL(φ; t+) are strongly UP-ideals of A if
NU (φ; t−) and PL(φ; t+) are nonempty.

Proof. Assume that φ = (A;φ−, φ+) is a bipolar fuzzy strongly UP-ideal of A.
Let (t−, t+) ∈ [−1, 0]×[0, 1] be such that NU (φ; t−) and PL(φ; t+) are nonempty.

(i) Let a ∈ NU (φ; t−). Then φ−(a) ≥ t−. Since φ = (A;φ−, φ+) is a bipolar
fuzzy strongly UP-ideal of A, we have φ−(0) ≤ φ−(a). Thus −1 − φ−(0) ≤
−1 − φ−(a), so φ−(0) ≥ φ−(a) ≥ t−. Hence, 0 ∈ NU (φ; t−).

(ii) Let x, y, z ∈ A be such that (z ·y) ·(z ·x) ∈ NU (φ; t−) and y ∈ NU (φ; t−).
Then φ−((z · y) · (z · x)) ≥ t− and φ−(y) ≥ t−, so t− is a lower bound of
{φ−((z · y) · (z · x)), φ−(y)}. Since φ = (A;φ−, φ+) is a bipolar fuzzy strongly
UP-ideal of A, we have φ−(x) ≤ max{φ−((z ·y)·(z ·x)), φ−(y)}. By Lemma 3.38
(1), we have −1 − φ−(x) ≤ max{−1 − φ−((z · y) · (z · x)),−1 − φ−(y)} = −1 −
min{φ−((z ·y)·(z ·x)), φ−(y)}. Thus φ−(x) ≥ min{φ−((z ·y)·(z ·x)), φ−(y)} ≥ t−

and so x ∈ NU (φ; t−). Therefore, NU (φ; t−) is a strongly UP-ideal of A.

(iii) Let b ∈ PL(φ; t+). Then φ+(b) ≤ t+. Since φ = (A;φ−, φ+) is a bipolar
fuzzy strongly UP-ideal of A, we have φ+(0) ≥ φ+(b). Thus 1 − φ+(0) ≥
1 − φ+(b), so φ+(0) ≤ φ+(b) ≤ t+. Hence, 0 ∈ PL(φ; t+).

(iv) Let x, y, z ∈ A be such that (z ·y) · (z ·x) ∈ PL(φ; t+) and y ∈ PL(φ; t+).
Then φ+((z · y) · (z · x)) ≤ t+ and φ+(y) ≤ t+, so t+ is an upper bound of
{φ+((z · y) · (z · x)), φ+(y)}. Since φ = (A;φ−, φ+) is a bipolar fuzzy strongly
UP-ideal of A, we have φ+(x) ≥ min{φ+((z ·y) ·(z ·x)), φ+(y)}. By Lemma 3.38
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(2), we have 1−φ+(x) ≥ min{1−φ+((z ·y)·(z ·x)), 1−φ+(y)} = 1−max{φ+((z ·
y) · (z · x)), φ+(y)}. Thus φ+(x) ≤ max{φ+((z · y) · (z · x)), φ+(y)} ≤ t+ and so
x ∈ PL(φ; t+). Therefore, PL(φ; t+) is a strongly UP-ideal of A.

Conversely, assume that for all (t−, t+) ∈ [−1, 0] × [0, 1], NU (φ; t−) and
PL(φ; t+) are strongly UP-ideals of A if NU (φ; t−) and PL(φ; t+) are nonempty.

(i) Let x ∈ A. Then φ−(x) ∈ [−1, 0]. Choose t− = φ−(x). Thus φ−(x) ≥ t−,
so x ∈ NU (φ; t−) ̸= ∅. By assumption, we have NU (φ; t−) is a strongly UP-
ideal of A and so 0 ∈ NU (φ; t−). Thus φ−(0) ≥ t− = φ−(x) and so φ−(0) =
−1 − φ−(0) ≤ −1 − φ−(x) = φ−(x).

(ii) Let x, y, z ∈ A. Then φ−((z · y) · (z · x)), φ−(y) ∈ [−1, 0]. Choose
t− = min{φ−((z · y) · (z · x)), φ−(y)}. Thus φ−((z · y) · (z · x)) ≥ t− and
φ−(y) ≥ t−, so (z · y) · (z · x), y ∈ NU (φ; t−) ̸= ∅. By assumption, we have
NU (φ; t−) is a strongly UP-ideal of A and so x ∈ NU (φ; t−). Thus φ−(x) ≥
t− = min{φ−((z · y) · (z · x)), φ−(y)}. By Lemma 3.38 (1), we have

φ−(x) = −1 − φ−(x)
≤ −1 − min{φ−((z · y) · (z · x)), φ−(y)}
= max{−1 − φ−((z · y) · (z · x)),−1 − φ−(y)}
= max{φ−((z · y) · (z · x)), φ−(y)}.

(iii) Let x ∈ A. Then φ+(x) ∈ [0, 1]. Choose t+ = φ+(x). Thus φ+(x) ≤ t+,
so x ∈ PL(φ; t+) ̸= ∅. By assumption, we have PL(φ; t+) is a strongly UP-
ideal of A and so 0 ∈ PL(φ; t+). Thus φ+(0) ≤ t+ = φ+(x) and so φ+(0) =
1 − φ+(0) ≥ 1 − φ+(x) = φ+(x).

(iv) Let x, y, z ∈ A. Then φ+((z · y) · (z · x)), φ+(y) ∈ [0, 1]. Choose t+ =
max{φ+((z · y) · (z · x)), φ+(y)}. Thus φ+((z · y) · (z ·x))) ≤ t+ and φ+(y) ≤ t+,
so (z · y) · (z · x), y ∈ PL(φ; t+) ̸= ∅. By assumption, we have PL(φ; t+) is a
strongly UP-ideal of A and so x ∈ PL(φ; t+). Thus φ+(x) ≤ t+ = max{φ+((z ·
y) · (z · x)), φ+(y)}. By Lemma 3.38 (2), we have

φ+(x) = 1 − φ+(x)
≥ 1 − max{φ+((z · y) · (z · x)), φ+(y)}
= min{1 − φ+((z · y) · (z · x)), 1 − φ+(y)}
= min{φ+((z · y) · (z · x)), φ+(y)}.

Hence, φ = (A;φ−, φ+) is a bipolar fuzzy strongly UP-ideal of A.

4. Conclusions and future work

In the present paper, we have introduced the notions of bipolar fuzzy (α, β)-
translations of φ = (A;φ−, φ+) of type I and of type II for a bipolar-valued
fuzzy set φ = (A;φ−, φ+) in a UP-algebra A. The notions of extensions and
of intensions of a bipolar-valued fuzzy set are also studied. We think this work
would enhance the scope for further study in UP-algebras and related algebraic
systems. It is our hope that this work would serve as a foundation for the further
study in a new concept of UP-algebras.
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In our future study of UP-algebras, may be the following topics should be
considered:

• To get more results in bipolar fuzzy translations of a bipolar-valued fuzzy
set in UP-algebras.

• To define bipolar-valued fuzzy sets with thresholds in UP-algebras.

• To define bipolar-valued fuzzy soft sets in UP-algebras.
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Abstract. We introduce the concept of P-expandable spaces as a variation of ex-
pandable spaces. A space (X, τ) is said to be P-expandable if every locally finite col-
lection F = {Fα : α ∈ ∆} of subsets of X there exists a p-locally finite collection
G = {Gα : α ∈ ∆} of preopen subsets of X such that Fα ⊆ Gα for each α ∈ ∆. We
characterize P-expandable spaces and study their basic properties. We show that if a
space (X, τ) is a quasi submaximal space, then (X, τ) is P-expandable if and only if it
is expandable.

Keywords: preopen set, p-locally finite collection, expandable space, P-expandable
space.

1. Introduction

By a space, we mean a topological space in which no separation axioms is
assumed unless explicitly stated. Let (X, τ) be a space and A be a subset of
X. The closure of A, the interior of A and the relative topology on A in (X, τ)
will be denoted by cl(A), int(A) and τA, respectively. A is called a preopen
subset of (X, τ) [3] if A ⊆ int(cl(A)). The complement of a preopen set is called
a preclosed set. A is called semi-open [12] (resp. α-sets [13], regular closed) if
A ⊆ cl(int(A)) (resp. A ⊆ int(cl(int(A))), A = cl(int(A))). The family of all
subsets of a space (X, τ) which are preopen (resp. preclosed, semi-open, regular
closed) is denoted by PO(X, τ) (resp. PC(X, τ), SO(X, τ), RC(X, τ)). It is
known that the collection of all α-sets of (X, τ) forms a topology on X, denoted
by τα, finer than τ and PO(X, τ) = PO(X, τα).

A space (X, τ) is called submaximal [11] if every dense subset of (X, τ) is
open. It is known that (X, τ) is submaximal if and only if τ = PO(X, τ). In
[4], Al-Nashef introduced the notion of quasi-submaximal spaces where a space
(X, τ) is quasi-submaximal if cl(D) −D is nowhere dense subset for each dense
subset D of (X, τ). This is equivalent to saying that int(D) is dense for each
dense subset D of (X, τ) [4].

∗. Corresponding author
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Mashhour et al. [2] used preopen sets to define P1-paracompact and P2-
paracompact spaces. In 2007, Al-Zoubi and Al-Ghour [8] define P3-paracompact
space and the notion P-locally finite collections and study their properties. In
this paper we introduce P-expandable spaces by using preopen sets and p-locally
finiteness and study their topological properties. We deal with subspaces, sum,
image and the inverse images of P-expandable.

Lemma 1.1. Let A and B be subsets of a space (X, τ).

i. If A ∈ PO(X, τ) and B ∈ SO(X, τ), then A ∩B ∈ PO(B, τB) ([6]).

ii. If A ∈ PO(B, τB) and B ∈ PO(X, τ), then A ∈ PO(X, τ) ([6]).

iii. If A ∈ PO(X, τ) and B ∈ τ , then A ∩B ∈ PO(X, τ) ([7]).

Definition 1.2. A collection F = {Fα : α ∈ ∆} of subsets of a space (X, τ)
is called locally finite (resp. p-locally finite [8]) if for each x ∈ X, there exists
Wx ∈ τ (resp. Wx ∈ PO(X, τ)) containing x and Wx intersects at most finitely
many members of F .

Corollary 1.3 ([8]). Let (X, τ) be any space:

i. Every locally finite collection subset of X is p-locally finite collection subset
of X.

ii. Every p-locally finite collection F = {Fα : α ∈ ∆} of preopen subsets of a
quasi- submaximal space X is locally finite.

iii. Every p-locally finite collection of open sets (α-sets, regular closed sets) is
locally finite.

Definition 1.4. A function f : (X, τ) → (Y, σ) is called

i. Preirresoulte [5] if and only if f−1(A) ∈ PO(X, τ) for each A ∈ PO(Y, σ).

ii. Strongly preclosed [16] if f(A) ∈ PC(Y, σ) for each A ∈ PC(X, τ).

iii. M-preopen [2] if f(A) ∈ PO(Y, σ) for each A ∈ PO(X, τ).

iv. Countable perfect [10] if f is continuous, closed, surjective function such
that f−1(y) is countable compact for each y in Y .

Lemma 1.5. Let f : (X, τ) → (Y, σ) be a continuous function.

i. If F = {Fα : α ∈ ∆} is a locally finite collection of subsets of (Y, σ), then
f−1(F) = {f−1(Fα) : α ∈ ∆} is a locally finite collection in (X, τ) [10].

ii. Let f be a countable perfect function. If F = {Fα : α ∈ ∆} is a locally finite
collection of subsets of (X, τ), then f(F) = {f(Fα) : α ∈ ∆} is a locally
finite collection in (Y, σ) ([1]).
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Recall that a space (X, τ) is called strongly compact relative to X [2] if every
cover of A by preopen sets of X has a finite subcover.

Theorem 1.6 ([8]). Let f : (X, τ) → (Y, σ) be a function:

i. If f is a preirresolute function and F = {Fα : α ∈ ∆} is a p-locally finite
collection in (Y, σ), then f−1(F) = {f−1(Fα) : α ∈ ∆} is a p-locally finite
collection in (X, τ).

ii. If f is a strongly preclosed function such that f−1(y) is strongly compact
relative to (X, τ) for every y ∈ Y and F = {Fα : α ∈ ∆} is a p-locally finite
collection of subsets of (X, τ), then f(F) = {f(Fα) : α ∈ ∆} is a p-locally
finite collection in (Y, σ).

Corollary 1.7. Let (X, τ) be a space, then the following are equivalent:

i. (X, τ) is expandable.

ii. For every locally finite collection F = {Fα : α ∈ ∆} of subsets of X there
exists a p-locally finite collection G = {Gα : α ∈ ∆} of open subsets of X
such that Fα ⊆ Gα for each α ∈ ∆ [8].

iii. For every locally finite collection F = {Fα : α ∈ ∆} of subset of X there
exists a locally finite collection G = {Gα : α ∈ ∆} of preopen subset of X
such that Fα ⊆ Gα for each α ∈ ∆.

iv. For every locally finite collection F = {Fα : α ∈ ∆} of subsets of X there
exists a p-locally finite G = {Gα : α ∈ ∆} collection of α-open subsets of X
such that Fα ⊆ Gα for each α ∈ ∆.

Proof. (i→ii →iii →iv) These implication follow from definitions, Corollary 1.3
and the fact that τ ⊆ τα.

(iv→i) Let F = {Fα : α ∈ ∆} be a locally finite collection of subsets of a
space (X, τ). Then, by (iv), there exists a p-locally finite collection G = {Gα :
α ∈ ∆} of α-open sets subsets of X such that Fα ⊆ Gα for each α ∈ ∆. Then,
by Corollary 1.3, {int(cl(int(Gα))) : α ∈ ∆} is a locally finite collection of open
subset of X such that Fα ⊆ int(cl(int(Gα))) for all α ∈ ∆. Hence (X, τ) is
expandable.

2. P-expandable spaces

Definition 2.1. A space (X, τ) is said to be P-expandable (resp. P1-expandable,
pre-expandable) if every locally finite (resp. p-locally finite, p-locally finite) col-
lection F = {Fα : α ∈ ∆} of subsets of X there exists a p-locally finite (resp.
locally finite, p-locally finite) collection G = {Gα : α ∈ ∆} of preopen (resp.
open, preopen) subsets of X such that Fα ⊆ Gα for each α ∈ ∆.
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It is clear (from the fact that the closure of any locally finite collection is
locally finite) that a space (X, τ) is P-expandable iff every locally finite collection
F = {Fα : α ∈ ∆} of closed subsets of X, there exists a p-locally finite collection
G = {Gα : α ∈ ∆} of preopen subsets of X such that Fα ⊆ Gα for each α ∈ ∆.

The following diagram follows immediately from the definitions in which
none of these implications is reversible.

Expandable → P-expandable
↑↑

P1-expandable → pre-expandable

To show that none of these implications is reversible, In the above diagram,
we consider the following examples.

Example 2.2. Let X = N∪N− with the topology τ = {U ⊆ X : N ⊆ U}∪{ϕ}
such that N is the set of all positive integers and N− is the set of all negative
integers. Then PO(X, τ) = {A ⊆ X : A ∩N ̸= ϕ}.

(i) Note that (X, τ) is not expandable since the collection {{x} : x ∈ N−} is
locally finite in (X, τ) and there exists no locally finite collection {Ux : x ∈ N−}
of open sets in (X, τ) such that x ∈ Ux for x ∈ N−.

(ii) To see that (X, τ) is pre- expandable (hence P-expandable). Let U =
{Uα : α ∈ ∆} be a p-locally finite collection in (X, τ). Put ∆1 = {α ∈ ∆ :
Uα ∩ N ̸= ϕ} and ∆2 = {α ∈ ∆ : Uα ∩ N = ϕ}. Now, for α ∈ ∆2, choose
xα ∈ Uα and put U∗

α = Uα ∪ {−xα}. Put U∗ = {Uα : α ∈ ∆1} ∪ {U∗
α : α ∈ ∆2}.

Then, it is clear U∗ is a collection of preopen sets in (X, τ) such that for all
α ∈ ∆, there exists Hα ∈ U∗ such that Uα ⊆ Hα. Finally, we show that U∗ is
p-locally finite in (X, τ). Let x ∈ X. Then, there exists a preopen set Px in
(X, τ) such that x ∈ Px and a finite subset ∆′

1 of ∆1 and a finite subset ∆′
2 of

∆2 such that Px ∩ Uα = ϕ for all α ∈ ∆ − (∆′
1 ∪ ∆′

2). Now, if x ∈ N−, put
P ∗
x = (Px − {−xα : α ∈ ∆2 − ∆′

2}) ∪ {−x}. Then P ∗
x is a preopen set in (X, τ)

such that x ∈ P ∗
x and P ∗

x intersect at most finitely many members of U∗. If
x ∈ N, put P ∗

x = (Px − {−xα : α ∈ ∆2 − ∆′
2}) ∪ {x}. Then P ∗

x is a preopen
set in (X, τ) such that x ∈ P ∗

x and P ∗
x intersect at most finitely many members

of U∗. Thus U∗ is a p-locally finite collection of preopen sets in (X, τ) and so
(X, τ) is pre-expandable.

Example 2.3. Let X = R with the topology τ = {U : U ⊆ Q} ∪ {R}. Note
that PO(X, τ) = {U : U ⊆ Q} ∪ {U : Q ⊆ U} and every locally finite collection
is finite. Hence (X, τ) is expandable (and so P-expandable). On the other
hand, (X, τ) is not pre-expandable since the collection {{x} : x ∈ R − Q} is
p-locally finite in X but there does not exists a p-locally finite collection of
preopen set {Gx : x ∈ R − Q} in (X, τ) such that x ∈ Gx for each x ∈ R − Q.
If G = {Gx : x ∈ R − Q} is p-locally finite collection of preopen sets, then
{x} ∪ Q ⊆ Gx for all x ∈ R −Q. Choose x◦ ∈ Q and p◦ ∈ PO(X, τ) such that
x◦ ∈ p◦. Then p◦ ∩Gx ̸= ϕ for all x.
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Example 2.4. Let X = R with the topology τ = {ϕ,R,Q,R − Q}. Note that
PO(X, τ) = τdis and so (X, τ) is pre-expandable. On the other hand, every
locally finite is finite, therefore (X, τ) is expandable. To show that (X, τ) is
not P1-expandable, we consider the collection U = {{x} : x ∈ Q}. U is p-
locally finite in X but there does not exists a locally finite collection of open set
{Gx : x ∈ Q} in (X, τ) such that x ∈ Gx for each x ∈ Q. Note that, if Gx ∈ τ
such that {x} ⊆ Gx then either Gx = Q or Gx = R and so {Gx} is not locally
finite.

Note that Example 2.2 and Example 2.3 shows that expandable and pre-
expandable spaces are independent notions.

Proposition 2.5. Let (X, τ) be a space, then the following are equivalent:

i. (X, τ) is P1-expandable.

ii. For every p-locally finite collection F = {Fα : α ∈ ∆} of subsets of X there
exists a p-locally finite collection G = {Gα : α ∈ ∆} of open subset of X
such that Fα ⊆ Gα for all α ∈ ∆.

iii. For every p-locally finite collection F = {Fα : α ∈ ∆} of subsets of X there
exists locally finite collection G = {Gα : α ∈ ∆} of preopen subset of X such
that Fα ⊆ Gα for all α ∈ ∆.

Proof. (i→ii→iii) These implication follow from the definition and Corollary
1.3..

(iii→i) Let U = {Uα : α ∈ ∆} be a p-locally finite collection of subsets of X.
Then, by (iii) there exists a locally finite collection G = {Gα : α ∈ ∆} of preopen
subset of X such that Fα ⊆ Gα for all α ∈ ∆. Then, {int(cl(Gα)) : α ∈ ∆} is
a locally finite collection of open subset of X such that Uα ⊆ int(cl(Gα)) for all
α ∈ ∆. Hence (X, τ) is P1-expandable.

Proposition 2.6. Let (X, τ) be any space:

i. If (X, τ) is a quasi-submaximal, then (X, τ) is expandable iff it is P-expandable.

ii. If (X, τ) is a submaximal, then (X, τ) is expandable iff it is pre-expandable.

Proof. The easy proof is left to the reader.

In Example 2.2 and Example 2.3 show that the conditions in Proposition
2.6 are essential. Recall that a space (X, τ) is called countable P-compact [15],
if every countable preopen cover of (X, τ) has a finite subcover. It is clear that
every p-locally finite collection of countably P-compact space is finite [14].

Proposition 2.7. Let (X, τ) be a countably P-compact space. Then (X, τ) is
expandable if and only if it is P-expandable.
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Proof. The necessity is clear and we need only prove the sufficiency. Let U =
{Uα : α ∈ ∆} be a locally finite collection of X. Then there exists a P-locally
finite collection G = {Gα : α ∈ ∆} of preopen subset of X such that Uα ⊆ Gα

for each α ∈ ∆, Since (X, τ) is countably P-compact then {int(cl(Gα)) : α ∈ ∆}
is a locally finite collection of open subset of X such that Uα ⊆ int(cl(Gα)) for
all α ∈ ∆. Hence (X, τ) is expandable.

Recall that a space (X, τ) is called P1-paracompact [2], (resp. P2-paracompact
[2], P3-paracompact [8]) if every preopen (resp. preopen, open) cover of X has
a locally finite open (resp. locally finite preopen, p-locally finite preopen) re-
finement.

Theorem 2.8. Every P3-paracompact space is P-expandable.

Proof. Let F = {Fα : α ∈ ∆} be a locally finite collection of closed subsets
of X. Let ∆′ be the collection of all finite subsets of ∆. For β ∈ ∆′, let Vβ =
X −∪{Fα : α /∈ β}. Because F is the locally finite collection, Vβ is open. Also,
Vβ meets only finitely many elements of F . Let V = {Vβ : β ∈ ∆′}. Then V is
an open cover of X. Since X is P3-paracompact, V has a p-locally finite preopen
refinements, say W = {Wγ : γ ∈ ∆}. Set Uα = ∪{Wγ ∈ W : Wγ ∩ Fα ̸= ϕ}
for each α ∈ ∆. Because arbitrary unions of preopen sets are preopen set,
Uα is preopen and Fα ⊆ Uα for each α ∈ ∆. Now, we shall try to show that
{Uα : α ∈ ∆} is p-locally finite. Since W is p-locally finite, for each x ∈ X, there
exists a preopen set Ux in (X, τ) containing x and Ux intersects at most finitely
many members of W. Also, by the definition of Uα, we say that Ux ∩ Uα ̸= ϕ
if and only if Ux ∩ Wγ ̸= ϕ and Wγ ∩ Fα ̸= ϕ for some γ ∈ ∆. Since W is
refinement of V, there is number Vβ of V containing Wγ for each number Wγ of
W. Then Wγ meets only finitely many Fα for each γ ∈ ∆. Thus, {Uα : α ∈ ∆}
is p-locally finite.

Corollary 2.9. Every P1-paracopmact (reps. P2-paracompact) space is P-
expandable.

The following example shows that the converse of the above corollary need
not be true.

Example 2.10. Let ω1 denote the first uncountable ordinal and let X = [0, ω1)
with the usual order topology. Then, from [9], X is countable compact but not
paracompact since the collection {[0, α) : α < ω1} is an open cover of X which
has no open locally finite refinement. Hence X is P-expandable but neither
P1-paracompact nor P2-paracompact.

Theorem 2.11. Let (X, τ) be a space:

i. If (X, τα) is P-expandable, then (X, τ) is P-expandable.

ii. If (X, τ) is P-expandable submaximal space, then (X, τα) is P-expandable.
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Proof. This follows immediately from the definitions and the facts that τ ⊆ τα

and PO(X, τα) = PO(X, τ).

The converse of part (i) of Theorem 2.11 is not true in general as the following
example shows.

Example 2.12. Let X be an infinite set and q ∈ X. Let τ = {ϕ,X, {q}}. Then
(X, τ) is P-expandable. But (X, τα) is not P-expandable and not submaximal.
Since τα = PO(X, τ) = PO(X, τα) = {ϕ} ∪ {U ⊆ X : q ∈ U}. Now, the
collection {{x} : x ∈ X − {q}} is locally finite in (X, τα) and there is no p-
locally finite collection{Gα : x ∈ X − {q}} of preopen subset in (X, τα) such
that x ∈ Gα and x ∈ X − {q}.

Definition 2.13. A space (X, τ) is said to be ω−P-expandable if every locally
finite collection F = {Fα : α ∈ ∆, |∆| ≤ ω} of subsets of X there exists a
p-locally finite collection G = {Gα : α ∈ ∆} of preopen subsets of X such that
Fα ⊆ Gα for each α ∈ ∆.

Theorem 2.14. Let (X, τ) be a space. Then (X, τ) is ω − P-expandable if and
only if every countable open cover of X has a p-locally finite preopen refinement.

Proof. Sufficiency is similar to the proof of Theorem 2.8.

To prove necessity, let U = {Ui : i ∈ N} be a countable open cover of X.
Put Ai = ∪{Uj : j ≤ i} for each i ∈ N. Let B1 = A1 and Bi = Ai − Ai−1

such that i = 2, 3, 4, .... Therefore Bi ⊆ Ui for each i ∈ N. For x ∈ X, let
i(x) = min{i ∈ N : x ∈ Ui}. Then x ∈ Bi(x). Put A = {Bi : i ∈ N}. Then, A
is a refinement of U and A is locally finite since Ui ∩Bi = ϕ for j > i. Because
X is ω − P-expandable, there exists a p-locally finite collection {Gi : i ∈ N}
of preopen subsets of X such that Bi ⊆ Gi for each i ∈ N. Let Vi = Ui ∩ Gi

for each i ∈ N. By Lemma 1.1, Vi is preopen set in (X, τ) for each i ∈ N. Let
V = {Vi : i ∈ N}. Since {Gi : i ∈ N} is p-locally finite, V is p-locally finite.
Because A is a cover of X, there exists some i ∈ N such that x ∈ Bi for each
x ∈ X. Since Bi ⊆ Vi, x ∈ Vi. Thus, V is a p-locally finite preopen refinement
of U .

3. Operations

In this section we study some basic operation on P-expandable spaces.

Definition 3.1. A subset A of a space (X, τ) is called an:

i. αP-expandable set in (X, τ) if every locally finite (in X) collection F =
{Fα : α ∈ ∆} of subsets of A there exists a p-locally finite collection G =
{Gα : α ∈ ∆} of preopen subset of (X, τ) such that Fα ⊆ Gα for all α ∈ ∆.

ii. β P-expandable set in (X, τ) if and only if (A, τA) is P-expandable.
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Note that αP-expandable and β P-expandable sets are linearly independent.
To see that we give the following examples.

Example 3.2. Let X = R with the topology τ = {U : 1 ∈ U} ∪ {ϕ}. Note
that the set of all PO(X, τ) = τ . Put A = R − {1}. Then A /∈ PO(X, τ) and
τA = τdis. Therefore, A is β P-expandable but not αP-expandable.

Example 3.3. Let (X, τ) be as in Example 2.2 and let A = N− ∪ {1}. Then
τA = {{1} ∪H : H ⊆ N−} ∪ {ϕ} and PO(A, τA) = τA. To show that (A, τA) is
not βP -expandable we consider the collection U = {{x} : x ∈ N−}. Then U is a
locally finite collection of subsets of A and note that if U is a locally finite (this
equivalent p-locally finite) collection of open (preopen) subsets of (A, τA), then U
is finite. Therefore, (A, τA) is not β P-expandable. On the other hand, A is αP-
expandable. Indeed, let U = {Uα : α ∈ ∆} be a locally finite (in X) collection
of subsets of A. Then 1 /∈ Uα for every α ∈ ∆. As in Example part (2) we
show that there exists a p-locally finite collection ρ = {Pα : α ∈ ∆} of preopen
subsets of X such that Uα ⊆ Pα for all α ∈ ∆. Thus A is αP-expandable.

A subset A of a space (X, τ) is called pre-clopen if A is preopen and preclosed.

Theorem 3.4. Let A and B be subsets of a space (X, τ) such that A ⊆ B.

i. If B is pre-clopen in (X, τ) and A is αP-expandable in (B, τB) then A is
αP-expandable in (X, τ).

ii. If B is semi-open in (X, τ) and A is αP-expandable in (X, τ), then A is
αP-expandable in (B, τB).

Proof. i) Let U = {Uα : α ∈ ∆} be a locally finite collection of subsets of A.
Then there exists a p-locally finite collection G = {Gα : α ∈ ∆} of preopen
subsets of (B, τB) such that Fα ⊆ Gα for all α ∈ ∆. Since B is pre-clopen
subset in (X, τ), then , by Lemma 1.1, G is p-locally finite collection of preopen
subsets of (X, τ). For, let x ∈ X. Then either x ∈ B or x /∈ B. If x ∈ B, then
there exists a preopen set W in (B, τB) containing x such that W intersects
at most finitely many members of G. Since B is preopen in (X, τ) then W is
preopen in (X, τ), by Lemma 1.1 and hence G is p-locally finite collection in
(X, τ). However, if x /∈ B, then X − B is preopen set in (X, τ) containing
x which intersects no member of G. Hence G is a p-locally finite collection in
(X, τ).

ii) Let F = {Fα : α ∈ ∆} be a locally finite collection of subsets of A. Then
there exists a p-locally finite collection G = {Gα : α ∈ ∆} of preopen subset of
(X, τ) such that Fα ⊆ Gα for all α ∈ ∆. Now consider G∗ = {Gα ∩B : α ∈ ∆},
by Lemma 1.1, G∗ is a p-locally finite collection of preopen subset of (B, τB)
such that Fα ⊆ Gα ∩B for all α ∈ ∆. Thus A is αP-expandable in (B, τB).

Corollary 3.5. Let A be a subset of a space (X, τ).

i. If A is pre-clopen in (X, τ) and β P-expandable, then A is αP-expandable.
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ii. If A is semi-open in (X, τ) and αP-expandable, then A is β P-expandable.

Note that Example 3.2 shows that the assumption A is pre-clopen in Corol-
lary 3.5 can not be replaced by the statement A is preclosed.

Lemma 3.6. If A is a closed subset of a space (X, τ), then any locally finite
collection of subsets of A is a locally finite collection in X.

Proposition 3.7. Let (X, τ) be a P-expandable space, then:

i. Every regular closed subset of (X, τ) is β P-expandable.

ii. Every closed subsets of (X, τ) is αP-expandable.

Proof. i) Let A be a regular closed subset of a P-expandable space (X, τ). Let
F = {Fα : α ∈ ∆} be a locally finite collection of subset of A. Since A is
closed by Lemma 3.6, F is locally finite in (X, τ), so there exists a p-locally
finite collection of preopen subset of (X, τ), say G = {Gα : α ∈ ∆} such that
Fα ⊆ Gα, for each α ∈ ∆. Consider G∗ = {Gα ∩ A : α ∈ ∆}. Then, by Lemma
1.1 and the fact that RC(X, τ) ⊆ SO(X, τ), G∗ is a p-locally finite collection
of preopen subsets of A such that Fα ⊆ Gα ∩ A for each α ∈ ∆. Thus A is
β P-expandable.

ii) It is follow from Lemma 3.6.

Let {(Xα, τα) : α ∈ ∆} be a collection of topological spaces such that Xα ∩
Xβ = ϕ for each α ̸= β. Let X = ∪

α∈∆
Xα be topologized by τ = {G ⊆ X :

G ∩ Xα ∈ τα for each α ∈ ∆}. Then (X, τ) is called the sum of the spaces
{(Xα, τα) : α ∈ ∆} and we write X = ⊕

α∈∆
Xα.

Theorem 3.8. The topological sum ⊕
α∈∆

Xα is P-expandable if and only if

(Xα, τα) is P-expandable, for each α ∈ ∆.

Proof. Necessity follows from Proposition 3.7. To prove sufficiency, let U be a
locally finite collection of ⊕

α∈∆
Xα. For each α ∈ ∆ the family Uα = {U∩Xα : U ∈

U} is a locally finite collection of the P-expandable space (Xα, τα). Therefore
there exists a p-locally finite collection Gα = {GUα : U ∈ U} of a preopen
subsets of (Xα, τα) such that for all α ∈ ∆, U ∩Xα ⊆ GUα for all U ∈ U . Put
GU = ∪

α∈∆
GUα and G∗ = {GU : U ∈ U}. We note that (i) GU is preopen in

X for each U ∈ U(by Lemma 1.1) (ii) G∗ is p-locally finite in X. Let x ∈ X.
Then there exists α◦ ∈ ∆ such that x ∈ Xα◦ . So there exists a preopen subset
Wα◦ of Xα◦ such that Wα◦ intersects at most finitely many member of Gα◦ , say
GU1(α◦)

, GU2(α◦)
, ...GUn(α◦)

. Note that GUβ
∩Wα◦ = ϕ for each U ∈ U and so for

every U ∈ U − {U1, ...., Un}, Wα◦ ∩ GU = ϕ. Thus G∗ is p-locally finite in X
such that for each U ∈ U , U = U ∩X = U ∩ ( ∪

β∈∆
Xβ) ⊆ GU .
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Theorem 3.9. Let f : (X, τ) → (Y, σ) be a M-preopen and strongly preclosed
surjective continuous function such that f−1(y) is strongly compact relative to
(X, τ) for every y ∈ Y . If (X, τ) is P-expandable then (Y, σ) is P-expandable.

Proof. Assume that (X, τ) is P-expandable and F = {Fα : α ∈ ∆} is a locally
finite collection of subsets of Y . Then f−1(F) = {f−1(Fα) : α ∈ ∆} is a locally
finite collection of subsets of the P-expandable (X, τ) and so there is a p-locally
finite {Gα : α ∈ ∆} of preopen subsets of X such that f−1(Fα) ⊆ Gα for each
α ∈ ∆. Since f is M-preopen and by Theorem 1.6, the collection f(Gα) is
p-locally finite collection of preopen subsets of Y such that Fα ⊆ f(Gα).

Theorem 3.10. Let f : (X, τ) → (Y, σ) be a countably perfect preirresolute
continuous function. If (Y, σ) is P-expandable, then so is (X, τ).

Proof. Let F = {Fα : α ∈ ∆} be a locally finite collection of subsets of X, by
Lemma 1.5, {f(Fα) : α ∈ ∆} is a locally finite collection in Y . Hence there is a
p-locally finite collection G = {Gα : α ∈ ∆} of preopen subsets of Y such that
f(Fα) ⊆ Gα for each α ∈ ∆. Then, by Theorem 1.6, Fα ⊆ f−1f(Fα) ⊆ f−1(Gα)
and {f−1(Gα) : α ∈ ∆} is a p-locally finite collection of preopen subsets of
X.

It clear that every continuous open function is preirresolute and M-preopen
[8].

Corollary 3.11. Let (X, τ) be compact and (Y, σ) be P-expandable. Then the
product space (X, τ) × (Y, σ) is P -expandable.
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Abstract. Permutation and diffusion are two basic principles in designing an image
encryption algorithm. Almost all image encryption methods are based on a scheme that
separates permutation and diffusion, namely, asynchronous permutation and diffusion
scheme (APDS). This paper analyses the flaws of APDS and cracks it with a cho-
sen plaintext attack, and then proposes a synchronous permutation-diffusion scheme
(SPDS). Experimental simulations and performance evaluations in key space, key sen-
sibility, correlation coefficient, Shannon entropy, differential attack and data loss/noise
attacks all show that the proposed scheme processes better performance compared with
the APDS and some others, and can ensure a secure communication in practical appli-
cations.

Keywords: Image encryption, Synchronous permutation-diffusion, Chaotic map.

1. Introduction

With the increasing degree of interconnection, openness, and sharing of com-
puter networks, the Internet has rapidly developed and is used for an extensive
number of applications. Data, images, and multimedia information have become
the largest online information flow. It is precisely because of the popularization
of the Internet, as well as the simplicity, visualization, and information richness
of image information, image information has become the most common infor-
mation transmitted on the Internet. However, images often include important
personal information, business secrets, or even information containing national

∗. Corresponding author
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secrets. Therefore, it is essential to encrypt the images securely for transmitting.
However, the encryption technology used in image transmission is now facing
the danger of being cracked with the increase of computing power. Therefore,
new encryption algorithms are required for the security of image transmission.

Two basic methods used in image encryption are permutation and diffusion
[1]. In permutation, each coordinate in the image is changed, and in diffusion,
pixel values of the image are modified. A good image encryption scheme should
present good permutation and diffusion effects which make the original image
into a noisy one and can also resist all kinds of attacks. A permutation-only
image encryption scheme based on chaos has been proposed in [2] and a diffusion-
only scheme has been proposed in [3]. In [7, 5, 8, 9, 10, 11, 12, 13, 6, 15, 14],
encryption schemes based on permutation and diffusion structures are proposed,
where [7, 5, 8, 9, 10, 11, 12, 13, 6, 14] encrypts images using permutation first
and is followed by diffusion, or diffusion is first, followed by permutation. Image
encryption with permutation and diffusion performed separately has a defect
that cryptanalysts can exploit to obtain one of the key streams of permuta-
tion and diffusion first, and can then obtain another by certain chosen plain-
text attacks [5, 4]. Authors in [15] try to encrypt images using a synchronous
permutation-diffusion scheme, but throughout their entire algorithm, the scheme
is no different from permutation and diffusion done separately.

Chaos is a deterministic, random process in a nonlinear dynamic system that
is neither periodic nor convergent, and has a very sensitive dependence on initial
values. Given a discrete chaotic system and iterating it with two very close initial
values, the output results are completely uncorrelated. Therefore, by using the
extremely sensitive dependence of the chaotic system on the initial conditions,
we can obtain a large number of uncorrelated, random, and deterministic chaotic
sequences which have been widely used in image encryptions [7, 8, 9, 10, 11, 12,
13, 6, 15, 14]. Chaotic image encryption schemes [3, 6, 4] are usually based on a
low-dimensional chaotic map which has the problems of a short code period and
low accuracy, and therefore cannot guarantee the security of the scheme [14].
Subsequently, high-dimensional chaotic, or spatiotemporal chaotic encryption
schemes, have been proposed to overcome the problems [7, 8, 9, 10, 11, 12, 13,
15, 14].

In this paper, we find the defects of APDS and propose a chosen plaintext at-
tack to crack the APDS scheme and further propose a synchronous permutation-
diffusion scheme to remedy the defects of APDS. The proposed scheme first de-
termines the permutation sequence using a two-dimensional chaotic map, and
then permutates the position of pixels one by one, and diffuses image pixel val-
ues related to the current permutation sequence, their former encrypted pixel
values and a chaotic key stream; therefore, the diffusion is closely dependent on
permutation and an attacker cannot crack the scheme by respectively extracting
key-streams of permutation and diffusion using a chosen plaintext attack.

The rest of the paper is organized as follows: Section 2 gives a brief review of
an asynchronous permutation and diffusion scheme proposed in [6] and analyses
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its defects to further attack the scheme successfully. After that, a new image en-
cryption scheme of synchronous permutation-diffusion is proposed in Section 3.
Experimental performances of the proposed scheme are presented in Section 4,
followed by the conclusions of the paper in Section 5.

2. APDS and its defects

2.1 Overview the APDS scheme

Image encryption using an APDS separately processes plain images with per-
mutation and diffusion. The simple image encryption steps of this structure are
listed as follows [6].

1. Reshape the plain image IM×N×3 into 1D array P = {p1, p2, · · · , p3MN}.

2. Iterate a 1D chaotic map (3MN + N0) times and throw out the former
N0 elements to obtain a sequence X with the length of 3MN .

3. Sort X in ascending order to obtain an index sequence PX.

4. Let P ′ = P (PX) be the permutated image matrix.

5. Let D = mod(floor(X × 1014), 256) be the diffusion matrix.

6. Let C(i) = mod(P ′(i) + D(i), 256) ⊕ C(i − 1), i = 1, 2, · · · , 3MN be the
encrypted image matrix.

7. Circularly shift the elements in C towards left by the amount of lp: C ′ =
circshift(C, lp).

8. Reshape C into Ic with size of M ×N ×3, then the final encryption image
is Ic.

2.2 Defects of the APDS

Some defects of the above encryption algorithm are presented in detail below.

1. Vulnerable to CPA: using CPA as a chosen plaintext attack, adversaries
can access the encryption machinery and choose arbitrary plaintexts from
its corresponding ciphertexts. The adversary aims to obtain some useful
information which helps divulge the other plaintexts’ encrypted informa-
tion with the same encryption scheme and the same secret keys.

We choose two M × N × 3 plain images I1 = 0 and I2 = 0, and set one
of the elements in I2 to 1. Due to the encryption machinery available, the
corresponding cipher image of I1 and I2 are denoted as Ic1 and Ic2. Fig. 1
shows each step of the encryption process for two simple plain images.
Next, we detail the steps of cracking APDS.
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(a) Analyse and obtain key lp: As can be seen in Fig. 1, P1 and P2 are
both 1D arrays which correspond to I1 and I2 respectively. Due to
P1 being a full 0 array, the permutation step is inoperative, thus the
encryption algorithm is analogous to C1(i) = D(i) ⊕ C1(i − 1), and
C ′
1 = circshift(C1, lp). P2 only has one element that equals 1; all

other values equal 0. After permutated, the element 1 is moved to
position s1. The former s1 elements of C1 and C2 are the same. The
last lp elements of C ′

1 and C ′
2 are the former lp elements of C1 and

C2 respectively. Thus, if s1 >= lp, then lp is the number of identical
elements between the tail of C ′

1 and C ′
2; otherwise, lp can not be

determined, and we should reset the index of element 1 in P2 to meet
the condition.

(b) Determine key stream D: After obtaining lp, we circularly shift the
elements in C ′

1 towards the right lp times to get C1, then D(i) =
C1(i) ⊕ C1(i− 1).

(c) Obtain the index array PX: We reselect a plain image and denote
its 1D array as Pi1, Pi2, · · · , Pin(n = 3MN/256). The first 256 pixel
values of Pi1, the 257th–512th pixel values of Pi2, · · · , the 256(n −
1)th–256nth pixel values of Pin are all in the array [0, 1, · · · , 255] and
the rest of the pixel values are all 0. We encrypt the n plain images
to obtain their corresponding cipher images Ic1, Ic2, · · · , Icn and then
compare the n cipher images with I1 respectively to extract all of the
elements in PX.

The simple process of the CPA cryptanalysis algorithm is clearly shown

in Fig. 2. A total of
3MN

256
+ 2 images are needed to completely break the

APDS.

2. Key stream generated by a low-dimensional chaotic map: A low-dimensional
chaotic sequence cannot ensure the security of encryption schemes due to
its shorter period and lower accuracy compared with high-dimensional
maps and therefore cannot ensure the security of encryption schemes.

3. Synchronous permutation-diffusion scheme

Similar to the defects of APDS listed above, this section proposes a synchronous
permutation-diffusion encryption scheme. In this scheme, 2D Logistic-adjusted-
Sine map as Eq. (1) is used to generate the chaotic key streams [16].

(1)

{
x(i+ 1) = sin(πµ(yi + 3)xi(1 − xi)),

y(i+ 1) = sin(πµ(xi+1 + 3)yi(1 − yi)),

where µ ∈ [0, 1] is map parameter. When µ ∈ [0.37, 0.38]∪[0.4, 0.42]∪[0.44, 0.93]∪
{1}, the LASM shows chaotic behavior. We iterate the map 3MN + N0 times



512 YUMING FENG

234 10543752011308112510

0

000

000

00

0 0000000 0

Reshape

1I

1P

0

010

000

00

0 0001000 0

Reshape

2I

2P

0 0000000 0 0 0000010 0

PermutatePermutate

Bit-level XOR operator

1'P 2'P

1C 2C

234 132237198141681981510 234 135138197142711971510

23413223719814168198151 0 23413513819714271197151 0

Circularly shift times towards left2=lp
1'C 2'C

DChaotic key stream

151

68

198

237 234

198 0

132141 151

71

197

138 234

197 0

135142
1cI 2cI

ReshapeReshape

Figure 1: A simple demonstration of APDS image encryption

with proper initial values and parameters, and then discard the former N0 data
to obtain two chaotic sequences denoted as x, y. Then we obtain a permutation
position matrix PX according to x and obtain a diffusion matrix D according
to y. The detailed processes of the proposed encryption scheme are presented
in the following subsection.

3.1 Encryption algorithm

1. Reshape the plain image IM×N×3 into 1D array P = {p1, p2, · · · , p3MN}.

2. Choose the secret keys µ, x0, y0, N0 of LASM and iterate the chaotic map
(3MN +N0) times and throw out the former N0 elements to generate two
chaotic sequences x, y with length 3MN .

3. Sort x in ascending order to obtain an index sequence PX.

4. Permutate ith image pixel position with P ′(i) = P (PX(i)).

5. Make D(i) = mod(floor(y(i) × 1014), 256) the diffusion value.

6. Rotate lp = mod(PX(i), 8) times.



A COLOR IMAGE ENCRYPTION SCHEME WITH SYNCHRONOUS ...... 513

Figure 2: The process of cryptanalysis

7. Circularly shift the binary number that corresponds to the decimal number
C(i−1), towards the left by the amount of lp: C ′(i−1) = circshift(C(i−
1), lp).

8. Encrypt the ith image pixel value by C(i) = mod(P ′(i) + D(i), 256) ⊕
C(i− 1).

9. Repeat steps 4 to 8 3MN times to obtain all encrypted values in C.

10. Reshape C into Ic with a size of M ×N × 3.

A flowchart of the encryption process is shown in the following Fig. 3. The
decryption algorithm is an inverse process of the encryption algorithm.

The proposed algorithm encrypts plain images with permutation and dif-
fusion associated encryption methods, thus, a cryptanalyst can break a cipher
image only when he knows both PX and D. Therefore, the proposed scheme
can effectively resist CPA.

4. Experimental results and discussion

The experimental simulations were run on desktop computer with an Intel(R)
Core(TM) i5-3470 CPU 3.20GHz, 4GB RAM, and a 500GB hard drive. The
operating system was Microsoft Windows 7 and the software run was Matlab
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Figure 3: SPDS image encryption scheme

8.3.0.532 (R2014a). In order to evaluate the performance of the proposed en-
cryption, the standard color image Lena.bmp is 256×256×3 pixels, as shown in
Fig. 4 (a), it was chosen as the plain image. The encrypted image and decrypted
image of Lena are shown in Fig. 4 (b) and (c) respectively. Fig. 4 (d-f) are the
histograms of the plain, ciphered, and deciphered image corresponding to Fig. 4
(a-c) respectively. Fig. 4 (e) shows an uniform distribution histogram, therefore,
the cipher image encrypted by the proposed scheme cannot provide any useful
information about the plain image.

(a) The plain image (b) The final encrypted image (c) The decrypted image
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(f) Histogram of decrypted image

Figure 4: Plain image, encrypted image, decrypted image and their histogram.

4.1 Key space

A larger space than 2100 is usually needed for an encryption scheme to resist a
brute-force attack. Our proposed algorithm has four security keys: x0, y0, µ,N0,
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where x0, y0 ∈ (0, 1] with accuracy 1016, µ ∈ [0.37, 0.38]∪[0.4, 0.42]∪[0.44, 0.93]∪
{1} with accuracy 1016 and N0 is a positive integer. Let 100 < N0 < 10100, then
the space of N0 is 104. The total key space can be calculated as (1016)3× 104 =
1052 ≈ 2172, therefore, the proposed scheme can effectively resist a brute-force
attack.

4.2 Key sensitivity

We encrypted the plain Lena image with secret keys N0 = 1000, x0 = 0.3, y0 =
0.4, µ = 0.5 to a cipher image, then we respectively changed one of the following
four keys N0 = 1001, x0 = 0.30001, y0 = 0.40001, µ = 0.50001 and maintained
the other three keys, then decrypted the ciphered Lena image with these changed
keys. Fig. 5 (a-d) show the decrypted image with the wrong keys and their
corresponding histogram are shown in Fig. 5 (e-h) respectively. From these
figures, we know that a tiny change in any secret key can make the decrypted
image noisy; because the decrypted image is noisy, we know the proposed scheme
is extremely sensitive to a secret key.

(a) Decryption with
wrong key N0

(b) Decryption with
wrong key x0

(c) Decryption with
wrong key y0

(d) Decryption with
wrong key µ

(e) Histogram of (a) (f) Histogram of (b) (g) Histogram of (c) (h) Histogram of (d)

Figure 5: Key sensitivity analysis

4.3 Correlation analysis

Due to the possibility that some images have strong correlation among adjacent
pixels, cryptanalysts may be able to access some useful information. In our
experiment, 2000 adjacent pixels of plain and cipher images were randomly
selected from horizontal, vertical, and diagonal directions respectively, and their
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correlation can be calculated by Eq. (2).

(2) rxy =
N2 · cov(x, y)∑N

i=1(xi − Ex)2 ·
∑N

i=1(yi − Ey)2
,

where Ex =
∑N

i=1 xi

N , cov(x, y) = E((x−Ex)(y−Ey)); x, y are the two neighboring
pixels’ sequences. Table 1 shows experimental data and compares the correlation
of the proposed scheme with some other references. From the table we know
that the plain image has high correlation coefficients, as close to 1, in all three
channels, but the cipher image encrypted by the proposed scheme has correlation
coefficients close to 0, which represents that the encrypted image is a random-
like image. Thus, the proposed scheme dramatically randomizes adjacent image
pixel values.

Table 1: Correlation of two adjacent pixels in the plain and encrypted Lena image
with different encryption scheme.

Lena Orientation R component G component B Component

Plain-image Horizontal 0.9336 0.9501 0.8989
Vertical 0.9746 0.9693 0.9361
Diagonal 0.9299 0.9288 0.8485

Ref. [3] Horizontal -0.0463 0.0435 0.0136
Vertical -0.0587 -0.0682 -0.0688
Diagonal -0.0200 -0.0052 0.0127

Ref. [4] Horizontal 0.0005 0.0011 -0.0023
Vertical -0.0070 0.0001 0.0078
Diagonal 0.0005 -0.0016 -0.0009

Ref. [6] Horizontal 0.0038 0.0069 0.236
Vertical 0.0026 0.0125 0.0054
Diagonal 0.0017 0.0037 0.0296

Ref. [17] Horizontal 0.0104 0.0095 -0.0215
Vertical -0.0029 0.0126 0.0135
Diagonal 0.0123 -0.0116 -0.0304

Ref. [18] Horizontal 0.0049 0.0054 0.0053
Vertical 0.0031 0.0001 0.0022
Diagonal 0.0007 0.0017 0.0007

Proposed Horizontal 0.0001 0.0004 0.0023
Vertical 0.0081 0.0101 0.0003
Diagonal 0.0004 0.0016 0.0002

4.4 Shannon entropy

Shannon entropy [4] is defined to measure the randomness of the test image. The
greater entropy corresponds to the more uniform image gray value distribution.
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Shannon entropy of an 8-bit image is defined as follows:

(3) H(m) = −
255∑
i=0

P (mi) log P (mi),

where mi is the ith gray value and P (mi) is the probability of symbol mi in a test
image. Entropy for an 8-bit true random image is 8, which shows that the pixel
values in an image are completely random. Therefore, entropy of encrypted an
image for a good encryption algorithm is close to 8, and the closer the entropy
is to 8, the smaller the possibility of information disclosure for the encryption
scheme.

Entropy of the different images and their cipher images, encrypted by differ-
ent schemes, are shown in Table 2. From this table, we know that the proposed
algorithm has an entropy that is closer to 8 compared to the other schemes,
which illustrates that the proposed scheme can rarely leak any useful informa-
tion.

Table 2: Shannon entropy of different image encrypted by the IECTM and the im-
proved scheme.

Image Plain image Ref. [3] Ref. [4] Ref. [18] Proposed

Lena 7.758377 7.990966 7.997287 7.9972 7.99903
Baboon 7.774815 7.991296 7.998973 7.9972 7.99907
Girl 6.904487 7.991575 7.998989 - 7.99902
Couple 6.300791 7.991349 7.999136 - 7.99907

4.5 Differential attack

The plain image’s sensitivity to an encryption scheme is the measure of the
influence of a tiny change in a plain image compared to the cipher image. Dif-
ferential attacks aim to find the relationship between the two plain images and
their cipher images. Therefore, a slight change in a sensitive plain image can
result in a completely different cipher image, and cryptanalysts cannot gather
any useful information. The degree of an image’s sensitivity can be reflected by
NPCR and UACI [4] which are shown in Eq. (4).

NPCR =

∑
i,j D(i, j)

m× n
× 100%,(4)

UACI =
1

m× n

∑
i,j

|C(i, j) − C ′(i, j)|
255

× 100%,(5)

Di,j =

{
1, if C(i, j) ̸= C ′(i, j),

0, if C(i, j) = C ′(i, j),
(6)
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where m,n are the size of the image; C and C ′ are two cipher images. An ideal
NPCR value is 1, which represents that a plain image has high sensitivity and
therefore can resist differential attacks. The theoretical values of UACI is 0.33
[4]. In our test, a randomly selected pixel from the plain image was changed,
then we encrypted the changed and unchanged plain images to obtain two cipher
images C and C ′, respectively. Comparison ofNPCR and UACI scores between
different encryption schemes are shown in Table 3 which illustrates that the
proposed scheme has the largest NPCR score and can therefore resist stronger
differential attacks.

Table 3: NPCR and UACI of different encrypted image with one bit differ from the
plain image.

Encryption scheme Lena Baboon Pepper Barbarb
Ref. [6] NPCR 0.9965 0.9955 0.9960 0.9940

UACI 0.3348 0.3342 0.3340 0.3341
Ref. [3] NPCR 5.0862× 10−6 5.0862× 10−6 5.0862× 10−6 5.0862× 10−6

UACI 1.9946× 10−8 1.9946× 10−8 1.9946× 10−8 1.9946× 10−8

Ref. [17] NPCR 0.9962 0.9943 0.9964 0.9960
UACI 0.3377 0.3353 0.3353 0.3341

Ref. [18] NPCR 0.9966 0.9965 0.9963 -
UACI 0.3344 0.3350 0.3347 -

Proposed NPCR 0.9967 0.9972 0.9970 0.9973
UACI 0.3346 0.3350 0.3351 0.3355

4.6 Data loss and noise attack

When images are transferred or stored, cipher images, noise, and data loss are
inevitable. A good encryption scheme should resist these influences well. In
order to test the ability of the proposed scheme in resisting noise and data loss
attacks, we decrypted two cipher images which both encrypted the Lena image
of size 256 × 256 and one was cut as Fig. 6 (b) , another was influenced by
3% ‘salt&pepper’ noise as Fig. 6 (c), and their deciphered images are Fig. 6
(e,f) which both contain massive visual information of the original Lena image
as Fig. 6 (d). PSNR (Peak Signal to Noise Ratio) expressed in Eq. (7) is em-
ployed to evaluate the ability of a scheme to restore an image. The larger the
PSNR value, the better the image recovered. Table 4 compares NPCR coef-
ficients between [6] and the proposed scheme. Experimental results show that
the proposed scheme has excellent performance against noise attacks.

(7)

PSNR = 10 × lg
2552

MSE
,

MSE =
1

W ×H

∑H
i=0

∑W
j=0(P (i, j) −D(i, j))2,

where M,N are the height and the weight of image respectively; P (i, j) and
D(i, j) are the pixels from the plain and deciphered images respectively.
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(a) Cipher image (b) Cipher image with 25% oc-
clusion

(c) Cipher image with 3%
salt&pepper noise

(d) Decipher image of (a) (e) Decipher image of (b) (f) Decipher image of (c)

Figure 6: Robustness against data loss and noise attacks.

Table 4: Comparison the PSNR of the different scheme.

Encryption scheme Ref. [6] Proposed

Data loss 47.4199 77.0979
Noise attack 48.1770 70.0263

5. Conclusion

In this paper, we first introduced image encryption based on asynchronous per-
mutation and diffusion, then presented its defects and proposed a synchronous
permutation-diffusion encryption scheme to overcome the defects. Experiments
and security comparisons between the synchronous and other schemes show
that the proposed has better encryption effects and keeps all the merits of asyn-
chronous ones.
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Abstract. The problem is to obtain the most accurate upper estimate for the absolute
value of the difference between the number of integer points in a circle and its area
(when the radius tends to infinity). In this paper we obtain an integral equation for
the function expressing the dependence of the number of integer points in a circle on
its radius. The kernel of the equation contains the Bessel functions of the first kind,
and the equation itself is a kind of the Hankel transform.

Keywords: Gauss circle problem, integral equation, Hankel transform.

1. The problem and calculations

The Gauss circle problem is the problem of determining how many integer lattice
points there are in a circle centered at the origin and with given radius. Let
us consider the circle K(R) : x2 + y2 ≤ R and let A(

√
R) be the number of
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points with integer coordinates within this circle. As R increases, A(
√
R) is

approximately equal to the area inside the circle πR . Let us define ∆(R) =
|A(

√
R)−πR|. The Gauss circle problem consists in estimating the upper bound

for ∆(R) when R→ ∞ as much precisely as possible.
Similarly, the Dirichlet divisor problem consists in finding the number of

integer points under the hyperbola K1(R) : xy ≤ R, 0 < x ≤ R, 0 < y ≤
R. The problems of Gauss and Dirichlet were investigated by many authors.
Gauss himself found the estimation O(R1/2) for∆(R). Voronoy [1] obtained
the result O(R1/3lnR) for the Dirichlet problem, while Serpinksij found the
estimation O(R1/3) in 1903 and Hua O(R13/40) in 1942 [2] for the circle. Hardy
and Littlewood [3] proved that it is impossible to get a better estimation than
O(R1/4ln2R). Probably the most precise estimation for the circle up to now is
O(R131/208) obtained by Huxley in the early 2000s [4]. To give the readers more
information about the problem, they can take a look to the references [5, 6].
Our aim is to derive an integral equation for the number of integer points in a
circle.

Let δϵ(x) = 1 +
∑∞

n=1
sin 2πnϵ
2πnϵ cos 2πnx be a periodic function with period

1, which is tending to the periodic delta-function of Dirac when ϵ → 0. Let us
consider the integral

(1) Aϵ(
√
R) =

∫
K

∫
(R)

δϵ(x)δϵ(y) dx dy.

We can see that limϵ→0Aϵ(
√
R) = A(

√
R). Let us calculate the integral in the

right hand side of (1). The function δϵ(x) may be written as follows: δϵ(x) =∑∞
−∞ cne

2πinx, where cn = sin 2πnϵ
2πnϵ for n ̸= 0 and cn = 1 for n = 0. Then

Aϵ(
√
R) =

∫
K

∫
(R)

δϵ(x)δϵ(y) dx dy

=

∫ √
R

0
r dr

∫ 2π

0

+∞∑
n,m=−∞

cncme
2πir (n cos ϕ+msinϕ) dϕ.

After changing the order of integration and summation and transforming the
function n cos ϕ+msinϕ, the expression takes the form:

Aϵ(
√
R) =

+∞∑
n,m=−∞

cncm

∫ √
R

0
r dr

∫ 2π

0
e2πir

√
n2+m2cos(ϕ+ϕ0) dϕ

=

+∞∑
n,m=−∞

cncm

∫ √
R

0
r dr

∫ 2π

0
e2πir

√
n2+m2cos(ϕ) dϕ.

Taking into account that J0(x) = 1
π

∫ π
0 e

ix cos ϕ dϕ is the Bessel function of the
first kind and zero order, we get:

(2) Aϵ(
√
R) = 2π

+∞∑
n,m=−∞

cncm

∫ √
R

0
r J0(2πr

√
n2 +m2) dr.
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Using the relation

(3) xJ0(x) =
d

dx
(xJ1(x)) ,

where J1(x) is the Bessel function of the first kind, we get by integrating from
(2):

(4) Aϵ(
√
R) =

√
R

+∞∑
n,m=−∞

cncm
J1(2π

√
R(n2 +m2))√
n2 +m2

.

Since Cn tend to 1 while ϵ→ 0 we get:

Aϵ(
√
R) =

√
R

+∞∑
n,m=−∞

J1(2π
√
R(n2 +m2))√
n2 +m2

= πR+
√
R

∑
n2+m2 ̸=0

J1(2π
√
R(n2 +m2))√
n2 +m2

.

The series for A(
√
R) does not converge absolutely, but it sums up to the

number of integer points in a round area with radius R1/2 (if R is an integer,
the points on the circumference are counted with the coefficient 1/2). The
expression A(

√
R) may be rewritten in the following way:

A(
√
R) = lim

ϵ→0

√
R

∫ ∞

−∞

∫ ∞

−∞

J1(2π
√
R
√
x2 + y2)√

x2 + y2
δϵ(x) δϵ(y)dxdy

= lim
ϵ→0

√
R

∫ ∞

0
J1(2πr

√
R) dr

∫ 2π

0
δϵ(r cos ϕ) δϵ(r sin ϕ) dϕ.

Since (see above)∫ 2π

0
δϵ(r cos ϕ) δϵ(r sin ϕ) dϕ = 2π

+∞∑
n,m=−∞

cncm J0(2πr
√
n2 +m2),

we get:

A(
√
R) = lim

ϵ→0
2π

√
R

∫ +∞

0
J1(2πr

√
R)

+∞∑
n,m=−∞

cncm J0(2πr
√
n2 +m2) dr.

Let us denote
√
R = ρ. Using the property (3) of Bessel functions and integrat-

ing by parts, we get:

A(ρ)=lim
ϵ→0

∫ +∞

0

(
1

r
J1(2πρr)−2πρJ ′

1(2πρr)

)( +∞∑
n,m=−∞

cncm
J1(2πr

√
n2 +m2)√

n2 +m2

)
dr.
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In view of (4), the following expression is derived:

A(ρ) = lim
ϵ→0

∫ +∞

0

(
1

r2
J1(2πρr) −

2πρ

r
J ′
1(2πρr)

)
Aϵ(r) dr.

Now, replacing J ′
1(2πρr) according to formula (3) and taking the limit ϵ → 0

we finally obtain the integral equation:

(5) A(ρ) =

∫ +∞

0
A(r)K(ρ, r) dr,

where the core is

K(ρ, r) =
2

r2
J1(2πρr) − 2πρ

r
J0(2πρr).

2. Conclusion

Let us note that the integral transform F (ρ) =
∫ +∞
0 A(r)K(ρ, r) dr with the

coreK(ρ, r) = r Js(2πρr), s ≥ −1/2 is known as the Hankel transform. Thus, for
the function expressing the dependence of the number of integer points in a circle
on its radius, the integral equation is obtained, which is a kind of the Hankel
transform. It can be used for further investigations of the Gauss circle problem.
Also of interest is a possible generalization of the methodology and applying it
to other similar problems (for example, the Dirichlet divisor problem).
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Abstract. It is proved that simple Janko-groups J1, J2, J3 and J4 can be determined
by their order and one irreducible character degree.
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1. Introduction and preliminary results

Let G be a finite group and cd(G) the set of all complex irreducible character
degrees of G. Characters of a finite group can give some important information
of the group’s structure.

In [1], Huppert posed the following conjecture: if H is a finite non-abelian
simple group such that cd(G) = cd(H), then G ∼= H ×A, where A is an abelian
group. And it was verified that the conjecture holds for many non-ableian simple
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groups. Also it was proved that a finite simple group can be uniquely determined
by its character table in [2]. In this paper, we manage to characterize the finite
simple groups by less character degrees. In fact, we shall prove the four simple
Janko-groups, J1, J2, J3 and J4 can be unique determined by the group order
and one irreducible character degree. The following theorems will be proved:

Theorem A. Simple Janko-groups J1, J3 and J4 can be uniquely determined by
their orders and the largest irreducible character degrees.

Theorem B. Janko-group J2 is uniquely determined by its order and the second
largest irreducible character degree.

For convenience we denote the largest irreducible character degree of G as
L(G), and the second largest irreducible character degree of G as S(G). We
use A . B to denote any group having a normal subgroup isomorphic to, for
which the corresponding quotient group isomorphic to B, and use Zn to denote
the cyclic group of order n. All further unexplained symbols and notations are
standard and can be found, for instance, in [3] and [4].

In order to prove the above theorems, we need the following lemmas:

Lemma 1. Let G be a non-solvable group. Then G has a normal series 1 E
HEKEG, such that K/H is a direct product of isomorphic non-abelian simple
groups and |G/K| | |Out(K/H)|.

Proof. Let H be a normal subgroup of G, which is maximal such that G/H is
non-solvable. Then if K/H is a chief factor, it is a direct product of isomorphic
non-abelian simple groups, and also it is the unique minimal normal subgroup
of G/H, and from this, the desired conclusion is immediate.

Lemma 2. Suppose that a Sylow p−subgroup of a solvable group G is not
normal. Then some prime power dividing |G| and exceeding 1 is congruent to 1
mod p.

Proof. Let P be a Sylow p−subgroup of G. If P is not normal, let N be its
normalizer, and let N ≤ M , where M is maximal in G. Then |G : M | is a
prime power and |G : N | = |G : M | · |M : N |. By Sylow’s theorem, |G : N | and
|M : N | are congruent to 1 mod p, so |G : M | is congruent to 1.

Lemma 3. Let G be a finite solvable group and |G| = 2α · 3β · 52 · 7γ, where
α ≤ 7, β ≤ 3, γ ≤ 1. Then O5(G) ̸= 1.

Proof. If O5(G) = 1, then a Sylow 5−subgroup P acts faithfully on the Fitting
subgroup F of G for G is solvable. Consequently, P acts nontrivially on some
Sylow p′-subgroup of F , which implies that there exists a power of 2, 3 or 7
dividing |G| that is congruent to 1 mod 5. Since the only prime power q dividing
|G| that is congruent to 1 mod 5 is q = 24, it follows that P acts faithfully on
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the Sylow 2−subgroup of F , which means some 2−group of order dividing 27

having an automorphism group of order divisible by 25. But the order of GL7(2)
cannot be divided by 25, this is a contradiction.

Lemma 4. Let G be a non-solvable group. Suppose that G has a normal
series 1 E K E G such that K is abelian and G/K is a non-abelian simple
group. If Aut(K) does not contain any simple section isomorphic to G/K.
Then K = Z(G).

Proof. It follows straightforward from N/C theorem by observing.

Lemma 5. Let H E G such that G/H ∼= A5 and let σ ∈Irr(H), φ ∈Irr(G)
with [φH , σ] ̸= 0. Suppose σ is invariant in G and 5 | φ(1)/σ(1). Then φ is the
unique irreducible constituent of σG with degree divided by 5 · σ(1). Moreover,
φ(1) = 5 · σ(1).

Proof. Write σG = eiφi, where φi ∈ Irr(G) and φ1 = φ, ei are positive integers.
Since σ is invariant in G, we have (φi)H = eiσ. Therefore, φi(1) = ei · σ(1) and

|G : H|σ(1) = σG(1) =
∑

ei · φi(1) =
∑

e2i · σ(1),

so that
∑
e2i = |G : H| = 60. By the assumption, 5 | e1. Thus the fact

e21 ≤
∑
e2i = 60 forces that e1 = 5. If some ei = 1, then σ is extendible to φi.

Hence φiλ for λ ∈Irr(G/H) are all of the irreducible constituents of σG. Since
H/A ∼= A5, we have that φ is the unique irreducible constituent of σG with
degree divided by 5 · σ(1). If all of ei > 1, it follows by

∑
e2i = 60 and e1 = 5

that ei ̸= 5 for i ≥ 2. Therefore φ is the unique irreducible constituent of σG

with degree divided by 5 · σ(1). Moreover, φ(1) = e1 · σ(1) = 5 · σ(1).

2. Proof of Theorems

Proof of Theorem A. We write the proof in several cases.

Case 1. Let G be a group having the same order of J1 and having an irreducible
character χ with χ(1) = L(J1), we prove that G ∼= J1.

By [3], |G| = 23 · 3 · 5 · 7 · 11 · 19 and χ(1) = L(J1) = 11 · 19. If O19(G) ̸= 1,
then O19(G) is abelian and thus ξ(1) | |G/O19(G)| for every ξ ∈ Irr(G). But
χ(1) = 11 · 19 - |G/O19(G)|, a contradiction. Therefore O19(G) = 1. Hence
G is non-solvable by Lemma 2. Therefore by Lemma 1 G has a normal series
1 E H EK E G such that K/H is a direct product of isomorphic non-abelian
simple groups and |G/K| | |Out(K/H)|. As |G| = 23 · 3 · 5 · 7 · 11 · 19, we have
K/H is isomorphic to one of A5, L2(7), L2(11) and J1.

Suppose K/H ∼= A5. Since |Out(A5)| = 2, we have |G/K| = 1 or 2, and
get |H| = 2t · 7 · 11 · 19, where t = 0 or 1. Clearly H is solvable for 15 does
not divides |H|, thus Sylow 19−subgroups of H is normal in H by Lemma 2,
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which of course is normal in G too, a contradiction. Similarly we can prove that
K/H ̸∼= L2(7) and L2(11).

Now, we have K/H ∼= J1, which concludes G ∼= J1 eventually.

Case 2. Let G be a group having the same order of J3 and having an irreducible
character χ with χ(1) = L(J3), we prove that G ∼= J3.

In this case, |G| = 27 · 35 · 5 · 17 · 19, and χ(1) = L(J3) = 2 · 34 · 19. Then
O19(G) = 1 by the similar reason as in Case 1. Further, G is non-solvable by
Lemma 2 and G has a normal series 1EH EK EG, such that K/H is a direct
product of isomorphic non-abelian simple groups and |G/K| | |Out(K/H)| by
Lemma 1. As |G| = 27 · 35 · 5 · 17 · 19, we have that K/H is isomorphic to one
of A5, A6, L2(17), L2(19), L2(16), U4(2) and J3.

Suppose K/H ∼= A5. Since |Out(A5)| = 2, we have |G/K| | 2 and |H| =
2α · 34 · 17 · 19 where α = 4 or 5. If H is solvable, then O19(H) ̸= 1 by
Lemma 2, a contradiction to O19(G) = 1. Now, we have H is non-solvable. By
Lemma 1, H has a normal series 1 E A E B E H, such that B/A is a direct
product of isomorphic non-abelian simple groups and |H/B| | |Out(B/A)|. As
|H| = 2α · 34 · 17 · 19, one has that B/A ∼= L2(17). Since |Out(B/A)| = 2, it
follows that |A| = 2β · 32 · 19 where β = 1 or 2. Clearly A is solvable, hence
O19(A) ̸= 1 by Lemma 2. Consequently O19(G) ̸= 1, a contradiction.

If K/H ∼= A6 or L2(16), we get O19(G) ̸= 1 by the same arguments as before,
a contradiction too.

Now, assume that K/H ∼= L2(17). Since |Out(L2(17))| = 2, we have |H| =
2α · 33 · 5 · 19 where α = 2 or 3. Let θ be an irreducible constituent of χH . Since
χ(1)/θ(1) | |G/H| = 2β · 32 · 17, where β = 4 or 5, we have that 32 · 19 | θ(1).
Thus θ(1)2 ≥ 34 · 192 > |H|, a contradiction.

Suppose K/H ∼= L2(19). Since |Out(L2(19))| = 2, we have |H| = 2α · 33 · 17
where α = 4 or 5. Let P be a Sylow 17−subgroup of H. If H is solvable, then
P E H by Lemma 2, and thus P E G. Let φ be an irreducible constituent of
χP . Since P is abelian, φ(1) = 1. Noticing |Aut(P )| ∼= Z16 and t = |G : IP (φ)|
divides both of |Aut(P )| and χ(1), we have that t ≤ 2, which implies that
e = [χP , φ] = 2 · 34 · 19 or 34 · 19, and thus [χP , χP ] = e2 · t ≥ 2 · 38 · 192 >
|G : P |, a contradiction. Hence H is non-solvable. Then H has a normal series
1EAEBEH, such that B/A ∼= L2(17). Since |Mult(L2(17))| = |Out(L2(17))| =
2, we have that H is isomorphic to one of Z3 × L2(17), (Z3 × L2(17)) . Z2,
Z3×SL2(17) and Z6×L2(17). Let θ be an irreducible constituent of χH . Since
χ(1)/θ(1) | |G/H|, we have 32 | θ(1). By the structure of H, we know that
θ(1) = 32 or 2 · 32 and H has at most 27 irreducible characters of degree θ(1),
and thus t = |G : IG(θ)| ≤ 27. Let U be a maximal subgroup of G containing
IG(θ). Then 1 ≤ |G : U | | |G : IG(θ)|. By checking maximal subgroups of L2(19)
(see [3]), we have that t = 1, which implies that e = [χH , θ] = 2 ·32 ·19 or 32 ·19,
and thus [χH , χH ] = e2 · t ≥ 34 · 192 > |G : H|, a contradiction.

Therefore K/H ∼= J3, which concludes G ∼= J3 as we want.
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Case 3. Let G be a group having the same order of J4 and having an irreducible
character χ with χ(1) = L(J4), we prove that G ∼= J4.

Since the approach used in this case is the same as previous cases, we just
write the idea of the proof. In this case, |G| = 221 ·33 ·5 ·7 ·113 ·23 ·29 ·31 ·37 ·43,
and χ(1) = L(J4) = 3 · 113 · 23 · 29 · 31 · 37. Since 29 · 37|χ(1), we have that
O29(G) = O37(G) = 1, and thus G is non-solvable by Lemma 2. Hence, by
Lemma 1, G has a normal series 1 E H E K E G, such that K/H is a direct
product of isomorphic non-abelian simple groups and |G/K| | |Out(K/H)|. As
|G| = 221 ·33 ·5 ·7 ·113 ·23 ·29 ·31 ·37 ·43, we have K/H ∼= A5, L3(2), A6, L2(8),
L2(11) , A7, U3(3), L2(23), M11, L2(29), L2(31), A8, L3(4), L2(32), M12, M22,
L5(2), M23, U3(11), M24 or J4.

Except that K/H is not isomorphic to J4, we can use the same approach to
show that O29(G) or O37(G) is nontrivial by Lemma 2 and come to contradic-
tions. Therefore we have that K/H ∼= J4, which concludes G ∼= J4.

Proof of Theorem B. By assumption and [3], we have that |G| = 27 · 33 · 52 ·7
and G has an irreducible character β with β(1) = S(J2) = 22·3·52. If O5(G) ̸= 1,
then O5(G) is abelian of order 5 or 52, and thus ξ(1) | |G/O5(G)| for every ξ ∈
Irr(G). But β(1) = 22 · 3 · 52 - |G/O5(G)|, a contradiction. Hence O5(G) = 1, it
follows that G is non-solvable by Lemma 3. In the following, we write the proof
step by step.

Step 1. to prove that O7(G) = 1.

Let N = O7(G) ̸= 1. Then |N | = 7. Since G/CG(N) . Aut(N), we have
that |G/CG(N)| = 1, 2, 3 or 6. Obviously, O7(G) is the Sylow 7-subgroup of G,
so CG(N) has a normal subgroup M such that CG(N) ∼= N ×M . Notice that
G is non-solvable, we have by Lemma 1 that G has a normal series 1EHEKE
M ECG(N) EG, such that K/H is a direct product of isomorphic non-abelian
simple groups and |M/K| | |Out(K/H)|. By |G| = 27 · 33 · 52 · 7, one has that
K/H ∼= A5, A6, L2(8), U3(3) or A5 ×A5. We go on discussing the G/CG(N)
case by case.

Case 1. to prove that |G/CG(N)| = 1 is impossible.

Otherwise, |M | = 27 · 33 · 52. Let θ ∈Irr(M) such that [βM , θ] ̸= 0. Then
β(1) = θ(1) = 22 · 3 · 52 and thus θ(1)2 > |M |, a contradiction.

Case 2. to prove that |G/CG(N)| = 2 is impossible.

Otherwise, |M | = 26 · 33 · 52. Let θ ∈Irr(M) such that [βM , θ] ̸= 0. Then
θ(1) = 2 ·3 ·52 or 22 ·3 ·52. If θ(1) = 22 ·3 ·52, then θ(1)2 > |M |, a contradiction.
Hence θ(1) = 2 · 3 · 52.

Suppose thatK/H ∼= A5. Since |Out(A5)| = 2, we have |H| = 2α·32·5, where
α = 3 or 4. We claim that H is non-solvable. Suppose that H is solvable. If α =
3, then O5(H) ̸= 1 by Lemma 2, which implies that O5(G) ̸= 1, a contradiction.
Therefore α = 4. We assert that H has a normal series 1ERESEH such that
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|R| = 24, |S/R| = 5, R is elementary abelian and S/R acts fixed-point-freely on
R. Since O5(H) ≤ O5(G) and O5(G)=1, we have that O5(H) = 1. Thus H has
a normal series 1 E A E B E C EH, such that |B/A| = 24, |C/B| = 5, B/A is
elementary abelian and C/B acts fixed-point-freely on B/A.

Suppose first that |A| = 3. Because H/CH(A) . Aut(A), we see that
|CH(A)| = 2a · 32 · 5, where a = 3 or 4. If |CH(A)| = 23 · 32 · 5, then O5(H) ̸= 1
by Lemma 2, a contradiction. So |CH(A)| = 24 · 32 · 5, that is CH(A) = H. Let
T be the Hall {2,5}-subgroup of C. Then T is characteristic in CEH, and thus
T EH. Since O5(T ) ≤ O5(G), we have O5(T ) = 1. It follows that |O2(T )| = 24

and O2(T ) EH. Therefore, 1 EO2(T ) E T EH is the series as we want.

If |A| = 32, then by the same reason as above, CH(A) = H, so T EH, and
thus 1 EO2(T ) E T EH is the series as wanted.

If |A| = 1, then the normal series 1 EB E C EH is what we want.

Since GL(4, 2) has no subgroup of order 32 · 5, we have that 3 | |CH(R)|. It
follows that H ∼= (S × Z3) o Z3 or H ∼= S × E, where |E| = 9. Let φ ∈ Irr(H)
such that [θH , φ] ̸= 0. Suppose that H ∼= (S × Z3) o Z3. Then H has exactly
45 linear characters and 3 irreducible characters of degree 15. Thus φ(1) = 15
and t = |M : IM (φ)| ≤ 3. Let U be a maximal subgroup of M containing
IM (φ). Then 1 ≤ |M : U | | |M : IM (φ)|. By checking maximal subgroups of A5

(see [3]), we have that t = 1, which forces that [θH , θH ] = 22 · 52 > |M : H|, a
contradiction. Suppose that H ∼= S × E, where |E| = 9. It is clear that S has
exactly 3 non-linear irreducible characters of degree 5, and then H has exactly
45 linear characters and 27 irreducible characters of degree 5. Then φ(1)=5.
Since both of S and E are the Hall subgroups of H, we have S and E are both
normal in M . By checking the maximal subgroups of A5, we know that the
conjugate action of M/H on Irr1(S) is trivial, and the orbit lengths under the
conjugate action of M/E on Irr(E) is 1 or 6. Hence t = |M : IM (φ)| = 1 or 6,
which implies that [θH , θH ] ≥ 2 · 3 · 52 > |M : H|, a contradiction.

Now we have proved that H is non-solvable. By Lemma 1, H has a normal
series 1 EAEB EH, such that B/A ∼= A5 or A6 and |H/B| | |Out(B/A)|. Let
φ ∈ Irr(H) and σ ∈ Irr(A) such that e1 = [θH , φ] ̸= 0 and e2 = [φA, σ] ̸= 0.

Suppose that B/A ∼= A5. Since |Out(A5)| = 2, we have that |A| = 2b · 3,
where b ≤ 2. Suppose that |A| = 22 · 3. By checking the order of G, we know
that K = M and B = H. If A is abelian, then A = Z(H) by Lemma 4, and
thus AEM . By σ(1) = 1 and |Aut(A)| ≤ 6, we have that t = |M : IM (σ)| ≤ 6,
thus [θA, θA] ≥ 2 · 3 · 54 > |M : A|, a contradiction. If A is non-abelian, then
the first column of the character table of A is one of sequences {1, 1, 1, 3} and
{1, 1, 1, 1, 2, 2}. If σ(1) = 1, then t2 = |H : IH(σ)| ≤ 3. By checking maximal
subgroups of A5, it is easy to get that t2 = 1. Hence e2 = 5, φ is the unique
irreducible constituent of σH of degree 5 by Lemma 5. Therefore H has at most
4 irreducible characters of degree 5, which implies that t1 = |M : IM (φ)| ≤ 4.
By checking properties of maximal subgroups of A5, it is easy to get that t1 = 1,
so that [θH , θH ] = 22 ·32 ·52 > |M : H|, a contradiction. By the same discussion,
we have that if σ(1) ̸= 1, then t1 = 1, and thus [θH , θH ] ≥ 22 · 52 > |M : H|, a
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contradiction. Moreover we can get contradictions by the same arguments for
the rest possibilities of |A|.

Now we consider the case that B/A ∼= A6. Since |Out(A6)| = 4, we have
that |H/B|| 4, which implies that |A| = 1 or 2. If |A| = 2, then H ∼= SL2(9)
or H ∼= Z2 × A6, which has at most 4 irreducible characters of degree 5 and
at most 3 irreducible characters of degree 10. Then φ(1) = 5 or 10, and |M :
IM (φ)| = 1 by checking properties of maximal subgroups of A6, which forces
that [θH , θH ] ≥ 32 · 52 > |M : H|, a contradiction. If |A| = 1, then H ∼= A6 or
H ∼= A6 . Z2. A contradiction appears through the same arguments.

While K/H is isomorphic to A6 or A5 × A5, we get contradiction by the
same approach as above.

Case 3. To prove |G/CG(N)| = 3 is impossible.

Otherwise, |M | = 27 · 32 · 52. Let θ ∈Irr(M) such that [βM , θ] ̸= 0. Then
θ(1) = 22 · 3 · 52 or 22 · 52. If θ(1) = 22 · 3 · 52, then θ(1)2 > |M |, a contradiction.
Hence θ(1) = 22 · 52.

Suppose that K/H ∼= A5. Since |Out(A5)| = 2, we have that |K/H|| 2,
which implies that |H| = 2α · 3 · 5, where α = 4 or 5. We claim that H is non-
solvable. Suppose that H is solvable. Since O5(H) ≤ O5(G) = 1, we have that
O5(H) = 1, which implies that |O2(H)| = 24 or 25 and the elements of order
5 in H act nontrivially on O2(H)/O2(H)

′
. Furthermore O2(H) is elementary

abelian while |O2(H)| = 24, and O2(H) is extra special or elementary abelian
while |O2(H)| = 25. Since O2(H) char H EM , we have O2(H) EM .

Suppose first that |O2(H)| = 25. Then M has a normal series: 1EO2(H)E
B EH EM , such that |B/O2(H)| = 5, |H/B| = 3 and M/H ∼= A5. By Lemma
4, H/B = Z(M/B). Since |Mult(A5)| = 2, one has that M/B = H/B × A5.
Therefore M has a normal series B E H1 E M such that H1/B ∼= A5 and
M/H1

∼= H/B. Let φ ∈Irr(H1) such that [θH1 , φ] ̸= 0. Then φ(1) = 22 · 52

by Clifford Theorem, which means that φ(1)2 > |H1|, a contradiction. Now
we have |O2(H)| = 24. Let D = O2(H). Because M/CM (D) ≤ Aut(D) and
52 - |Aut(D)|, we have that 5 | |CM (D)|. Recall that the elements of order 5
in H are not contained in CM (D), so 52 - |CM (D)|. If CM (D) is solvable, then
O5(CM (D)/D) ̸= 1 by Lemma 2. Hence O5(CM (D)) ̸= 1, so that O5(M) ̸= 1,
a contradiction. Therefore CM (D) is not solvable. By Jordan-Hölder theorem,
CM (D)/D has a section isomorphic to A5. Meanwhile |CM (D)/D| equals one of
23·32·5, 23·3·5, 22·32·5 and 22·3·5. Let φ ∈Irr(CM (D)) such that [θCM (D), φ] ̸= 0.
If |CM (D)/D| = 23 ·32 ·5 or 23 ·3 ·5, then φ(1) = 22 ·5 by Clifford theorem. Let λ
be an irreducible constituent of φD. Since λ is linear and invariant in CM (D), we
have [φD, φD] = 24 ·52 > |CM (D) : D|, a contradiction. If |CM (D)/D| = 22 ·3·5,
then φ(1) = 22 · 5 or 2 · 5, we still have [φD, φD] ≥ 22 · 52 > |CM (D) : D|, a
contradiction too. At last |CM (D)/D| = 22 · 32 · 5 and φ(1) = 22 · 5 or 2 · 5.
Clearly CM (D)/D ∼= Z3 × A5. Let E/D = A5. Then φE is irreducible. By the
same arguments as above, we get [φD, φD] ≥ 22 · 52 > |E : D|, a contradiction.
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Now we have proved that H is non-solvable. By Lemma 1, H has a normal
series 1 E A E B E H, such that B/A ∼= A5 and |H/B| | |Out(B/A)|. By
|Out(A5)| = 2, |H/B|| 2, so |A| = 2b, where b = 1, 2 or 3. Let φ ∈ Irr(H), σ ∈
Irr(A) such that [θH , φ] ̸= 0 and [φA, σ] ̸= 0.

Suppose that |A| = 23. By checking the order of M , we know that K = M
and B = H. By Clifford theorem, 5 | φ(1)/σ(1) and σ(1) = 1 or 2. Assume
first that σ(1) = 1. By Lemma 4 and 5, A/A

′ ≤ Z(H/A
′
), and for each linear

character λ of A, there is at most one irreducible constituent of λH with degree
5, which means that φ(1) = 5 and H has at most 8 irreducible characters of
degree 5. Hence |M : IM (φ)| < 8, which menas that [θH , θH ] ≥ 24 ·5 > |M : H|,
a contradiction. If σ(1) = 2, by the fact that A has exactly one irreducible
character with degree 2, we have that σ is invariant in H. Hence by the same
reasoning as above, we get φ(1) = 10, |M : IM (φ)| = 1, and thus [θH , θH ] =
22 · 52 > |M : H|, a contradiction. For the rest possibilities of |A|, we can get
contradictions by the same arguments as above.

By the same way, we get K/H � A5 ×A5.

Now suppose K/H ∼= A6. Since |Out(A6)| = 4, we have that |K/H| | 4,
which implies that |H| = 2α · 5, where α = 4, 3 or 2. If α = 3 or 2, then
O5(H) ̸= 1 by Lemma 2, it follows that O5(M) ̸= 1, a contradiction. Now we
have α = 4. By O5(H) = 1, it follows that |O2(H)| = 24, meanwhile O2(H) is
elementary abelian and H/O2(H) act fixed-point-freely on O2(H). Hence H has
exactly 3 irreducible character of degree 5. Let φ be an irreducible constituent
of θH such that e = [θH , φ] ̸= 0 and t = |M : IM (φ)|. Then φ(1)=5 and
t = |M : IM (φ)| ≤ 3 by Clifford theorem. Since K/H ∼= A6, we see that t = 1,
which forces that [θH , θH ] = 24 · 52 > |M : H|, a contradiction.

Case 4. to prove that |G/CG(N)| = 6 is impossible.

Otherwise, |M | = 26 · 32 · 52. Let θ ∈Irr(M) such that [βM , θ] ̸= 0. Then
θ(1) = 22 · 3 · 52, 22 · 52, 2 · 3 · 52 or 2 · 52. If θ(1) = 22 · 3 · 52 or 2 · 3 · 52, then
θ(1)2 > |K|, a contradiction. Hence θ(1) = 22 · 52 or 2 · 52.

Suppose that K/H ∼= A5. Since |Out(A5)| = 2, we have that |H| = 2α · 3 · 5,
where α = 3 or 4. We claim that H is non-solvable. Otherwise if H is solvable.
Then by O5(H) = 1 we have α = 4 by Lemma 2. By the same arguments as
in Case 2, we can show that M has a normal series 1 EO2(H) EB EH1 EM ,
such that O2(H) is elementary abelian with order 24, |B/O2(H)| = 5, H1/B ∼=
A5, |M/H1| = 3 and B/O2(H) act fixed-point-freely on O2(H). Let φ be
an irreducible constituent of θH1 and σ an irreducible constituent of φB. By
Clifford Theorem, φ(1) = θ(1) and σ(1) = 5. By the structure of B, it is
to show that B has exactly 3 irreducible characters of degree 5, which implies
that t = |H1 : IH1(σ)| ≤ 3. But H1/B ∼= A5, we have that t = 1, so that
[φB, φB] ≥ 22 · 52 > |H1 : B|, a contradiction.

Now we have shown that H is non-solvable. By Lemma 1, H has a normal
series 1EAEBEH, such that B/A ∼= A5 and |H/B| | 2. Let φ be an irreducible
constituent of θH and σ an irreducible constituent of φA.
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Suppose that |A| = 22. By Lemma 4, A = Z(H), and thus A EM . Since
A = Z(H), σ(1) = 1 and t2 = |H : IH(σ)| = 1. By Lemma 5, φ is the unique
irreducible constituent of σH with degree 5. Then t1 = |M : IM (φ)| = 1, thus
[θH , θH ] ≥ 22 · 52 > |M : H|, a contradiction. Now suppose that |A| = 2. Then
H is isomorphic to one of SL2(5) . Z2, Z2 × S5, Z2 × A5 and SL2(5). Hence
φ(1) = 5 and H has at most 4 irreducible characters with degree 5 respectively.
But K/H ∼= A5, it is easy to show that t = |M : IM (φ)| = 1. If H ∼= SL2(5) . Z2

or Z2 × S5, then [θH , θH ] ≥ 22 · 52 > |M : H|, a contradiction. If H ∼= Z2 × A5

or SL2(5), let ψ be an irreducible constituent of θK . Again by Lemma 5 we
have ψ(1) = 52 and θK = ψ. But θK(1) = θ(1) = 22 · 52 or 2 · 52, which does
not equal to ψ(1), a contradiction. If |A| = 1, then M ∼= S6 × S6, which has no
irreducible character of degree 22 · 52 and 2 · 52, a contradiction.

By the same way as above, we can show K/H � A5 ×A5.

Now suppose that K/H ∼= A6. By |Out(A6)| = 4, we see that |H| = 2α · 5,
where 1 ≤ α ≤ 3. Clearly, H is solvable, and thus O5(H) ̸= 1 by Lemma 2.
Hence O5(G) ̸= 1, a contradiction.

Step 2. to prove that G ∼= J2.

By G is non-solvable, we get by Lemma 1 that G has a normal series 1 E
H E K E G, such that K/H is a direct product of isomorphic non-abelian
simple groups and |G/K| | |Out(K/H)|. As |G| = 27 · 33 · 52 · 7, we have
K/H ∼= A5, L2(7), A6, L2(8), A7, U3(3), A5 ×A5 or J2.

Suppose that K/H ∼= A5. We claim that H is non-solvable. Assume that
H is solvable. Because O5(H) ≤ O5(G) = 1 and O7(H) ≤ O7(G) = 1, we have
that O5(H) = O7(H) = 1. Hence H has a normal series 1EAEBECEDEH,
such that |B/A| = 2α, |C/B| = 5, |D/C| = 7 and B/A is elementary abelian
and C/B acts fixed-point freely on B/A, where α = 4 or 5. Since GL(4, 2) and
GL(5, 2) have no subgroup of order 5 · 7, we have that |CH/A(B/A)| is divided
by 5 or 7. If 5 | |CH/A(B/A)|, then O5(H/A) ̸= 1. Let E/A = O5(H/A). By
|A| = 25−α · 3γ , where 1 ≤ γ ≤ 2, we have O5(E) ̸= 1 by Lemma 2. Noticing
that O5(E) is characteristic in E EH, one has that O5(E) ≤ O5(H) ≤ O5(G),
a contradiction to O5(G) = 1. By the same way, we can show O7(G) ̸= 1 while
7 | |CH/A(B/A)|.

Now H is non-solvable. By Lemma 1, H has a normal series 1EAEBEH,
such that B/A ∼= A5, A6, A7 or L2(7), and |H/B| | |Out(B/A)|. Since O5(G) =
O7(G) = 1, it follows that G ∼= L2(7) × A5 × A5 or B/A ∼= Ai, (i = 5, 7) and A
is solvable. For the first case, G has no irreducible character of degree S(J2),
a contradiction. If B/A ∼= A5 and that A is solvable. Since O7(A) = 1, A has
a normal series 1 E D E E E A such that |D| = 23, |E/D| = 7, |A/E| = 3
and D is elementary abelian and E/D acts nontrivially on D. Clearly that
|A/A′ | = 3 or 21, and then the first column of the character table of A is one
of the sequences {1, 1, 1, 3, 3, 7, 7, 7} or {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 7, 7, 7 } respectively. Let φ be an irreducible constituent of
βH and σ be an irreducible constituent of φA. Suppose first that σ(1) = 1. By
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Lemma 4, A/A
′

= Z(H/E), which implies that every linear character of A is
invariant in H. By Lemma 5, it follows that φ(1) = 5, and for each λ ∈Irr(A)
there is at most one irreducible character of H with degree 5 lying over λ,
this means that H has at most 21 irreducible character of degree 5. Hence
t = |G : IG(φ)| ≤ 20, then [βH , βH ] ≥ 22 · 32 · 5 > |G : H|, a contradiction.
Suppose that σ(1) = 3. Since A has exactly 2 irreducible characters of degree
3, we have that t1 = |H : IH(σ)| ≤ 2. But B/A ∼= A5, by checking maximal
subgroups of A5, we have that t1 = 1. Hence φ(1) = 15 and H has at most
2 irreducible characters of degree 15 by Lemma 5. Therefore, |G : IG(φ)| ≤ 2,
which forces that [βH , βH ] = 24 · 52 > |G : H|, a contradiction.

If B/A = A7, then |H| divides 4|B/A|. If |G/K| = 2, then G/H = S5,
H ∼= Z2.A7, Z2 × A7 or A7.Z2. If G/K = 1, then G/H = A5, H ∼= A × A7

(|A| = 4), Z2 × Z2.A7 or Z2.A7.Z2. Let θ ∈ Irr(K) such that [βK , θ] ̸= 0,
and σ ∈ Irr(H) such that [θH , σ] ̸= 0. Since 5|σ(1), by checking the character
table of H, we get that σ(1) = 10, 15 or 20 and t = |K : IK(σ)| < 5. But
K/H ∼= A5, by checking maximal subgroup of A5, we get t = 1, which force that
[θH , θH ] > |K : H|, a contradiction. Similarly, we can show that K/H ̸= A7.

Since O5(G) = O7(G) = 1, we have that K/H is not isomorphic to L2(8), A6,
U3(3) and A5×A5. And if K/H is isomorphic to L2(7) or A6, then G ∼= L2(7)×
A5 ×A5, which has no irreducible character of degree S(J2), a contradiction.

Now we have proved that K/H ∼= J2, which concludes G ∼= J2. This ends
the proof of Theorem B.
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Abstract. Let G be a finite group, o1(G) denote the largest element order of G, n1(G)
the number of the elements of order o1(G). Assume that G totally has r elements of
order o1(G), whose centralizers have distinct orders, say, they are ci(G), i = 1, 2, · · · , r.
The following quantity is called the 1st ONC−degree of G

ONC1(G) ={o1(G); n1(G); c1(G), c2(G), · · · , cr(G)},

denoted as ONC1(G). It has been proved that K3−simple groups, L2(q)( q = 8, 11, 13,
17, 19, 23, 29), Mathieu simple groups, Janko Groups and alternating groups An(5 ≤
n ≤ 13) can be characterized by their 1st ONC−degrees, but unfortunately L2(q)(q =
16, 25) cannot be characterized by the 1st ONC−degree. Since the ONC−degree of
an alternating group usually contains only 3 numbers, so it is interesting to study if an
alternating group can be characterized by the 1st ONC−degree. We shall prove that
A14 can be characterized by the 1st ONC−degree, but we can not prove A15 does by
using our approaches. We shall prove if the prime graph of G is not connected and
ONC1(G) = ONC1(A15), then G ∼= A15.

Keywords: alternating group; ONC−Degree; ONC-characterization.

1. Introduction

Professor W. J. Shi put forward the famous conjecture in 1989:

∗. Corresponding author



AN ONC-CHARACTERIZATION OF A14 AND A15 537

Shi’s Conjecture. Let G be a finite group, M a finite simple group, then
G ∼= M if and only if |G| = |M | and πe(G) = πe(M), where πe(G) denotes the
set of element orders in G (see [1]).

The conjecture is recorded as Problem 12.39 in Unsolved Problems in Group
Theory ( see [7]). Research on Shi’s conjecture opened the era of quantitative
characterization of finite simple groups since 1980’s. In 2009, Shi’s conjecture
was completely proved. Afterwards, an interesting topic is trying to weaken
conditions of Shi’s conjecture since the set of element orders seems containing
too many numbers. The last two authors defined the 1st ONC− degree in [2].
Let G be a finite group, o1(G) denote the largest element order of G, n1(G) the
number of the elements of order o1(G). Assume that G totally has r elements of
order o1(G), whose centralizers have distinct orders, say, ci(G), i = 1, 2, · · · , r.
The following quantity is called the 1st ONC−degree of G

ONC1(G) = {o1(G); n1(G); c1(G), c2(G), · · · , cr(G)},

denoted as ONC1(G). Notice ONC1(G) is not a set, but a series of numbers.

Because in many groups, orders of centralizers of elements having the largest
order are the same, so the 1st ONC− degree often contains only three numbers,
for example, in alternating groups or symmetric groups. Hence the 1st ONC−
degree contains less numbers than Shi’s conjecture in some cases. The reason
why orders of centralizers of elements of largest orders are considered in the 1st
ONC− degree is that they almost determine the prime graph of a finite group.
Hence, it is meaningful to study if a finite group, especially a finite simple group,
can be characterized by the 1st ONC−degree.

Li-Guan He characterized some non-abelian simple groups by the 1st ONC−
degree in his doctoral dissertation , such as K3 simple groups , A5, A6, L2(8) ,
L3(3) and L2(17) (see [2] and [4]). Apart from those, by comparing the second
order or other special numbers, he also characterized some other sporadic simple
groups in [2]. Later, Li-Guan He and Gui-Yun Chen continued to study the 1st
ONC−degree. For example, it has been proved that Mathieu groups and Janko
Groups can be characterized by the 1st ONC−degree in [2] and [3]. In [5],
it is proved that L2(q) for q = 11, 13, 19, 23, 29 can be characterized by the
1st ONC−degree and L2(16) and L2(25) cannot, but a classification of finite
groups G such that ONC1(G) = ONC1(L2(16)) or ONC1(L2(25)) is given. For
alternating groups, Li-Guan He proved that alternating groups An, n ≤ 13, can
be characterized by the 1st ONC−degree in [6]. In this paper, we continue to
discuss the 1st ONC−degree characterization of alternating groups, and prove
that A14 can be characterized by the 1st ONC−degree, A15 can be characterized
by the 1st ONC−degree and its prime graph.

2. Prelimiaries

In this section we present some lemmas which are required in Section 3.
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Lemma 2.1 ([10], Theorem A). If G is a finite group whose prime graph has
more than one component, then G has one of the following structures:

(1) G is a Frobenius group or a 2 − Frobenius group;
(2) G has a normal series 1 E H E K E G such that H and G/K are π1

groups, K/H is a simple group, H is a nilpotent group, where 2 ∈ π1. And
|G/K|

∣∣|Out(K/H)|.

Lemma 2.2. Let G and H be two groups. Suppose that G acts on H co-primely,
then for every prime p

∣∣|G|, H has a G−invariant p−Sylow subgroup.

Lemma 2.3. Let G be a p−group of order pn and K an elementary commutative
group of order pn, then |Aut(K)| is divided by |Aut(G)|.

Lemma 2.4. Let G be a p group of order pn, and G act on a q-group H of order
qα, where p and q are distinct primes. If |G| -

∏α
i=1(q

i−1), then pq ∈ πe(GnH).

Proof. A group G acts group H, so G/CG(H) is isomorphic to a subgroup of
Aut(H), then

|G/CG(H)|
∣∣|Aut(H)|

∣∣q α(α−1)
2 ·

α∏
i=1

(qi − 1).

Since (|p|, q
α(α−1)

2 ) = 1 and |G| -
∏α

i=1(q
i− 1), we have |G| -|Aut(H)|. Therefore

CG(H) ̸= 1, which concludes that p
∣∣|CG(H)|, pq ∈ πe(GnH).

Lemma 2.5 ([10], Corollary). If G is solvable with a non-connected prime graph.
Then G is either a Frobenius or a 2−Frobenius group. Moreover if G is
a 2−Frobenius group, then G has exactly two components, and one of which
consists of primes dividing the lower Frobenius complement.

Lemma 2.6. (1) Let G be a Frobenius group (not a 2−Frobenius group) with
Frobenius kernel H and Frobenius complement K. then it has a non-connected
prime graph, and the vertex sets of prime graph components of G are exactly
{π(H), π(K)}.

(2) Let G be a 2−Frobenius group, then G = ABC, where A is normal in G,
AB is a Frobenius group with Frobenius kernel A and Frobenius complement
B, BC is a Frobenius group with Frobenius kernel B and Frobenius com-
plement C, where B and C are cyclic groups. In addition, |C|

∣∣|Aut(B)|. The
vertex sets of prime graph components of G are exactly {π(A) ∪ π(C), π(B)}.

Proof. At first, we prove (2). By the definition of 2−Frobenius group, G has a
normal series 1EHEKEG, such that G/H and K are Frobenius groups with
Frobenius kernels K/H and H respectively. Hence, let K = HL, where L is
the Frobenius complement of K. Based on the generalized Frattini Argument,
we have that G = NG(L)K = NG(L)H. Because NG(L) ∩ H = NH(L) = 1,
NG(L) ∼= G/H is a Frobenius group. (2) follows from Lemma 2.5.

Now we prove (1). Since H is a nilpotent group, vertexes in π(H) belong
to one component and K acts fixed-point-freely on H, so π(H) must be an
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independent prime graph component. If K is unsolvable, owing to [8], we know
that K has a normal subgroup K0 which is isomorphic to SL(2, 5), |K : K0| ≤ 2,
K0

∼= Z × SL(2, 5), (|Z|, 30) = 1. Because the prime graph of SL(2, 5) is
connected, the prime graph of K must be connected. If K is solvable and
has more than one prime graph component, by Lemma 2.5, K is a Frobenius
or a 2−Frobenius group, consequently G is a 2−Frobenius group, G has the
structure in (2). Now (1) follows.

Theorem 2.7. Let G be a finite group, M = A14, then G ∼=M if and only if
ONC1(G)= ONC1(M).

Proof. The necessity is obvious. It is enough to prove the sufficiency.
Because the largest element order of A14 is 45, the number of elements of

order 45 in A14 is
P 9
14
9 · P 5

5
5 = 211 · 33 · 5 · 72 · 11 · 13, where Pn

m is the number of
permutations of m letters taking from n letters, and all elements of order 45 in
A14 are self-centralized, thus, ONC1(G)= ONC1(A14)={45; 211 · 33 · 5 · 72 · 11 ·
13; 45}. We may assume that elements of order 45 in G are partitioned into
t conjugacy classes. Due to lengths of conjugacy classes of any two elements
of order 45 in G are equal to |G|

45 , then t · |G|
45 = 211 · 33 · 5 · 72 · 11 · 13. Hence

|G|
∣∣211·35·52·72·11·13 and |G| > 211·33·5·72·11·13. Now 45

∣∣|G| yields 3, 5∈ π(G).
If 2/∈ π(G), then |G| divides 35 · 52 · 72 · 11 · 13, so |G| < 211 · 33 · 5 · 72 · 11 · 13, a
contradiction. Hence 2∈ π(G). Noticing 211 ·35 ·52 ·11 ·13< 211 ·33 ·5 ·72 ·11 ·13,
we get 7 ∈ π(G); By 211 · 35 · 52 · 72< 211 · 33 · 5 · 72 · 11 · 13, we get that
{11, 13} ∩ π(G) ̸= ∅.

Now we divide our proof into several steps.
(1) We prove that {11, 13} ⊂ π(G).
It is enough to show both 13∈ π(G), 11/∈ π(G) and 13/∈ π(G), 11∈ π(G) are

impossible.
(1.1) If 13∈ π(G) and 11/∈ π(G), then |G| > 211 · 33 · 5 · 72 · 11 · 13 yields

72
∣∣|G|. We assert that: G has a normal series 1 EHEKEG such that K/H is a

non-abelian simple group and {7, 13} ⊂ π(K/H).
In fact, considering chief series of G: 1 = Gk EGk−1E· · ·EG1EG0 = G, we

may assume {7, 13}∩π(Gi) ̸= ∅ and {7, 13}∩π(Gi+1) = ∅. Let H = Gi+1 and
K = Gi, then 1 EHEKEG is a normal series of G, K/H is a minimal normal
subgroup of G/H, and further K/H is the direct product of isomorphic simple
groups. Now we prove that {7, 13} ⊂ π(K/H), hence K/H is a direct product
of nonabelian simple groups.

Otherwise, either 7 ∈ π(K/H), 13 /∈ π(K/H) or 7 /∈ π(K/H), 13 ∈ π(K/H).
If the former one holds, considering the action of an element of order 13 of G/H
on K/H by conjugation, and noticing 13 -(7 − 1)(72 − 1) = 25 · 32, we conclude
that 91 ∈ πe(G) by Lemma 2.2, 2.3 and 2.4. Hence 91 > o1(G) = 45, a
contradiction. Therefore 13 ∈ π(K/H) while 7 ∈ π(K/H). Similarly, we can
get a contradiction too while 7 /∈ π(K/H), 13 ∈ π(K/H). Therefore {7, 13} ⊂
π(K/H), and K/H is a direct product of non-abelian simple groups. Further
by 13

∥∥|G|, we get that K/H is a nonabelian simple group, the assertion follows.
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Now |G|
∣∣211 · 35 · 52 · 72 · 11 · 13. Checking simple groups of orders divided

by 13 and dividing 211 · 35 · 52 · 72 · 13 in [9], one gets that K/H may be one of
the following groups:

L2(13)(22 · 3 · 7 · 13), L2(27)(22 · 33 · 7 · 13), Sz(8)(26 · 5 · 7 · 13),

L2(64)(26 · 32 · 5 · 7 · 13).

For above groups, it always holds that 7
∥∥|Aut(K/H)|. Since 72

∣∣|G| and
7-|H|, we have 7 ∈ π(CG/H(K/H)) by G/H/CG/H(K/H) ≤ Aut(K/H), so
7 × 13 = 91 ∈ πe(G), which contradicts o1(G) = 45. Thus 11 ∈ π(G) while
13 ∈ π(G).

(1.2) If 11 ∈ π(G), 13 /∈ π(G), by the same reasoning as above, we conclude
that {7, 11} ⊂ π(K/H), and K/H is a non-abelian simple group. Checking
simple groups of orders divided by 11 and dividing 211 · 35 · 52 · 72 · 11 in [9], we
get that K/H is one of the following groups:

M22(2
7 · 32 · 5 · 7 · 11),

A11(2
7 · 34 · 52 · 7 · 11),

A12(2
9 · 35 · 52 · 7 · 11).

By the same reasoning as in (1.1), we come to 7 ∈ π(CG/H(K/H)), hence
77 ∈ πe(G), again a contradiction to o1(G) = 45. Therefore 13 ∈ π(G) while
11 ∈ π(G), which concludes (1).

(2) We prove that G ∼= A14.
It follows by that π(G) = {2, 3, 5, 7, 11, 13}, |G|

∣∣211 · 35 · 52 · 72 · 11 · 13,
G has a normal series 1 EHEKEG, where K/H is a non-abelian simple group
and {11, 13} ⊂ π(K/H). By [9], we get that K/H may be one of A13(2

9 · 35 ·
52 · 7 · 11 · 13) and A14(2

10 · 35 · 52 · 72 · 11 · 13).
If K/H = A13, then 7∥|Aut(K/H)|. If 72

∣∣|G|, it follows that 7
∣∣|H| or

7 ∈ π(CG/H(K/H)) by G/H
/
CG/H(K/H) ≤ Aut(K/H). While 7

∣∣|H|, H
has a 7 − Sylow subgroup of order 7, and 13 /∈ π(H). Consider the action
of an element of order 13 of G on H by conjugation, we get 91 ∈ πe(G)
by Lemma 2.2, which contradicts o1(G) = 45. Hence 7 ∈ π(CG/H(K/H)),
which means 91 ∈ πe(G), a contradiction. Thus 7 ∥|G|, so |H|

∣∣4 by compar-
ing orders of G and A13. Then |Aut(H)|

∣∣6, which implies that |G/CG(H)|
∣∣6,

hence {2, 3, 5, 7, 11, 13}⊆π(CG(H)). However H ≤ CG(H) E G yields
(CG(H)/H) ∩ K/H = 1 or K/H. Therefore CG(H) ∩ K = H or K. Obvi-
ously, the former one is impossible. For the latter, it follows H ≤ Z(K). But
A13 has an element of order 35, thus K must have an element of order 70, a
contradiction.

Now we have that K/H =A14 and then |H|
∣∣2. If |G| =211 ·35 ·52 ·72 ·11 ·13.

If |H| = 1, then K = A14, then G = S14 or G = A14×C2, both of which has
an element of order 90, a contradiction. Therefore |H| = 2, let an element
of order 45 of G act on H by conjugation, we conclude 90 ∈ πe(G), which
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contradicts o1(G) = 45. Hence |G| =210 · 35 · 52 · 72 · 11 · 13. Therefore H = 1
and G = K = A14. This concludes the theorem.

Theorem 2.8. Let G be a finite group with non-connected prime graph, M =
A15, then G ∼=M if and only if ONC1(G)= ONC1(M).

Proof. The necessity is obvious. It is enough to show the sufficiency.
Because the largest element order of A15 is 3×5×7, the number of elements

of order 105 in A15 is
P 3
15
3 · P

5
12
5 · P

7
7
7 = 211 · 35 · 52 · 7 · 11 · 13, and every element of

the largest order is self-centralized, thus

ONC1(G) = ONC1(A15) = {105; 211 · 35 · 52 · 7 · 11 · 13; 105}.

Assume that elements of order 105 in G are divided into t conjugacy classes. Due
to lengths of conjugacy classes of elements of order 105 in G are the same and
equal to |G|

105 , so t · |G|
105= 211 ·35 ·52 ·7 ·11 ·13, which implies that |G|

∣∣211 ·36 ·53 ·72 ·
11 ·13 and |G| > 211 ·35 ·52 ·7 ·11 ·13. Obviously 3, 5, 7∈ π(G). If 2/∈ π(G), then
|G| ≤ 36 ·53 ·72 ·11 ·13< 211 ·35 ·52 ·7 ·11 ·13, a contradiction. Therefore 2∈ π(G).
If (11 × 13, |G|) = 1, then 211 · 36 · 53 · 72< 211 · 35 · 52 · 7 · 11 · 13, hence
{11, 13} ∩ π(G) ̸= ∅. By |G| > 211 · 35 · 52 · 7 · 11 · 13 and trivial comparing, we
have that 28

∣∣|G|, 35
∣∣|G| and 52

∣∣|G|.
Now we divide the proof into several steps.
(1) to prove G is neither a Frobenius group nor a 2-Frobenius

group.
(1.1) If G is a Frobenius group with Frobenius kernel H and Frobenius

complement K, then G = HK and either 105
∣∣|H| or 105

∣∣|K| by Lemma 2.7.
If 105

∣∣|H|, then π(H) = {3, 5, 7}. Otherwise, o1(G) ≥ o1(H) > 105. As
{11, 13} ∩ π(G) ̸= ∅, so 28 · 11 or 28 × 13

∣∣|K|. Now consider the action of
2 − Sylow subgroup of K on the 7 − Sylow subgroup of H, one comes to that
G has an element of order 14, consequently the prime graph of G is connected,
a contradiction. If 105

∣∣|K|, then K has an element of order 105. If 11
∣∣|H| or

13
∣∣|H|, we consider the action of an element of order 7 in K on the 11−Sylow

subgroup of H, which concludes that there exists an element of order 77 or an
element of order 91 in G, both contradict Lemma 2.6. So H is just a 2−group
and 28

∣∣|H|
∣∣211. Notice 52

∣∣|K| and consider the action of a 5 − Sylow subgroup
of G on H by conjugation, we see by Lemma 2.4 that there exists an element of
order 10 in G, a contradiction to Lemma 2.6.

(1.2) If G is a 2 − Frobenius group, then G = ABC, where A, B, C are as
in Lemma 2.6. Since π(B) is a vertex set of a prime graph component of G, so
either 105

∣∣|B| or 105
∣∣|A||C|. Hence if the former holds, then 52×35×7

∣∣|G|. But
B is a cyclic group, so B has an element of order ≥ 52 · 35 · 7, a contradiction.
If the latter case holds, then 28

∣∣|B| and at least one of 11
∣∣|B| and 13

∣∣|B| holds.
Since B is a cyclic group, then |B| ≤ 105, so 28-|B|, 11×13-|B|. Hence |B| = 11
or 13, and then |C|

∣∣10 or 12 by Lemma 2.6. Thus 7
∣∣|A|. Note that the 7−Sylow

subgroup D of A is a normal subgroup of G, where |D|
∣∣72. We observe the
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action of B on D by conjugation and come to that there exists elements of order
77 or 91 in G by Lemma 2.4, which contradicts that AB is a Frobenius group.
(1) follows.

Now by Lemma 2.1, we have the following:

(2) G has a normal series 1 EHEKEG, such that K/H ia a non-
abelian simple group, and H is a nilpotent group, π(K/H)⊂ {2, 3, 5, 7, 11,
13}.

(3) It is impossible that 11 ∈ π(G), 13 /∈ π(G) and 11
∣∣|K/H|.

Otherwise, 11
∣∣|K/H|

∣∣211 · 36 · 53 · 72 · 11. Checking simple groups of order
divided by 11 and dividing |K/H|

∣∣211 · 36 · 53 · 72 · 11 in [9], we get that K/H
may be one of the following groups: L2(11)(22 · 3 · 5 · 11), M11(2

4 · 32 · 5 · 11),
M12(2

6 ·33 ·5 ·11), M22(2
7 ·32 ·5 ·7 ·11), U5(2)(210 ·35 ·5 ·11), A11(2

7 ·34 ·52 ·7 ·11),
HS(29 · 32 · 53 · 7 · 11), A12(2

9 · 35 · 52 · 7 · 11), M cL(27 · 36 · 53 · 7 · 11).

(3.1) to prove that 5, 7 /∈ π(H).

Note that |G|
∣∣211 · 36 · 53 · 72 · 11 · 13 and 11

∣∣|K/H|
∣∣211 · 36 · 53 · 72 · 11, one

has |H|
∣∣29 · 35 · 52 · 72.

If 7 ∈ π(H), let an element of order 11 of G act on H by conjugation,
since 11 -

∏2
i=1(7

i − 1) = 25 · 32, we get 7 × 11 ∈ πe(G) by Lemma 2.4. If
2 ∈ π(H), then the 2−Sylow subgroup of H is of order dividing 29. Since
11-
∏9

i=1(2
i − 1) = 35 · 52 · 72 · 31 · 73 · 127, it follows 11 × 2 ∈ πe(G) by Lemma

2.4 and considering the action of an element of order 11 on 2-Sylow subgroup
of H, this implies that G has a connected prime graph, a contradiction. Hence
2 /∈ π(H), thus we can consider the co-prime action of subgroup of order 28 of G
on H by conjugation. Since 28 -

∏2
i=1(7

i−1) = 25·32, we come to 2×7 ∈ πe(G) by
Lemma 2.2, 2.3 and 2.4, again G has a connected prime graph, a contradiction.
Therefore 7 /∈ π(H).

If 5 ∈ π(H), by 11 -
∏2

i=1(5
i − 1) = 25 · 3, we get 5 × 11 ∈ πe(G). In this

case, if 2 ∈ π(H), we can prove by the same approach that 11 × 2 ∈ πe(G),
then G has a connected prime graph, a contradiction. So 2 /∈ π(H). Consider
the action of a subgroup of order 28 of G on H by conjugation and notice
28 -
∏2

i=1(5
i − 1) = 25 · 3, we get 2 × 5 ∈ πe(G) by Lemma 2.4, this implies that

G has a connected prime graph, a contradiction. This concludes (3.1).

(3.2) to prove that K/H ̸= L2(11), M11,M12 or U5(2).

If K/H is one of L2(11), M11, M12 and U5(2), then 7 /∈ π(K). Let an element
of order 7 of G act on K by conjugation, because 7 -(11 − 1) = 2 × 5, G has an
element of order 77 by Lemma 2.4.

If 2 ∈ π(H), consider the action of an element of order 11 of G on the
2−Sylow subgroup ofH by conjugation, by 11 -

∏9
i=1(2

i−1) = 35·52·72·31·73·127
and Lemma 2.4, we get 2 × 11 ∈ πe(G). Furthermore, the prime graph of G is
connected, a contradiction. Hence {2, 5, 7} ̸∈ π(H) by (3.1). Therefore H is a
3−group.

If K/H=L2(11)(22 · 3 · 5 · 11), then 22
∥∥|K|. Let an element of order 7 act on

K by conjugation, we get 7 × 2 ∈ πe(G), which means that the prime graph of
G is connected, a contradiction. Hence K/H ̸=L2(11).
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If K/H is one of M11(2
4 ·32 ·5·11), M12(2

6 ·33 ·5·11) and U5(2)(210 ·35 ·5·11),
then |H|

∣∣34. Assume H ̸= 1, considering the action of an element of order 77 on

H by conjugation, we get by (77,
∏4

i=1(3
i−1)) = (77, 29 ·5·13) = 1 and Lemma

2.4 that G has an element of order 77 × 3, which contradicts o1(G) = 105. So
H = 1 and K is one of M11, M12 and U5(2). Because G/CG(K) ≤ Aut(K).
Notice that |Out(K)| = 1 or 2, we come to |Aut(K)||211 · 34 · 5 · 11. However
52
∣∣|G|, hence 5 ∈ π(CG(K)), this implies that 5 × 2, 5 × 11 ∈ πe(G), which

implies that G has a connected prime graph, a contradiction.

(3.3) to prove K/H ̸= A11, HS, A12 or M cL.

If K/H is one of A11(2
7 ·34 ·52 ·7·11), HS(29 ·32 ·53 ·7·11), A12(2

9 ·35 ·52 ·7·11)
and M cL(27 ·36 ·53 ·7·11). It follows by (3.1) that 5, 7 /∈ π(H). Hence |H|

∣∣24 ·34.
If 2

∣∣|H|, noticing 52 -
∏4

i=1(2
i − 1) = 32 · 5 · 7, 11 -

∏4
i=1(2

i − 1) = 32 · 5 · 7,
considering the actions of subgroups of order 52 and 11 in G on H by conjugation
respectively, we conclude that 5 × 2, 11 × 2 ∈ πe(G). Hence the prime graph
of G is connected, a contradiction. This also means that if H ̸= 1 then |H|

∣∣34.
Because 11-

∏4
i=1(3

i−1) = 29 ·5 ·13, considering action of element of order 11 on
H by conjugation, we can get 3× 11 ∈ πe(G) by Lemma 2.4. Since G/CG(H) is
isomorphic to a subgroup of Aut(H), and |Aut(H)|

∣∣36 ·Π4
i=1(3

i−1) = 29 ·36 ·5·13,
we have that 7

∣∣|CG(H)|. If 2 ∈ π(CG(H)), then 2×3 ∈ πe(G), the prime graph of
G is connected, a contradiction. Therefore 2 /∈ π(CG(H)), any subgroup of order
28 in G acts on CG(H) co-primely by conjugation. Since 7

∣∣|CG(H)|, there exists

a G−invariant 7−Sylow subgroup of CG(H). But 28 -
∏2

i=1(7
i − 1) = 25 · 32,

so Lemma 2.4 implies 2 × 7 ∈ πe(G), which concludes the prime graph of G is
connected, a contradiction. Therefore H = 1, and K is one of A11, HS, A12 and
M cL. Moreover G/CG(K) ≤ Aut(K). If CG(K) ̸= 1, G has a connected prime
graph, a contradiction. Hence CG(K) = 1, G ≤ Aut(K). But |Out(K)| = 2
for these groups, hence |Aut(K)|

∣∣210 · 36 · 53 · 7 · 11, which contradicts |G| >
211 · 35 · 52 · 7 · 11 · 13.

(4) It is impossible that 11 ∈ π(G), 13 /∈ π(G) or 11 - |K/H|.
Otherwise, by [9] and step (2), K/H is one of the following groups:

A5(2
2 · 3 · 5), L3(2)(23 · 3 · 7),A6(2

3 · 32 · 5), L2(8)(23 · 32 · 7), A7(2
3 · 32 · 5 · 7),

U3(3)(25 · 33 · 7), A8(2
6 · 32 · 5 · 7), U4(2)(26 · 34 · 5), L2(49)(24 · 3 · 52 · 72),

U3(5)(24 · 32 · 53 · 7), A9(2
6 · 34 · 5 · 7), J2(2

7 · 33 · 52 · 7), L3(4)(26 · 32 · 5 · 7),
S6(2)(29 · 34 · 5 · 7), A10(2

7 · 34 · 52 · 7), U4(3)(27 · 36 · 5 · 7).

For the above groups, 11 does not divide the order of the outer automorphism
group of any group above. Hence 11 ∈ π(H), hence 11

∣∣|H|
∣∣29 ·35 ·53 ·72 ·11. By

Lemma 2.1, H is nilpotent. Considering the action of a subgroup of order 22 and
a subgroup of order 32 of G on the 11 − Sylow subgroup of H by conjugation,
we come to 11 × 2, 11 × 3 ∈ πe(G), which implies that the prime graph of G is
connected, a contradiction. Step (4) follows.

(5) It is impossible that 13 ∈ π(G) or 11 /∈ π(G).

Here we mention the proved fact that 52
∣∣|G|, 34

∣∣|G| and 28
∣∣|G|.
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If 13 /∈ π(K/H), then π(K/H) does not contain 11 and 13, which is a case
as Step (4), a contradiction.

If 13 ∈ π(K/H), then K/H is one of the following groups by [9]:
L2(13)(22 ·3 ·7 ·13), L3(3)(24 ·33 ·13), L2(25)(23 ·3 ·52 ·13), L2(27)(22 ·33 ·7 ·13),
Sz(8)(26 ·5 ·7 ·13), U3(4)(26 ·3 ·52 ·13), L2(64)(26 ·32 ·5 ·7 ·13), G2(3)(26 ·36 ·7 ·13),
L4(3)(27 · 36 · 5 · 13), 2F4(2)(211 · 33 · 52 · 13), L3(9)(27 · 36 · 5 · 7 · 13).

For all simple groups above, |H|
∣∣29 · 35 · 53 · 72 always follows.

(5.1) to prove 5, 7 /∈ π(H).
If 7 ∈ π(H), let an element of order 13 in G act on the 7 − Sylow subgroup

of H by conjugation, then 7 × 13 ∈ πe(G) by 13-
∏2

i=1(7
i − 1) = 25 · 32 and

Lemma 2.4. In this case, if 2 ∈ π(H), we consider action of an element of order
13 in G on the 2 − Sylow subgroup of H by conjugation, by 13-

∏9
i=1(2

i − 1) =
35 · 52 · 72 · 31 · 73 · 127 and Lemma 2.4, we conclude that 13 × 2 ∈ πe(G), thus
the prime graph of G is connected, a contradiction. So 2 /∈ π(H). Considering
the action of a subgroup of order 28 in G on the 7 − Sylow subgroup of H by
conjugation, and noticing 28-

∏2
i=1(7

i − 1) = 25 · 32, we get by Lemma 2.4 that
2×7 ∈ πe(G). Hence G has a connected prime graph, a contradiction. Therefore
7 /∈ π(H).

If 5 ∈ π(H), by 13-
∏2

i=1(5
i − 1) = 25 · 3 and Lemma 2.4, we have 5 × 13 ∈

πe(G). Now if 2 ∈ π(H), then 2×13 ∈ πe(G), the prime graph of G is connected,
a contradiction. So 2 /∈ π(H). Now let a subgroup of order 28 in G act on the
5 − Sylow subgroup of H by conjugation, since 28-

∏2
i=1(5

i − 1) = 25 · 3, it
follows 2 × 5 ∈ πe(G) by Lemma 2.4, so the prime graph of G is connected, a
contradiction.

(5.2) to prove K/H ̸= L2(13), L3(3), L2(27) or G2(3).
If K/H=L2(13)(|Out(K/H)| = 2), L3(3)(|Out(K/H)| = 2),
L2(27)(|Out(K/H)| = 6) orG2(3) (|Out(K/H)| = 2), then 5 /∈ π(Aut(K/H)).

By G/H
/
CG/H(K/H) 6Aut(K/H), we get 5 ∈ π(CG/H(K/H) by (5.1). Con-

sequently, G has a connected prime graph, a contradiction.
(5.3) to prove K/H ̸= L2(25), U3(4), L4(3) or 2F4(2).
Otherwise, if K/H is one of above groups, then |Out(K/H)|

∣∣4, 7 /∈ π(K/H).
Thus 7 /∈ π(Aut(K/H)), then 7 ∈ π(CG/H(K/H) by (5.1), which implies that
the prime graph of G is connected, a contradiction.

(5.4) to prove that K/H cannot be any one of rest groups listed in
beginning of the proof.

If K/H is one of rest groups, then |H|
∣∣25 · 36. If 2 ∈ π(H), by 13 -

∏5
i=1(2

i−
1) = 32 · 5 · 7 · 31, 52 -

∏5
i=1(2

i − 1) = 32 · 5 · 7 · 31 and Lemma 2.4, we come to
13 × 2 ∈ πe(G), 5 × 2 ∈ πe(G), which implies the prime graph of G connected,
a contradiction.

If H ̸= 1, then H is a 3− group. For possible choice of K/H, it always
follows that |Out(K/H)| = 2 or 22, or 3, hence |Aut(K/H)|

∣∣29 · 36 · 5 · 7 · 13.
But 52

∣∣|G| yields 5 ∈ π(CG/H(K/H)), then 5× 2 ∈ πe(G), 5× 13 ∈ πe(G), so G
has only one prime graph component, a contradiction.

(6) If {11, 13} ⊂ π(G), then G ∼= A15.
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It follows from (3)-(5) that π(G) = {2, 3, 5, 7, 11, 13}.
Now we assert {11, 13} ⊂ π(K/H). Otherwise, it follows by (4) and (5) that

11 ∈ π(K/H) and 13 /∈ π(K/H), hence either 13
∣∣|H| or 13

∣∣|G/K|. If the former
holds, we consider the conjugate action of an element of order 11 of G on the
13−Sylow subgroup of H and get 11×13 = 143 ∈ πe(G), a contradiction. Hence
13 ∈ π(G/K). Since (13, |K/H|) = 1, we consider the action of an element of
order 13 in G/H on K/H by conjugation and come to some 11−Sylow subgroup
of K/H is fixed. So 11 × 13 = 143 ∈ πe(G), a contradiction.

Hence π(K/H) = {2, 3, 5, 7, 11, 13}. Comparing the orders of K/H and
G, we have that K/H =A13(2

9 · 35 · 52 · 7 · 11 · 13), A14(2
10 · 35 · 52 · 72 · 11 · 13)

or A15(2
10 · 36 · 53 · 72 · 11 · 13).

For these groups, |H|
∣∣22 · 3 · 5 · 7. We assert that 7 /∈ π(H). Otherwise if

7 ∈ π(H), since 13 - (7− 1) = 6, 11 - (7− 1) = 6, viewing the actions of element
of order 11 and 13 of G on the 7 − Sylow subgroup of H by conjugation, we
come to 13×7, 11×7 ∈ πe(G) by Lemma 2.4. If 2 ∈ π(H), then 11×2 ∈ πe(G),
and G has only one prime graph component, a contradiction. Hence 2 /∈ π(H).
Now consider the action of subgroup of order 22 of G on the 7−Sylow subgroup
of H and noticing that 22 -(7−1) = 6, we get by Lemma 2.4 that 7×2 ∈ πe(G),
which implies that the prime graph of G is connected, a contradiction.

Suppose 5 ∈ π(H), considering actions of elements of order 11 and 13 of G on
the 5−Sylow subgroup of H by conjugation respectively, we get 13×5, 11×5 ∈
πe(G). Noticing that 5 is adjacent to 2, 3, 5, 7 in A13, A14 and A15, we come to
that the prime graph is connected, a contradiction. Hence 5 /∈ π(H). Similarly,
we can prove that 2 /∈ π(H) and 3 /∈ π(H). Hence H = 1.

Now K = A13, A14 or A15. By the prime graph of G is connected, it follows
that CG(K) = 1. Thus K ≤ G ≤ Aut(K) = S13, S14 or S15. at last by
o1(G) = 105, we come to G = K = A15.

Remark 2.9. Because the 1st ONC−degree of an alternating group usually
contains only three numbers, so such kind of characterization involved not many
numbers for alternating groups. But it is for this reason, counterexamples may
appear in the alternating groups. Since we cannot show A15 can be characterized
by the 1st ONC−degree, it is worth to study whether A15 is a counterexample.
Surely if we add the condition that the prime graph of G is not connected,
then we can prove G ∼= M for many alternating groups M while ONC1(G) =
ONC1(M). In fact, we checked for M = An(n = 17, 18, 19, 20), if G is
a finite group with non-connected prime graph, then G ∼= M if and only if
ONC1(G) = ONC1(M). Because of the length of the paper, we will not describe
the results here.
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Abstract. The purpose of the present paper is to introduce, study and characterize
upper and lower weakly (I, J)-continuous multifunctions and contra (I, J)-continuous
multifunctions. Also, we investigate its relation with another class of continuous mul-
tifunctions.
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1. Introduction

It is well known today, that the notion of multifunction playing a very important
role in general topology, upper and lower continuity have been extensively stud-
ied on multifunctions F : (X, τ) → (Y, σ). Currently using the notion of ideal
topological space, different types of upper and lower continuity in a multifunc-
tion F : (X, τ, I) → (Y, σ) have been studied and characterized [2], [8], [9], [15],

∗. Corresponding author
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[18]. The concept of ideal topological spaces has been introduced and studied
by Kuratowski [12] and the local function of a subset A of a topological space
(X, τ) was introduced by Vaidyanathaswamy [17] as follows: given a topological
space (X, τ) with an ideal I on X and if P (X) is the set of all subsets of X, a
set operator (.)∗ : P (X) → P (X), called the local function of A with respect to
τ and I, is defined as follows: for A ⊆ X, A∗(τ, I) = {x ∈ X / U ∩ A /∈ I for
every U ∈ τx}, where τx = {U ∈ τ : x ∈ U}. A Kuratowski closure operator
cl∗(, ) for a topology τ∗(τ, I) called the *-topology, finer than τ is defined by
cl∗(A) = A ∪ A∗(τ, I). We will denote A∗(τ, I) by A∗. In 1990, Jankovic and
Hamlett[10], introduced the notion of I-open set in a topological space (X, τ)
with an ideal I on X. In 1992, Abd El-Monsef et al.[1] further investigated
I-open sets and I-continuous functions. In 2007, Akdag [2], introduced the con-
cept of I-continuous multifunctions in a topological space with and ideal on it. In
2007, Al-Omari and Noorani [3], introduced the notions of contra-I-continuous
and almost I-continuous functions. Given a multifunction F : (X, τ) → (Y, σ),
and two ideals I, J associate, now with the topological spaces (X, τ, I) and
(Y, σ, J), consider the multifunction F : (X, τ, I) → (Y, σ, J). We want to study
some type of upper and lower continuity of F as doing Rosas et al. [14]. In this
paper, we introduce and study two new classes of multifunctions called a weakly
(I, J)-continuous multifunctions and contra (I, J)-continuous multifunctions in
topological spaces. Investigate its relation with another classes of continuous
multifunctions. Also its relation when the ideal J = {∅}.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y ) always mean
topological spaces in which no separation axioms are assumed, unless explicitly
stated and if I is and ideal on X, (X, τ, I) mean an ideal topological space. For
a subset A of (X, τ), Cl(A) and int(A) denote the closure of A with respect to
τ and the interior of A with respect to τ , respectively. A subset A is said to
be regular open [16] (resp. semiopen [11], preopen[13], semi preopen [4]) if A =
int(Cl(A)) (resp.A ⊆ Cl(int(A)), A ⊆ int(Cl(A)), A ⊆ Cl(int(Cl(A)))). The
complement of a regular open (resp. semiopen, semi-preopen) set is called regu-
lar closed (resp. semiclosed, semi-preclosed) set. A subset S of (X, τ, I) is an I-
open[10], if S ⊆ int(S∗). The complement of an I-open set is called I-closed set.
The I-closure and the I-interior, can be defined in the same way as Cl(A) and
int(A), respectively, will be denoted by I Cl(A) and Iint(A), respectively. The
family of all I-open (resp. I-closed, regular open, regular closed, semiopen, semi
closed, preopen, semi-preclosed) subsets of a (X, τ, I), denoted by IO(X)(resp.
IC(X), RO(X), RC(X), SO(X), SC(X), PO(X), SPO(X), SPC(X)). We set
IO(X,x) = {A : A ∈ IO(X) and x ∈ A}. It is well known that in an ideal
topological space (X, τ, I), X∗ ⊆ X but if the ideal is codense, that is τ ∩ I = ∅,
then X∗ = X.
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By a multifunction F : X → Y , we mean a point-to-set correspondence
from X into Y , also we always assume that F (x) ̸= ∅ for all x ∈ X. For a
multifunction F : X → Y , the upper and lower inverse of any subset A of
Y denoted by F+(A) and F−(A), respectively, that is F+(A) = {x ∈ X :
F (x) ⊆ A} and F−(A) = {x ∈ X : F (x) ∩ A ̸= ∅}. In particular, F+(y) =
{x ∈ X : y ∈ F (x)} for each point y ∈ Y .

Definition 2.1 ([7]). A multifunction F : (X, τ) → (Y, σ) is said to be:

1. upper semi continuous at a point x ∈ X if for each open set V of Y with
x ∈ F+(V ), there exists an open set U containing x such that F (U) ⊆ V .

2. lower semi continuous at a point x ∈ X if for each open set V of Y
with F (x) ∩ V ̸= ∅, there exists an open set U containing x such that
F (a) ∩ V ̸= ∅ for all a ∈ U .

Definition 2.2 ([15]). A multifunction F : (X, τ) → (Y, σ) is said to be:

1. upper weakly continuous if for each x ∈ X and each open set V of Y
such that x ∈ F+(V ), there exists an open set U containing x such that
U ⊆ F+(Cl(V )).

2. lower weakly continuous if for each x ∈ X and each open set V of Y such
that F (x) ∩ V ̸= ∅, there exists an open set U containing x such that
F (u) ∩ Cl(V ) ̸= ∅ for every u ∈ U .

3. weakly continuous if it is both upper weakly continuous and lower weakly
continuous.

Definition 2.3 ([2]). A multifunction F : (X, τ, I) → (Y, σ) is said to be:

1. upper I-continuous if for each x ∈ X and each open set V of Y such
that x ∈ F+(V ), there exists an I-open set U containing x such that
U ⊆ F+(V ).

2. lower I-continuous if for each x ∈ X and each open set V of Y such
that x ∈ F−(V ), there exists an I-open set U containing x such that
U ⊆ F−(V ).

3. I-continuous if it is both upper and lower I-continuous.

Definition 2.4 ([5]). A multifunction F : (X, τ, I) → (Y, σ) is said to be:

1. upper weakly I-continuous if for each x ∈ X and each open set V of Y
such that x ∈ F+(V ), there exists an I-open set U containing x such that
U ⊆ F+(Cl(V )).

2. lower weakly I-continuous if for each x ∈ X and each open set V of Y
such that x ∈ F−(V ), there exists an I-open set U containing x such that
U ⊆ F−(Cl(V ))

3. weakly I-continuous if it is both upper weakly I-continuous and lower I-
weakly continuous.
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3. Weakly (I, J)-continuous multifunctions

Definition 3.1. A multifunction F : (X, τ, I) → (Y, σ, J) is said to be:

1. upper weakly (I, J)-continuous at a point x ∈ X if for each J-open set V
such that x ∈ F+(V ), there exists an I-open set U containing x such that
U ⊆ F+(J Cl(V ))

2. lower weakly (I, J)-continuous at a point x ∈ X if for each J-open set V
of Y such that x ∈ F−(V ), there exists an I-open set U of X containing
x such that U ⊆ F−(J Cl(V )).

3. upper (resp. lower) weakly (I, J)-continuous on X if it has this property
at every point of X.

Example 3.2. Let X = Y = {a, b, c} with two topologies τ = {∅, X, {b}}
σ = {∅, Y, {a}} and two ideals I = {∅, {a}}, J = {∅, {b}}. Define a multifunction
F : (X, τ, I) → (Y, σ, J) as follows: F (a) = {a}, F (b) = {c} and F (c) = {b}. It
is easy to see that:

The set of all I-open is {∅, X, {b}, {c}, {a, b}, {a, c}, {b, c}}.
The set of all J-open is {∅, {a}, {c}, {a, b}, {a, c}, Y }.
In consequence, F is upper(resp. lower) weakly (I, J)-continuous on X.

Example 3.3. Let X = Y = {a, b, c} with two topologies τ = {∅, X, {b, c}},
σ = {∅, Y, {b}} and two ideals I = J = {∅, {b}}. Define a multifunction F :
(X, τ, I) → (Y, σ, J) as follows: F (a) = {a}, F (b) = {c} and F (c) = {b}. It is
easy to see that:

The set of all I-open is {∅, X, {a}, {c}, {a, c}, {b, c}}.
The set of all J-open is {∅, Y, {a}, {c}, {a, b}, {a, c}, {b, c}}. In consequence,

F is not upper (resp. lower) weakly (I, J)-continuous.

Recall that if (X, τ, I) is an ideal topological space and I is the empty ideal,
then for each A ⊆ X, A∗ = cl(A), that is to said, every I-open set is a pre-
open set, in consequence, if F : (X, τ, I) → (Y, σ, {∅}) is upper weakly (I, {∅})-
continuous, then F is upper weakly I-continuous.

Example 3.4. Let X = Y = {a, b, c} with two topologies τ = {∅, X, {b}}
σ = {∅, Y, {a, c}} and two ideals I = {∅, {a}}, J = {∅}. Define a multifunction
F : (X, τ, I) → (Y, σ, J) as follows: F (a) = {b}, F (b) = {c} and F (c) = {a}. It
is easy to see that:

The set of all I-open is {∅, X, {b}, {c}, {a, b}, {a, c}, {b, c}}.
The set of all J-open is {∅, {a}, {c}, {a, b}, {a, c}, Y }.
F : (X, τ, I) → (Y, σ) is upper weakly I-continuous but F : (X, τ, I) →

(Y, σ, {∅}) is not upper weakly (I, {∅})-continuous.

Now consider (X, τ, I) and (Y, σ, J) two ideals topological spaces. If J ̸=
{∅}, then the concepts of upper weakly (I, J)-continuous and upper weakly
I-continuous are independent, as we can see in the following examples.
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Example 3.5. In the Example 3.4, the multifunction F is upper weakly (I, J)-
continuous on X but is not upper weakly I-continuous on X.

Example 3.6. In the Example 3.3, the multifunction F is upper weakly I-
continuous on X but is not upper weakly (I, J)-continuous on X.

Remark 3.7. It is easy to see that if F : (X, τ, I) → (Y, σ, J) is a multifunction
and JO(Y ) ⊂ σ and F is upper (lower) weakly I-continuous, then F is upper
(lower) weakly (I, J)-continuous. Even more, if F : (X, τ, I) → (Y, σ, J) is a
multifunction and JO(Y ) * σ, we can find upper (resp. lower) weakly (I, J)-
continuous on X that are not upper (lower) weakly I-continuous.

The following theorem characterize the upper weakly (I, J) continuous mul-
tifunctions.

Theorem 3.8. For a multifunction F : (X, τ, I) → (Y, σ, J), the following
statements are equivalent:

1. F is upper weakly (I, J)-continuous.

2. F+(V ) ⊆ Iint(F+(J Cl(V ))) for any J-open set V of Y .

3. I Cl(F−(J int(B))) ⊂ F−(B) for any every J-closed subset B of Y .

Proof. (1)⇒(2): Let x ∈ F+(V ) and V be any J- open set of Y . From (1), there
exists an I-open set Ux containing x such that Ux ⊂ F+(J Cl(V )). It follows
that x ∈ Iint(F+(J Cl(V ))), in consequence, F+(V ) ⊆ Iint(F+(J Cl(V ))) for
any J-open set V of Y .

(2)⇒(1): Let V any J-open subset of Y such that x ∈ F+(V ). By (2), x ∈
F+(V ) ⊆ Iint(F+(J Cl(V ))) ⊆ F+(J Cl(V )). Choose U = Iint(F+(J Cl(V ))).
U is an I-open subset of X, containing x. It follows that F is upper weakly
(I, J)-continuous.

(2)⇒(3): Let B be any J- closed set of Y .
Then by (2), F+(Y \B) = X\F−(B) ⊆ Iint(F+(J Cl(Y \B)))

= Iint(F+(J Cl(Y \Iint(B)))) = X\I Cl(F−(J int(B))).
Thus, I Cl(F−(J int(B))) ⊂ F−(B).

(3)⇒(2): Let V be any J- open set of Y . Then by (3), I Cl(F−(J int(Y \V ))) ⊂
F−(Y \V ) = X\F+(V ).

It follows that I Cl(X\F+(I Cl(V )) = I Cl(F−(Y \I Cl(V )))
= I Cl(F−(J int(Y \V ))) ⊂ X\F+(V ), and then X\Iint(F+(I Cl(V )))
⊆ X\F+(V ). Therefore the result follows.

Theorem 3.9. For a multifunction F : (X, τ, I) → (Y, σ, J), the following
statements are equivalent:

1. F is lower weakly (I, J)-continuous.

2. F−(V ) ⊆ Iint(F−(J Cl(V ))) for any J-open set V of Y .
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3. I Cl(F+(J int(B))) ⊂ F+(B) for any every J-closed subset B of Y .

Proof. The proof is similar to that of Theorem 3.8.

Definition 3.10 ([14]). A multifunction F : (X, τ, I) → (Y, σ, J) is said to be:

1. upper (I, J)-continuous at a point x ∈ X if for each J-open set V contain-
ing F (x), there exists an I-open set U containing x such that F (U) ⊂ V .

2. lower (I, J)-continuous at a point x ∈ X if for each J-open set V of Y
meeting F (x), there exists an I-open set U of X containing x such that
F (u) ∩ V ̸= ∅ for each u ∈ U .

3. upper (resp. lower) (I, J)-continuous on X if it has this property at every
point of X.

Example 3.11. The multifunction defined in Example 3.2 is upper weakly
(I, J)-continuous on X but is not upper (I, J)-continuous on X.

Remark 3.12. Every upper (resp. lower) (I, J)-continuous multifunction on
X is upper (resp. lower) weakly (I, J)-continuous multifunction on X, but the
converse is not necessarily true, as we can see in the following example.

Example 3.13. Let X = R the set of real numbers with the topology τ =
{∅,R,R \ Q}, Y = R with the topology σ = {∅,R,Q} and I = {∅}=J. Define
F : (X, τ, I) → (Y, σ, J) as follows: F (x) = Q if x ∈ Q and F (x) = R \ Q if
x ∈ R \ Q. Recall that in this case the I-open sets are the preopen sets. f
is upper (resp. lower) weakly (I, J)-continuous on X, but is not upper (resp.
lower) (I, J)-continuous on X..

Theorem 3.14 ([14]). For a multifunction F : (X, τ, I) → (Y, σ, J), the follow-
ing statements are equivalent:

1. F is upper (I, J)-continuous.

2. F+(V ) is I-open for each J-open set V of Y .

3. F−(K) is I-closed for every J-closed subset K of Y .

4. I Cl(F−(B)) ⊂ F−(J Cl(B)) for every subset B of Y .

5. For each point x ∈ X and each J-open set V containing F (x), F+(V ) is
an I-open containing x.

There exist any additional condition in order to say that every upper (resp.
lower) (I, J)-continuous if upper (resp. lower) weakly (I, J)-continuous.

Theorem 3.15. Let F : (X, τ, I) → (Y, σ, J) be a multifunction such that F (x)
is a J-open subset of Y for each x ∈ X. Then F is lower (I, J)-continuous if
and only if lower weakly (I, J)-continuous.
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Proof. Let x ∈ X and V any J-open subset of Y such that x ∈ F−(V ). Then
there exists an I-open subset U of X containing x such that U ⊂ F−(J Cl(V ).
It follows that F (u)∩J Cl(V ) ̸= ∅ for each u ∈ U . Since F (u) is a J-open subset
of Y for each u ∈ U , it follows that F (u) ∩ V ̸= ∅ and then F is lower (I, J)-
continuous. The converse is clear because every (I, J)-continuous multifunction
is weakly (I, J)-continuous.

Theorem 3.16. Let F : (X, τ, I) → (Y, σ, J) be a multifunction such that F (x)
is a J-open subset of Y for each x ∈ X. Then F is upper (I, J)-continuous if
and only if upper weakly (I, J)-continuous.

Proof. The proof is similar to the above Theorem.

4. Contra (I, J)-continuous multifunctions

Definition 4.1. A multifunction f : (X, τ, I) → (Y, σ, J) is said to be:

1. upper contra (I, J)-continuous if for each x ∈ X and each J-closed set V
such that x ∈ F+(V ), there exists an I-open set U containing x such that
F (U) ⊂ V .

2. lower contra (I, J)-continuous if for each x ∈ X and each J-closed set V
of Y such that x ∈ F−(V ), there exists an I-open set U of X containing
x such that U ⊆ F−(V ).

3. Contra (I, J)-continuous if it is upper contra (I, J)-continuous and lower
contra (I, J)-continuous.

Example 4.2. Let X = R the set of real numbers with the topology τ =
{∅,R,R \ Q}, Y = R with the topology σ = {∅,R,Q} and I = {∅}=J. Define
F : (X, τ, I) → (Y, σ, J) as follows: F (x) = Q if x ∈ Q and F (x) = R \ Q if
x ∈ R \ Q. Recall that in this case the I-open sets are the preopen sets. It is
easy to see that F is upper (resp. lower) contra (I, J)-continuous.

Example 4.3. Let X = Y = {a, b, c} with two topologies τ = {∅, X, {b}}
σ = {∅, Y, {a}} and two ideals I = {∅, {a}}, J = {∅, {b}}. Define a multifunction
F : (X, τ, I) → (Y, σ, J) as follows: F (a) = {b}, F (b) = {a} and F (c) = {c}. It
is easy to see that:

The set of all I-open is {∅, X, {b}, {c}, {a, b}, {a, c}, {b, c}}.
The set of all J-open is {∅, {a}, {c}, {a, b}, {a, c}, Y }.
The set of all J-closed is {∅, {b}, {c}, {a, b}, {b, c}, Y }.
In consequence, f is upper(resp. lower) (I, J)-continuous on X but is not

upper (resp. lower) contra (I, J)-continuous.

Example 4.4. The multifunction F defined in Example 4.2 is upper (resp.
lower) contra (I, J)-continuous but is not upper (resp. lower) (I, J)-continuous
on X and the multifunction F defined in Example 4.3 is upper (resp. lower)
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(I, J)-continuous but is not upper (resp. lower) contra (I, J)-continuous. In
consequence both concepts are independent of each other.

Theorem 4.5. For a multifunction F : (X, τ, I) → (Y, σ, J), the following
statements are equivalent:

1. F is upper contra (I, J)-continuous.

2. F+(V ) is I-open for each J-closed set V of Y .

3. F−(K) is I-closed for every J-open subset K of Y .

Proof. (1)⇔(2): Let x ∈ F+(V ) and V be any J-closed set of Y . From (1),
there exists an I-open set Ux containing x such that Ux ⊂ F+(V ). It follows
that F+(V ) =

∪
x∈F+(V )

Ux. Since any union of I-open sets is I-open, F+(V ) is

I-open in (X, τ). The converse is similar.
(2)⇔(3): Let K be any J- open set of Y . Then Y \K is a J-closed set of

Y by (2), F+(Y \K) = X\F−(K) is an I-open set. Then it is obtained that
F−(K) is an I-closed set. The converse is similar.

Theorem 4.6. For a multifunction F : (X, τ, I) → (Y, σ, J), the following
statements are equivalent:

1. F is lower contra (I, J)-continuous.

2. F−(V ) is I-open for each J-closed set V of Y .

3. F+(K) is I-closed for every J-open subset K of Y .

4. For each x ∈ X and each J-closed set K of Y such that F (x) ∩ K ̸= ∅,
there exists an I-open set U containing x such that F (y)∩K ̸= ∅ for each
y ∈ U .

Proof. The proof is similar to the proof of Theorem 4.5.

Remark 4.7. It is easy to see that if J = {∅} and F : (X, τ, I) → (Y, σ, J)
is upper (resp. lower) contra (I, J)-continuous then F is upper (resp. lower)
contra I-continuous.

The following example shows the existence of upper (resp. lower) contra
I-continuous that is not upper (resp. lower) contra (I, {∅})-continuous.

Example 4.8. Let X = Y = {a, b, c} with two topologies τ = {∅, X, {b}}
σ = {∅, Y, {a, c}} and two ideals I = {∅, {a}}, J = {∅}. Define a multifunction
F : (X, τ, I) → (Y, σ, J) as follows: F (a) = {c}, F (b) = {b} and F (c) = {a}. It
is easy to see that:

The set of all I-open is {∅, X, {b}, {c}, {a, b}, {a, c}, {b, c}}.
The set of all J-open is {∅, {a}, {c}, {a, b}, {a, c}, {b, c}, Y }.
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The set of all J-closed is {∅, {b}, {c}, {a, b}, {b, c}, Y }.

Observe that F : (X, τ, I) → (Y, σ) is upper contra I-continuous but F :
(X, τ, I) → (Y, σ, {∅}) is not upper contra (I, {∅})-continuous.

Remark 4.9. It is easy to see that if F : (X, τ, I) → (Y, σ, J) is a multifunction
and JO(Y ) ⊂ σ. If F is upper (lower) contra I-continuous, then F is upper
(lower) (I, J)-continuous. Even more, if F : (X, τ, I) → (Y, σ, J) is a multifunc-
tion and JO(Y ) * σ, we can find upper (resp. lower) contra (I, J)-continuous
on X that are not upper (lower) contra I-continuous.
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1. Introduction

The study of impulsive functional differential equations is related to their util-
ity in simulating processes and phenomena subject to short-time perturbations
during their evolution. The perturbations are executed discretely and their du-
ration is negligible in comparison with the total duration of the processes. That
is why the perturbations are considered to take place instantaneously in the form
of impulses. The theory of impulsive systems provides a common frame work
for mathematical modeling of many real world phenomena. Moreover, these
impulsive phenomena can also be found in fields such as information science,
electronics, fed-batch culture in fermentative production, robotics and telecom-
munications (see [1, 5, 13, 15, 17, 19] and references therein).

In recent years, the study of impulsive control systems has received increasing
interest. Due to its importance several authors have investigated the controlla-
bility of impulsive systems (see [2, 6, 9, 18]).

Motivated by the effort of the after mentioned papers [2, 10], the primary
inspiration driving this manuscript is mainly concerned with the study of con-
trollability of second order impulsive partial neutral system of the form

d

dù

[
ϑ′(ù) − θ1(ù, ϑù)

]
= A(ù)ϑ(ù) +Bu(ù) + θ2(ù, ϑù),

ù ∈ J = [0, a], ù ̸= ùk, k = 1, 2, ..., n,(1)

ϑ0 = ϕ ∈ B, ϑ′(0) = ξ ∈ X,(2)

∆ϑ(ùk) = Ik(ϑùk
), k = 1, 2, ...,m,(3)

∆ϑ′(ùk) = Jk(ϑùk
), k = 1, 2, ...,m,(4)

where ϕ ∈ B and ζ ∈ X. The control function u(·) is given in L2(J, U), a
Banach space of admissible control functions with U as a Banach space and
B : U → X as a bounded linear operator; For ù ∈ J, xù represents the function
ϑù : (−∞, 0] → X defined by ϑù(θ) = ϑ(ù + θ),−∞ < θ ≤ 0 which belongs
to some abstract phase space B defined axiomatically, θ1, θ2 : J × B → X,
Ik : B → X, Jk : B → X are appropriate functions and will be specified later.
0 < ù1 < . . . < ùn < a are fixed numbers and the symbol ∆ξ(ù) represents
the jump of a function ξ at ù , which is defined by ∆ξ(ù) = ξ(ù+) − ξ(ù−).
Throughout the text we will assume that A(·) generates an evolution operator
S(ù, s).

2. Preliminaries

This section we review some basic concepts, notation, and properties required
to find our main results. Nowadays there has been an increasing interest in
studying the theoretical non-autonomous second order initial value problem

ϑ′′(ù) = A(ù)ϑ(ù) + f(ù), 0 ≤ s, ù ≤ a,(5)

ϑ(s) = v, ϑ′(s) = w,(6)
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where A(ù) : D(A(ù)) ⊆ ϑ → X, ù ∈ J = [0, a] is a closed densely defined
operator and f : J → X is an suitable function. Equations of this form have
been considered in several papers. We refer the reader to [14, 16] and the
references therein. In the majority of works, the existence of results to the
problem (5)-(6) is related to the existence of an evolution operator S(ù, s) for
the homogeneous equation,

(7) ϑ′′(ù) = A(ù)ϑ(ù), 0 ≤ s, ù ≤ a.

Let as assume that the domain of A(ù) is a subspace of D dense in X and
not dependent of ù, and for each ϑ ∈ D the function ù 7−→ A(ù)ϑ is continuous.
The fundamental solution for the second-order evolution equation (7), has been
developed by Kozak [12], and we will use the following concept of evolution
operator.

Definition 2.1. A family S of a bounded linear operator S(ù, s) : J×J → L(ϑ)
is called an evolution operator for (7), if the following conditions are satisfied:

(Z1) For each ϑ ∈ X,the mappings (ù, s) ∈ [0, a] × [0, a] → S(ù, s)ϑ ∈ X of
class C1 and

(i) For each ù ∈ [0, a], S(ù, ù) = 0,

(ii) For all ù, s ∈ [0, a], and for each ϑ ∈ X,

∂

∂ù
S(ù, s)ϑ|ù=s = ϑ,

∂

∂s
S(ù, s)ϑ|ù=s = −ϑ

(Z2) For all ù, s ∈ [0, a] if ϑ ∈ D(A), then S(ù, s)ϑ ∈ D(A),the mappings
(ù, s) ∈ [0, a] × [0, a] → S(ù, s)ϑ ∈ ϑ is of class C2 and

(i) ∂2

∂ù2S(ù, s)ϑ = A(ù)S(ù, s)ϑ,

(ii) ∂2

∂s2
S(ù, s)ϑ = S(ù, s)A(s)ϑ,

(iii) ∂
∂s

∂
∂ùS(ù, s)ϑ|ù=s = 0.

(Z3) For all ù, s ∈ [0, a] if ϑ ∈ D(A),then ∂
∂sS(ù, s)ϑ ∈ D(A), there exists

∂2

∂ù2
∂
∂sS(ù, s)ϑ, ∂2

∂s2
∂
∂ùS(ù, s)ϑ and

(i) ∂2

∂ù2
∂
∂sS(ù, s)ϑ = A(ù) ∂

∂sS(ù, s)ϑ,

(ii) ∂2

∂s2
∂
∂ùS(ù, s)ϑ = ∂

∂ùS(ù, s)A(s)ϑ and the mapping [0, a] × [0, a] ∋
(ù, s) → A(ù) ∂

∂sS(ù, s)ϑ is continuous.

Throughout this problem we assume that there exists an evolution operator
S(ù, s) associated to the operator A(ù). To abbreviate the text, we introduce

the operator C(ù, s) = −∂S(ù,s)
∂s . In addition, we set N and Ñ for positive
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constants such that sup0<s,ù<a ∥S(ù, s)∥ ≤ N and sup0<s,ù<a ∥C(ù, s)∥ ≤ Ñ . In
addition, we denote by N1 is a positive constant such that,

∥S(ù+ h, s) − S(ù, s)∥ ≤ N1 |h| ,(8)

for all s, ù, ù + h ∈ [0, a]. Assuming that f : J → X is an integrable function,
the mild solution ϑ : [0, a] → X of the problem (5)-(6) is given by,

ϑ(ù) = C(ù, s)v + S(ù, s)w +

∫ ù

s
S(ù, τ)f(τ)dτ.(9)

In the literature a number of methods have been discussed to establish the exis-
tence of the evolution operator S(., .). In particular, a very studied situation is
that A(ù) is that perturbation of an operator A that generates a cosine operator
function. In this reason, below we briefly analysis some essential properties of
the theory of cosine functions. Let A : D(A) ⊆ ϑ → X be the infinitesimal
generator of a strongly continuous cosine family of bounded linear operators
(C(ù))ù∈R on Banach space ϑ. We denote by (S(ù))ù∈R the sine function as-

sociated with (C(ù))ù∈R which is defined by S(ù)ϑ =
∫ ù
0 C(s)ϑds, for ϑ ∈ X

and ù ∈ R. We refer them to [3, 21] for the necessary concepts about cosine
functions. After that we only mention a few results and notations about this
matter needed to establish our results. It is immediate that

C(ù)ϑ− ϑ = A

∫ ù

0
S(s)ϑds,(10)

for all ϑ ∈ X. The notation D(A) stands for the domain of the operator A
endowed with the graph norm ∥ϑ∥A = ∥ϑ∥ + ∥Aϑ∥ , ϑ ∈ D(A). Moreover, in
this work, E is the space formed by the vectors ϑ ∈ ϑ for which C(.)ϑ is of
class C1 on R. It was proved by Kisynski [11] that E endowed with the norm
∥ϑ∥E = ∥ϑ∥ + sup0≤t≤1 ∥AS(t)ϑ∥ , ϑ ∈ E, is a Banach space. The operator-
valued function

H(ù) =

[
C(ù) S(ù)
AS(ù) C(ù),

]
is a strongly continuous group of bounded linear operators on the space E × ϑ

generated by the operator H(ù) =

[
0 1
A 0

]
defined on D(A) × E. From this,

it follows that S(ù) : X → E is a bounded linear map such that the operator
valued maps S(.) is strongly continuous and AS(ù) : E → X is a bounded
linear operator such that A(S)ϑ → 0 as ù → 0, for each ϑ ∈ E. Furthermore,
if ϑ : [0,∞) → X is a locally integrable function, then the function y(ù) =∫ ù
0 S(ù− s)ϑ(s)ds defines an E-valued continuous function.

The existence of solutions for the second order abstract Cauchy problem,

ϑ′′(ù) = Aϑ(ù) + h(ù), 0 ≤ ù ≤ a(11)

ϑ(s) = υ, ϑ
′
(s) = ω,(12)
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where h : J → X is an integrable function, has been discussed in [22]. Similarly
the existence of solutions of semilinear second order abstract Cauchy problems
has been treated in [23]. We only mention here that the function ϑ(·) given by

(13) ϑ(ù) = C(ù− s)υ + S(ù− s)ω +

∫ ù

s
S(ù− τ)h(τ)dτ, 0 ≤ ù ≤ a,

is called a mild solution of (7)-(8) and that when υ ∈ E, ϑ(.) is continuously
differentiable and

ϑ′(ù) = AS(ù− s)υ + C(ù− s)ω +

∫ ù

s
C(ù− τ)h(τ)dτ 0 ≤ ù ≤ a.

In addition ,if υ ∈ D(A), ω ∈ E and f is a continuously differentiable function,
then the function ϑ(·) is a solution of the initial value problem (11)-(12).

Assume now that A(ù) = A+ B̃(ù) where B̃(·) : R→ L(E, ϑ) is a map such
that the function ù 7→ B̃(ù)ϑ is continuously differentiable in ϑ for each ϑ ∈ E.
It has been established by serizawa [20] that for each (υ, ω) ∈ D(A) × E the
non-autonomous abstract Cauchy problem

ϑ′′(ù) = (A+ B̃(ù))ϑ(ù), ù ∈ R,(14)

ϑ(0) = υ, ϑ′(0) = ω,(15)

has a unique solution ϑ(·) such that the function ù 7→ ϑ(ù) is continuously
differentiable in E. It is clear that the same argument allows us to conclude
that Eq.(14), with the initial condition (12) has a unique solution ϑ(·, s) such
that the function ù 7→ ϑ(ù, s) is continuously differentiable in E. It follows from
(13) that

ϑ(ù, s) = C(ù− s)υ + S(ù− s)ω +

∫ ù

s
S(ù− τ)B̃(τ)ϑ(τ, s)dτ.

In particular ,for υ = 0 we have

ϑ(ù, s) = S(ù− s)ω +

∫ ù

s
S(ù− τ)B̃(τ)ϑ(τ, s)dτ.(16)

Consequently,

∥ϑ(ù, s)∥1≤∥S(ù− s)∥L(ϑ,E) ∥ω∥+

∫ ù

s
∥S(ù, τ)∥L(ϑ,E)

∥∥∥B̃(τ)
∥∥∥
L(ϑ,E)

∥ϑ(τ, s∥1 dτ

and, applying the Gronwall - Bellman lemma we infer that

∥ϑ(ù, s)∥1 ≤ M̃ ∥ω∥ , s, ù ∈ J.(17)

We define the operator S(ù, s)ω = ϑ(ù, s). It follows from the previous estimate
that S(ù, s) is a bounded linear map on E. Since E is dense in X, we can
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extend S(ù, s) to X. We keep the notation S(ù, s) for this extension. It is well
known that, exception the case dim(X) < ∞, the cosine function C(ù) cannot
be compact for all ù ∈ R. By contrast, for the cosine functions that arise in
specific applications, the sine function S(ù) is very often a compact operator for
all ù ∈ R. This motivates the result [[7], Theorem 1.2].

We now consider some notations and definitions concerning impulsive dif-
ferential equations. A function ϑ : [σ, τ ] → X is said to be a normalized piece
wise continuous function on [σ, τ ] if ϑ is piece wise continuous and left contin-
uous on (σ, τ ]. We denote by PC ([σ, τ ], X) the space of normalized piecewise
continuous functions from [σ, τ ] into X. In particular, we introduce the space
PC formed by all normalized piece wise continuous functions ϑ : [0, a] → X
such that ϑ(·) is continuous at ù ̸= ùk, ϑ(ùk−) = ϑ(ùk) and ϑ(ù+k ) exists, for
k = 1, 2, . . . ,m. In this paper, we always assume that PC is endowed with the
norm ∥ϑ∥PC = sups∈J ∥ϑ(s)∥. It is clear that (PC, ∥·∥PC) is a Banach space.

In what follows, we put ù0 = 0, ùn+1 = a and, for ϑ ∈ PC, we denote by ϑ̃k,
for k = 0, 1, . . . ,m, the function ϑ̃k ∈ C ([ùk, ùk+1];ϑ) given by ϑ̃k(ù) = ϑ(ù)
for ù ∈ (ùk, ùk+1) and ϑ̃k(ùk) = limù→ù+ ϑ(ù). Moreover, for a set E ⊆ PC, we
denote by Ẽk, for k = 0, 1, . . . ,m, the set Ẽk = ϑ̃k : ϑ ∈ E.

Lemma 2.1. A set E ⊆ PC is relatively compact in PC if and only if each
Ẽk,k = 0, 1, . . . ,m, is relatively compact in C([ùk, ùk+1];ϑ).

In this work we will employ an axiomatic definition of the phase space B,
similar to the one used in [8] and suitably modify to treat retarded impulsive
differential equations. More precisely, B will denote the vector space of functions
defined from (−∞, 0] into ϑ endowed with a seminorm denoted ∥·∥B and such
that the following axioms are hold:

(A) If ϑ : (−∞, µ + b] → ϑ, b > 0, is such that ϑµ ∈ B and ϑ|[µ,µ+b] ∈
PC([µ, µ + b], X) then, for every ù ∈ [µ, µ + b), the following conditions
are hold: and

(i) ϑù is ∈ B,

(ii) ∥ϑ(ù)∥ ≤ H ∥ϑù∥B,

(iii) ∥ϑù∥B ≤ K(ù− µ) sup{∥ϑ(s)∥ : µ ≤ s ≤ ù} +M(ù− µ)∥ϑµ∥B,

where H > 0 is a constant; K,M : [0,∞) → [1,∞), K is continuous, M
is locally bounded and H,K,M are independent of ϑ(·).

(B) The space B is complete.

Remark 2.1. In impulsive functional differential systems, the map [µ, µ+ b] →
B, ù → ϑt, is in general discontinuous. For this reason, this property has been
omitted from our description of the phase space B.

Now we include that some of our proofs are based on the following well-
known result [[4], Theroem 6.5.4].
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Lemma 2.2 (Leray-Schauder Alternative). Let D be a closed convex subsets
of a normed lined space ϑ such that 0 ∈ D. Let F : D → D be a completely
continuous map. Then the set {ϑ ∈ D : ϑ = λF (ϑ), for some0 < λ < 1} is
unbounded or the map F has a fixed point in D.

The terminology and notations are generally used in functional analysis. In
particular, for Banach spaces (Z, ∥·∥), (W, ∥·∥w), the notation L(Z,W ) stands for
the Banach space of bounded linear operators from Z into W and we abbreviate
to L(Z) whenever Z = W . By σ(A) (respectively ,ρ(A)) we denote the spectrum
(respectively ,the resolvent set)of a linear operator A. MoreoverBr(ϑ,Z) denotes
the closed ball with center at ϑ and radius r > 0 in the space Z.

Remark 2.2. In what follows the notation g(a) stands for the space

θ1(a) = {y : (−∞, a] → ϑ : y|J ∈ PC, y0 = 0}.

endowed with the sup norm. In addition, we denote by ϕ̃ : (−∞, a] → ϑ the
function defined by ϕ̃0 = ϕ and ϕ̃(ù) = C(ù, 0)ϕ(0) + S(ù, 0)ζ, for ù ≥ 0.

Definition 2.2. A function ϑ : (−∞, a] → X is called a mild solution of the
abstract Cauchy problem (1)-(4), if ϑ0 = ϕ ∈ B, ϑ|J ∈ PC, the impulsive condi-
tions ∆ϑ(ùk) = Ik(ϑùk

), ∆ϑ
′
(ùk) = Jk(ϑùk

), k = 1, 2 . . . ,m, are satisfied and
the following integral equation

ϑ(ù) = C(ù, 0)ϕ(0) + S(ù, 0)
(
ϑ− θ1(0, ϕ, 0)

)
+

∫ ù

0
C(ù, s)θ1(s, ϑs)ds

+

∫ ù

0
S(ù, s)

[
Bu(s) + θ2(s, ϑs)

]
ds

+
∑

0<ùk<ù

C(ù, ùk)Ik(ϑùk
) +

∑
0<ùk<ù

S(ù, ùk)Jk(ϑùk
), 0 < ù < a.

is verified.

3. Controllability result

To establish our result, we introduce the following assumptions on system (1)-
(4):

(H1) The function θi : J × B → X is continuous and there exist constants

Lθi > 0, L̃θi > 0 for ψ1, ψ2 ∈ B, such that

∥θi(ù, ψ1) − θi(ù, ψ2)∥ ≤ Lθi ∥ψ1 − ψ2∥B

and L̃θi = supù∈J ∥θi(ù, 0)∥ , i = 1, 2. we have ∥θi(t, ψ)∥ ≤ Lθi∥ψ∥B +

L̃θi , i = 1, 2.
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(H2) B is a continuous operator from U to X and the linear operator W :
L2(J, U) → X, defined by

Wu =

∫ a

0
S(a, s)Bu(s)ds,

has a bounded invertible operatorW−1 which takes values in L2(J, U)/kerW
and there exist positive constant M such that

∥∥BW−1
∥∥ ≤M1.

(H3) The impulsive functions satisfy the following conditions:

(i) The maps Ik : B → X, k = 1, 2, . . . ,m is continuous and there exist
constants L1 > 0, L̃1 > 0 for ψ1, ψ2 ∈ B such that

∥Ik(ψ1) − Ik(ψ2)∥ ≤ LI∥ψ1 − ψ2∥

and L̃I = ∥Ik(0)∥.

(ii) The maps Jk : B → X, k = 1, 2, . . . ,m is continuous and there exists
constants LJ > 0, L̃J > 0 for ψ1, ψ2 ∈ B such that

∥Jk(ψ1) − Jk(ψ2)∥ ≤ LJ∥ψ1 − ψ2∥

and L̃J = ∥Jk(0)∥.

(H4) Let aN
[
Lθ1(Kar+c1)+L̃θ1

]
+aNA0+

∑m
k=1

(
ÑLI+NLJ

)[
Kar+∥ϕ̃ùk

∥
]
+∑m

k=1

(
ÑL̃I +NL̃J

)
≤ r, for some r > 0.

(H5) Let µ = ka(1 + aNM1)[aÑLg + aNLθ1 +
∑m

k=1(ÑLI +NLJ) < 1 be such
that 0 ≤ µ < 1.

Definition 3.3. The system (14-17) is said to be controllable on the interval J ,
if for every ϑ0 = ϕ ∈ B, ϑ′(0) = ζ and z1 ∈ X, there exists a control u ∈ L2(J, U)
such that the mild solution ϑ(·) of (1)-(4) satisfies ϑ(a) = z1.

The following results is an immediate application of the contraction principle
of Banach. To simplify the text, we denote Ka = sup0≤ù≤aK(ù).

Since ∥ϕ̃k∥B = Ñ∥ϕ(0)∥ + N∥ζ∥ + M∥ϕ∥B < ∞, 0 ≤ t ≤ a, we denote,
c1 = sup0≤ù≤a ∥ϕù∥B and ∥yù + ϕ̃ù∥ ≤ Ka∥yù∥ + ∥ϕ̃∥ ≤ Kar + c1 = ρ.

Theorem 3.1. If the hypothesis (H1)-(H5) are satisfied, then the impulsive
second order system (1)-(4) is controllable on J .

Proof. Using the assumption (H2), we define the control function

u(ù) = W−1[z1 − C(a, 0)ϕ(0) − S(a, 0)[ζ − θ1(0, ϕ)] +

∫ a

0
C(a, s)θ1(s, ϑs)ds

−
∫ a

0
S(a, s)θ2(s, ϑs)ds−

m∑
k=1

C(a, ùk)Ik(ϑùk
) −

m∑
k=1

S(a, ùk)JK(ϑùk
)](ù).
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Let Br = {ϑ ∈ X, ∥ϑ∥ ≤ r} for some r > 0. now we show that when using this
control the operator Γ on the space θ2(a) defined by(Γy)0 = 0 and

(Γy)(ù) = S(ù, 0)[ζ − θ1(0, ϕ)] −
∫ ù

0
C(ù, s)θ1(s, ys

+ ϕ̃s)ds+

∫ ù

0
S(ù, s)θ2(s, ys + ϕ̃s)ds

+

∫ ù

0
S(ù, η)BW−1

[
z1 − C(a, 0)ϕ(0) − S(a, 0)[ζ − θ2(0, ϕ)]

+

∫ a

0
C(a, s)θ1(s, ys + ϕ̃s)ds(18)

−
∫ ù

0
S(a, s)θ2(s, ys + ϕ̃s)ds−

m∑
k=1

C(a, ùk)Ik(yùk
+ ϕ̃ùk

)

−
m∑
k=1

S(a, ùk)Jk(yùk
+ ϕ̃ùk

)
]
(η)dη

+
∑
0<ùk

<ù C(ù, ùk)Ik(yùk
+ ϕ̃ùk

) +
∑

0<ùk<ù

S(ù, ùk)Jk(yùk
+ ϕ̃ùk

), ù ∈ J,

has a fixed point ϑ(·). This fixed point is then a mild solution of the system (1)-
(4). Clearly (Γϑ)(a) = z1 which means that the control u steers the system from
the initial state ϕ to z1 in time a, provided we can obtain a fixed point of the
operator Γ which implies that the system is controllable. From the assumptions,
it is easy to see that Γ is well defined and continuous. For convenience let us
take,

∥Bu(s)∥ ≤M1[∥z1∥+Ñ∥ϕ(0)∥+N [∥ζ∥+Lθ2∥ϕ∥+L̃θ2 ]+Ña[Lθ2(Kar + c1)L̃θ2 ]

+ aN [Lθ1(Kar + c1) + L̃θ1 ] + Ñ

m∑
k=1

[LI(Kar + ∥ϕ̃ùk
∥) + L̃I ]

+N
m∑
k=1

[lθ1(Kar + ∥ϕ̃∥) + L̃J ] = A0.

First we show that Γ maps Br(0, θ2(a)) into Br(0, θ2(a)). To this end, from the
definition of the operator Γ in (18) and our hypotheses, we obtain

∥(Γy)(ù)∥ ≤ N [∥ζ∥ + Lθ2∥ϕ∥ + L̃g] + Ña[Lθ2(Kar + c1)L̃θ2 ]

+ aN [Lθ1(kar + c1) + L̃θ1 ] + aNA0 +

m∑
k=1

(ÑL̃I +NL̃J)

+
M∑
k=1

(ÑLJ)[Kar + ∥ϕ̃ùk
∥] ≤ r.



566 P. PALANI, T. GUNASEKAR, M. ANGAYARKANNI and D. KESAVAN

for y ∈ θ2(a) and ù ∈ J . Hence ∥Γy∥a ≤ r. Therefore, Γ maps Br(0, θ2(a)) into
itself. Now for y, z ∈ Br(0, θ2(a)), we have

∥(Γy)(ù) − (Γz)(ù)∥ ≤ Ka(1 + aNM1)
[
a(ÑLθ2 + aNLθ1

+
∑

+k = 1m((ÑLI +NLJ)
]
∥y − z∥ ≤ µ∥y − z∥a.

Which implies that Γ is a contraction on Br(0, θ2(a)). Hence by the Banach
fixed point theorem, Γ has a unique fixed point y in θ2(a). Defining ϑ(ù) =
y(ù) + ϕ̃(ù),−∞ < ù ≤ a, we obtain that ϑ(·) is a mild solution of the problem
(1)-(4) and the proof is complete.
We use the below condition instead of (H1) to avoid the Lipschitz continuity of
f used in Theorem 3.1.

(A1) The function θ1 : J × B → X satisfies the following conditions:

(i) For each ù ∈ J , the function θ1(ù, ·) : B → X is continuous and the
function ù→ θ1(ù, ϑù) is strongly measurable.

(ii) There exist an integrable function p : J → [0,∞) and a continuous
non-decreasing function Ω : [0,∞) → (0,∞) such that

∥θ1(ù, ψ)∥ ≤ p(ù)Ω(∥ψ∥B , (ù, ψ) ∈ J × B.

Also, we have the following condition.

(A2) [
∥z1∥ +N∥ϕ(0)∥ + Ñ [∥ζ∥ + Lθ2∥ϕ∥ + L̃θ2 ] +Na(Lθ2ρ+ L̃θ2)

+N

∫ a

0
p(s)Ω(ρ)ds+ Ñ

m∑
k=1

(α1
k(ρ) + α2

k) +N
m∑
k=1

(β1k(ρ) + β2k)
]

= M∗.

Theorem 3.2. Assume that θ1 verify condition (A1) and condition (A2), (H2)
are satisfied. Also, the following condition hold:

(a) For every ù ∈J and every r > 0, the set U(r, ù) = {S(ù, s)θ1(s, ψ) : s ∈
[0, a], ψ ∈ Br(0,B)} is relatively compact in X.

(b) The maps Ik, Jk : B → X are completely continuous and there exist positive
constants αi

k, β
i
k, i = 1, 2, k = 1, 2, . . . ,m, such that ∥Ik(ψ)∥ ≤ α1

k ∥ψ∥B +
α2
k and ∥Jk(ψ)∥ ≤ β1k ∥ψ∥B + β2k, for all ψ ∈ B.

(c) The constant µ = ÑaKaLg + Ka
∑m

k=1(Ñα
1
k + Nβ1k) < 1 and

∫∞
c

ds
Ω(s) >

KαN
1−µ

∫ a
0 p(s)ds where c = 1

1−µ [N [∥ζ∥+Lθ2∥ϕ∥+L̃θ2 ]+ÑaKaL̃θ2+aNM1M
∗+

c1 +Ka
∑m

k=1(Ñα
2
k +Nβ2k)]. Then the (1)-(4) is controllable on J .
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Proof. we define the map Γ on the space θ2(a) as in eq (18). To prove the
controllability of the problem (1)-(4), we must show that the operator Γ has a
fixed point. This fixed point is then a mild solution of the system (1)-(4). From
the assumptions, it is easy to see that Γ is well defined and continuous.

In order to apply Lemma 2.2, we need to obtain a priori bound for the
solutions of the integral equation y = λΓ(y), λ ∈ (0, 1). To this end, let yλ be a
solution of λΓ(y) = y, λ ∈ (0, 1). Using the notation νλ = sup0≤s≤ù ∥yλs +ϕ̃s∥B ≤
Ka∥yλ∥s + ∥ϕ̃s∥B,a ≤ Kar + c1 = ρ, we observe that

∥yλ(ù)∥≤N [∥ζ∥+Lθ2∥ϕ∥+L̃θ2 ]+ÑaKa(Lθ2v
λ(s) + L̃θ2) +N

∫ a

0
p(s)Ω(vλ(s))ds

+ aNM1 [M∗] +
∑

0<ùk<t

(Ñα1
k +Nβ1k)vλ(ùk) +

∑
0<ùk<t

(Ñα2
k +Nβ2k).

Hence follows that

υλ(ù) ≤ N [∥ζ∥ + Lθ2∥ϕ∥ + L̃θ2 ] + ÑaKaL̃θ2 +KaN

∫ t

0
p(s)Ω(vλ(s))ds

+ aNM1M
∗ + sup

0≤s≤t
∥ϕs∥B +Ka

m∑
k=1

(Ñα2
k +Nβ2k) + µvλ(t)

which yields

υλ(ù) ≤ c+
KaN

1 − µ

∫ ù

0
p(s)Ω(vλ(s))ds.

Denoting by ω′
λ(t) the right-hand side of the previous inequality, we see that

ω′
λ(ù) ≤ KaN

1 − µ
[p(ù)Ω(ωλ(ù))],

and subsequently, upon integrating over [0, ù], we obtain∫ ωλ(ù)

c

ds

Ω(s)
≤ KaN

1 − µ

∫ ù

0
p(s)ds ≤ KaN

1 − µ

∫ a

0
p(s)ds <

∫ ∞

c

ds

Ω(s)
.

This estimate permits us to conclude that the set of functions {ωλ : λ ∈ (0, 1)}
is bounded and, in turn, that {yλ : λ ∈ (0, 1)} is bounded in θ2(a). Next we
show that Γ is completely continuous. To clarify this proof, we decompose Γ in
the form Γ = Γ1 + Γ2, where

Γ1y(ù) =

∫ ù

0
S(ù, s)[θ2(s, ys + ϕ̃s) +Bu(s)]ds,

Γ2y(ù) = S(ù, 0)[ζ − θ1(0, ϕ)] −
∫ ù

0
C(ù, s)θ1(s, ys + ϕ̃s)ds

+
∑

0<ùk<ù

C(ù, ùk)Ik(yùk
+ ϕ̃ùk

) +
∑

0<ùk<ù

S(ù, ùk)Jk(yùk
+ ϕ̃ùk

), ù ∈ J.
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Using the hypotheses, condition (b) and Lemma 2.1, we obtain that Γ1 is con-
tinuous and that Γ2 is completely continuous. In order to use the Ascoli-Arzela
theorem we prove that Γ1 takes bounded sets into relatively compact ones. As
above, Br = Br(0, θ2(a)) and ∥yù + ϕ̃ù∥B ≤ Kar+ c1 = ρ for ù ∈ J . And also,
∥(Bu)(s)∥ ≤ B0.

From the mean value theorem , we see that

Γ1y(ù) ∈ ùco {S(ù, s)θ1(s, ψ) : s ∈ [0, a], ∥ψ∥B ≤ ρ}

which implies that the set {Γ1y(ù) : y ∈ Br(0, θ2(a))} is relatively compact for
each ù ∈ J . Moreover, from

Γ1y(ù+ h) − Γ1y(ù) =

∫ ù

0
[S(ù+ h, s) − S(ù, s)][θ2(s, ys + ϕ̃) + (Bu)(s)]ds

+

∫ ù+h

ù
S(ù+ h, s)[θ2(s, ys + ϕ̃s) + (Bu)(s)]ds

and using that S(., s) verifies a Lipschitz condition, we obtain that

∥Γ1y(ù+ h) − Γ1y(ù)∥≤ |h|N1

∫ a

0
[p(s)Ω(ρ)+B0]ds+N

∫ ù+h

ù
[p(s)Ω(ρ) +B0]ds

which implies that ∥Γ1y(t+ h) − Γ1y(t)∥ → 0 as h → 0uniformly for y ∈
Br(0, g(a)) . From this we infer that Γ1y(ù) : y ∈ Br(0, θ2(a) is relatively com-
pact in G(a) and consequently that Γ1 is completely continuous. This completes
the proof of the assertion that the map Γ is completely continuous.

By an application of Lemma 2.1, we conclude that there exists a fixed point
y of Γ. It is clear that the function ϑ = y + ϕ̃ is a mild solution of the system
(1)-(4). This completes the proof.
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Abstract. We introduce θ-closure of a set with respect to an ideal using the local
closure function and obtain some properties.We also introduce θ-convergence of a filter
and T2 1

2
spaces with respect to an ideal and by using these concepts and other separation

axioms obtain the sufficient conditions for a set to be θ-closed with respect to an ideal
and also obtain some characterizations of local closure function. Finally, the sufficient
conditions for the equivalence of θ-closure with respect to an ideal and closure in ∗-
topology are given.

Keywords: Iθ-closed, T2 mod I, T2 1
2

mod I, I-compact, I-regular, almost-I-regular,
I-QHC, Iθ convergence, ideal.

1. Introduction

In [15], Veličko introduced strong form of closed sets called θ-closed sets and
in [7], Janković utilized these sets to obtain new characterizations of separation
axioms. On the other hand in [1], Al-Omari and Noiri defined the local closure
function stronger than the local function with respect to ideal topological space
and obtained various properties of it. The concept of ideals has arisen due to
Kuratowski [9] to study various topological properties. An ideal I on a topolog-
ical space (X, τ) is a collection of subsets of X such that it is closed downwards
(i.e. every subset of member of I is in I) and closed under finite union. This
concept was further studied by Vaidyanathaswamy who obtained a new topology
τ∗(I, τ) called the ∗-topology which is generally finer than the original topology
having the corresponding Kuratowski closure operator cl∗(A) = A ∪ A∗(I, τ)
[13], where A∗(I, τ) = {x ∈ X : U ∩ A /∈ I for every open nhd. U of x in X}
called a local function[9] of A with respect to I and τ and β = {V −A : V ∈ τ
and A ∈ I} is a basis for the ∗-topology τ∗. We will write A∗ for A∗(I, τ) and
τ∗(I) or τ∗ for τ∗(I, τ).

∗. Corresponding author
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For a topological space (X, τ) and any subset A of X, a point x ∈ X is said
to be in the θ-closure of A if for every open nhd. U of x in X, U ∩ A ̸= ∅
denoted by clθ(A)[15] and in θ-interior of A if there exists a nhd. U of x
such that U ⊂ U ⊂ A denoted by intθ(A). The subset A is said to be θ-
closed (θ-open) if clθ(A) = A (intθ(A) = A). Also the collection of all θ-
open sets forms a topology denoted by τθ which is generally weeker than the
original topology. And for an ideal topological space (X, τ, I) for any subset A
of X, the local closure function Γ(A)(I, τ) with respect to I and τ is given as
Γ(A)(I, τ) = {x ∈ X : U ∩ A /∈ I for every τ -nhd. U of x in X } [1] and the
operator ΨΓ(A) = X − Γ(X − A) = {x ∈ X : there exist τ -nhd. U of x such
that U − A ∈ I }. Also note that the collection σ = {A ⊂ X : A ⊂ ΨΓ(A)}
forms a topology for X [1]. Further a topological space (X, τ) is said to be S2
[2] if for any two distinct points x, y of X, whenever one of them has an open set
not containing the other, then there exist disjoint open subsets containing them
and a space is said to be Urysohn space or T2 1

2
space [5] if for every distinct

points x, y of X there exist open subsets U, V containing x, y respectively such
that cl(U)∩ cl(V ) = ∅. Also an ideal space (X, τ, I) is said to be T2 mod I [11]
if for any two distinct points x, y of X, there exist open sets U and V such that
x ∈ U, y ∈ V and U ∩ V ∈ I. An ideal space (X, τ, I) is said to be I-compact
[10] if for every open cover {Gα : α ∈ ∆} of X, there exists a finite subset ∆0 of
∆ such that X −

∪
{Gα : α ∈ ∆0} ∈ I and is said to be I-regular [4] if for any

closed subset F of X and any point x ∈ X whenever x /∈ F , there exist disjoint
open subsets U, V such that x ∈ U and F − V ∈ I. Also we have the following:

Definition 1.1 ([6]). Let (X, τ, I) be an ideal space then I is said to be codense
if τ ∩ I = ∅.

Example 1.1. Let X = {a, b, c} with τ = {∅, {b, c}}. Then the following are
codense ideals:

(a) I = {∅, {a}, {c}, {a, c}}

(b) I = {∅, {a}, {b}, {a, b}}

(c) I = {∅, {a}}

(d) I = {∅, {b}}

(e) I = {∅, {c}}

Definition 1.2 ([15]). Let (X, τ) be any topological space and F be any filter
on X. Then for any point a ∈ X, F is said to be θ-convergent to a denoted by
F →θ a if for every open set U containing a, U ∈ F .

Lemma 1.1 ([1]). Let (X, τ, I) be an ideal space. Then for any subset A of X
the following holds:

(a) A∗ ⊂ Γ(A)(I, τ) ⊂ clθ(A).
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(b) Γ(A)(I, τ) = cl(Γ(A)(I, τ)).

Lemma 1.2 ([6]). Let (X, τ, I) be an ideal space. then the following are equiv-
alent :

(a) I is codense.

(b) X = X∗.

(c) For every U ∈ τ , U ⊆ U∗.

Theorem 1.1 ([11]). Let (X, τ, I) be an ideal space. Then X is I-regular if
and only if for each x ∈ X and open set U containing x , there is an open set
V containing x such that V − U ∈ I.

Notation. Throughout this paper (X, τ) will denote topological space and for
an ideal I on X, (X, τ, I) is called an ideal space. When there is no chance of
confusion, by a open subset (open nhd.) of X, we will mean open set in the
topological space (X, τ). For a subset A of X, cl(A) or A and int(A) will denote
the closure of A, interior of A in (X, τ), respectively, cl∗(A) and int∗(A) will
denote the closure of A, interior of A in (X, τ∗), respectively, and X −A = AC

will denote the complement of A in X.
In section 2 of this paper, firstly for any subset of an ideal topological space

(X, τ, I), we define θ-closure of a set using the local closure function and obtain
its relationship with other θ-closure (closure) of a set. We prove that unlike
in the case of local function, the local closure function of any subset A of X
with respect to τ and τ∗ need not be same (Example 2.2 below), but in case of
codense ideal the local closure function of any subset A of X with respect to
τ and τ∗ coincide (Theorem 2.1 below). Further in Section 3, we introduce θ-
convergence of a filter and T2 1

2
spaces with respect to an ideal and obtain various

properties. We also obtain the characterization of local closure function in terms
of Iθ convergence of a filter (Theorem 3.2 below) and the characterization of
T2 1

2
space with respect to an ideal in terms of Iθ convergence of a filter and local

closure function (Theorems 3.5 and 3.6 below). Finally, the sufficient conditions
for the equivalence of Iθ-closure and closure in ∗-topology (Theorems 2.4 and 2.5
below), for the Iθ-closedness of a set (Theorems 2.3 and 3.8 below) and for the
Iθ-closedness of Iθ-closure of a set (Theorem 2.6 below) are obtained. Examples
are given throughout the paper to give counterexamples and illustrations.

2. Results

We begin by defining the θ-closure of a set with respect to an ideal (briefly
Iθ-closure) for any subset A of X in an ideal topological space (X, τ, I).

Definition 2.1. Let (X, τ, I) be an ideal space. For any subset A of X, θ-
closure of A with respect to an ideal I is given by clIθ(A) = A ∪ Γ(A)(I, τ).
The subset A is said to be Iθ-closed if clIθ(A) = A.
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Remark 2.1. Let (X, τ, I) be an ideal space. For any subset A of X, define
IntIθ(A) = X − clIθ(X − A) so that IntIθ(A) = {x ∈ A : U − A ∈ I for some
τ -nhd. U of x in X }. The subset A is said to be Iθ-open if IntIθ(A) = A. It
can be easily checked that the collection of Iθ-open sets forms a topology. In our
further results we denote it by τIθ . Also note that in view of Lemma 1.1(a), we
have τθ ⊂ τIθ ⊂ τ∗.

Even though using Lemma 1.1(b), it follows that clIθ(A) is closed subset of
X, but the following Example 2.1, shows that it need not be Iθ closed.

Example 2.1. Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and I = {∅, {a}}.
Then clIθ({b}) = {b, c} and clIθ({b, c}) = {a, b, c}. Hence {b} is not Iθ closed.

In [6], Janković and Hamlett proved that for any subset A of X in an ideal
space (X, τ, I), A∗(I, τ) = A∗(I, τ∗(I)). So the natural question arises is the
result true for the local closure function. The following Theorem 2.1 shows that
for codense ideals the result also holds for the local closure function. Before this
we prove the following Lemma:

Lemma 2.1. Let (X, τ, I) be an ideal space. Then cl∗(G) − I ⊂ cl∗(G− I) for
any open subset G of X and I ∈ I.

Proof. Let G be any open subset of X and I ∈ I. Let x ∈ X be such that
x ∈ cl∗(G) − I and H be any τ∗-nhd. of x, then H − I is also τ∗-nhd. of x
(since every I ∈ I is τ∗-closed and x /∈ I). Therefore, x ∈ cl∗(G) implies that
(H − I) ∩G ̸= ∅ and so H ∩ (G− I) ̸= ∅. Hence x ∈ cl∗(G− I).

Theorem 2.1. Let (X, τ, I) be an ideal space where I is codense. Then Γ(A)(I, τ)
= Γ(A)(I, τ∗) for any subset A of X.

Proof. Let A be any subset of X. Then it can be seen easily that Γ(A)(I, τ∗) ⊂
Γ(A)(I, τ) since τ ⊂ τ∗ and I is closed downwards. Conversely, let x ∈ X such
that x /∈ Γ(A)(I, τ∗), so there exist τ∗ nhd. G of x such that cl∗(G) ∩ A ∈ I.
Since β = {V −A : V ∈ τ and A ∈ I} is a basis for the ∗-topology τ∗, so there
exist basic open set U − I such that x ∈ U − I ⊂ G and so cl∗(U − I) ∩A ∈ I.
Now using Lemma 2.1, it follows that cl∗(U) ∩ A ∈ I. Further I is codense, so
cl∗(U) = cl(U) for every open subset U of X. Hence x /∈ Γ(A)(I, τ).

The following Example 2.2 shows that if the ideal is not codense then The-
orem 2.1 need not be true.

Example 2.2. LetX = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and I = {∅, {a}, {b},
{a, b}}. So τ∗ = ℘(X). Then Γ{c}(I, τ∗) = {c} and Γ{c}(I, τ) = {a, b, c}.

Theorem 2.2. The topology τ∗(I, τθ), the local function of which is given by
A∗(I, τθ) = {x ∈ X : U ∩ A /∈ I for every nhd. U of x in (X, τθ)} is generally
coarser than τIθ .
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Proof. For this we will prove clIθ(A) ⊂ cl∗(A)(I, τθ). Let x ∈ X be any
element such that x /∈ cl∗(A)(I, τθ). So there exist τθ open subset U of x such
that U ∩ A ∈ I. Therefore, U is θ-open implies that there exist open subset V
of x such that cl(V ) ⊂ U and so cl(V ) ∩A ∈ I. Hence x /∈ clIθ(A).

Corollary 2.1. Let (X, τ, I) be an ideal space. Then for any subset A of X,
cl∗(A)(I, τ) ⊂ clIθ(A) ⊂ cl∗(A)(I, τθ) ⊂ clθ(A). So every τθ-open set is (τθ)

∗-
open, (τθ)

∗-open set is Iθ-open and hence τ∗-open.

Here a natural question arise given any ideal space (X, τ, I), is there can be
any relationship between ∗-topology of θ-open sets and θ-open sets with respect
to τ∗. The following Example 2.3 shows that there is no relationship between
the topological spaces τ∗(I, τθ) and (τ∗)θ, where (τ∗)θ means θ-open sets with
respect to τ∗.

Example 2.3. LetX = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and I = {∅, {b}, {c},
{b, c}}. So τ∗ = {∅, {a}, {b}, {a, b}, {a, c}, X}. Then τθ = {∅, X} and so τ∗(I,
τθ) = {∅, {a}, {a, b}, {a, c}, X}. But (τ∗)θ = {∅, {b}, {a, c}, X}.

In an ideal space (X, τ, I) even though cl∗(A)(I, τ) ⊂ clIθ(A) i.e. every Iθ-
open set is τ∗-open but the following example shows that there is no relationship
between Iθ-open and τ -open subset of X.

Example 2.4. Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and I = {∅, {a}}.
Then it can be easily checked that τIθ = {∅, {b, c}, X}.

In [6], Janković and Hamlett proved that A∗(If , τ) = Ad if and only if
(X, τ) is T1 (where If denotes the ideal of finite subsets of X and Ad denotes
the derived set of A in (X, τ)). Therefore, we have the immediate results in the
following:

Note 1. Let (X, τ, If ) be an ideal space and (X, τ) be T1. Then cl(A) =
cl∗(A) ⊂ clIθ(A) ⊂ cl∗(I, τθ)(A) ⊂ clθ(A) for any subset A of X.

Further in [6], it is shown that for an ideal space (X, τ, Icd), where Icd =
{A ⊂ X : Ad = ∅}, Ad ⊂ A∗. So we have

Note 2. Let (X, τ, Icd) be an ideal space. Then cl(A) = cl∗(A) ⊂ clIθ(A) ⊂
cl∗(I, τθ)(A) ⊂ clθ(A) for any subset A of X.

Therefore, the above Notes 1 and 2 give the relationship between closed sets and
Iθ closed sets for particular ideal of finite sets and ideal of closed and discrete
sets.

Further we will give characterizations of Iθ-closed sets using separation ax-
ioms.
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It is well known that every compact set in T2 space is closed and in [7],
Janković proved the stronger result that a space is T2 if and only if every compact
set is θ-closed. On the other hand in [11], Sivaraj and Renukadevi proved that
an I-compact set in T2 mod I space is τ∗-closed. Therefore, analogously the
following Theorem 2.3 shows the stronger result that every I-compact set in T2
space is Iθ closed.

Theorem 2.3. Let (X, τ, I) be an ideal space and (X, τ) be T2. Then for any
I-compact subset A of X, A is Iθ closed.

Proof. We have to prove that clIθ(A) ⊂ A. Let x ∈ X be any element such
that x /∈ A. Since X is T2, so for all y ∈ A, there exist disjoint open subsets
Uy, Vy containing x and y respectively. This implies that A ⊂

∪
y∈A Vy. Now A

is I-compact, so there exist finite subset of A such that A−
∪n

i=1 Vyi ∈ I. Let
V =

∪n
i=1 Vyi and U =

∩n
i=1 Uyi , then U ∩ V = ∅ and so U ∩ V = ∅. Therefore,

(U ∩ V )
∪

(A− V ) ∈ I and so U ∩A ∈ I. Hence x /∈ clIθ(A).

The following Example shows that the result need not be true if we replace
T2 space by T2 mod I space.

Example 2.5. LetX = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X} and I = {∅, {a}, {b},
{a, b}}. Then X is T2 mod I space but not T2. Also X is finite, so every subset
of X is I-compact. But clIθ({c}) = {a, b, c}. Hence {c} is not Iθ closed.

The following Example 2.6 shows that converse of Theorem 2.3 need not be
true.

Example 2.6. Let X = {a, b, c}, τ = {∅, {a}, {b, c}, X} and I = {∅, {b}, {c},
{b, c}}. Then it can be easily checked that every subset of X is Iθ closed. But
X is not T2.

The following Theorem 2.4 gives the sufficient condition for the equivalence
of ∗-closure and Iθ-closure.

Theorem 2.4. Let (X, τ, I) be S2 ideal space, then cl∗(A) = clIθ(A) for every
I-compact subset A of X.

Proof. Let A be any I-compact subset of X. Since cl∗(A) ⊂ clIθ(A), we only
need to prove clIθ(A) ⊂ cl∗(A). Also if A ∈ I, then trivially cl∗(A) = clIθ(A).
Therefore, consider the case when A /∈ I. Let y /∈ cl∗(A), so there exist open
set U containing y such that U ∩A ∈ I and so U ∩A = I for some I ∈ I. This
implies that U ∩(A−I) = ∅. Now X is S2, so for all z ∈ A−I, y has an open set
U not containing z, so there exist open sets Vz and Wz such that z ∈ Vz, y ∈Wz

and Vz ∩Wz = ∅. Therefore, A ⊂ U ∪
∪

z∈A−I Vz, but A is I-compact implies
that there exist finite subset of A− I such that A−

∪n
i=1 Vzi ∈ I (without loss

of generality, we can remove the open subset U , since U ∩ A ∈ I implies that
(A −

∪n
i=1 Vzi) ∩ U ∈ I). Let G =

∪n
i=1 Vzi and H =

∩n
i=1Wzi . Now for all
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i = 1, 2, ...n, Vzi ∩Wzi = ∅ implies that G ∩ H = ∅ and so H ∩ G = ∅. Since
A − G ∈ I, so H ∩ A ∈ I. Therefore, H is the required open set containing
y such that H ∩ A ∈ I and so y /∈ clIθ(A). Hence cl∗(A) = clIθ(A) for every
I-compact A of X.

Even though we have seen in Example 2.4 that there is no relationship be-
tween closed and Iθ-closed sets. The following Corollary 2.2 gives the sufficient
condition for a closed set to be Iθ-closed.

Corollary 2.2. Let (X, τ, I) be S2 ideal space, then clIθ(A) ⊂ cl(A) for every
I-compact subset A of X.

Proof. Proof follows from Theorem 2.4.

The following Theorem 2.5 shows that for I-regular spaces the concept of
∗-closure and Iθ-closure coincide.

Theorem 2.5. Let (X, τ, I) be an ideal space. Then X is I-regular if and only
if Γ(A)(I, τ) ⊂ A∗ for any subset A of X. Hence in particular, X is I-regular
if and only if clIθ(A) = cl∗(A) for any subset A of X.

Proof. Firstly, let X be I-regular space and x ∈ X be any element such that
x /∈ A∗. So there exist open subset U of x in X such that U ∩ A ∈ I. Since
X is I-regular, so by Theorem 1.1 there exist open subset G of X such that
x ∈ G ∈ G and G−U ∈ I. Therefore, (G−U)

∪
(U ∩A) ∈ I and so G∩A ∈ I.

Hence x /∈ Γ(A)(I, τ). Conversely, let F be any closed set and a ∈ X such that
a /∈ F . Since F is closed and hence τ∗-closed, so Γ(F )(I, τ) ⊂ F ∗ ⊂ F implies
that a /∈ Γ(F )(I, τ). Therefore, there exist open subset G of a in X such that
G∩F ∈ I. Hence G and (G)C are the required disjoint open subsets of X such
that a ∈ G and F − (G)C ∈ I and so X is I-regular.

Corollary 2.3. Let (X, τ, I) be an ideal space and X be I-regular space, then
clIθ(A) is Iθ closed for every subset A of X.

Proof. Proof follows from Theorem 2.5, since X is I-regular implies cl∗(A) =
clIθ(A) for any subset A of X.

Corollary 2.4. Let (X, τ, I) be an ideal space. Then X is I-regular if and only
if clIθ(A) ⊂ cl(A) for any subset A of X.

Proof. Proof follows from Theorem 2.5 and the fact that cl∗(A) ⊂ cl(A) for
any subset A of X.

Lemma 2.2. Let (X, τ, I) be an ideal space. Then clIθ(A) =
∩

G∈τ{clIθ(G) :
A ∩GC ∈ I} for any subset A of X.
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Proof. Let
∩

G∈τ{clIθ(G) : A ∩ GC ∈ I} = T . Firstly, let x /∈ T , then there
exist open G such that A∩GC ∈ I and x /∈ clIθ(G). Therefore, there exist open
subset V containing x such that V ∩ G ∈ I and so (A ∩ GC) ∪ (V ∩ G) ∈ I.
Hence V ∩ A ∈ I implies that x /∈ clIθ(A). Conversely, let x /∈ clIθ(A), then

there exist open V containing x such that V ∩ A ∈ I and so (V
C

)C ∩ A ∈ I.

Therefore, V ∩V C
= ∅ implies that x /∈ clIθ(V

C
) and so x /∈ T . Hence clIθ(A) =∩

G∈τ{clIθ(G) : A ∩GC ∈ I}.

Now we will prove the stronger result than Corollary 2.3 that Iθ-closure of
any subset A of X is Iθ closed even for almost-I-regular spaces where

Definition 2.2. An ideal space (X, τ, I) is said to be almost-I-regular if for
any point x and a regular closed set F not containing x there exist disjoint open
subsets G,H such that x ∈ G , F −H ∈ I.

It can be seen easily that every I-regular space is almost-I-regular but the
converse need not be true, since every regular closed set is closed and closed set
need not be regular closed.

Theorem 2.6. Let (X, τ, I) be an ideal space and X be almost-I-regular space,
then clIθ(A) is Iθ closed for any subset A of X.

Proof. Let A be any subset of X. We only need to prove that clIθ(clIθ(A)) ⊂
clIθ(A). Firstly, we will prove that clIθ(clIθ(U)) ⊂ clIθ(U) for any open subset
U of X. Let x /∈ clIθ(U). It can be easily checked that clIθ(U) is regular closed
set, so there exist disjoint open sets G,H such that x ∈ G and clIθ(U)−H ∈ I,
since X is almost-I-regular space. Now G∩H = ∅ and so G∩H = ∅. Therefore,
(clIθ(U) ∩HC)

∪
(G ∩H) ∈ I and so G ∩ (clIθ(U)) ∈ I. This implies that x /∈

clIθ(clIθ(U)) and so clIθ(clIθ(U)) ⊂ clIθ(U) for any open subset U of X. Now
let x /∈ clIθ(A), then by Lemma 2.2 there exist open subset G of X such that
A ∩ GC ∈ I and x /∈ clIθ(G) and so x /∈ clIθ(clIθ(G)). Also from Lemma 2.3,
it follows that clIθ(A) ⊂ clIθ(G) and so clIθ(clIθ(A)) ⊂ clIθ(clIθ(G)). Hence
x /∈ clIθ(clIθ(A)).

3. θ-convergence and T2 1
2
spaces with respect to an ideal

Now we will discuss Iθ-convergence of a filter.

Definition 3.1. Let (X, τ, I) be any ideal space and the filter F on X with
F ∩ I = ∅. Let a ∈ X be any element then F is said to be Iθ-convergent to a,
denoted by F →Iθ a if for every open subset U containing a, there exists F ∈ F
such that F − U ∈ I. We denote the collection of all such points by Iθ-lim F .

It can be seen easily that F →θ a implies F →Iθ a, but the converse need
not be true as can be seen from the example below:
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Example 3.1. Let X = {a, b}, τ = {∅, {a}, {b}, X}, I = {∅, {b}} and F = {X}.
Then F →Iθ a, but F does not θ-converge to a, since cl{a} = {a, c} /∈ F .

Remark 3.1. Let (X, τ, I) be an ideal space where I = ∅, then F →θ a if and
only if F →Iθ a.

Even though we have seen above F →Iθ a does not imply F →θ a, but the
following result shows that in case of ultrafilter both concepts coincide.

Theorem 3.1. Let (X, τ, I) be an ideal space and F be an ultrafilter with F∩I =
∅, then F →Iθ a if and only if F →θ a.

Proof. Let G be open subset of X containing a. Then there exists F ∈ F such
that F − G ∈ I since F →Iθ a. Therefore, F − G = I for some I ∈ I and so
F ⊂ G ∪ I. Thus G ∪ I ∈ F . Further, F is ultrafilter implies that G ∈ F as
I /∈ F . Hence F →θ a.

For an ideal space (X, τ, I) and any subset A of X, the following theorem
gives various characterizations for a point to be in the local closure function of
A in terms of θ-convergence (Iθ-convergence) of a filter.

Theorem 3.2. Let (X, τ, I) be an ideal space and A be any subset of X. Then
the following conditions are equivalent:

(a) x ∈ Γ(A)(I, τ).

(b) there exists a filter F containing A with F ∩ I = ∅ such that F →θ x.

(c) there exists a filter F containing A with F ∩ I = ∅ such that F →Iθ x.

Proof. (a)⇒(b): Let x ∈ Γ(A)(I, τ), so for every open subset G containing x,
G∩A /∈ I. Consider the filter F generated by the filterbase F(B) = {G∩A : G
is open subset of X containing x }. Therefore, G∩A ⊂ G for every open subset
G containing x and G ∩A ⊂ A implies that G ∈ F and A ∈ F . Hence F is the
required filter containing A such that F →θ x.

(b)⇒(c): is obvious.
(c)⇒(a): Let G be open subset of X containing x. Then by (c), there exists

F ∈ F such that F −G ∈ I and so (A∩F )−G ∈ I. On contrary, let G∩A ∈ I
then G ∩ A ∩ F ∈ I and so ((A ∩ F ) − G) ∪ ((A ∩ F ) ∩ G) ∈ I. This implies
that A ∩ F ∈ I, which contradicts that F ∩ I = ∅. Hence G ∩ A /∈ I and so
x ∈ Γ(A)(I, τ).

Further, we introduce T2 1
2

mod I spaces and obtain its various properties

and characterizations.

Definition 3.2. An ideal space (X, τ, I) is said to be T2 1
2

mod I if for any two

distinct points x, y of X, there exist open sets U and V such that x ∈ U, y ∈ V
and U ∩ V ∈ I.
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Since ∅ ∈ I, it can be easily seen that every T2 1
2

space is T2 1
2

mod I, but

the following Example 3.6 shows that the converse need not be true.

Example 3.2. Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, {b, c}, X}, I = {∅, {b},
{c}, {b, c}}. Then X is T2 1

2
mod I but not T2 1

2
.

Theorem 3.3. If an ideal space (X, τ, I) is T2 1
2
mod I and I ⊂ J then (X, τ,J )

is T2 1
2
mod J .

Proof. Proof is obvious and hence is omitted.

The following Example 3.3 shows that if (X, τ∗) is T2 1
2
, then X need not be

T2 1
2

mod I.

Example 3.3. Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X}, I = {∅, {a}, {b},
{a, b}}. So τ∗ = ℘(X) and hence (X, τ∗) is obviously T2 1

2
, but X is not T2 1

2

mod I. Since {a} ∩ {b} = {a, c} ∩ {b, c} = {c} /∈ I.

Note: It can be seen easily that if (X, τ) is T2 1
2
, then (X, τ∗) is also T2 1

2
. But

the above Example 3.3 shows that the converse need not be true.

Even though we have seen that if (X, τ∗) is T2 1
2
, then X need not be T2 1

2

mod I. but the following Theorem 3.4 shows that for codense ideals (X, τ∗) is
T2 1

2
implies X is T2 1

2
mod I.

Theorem 3.4. Let (X, τ, I) be an ideal space where I is codense and (X, τ∗)
be T2 1

2
then X is T2 1

2
mod I.

Proof. Let x, y ∈ X be any two distinct elements then (X, τ∗) is T2 1
2

implies

there exists basic open subsets G − I,H − J where G,H are open in X and
I, J ∈ I such that x ∈ G − I, y ∈ H − J and cl∗(G − I) ∩ cl∗(H − J) =
∅ and so by Lemma 2.1, [cl∗(G) − I] ∩ [cl∗(H) − J ] = ∅. This implies that
(cl∗(G) ∩ cl∗(H)) − (I ∪ J) = ∅. Therefore, cl∗(G) ∩ cl∗(H) ⊂ (I ∪ J) ∈ I. Also
I is codense implies that cl∗(G) = cl(G) for every open subset G of X. Hence
cl(G) ∩ cl(H) ∈ I and so X is T2 1

2
mod I.

The following Example 3.4 shows that if X is T2 1
2

mod I, then (X, τ∗) need

not be T2 1
2
, even if I is codense. Hence in particular, (X, τ) is not T2 1

2
.

Example 3.4 ([12]). Consider the space X = ℜ2 with an additional point 0∗

with double origin topology τ is given as follows: Neighbourhoods of points
other than 0 and 0∗ are the usual open sets of ℜ2 − {0} and for the basis of
neighbourhoods of 0 and 0∗, take Vn(0) = {(x, y) ∈ ℜ2 : x2 + y2 < 1

n2 , y >
0} ∪ {0} and Vn(0∗) = {(x, y) ∈ ℜ2 : x2 + y2 < 1

n2 , y < 0} ∪ {0∗}, where n ∈ N
and I = ℘(ℜ) ≡ collection of all subsets of real numbers. Then X is not T2 1

2
,
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since {0} and {0∗} do not have disjoint closed nhds. as any two nhds. of {0}
and {0∗} contain a segment of the x-axis in the intersection of their closures.
But I = ℘(ℜ) implies that X is T2 1

2
mod I. Further it can be easily seen that

nhds. of {0} and {0∗} are same in the given topology τ and its ∗ topology τ∗

(since τ∗ has basis β = {V − A : V ∈ τ and A ∈ I} and any two nhds. of {0}
and {0∗} do not contain a segment of the x-axis). Also I is codense implies
cl∗(U) = cl(U) for every open subset U of X. Hence (X, τ∗) is not T2 1

2
.

Theorem 3.5. An ideal space (X, τ, I) is T2 1
2
mod I if and only if for all

convergent filter F with F ∩ I = ∅, Iθ-lim F is unique.

Proof. Firstly, let X be T2 1
2

mod I and F be any convergent filter with F∩I =

∅ Let x ̸= y be any two elements of X such that x, y ∈ Iθ-lim F . Therefore,
X is T2 1

2
mod I implies that there exist open subsets U, V of X containing x, y

respectively such that U ∩ V ∈ I. Further x, y ∈ Iθ-lim F implies that there
exists F1, F2 ∈ F such that F1 −U,F2 − V ∈ I and so (F1 ∩F2)− (U ∩ V ) ∈ I.
Thus ((F1 ∩F2)− (U ∩V ))∪ (U ∩V ) ∈ I and so F1 ∩F2 ∈ I, which contradicts
that F does not contain the members of I. Hence Iθ-lim F is unique.

Conversely, let x ̸= y be any two elements of X and there does not exist any
open subsets U, V containing x, y respectively such that U ∩ V ∈ I. Therefore,
it can be easily checked that F is the filter generated by the filterbase F(B) =
{U ∩ V : U, V are open subsets of X containing x, y respectively }. Further for
every open subsets U, V containing x, y respectively, U ∩V ⊂ U and U ∩V ⊂ V
implies that U ∈ F and V ∈ F . This implies that x, y ∈ Iθ-lim F , contradicting
the fact that Iθ-lim F is unique. Hence X is T2 1

2
mod I.

Theorem 3.6. Let (X, τ, I) be an ideal space. Then the following are equivalent:

(a) (X, τ, I) is T2 1
2
mod I.

(b) If x ∈ X, then for each y ̸= x, y /∈ Γ(G)(I, τ) for some open subset G
containing x.

(c)
∩
{Γ(G)(I, τ) : G is open subset containing x } = ∅ or {x} for all x ∈ X.

Proof. (a)⇒(b): Let x ∈ X and y ̸= x be any element. Then (a) implies that
there exists open subsets G and H such that x ∈ G, y ∈ H and G ∩ H ∈ I.
Therefore, y /∈ Γ(G)(I, τ).

(b)⇒(c): Let x ∈ X and y ̸= x be any element. Then by (b), y /∈ Γ(G)(I, τ)
for some open subset G containing x and so y /∈

∩
{Γ(G)(I, τ) : G is open subset

containing x }. Hence (c) holds.
(c)⇒(a): Let x, y be two distinct elements of X.
Then by (c), y /∈

∩
{Γ(G)(I, τ) : G is open subset containing x } and so there

exist open subset G containing x such that y /∈ Γ(G)(I, τ). This implies that
there exist open subset H containing y such that H ∩ G ∈ I. Hence, (X, τ, I)
is T2 1

2
mod I.
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In [3], Gupta and Noiri introduced QHC spaces with respect to an ideal
written I-QHC(where An ideal space (X, τ, I) is said to be I-QHC if for every
open cover {Gα : α ∈ ∆} of X, there exists a finite subset ∆0 of ∆ such that
X −

∪
{cl(Gα) : α ∈ ∆0} ∈ I). We now characterize I-QHC spaces in terms of

Iθ closure of a set and also prove that every I-QHC set in T2 1
2

mod I space is

Iθ closed.

Theorem 3.7. Let (X, τ, I) be an ideal space. Then the following are equivalent:

(a) (X, τ, I) is I-QHC.

(b) for every filter F with F ∩ I = ∅,
∩

F∈F Γ(F )(I, τ) ̸= ∅.

Proof. (a)⇒(b): Let F be any filter with F∩I = ∅ such that
∩

F∈F Γ(F )(I, τ) =
∅. Therefore, for all x ∈ X there exist open set Gx containing x and Fx ∈ F
such that Gx∩Fx ∈ I. Now X =

∪
x∈X Gx, so (a) implies that there exist finite

subset of X such that X −
∪n

i=1Gxi ∈ I. Let G =
∪n

i=1Gxi and F =
∩n

i=1 Fxi ,
then G ∩ F ∈ I. Therefore, (G ∩ F ) ∪ (X −G) ∈ I and so F ∈ I contradicting
the fact that F ∩I = ∅ ( since finite intersection of members of F is also in F).
Hence

∩
F∈F Γ(F )(I, τ) ̸= ∅.

(b)⇒(a): Let {Gα : α ∈ ∆} be an open cover of X such that there does not
exist any finite subset ∆0 of ∆ such that X −

∪
α∈∆0

Gα ∈ I. Therefore, for

every finite subset ∆0 of ∆,
∩

α∈∆0
(Gα)C /∈ I. Let F(B) = {

∩
α∈∆0

(Gα)C : ∆0

is finite }. Then it can be easily checked that F(B) is a filterbase not containing
the members of I. Now consider the filter F generated by F(B) and let x ∈
X =

∪
αGα and so x ∈ Gα for some α ∈ ∆. Therefore, Gα ∩ (Gα)C = ∅ implies

that x /∈
∩

F∈F Γ(F )(I, τ) ( since (Gα)C ∈ F) contradicting (b). Hence (X, τ, I)
is I-QHC.

Theorem 3.8. Let (X, τ, I) be an ideal space and X is T2 1
2
mod I then every

I-QHC set is Iθ closed.

Proof. Let K be an I-QHC subset of X. We have to prove that clIθ(K) ⊂
K. Let x ∈ X such that x /∈ K, then for all y ∈ K, y ̸= x and so X is
T2 1

2
mod I implies that there exist open subsets Gy and Hy containing x, y

respectively such that Gy ∩ Hy ∈ I. Now K ⊂
∪

y∈K Hy but K is I-QHC

implies that there exist finite subset of K such that K −
∪n

i=1Hyi ∈ I. Let
G =

∩n
i=1Gyi and H =

∪n
i=1Hyi then G ⊂

∩n
i=1Gyi implies that G ∩ H ∈ I

and so (G ∩H) ∪ (K −H) ∈ I. Therefore, G ∩K ∈ I and so x /∈ clIθ(K) since
G is open subset of x. Hence K is Iθ closed.

Corollary 3.1. Let (X, τ, I) be an ideal space and X is T2 1
2
mod I then every

I-compact set is Iθ closed.
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Abstract. In terms of school context, the effectiveness of a teaching process frequently
depends to a large extent on the relationship system, which had been formed within
a classroom. This paper is going to present how algebraic hyperstructures can con-
tribute significantly to understanding the system of relationships within a classroom.
Furthermore, it becomes possible to assess the impact of interventions targeted at im-
proving the system of relationships and thus to establish undisturbed and fundamental
participation of students in the learning process.

Keywords: algebraic hyperstructures, interpersonal relations.

1. Introduction

In recent decades, research on learning efficiency has attracted and still has been
attracting the interest of world experts. Various experience has shown that at
schools, in particular at elementary and primary level, both teacher training and
pedagogical skills cannot reach required and acceptable results unless there is
collaborative, friendly and positive relationship, e.g. [2, 3, 11, 25, 22].

Studying existing relationships among students is an inevitable prerequi-
site for planning interventions focused on reaching adequate required teach-
ing/learning efficiency. [24, 35, 37]. Let S is a set of students of a particular
scholastic classroom K. A scientific study covering the relationship among stu-
dents within a classroom has lead to the determining a final set of relation-
ships R.

∗. Corresponding author
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In the past, social relationships within school environment were described
by many authors (e.g. Moreno, [30, 29] Sciarra, [36]) using a set of binary
sharp relationships. The most efficient teaching methods in terms of the system
of mutual relationships within a classroom have also been studied in several
recent papers by Delli Rocili and Maturo [7, 9, 10] and also Hoskova-Mayerova
[12, 13, 14, 15].

Some of our findings concluded (Hoskova-Mayerova & Maturo, [17, 18, 19, 20]
that deeper and more profound knowledge on school environment relationship
can be obtained through fuzzy relationships since they consider semantic un-
certainty and degree of relationship intensity. See also [8, 25, 26]. This pa-
per continues, deepens and expands the ideas presented in our previous several
works, which demonstrate different perspectives. We also present that there is
another tool for representing and evaluating uncertainty; these are the algebraic
hyperstructures, more flexible than the common operations, because they are
multi-results, which represent the possible outcomes of an agreement between
individuals. The section dealing with results covers some algebraic hyperstruc-
tures associated with existing relationships within a school context.

2. Algebraic hyperstructures associated to the Moreno approach

The theory of hyperstructures originates from the work of Marty [23] both the
ideas and definitions published here have been developing particularly in the
last 40 years. The hypergroup has been the most studied hyperstructure; it is
a concept that generalizes the concept of a group. In the book ”Prolegomena
hypergroup theory” (Corsini [4]), basic results in terms of hypergroup theory are
presented up to 1992. The book supplement comprises the entire bibliography.
The results overview until 2003 was published in 2006 by Corsini & Leoreanu,
see [5]). A very detailed bibliography with respect to hyperstructure study is
available on the website: www.aha.eled.duth.gr/Thesaurus1.1.htm. Further
review can be found in the work done by Hoskova & Chvalina and published at
proceedings of the conference Algebraic Hyperstructures and Applications–AHA
2005, see [16].

Perhaps, the most important impetus for the study of algebraic hyperstruc-
tures came from the basic material ”Join Geometries” by Prenowitz and Jan-
tosciak published in 1979; [34] in addition to providing an original and general
approach to the study of geometry, this work introduces the interdisciplinary
view of geometry and algebra: there is shown how to trace back the study
of the Euclidean geometry of a specific commutative hypergroup that satisfies
a particular axiom called incidence property. Various other geometries, such
as ”Projective geometry”, can also be transferred to commutative hypergroups
satisfying the incidence property.

The idea of studying hypergroup applications to solve problems of uncer-
tainty and decision-making problems in architecture and social sciences was
born after a series of conferences held at the Faculty of Architecture in Italian
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Pescara organized by Giuseppe Tallini in 1993. The concept was being ex-
panded, researched and developed at various AHA (Algebraic Hyperstructures
and Applications) conferences as well as in domestic seminars and conferences
organized by Prof. Piergiulio Corsini in the period 1994-2014; e.g., in December
1994 and October 1995, two conferences on ”Hyperstructures and their appli-
cations in the field of cryptography, geometry and uncertainty” were organized
by Corsini, Eugeni and Maturo in Chieti and Pescara.

Let us recall some fundamental definitions on algebraic hyperstructures. For
more information, see the Vougiouklis book [40] and the papers (Jafarpour and
Cristea [21], Chvalina and Hoskova [6], Massouros and Massouros [27, 28], Niko-
laidou P. & Vougiouklis T. [31, 41] Novák [32, 33]; Vougiouklis [38]; Vougiouklis
et al. [39, 42, 43]) and many others.

Definition 2.1. Let S be a nonempty set. A function α : S×S → P (S), where
P (S) is the family of subsets of S, is said to be:

• a hyperoperation on S, if ∀x, y ∈ S, α(x, y) ̸= ∅;

• a partial hyperoperation on S, if ∃x, y ∈ S, α(x, y) = ∅;

• commutative on S, if ∀x, y ∈ S, α(x, y) = α(y, x);

• closed, if ∀x, y ∈ S, α(x, y) ⊇ {x, y};

• open, if ∀x, y ∈ S, (x ̸= y) ⇒ α(x, y) ∩ {x, y} = ∅;

• idempotent, if ∀x ∈ S, α(x, x) = {x};

• reproductive, if ∀x, y ∈ S,∃u, v ∈ S : y ∈ α(x, u) ∩ α(v, x).

The pair (S, α), with S hyperoperation (resp. partial hyperoperation) on S
is said to be a hypergroupoid (resp. partial hypergroupoid). Usually the set α(x,
y) is written x α y and is called the hyperproduct of x by y (with respect to the
hyperoperation α). If H and K are subsets of S then the set hyperproduct H α
K is the union of the hyperproducts x α y with x∈H, y∈K.

A hypergroupoid (S, α) is said to be:

• a quasi-hypergroup, if the reproductive property is valid, i.e., ∀x ∈ S,
xαS = S = Sαx;

• a semi-hypergroup, if the following associative property is valid: ∀x, y, z∈S,
(xαy)αz = xα(yαz)

• a hypergroup, if it is a quasi-hypergroup and a semi-hypergroup.
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3. New results

Let ρ be a Moreno binary relation on the set S of students in a school class. Let
us introduce the following definition:

Definition 3.1. Let ⊗ be a binary operation, i. e. an operation in {0, 1}, and
ρ a reflexive relation on S. We define:

• active hyperoperation (eventually partial hyperoperation) associated with
(⊗, ρ) the function ⊗a

ρ : (x, y) ∈ S×S → x⊗a
ρy = {z ∈ S : (x ρ z)⊗(y ρ z) =

1};

• passive hyperoperation (eventually partial hyperoperation) associated with
(⊗, ρ) the function ⊗p

ρ : (x, y) ∈ S×S → x⊗p
ρy = {z ∈ S : (z ρ x)⊗(z ρ y) =

1};

• circular hyperoperation (eventually partial hyperoperation) associated with
(⊗, ρ) the function ⊗c

ρ : (x, y) ∈ S×S → x⊗c
ρy = {z ∈ S : (x ρ z)⊗(z ρ y) =

1};

• inverse circular hyperoperation (eventually partial hyperoperation) associ-
ated with (⊗, ρ) the function ⊗i

ρ : (x, y) ∈ S × S → x ⊗i
ρ y = {z ∈ S :

(z ρ x) ⊗ (y ρ z) = 1}.

Let us consider, to set the ideas, the active hyperoperation. As ρ is reflexive,
the possible cases that can arise are those shown in the following Table 1.

ρ x y u v w t

x 1 0,1 0 1 0 1

y 0,1 1 0 0 1 1

Table 1:

3.1 Particular cases of active hyperoperations

Let ⊗ be the union ∪. Then (x ρ z) ⊗ (y ρ z) = max{(x ρ z), (y ρ z)} and from
Table 1 we can see that (x ρ z) ⊗ (y ρ z) = 1 for z ∈ {x, y, v, w, t}. In particular,
∀x, y ∈ S, x ∪a

ρ y ⊇ {x, y}. Then (S,∪a
ρ) is a closed quasi-hypergroup. As ∪ is

commutative, the associate active hyperoperation is commutative.
Let ⊗ be the intersection ∩. Then (x ρ z) ⊗ (y ρ z) = min{(x ρ z), (y ρ z)}

and from Table 1 we can see that (x ρ z) ⊗ (y ρ z) = 1 for z = t.
The function ∪a

ρ is a commutative partial hyperoperations and is an hyper-
operations if and only if the following condition holds: ∀x, y ∈ S, ∃t ∈ S : x ρ t
and y ρ t. The student t can be defined as ”a passive mediator” between x and
y. So each pair of students must have at least one passive mediator.

Let ⊗ be the implication →. Then (x ρ z)⊗(y ρ z) = max{1−(x ρ z), (y ρ z)}
and from Table 1 we can see that (x ρ z) ⊗ (y ρ z) = 1 for z ∈ {y, u, w, t}. In
particular, ∀x, y ∈ S, x→a

ρ y ⊇ {y}. Then (S,∪a
ρ) is a hypergroupoid.
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Similar considerations can be made for the passive hyperoperation (resp.
partial hyperoperation) associated with (⊗, ρ). It is sufficient to observe that
it is reduced to active hyperoperation (resp. partial hyperoperation) associated
with (⊗, ρ−1).

3.2 Particular case of circular hyperoperations

The circular hyperoperation (resp. partial hyperoperation) associated with
(⊗, ρ) leads to the consideration of the paths of length 2 of the digraph (S, ρ),
and to consider the binary operation on the arcs of each paths. As the inverse
circular hyperoperation (resp. partial hyperoperation) associated with (⊗, ρ)
reduces to the circular hyperoperation (resp. partial hyperoperation) associated
with (⊗, ρ−1), it is sufficient to study the properties of the function ⊗c

p.

Let ⊗ be the union ∪. Then (xρz) ⊗ (z ρ y) = max{(x ρ z), (z ρ y)}. As ρ
and the inverse ρ−1 are reflexive, ∀x, y ∈ S, x ∪c

p y ⊇ {x, y}. Then (S,∪c
p) is a

closed quasi-hypergroup.

Let ⊗ be the intersection ∩. Then (x ρ z) ⊗ (z ρ y) = min{(x ρ z), (z ρ y)}.
As the reflexivity of ρ, (x ρ z) ⊗ (z ρ y) = 1 if x, ρ y or there is a path of length
2 of consecutive vertices x, z, y with z ̸= x and z ̸= y.

The function ⊗c
p is a hyperoperation if and only if the following condition

hold: ∀x, y ∈ S, (x(−ρ)y) ⇒ z ∈ S : x ρ z and z ρ y. The student z can be defined
as”an intermediate mediator” between x and y. So each pair of students must
have at least one intermediate mediator.

Let ⊗ be the implication →. Then (x ρ z)⊗(z ρ t) = max{1−(x ρ z), (z ρ y)}.
As ρ and the inverse ρ−1 are reflexive, ∀x, y ∈ S, x→c

ρ y ⊇ {y}. Then (S,→a
ρ)

is a hypergroupoid.

4. Conclusions and perspective of research

From Sections 1 we can see that the significant algebraic hyperstructures that
can be associated with the relations system of a school class are very numerous.
In some of our papers (see e.g., Hoskova-Mayerova and Maturo, [17, 18, 19])
many other types of hyperstructures, from points of view different from those
considered in this work, have also been examined.

In the context of Moreno’s binary approach it is also possible to directly
construct algebraic hyperstructures in S by making interviews to the ordered
pairs (x, y) of students, making the first element of the pair, x, assume, the role
of indicating classmates that he considers suitable for an activity (at least 2)
and the second element of the pair, y, the possibility to choose which elements
indicated by x are accepted (at least 1).

If n is the number of elements of the class, to implement this procedure
it is necessary to propose 2n meetings for interviews (as for a football league
with n teams). This way to obtain hyperstructures associated with the class is
therefore very significant but rather time consuming.
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1. Introduction

Let G be a finite group and C(G) be the poset of cyclic subgroups of G. Some-
times C(G) can decide the structure of G. For example, G is an elementary
abelian 2-group if and only if |C(G)| = |G|. Tǎrnǎuceanu [3, 4] classified the
groups G such that |G| − |C(G)| = 1 or 2.

In this paper, we shall continue this study by describing the finite groups G
such that

|C(G)| = |G| − 3.

We prove that there are just two such groups: D10 and Q8.

For any finite group G, denote by πe(G) the set of all element orders of G,
and denote by π(G) the set of all prime divisors of |G|. For convenience, let
πc(G) = πe(G) − (π(G) ∪ {1}). For any i ∈ πe(G), denote by Ci(G) the set of
all cyclic subgroups of order i in G, and denote ci(G) = |Ci(G)|.

2. The main result

Throughout this section, let ci = ci(G) for each i ∈ πe(G).

Lemma 2.1. Let |G| = pa11 · · · parr with p1 < · · · < pr. If r ≥ 3, then |G|−c(G) >
pr.

∗. Corresponding author
Support by NSF of China (11501465,11471266).
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Proof. For any finite group G, we know that

|G| =
∑

k∈πe(G)

ck(ϕ(k)),

|C(G)| =
∑

k∈πe(G)

ck,

where ϕ is the Euler function. Hence

(1) |G| − |C(G)| =
∑

k∈πe(G)

ck(ϕ(k) − 1).

Let G be a group such that |G| − |C(G)| ≤ pr. By (1), we see that∑
k∈πe(G)

ck(ϕ(k) − 1) ≤ pr.

By Cauchy theorem, cpi ≥ 1 for all i ≤ r. Hence we get that

cp1(p1 − 2) + cp2(p2 − 2) + · · · + cpr(pr − 2) +
∑

s∈πc(G)

cs(ϕ(s) − 1) ≤ pr.

Since r ≥ 3, we get that pr ≥ 5. Thus cpr = 1 and

cp1(p1 − 2) + cp2(p2 − 2) + · · · + cpr−1(pr−1 − 2) +
∑

s∈πc(G)

cs(ϕ(s) − 1) ≤ 2.

So we get r = 3, p2 = 3 and p1 = 2. It follows that

c3 +
∑

s∈πc(G)

cs(ϕ(s) − 1) ≤ 2.

If c3 = 2, then πc(G) = ∅. Let X1 and X2 be the two cyclic subgroups of
order 3. Consider the action of G on {X1, X2}, we see that X1 is normalized by
a Sylow pr-subgroup, which implies 3pr ∈ ϕc(G), a contradiction. Hence c3 = 1.
Similarly, we get that 3pr ∈ πc(G). But c3pr(ϕ(3pr) − 1) ≥ 2(pr − 1) − 1 ≥
2(5 − 1) − 1 = 7, a contradiction.

Lemma 2.2. Suppose that |G| = paqb, where p, q are primes such that p < q.
Then |G| − c(G) > q if G ̸∼= D2q, C6, D12, C6 or S3, and

|D2q| − |C(D2q)| = q − 2,

|C6| − |C(C6)| = 2,

|D12| − |C(D12)| = 2,

|C6| − |C(C6)| = 2,

|S3| − |C(S3)| = 1.
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Proof. Let G be a group such that |G| − c(G) ≤ q. By (1), we have

(2) cp(p− 2) + cq(q − 2) +
∑

s∈πc(G)

cs(ϕ(s) − 1) ≤ q.

i) q ≥ 5. Then cq = 1 and

cp(p− 2) +
∑

s∈πc(G)

cs(ϕ(s) − 1) ≤ 2.

If p ̸= 2, then πc(G) = ∅, and cp(p − 2) ≤ 2. It follows that p = 3 and c3 ≤ 2.
But we can find an element of order 3q, a contradiction. It follows that p = 2,
and we see that πe(G) = {1, 2, q} or {1, 2, 22, q}. Thus G has only one Sylow
q-subgroup Q which is isomorphic to Cq.

If πe(G) = {1, 2, 4, q}, then c4 ≤ 2. Thus Q normalizes a cyclic subgroup
of order 4. This implies that 4q ∈ πc(G), a contradiction. Hence πe(G) =
{1, 2, q}. If a ≥ 2, by considering the conjugate action of a Sylow 2-group on
Q, we can find an element of order 2q, a contradiction. Hence |G| = 2q, and
G = ⟨u, v|uq = 1, v2 = 1, uv = u−1⟩ ∼= D2q. In this case, |G| − |C(G)| = q − 2.

ii) q = 3 and p = 2. Now (2) becomes that

c3 +
∑

s∈πc(G)

cs(ϕ(s) − 1) ≤ 3.

It follows that c3 ≤ 3 and πe(G) ⊆ {1, 2, 3, 4, 6}.

If πe(G) = {1, 2, 3, 4, 6}, then c3 = c4 = c6 = 1. And we get 12 ∈ πe(G), a
contradiction. If πe(G) = {1, 2, 3, 4}, then c4 ≤ 2. We can get that 12 ∈ πe(G)
if c4 = 1. Hence c4 = 2. Therefore, a Sylow 3-group will normalizes a cyclic
subgroup of order 4, and we get that 12 ∈ πe(G), a contradiction.

If πe(G) = {1, 2, 3, 6}, then c3 + c6 ≤ 3. Then c3 = 1 or c6 = 1. Thus we
can get a normal cyclic subgroup X = ⟨x⟩ of order 3. Thus |G : CG(x)| ≤ 2. If
a ≥ 3, then CG(x) will contain a subgroup L ∼= C2 × C2 × C3. Since c6(L) = 3,
we get a contradiction. Hence a ≤ 2. From c3 ≤ 2, we get that b = 1. Hence
|G| ≤ 12, and G ∼= C6 or D12.

Now we need to consider the case that πe(G) = {1, 2, 3}. Thus c3 ≤ 3, and
there are at most 6 nontrivial 3-element. It follows that a Sylow 3-subgroup is
isomorphic to C3. By Sylow theorem, c3 = 1. Thus the Sylow 3-subgroup Q is
normal in G. Since 6 ̸∈ πe(G), a ≤ 1, and |G| = 6. Since |C6|− |C(C6)| = 2 and
|S3| − |C(S3)| = 1, we get that G ∼= C6 or S3 in this case.

Lemma 2.3. Let |G| = 2a. If |G| − |C(G)| = 2a − 3, then G ∼= Q8.

Proof. Since ϕ(8) = 4, from (1), exp(G) ≤ 4. If exp(G) = 2, then c(G) = |G|, a
contradiction. Hence exp(G) = 4, and c4 = 3. We find a normal cyclic subgroup
X = ⟨x⟩ of order 4. Let C = CG(X). Then |C| = 2a or 2a−1.
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We claim that C/X is an elementary 2-group. Otherwise, there exists an
element g ∈ C such that gX is an element of order 4 in C/X. Hence |g| = 4.
Let D = ⟨g, x⟩. Then D is abelian. Since |gX| = 4, we get that ⟨g⟩ ∩ X = 1,
and D ∼= C4 × C4. But c4(C4 × C4) > 3, a contradicton.

Hence the Frattini subgroup Φ(C) ≤ X, and C is a 2-group with cyclic
Frattini subgroup. Suppose that C is non-abelian. By [1, Theorem 4.4], if
|Φ(C)| > 2, then there exists an element of order 2|Φ(C) ≥ 8, a contradiction.
Hence Φ(C) = C ′ ∼= C2. By [1, Lemma 4.2], C = EZ(C) and |E ∩ Z(C)| = 2,
where E is an extra-special 2-groups. By [2, Theorem 3.13.8], E = A1 ∗· · ·∗Am,
the central product of Ai, where Ai

∼= D8 or Q8. Note that c4(Q8) = 3 and
c4(D8) = 1 and c4(D8∗D8) > 3. We get that E = D8 for X ̸≤ E. Let y ∈ E with
|y| = 4. Since c4 = 3, we see that Z(C) ∼= C4 or C4 × C2. If Z(C) ∼= C4 × C2,
then c4(⟨y, Z(C)⟩) > 3, a contradiction. Hence Z(C) = X ∼= C4. But now
c4(C) > 3, a contradiction. So we see that C is abelian.

Since c4 = 3, we get that C ∼= C4 or C4 × C2. Suppose that C ∼= C4 × C2.
Since c4(C) = 2 and c4 = 3, there exists u ∈ G − C such that |u| = 2. Let
C = ⟨x⟩ × ⟨w⟩, where |w| = 2. Thus xu = x±1, and wu = w or wx2, and we get
4 groups, but none of the them satisfy c4 = 3. Hence C ∼= C4, and G ∼= Q8.

Now by Lemma 2.1, 2.2 and 2.3, we get our main result.

Theorem 2.4. If |C(G)| = |G| − 3, then G ∼= D10 or Q8.
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Abstract. Multisets can be used to represent real life problems where repetition(s)
of elements is necessary. Such cases occur in database query, chemical structures and
computer programming but to mention a few. In this paper, some properties of algebraic
sum of multisets

⊎
and some previous results on selection are mentioned. This work also

introduces a new way to construct fuzzy sets and fuzzy groups structure on multiset.

Keywords: multisets, functions on multiset, selection operation, multi-fuzzy set,
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1. Introduction

Many real life problems can be represented by multisets. Such cases occur in
database query, chemical structures and computer programming but to mention
a few.

The term multiset can be traced back to 1888, when Dedekind in [5] stated
that the element of the set may belongs to more than one. Multisets are also
considered in and replaced with various notions such as bag, fireset (f initely
repeated element set), heap, bunches, etc.

In the recent time, Nazmul et al [6] has put algebraic structure on multisets
of a set in order to be able to consider multigroup and other related algebraic
properties as in the classical group. His work was extended by Shinoj et al [8].

In this paper, we present some results on the algebraic structure of multi-
fuzzy sets.

∗. Corresponding author



598 B.O. ONASANYA and S. HOSKOVA-MAYEROVA

2. Preliminaries

In what follows, we shall use X to denote a non-empty set.

Definition 2.1 ([6]). A multiset M drawn from a set X is denoted by the count
function CM : X −→ N defined by CM (x) = n ∈ N , the multiplicity or number
of occurrence of x in M , where N is the set of non-negative integers.

Definition 2.2 ([6]). Let multisets A and B be drawn from X. A is said to be
a submultiset of B and is denoted A ⊆ B if CA(x) ≤ CB(x)∀x, y ∈ X.

The root set or support of a multiset M , which is denoted by M∗, is the
set which contains the distinct elements in the multiset. Hence, M∗ is the set
of x ∈M such that CM (x) > 0.

Let us recall some notions concerning multisets. See e.g. [2] for more details.
A multiset M is called a regular multiset if CM (x) = CM (y) ∀x, y ∈M. The

count function of the intersection of two multisets A and B both drawn from X
is denoted by CA(x) ∩ CB(x) = min{CA(x), CB(x)} and that of their union is
denoted CA(x) ∪ CB(x) = max{CA(x), CB(x)}.

Multisets A and B are said to be equal if and only if CA(x) = CB(x).
Denote by [X]α, all the multisets whose elements have the multiplicity not more
than α and MS(X) the set of all multisets over X. An empty multiset ϕ is
such that Cϕ(x) = 0, ∀x ∈ X. Cardinality of a multiset M is denoted by
|M | =

∑
CM (x), ∀x ∈M . The peak element x ∈ M is such that CM (x) ≥

CM (y), ∀y ∈M.

Definition 2.3 ([10]). Let us consider A ∈MS(X).

i. The insertion of x into A results into a multiset denoted by C = x
⊎
A

which has the count function

CC(y) =

{
CA(y), y ̸= x

CA(x) + 1, y = x.

ii. The removal of x from A results into a multiset denoted by D = A ⊖ x
which has the count function

CD(y) =

{
max{CA(y) − 1, 0}, y = x

CA(y), y ̸= x.

Let us consider A,B ∈MS(X).

iii. The insertion of A into B or of B into A results into a multiset which has
the count function denoted by C(x) = CA(x) + CB(x).

iv. The removal of B from A results into a multiset which has the count
function denoted by CD(x) = max{CA(x) − CB(x), 0}.
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It is clear that the set of all multisets over X that is MS(X) is commutative
and associative with respect to the sum

⊎
.

The removal operation is neither commutative nor associative. Apart from,
it is also possible to make some kind of selection in multisets using the following
operations.

Definition 2.4 ([10]). Consider A ∈MS(X) and B ⊆ X.

i. The multiset E = A⊗B is such that E only contains elements of A which
also occur in B. The count function of E is denoted by

CE(x) =

{
CA(x), x ∈ B

0, x /∈ B.

ii. The multiset F = A
⊙
B is such that F only contains elements of A which

do not occur in B. The count function of F is denoted by

CF (x) =

{
CA(x), x /∈ B

0, x ∈ B.

Operations such as “⊗” or “⊙” are called selection operations.

Definition 2.5 ([6]). Let X be a group and e ∈ X its identity. Then, ∀x, y ∈ X,
a multiset M drawn from X is called a multigroup if

i. CM (xy) ≥ CM (x) ∧ CM (y),

ii. CM (x−1) ≥ CM (x).

The immediate consequence is that CM (e) ≥ CM (x). The set MG(X) is
called the set of all multigroups over X. The next definition can be found e.g.
in [2].

Definition 2.6. Let A ∈MS(X), where X is a group.

i. An = {x : CA(x) ≥ n};

ii. We denote a multiset containing only one element x with multiplicity. It
is called n as [n]x–a simple multiset;

iii. The complement of the multiset M ∈ [X]α denoted by M ′ is such that
CM ′(x) = α− CM (x);

iv. nA = {xn, ∀x ∈ A n is the multiplicity of each element that appears in A}.

Remark 2.1. For a multigroup A over a group X, An is a group, indeed the
subgroup of X [6].
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Proposition 2.1 ([6], p. 645). Let A,B ∈MS(X) and m,n ∈ IN .

i. If A ⊆ B, then An ⊆ Bn;

ii. If m ≤ n, then Am ⊇ An;

iii. (A ∩B)n = An ∩Bn;

iv. (A ∪B)n = An ∪Bn;

v. A = B if and only if An = Bn, ∀n ∈ IN .

Definition 2.7 ([6]). Let X and Y be two nonempty sets such that f : X −→ Y
is a mapping. Consider the multisets M ∈ [X]α and N ∈ [Y ]α. Then,

i. the image of M under f denoted f(M) has the count function

Cf(M)(y) =

{∨
f(x)=y CM (x), if f−1(y) ̸= ∅

0, otherwise;

ii. the inverse image of N under f denoted f−1(N) has the count function
Cf−1(N)(x) = CN [f(x)].

The following propositions were proved in [6]. But we shall later show that
the items (iv), (v) and (vii) are not true and that the Proposition 2.2 needs to
be restated.

Proposition 2.2 ([6]). Let X, Y and Z be three nonempty sets such that
f : X −→ Y and g : Y −→ Z are mappings. If Mi ∈ [X]α, Ni ∈ [Y ]α, i ∈ I then

i. M1 ⊆M2 ⇒ f(M1) ⊆ f(M2);

ii. f(∪i∈IMi) = ∪i∈If(Mi);

iii. N1 ⊆ N2 ⇒ f−1(N1) ⊆ f−1(N2);

iv. f−1(∪i∈IMi) = ∪i∈If
−1(Mi);

v. f−1(∩i∈IMi) = ∩i∈If
−1(Mi);

vi. f(Mi) ⊆ Nj ⇒Mj ⊆ f−1(Nj);

vii. g[f(Mi)] = [gf ](Mi) and f−1[g−1(Nj)] = [gf ]−1(Nj).

Definition 2.8 ([11]). A fuzzy set A of a non-empty set X is a class of objects
in X with the associated (or characteristic) membership function µ : X −→ [0, 1]
which assigns to every x ∈ X a real value between 0 and 1.

The value of µ(x) restricted to A is actually the degree of membership of
x in A. If µ(x) = 0, it represents complete non-membership while µ(x) = 1
represents complete membership. But since µ characterizes the fuzzy set A, we
can simply refer to µ as fuzzy subset.
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Definition 2.9 ([7]). Let µ be a fuzzy subset of G. Then, µ is called a fuzzy
subgroup of G if ∀x, y ∈ G

(i) µ(xy) ≥ min{µ(x), µ(y)}

(ii) µ(x) = µ(x−1)

Proposition 2.3 ([7]). A fuzzy subset µ of G is a fuzzy subgroup of G if and
only if µ(xy−1) ≥ min{µ(x), µ(y)} for every x, y ∈ G.

In paper [5] defined a kind of multiset (Dedekind’s multiset) denoted by Mf

as follows: if there are n elements in a domain X (of a function f mapping X
to Y ) which are mapped to an element y ∈ Y , then y has frequency n so that
it is an n-fold element of Y .

But, on multisets (mentioned as Definition 2.7(i)) fails for Dedekind’s mul-
tisets. So let us redefine Nazmul et al’s definition of function as follows:

Definition 2.10 ([2]). Let X and Y be two non-empty sets and f : X −→ Y a
mapping such that M ∈ [X]α. Then, Cf(M)(y) =

∑
f−1(y)̸=∅f(x)=y CM (x).

For more details concerning this problem see [2].

3. Induced fuzzy group

In the Introduction we have recalled that [X]α is the collection of all multisets
drawn from X so that if A ∈ [X]α, then CA(x) ≤ α ∀x ∈ A. Now, let [[X]]α be
a subset of [X]α such that if B ∈ [[X]]α, CB(x) = α ∀x ∈ B, meaning that B is
a regular multiset in which each element has the multiplicity α.

Proposition 3.1. Let A be a regular multiset over a group X. Then A is a
multigroup if and only if A∗ is a group (i.e. a subgroup of X).

Proof. Assume that A∗ is a group. Then for any x, y ∈ A∗, xy−1 ∈ A∗. Then,
CA(xy−1) > 0. Since A is regular, CA(xy−1) = CA(x) = CA(y−1) = CA(y).
Without loss of generality, CA(xy−1) ≥ CA(x) ∧ CA(y).

Conversely, assume that A is a multigroup. Since A1 = A∗, by Remark 2.1,
the proof is complete.

Proposition 3.2. Let A be a multigroup over a group X such that A ∈ [X]w.
Then A′ is a regular multigroup over X if and only if A is a regular.

Proof. Assume that A is a multigroup over X and regular. Then ∀ x, y ∈
A,CA(x) = CA(y). Since A is a multigroup, CA(xy−1) ≥ CA(x) ∧ CA(y) =
CA(x) = CA(y). Also, since CA(x) ̸= 0 ̸= CA(y), then CA(xy−1) ̸= 0. Hence,
we have xy−1 ∈ A. But, A is regular, CA(xy−1) = CA(x) = CA(y). Without
loss of generality, CA(xy−1) ≥ CA(x)∧CA(y) and w−CA(xy−1) ≥ w−CA(x)∧
w − CA(y). Thus, CA′(xy−1) ≥ CA′(x) ∧ CA′(y).

Conversely, assume thatA′ is a regular multigroup overX. Since CA′(xy−1) =
CA′(x) = CA′(y), then we can have both CA(xy−1) ≥ CA(x) ∧ CA(y) and
CA(x) = CA(y)∀x, y ∈ A.
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There are some exceptions to what happens in classical algebra of set in
multiset. If A ∈ [X]w is regular, it is possible to have the following:

(i) A = A′;

(ii) A ∩A′ ̸= ∅;

(iii) A ⊆ A′ or A′ ⊆ A;

(iv) Also, A
⊎
A′ = B ∈ [[X]]w.

Example 3.1. Let X = Z6, A = {0, 0, 2, 2, 4, 4} and B = {0, 0, 0, 2, 2, 2, 4, 4, 4}.
Then the complementA′ = {0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4} andB′ = {0, 0, 0, 2, 2, 2, 4,
4, 4} = B.

Definition 3.1. Let B̄ ∈ [X]α and B ∈ [[X]]α such that B̄ ⊆ B. Then the
degree to which the multiplicity of b ∈ B̄ is near to the multiplicity of b ∈ B or

how near B̄ is to B is defined by γ =
CB̄(b)

α .

Remark 3.1. Then, any such B̄ and CB̄ induce a multi-fuzzy group structure
with membership function µB

B̄
(x) = γ.

For simplicity, we shall use µB in place of µB
B̄

and µB̄ in place of µB
¯̄B

. This

multiset has a structure similar to that defined by Syropoulos [9] in that every
x ∈ X which has a multiplicity in B̄ is such that it has only one membership
degree and one multiplicity. The support of µB yields a fuzzy subset of X.

It should be noted that if X is a group with identity e and [X]α is the
collection of all multigroups drawn from X such that for any Ā ∈ [X]α and
∀x ∈ Ā, CĀ(x) ≤ α. Let A ∈ [[X]]α be the collection of all regular multigroups
drawn from X. Then, any such multigroup Ā from [X]α induces a multi-fuzzy
group with membership degree µA. It can be said that µA is fuzzy relative to
A. The support of µA is a fuzzy subgroup of X. All the operations on fuzzy set
such as intersection, union, inclusion and complement can be seen to hold for
µA.

Example 3.2. Let

X = S3 = {e, (12) = a, (13) = b, (23) = c, (123) = d, (132) = f}

be the group with identity. Let A ∈ [X]4 be A = {e, e, e, e, d, d, d, d, f, f, f, f},
Ā = {e, e, e, d, d, f, f} and ¯̄A = {e, d, d, f}. Observe the following:

(i) µA = {(e, 0.75), (e, 0.75), (e, 0.75), (d, 0.5), (d, 0.5), (f, 0.5), (f, 0.5)} is a mul-
ti-fuzzy group.

(ii) µĀ = {(e, 0.25), (d, 0.5), (d, 0.5), (f, 0.25)} is a multi-fuzzy set.

(iii) Ā is a multigroup and µA is a multi-fuzzy group. The support of µA is
the fuzzy subgroup {(e, 0.75), (d, 0.5), (f, 0.5)} of X.



MULTI-FUZZY GROUP INDUCED BY MULTISETS 603

(iv) Considering µA and µĀ as multi-fuzzy sets,

µA ∩ µĀ = {(e, 0.25), (d, 0.5), (d, 0.5), (f, 0.25)}

and

µA ∪ µĀ = {(e, 0.75), (e, 0.75), (e, 0.75), (d, 0.5), (d, 0.5), (f, 0.5), (f, 0.5)}.

Proposition 3.3. Let X be a group, Ā ∈ [X]α be a multigroup over X and µA
the multi-fuzzy group induced by Ā and CĀ. Then, ∀x ∈ X the following hold:

(i) µA(e) ≥ µA(x),

(ii) µA(x−1) = µA(x).

Proof. (i) Since Ā is a multigroup, CĀ(e) ≥ CĀ(x). This implies that
CĀ(e)

α ≥ CĀ(x)
α . Thus, µA(e) ≥ µA(x).

(ii) The proof is similar.

Proposition 3.4. Let X be a group, A ∈ [[X]]α and Ā ∈ [A]α. Then, µA has
a fuzzy group structure.

Proof. Let x, y−1 ∈ Ā. Since Ā is a multigroup, CĀ(y) = CĀ(y−1) = α.

But, µA(x) =
CĀ(x)

α and µA(y) = µA(y−1) =
CĀ(y)

α . Since Ā is a multigroup,
CĀ(xy−1) ≥ min{CĀ(x), CĀ(y−1)}. Since α is a natural number, we can have

that
CĀ(xy−1)

α ≥ min{CĀ(x)
α ,

CĀ(y−1)
α }. Hence,

µA(xy−1) ≥ min{µA(x), µA(y−1)}.

The intersection of this multi-fuzzy group is also a multi-fuzzy group but the
union is not necessarily a multi-fuzzy group. These properties are established
by the following examples.

Example 3.3. Let X = {e, a, b, ab} the Klein’s 4-group. Consider the multi-
groups A ∈ [X]3 such that A = {e, e, e, a, a, a, b, b, b, ab, ab, ab}. Let Ā =
{e, e, e, a, a} and ¯̄A = {e, e, b, b}. µA = {(e, 1), (e, 1), (e, 1), (a, 23), (a, 23)} and
µĀ = {(e, 23), (e, 23), (b, 23), (b, 23)}. The intersection of µA and µĀ is {(e, 23),
(e, 23)}, which is a trivial multi-fuzzy group. Their union is

{(e, 1), (e, 1), (e, 1), (a,
2

3
), (a,

2

3
), (b,

2

3
), (b,

2

3
)},

which is obviously not a fuzzy group, since

0 = µA∪Ā(ab) � min{µA∪Ā(a), µA∪Ā(b)} =
2

3
.
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Conclusion

It is known that the theory of multisets is an important generalization of classical
set theory which has emerged by violating a basic property of classical sets that
an element can belong to a set just once. Given a regular multiset A ∈ [X],
where X is a group, we can fuzzify, relative to A, any multiset B which is a
submultiset of A. Another interesting approach to multisets can be found e.g.
in [1, 3, 4].
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Abstract. This paper proposes asymptotically efficient algorithm for treating classes
of singular boundary value problems involving Fredholm and Volterra operators asso-
ciated with three-point boundary conditions. The algorithm methodology is proposed
based on the novel reproducing kernel Hilbert space (RKHS) method, which is used
directly without employing linearization and perturbation. The orthonormal system
is generated in a favorable Hilbert space on a compact dense interval to expand the
solution in Fourier series formula with accurately computable components. Numerical
examples of singular multipoint BVPs are performed to support the theoretical state-
ments that acquired by interrupting the n-term of the exact solutions. Besides, the
results obtained indicate that the RK procedure is effective and competitive with a
great capability in scientific and engineering applications.

Keywords: singular boundary value problems, Fredholm and Volterra operators,
reproducing kernel Hilbert space method.

1 Introduction

Singular boundary value problems associated with three-point boundary condi-
tions have been investigated in a wide area of mathematics, physics and engi-
neering including dynamics, nuclear, chemical reaction, atomic structures and
so on [1, 2, 3, 4]. Indeed, the scientific issues in this area often occur to be
nonlinear with a finite set of singularity, which they are very difficult to be
handled analytically through classical way. In this situation, solutions needed
could not be accurately determined or fail to be convergent due to singularity.
So, it has to be solved using advanced numerical and computational methods.
Unfortunately, these methods are very limited unless we can resort to lineariza-
tion and discretization of the variables to deal with them. Thus, it appears to
be very important to develop an efficient numerical method for handling such
problems. Anyhow, some numerical approaches for solving second-order, sin-
gular three point boundary value problems (BVPs) are available in literature
[3, 4, 5, 6, 7]. But, there is a few research papers about second-order, singular
three-point BVPs restricted by Fredholm or Volterra operators.



606 ASAD FREIHAT

The purpose of this study is to investigate and implement a computational
iterative technique, the reproducing kernel Hilbert space method (RKHS), in
finding approximate solutions for a certain class of singular BVPs. More specif-
ically, we consider second order three-point singular BVP in the following dif-
ferential operator form:

(1) u′′ (t) +
a (t)

p (t)
u′ (t) +

b (t)

q (t)
u (t) = f (t, u (t) , Tu (t)) , 0 ≤ t ≤ 1,

associated with three-point boundary conditions

(2) u (0) = 0, u (1) = αu (η) , 0 < η < 1, α > 0, αη < 1,

where a (t) , b (t) ∈ C2 (0, 1) ,

Tu (t) = λ1

∫ 1

0
h1 (t, s)G1 (u (s)) ds+ λ2

∫ t

0
h2 (t, s)G2 (u (s)) ds, λi, i = 1, 2,

are positive parameters, hi (t, s) , i = 1, 2, are arbitrary analytical kernel func-
tions over the square 0 < s < t < 1, G1(v1), G2 (v2) are linear or nonlinear
continuous terms in Π1 [0, 1] as vi = vi (t) ∈ Π3 [0, 1], 0 ≤ t ≤ 1, −∞ < vi <∞,
i = 1, 2, f (t, u, Tu) ∈ Π1[0, 1] are sufficiently regular given functions such that
singular BVPs (1) and (2) satisfies the existence and uniqueness of the solu-
tions, and u ∈ Π3 [0, 1] is an unknown function to be determined. Here, the
real-valued functions p (t) and q (t) are continuous and may be equal to zero at
{ti}mi=1 ∈ [0, 1] ; that is, the equation may be singular at t = ti, i = 1, 2, ...,m.

The reproducing-kernel is a numerical as well as analytical algorithm for
treating a wide variety of ODEs and PDEs associated to different kinds of order
derivatives degree, which usually provides the solutions in terms of rapidly con-
vergent series with components that can be elegantly computed [8, 9, 10, 11, 12].
The RKHS algorithm has been successfully applied to various areas in numer-
ical analysis, computational mathematics, image processing, machine learning,
quantum mechanics, and finance [13, 14, 15, 16] Moreover, in the recent years,
a lot of research work has been devoted to utilize the RKHS method as a
superb framework to find numerical approximate solutions to diverse matters
[17, 18, 19, 20, 21, 22, 23]. On the other hand as well, the numerical solvability
of different categories of BVPs can be found in [24, 25, 26, 27, 28, 29, 30].

The objective of this article is to highlight the importance of singular BVPs
in sobolev spaces for specific applications. The structure of this article is orga-
nized as follows: In the next section, necessary details and preliminaries about
the reproducing-kernel theory are briefly given. In section 3, theoretical and
analytical basis with representation of solutions are introduced in the Hilbert
space Π3 [0, 1]. Convergence analysis of the method are presented in section 4
Numerical outcomes are investigated in section 5. A final section provides brief
conclusions.
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2 Background and preliminaries

In this section, we present the concept of essential materials about the RKHS
method for constructing smooth reproducing-kernel functions which will used
to produce a set of orthonormal basis functions, as well as, derive the solutions
in terms of Fourier series coefficients in Sobolev spaces. To do that, multiply
both sides of Eq. (1) by p (t) q (t) to get

(3) P̃ (t)u′′ (t) + Q̃ (t)u′ (t) + R̃ (t)u (t) = F̃ (t, u (t) , Tu(t)) ,

where P̃ (t) = p (t) q (t) , Q̃ (t) = a (t) q (t) , R̃ (t) = b (t) p (t) , and F̃ (t, u, Tu) =
p (t) q (t) f (t, u, Tu) .

If we defined a function v (t) = u (t) − γt, γ = αu (η), then Eq. (3) can be
reduced to the following form:

(4) P̃ (t) v′′ (t) + Q̃ (t) v′ (t) + R̃ (t) v (t) = G̃ (t, v (t) , T v(t)) ,

with the homogeneous boundary conditions

(5) v (0) = 0, v (1) = 0,

where G̃(t, v(t), T v(t)) = F̃ (t, u(t)+γt, T (u(t)+γt))−γ(tR̃(t)+Q̃(t)). Obviously,
it suffices for us to solve BVPs (4) and (5).

Definition 1 ([11]). Let H be a Hilbert space of function F : Ω → H on a set Ω.
A function Γ : Ω×Ω → R is a reproducing kernel of H if the following conditions
are satisfied: Firstly, Γ (·, s) ∈ H for each s ∈ Ω. Secondly, ⟨F (·) ,Γ (·, s)⟩ =
F (s) for each F ∈ H and each s ∈ Ω.

Definition 2 ([8]). The space Π1 [0, 1] is defined as Π1 [0, 1] = {v = v(t) : v
is one-variable absolutely continuous real-valued function on [0, 1] and v′ ∈
L2 [0, 1]}. Whilst, the inner product and the norm of Π1 [0, 1] are given, re-
spectively, by

(6) ⟨v1(t), v2(t)⟩Π1
= v1 (0) v2 (0) +

∫ 1

0
v′1(s)v

′
2(s)ds,

and ||v1(t)||2Π1
= ⟨v1(t), v1(t)⟩Π1

, where v1, v2 ∈ Π1 [0, 1].

Theorem 3 ([8]). The Hilbert space Π1 [0, 1] is a complete reproducing kernel
with the reproducing kernel function

(7) Ĝs (t) =

{
1 + t, t ≤ s,

1 + s, t > s.

Now, we construct the reproducing kernel space Π3 [0, 1] in which every
function satisfies the boundary conditions v (0) = 0 and v (1) = 0.
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Definition 4. The space Π3[0, 1] is defined as Π3[0, 1] = {v = v(t) : v, v′, v′′ are
one-variable absolutely continuous real-valued functions on [0, 1], v′′′ ∈ L2[0, 1],
and v(0) = 0, v(1) = 0}. Whilst, the inner product and the norm of Π3[0, 1] are
given, respectively, by

(8) ⟨v1(t), v2(t)⟩Π3
=

1∑
i=0

v
(i)
1 (0) v

(i)
2 (0) + v1(1)v2(1) +

∫ 1

0
v′′′1 (w)v′′′2 (w)dw,

and ||v1(t)||2Π3
= ⟨v1(t), v1(t)⟩Π3

, where v1, v2 ∈ Π3 [0, 1].

Theorem 5. The Hilbert space Π3 [0, 1] is a complete reproducing kernel with
reproducing kernel function

(9) Gs (t) =

{
1

120(1 − t)3s3
[
6s2t2 + 3st(s− 5t) + (10t2 − 5st+ s2)

]
, t ≤ s,

1
120(1 − s)3t3

[
6s2t2 + 3st(t− 5s) + (10s2 − 5st+ t2)

]
, t > s.

Proof. According to [8], Π3 [0, 1] is a complete reproducing kernel Hilbert space,
that is, for each fixed s ∈ [0, 1] and any v(t) ∈ Π3 [0, 1] , there exists a function
Gs (t) ∈ Π3 [0, 1] such that ⟨v(s), Gt (s)⟩Π3

= v(t), t ∈ [0, 1] and the expression

form of Gs (t) can be denoted as Gs (t) =
∑6

i=1 ai(s)t
i−1, if t ≤ s, and Gs (t) =∑6

i=1 bi(s)t
i−1, if t > s, where the coefficients ai(s) and bi(s), i = 1, 2, ..., 6,

could be obtained by solving the following generalized differential equations
using Maple 13 software package:

(10)

Gs (0) = 0, ∂tGs (0) + ∂4tGs (0) = 0, ∂3tGs (0) = 0,
Gs (1) = 1, ∂itGs (1) = 0, i = 3, 4,
∂6tGs (t) = −δ (s− t) , δ dirac-delta function,
∂itGs (s− 0) = ∂itGs (s+ 0) , i = 0, 1, ..., 4,
∂5tGs (s+ 0) − ∂5tGs (s− 0) = −1.

The proof is complete.

3 Theoretical and analytical basis

In order to illustrate the RKHS methodology to proposed model, we consider
that D : Π3 [0, 1] → Π1 [0, 1] is an invertible bounded linear operator such that
Dv(t) := P̃ (t) v′′ (t) + Q̃ (t) v′ (t) + R̃ (t) v (t) , and D∗ is the adjoint operator of
D. Then, Eqs. (4) and (5) can be equivalently converted into the form:

(11)

{
Dv(t) = G̃(t, v(t), T v(t)),

v(0) = 0, v(1) = 0.

Let φi (t) = Gti (t) and ψi (t) = D∗φi (t) , where {ti}∞i=1 is a countable dense
subset in [0, 1] . From the reproducing-kernel property, it holds ⟨v (t) , φi (t)⟩Π1

=
v(ti).
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Theorem 6. Suppose that {ti}∞i=1 is dense in the interval [0, 1], then the se-

quence {ψi(t)}∞i=1 is a complete function system in Π3[0, 1] with ψi(t) = .(P̃ (s)∂2s+

Q̃(s)∂s + R̃(s))[Gt(s)]|s=ti .

Proof. In this proof, the subscript s by the operator D, denoted by Ds, indicates
that the operator D applies to the function of s. However, it is clear that
ψi(t) = D∗φi(t) = ⟨D∗φi(t), Gt(s)⟩Π3 = ⟨φi(t),DsGt(s)⟩Π1 = .DsGt(s)|s=ti =
.(P̃ (s)∂2s + Q̃(s)∂s + R̃(s))[Gt(s)]|s=ti .

Since {ti}∞i=1 is dense in the interval [0, 1]. For each v(t) in Π3 [0, 1], if
⟨v (t) , ψi (t)⟩Π3

= ⟨Dv (t) , φi (t)⟩Π1
= Dv (ti) = 0, (i = 1, 2, ...), then from the

density of {ti}∞i=1 and continuity of v (t), we have v (t) = 0.

The RKHS solution will be obtained by calculating a truncated series based
on the orthonormal functions

{
ψi (t)

}∞
i=1

of the space Π3 [0, 1], which is con-
structed from {ψi (t)}∞i=1 by using the Gram-Schmidt process such that

(12) ψ̄i (t) =
i∑

k=1

µikψk (t) , (µik > 0, i = 1, 2, ...),

where µik are orthogonal coefficients that can be determined as in section 4.

Theorem 7. Suppose that {ti}∞i=1 is dense in the interval [0, 1]. If v(t) ∈ Π3 [0, 1]
is a unique solution of Eq. (11), then

(13) v (t) =
∞∑
i=1

i∑
k=1

µik

[
G̃ (tk, v (tk) , T v(tk))

]
ψ̄i (t) .

Proof. Let v(t) be the solution of Eq. (11) that can be expanded in Fourier se-
ries. Since ⟨v (t) , φi (t)⟩Π1

= v (ti) and
∑∞

i=1

⟨
v (t) , ψ̄i (t)

⟩
Π3
ψ̄i (t) is convergent

series for each v (t) ∈ Π3 [0, 1] , then we have

v (t) =

∞∑
i=1

⟨
v (t) , ψ̄i (t)

⟩
Π3
ψ̄i (t) =

∞∑
i=1

i∑
k=1

µik ⟨v (t) , ψk (t)⟩Π3
ψ̄i (t)

=
∞∑
i=1

i∑
k=1

µik ⟨v (t) ,D∗φk (t)⟩Π3
ψ̄i (t)

=

∞∑
i=1

i∑
k=1

µik ⟨Dv (t) , φk (t)⟩Π1
ψ̄i (t)

=
∞∑
i=1

i∑
k=1

µik

⟨
G̃ (t, v (t) , T v(t)) , φk (t)

⟩
Π1

ψ̄i (t)

=

∞∑
i=1

i∑
k=1

µik

[
G̃ (tk, v (tk) , T v(tk))

]
ψ̄i (t) .

Therefore, the form of Eq. (13) is the exact solution of Eq. (11). The proof is
complete.
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Since Π3 [0, 1] is a Hilbert space, the series

∞∑
i=1

i∑
k=1

µik ⟨Dv (t) , φk (t)⟩Π1
ψ̄i (t) <∞.

Hence, the truncated series

(14) vn (t) =

n∑
i=1

i∑
k=1

µik

[
G̃ (tk, v (tk) , T v(tk))

]
ψ̄i (t)

is convergent in the sense of ∥·∥Π3[0,1]
and the numerical solution of Eq. (11)

can be directly calculated by Eq. (14).
To analyze the most comprehensive computations, we mention that the so-

lution depends on the internal structure of G̃. That is, if G̃ is linear, then the
exact and the numerical solutions can be directly obtained by using Theorem
7. Whilst, if G̃ is nonlinear, then the exact and the numerical solutions can be
obtained iteratively by using the following process:

(15) v (t) =
∞∑
i=1

Λiψ̄i (t) , Λi =
i∑

k=1

µikG̃ (tk, v (tk) , T v(tk)) .

Let t1 = 0, then v(t1) = 0. Set the initial function v0(t1) = v(t1), then
G̃ (t1, v (t1) , T v(t1)) is known. Define the n-term numerical solution of v (t) as
follows:

(16) vn (t) =

n∑
i=1

Λiψ̄i (t) ,

where Λi =
∑i

k=1 µikG̃ (tk, vn−1 (tk) , T vn−1(tk)) .
In the iterative process of Eq. (16), we can guarantee that the numerical

solution vn satisfies the constraints conditions of Eq. (11).

4 Convergence of the RKHS method

In this section, we show that the n-term approximate solution vn(t) converges
uniformly to exact solution v(t) as n→ ∞ in the Hilbert space Π3 [0, 1] .

Theorem 8. If ∥vn−1 − v∥Π3arrow0, tnarrows (narrow∞), ∥vn∥ is bounded,
and G̃(t, w1, w2) is continuous in [0, 1] with respect to t, wi, i = 1, 2, then
G̃(tn, vn−1(tn), T vn−1(tn))arrowG̃(s, v(s), T v(s)) as narrow∞.

Proof. By the reproducing property of Gs (t) , we have v (t) = ⟨v (·) , Gt (·)⟩Π3

and v′ (t) = ⟨v (·) , ∂tGt (·)⟩Π3
. From the continuity ofGs (t) and and the Schwarz

inequality, we get that |v′ (t)| =
∣∣⟨v (s) , ∂tGt (s)⟩Π3

∣∣ ≤ ∥v (s)∥Π3
∥∂tGt (s)∥Π3

≤
M1 ∥v∥Π3

, |vn−1 (s) − v (s)| =
∣∣⟨vn−1 (s) − v (s) , Gt (s)⟩Π3

∣∣
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≤ ∥vn−1 (s) − v (s)∥Π3
∥Gt (s)∥Π3

≤M2 ∥vn−1 − v∥Π3
. From the last description

as well, it follows that

|vn−1 (tn) − v (s)| = |vn−1 (tn) − vn−1 (s) + vn−1 (s) − v (s)|
≤ |vn−1 (tn) − vn−1 (s)| + |vn−1 (s) − v (s)|
≤

∣∣(vn−1)
′ (ξ)

∣∣ |tn − s| + |vn−1 (s) − v (s)|
≤ M1 ∥v∥Π3

|tn − s| +M2 ∥vn−1 − v∥Π3
,

where ξ lies between tn and s. From the assumptions ∥vn−1 − v∥Π3
→ 0, tn → s

and the boundedness of ∥vn∥ as n → ∞, it implies that vn (tn) → v (s) as
n→ ∞. By the continuation of G̃, we get the result directly.

Lemma 9. Suppose that {ti}∞i=1 is dense in the interval [0, 1] and v (t) is the
solution of Eq. (15), then Dv (tk) = Dvn (tk) as n→ ∞.

Proof. Let Pn be the projective operator such that Pn:Π3[0, 1]→{
∑n

m=1 cmψm(t),
cm ∈ R}.

Then, we have Dvn(tk) = ⟨vn(ξ),DtkGtk(ξ)⟩Π3 = ⟨vn(ξ), ψk(ξ)⟩Π3 = ⟨Pnv(ξ),
ψk(ξ)⟩Π3 = ⟨v(ξ), Pnψk(ξ)⟩Π3 = ⟨v(ξ), ψk(ξ)⟩Π3 = ⟨v(ξ),DtkGtk(ξ)⟩Π3 = Dtk⟨v(ξ),
Gtk(ξ)⟩Π3 = Dv(tk).

Theorem 10. Suppose that ||vn||Π3
is bounded in Eq. (16) {ti}∞i=1 is dense

in the interval [0, 1], and Eq. (11) has a unique solution. Then, the n-term
approximate solution vn (t) converges to the exact solution v (t) of Eq. (11) and
the exact solution is expressed as v (t) =

∑∞
i=1 Λiψ̄i (t), where Λi is given in the

iterative formula (16).

Proof. From the iterative formula (16), we have vn (t) = vn−1 (t) + Λnψ̄n (t) .
Hence, ∥vn (t)∥2Π3

= ∥vn−1 (t)∥2Π3
+Λ2

n, which implies that ∥vn (t)∥2Π3
= ∥v0 (t)∥2Π3

+∑n
i=1 Λ2

i . Since ∥vn (t)∥Π3
is bounded, monotone increasing and convergent as

soon as n→ ∞, then there exists a positive constant β such that
∑n

i=1 Λ2
i = β.

For m > n, it follows that

∥vm (t) − vn (t)∥2Π3
= ∥vm − vm−1 + vm−1 − ...+ vn+1 − vn∥2Π3

= ∥vm − vm−1∥2Π3
+ ∥vm−1 − vm−2∥2Π3

+ ...+ ∥vn+1 − vn∥2Π3

=

m∑
l=n+1

Λ2
l → 0, (m,n→ ∞),

in view of (vm − vm−1) ⊥ (vm−1 − vm−2) ⊥ ... ⊥ (vn+1 − vn). Considering the
completeness of Π3 [0, 1] , there exist v (t) ∈ Π3 [0, 1] such that vn (t) → v (t) as
soon as n→ ∞.

Again, from the iterative formula (16), we have v (t) = limn→∞ vn (t) =∑∞
i=1 Λiψ̄i (t).
Thus, Dv (t) =

∑∞
i=1 ΛiDψ̄i (t) and Dv (tk) =

∑∞
i=1 Λi

⟨
Dψ̄i (t) , φk (t)

⟩
Π1

=∑∞
i=1 Λi

⟨
ψ̄i (t) ,D∗φk (t)

⟩
Π3

=
∑∞

i=1 Λi

⟨
ψ̄i (t) , ψk (t)

⟩
Π3

.
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Consequently,
∑i

k=1 µikDv (tk) =
∑i

k=1 µik

(∑∞
i=1 Λi

⟨
ψ̄i (t) , ψk (t)

⟩
Π3

)
=∑∞

i=1 Λi

⟨
ψ̄i (t) ,

∑i
k=1 µikψk (t)

⟩
Π3

=
∑∞

i=1 Λi

⟨
ψ̄i (t) , ψ̄k (t)

⟩
Π3

= Λk. In view

of Eq. (11), we have Dv (tk) = G̃ (tk, v (tk) , T v(tk)) . For the conduct of pro-
ceedings in the proof, since {ti}∞i=1 is dense in the interval [0, 1] , there ex-
ists a subsequence

{
tnj

}∞
j=1

such that tnj → s as j → ∞. Observing that

Dvnj

(
tnj

)
= G̃

(
tnj , vnj−1

(
tnj

)
, T vnj−1(tnj )

)
, let j → ∞, by the continu-

ity of G̃ and Theorem 8, we have Dv (s) = G̃ (s, v (s) , T v(s)) . Also, since
ψ̄i (t) ∈ Π3 [0, 1] , then v (t) satisfies Eq. (11) and the constraints conditions.
So, the proof of the theorem is complete.

For the error behavior, if εn = |v(t) − vn(t)|, where v (t) and vn (t) are
given in Eqs. (15) and (16), respectively. Then, one can write ∥εn∥2Π3

=∥∥∑∞
i=n+1 Λiψ̄i

∥∥2
Π3

=
∑∞

i=n+1 (Λi)
2 and ∥εn−1∥2Π3

=
∥∥∑∞

i=n Λiψ̄i

∥∥2
Π3

=
∑∞

i=n (Λi)
2.

Clearly, {εn}∞n=1 is decreasing in the sense of ∥·∥Π3
. Since

∑∞
i=1 Λiψ̄i (t) is con-

vergent series, then ∥εn∥Π3
→ 0 as n→ ∞.

5 Applications and numerical algorithm

To test the accuracy, simplicity and effectiveness of the RKHS algorithm, certain
numerical examples with exact solutions are given. The results reveal that the
method is highly accurate, rapidly converge, and convenient to handle various
physical and engineering problems. Based on the algorithm, we pick ti = ih,
i = 1, 2, ..., 6, with step-size h = 0.16 and take n = 26, where n is the number
of terms of the Fourier series of the unknown function u(t). The numerical
computations are performed using Maple 13 software package. To allocating
more, we present the following algorithm to summarize the procedure in finding
the approximate solutions.

Algorithm 11. To approximate the solution un (t) of u (t) for Eqs. (1) and
(2), do the following steps.

Step 1: Fixed t in [0, 1] and set s ∈ [0, 1];

If s ≤ t, let Gs (t) =
∑6

i=1 ai(s)t
i−1;

else let Gs (t) =
∑6

i=1 bi(s)t
i−1;

Step 2: Choose n collocation points and do the following subroutine:

Set ti = i−1
n−1 , i = 1, 2, ..., n;

Set ψi(t) = DsGs (t)|s=ti
;

Step 3: Obtain the orthogonalization coefficients µiρ as follows

Let cik =
⟨
ψi (t) , ψk (t)

⟩
Π3
, and do the following subroutine:
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For i = 1, set µ11 = ∥ψ1∥−1
Π3

;

For i = 2, ..., n, set µii =
(
∥ψi∥2Π3

−
∑i−1

k=1 c
2
ik

)−0.5
;

else (for ρ < i), set µiρ = −
(∑i−1

k=ρ cikµkρ

)(
∥ψi∥2Π3

−
∑i−1

k=1 c
2
ik

)−0.5
;

Step 3: For i = 1, 2, ..., n, set

ψi (t) =
∑i

k=1 µikψk (t);

Step 4: Set t1 = 0, and choose an initial approximation v0 (t1) = v (t1);

For i = 1, set Λ1 = µ11G̃ (0, v0 (0) , T v0(0)) and v1 (t) = Λ1ψ1;

For i = 2, 3, ..., n, set Λi =
∑i

k=1 µikG̃ (tk, vn−1 (tk) , T vn−1(tk));

Set vn (t) =
∑n

i=1 Λiψ̄i (t);

Step 5: Set un (t) = vn (t) + γt;

Solve a linear system un (0) = 0 and un (1) − αun (η) = 0 to obtain γ.

Outcome: the numerical solution un (t).

Step 6: Stop.

By applying Algorithm 1 throughout the numerical computations, we present
some tabulate data, numerical comparison, and graphical results that discussed
quantitatively at some selected grid points on [0, 1].

Example 12. Consider the singular linear differential equation.u′′(t)+ 1
sin(t)u

′(t)−
1

t(t−1)u(t)−Tu(t) = f(t), . with three-point boundary conditionsu (0) = 0, u (1)−
4u
(
1
9

)
= 0, where Tu (t) =

∫ 1
0 t

2su(s)ds +
∫ t
0 (t + 1)su(s)ds, 0 < s < t < 1 and

f (t) satisfies the existence and uniqueness of u (t) . Here, the singularities at the
two endpoints {0, 1}. However, the exact solution is u (t) = t(t−1)

(
t− 1

9

)
cos(t).

The results of numerical analysis are approximate as much as is required
within a logical error ratio that will be stored in a fixed number of digits. Using
the RKHS algorithm, the comparison between exact and numerical solutions of
Example 12 together with absolute and relative errors in Π3 [0, 1] are shown in
Table 1. This is an indication of stability of the presented method.

Table 1. Numerical solutions and errors for Example 12.

t Exact solution Numerical solution Absolute error Relative error

0.16 −0.0064867414033 −0.0064883615395 1.62014× 10−6 2.49761× 10−4

0.32 −0.0431467576347 −0.0431461185735 6.39061× 10−7 1.48113× 10−5

0.48 −0.0816697618499 −0.0816661092539 3.65260× 10−6 4.47240× 10−5

0.64 −0.0977401806727 −0.0977386264592 1.55421× 10−6 1.59015× 10−5

0.80 −0.0767925617414 −0.0767937406674 1.17893× 10−6 1.53521× 10−5

0.96 −0.0186952221593 −0.0186969923499 1.77019× 10−6 9.46868× 10−5
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Example 13. Consider the singular nonlinear differential equation

u′′(t) − 1

t2 (1 − t)2
u′ (t) +

1

sinh (t)
u (t) − u2 (t) − sinh−1 (u (t)) − Tu (t) = f (t) ,

with three-point boundary conditionsu (0) = 0, u (1)−u
(
1
2

)
= 0, where Tu (t) =∫ 1

0 tsu
3 (s) ds+

∫ t
0 (t− s)u2 (s) ds, 0 < s < t < 1 and f (t) satisfies the existence

and uniqueness of u (t) . Here, the singularities at the two endpoints {0, 1}.
However, the analytical solution is u (t) =

(
t− 1

2

)2
(t− 1)2 sinh (t).

Using the RKHS algorithm, the comparison between exact and numerical
solutions of Example 13 together with absolute and relative errors in Π3 [0, 1]
are shown in Table 2.

Table 2. Numerical solutions and errors for Example 13.

t Exact solution Numerical solution Absolute error Relative error

0.16 0.0131065322359 0.0131062996971 2.32539× 10−7 1.77422× 10−5

0.32 0.0048764035285 0.0048762184821 1.85046× 10−7 3.79473× 10−5

0.48 0.0000539334978 0.0000538664049 6.70929× 10−8 1.24399× 10−3

0.64 0.0017389788733 0.0017390244908 4.56175× 10−8 2.62324× 10−5

0.80 0.0031971815359 0.0031972745002 9.29643× 10−8 2.90770× 10−5

0.96 0.0003772918713 0.0003773895245 9.76532× 10−8 2.58827× 10−4

Example 14. Consider the singular nonlinear differential equation

u′′(t) +
1

t (t− 1)
(
t− 1

3

)u′ (t) +
1

(et − 1)
u (t) − cosh (u (t)) − Tu (t) = f (t) ,

with three-point boundary conditionsu (0) = 0, u (1) − 2u
(
1
3

)
= 0, where

Tu (t) =
∫ 1
0 ts

2 (8s− 11) e−s(2s− 1
3)eu(s)ds +

∫ t
0 cosh (t)u4 (s) ds, 0 < s < t < 1

and f (t) satisfies the existence and uniqueness of u (t) . Here, the singularities
at multi-points {0, 13 , 1} of the interval [0, 1]. However, the analytical solution is
u (t) = t

(
t− 1

3

) (
2t2 − 3t+ 1

)
.

Using the RKHS algorithm, the comparison between exact and numerical
solutions of Example 14 together with absolute and relative errors in Π3 [0, 1]
are shown in Table 3.

Table 3. Numerical solutions and errors for Example 14.

t Exact solution Numerical solution Absolute error Relative error

0.16 −0.0158412800000 −0.0158410408525 2.39147× 10−7 1.50965× 10−5

0.32 −0.0010444799999 −0.0010442321864 2.47814× 10−7 2.37260× 10−4

0.48 0.0014643200000 0.0014645926865 2.72686× 10−7 1.86221× 10−4

0.64 −0.0197836799999 −0.0197832643578 4.15642× 10−7 2.10093× 10−5

0.80 −0.0448000000000 −0.0447993897465 6.10253× 10−7 1.36217× 10−5

0.96 −0.0221388799999 −0.0221381979890 6.82011× 10−7 3.08060× 10−5

Example 15. Consider the singular nonlinear differential equation

u′′(t) +
1

ln (t+ 1)
u′ (t) − 1

t
(
t− 1

4

)
(t− 1)

u (t) − u (t) eu(t) − Tu(t) = f (x) ,
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with three-point boundary conditionsu (0) = 0, u (1) − 3u
(
1
4

)
= 0, where

Tu (t) =
∫ 1
0 (t− s)2 eu(s)ds +

∫ t
0 e

s+teu(s)ds, 0 < s < t < 1 and f (t) sat-
isfies the existence and uniqueness of u (t) . Here, the singularities at multi-
points {0, 14 , 1} of the interval [0, 1]. However, the the analytical solution is
u (t) = ln

(
t2 (1 − t)

(
t− 1

4

)
+ 1
)
.

Using the RKHS algorithm, the comparison between exact and numerical
solutions of Example 15 together with absolute and relative errors in Π3 [0, 1]
are shown in Table 4. It is clear from the tables that the numerical solutions are
in close agreement with the exact solutions for all examples, while the accuracy
is in advanced by using only few term of the RKHS iterations. The approxima-
tion values and the absolute errors of u(i)(t), i = 0, 1, 2, at various t in [0, 1] of
Example 15 are graphically plotted in Figures 1, 2, and 3, respectively. Here,
the numerical values for the exact solution approach smoothly to the t-axis by
satisfying their boundary conditions. Indeed, decreasing the step-size increases
the accuracy of the results while increasing the time required to simulate the
problem.

Table 4. Numerical solutions and errors for Example 15.

t Exact solution Numerical solution Absolute error Relative error

0.16 −0.0019372352291 −0.0019373982303 1.63001× 10−7 8.41412× 10−5

0.32 0.0048623993527 0.0048624655648 6.62121× 10−8 1.36172× 10−5

0.48 0.0271830114104 0.0271831781099 1.66700× 10−7 6.13249× 10−6

0.64 0.0559150456224 0.0559153019544 2.56332× 10−7 4.58431× 10−6

0.80 0.0680324103918 0.0680327200535 3.09662× 10−7 4.55168× 10−6

0.96 0.0258367772964 0.0258368978659 1.20569× 10−7 4.66658× 10−6

Figure 1: Graphical results of u (x) of Example 15: (a) approximate solution
(b) absolute error.
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Figure 2: Graphical results of u′ (x) of Example 15: (a) approximate solution
(b) absolute error.

Figure 3: Graphical results of u′′ (t) of Example 15: (a) solution solution, (b)
absolute error.

6 Concluding remarks

This article is presented in the RKHS algorithm as a novel solver for a class of
singular BVPs restricted by Fredholm-Volterra operators. This algorithm and
its conjugate operator are employed to construct the complete orthonormal basis
in the reproducing kernel space Π3 [0, 1]. As well, it is applied in a direct way
without using linearization, perturbation, or any restrictive assumptions. we can
conclude that the RKHS algorithm is very powerful and efficient tool in finding
analytical-numerical solutions for a wide class of such models arising in sciences
and engineering. Besides, for numerical experiments, higher accuracy can be
achieved in computing further RKHS iterations. Thus, the RKHS algorithm is
capable of reducing the volume of the computational work and complexity while
still maintaining the high accuracy of the numerical results.
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Abstract. In this article, R is commutative ring with identity and Y is a left unitary
R-module. A proper submodule L of Y is called nearly semiprime submodule if whenever
rny ∈ L, where r ∈ R and y ∈ Y , n ∈ Z+, implies that ry ∈ L + J(Y ), where J(Y ) is
the Jacobson radical of Y . This concept in courage us to introduce the concept nearly
semi-2-absorbing submodule as a generalization of nearly semiprime submodule, where
a proper submodule L of Y is called nearly semi-2-absorbing submodule of Y if whenever
a2y ∈ L, where a ∈ R , y ∈ Y , implies that either ay ∈ L+J(Y ) or a2 ∈ [L : Y ]. Many
basic properties, and characterization of this concept are introduce. On the other hand
the relation of this concept with other classes of modules are studied.

Keywords: semiprime submodule, semi 2-absorbing submodule, good ring.

1. Introduction

The notion of prime submodule was introduce by [6] . where a proper submodule
N of an R-module Y is called prime submodule, if whenever ry ∈ N, r ∈ R, y ∈
Y , implies that either y ∈ N or r ∈ [N : Y ] [6], where [N : Y ] = {r ∈ R :
rY ⊆ N}. Semiprime submodule as a generalization of prime submodule was
introduced by [1], where a proper submodule N of Y is called semiprime if
whenever rny ∈ N, r ∈ R , y ∈ Y , n ∈ Z+ implies that ry ∈ N [1]. This
concept generalized in [7] to nearly semi prime sub module, where a proper sub
module N of Y is called nearly semiprime if whenever rny ∈ N , r ∈ R , y ∈
Y , n ∈ Z+ implies that ry ∈ N+J (Y ). Also, semiprime submodule generalized
to semi -2- absorbing submodule in [3] ,where a proper submodule N of Y is called
semi -2-absorbing sub module of Y if whenever a2y ∈ N , where a ∈ R , y ∈ Y ,
implies that either ay ∈ N or a2 ∈ [N : Y ]. This led us to introduce the

∗. Corresponding author
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concept of nearly semi -2 absorbing sub module as a generalization of nearly
semiprime submodule, where a proper submodule N of Y is called nearly semi-
2-absorbing if whenever a2y ∈ N , where a ∈ R, y ∈ Y , implies that either y ∈
N +J (Y ) or a2 ∈ [N +J (Y ) : Y ]. We give many properties, characterizations
and relationship between nearly semi-2-absorbing and other concepts.

2. Nearly semi -2-absorbing sub modules

We investigate in this section, the concept of nearly semi -2-absorbing sub mod-
ule as a generalization of nearly semi prime sub module.

Definition 2.1. A proper submodule L of an R-module Y is called nearly Semi
-2- absorbing, if whenever a2y ∈ L, where a ∈ R, y ∈ Y , implies that either
ay ∈ L+ J (Y ) or a2 ∈ [L+ J (Y ) : Y ].

A proper ideal J of a ring R is called nearly semi-2-absorbing ideal if J is
nearly semi-2-absorbing sub module of an R-module R.

Proposition 2.2. If L is a nearly semiprime submodule of an R-module Y, then
L is nearly semi -2-absorbing sub module of Y.

Proof. Assume that a2y ∈ L, a ∈ R , y ∈ Y , with a2 /∈ [L + J (Y ) : Y ],
since L is a nearly semi prime , it follows that ay ∈ L+ J(Y ). Thus L is nearly
semi-2-absorbing sub module of Y.

The converse of Proposition 2.2 is not true in general, so the following ex-
ample explain that.

Example 2.3. Consider the submodule L = 4Z of the Z-module Z , L is nearly
semi-2-absorbing but not nearly semi prime because if 22×1 ∈ 4Z, where 2 ∈ Z,
1 ∈ Z, implies that 2 × 1 /∈ 4Z + J (Z), but 22 ∈ [4Z + J (Z) : Z] = 4Z. On the
other hand if 22 × 1 ∈ 4Z , implies that 2 × 1 /∈ 4Z + J(Z) hence 4Z is not
nearly semiprime Z-sub module.

Lemma 2.4 ([1]). A proper submodule L of an R-module Y is semiprime if and
only if whenever a2y ∈ L , where r ∈ R, y ∈ Y, then ry ∈ L.

Remark 2.5. Every semiprime submodule of an R-module Y is nearly semi
-2-absorbing, but the converse is not true in general.

Proof. Since every semiprime submodule is nearly semi prime[7], hence the
proof is follows by Proposition 2.3.

For the converse ,consider the following example:

Consider the sub module (0) of the Z-module Z4 . (0) is nearly semi-2-
absorbing but not semiprime submodule of Z4 because if 22×1 ∈

(
0
)

then 2×1 /∈
(0) hence (0) is not semiprime, but 22 ∈

[(
0
)

+J (Z4) : Z4

]
=
[(

0
)

+
{

0, 2
}

: Z4

]
=

2Z , hence (0) is nearly semi-2-absorbing in Z4.
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Proposition 2.6. Let K be a submodule of an R-module Y, with K + J(Y ) is
nearly semi-2-absorbing , then K is nearly semi-2-absorbing.

Proof. Assume that r2y ∈ K ,where r ∈ R , y ∈ Y , then r2y ∈ K + J (y) .
But K + J(Y ) is nearly semi-2-absorbing then either ry ∈ K + ? (Y ) + J (Y ) =
K + J (Y ) or r2 ∈ [K + J (Y ) + J (Y ) : Y ] =[K + J (Y ) : Y ]. Hence K is nearly
semi-2-absorbing in Y.

Lemma 2.7 ([5]). Let N and K be two sub modules of an R-module Y, then

1. If N ⊂ K, then [N : M ] ⊆ [K : M ].

2. If N ⊂ K,then [N : M ] ⊆ [N : K].

Proposition 2.8. Let E and F be two submodules of an R-module Y with E (
F . If E is a nearly semi-2-absorbing submodule of Y and J(Y ) ⊆ J(F ), then E
is nearly semi-2-absorbing in F.

Proof. Assume that r2y ∈ E , with r ∈ R, y ∈ F , since E is nearly semi-
2-absorbing sub module of Y, then ry ∈ E + J(Y ) or r2 ∈ [E + J (Y ) : Y ] .
But J(Y ) ⊆ J(F ), it follows that ry ∈ E + J(F ) or r2 ∈ [E + J (F ) : Y ] ⊆
[E + J (F ) : F ] by Lemma 2.7. Hence E is nearly semi-2-absorbing in F.

Remark 2.9. Every prime submodule of an R-module Y is nearly -2-absorbing
submodule of Y ,while the converse is not true.

Proof. Since prime submodule is semiprime [1], hence the proof follows by
Remark 2.5. For the converse consider the following example, let Y = Z,R =
Z. L = 9Z a submodule of Y, 9Z is nearly semi-2-absorbing of Z since 32×1 ∈ 9Z
it follows that 32 ∈ [9Z + J (Z) : Z] = 9Z. But 9Z is not prime submodule of
Z, since 3 × 3 ∈ 9Z but 3 /∈ 9Z and 3 /∈ [9Z : Z] = 9Z.

Recall that a proper submodule L of an R-module is 2-absorbing if whenever
aby ∈ L, with a, b ∈ R , y ∈ Y implies that either ay ∈ L or by ∈ L or
ab ∈ [L : Y ] [2].

Proposition 2.10. Every 2-absorbing submodule of an R-module Y is nearly
semi-2-absorbing submodule of Y .

Proof. Let L be 2-absorbing submodule of Y , and r2y ∈ L, where r ∈ R,
y ∈ Y . Since L is 2-absorbing it follows that either ry ∈ L or r2 ∈ [L : Y ].
That is either ry ∈ L+ J (Y ) or r2 ∈ [L : Y ] ≤ [L+ J (Y ) : Y ] by Lemma 2.7.
Thus L is nearly semi-2-absorbing.

Proposition 2.11. Let Y be an R-module, and K be a proper submodule of Y
with J (Y ) ⊆ K. Then K is semi-2-absorbing iff K is nearly semi-2-absorbing.
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Proof. ⇒ Assume that r2y ∈ K, where r ∈ R, y ∈ Y . Then either ry ∈ K ⊆
K + J (Y ) or r2 ∈ [K : Y ] ⊆ [K + J (Y ) : Y ]. Hence either ry ∈ K + J (Y ) or
r2 ∈ [K + J (Y ) : Y ]. Thus K is nearly semi-2-absorbing.

⇐ Assume that a2y ∈ K with a ∈ R, y ∈ Y . Then either ay ∈ K + J (Y )
or a2 ∈ [K + J (Y ) : Y ]. But J (Y ) ⊆ K, it follows that K + J (Y ) = K. Hence
either ay ∈ K or a2 ∈ [K : Y ]. Thus K is semi-2-absorbing.

Remark 2.12. The intersection of two nearly semi-2-absorbing submodules
of an R-module Y need not to be nearly semi-2-absorbing submodules. For
example let Y = Z and R = Z,L = 2Z,K = 9Z are nearly semi-2-absorbing
submodules of Y, but 2Z ∩ 9Z = 18Z is not nearly semi-2-absorbing submodule
of Y , since 32 × 2 ∈ 18Z, but 3 × 2 /∈ 18Z + J (Z) and 32 /∈ [18Z + J (Z) : Z].

Proposition 2.13. Let L be a nearly semi-2-absorbing submodule of an R-
module Y, and K is a proper submodule of Y with K * L and J (K) = J (Y ),
then L ∩K is nearly semi-2-absorbing submodule in K.

Proof. Since K * L, then L ∩ K < K. Let r2y ∈ K ∩ L, where r ∈ R,
y ∈ K. Since L is nearly semi-2-absorbing and r2y ∈ L, it follows that either
ry ∈ L+ J (Y ) or r2 ∈ [L+ J (Y ) : Y ], but J (K) = J (Y ) then ry ∈ L+ J (K)
or r2 ∈ [L+ J (K) : Y ]. Since y ∈ K, then ry ∈ K, hence ry ∈ (L+ J (K))∩K,
it follows that ry ∈ (L ∩K)+J (K), or r2 ∈ [L+ J (K) : Y ], implies that r2y ∈
L+J (Y ) for all y ∈ Y . Since ry ∈ K, then r2y ∈ K. Hence r2y ∈ (L+ J (K))∩
K, implies that r2y ∈ (L ∩K) + J (K), hence r2 ∈ [(L ∩K) + J (K) : Y ] ⊆
[(L ∩K) + J (K) : K]. That is r2 ∈ [(L ∩K) + J (K) : K]. Hence L ∩ K is
nearly semi-2-absorbing in K.

Recall that a ring R is good ring if J (R)Y = J (Y ) where Y is an R-
module [4].

Remark 2.14 ([4]). If R is good ring, then J (Y ) ∩N = J (N), where Y is an
R-module, N submodule of Y .

Lemma 2.15 ([4], Lemma 2.3.15). Let Y be an R-module , and L,F and E are
submodule of Y with F ( E. Then (L+F) ∩E = (L∩E)+F = (L∩E) + (F∩E).

Proposition 2.16. Let Y be an R-module over good ring, and L is nearly semi-
2-absorbing submodule of Y , and K be a proper submodule of Y with K * L
and J (Y ) ≤ K, then (L ∩K) is nearly semi-2-absorbing in K.

Proof. Since K * L, then (L ∩K) ⊂ K. Assume that r2y ∈ (L ∩K),
where r ∈ R, y ∈ K. Since L is a nearly semi-2-absorbing, and r2y ∈ L,
then either ry ∈ L + J (Y ) or r2 ∈ [L+ J (Y ) : Y ]. Since y ∈ K then ry ∈
K and r2y ∈ K. Hence ry ∈ (L+ J (Y )) ∩ K or r2y ∈ (L+ J (Y )) ∩ K
for all y ∈ Y . Thus by Lemma 2.15, ry ∈ (L ∩K) + J (Y ) ∩ K or r2y ∈
(L ∩K) + (J (Y ) ∩K). Since R is good ring, then J (Y ) ∩K = J (K). That is
ry ∈ (L ∩K)+J (K) or r2y ∈ (L ∩K)+J (K). Hence ry ∈ (L ∩K)+J (K) or
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r2 ∈ [(L ∩K) + J (K) : Y ] ≤ [(L ∩K) + J (K) : K] by Lemma 2.7, (2), implies
that r2 ∈ [(L ∩K) + J (K) : K]. Thus L ∩K is nearly semi-2-absorbing in K.

Proposition 2.17. Let L and K be nearly semi-2-absorbing proper submodules
of an R-module Y , with K * L and either J (Y ) ⊆ L or J (Y ) ⊆ K, then L∩K
is semi-2-absorbing of Y .

Proof. Since K * L, then L∩K ( L ( Y , it follows that L∩K ( Y . Assume
that r2y ∈ L ∩ K, r ∈ R, y ∈ Y . Then r2y ∈ K and r2y ∈ L, but both
K and L are nearly semi-2-absorbing in Y, then either ry ∈ K + J (Y ) or r2 ∈
[K + J (Y ) : Y ] and either ry ∈ L+J (Y ) or r2 ∈ [L+ J (Y ) : Y ]. It follows that
either ry ∈ (K + J (Y ))∩ (L+ J (Y )) or r2 ∈ [K + J (Y ) : Y ]∩ [L+ J (Y ) : Y ].
If J (Y ) ⊆ L, then ry ∈ (K + J (Y )) ∩ L, it follows that by Lemma 2.15,
ry ∈ (L ∩K) + J (Y ). If J (Y ) ⊆ K, then it follows that by Lemma 2.15,
ry ∈ (L+ J (Y )) ∩K, then ry ∈ (L ∩K) + J (Y ). Also r2 ∈ [K + J (Y ) : Y ] ∩
[L+ J (Y ) : Y ] ⊆ [(L ∩K) + J (Y ) : Y ], implies that r2 ∈ [L ∩K + J (Y ) : Y ].
That is either ry ∈ (L ∩K) + J (Y ) or r2 ∈ [L ∩K + J (Y ) : Y ]. Hence L ∩K
is nearly semi-2-absorbing submodule of Y .

Proposition 2.18. Let Y be an R-module over a good ring R, and L,K be
submodules of Y , with L ( K and J (Y ) ⊆ K. If L is a nearly semi-2-absorbing
submodule of Y , then L is a nearly semi-2-absorbing submodule of K.

Proof. Assume that r2y ∈ L, r ∈ R, y ∈ K, since L is a nearly semi-2-
absorbing submodule of Y , and y ∈ K ⊆ Y , then either ry ∈ L+ J (Y ) or r2 ∈
[L+ J (Y ) : Y ]. But y ∈ K, then ry ∈ K. Hence either ry ∈ (L+ J (Y )) ∩K
or r2y ∈ (L+ J (Y ))∩K for each y in K. Hence either ry ∈ (L ∩K)+J (Y )∩K
or r2y ∈ (L ∩K) + (J (Y ) ∩K). Since R is a good ring, and L ( K, it follows
that either ry ∈ L+ J (K) or r2y ∈ L+ J (K). Hence either ry ∈ L+ J (K) or
r2 ∈ [L+ J (K) : K]. Thus L is a nearly semi-2-absorbing in K.

Proposition 2.19. Let E be a submodule of an R-module Y . Then E + J (Y )
is a nearly semi-2-absorbing submodule of Y if and only if

[
E + J (Y ) : r2y

]
=

[E + J (Y ) : ry] for each y ∈ Y or r2 ∈ [E + J (Y ) : Y ].

Proof. ⇒Assume that r2 /∈ [E + J (Y ) : Y ]. To prove that
[
E + J (Y ) : r2y

]
=

[E + J (Y ) : ry]. It is clear that [E + J (Y ) : ry] ⊆
[
E + J (Y ) : r2y

]
. Now,

let a ∈
[
E + J (Y ) : r2y

]
, then r2ay ∈ E + J (Y ) since E + J (Y ) is nearly

semi-2-absorbing in Y and r2 /∈ [E + J (Y ) : Y ] so a ∈ [E + J (Y ) : ry]. Thus[
E + J (Y ) : r2y

]
= [E + J (Y ) : ry].

⇐ Let r2y ∈ E + J(Y ), by hypothesis [E + J(Y ) : r2y] = [E + J(Y ) : ry]
or r2 ∈ [E + J(Y ) : Y ]. If [E + J(Y ) : r2y] = [E + J(Y ) : ry], then
[E+J(Y ) : r2y] = R because r2y ∈ E+J(Y ). Implies that [N+J(Y ) : ry] = R
and hance ry ∈ E+J(Y ). Thus either ry ∈ E+J(Y ) or r2 ∈ [ E+J(Y ) : Y ].
Hence E + J(Y ) is nearly semi 2-absorbing in Y .
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Proposition 2.20. Let Y be an R-module, and E be a submodule of Y . Then
E is a nearly semi 2-absorbing in Y if and only if r2F ⊆ E, implies that
rF ⊆ E + J (Y ) or a2 ∈ [ E + J (Y ) : Y ].

Proof. ⇒ Assume that r2F ⊆ E, and suppose that there exist y ∈ F such
that ry /∈ E + J (Y ). Since r2F ⊆ E, so r2m ∈ E for each m ∈ F . But E is a
nearly semi 2-absorbing in Y, and ry /∈ E + J (Y ). Hence r2 ∈ [E + J (Y ) : Y ].

⇐ It is clear.

Proposition 2.21. Let E be a submodule of an R-module Y such that J (Y ) ⊆
E. If E is nearly semi 2-absorbing of Y , then[E : Y ] is a semi 2-absorbing ideal
in R.

Proof. Assume that a2b ∈ [E : Y ], a, b ∈ R, implies that a2by ∈ E for each
y ∈ Y . But E is a nearly semi 2-absorbing in Y, then either aby ∈ E + J (Y ) or
a2 ∈ [E + J (Y ) : Y ], But J (Y ) ⊆ E, it follows that aby ∈ E or a2 ∈ [E : Y ].
That is ab ∈ [E : Y ] or a2 ∈ [E : Y ].

⇐ Assume that a2y ∈ E, a ∈ R, y ∈ Y , with the converse Proposition 2.21
hold under the class of cyclic modules.

Proposition 2.22. Let E be a proper submodule of cyclic module Y . If [E : Y ]
is semi 2-absorbing ideal of R, then E is a nearly semi 2-absorbing submodule
of Y .

Proof. Assume that [E : Y ] is semi 2-absorbing ideal of R then by [3], we have
E is a semi 2-absorbing submodule of Y . Hence by Proposition 2.11, we get E
is nearly semi 2-absorbing submodule of Y .

Corollary 2.23. Let E be a proper submodule of cyclic R-module Y with J (Y ) ⊆
E. Then E is a nearly semi 2-absorbing submodule of Y if and only if [E : Y ]
is a semi 2-absorbing ideal of R.

Proposition 2.24. Let φ : Y −→ Y be an R-epimorphism with Ker φ ⊆ E
whene E is a proper submodule of Y. Then

1. If E is a nearly semi 2-absorbing in Y , then φ(E) is a nearly semi 2-
absorbing submodule in Y ′e.

2. If E1 is a nearly semi 2-absorbing submodule in Y ′e and Kerφ is small
submodule in Y , thenφ−1(E′e) is a nearly semi 2-absorbing submodule in
Y .

Proof.

1. φ (E) is a proper submodule of Y ′e, if not, that is φ (E) = Y ′e, then
for each y ∈ Y ,φ (y) ∈ Y ′e = φ (E), implies that φ (y) = φ (η) for some
n ∈ E, hence φ (y − n) = 0, then y − n ∈ Kerφ ⊆ E, implies that y ∈ E,
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hence E=Y contradiction (since E ( Y ) Now, assume that r2y′e ∈ φ (E),
r ∈ R, y′e ∈ Y ′e, since φ is onto, then there exist y ∈ Y such that
φ (y) = y′e hence r2φ (y) ∈ φ (E), that is φ

(
r2y
)
∈ φ (E) then there

exist e ∈ E such that φ
(
r2y
)

= φ (e), hence φ
(
e− r2y

)
= 0, implies

that e − r2y ∈ Kerφ ⊆ E, hence r2y ∈ E, but E is a nearly semi 2-
absorbing in Y , then either ry ∈ E + J (Y ) or r2 ∈ [E + J (Y ) : Y ]. That
is ry ∈ E+J (Y ) or r2Y ∈ E+J (Y ). It follows rφ (y) ∈ φ (E)+φ (J (Y ))
or r2φ (y) ⊆ φ (E)+φ (J (Y )). Hence ry′e ∈ φ (E)+φ (J (Y ′e)) or r2y′e ⊆
φ (E) + (J (Y ′e)). Hence either ry′e ∈ φ (E) + J (Y ′) or r2 ∈ [φ (E) +
J (Y ′e) : Y ′e]. Therefore φ (E) is a nearly semi 2-absorbing submodule
inY ′e.

2. It is clear that φ (E′e) ( Y .Now, assume that r2y ∈ φ−1 (E′e), r ∈ R, y ∈
Y , then r2φ(y) ∈ E′e, implies that r2y′e ∈ E′e, y′e ∈ Y ′e, since E′e
is a nearly semi 2-absorbing in Y ′e, then either ry′e ∈ E′e + J (Y ′e)
or r2 ∈ [E′e + J (Y ′e) : Y ′e] . That is either φ(ry) ∈ E + J (Y ′e) or
r2y′e ⊆ E′e + (J (Y ′e)). Thus either φ(ry) ∈ E + J (Y ′e)or φ(r2y) ⊆
E′e + J (Y ′e). It follows that either ry ∈ φ−1(E′e) + φ−1(J (Y ′e)) or
r2y ⊆ φ−1(E′e) + φ−1(J (Y ′e)). Hence either ry ∈ φ−1(E′e) + J (Y )
or r2 ∈ [φ−1(E′e) + J (Y ) : Y ]. Therefore φ−1(E′e) is a nearly semi
2-absorbing in Y .

Proposition 2.25. Let E be a proper submodule of an R-module Y such that
E is a nearly semi-2-absorbing submodule of Y , then S−1E is a nearly semi-2-
absorbing submodule of S−1R-module S−1Y .

Proof. Assume that(a)2y ∈ S−1E where a = a
s1

∈ S−1R and y = y
s2

∈ S−1Y ,

a ∈ R, y ∈ Y , s1, s2 ∈ S. Hence a2y
s12s2

∈S−1E, implies that a2y
t ∈ S−1E,

t =s1
2s2, then there exists t1 ∈ S such that a2t1y ∈ E. Since E is a nearly semi-

2-absorbing in Y, then either at1y∈E+J(Y ) or a2t1 ∈ [E+J (Y ) : Y ], it follows

that either a2t1y
s12t1s2

∈ S−1 [E+J (Y )] or a2t1
s12t1

∈ S−1 [E+J (Y ) : Y ]. Hence either

(a)2y ∈ S−1E+S−1 (J (Y )) or (a)2 ∈
[
S−1 (E) + S−1 (J (Y )) : S−1Y

]
, implies

that either (a)2y ∈ S−1E + J
(
S−1Y

)
or (a)2 ∈

[
S−1 (E) + J

(
S−1Y

)
: S−1Y

]
.

Therefore S−1E is a nearly semi-2-absorbing submodule of S−1Y .

Proposition 2.26. Let Y = Y1 ⊕ Y2 be an R-module, where Y1, Y2 are R-
modules, and let E and F be a proper submodules of Y1 and Y2 respectively,
then

1. E is a nearly semi-2-absorbing submodule in Y1 if and only if E ⊕ Y2 is
a nearly semi-2-absorbing in Y .

2. F is a nearly semi-2-absorbing in Y2 if and only if Y1 ⊕ F is a nearly
semi-2-absorbing in Y .

Proof. It is easy, we omitted.
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Proposition 2.27. If E and F are nearly semi-2-absorbing submodules in Y1
and Y2, respectively such that[E + J (Y1) : Y1] = [F + J (Y2) : Y2]. Then K =
E ⊕F is a nearly semi-2-absorbing submodule in R-module Y = Y1 ⊕ Y2, where
Y1, Y2 are R-modules.

Proof. Assume that r2 (y1, y2) ∈ E ⊕ F , a ∈ R, (y1, y2) ∈ Y , y1 ∈ Y1, y2 ∈ Y2,
implies that r2y1 ∈ E and r2y2 ∈ F . Since E and F are nearly semi-2-absorbing,
then either ry1 ∈ E+J (Y1) or r2 ∈ [E + J (Y1) : Y1] and either ry2 ∈ F+J (Y2)
or r2 ∈ [F + J (Y2) : Y2] = [E + J (Y1) : Y1] so ry1 ∈ E + J (Y1) and ry2 ∈
F+J (Y2) or r2 ∈ [E + J (Y1) : Y1]. Thus r (y1, y2) ∈ (E + J (Y1))

∫
(F+J (Y2))

or r2 ∈ [E ⊕ F + J (Y1 + Y2) : Y1 + Y2]. It follows that either r (y1, y2) ∈ E ⊕
F + J (Y1 + Y2) or r2 ∈ [E ⊕ F + J (Y1 + Y2) : Y1 + Y2].
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Abstract. Determinant on a commutative ring of characteristics p can be extended by
a linear mapping to provide a trilinear alternating form. We show some basic properties
of such forms.

If the underlying ring is a chain-ring, we compute dimensions of radicals of all
vectors and thus prove nonequivalence of forms arising from chain-rings with different
sizes of ideals. Moreover, in the case p = 2 we show that all three nondegenerate forms
on dimension 6 are ring forms.

Keywords: trilinear alternating form, commutative ring, chain ring.

1. Introduction

Let f : V 3 → F be a trilinear form on a vector space V over a field F , dimV =
n < ∞. The form f is called alternating if f(u, v, w) = 0 whenever two of
the input vectors are equal. Two forms f and g on V are equivalent if there
exists an automorphism of V satisfying f(u, v, w) = g(ϕ(u), ϕ(v), ϕ(w)) for all
u, v, w ∈ V . Classification of classes of this equivalence seems to be a very
difficult problem (unlike in the bilinear case) even for small dimensions of V
and not much has been done in this respect. This classification was done for
the case n ≤ 7 in [1] for a large family of fields including all finite fields and
Gurevitch [2], D. Djokovic [3] and L. Noui [4] solved the case n = 8 for F = C,
F = R and F algebraically closed field of arbitrary characteristic, respectively.
The case of dimension 8 over GF(2) is solved in [7].

Trilinear alternating forms over the two-element field appear as important
invariants of doubly even binary codes and thus the accent is put on the case of
characteristic 2.

In this paper we study trilinear alternating forms that arise as extensions
of determinant over a ring R with a linear mapping l : R → GF(p). This
construction is a generalization of so called trace-derived forms introduced in [8].
We show when such a form is nondegenerate and when it is decomposable. If
the ring R is a chain-ring then there exists a mapping l yielding a nondegenerate
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form. Two chain-rings with different sizes (or number) of ideals give rise to two
nonequivalent forms.

There are only three four-element rings of characteristic 2 and we show that
they provide exactly the three nondegenerate forms on dimension 6 over GF(2).

2. Definitions

A trilinear alternating form f satisfies the equality:

f(vσ(1), vσ(2), vσ(3)) = sgn(σ)f(v1, v2, v3),

for every permutation σ ∈ S3. Since this paper deals mainly with forms over
the two-element field, this equation often collapses into symmetry.

We shall denote the bilinear form f(v,−,−) by f [v] and similarly f [v1, v2]
shall denote the linear form f(v1, v2,−).

An automorphism ϕ of V is said to be an automorphism of the form f if

f(v1, v2, v3) = f(ϕ(v1), ϕ(v2), ϕ(v3)) for all v1, v2, v3 ∈ V.

The group of automorphisms of f will be denoted by Aut(f).
Let f be a trilinear form on V . The set

{x ∈ V ; f [x] = 0}

is called the radical of f and will be denoted by Radf . If Radf is trivial (contains
only the zero vector), then f is called nondegenerate.

Fix v ∈ V and define the radical Radf (v) of v as:

Radf (v) = {u ∈ V ; f [v, u] = 0}.

If it is clear which form is meant, we shall omit the index f . The radical of any
vector v is clearly a subspace of V . The rank of v ∈ V is the codimension of
Rad(v) in V

r(v) = n− dimRad(v).

To capture the information about ranks of vectors of forms (over finite fields)
we shall use an invariant introduced in [7], called the radical polynomial

P (f) =
∑
v∈V

xr(v)yn−r(v).

P (f) is a homogenous polynomial of degree n and if written in the form

(1) P (f) =

n∑
i=0

αix
iyn−i

then every αi is a nonnegative integer and
∑n−1

i=0 αi = qn. Since for every u ∈ V
we have u ∈ Rad(u), the rank r(u) of any vector u is less than n and the sum
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in (1) can run only to n− 1. Moreover, by Proposition 2.1 we get αi is equal to
zero whenever i odd.

Suppose that there is a fixed trilinear alternating form f on a vector space
V . We say that nonzero vectors u, v ∈ V are orthogonal, denoted by u⊥v,
if u ∈ Rad(v). This relation is clearly reflexive and symmetric (the form is
alternating) but is not necessarily transitive.

We shall use standard notation for forms: Let V be an n-dimensional vector
space over a field F and fix a basis B = {b1, . . . , bn} of V . Denote by B∗ =
{b∗1, . . . , b∗n} its dual basis (defined as usual by b∗i (bj) = δij). Given B and B∗

as above, a k-linear alternating form f can be expressed as

fB =
∑

1≤i1<···<ik≤n

fi1...ikb
∗
i1 ∧ . . . ∧ b

∗
ik
,

where the index B indicates the dependence of the presentation upon the chosen
basis. Denote by ∆f the set

∆f = {(i1, . . . , ik) | 1 ≤ i1 < · · · < ik ≤ n, fi1...ik ̸= 0}.

We shall shorten this notation to fB =
∑

∆f
fi1...iki1 . . . ik.

If V is a vector space over the two element field F = GF(2) and k = 3, then
to give a form f means to point out triples {i, j, k} satisfying f(bi, bj , bk) = 1,
i.e., to give the set ∆.

In what follows we shall often use the well known characterization of bilinear
alternating forms:

Proposition 2.1. Let f be a bilinear alternating form on a vector space V of
dimension n. Then there exists a basis B = {b1, . . . , bn} and k ≤ n such that

fB = 12 + 34 + · · · + (k − 1)k.

For two subspaces V1 and V2 of V we write V1⊥V2 if v1⊥v2 for any v1 ∈ V1
and v2 ∈ V2. We say that a nondegenerate form f on V is decomposable if
V = W1 ⊕ · · · ⊕Wm, m ≥ 2, and Wi⊥Wj whenever i ̸= j. Given an (orthogo-
nal) decomposition of f , let πi denote the projection of V onto Wi and fi the
restriction of f to Wi. Then we can express the form f as

f(u, v, w) =
∑
i

fi(πi(u), πi(v), πi(w)),

and we shall write f =
⊕
fi. The difference between the bilinear case and k-

linear case, k ≥ 3, is that the finest decomposition of a nondegenerate multilinear
form is unique, see [6]. On the other hand, there are many indecomposable
trilinear forms if the dimension of V is at least six.
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3. Ring forms

In this paper we are going to study trilinear forms arising primarily as determi-
nants over a commutative ring R. Since some of the results need the ring to have
the identity element, we consider only such rings. Moreover, the additive group
(R,+,−, 0) of the ring is assumed to be elementary abelian of prime exponent p.
In some cases we shall have p = 2. The construction can be even more general:

Lemma 3.1. Let p be a prime and R be a commutative ring with 1 satisfying
p · r = 0 for all r ∈ R. Let M be an R-module and let f : M3 → R be a
triadditive mapping. Let l : R → GF(p) be a GF(p)-linear mapping. Then
fl = l ◦ f : M3 → GF (p) is a trilinear form over GF (p).

Proof. Straightforward.

A special case, which we are going to study is when M = R3 and f is the
determinant. Throughout this paper we shall call such forms ring forms and
shall denote them as d(l). Since the determinant is alternating, any ring form
is a trilinear alternating form.

Note that in this paper we study only trilinear forms, but the construction
could be clearly generalized to k-linear forms.

Let Ei(r) : R → R3 denote the mapping sending r to the triple (r1, r2, r3),
where ri = r and rj = 0, j ̸= i.

A degenerate form f can be factored by its radical Radf = {u, f [u] ≡ 0} to
obtain a nondegenerate form on a lower dimension. Thus we first determine a
condition under which a ring form is nondegenerate.

Lemma 3.2. Let f = d(l) be a ring form. Then f is nondegenerate iff

(2) rR2 = rR ̸⊆ Ker l for every 0 ̸= r ∈ R.

Proof. If rR ⊆ Ker l for some r ∈ R then clearly u = (r, 0, 0) is in the rad-
ical of f . On the other hand, if u = (r1, r2, r3) is in the radical of f , then
f(u,E2(1), E3(s)) = l(r1 · s) = 0 for every s ∈ R.

Second step in the classification of trilinear forms is a decomposition to
pairwise orthogonal subspaces. Propositions 3.3 and 3.6 show the connection
between the decomposability of the ring form and the ring itself.

Proposition 3.3. Let Ri be a ring of exponent p and let d(li) be a nondegenerate
ring form on Vi = R3

i , i ∈ {1, 2}. Then there exists a linear mapping l :
R1 × R2 → GF(p) such that d(l) is a nondegenerate form on R1 × R2 and
d(l) = d(l1) ⊕ d(l2).

Proof. Denote by Wi the kernel of li. By Lemma 3.2 we have riRi ̸⊆ Wi for
every nonzero ri ∈ Ri, i ∈ {1, 2}. Choose xi ∈ Ri such that Ri = Wi ∨ ⟨xi⟩ as
a vector space, i ∈ {1, 2}. Put W = W1 ∨W2 ∨ ⟨x1 + x2⟩, which is clearly a
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hyperplane in R1 × R2. Consider any nonzero r = (r1, r2) ∈ R. Without loss
of generality we assume r1 ̸= 0 ∈ R1. By assumption there exists an element
s1 ∈ R1 such that r1s1 ̸∈ W1. We prove that (r1, r2) · (s1, 0) ̸∈ W . Suppose the
contrary. Then

(3) (r1, r2) · (s1, 0) = (r1s1, 0) = a(w1, 0) + b(0, w2) + c(x1, x2),

wi ∈Wi and a, b, c ∈ GF(p). From the second coordinate we get 0 = bw2 + cx2
which implies b = c = 0 by the choice of x2. Thus the equation (3) collapses to
r1s1 = aw1, a contradiction. Finally, the mapping l can be any nonzero linear
mapping with kernel W .

Lemma 3.4. Let f = d(l) be a nondegenerate ring form on V = R3. Then
vectors u = (r1, r2, r3) and v = (s1, s2, s3) are orthogonal iff for every i ̸= j we
have risj − rjsi = 0.

Proof. Set k = 6− i−j and consider a vector w = Ek(r). By the orthogonality
of u and v we have f(u, v, w) = l((risj − rjsi)r) = 0 for any r ∈ R. Since f is
assumed to be nondegenerate, using Lemma 3.2 yields the result.

Lemma 3.5. Let R = R1 ×R2 be a decomposable commutative ring. Then I is
an ideal of R iff it is a direct sum I1 × I2, Ii ideal of Ri, i ∈ {1, 2}. Moreover,
I is principal iff both I1 and I2 are principal.

Proposition 3.6. Let f = d(l) be a nondegenerate ring form on V = R3. If f
is decomposable then R = R1×R2 is a decomposable ring and f = d(l1)⊕ d(l2),
where li is a restriction of l to Ri, i ∈ {1, 2}.

Proof. Let V = V1 × V2 be an orthogonal decomposition of f . Then we can
write the vector E1(1) = (1, 0, 0) as (1, 0, 0) = (r1, s1, t1) + (r2, s2, t2), ui =
(ri, si, ti) ∈ Vi. We get r2 = 1− r1, s2 = −s1 and t2 = −t1. Since the vectors u1
and u2 are orthogonal, we get by Lemma 3.4 −r1s1− (1− r1)s1 = 0 and thus s1
is equal to 0. By symmetry we get t1 = 0. Denote r1 by just r. Similarly we get
the decomposition of E2(1) as (0, 1, 0) = (0, s, 0)+(0, 1−s, 0), v1 = (0, s, 0) ∈ V1
and v2 = (0, 1 − s, 0) ∈ V2. Using again Lemma 3.4 for pairs u1, v2 and u2, v1
we obtain equations

(4) r(1 − s) = 0 and s(1 − r) = 0,

respectively, and combining them we get r = s. Moreover, the equations (4)
imply that r (and thus 1 − r) is an idempotent and R = rR⊕ (1 − r)R.

It remains to prove that the restrictions of l to Ri satisfy the condition of
Lemma 3.2. Since Ker l does not contain any principal ideal of R, we must have
Ker l ∩ R1 ̸= Ri, otherwise Ker l would contain the ideal R1 × 0. Thus li is
a nontrivial linear mapping and by Lemma 3.5 does not contain any principal
ideal of Ri.
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Example. There are three nonisomorphic rings of order 4 satisfying the condi-
tion r + r = 0, namely Z2 × Z2, GF(2)[x]/(x2) and GF(4).

The ring Z2 × Z2 is decomposable and thus by Proposition 3.6 yields a de-
composable form whenever l satisfies the condition of Lemma 3.2. The kernel of
l is by Proposition 3.3 equal to Ker l = {0, 1} and we get the form f3 = 123+456
(the numbers of forms in this example correspond to the numbers used in [7]).
The radical polynomial is compatible with the direct sum of forms (see [7]).
Thus the radical polynomial of this form is a product of two radical polynomi-
als of simple determinant. Radical polynomials for the other two forms can be
computed using Proposition 3.9, see Table 1.

Now, consider the ring GF(2)[x]/(x2). Setting b1 = E1(1), b2 = E3(x),
b3 = E2(1), b4 = E1(x), b5 = E3(1), b6 = E2(x) and Ker l = {0, 1} we get
exactly the form f4 = 123 + 345 + 156.

For the underlying ring equal to GF(4) with elements 0, 1, α, α + 1 setting
b1 = E1(1), b2 = E2(1), b3 = E3(1), b4 = E1(α + 1), b5 = E2(α), b6 = E3(α)
and Ker l = {0, α} yields the form f10 = 123 + 234 + 345 + 246 + 156.

We see that all three nondegenerate forms on dimension 6 over GF(2) are
ring forms.

R f P (f)

Z2 × Z2 123 + 456 (y3 + 7x2y)(y3 + 7x2y)

GF(2)[x]/(x2) 123 + 345 + 156 y6 + 7x2y4 + 56x4y2

GF(4) 123 + 234 + 345 + 246 + 156 y6 + 63x4y2

Table 1: Nondegenerate (ring) forms on dimension 6

Example. Rings of order 8 provide forms on dimension 9 over GF(2). There
are six commutative rings with identity of this order. Three decomposable
Z2 × Z2 × Z2, GF(2)[x]/(x2) × Z2, GF(4) × Z2 and three indecomposable
GF(2)[x]/(x3), GF(8) and GF(2)[x, y]/(x2, y2, xy). The ring GF(2)[x, y]/(x2,
y2, xy) contains (two-element) principal ideals (x), (y) and (x+ y). Any hyper-
plane contains at least one of these ideals and thus this ring by Lemma 3.2 does
not yield a nondegenerate form.

The decomposable forms are just direct sums of forms on dimension 6 with
the determinant on b7, b8 and b9, see Table 2, and thus we get the corresponding
radical polynomials given in Table 3. Moreover, these three forms are the only
(nondegenerate) decomposable forms on dimension 9, because there is no non-
degenerate form on dimension 4 and thus the decomposition of the dimension
must be 6 − 3.

The rings GF(2)[x]/(x3) and GF(8) are both chain rings and thus their
radical polynomials can be computed using Proposition 3.9. The form arising
from the field GF(8) has a transitive group of automorphisms (see [8]) and by
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R f

Z2 × Z2 × Z2 123 + 456 + 789

GF(2)[x]/(x2) × Z2 123 + 345 + 156 + 789

GF(4) × Z2 123 + 234 + 345 + 246 + 156 + 789

GF(2)[x]/(x3) 149 + 158 + 167 + 248 + 257 + 347

GF(8)
147 + 148 + 149 + 157 + 158 + 167 + 169 + 247+
+248 + 257 + 259 + 268 + 347 + 349 + 358 + 367

Table 2: Nondegenerate ring forms on dimension 9

(not yet published) classification of forms on dimension 9 over GF(2) we know
that there is only one such form on this dimension.

R P (f)

Z2 × Z2 × Z2 (y3 + 7x2y)(y3 + 7x2y)(y3 + 7x2y)

GF(2)[x]/(x2) × Z2 (y6 + 7x2y4 + 56x4y2)(y3 + 7x2y)

GF(4) × Z2 (y6 + 63x4y2)(y3 + 7x2y)

GF(2)[x]/(x3) y9 + 7x2y7 + 56x4y5 + 448x6y3

GF(8) y9 + 511x6y3

Table 3: Radical polynomials of ring forms on dimension 9

Now, we shall study forms arising from (commutative) chain rings - i.e., rings
whose ideals form a chain. Every ideal is then principal. Moreover, any hyper-
plane not containing the minimal ideal satisfies the condition of Lemma 3.2,
thus providing a nondegenerate form.

Let S be a subset of a ring R. The set {x ∈ R, xs = 0, ∀s ∈ S} will be
denoted by Ann(S) and is an ideal of R. We shall write Ann(s) instead of
Ann({s}).

Lemma 3.7. Let R be a commutative ring of exponent p and r ∈ R. Then
dim(rR) + dim(Ann(r)) = dimR.

Proof. The mapping x 7→ rx is a p-linear mapping from R to R, rR is its image
and Ann(r) is its kernel.

Lemma 3.8. Let d(l) be a nondegenerate chain ring form on V = R3 and let
u = (r1, r2, r3) be a vector in V . Then the size of Rad(u) is equal to | R |
·|Ann(r1, r2, r3) |2.

Proof. Since we compute only the size of the radical, we can assume without
loss of generality that r3R ⊆ r2R ⊆ r1R. Thus there are elements x, y ∈ R
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such that r2 = r1x and r3 = r1y. Consider a vector v = (s1, s2, s3). Then
d(l)(u, v,−) is equal to

l

∣∣∣∣∣∣
r1 r2 r3
s1 s2 s3
− − −

∣∣∣∣∣∣
 = l

∣∣∣∣∣∣
r1 0 0
s1 s2 + s1x s3 + s1y
− − −

∣∣∣∣∣∣
 .

By Lemma 3.4 vectors u and v are orthogonal if and only if r1(s2+s1x) = 0 and
r1(s3 + s1y) = 0, in other words if both s2 + s1x, s3 + s1y belong to Ann(r1).
Since x and y are fixed, s1 can be arbitrary and there are | Ann(r1) | suitable
vectors s2 to satisfy s2 + s1x ∈ Ann(r1). Similarly for s3.

Proposition 3.9. Let R be a finite chain ring of exponent p and d(l) a non-
degenerate form on n-dimensional vector space R3. Let 0 = I0 ⊂ I1 ⊂ . . . ⊂
Im = R be the chain of all ideals of R and 0 = n0 < n1 < . . . < nm = n/3
their respective dimensions as vector spaces over GF(p). Then the form d(l)
has only vectors of rank 2nk, k ∈ {0, . . . ,m}, and the number of such vectors is
p3nk − p3nk−1, k ∈ {1, . . . ,m}.

Proof. Consider a vector u = (r1, r2, r3) and let Ik be the ideal generated
by {r1, r2, r3}. The rank of u is r(u) = n − Rad(u), which is by Lemma 3.8
equal to n − (n/3 + 2 dim(Ann(r1, r2, r3))). Moreover, by Lemma 3.7 we get
r(u) = n − (n/3 + 2(n/3 − dim(Ik))) = 2nk. The number of nonzero vectors
u = (r1, r2, r3) such that Ik is generated by {r1, r2, r3} is equal to | Ik |3 − |
Ik−1 |3= p3nk − p3nk−1 .

The numbers p3nk − p3nk−1 together with 1 are the coefficients of the radical
polynomial

∑n−1
i=0 αix

iyn−i of the chain ring form. Thus every αi, i ∈ {1, . . . , n−
1}, is divisible both by p3nk−1 and p3 − 1, see Tables 1 and 3.

Proposition 3.10. Let R1 and R2 be nonisomorphic chain rings of character-
istics p. Then the corresponding ring forms are nonequivalent.

Proof. It is well known, see for instance [5], that every chain ring R of char-
acteristics p is isomorphic to GF(pk)[x]/(xt). Its size is pkt and the size of the
maximal ideal xR is pk(t−1). Nonisomorpic rings must have distinct numbers k
(and t) and thus by Proposition 3.9 the numbers p3kt − p3k(t−1) of vectors of
rank 2n

3 of the corresponding ring forms are distinct, too.
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1. Introduction

In this paper, a method of periodic and almost periodic ordinary differential
equations development is considered. It is based on the ideas of functional analy-
sis. I.P. Natanson briefly outlined the theory of derived numbers [1]. Developing
this theory, several theorems of mathematical analysis are proved. Implemen-
tation of this theory let reducing the restrictions on smoothness degree of the
right-hand sides of the equations considered, which made it possible to extend
the scope of the results obtained [2-11]. In many problems of classical and ce-
lestial mechanics, robotics and mechatronics, there are processes which the time
dependence is not periodic in [12-21]. In this connection, the interest in derived
theory implementation to the study of periodic and almost periodic solutions of
differential equations and differential equations with almost periodic coefficients
has arisen [22-26].

∗. Corresponding author
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2. Basic definitions

Let f be a function defined on an open interval (a, b), taking values in the set
of real numbers R, i.e. f : (a, b) → R, a, b ∈ R, a < b. Consider an arbitrary
point x0 in (a, b).

Let a number λ be a derived number of function f at x0 if there exists a
sequence {xk}, such that xk → x0 as k → ∞ and

lim
k→∞

f(xk) − f(x0)

xk − x0
= λ.

The fact that λ is the derived number of function f at x0 is represented as
λ = λ[f ](x0).

The set of all derived numbers of function f at x0 is denoted by Λ[f ](x0)
If in the definition of a derived number it is required the sequence {xk} to

satisfy one more additional condition, which means that for all k the inequality
xk − x0 > 0 is fulfilled, then such derived number is determined as the right
derived number and denoted by λ+[f ](x0). If xk − x0 < 0 for all k, then such
derived number is determined as the left derived number of function f at x0 and
denoted by λ−[f ](x0)

Let the set of right derived number of function f at x0 be denoted by
Λ+[f ](x0), and the set of left derived number be denoted by Λ−[f ](x0).

It is clear that supλ∈Λ+[f ](x0) λ determines D+f(x0) that is the right upper
derived number of a Dini function at a point x0. Similarly, the remaining three
derived number of Dini function at a point x0 can be introduced.

Suppose

λα = lim
k→∞

f(xk) − f(x0)

(xk − x0)α
.

In this relation consider α such that for any ε > 0 the equalities λα−ε = 0 and
λα+ε = ∞ are realised. If the function f is defined in some neighborhood of the
point x0, then such α obviously exists. The magnitude can depend only on the
choice of convergence to x0 of the subsequence {xk}.

Let the number λ be called the derived number of a Hölder function at x0 if
there exist α ≤ 0 and a sequence {xk} converging to x0, such that

λ = lim
k→∞

f(xk) − f(x0)

(xk − x0)α
,

and for any ε > 0

lim
k→∞

f(xk) − f(x0)

(xk − x0)α−ε
= 0,

and

lim
k→∞

f(xk) − f(x0)

(xk − x0)α+ε
= ∞.

Let the number α appearing in the definition of the Hölder derived number be
called the exponent of this derived number.
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The fact that λ is a Hölder derived number of function f at x0 can be
represented as following:

λ = λH [f ](x0).

The set of Hölder derived number of function f at x0 is denoted by ΛH [f ](x0).

If in the definition of the Hölder derived number it is required that xk −
x0 > 0 for all k, then such a derived number is determined as the right Hölder
derived number and denoted by λ+H [f ](x0). If xk − x0 < 0 for all k, then such
a derived number is determined as the left Hölder derived number and denoted
by λ−H [f ](x0).

Let the set of all right Hölder derived numbers of function f at x0 be denoted
by Λ+

H [f ](x0), and the set of all left Hölder derived numbers at the same point
be denoted by Λ−

H [f ](x0).

Let α+ denote the minimal of the exponents of the derived numbers being
into Λ+

H [f ](x0), and Λα+

H [f ](x0) denote a set of derived numbers belonging to
the set Λ+

H [f ](x0) and having the exponent α+. Similarly, for a set Λ−
H [f ](x0),

a number α− and a set Λα−
H [f ](x0) are introduced.

Let the number

λ = sup
µ∈Λα+

H [f ](x0)

µ

be called the right upper derivative of Dini-Hölder function f at x0 and denoted
by DH+[f ](x0).

Let the number

λ = inf
µ∈Λα+

H [f ](x0)

µ

be called the right lower derivative of Dini-Hölder function f at x0.

Analogously, the notions of the left upper and left lower Dini-Hölder deriva-
tives of function f at x0 are introduced. These derivatives are denoted by
DH−[f ](x0) and DH−[f ](x0), respectively. Let DH∗f denote any of the four
Dini-Hölder derivatives of the function f .

3. Monotonic functions

Let the function f be called monotone if it follows from x < y that f(x) ≤ f(y)
or f(x) ≥ f(y). In the first case, the function f is called increasing, and in
the second case decreasing. On the other hand, if from x < y follows that
f(x) < f(y) or f(x) > f(y), then f is called strictly monotonic. In oder to
emphasize what kind of monotony is under consideration, then we stay that
the function f strictly increases if f(x) < f(y) follows from x < y, and strictly
decreases if f(x) ≤ f(y) follows from x < y.

Theorem 1. In order for the continuous function f to be strictly monotonic,
it is necessary and sufficient that all its Dini derivatives be constant-sign and
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there is no interval at which at least one of the Dini derivatives of the function
f is equal to zero.

Proof. Necessity. Let f be continuous, and for definiteness assume that it is
strictly increasing. Consider an arbitrary point x0 and a sequence {xk} converg-
ing to it. Without loss of generality, a sequence {xk} can be chosen such that

there exists a limit limk→∞
f(xk)−f(x0)

xk−x0
.

By assumption, the function f strictly increases, and therefore for all k at
once

f(xk) − f(x0)

xk − x0
> 0.

Passing to the limit as k → ∞ in this inequality, it follows that

lim
k→∞

f(xk) − f(x0)

xk − x0
≥ 0.

This implies that all the Dini derivatives of the function f are constant-sign
due to arbitrariness of the point x0 and the sequence {xk}. The case when f is
strictly decreasing is treated similarly.

Let us show now that if f is strictly monotone and continuous, then the
second condition of the theorem is also satisfied. Suppose, on the contrary,
there exists an interval [a, b] and at each point of it at least one of the Dini
derivatives of the function f has a zero value. By continuity and monotonicity
the function f transforms the interval [a, b] to some interval [α, β] with measure
m[α, β] = β − α > 0.

As follows from [4], if for some p ≥ 0 the strictly monotonic function f at
each point of the set E ⊂ [a, b] has at least one Dini derivative such that

|D∗[f ](x)| ≤ p,

then

m∗f(E) ≤ p ·m∗E,

where m∗ denotes the outer measure of the corresponding set.

Applying this result to the considered case, the following is realised:

But this contradicts the inequality |β − α| > 0 obtained above. Therefore the
interval [a, b] at each point of which at least one of the Dini derivatives of the
function f vanishes can not exist.

Sufficiency. Let the conditions of the theorem be satisfied. Let us show
that in this case the function f is strictly monotone. Suppose on the contrary
that f is not monotonic. Then it is not monotonically increasing. Therefore,
there exist two points x1 and x2, x1 < x2 such that f(x1) > f(x2). Consider a
straight line l(x) = qx+ r through the points (x1, f(x1)) and (x2, f(x2)). Note
that q is necessarily less than zero since f(x1) > f(x2).
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Consider all situations which arise at such construction. Suppose first that
there exists a decreasing sequence {x′

k} converging to x1 and such that f(x
′
k) ≤

l(x
′
k) for all k. Then, taking into account that f(x1) = l(x1)

f(x
′
k) − f(x1)

x
′
k − x1

≤
l(x

′
k) − l(x1)

x
′
k − x1

= q < 0.

Passing to the limit k → ∞ in this inequality, it can be assumed without loss of
generality to exist. Then it can be concluded that the function f at the point
x1 has a negative derivative number that does not exceed q.

Suppose that such sequence {x′
k} does not exist, but there exist an increasing

sequence {x′′
k} converging to x2 and such that f(x

′′
k) ≥ l(x

′′
k) for all k. Repeating

the arguments given for the sequence {x′
k}also for the sequence {x′

k}, it follows
that the function f at the point x2 has a derivative number not exceeding q.

Finally, if neither sequence {x′
k} nor sequence {x′′

k} exists, then this means
that f(x) > l(x) for all points x > x1 from a sufficiently small neighborhood of
x1, and f(x) < l(x) for all points x < x2 from a sufficiently small neighborhood
of x1. Then, in view of continuity of the function f , there exist a point x0 ∈
(x1, x2) and a decreasing sequence {x∗k} convergent to x0, such that f(x0) =
l(x0) and f(x∗k) ≤ l(x∗k) for all k. But this situation completely coincides with
the situation with the sequence {x′

k} considered. Therefore, the same conclusion
made for the point x1 in the presence of a sequence {x′

k} is also valid for a point
x0.

Thus, in any of the possible situations, there exists at least one point in which
the function f has a negative derivative number, and therefore there exists at
least one point at which at least one of the Dini derivatives of the function f is
negative.

Further, the function f that is monotonic is also not decreasing. Then there
are two points y1 and y2, y1 < y2 such that f(y1) < f(y2). Repeating for
the points y1 and y2 the arguments given above, it follows that there exists at
least one point at which at least one of the Dini derivatives of the function f is
positive.

So, if the function f is not monotonic, then it necessarily has Dini derivatives
of different signs, which contradicts the requirements of the theorem. Therefore,
if the conditions of the theorem are satisfied, then the function f is monotone.

Let f be a monotonic function, but not strictly monotone. Then there are
two points z1 and z2 such that f(z1) = f(z2). Since f is monotonic, then
f(x) = f(z1) for all x ∈ [z1, z2]. In this case, D∗[f ](x) = 0 for all x ∈ (z1, z2),
which contradicts the assumption of the theorem about the absence of intervals
of this type.

Thus, if the conditions of the theorem are satisfied, then the function f is
necessarily strictly monotone.

From the presented proof and the fact that if any of the Dini derivatives of
the function f continuous on [a, b] is constant on (a, b), then the same condition
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is true for the other three Dini derivatives, it follows that Theorem 7 can be
reformulated as follows:

In order for the function f continuous on [a, b] to be strictly monotonic, it
is necessary and sufficient that one of the Dini derivatives of this function be
constant-sign on (a, b) and that there exists no interval on which the function f
has a derivative equal to zero.

Theorem 2. If at each point of interval [a, b] the continuous function f has a
positive right derivative, then f strictly increases on [a, b].

Proof. Suppose f is a function not increasing on [a, b]. Then, by continuity it
reaches its local maximum at some point x0 ∈ [a, b). But as shown in the proof
of Theorem 6 [27], the right derivative of the function f does not exceed zero at
this point. This contradiction shows that f is an increasing function.

If f increases but not strictly, then, as shown in the proof of Theorem 7,
there exists an interval at each point of which the right derivative of the function
f is equal zero. From this fact it follows a contradiction again.

Thus, if the right derivative of the function f is positive, then f is necessarily
strictly increasing.

Theorem 3. Let f be defined on [a, b]. If D+f ≥ 0 and f does not have jumps
down, then it increases on [a, b].

Proof. Suppose f satisfies the conditions of the theorem. Let us construct a
function ϕ by setting that

ϕ(x) = f(x) + εx, ε > 0.

It is clear that ϕ is defined on [a, b] and also has no jumps down.
Assume ϕ(a) > ϕ(b). Let us construct a straight line y = 1

2 [ϕ(a) + ϕ(b)].
Since ϕ has no jumps down, then there exist points on (a, b) that are roots of
the equation ϕ(x) = y. Let c denote an exact lower bound of a set of roots
for this equation. ϕ(c) = y since if ϕ(c) > y, then obviously the function ϕ
has a right derived number equal to −∞ at the point c. But this is impossible,
since the definition of the function ϕ implies that all its right-derived numbers
are nonnegative. If ϕ(c) < y, then by the assumption that the function f has
no downward jumps there must exist a point c

′
< c such that ϕ(c

′
) = y which

contradicts the choice of the point c.
Consider now the interval [a, c]. It’s clear that ϕ(a) > ϕ(c). Let us repeat

for the interval [a, c] the construction made for the interval [a, b]. As a result,
the minimum point c1 is obtained on (a, c) for which ϕ(c1) = 1

2 [ϕ(a) + ϕ(c)].
Continuing this process, a decreasing sequence c > c1 > c2 > . . . is con-

structed. This sequence is bounded below by a number a and, consequently, has
a limit. Let this limit be denoted by c0. Likewise for the point c, it is shown
that ϕ(c0) = ϕ(a).
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From the construction given above it follows that for any n

ϕ(cn) − ϕ(c0)

cn − c0
< 0.

This inequality implies that the function ϕ has a nonpositive lower right Dini
derivative at the point c0.

But as follows from the definition of the function ϕ, all its right derivatives
in [a, b] are not less then ε. This contradiction shows that the inequality ϕ(a) >
ϕ(b) is impossible. Hence, ϕ(a) ≤ ϕ(b) or f(a) + εa ≤ f(b) + εb. Since ε is
arbitrary, then passing to the limit in the last inequality as ε → 0 it follows
that f(a) ≤ f(b), which proves the theorem, since there could be any interval
[x, y] ⊂ [a, b] taken instead of [a, b].

Note that if D+f ≥ 0, then the condition that function f has no downward
jump is satisfied, in particular, if D−f is bounded below.

As an example, consider the function f with a derivative defined on an
interval I = [0, 1] as follows:

f ′(x) = 1, x ∈ E10, x ∈ E2, 1.2

where E1 is a set of measure zero dense everywhere on I, and I.
According to Theorems 1 [27] and 1, by virtue of the density of E1, the

function f is continuous and strictly increasing in I. But then there is a chain
of inequalities [4]:

m∗f(I) ≤ m∗f(E1) +m∗f(E2) ≤ 1 ·m∗E1 + 0 ·m∗E2 = 0,

where m∗E denotes the outer measure of the set E. It obviously follows from
the inequality obtained that an equality mf(I) = 0 holds, which contradicts the
conclusion that the function f is strictly increasing on I, since if f is continuous
and strictly increasing, then it transforms the interval [0, 1] into some interval
[α, β] with measure m[α, β] = β − α > 0.

Thus, these arguments lead to contradiction, since on the one hand, on the
basis of Theorems 1 [27] and 1 the function f is continuous and strictly increasing
on I, and on the other hand, according to the theory of monotone functions it
follows from equality mf(I) = 0 that f(0) = f (1), or in other words that
f is constant on I. This contradiction shows that there is no function f . In
particular, there is no function f which the Dirichlet function would play the
role of the derivative for.

Let the function f be called almost continuous on the interval [a, b] if there
exists a continuous function g on [a, b] such that mE(f ̸= g) = 0, put this
another way, if the changing the values of the function f on a set of measure
zero implies that it can be made continuous.

Theorem 4. If all the Dini derivatives of the function f are almost continuous
and bounded on the interval [a, b] functions, then f is continuously differentiable
on [a, b].
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Proof. If the conditions of the theorem are satisfied, then, the function Λ[f ](x)
is obviously almost continuous. Let Λ[f ](x) be represented in the form

Λ[f ](x) = g1(x) + g2(x) + g3(x),

where g1 is a function continuous on [a, b], such that

mE(Λ[f ] ̸= g) = 0,

g3(x) = min(0,Λ[f ](x)),

g2(x) = Λ[f ](x) − g1(x) − g3(x).

Let the function f can be represented as:

f = f1 + f2 + f3,

where
df1
dx

= g1,
df3
dx

= g3, Λ[f2] = g2.

It is easy to verify that the functions g2 and g3 are almost everywhere equal to
zero, where g3 is continuous, and g2 does not take negative values. Thus, for
each of the functions g2 and g3 the arguments given in the example above are
applicable. Repeating these arguments, it follows that f2 and f3 are constants
on [a, b], which implies that

df

dx
=
df1
dx

= g1,

so, f is continuously differentiable.
To complete the proof, it remains only to show that representation of the

function f as a sum of three functions is possible. The validity of such a
representation follows from the fact that the function f̄ = f − f1 is con-
tinuous as a difference between two continuous functions, and the function
Λ[f̄ ](x) = Λ[f ](x) − g1(x) are almost everywhere equal to zero.

4. Mean-value theorems

Thereafter it is assumed that all right-derived numbers of the function f are
equal to each other, i.e. that the function f has a right derivative. Let us
prove theorems that are analogous to the Rolle and Lagrange theorems for a
considered class of functions.

Theorem 5. If the function f is defined and continuous on the interval [a, b],
has a continuous right derivative (a, b) and has equal values at the ends of the
interval, then there exists a point x0 ∈ (a, b) at which f

′+(x0) = 0.

Proof. Since the function f is continuous, then at some interior point x0 of
the interval [a, b] it reaches its extremum. As stated in the theorem, f

′+ is
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continuous in a neighborhood of point x0, which implies that the right derivative
vanishes at the point x0 by virtue of Theorem 6 [27].

Theorem 6. Suppose the function f is defined and continuous on the interval
[a, b] and has a right derivative in (a, b). Then there exist points x1 ∈ (a, b) and
x2 ∈ (a, b) for which the following inequalities hold

f
′+(x1) ≤

f(b) − f(a)

b− a
≤ f

′+(x2).

If f has a continuous right derivative in (a, b), then there exists a point x0 ∈
(a, b) such that

f(b) − f(a)

b− a
= f

′+(x0).

Proof. Suppose that at each point of the open interval (a, b) the function f
has a right derivative, and, contrary to the assertion of the theorem, the point
x2 ∈ (a, b) is such that

f(b) − f(a)

b− a
≤ f

′+(x2),

does not exist. Then for any x ∈ (a, b)

f(b) − f(a)

b− a
− f

′+(x) = α(x) > 0.

Let us construct the following function

ϕ(x) =
f(b) − f(a)

b− a
(x− a) + f(a) − f(x).

The function ϕ is continuous, since it is a linear combination of continuous func-
tions. It is easy to verify that f

′+(x) = α(x) for all x ∈ (a, b). By assumption,
α(x) > 0 for all x ∈ (a, b). Therefore, the function ϕ is strictly increasing by
virtue of Theorem 8. But if ϕ is continuous and strictly increasing, then inequal-
ity ϕ(a) < ϕ(b) must necessarily be fulfilled, while direct substitution shows that
ϕ(a) = ϕ(b) = 0. This contradiction proves the existence of the point x2 ∈ (a, b)
considered in the theorem.

Similarly, by contradiction, the existence of the point x1 ∈ (a, b) is proved,
where

f
′+(x1) ≤

f(b) − f(a)

b− a
.

Combining these two inequalities, the desired result is obtained.
If in addition it is known that the function f

′+ is continuous on (a, b), then
the function ϕ constructed above obviously satisfies all the requirements of The-
orem 11, and consequently, by virtue of this theorem there must exist a point
x0 in (a, b) at which ϕ

′+ vanishes. But

ϕ
′+(x0) =

f(b) − f(a)

b− a
− f

′+(x0),
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which the required equality is obtained from.

Conclusion. The method of derived numbers to study periodic and almost
periodic solutions of ordinary differential equations is developed. Necessary and
sufficient conditions for the monotonicity of one variable functions are presented.
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1. Introduction

In this paper, a method of periodic and almost periodic ordinary differential
equations development is considered. It is based on the ideas of functional analy-
sis. I.P. Natanson briefly outlined the theory of derived numbers [1]. Developing
this theory, several theorems of mathematical analysis are proved. Implemen-
tation of this theory let reducing the restrictions on smoothness degree of the
right-hand sides of the equations considered, which made it possible to extend
the scope of the results obtained [2-11]. In many problems of classical and ce-
lestial mechanics, robotics and mechatronics, there are processes which the time
dependence is not periodic in [12-21]. In this connection, the interest in derived
theory implementation to the study of periodic and almost periodic solutions of
differential equations and differential equations with almost periodic coefficients
has arisen [22-26].

∗. Corresponding author
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2. Basic definitions

Let f be a function defined on an open interval (a, b), taking values in the set
of real numbers R, i.e. f : (a, b) → R, a, b ∈ R, a < b. Consider an arbitrary
point x0 in (a, b).

Let a number λ be a derived number of function f at x0 if there exists a
sequence {xk}, such that xk → x0 as k → ∞ and

lim
k→∞

f(xk) − f(x0)

xk − x0
= λ.

The fact that λ is the derived number of function f at x0 is represented as
λ = λ[f ](x0).

The set of all derived numbers of function f at x0 is denoted by Λ[f ](x0)
If in the definition of a derived number it is required the sequence {xk} to

satisfy one more additional condition, which means that for all k the inequality
xk − x0 > 0 is fulfilled, then such derived number is determined as the right
derived number and denoted by λ+[f ](x0). If xk − x0 < 0 for all k, then such
derived number is determined as the left derived number of function f at x0 and
denoted by λ−[f ](x0)

Let the set of right derived number of function f at x0 be denoted by
Λ+[f ](x0), and the set of left derived number be denoted by Λ−[f ](x0).

It is clear that supλ∈Λ+[f ](x0) λ determines D+f(x0) that is the right upper
derived number of a Dini function at a point x0. Similarly, the remaining three
derived number of Dini function at a point x0 can be introduced.

Suppose

λα = lim
k→∞

f(xk) − f(x0)

(xk − x0)α
.

In this relation consider α such that for any ε > 0 the equalities λα−ε = 0 and
λα+ε = ∞ are realised. If the function f is defined in some neighborhood of the
point x0, then such α obviously exists. The magnitude can depend only on the
choice of convergence to x0 of the subsequence {xk}.

Let the number λ be called the derived number of a Hölder function at x0 if
there exist α ≤ 0 and a sequence {xk} converging to x0, such that

λ = lim
k→∞

f(xk) − f(x0)

(xk − x0)α
,

and for any ε > 0

lim
k→∞

f(xk) − f(x0)

(xk − x0)α−ε
= 0,

and

lim
k→∞

f(xk) − f(x0)

(xk − x0)α+ε
= ∞.

Let the number α appearing in the definition of the Hölder derived number be
called the exponent of this derived number.
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The fact that λ is a Hölder derived number of function f at x0 can be
represented as following:

λ = λH [f ](x0).

The set of Hölder derived number of function f at x0 is denoted by ΛH [f ](x0).

If in the definition of the Hölder derived number it is required that xk −
x0 > 0 for all k, then such a derived number is determined as the right Hölder
derived number and denoted by λ+H [f ](x0). If xk − x0 < 0 for all k, then such
a derived number is determined as the left Hölder derived number and denoted
by λ−H [f ](x0).

Let the set of all right Hölder derived numbers of function f at x0 be denoted
by Λ+

H [f ](x0), and the set of all left Hölder derived numbers at the same point
be denoted by Λ−

H [f ](x0).

Let α+ denote the minimal of the exponents of the derived numbers being
into Λ+

H [f ](x0), and Λα+

H [f ](x0) denote a set of derived numbers belonging to
the set Λ+

H [f ](x0) and having the exponent α+. Similarly, for a set Λ−
H [f ](x0),

a number α− and a set Λα−
H [f ](x0) are introduced.

Let the number

λ = sup
µ∈Λα+

H [f ](x0)

µ

be called the right upper derivative of Dini-Hölder function f at x0 and denoted
by DH+[f ](x0).

Let the number

λ = inf
µ∈Λα+

H [f ](x0)

µ

be called the right lower derivative of Dini-Hölder function f at x0.

Analogously, the notions of the left upper and left lower Dini-Hölder deriva-
tives of function f at x0 are introduced. These derivatives are denoted by
DH−[f ](x0) and DH−[f ](x0), respectively. Let DH∗f denote any of the four
Dini-Hölder derivatives of the function f .

Theorem 1. For the function f to be continuous from the right at x0, it is neces-
sary and sufficient that either the two right Dini-Hölder derivatives DH+[f ](x0)
and DH+[f ](x0) to be equal to zero or the exponent α+ from the definition of
Dini-Hölder derivative is greater than zero.

Proof. Necessity. Let the function f be continuous from the right at x0.
Consider the right Dini-Hölder derivatives at this point, and let at least one
of them, for example DH+[f ](x0), be non-zero. This means that there exist a
sequence {xk} converging to x0 and a number α+, such that

DH+[f ](x0) = lim
k→∞

f(xk) − f(x0)

(xk − x0)α
+ .
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If it turned out that in this expression α+ = 0, then the function f would
obviously discontinue at the point x0 which the assertion of this part of the
theorem follows from.

Sufficiency. Let the conditions of the theorem be satisfied, and let the function
f have discontinuity at a point x0 contrary to our assertion. Then there exist
ε > 0 and a sequence {xk} converging to x0, such that inequality

lim
k→∞

|f(xk) − f(x0)| ≥ ε.

It follows from this relation that the derived Hölder number realized on this
sequence has an exponent equal to zero, and that at least one of the right
Dini-Hölder derivatives at this point is nonzero. This contradiction proves the
continuity on the right of the function f at the point x0, and also the validity
of the theorem assertion.

Similarly, the continuity of the function f at the point x0 on the left is
proved.

Obviously, in order for the function f to be continuous at the point x0, it is
necessary and sufficient that it be continuous both on the right and on the left.

Comparing the definition of the Dini-Holder derivative with the definition
of the derived number of the function f or the derivative of a function f , it is
obvious that Theorem 1 implies the validity of the following assertion.

The function f is continuous at a point x0 if one of the following conditions
is satisfied:

1. The set Λ[f ](x0) is bounded;
2. Each of the Dini derivatives D∗f(x0) is bounded;
3. The derivative f

′
(x0) is bounded.

Theorem 2. Let the function f be defined in a neighborhood of the point x0,
and the function g be defined in a neighborhood of a point f(x0). Then, if sets
ΛH [g](f(x0)) and ΛH [f ](x0) are bounded, then every derived Hölder number of
a function h = g ◦ f at the point x0 can be represented in the form

λγH [h](x0) = λαH [g](f(x0)) · λβH
α
[f ](x0),

where the exponent γ is equal to the product of exponents α and β, that is
γ = αβ, λαH [g](f(x0)) and λβH [f ](x0) are some derived Hölder numbers from
sets ΛH [g](f(x0)) and ΛH [f ](x0), respectively.

Proof. Since the function f is defined in a neighborhood of the point x0 and g
in a neighborhood of the point f(x0), a function h is also defined in some neigh-
borhood of the point x0. Let {xk} be a sequence from the range of definition
of the function h, such that a certain Hölder number λγH [h](x0) with exponent
γ is realized on it. Without loss of generality, it can assumed that the derived
Hölder number λβH [f ](x0) of the function f with exponent β is realized on the
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sequence {xk}, and the derived Hölder number λαH [g](f(x0)) with exponent α
of the function g is realized on the sequence {f(xk)}. Since h = g ◦ f , then

(1) lim
k→∞

h(xk) − h(x0)

(xk − x0)αβ
= lim

k→∞
(
g(f(xk)) − g(f(x0))

(f(xk) − f(x0))α
· (f(xk) − f(x0))

α

(xk − x0)αβ
) .

It can be shown that the derived Hölder number of the function h with
exponent γ = αβ is realized on the sequence {xk}.

Consider an arbitrary positive number δ < γ and positive numbers α0 ≤ α
and β0 ≤ β, such that α0β0 = δ. Substituting α0 and β0 into (1) instead of α
and β, respectively, and taking into account the definition of the derived Hölder
number, it follows that for any

lim
k→∞

h(xk) − h(x0)

(xk − x0)δ
= 0.

Consider now ε > γ, α0 ≥ αand β0 ≥ β, such that α0β0 = ε and repeating the
arguments given above, it follows that for any ε > γ

lim
k→∞

h(xk) − h(x0)

(xk − x0)ε
= ∞.

The last two equalities imply that the exponent of the derived Hölder number
of the function h realizable on a sequence {xk} is equal to γ.

Now, let {xk} be a sequence such that f(xk) ̸= f(x0) for xk ̸= x0. With-
out loss of generality, it can assumed that the derived Hölder numbers λ1 =
λαH [g](f(x0)) ∈ ΛH [g](f(x0)) and λ2 = λβH [f ](x0) ∈ ΛH [f ](x0) are realized on
the sequence {xk}. It follows from the boundedness of the sets ΛH [g](f(x0))
and ΛH [f ](x0) that λ1 and λ2 are finite numbers. Then, considering [3] the
following equality is realised:

λγH [h](x0) = lim
k→∞

h(xk) − h(x0)

(xk − x0)γ
= lim

k→∞

g(f(xk)) − g(f(x0))

(f(xk) − f(x0))α

·
(

lim
k→∞

f(xk) − f(x0)

(xk − x0)β

)α

= λ1 · λα2 ,

which is assirted by the theorem.
Finally, let {xk} be a sequence converging to x0 such that f(xk) = f(x0)

for xk ̸= x0. In this case for the function f the derived number equal to zero
is realised on the sequence {xk}. Then, taking into account the boundedness
of the set ΛH [g](f(x0)), it follows that for any λ1 ∈ ΛH [g](f(x0)) an equality
λ1 · 0 = 0 is true. But since for the function h {xk} the derived number equal
to zero is realized on a sequence, then in the considered case it can be assumed
that the theorem remains valid.

Theorem 3. Suppose that for some δ > 0 function f continuous at the point
x0 maps one-to-one interval (x0 − δ, x0 + δ) into interval (y0 − ε, y0 + ε), where
y0 = f(x0). Then

ΛH [f−1](y0) = (ΛH [f ](x0))
−1 ,
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where {ΛH [f ](x0)}−1 is obtained from the set ΛH [f ](x0) by substituting each

element λαH ∈ ΛH [f ](x0) by an element µβH = 1
λα
H [f ](x0)β

, where β = 1/α.

Proof. Let {yk} be a sequence converging to {yk} on which a certain derived

Hölder number µβH [f−1](y0) of a function f−1 at a point y0 is realized, and let
{xk} be a sequence corresponding to {yk} given by equalities xk = f−1(yk).
Note that from the continuity at the point x0 and the one-to-one mapping of f
it follows that the sequence {xk} converges to x0 as k → ∞ and that if yk ̸= y0,
then xk ̸= x0. Then

µβH [f−1](y0) = lim
k→∞

f−1(yk) − f−1(y0)

(yk − y0)β
= lim

k→∞

xk − x0
(f(xk) − f(x0))β

=

(
lim
k→∞

f(xk) − f(x0)

(xk − x0)1/β

)−β

=
1

λαH [f ](x0)β
∈ (ΛH [f ](x0))

−1 ,

where α = 1/β.
By virtue of the arbitrariness of the sequence {yk} choice, it follows from

this relation that ΛH [f−1](y0) ⊂ (ΛH [f ](x0))
−1. It can be shown in a similar

way that the reverse inclusion can also be realised. Combining these two results,
the validity of the theorem is clear.

Theorems 2 and 3 are not only a generalization of the well-known analysis
theorems on differentiation of a composite function and derivative of an inverse
function, but also show how the degree of a composite function smoothness
depends on the smoothness of the functions included in it.

3. Extremum of function

It is known that the derivative of a function allows to make a conclusion about
the behavior of the function itself. Similar conclusions can be made based
on the values of the derived numbers of function. In this section, considering
the question of extremal values of a function, some generalizations of Fermat’s
theorem are presented.

Theorem 4. Suppose for some δ > 0 there is a function f defined on (x0−δ, x0+
δ) taking an extremal value at x0. Then at this point the following inequalities
are true:

DH−f(x0) ≤ 0 ≤ DH+f(x0),

if x0 is a local minimum point of the function f , and

DH+f(x0) ≤ 0 ≤ DH−f(x0),

if x0 is a local maximum point of the function f .

Proof. Let x0 be a local minimum point. Then in some neighborhood of the
point x0 f(x) ≥ f(x0) for all x < x0. Let {xk} be a sequence on which the left
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upper Dini-Holder derivative with exponent α− is realised:

DH−f(x0) = lim
k→∞

f(xk) − f(x0)

−|xk − x0|α− .

Since for all k f(xk)−f(x0)

−|xk−x0|α− ≤ 0, then DH−f(x0) ≤ 0.

It can be shown in a similar way that if x0 is a local minimum point of the
function f , then at this point

0 ≤ DH+f(x0).

The case when x0 is a local maximum point of the function f can be shown
in the same way.

It is clear that such a statement is also valid for the Dini derivatives.
Analysis of Theorem 4 proof allows to formulate a theorem giving sufficient

conditions that x0 is an extremum point for the function f , in other words a
theorem being a kind of inverse to Theorem 4.

Theorem 5. Suppose that for some δ > 0 on (x0 − δ, x0 + δ) function f is
defined. Then, if

D−f(x0) < 0 < D+f(x0),

then x0 is a local minimum point of the function f , and if

D−f(x0) > 0 > D+f(x0),

then x0 is a local maximum point of the function f .

Proof. Suppose x0 is not an extremum of the function f . Then it follows
from the definition of an extremum that there are two sequences {xk} and {yk}
convergent to x0 such that f(xk) > f(x0) for all k, and f(yk) < f(x0). Besides,
without loss of generality, it can be assumed that on each of these sequences
some derived number of the function f at the point x0 is realised. Two cases are
possible here: either these sequences are monotonically increasing or decreasing,
or one of them is monotonically increasing and the other one is decreasing.

Consider the first case. Assume both sequences increase. Then immediately
for all k

f(xk) − f(x0)

xk − x0
< 0

and
f(yk) − f(x0)

yk − x0
> 0.

From the estimates obtained and the assumption that the derived numbers
of the function f are realizable on {xk}and {yk}, it follows that

λ1 = lim
k→∞

f(xk) − f(x0)

xk − x0
≤ 0,

λ2 = lim
k→∞

f(yk) − f(x0)

yk − x0
≥ 0.
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Since the sequences {xk} and {yk} are increasing by assumption, then λ1 ∈
Λ−[f ](x0)and λ2 ∈ Λ−[f ](x0). Given that

D−f(x0) ≤ λ1 ≤ 0 ≤ λ2 ≤ D−f(x0),

it follows that in the considered case 0 ∈ [D−f(x0), D
−f(x0)]. Therefore none

of the conditions of the theorem can be satisfied.
Consider now the second case Suppose the sequence {xk}to increase and the

sequence {yk} to decrease. Then for all k

f(xk) − f(x0)

xk − x0
< 0

and
f(yk) − f(x0)

yk − x0
< 0.

Repeating the arguments given in the first case analisis, it follows that
λ1 ≤ 0 and λ2 ≤ 0. Since by assumption the sequence {xk} is increasing
and the sequence {yk} is decreasing, then D−f(x0) ≤ λ1 ≤ 0 and D+f(x0) ≤
λ2 ≤ 0. Thus, in the second case the point 0 does not divide the intervals
[D−f(x0), D

−f(x0)] and [D+f(x0), D
+f(x0)], i.e. none of the conditions of the

theorem is satisfied.
So, if x0 is not an extremum point of the function f , then either point

0 is the derived number of the function f at the point x0, or both intervals
[D−f(x0), D

−f(x0)] and [D+f(x0), D
+f(x0)] are on one side of the point 0. If

the conditions of the theorem are satisfied, then neither of these two possibilities
is realized at the point x0, and, therefore, the point x0 is the extremum point
of the function f .

The points at which the function f can take extreme values can be selected
based on the behavior of any one-sided, for example, right-sided derivative. But
in this case it is no longer sufficient to know the value of this derivative only
at one point in order to relate this point to a set at which function f can take
extreme values or not. More precise representation on this phenomena is given
in the following theorem.

Theorem 6. Suppose for some δ > 0 on (x0 − δ, x0 + δ) there exists a con-
tinuous function f that reaches its extremal value at the point x0. If in some
neighborhood of the point x0 the function f has a continuous right derivative
f

′+, then it is necessary hatf
′+(x0) = 0.

Proof. Let the function f take a maximum value at the point x0 to be definite.
Then for all x > x0

f(x) − f(x0)

x− x0
≤ 0.

Transferring to the limit for x → x0 + 0 in this inequality which exists by
virtue of the assumption that there exists the right derivative at the point x0,
it follows that f

′+(x0) ≤ 0.
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Suppose f
′+(x0) < 0. By the continuity of the right derivative of the function

f in a neighborhood of the point x0, there exists δ
′
> 0, such that an inequality

f
′+(x) < 0 holds for all x ∈ [x0 − δ

′
, x0 + δ

′
].

Let us take an arbitrary point x1 in [x0 − δ
′
, x0). Since the function f is

continuous, it reaches its minimum at some point x2 on [x1, x0].

Let us show that x2 ̸= x0. Indeed, otherwise for all x ∈ [x1, x2] equality
f(x) = f(x0) must be realised by the fact that at the point x0 the function f
reaches its maximum. But such a conclusion is incompatible with the assump-
tion that f

′+(x) < 0 for all x ∈ [x1, x2].

So, now it is prooved that x2 ∈ (x1, x0). Then there exists a monotonically
decreasing sequence {yk} converging to x2, such that for all k

f(yk) − f(x2)

yk − x2
≥ 0.

But by assumption that f
′+(x2) < 0 and for all x > x2 and sufficiently close

to x2 the following is true
f(x) − f(x2)

x− x2
< 0.

Th arguments given above imply that a sequence {yk} with the properties
listed above does not exist.

Thus, the assumption that the inequality f
′+(x0) < 0 is satisfied leads to a

contradiction andf
′+(x0) = 0.

4. A theorem on a convex function

The function f is called convex if from condition x = αx1 +(1−α)x2, α ∈ [0, 1],
the validity of inequality follows f(x) ≤ αf(x1)+(1−α)f(x2). If for all α ∈ (0, 1)
there is a strict inequality, i.e. f(x) < αf(x1) + (1−α)f(x2), then the function
f is called strictly convex.

The main purpose of this section is to prove a theorem giving necessary and
sufficient conditions for the function f to be convex. But before proceeding
with the proof of this theorem, let us first prove an auxiliary statement on the
reconstruction of a function from the values of its right derivative.

Theorem 7. Let a continuous function f have a right derivative f
′+(x) at each

point x ∈ [a, b]. If f
′+ is bounded on [a, b], then it is integrable on [a, b] and for

any x ∈ [a, b]

f(x) = f(a) +

∫ x

a
f

′+(y)dy.

Proof. Let us construct a function g by setting that

g(x) = f(x), x ∈ [a, b]f(b) + (x− b)f
′+(b), x > b.
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It is obvious that the function g is continuous and has a finite right derivative
on [a, b+ 1]. Let us introduce the following function for x ∈ [a, b] and n = 1, 2

ϕn(x) = n[g(x+
1

n
) − g(x)].

At each point x ∈ [a, b]

lim
n→∞

ϕn(x) = g
′+(x) = f

′+(x),

and since each of the continuous functions ϕn is measurable, then f
′+ is also

measurable, which implies the integrability of this function due to the condition
of boundedness. Further, by Theorem 6 [27]

g
′+(x+

θ′

n
) ≤ ϕn(x) = [g(x+

1

n
) − g(x)] ≤ g

′+(x+
θ
′′

n
), θ

′
, θ′′ ∈ (0, 1),

so that all of the functions ϕn are bounded by one number and, by the Lebesgue
theorem on the passage to the limit under the integral sign∫ b

a
f

′+(x)dx =

∫ b

a
g
′+(x)dx = lim

n→∞

∫ b

a
ϕn(x)dx.

But ∫ b

a
ϕn(x)dx = n

∫ b

a
g(x+

1

n
)dx− n

∫ b

a
g(x)dx

= n

∫ b+ 1
n

a+ 1
n

g(x)dx− n

∫ b

a
g(x)dx

= n

∫ b+ 1
n

b
g(x)dx− n

∫ a+ 1
n

a
g(x)dx.

Applying the mean-value theorem to each of the last two integrals, the following
is obtained: ∫ b

a
ϕn(x)dx = g(b+

θ
′
n

n
) − g(a+

θ
′′
n

n
), θ

′
n, θ

′′
n ∈ (0, 1),

which on the basis of the continuity of the function g implies the following

lim
n→∞

∫ b

a
ϕn(x)dx =

∫ b

a
g
′+(x)dx =

∫ b

a
f

′+(x)dx = g(b) − g(a) = f(b) − f(a).

Replacing b by an arbitrary x ∈ [a, b], the equality required in the condition of
the theorem is obtained.

In conclusion, note that substitution of variable in the integral and the ap-
plication of the mean-value theorem in the proof of the theorem are admissible,
since in both cases the continuous function are under integral.



DERIVED NUMBERS OF ONE VARIABLE CONVEX FUNCTIONS 659

Theorem 8. In order for a function f bounded on (a, b) to be strictly convex,
it is necessary and sufficient that it be continuous and have a strictly increasing
right derivative f

′+ bounded at each point.

Proof. Necessity. If the function f is convex and bounded on (a, b), then it is
continuous on any interval [p, q] ⊂ (a, b), and hence it is continuous on (a, b),
too. Further, at each point of the open interval (a, b) the continuous convex
function has a bounded right derivative. Let us show that this derivative is
strictly increasing function, if f is strictly convex.

Consider two arbitrary points x and y > x. Assume α = 1
2(y − x) and let z

denote a point x + α = y − α. For the right derivative of a convex function at
each point x0 ∈ (a, b) the following the estimates are realised:

f(x0) − f(x0 − β)

β
≤ f

′+(x0) ≤
f(x0 + β) − f(x0)

β
,

where β > 0 so little that [x0 − β, x0 + β] ⊂ (a, b).
Applying these estimates to the function f at the points x and y for β = α, the
following two inequalities are obtained:

f
′+(x) ≤ α−1(f(z) − f(x)) = u,

f
′+(y) ≥ α−1(f(y) − f(z)) = v.

By assumption, f it is strictly convex, and by virtue of this fact the folowing
inequality is valid:

u− v = α−1(2f(z) − f(x) − f(y)) < 0,

i.e. this proves the inequality u < v. But, as noted above, f
′+(x) ≤ u and

v ≤ f
′+(y), which implies that f

′+(x) ≤ u < v ≤ f
′+(y), and therefore f

′+(x) <
f

′+(y), which proves a strict increase of the function fdue to the arbitrariness
of the points x and y.

Sufficiency. Suppose f is continuous on (a, b) and at each of its points has a
bounded right derivative, which is strictly a increasing function (a, b). First of
all, note that f

′+ is bounded on each interval [p, q] ⊂ (a, b). Indeed, consider an
arbitrary point x1 on (a, p), and an arbitrary point x2 on (q, b). Then, by the
monotonicity of the function f

′+, for any x ∈ [p, q] the following estimation is
true:

f
′+(x1) < f

′+(x) < f
′+(x2).

The note that the function f
′+ takes finite values at the points x1 and x2 proves

the validity of the assertion.
Thus, it is shown that all the conditions of Theorem 13 are satisfied on an

arbitrary interval [p, q] ⊂ (a, b), and therefore for any x ∈ [p, q] the followng
representation holds:

f(x) = f(p) +

∫ x

p
f

′+(y)dy.
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By condition, the function f
′+ is strictly increasing, and hence the function f is

strictly convex on [p, q]. Since [p, q] is an arbitrary interval belonging to (a, b),
it is strictly convex on (a, b).

Remark. The boundedness of the function f on (a, b) is used only to prove its
continuity. Thus, if it is known in advance that the function f is continuous on
(a, b), then the requirement of its boundedness on this interval can be omitted.

Conclusion. The method of derived numbers to study periodic and almost
periodic solutions of ordinary differential equations is developed. Necessary and
sufficient conditions for the convexity of one variable functions are presented.
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Abstract. The purpose of present paper is to determine the Finsler spaces due to
deformation of special (α,β)-metrics. Consequently, we determine the non-holonomic
frames for Finsler space with help of Riemannian metric α =

√
aij(x)yiyj ,one form

metric β = bi(x)yi and some special Finsler (α,β)- metric.

Keywords: (α,β)-metric, Riemannian metric, One form metric, Nonholonomic Finsler
frame.

1. Introduction

In 1982, P.R. Holland [5, 6] studies about the nonholonomic frame on space
time which was based on the consideration of a charged particle moving in an
external electromagnetic field . Further in 1995, R.G. Beil [2] have studied a
gauge transformation viewed as a nonholonomic frame on the tangent bundle
of a four dimensional base manifold. The geometry that follows from these
considerations gives a unified approach to gravitation and gauge symmetries.

In the present paper we have used the common Finsler idea to study the ex-
istence of a nonholonomic frame on the vertical sub bundle VTM of the tangent
bundle of a base manifold M. In this case we have considered that the funda-
mental tensor field might be the deformation of four different special Finsler
spaces from the (α, β)- metrics. First we consider a nonholonomic frame for a
Finsler space with (α, β)- metrics such as:

I. L(α, β) = ((α + β) + α2

β )α = α2 + αβ + α3

β i.e. product of (Randers +
Kropina metric) and Riemannian metric.

II. L(α, β) = ((α + β) + α2

β )β = α2 + αβ + β2, i.e. product of (Randers +
Kropina metric) and one form metric.

III. L(α, β) = (α+β+ β2

α )α = α2 +αβ+β2, i.e. product of first approximate
Matsumoto Metric and Riemannian metric.

IV. L(α, β) = (α+ β+ β2

α )β = β2 +αβ+ β3

α , i.e. product of first approximate
Matsumoto Metric and one form metric.
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Further we obtain a corresponding frame for each of these four Finsler de-
formations. This is an extension work of Ioan Bucataru and Radu Miron [4],
Tripathi [12, 13] and Narasimhamurthy [10].

2. Preliminaries

An important class of Finsler spaces is the class of Finsler spaces (α, β)-metrics
[8]. The first Finsler spaces with (α, β)-metrics were introduced by physicist
G.Randers in 1940,are called Randers spaces [4].Recently, R.G. Beil suggested
to consider a more general case, the class of Lagrange spaces with (α, β)-
metric,which was discussed in [2]. A unified formalism which uses a nonholo-
nomic frame on a space time,a sort of plastic deformation, arising from consid-
eration of a charged particle moving in an external electromagnetic field in the
background space time viewed as a strained mechanism studied by P. R. Holland
[5, 6].If we do not ask for the function L to be homogeneous of order two with
respect to the (α, β) variables,then we have Lagrange space with (α, β)-metric.
Next we look for some different Finsler space with (α, β)-metrics.

Definition 2.1. Let U be an open set of TM and Vi : u ∈ U 7−→ Vi(u) ∈
VuTM, i ∈ {1, 2.....n} be a vertical frame over U. If Vi(u) = V j

i (u) ∂
∂yj

|u,then
V j
i (u) are the entries of invertible matrix for all u ∈ U .Denote by V̌ j

k (u) the

inverse of this matrix. This means that : V i
j V̌

j
k = δik , V̌ i

j V
j
k = δik. We call V i

j

a nonholonomic Finsler Frame.

Definition 2.2. A Finsler space Fn = {M,F (x, y)} is called with (α,β)-metric
if there exists a 2-homogeneous function L of two variables such that the Finsler
metric F : TM → R is given by

(2.1) F 2(x, y) = L{α(x, y), β(x, y)},

where α2(x, y) = aij(x)yiyj , α is a Riemannian metric on the manifold M, and
β(x, y) = bi(x)yi is a 1-form on M.

Further consider gij = 1
2

∂2F 2

∂yi∂yj
the fundamental tensor of the Randers space

(M,F ). Taking into account the homogeneity of a and F we have the following
formulae:

pi =
1

a
yi = aij

∂α

∂yj
; Pi = aijp

j =
∂α

∂yi
;

li =
1

L
yi = gij

∂l

∂yj
; li = gijl

j =
∂L

∂yi
= pi + bi(2.2)

li =
1

L
pi; lili = pipi = 1; lipi =

α

L
; pili =

L

α
;

biP
i =

β

α
; bil

i =
β

L
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with respect to these notations, the metric tensors aij and gij are related by
[13],

(2.3) gij(x, y) =
L

α
aij + bipj + pibj + bibj −

β

α
pipj =

L

α
(aij − pipj) + lilj .

Theorem 2.1 ([4]). For a Finsler space (M,F ) consider the metric with the
entries:

(2.4) Y i
j =

√
α

L
(δij − lilj +

√
α

L
pipj),

defined on TM. Then Yj = Y i
j ( ∂

∂yi
), j ∈ 1, 2, 3, . . . , n is a non holonomic frame.

Theorem 2.2 ([7]). With respect to frame the holonomic components of the
Finsler metric tensor aαβ is the Randers metric gij, i.e,

(2.5) gij = Y α
i Y

β
j aαβ.

Throughout this section we shall rise and lower indices only with the Rieman-
nian metric aij(x) that is yi = aijy

j , βi = aijbj , and so on. For a Finsler space
with (α,β)-metric F 2(x, y) = L{α(x, y), β(x, y)} we have the Finsler invariants
[9].

(2.6) ρ1 =
1

2α

∂L

∂α
; ρ0 =

1

2

∂2L

∂β2
; ρ−1 =

1

2α

∂2L

∂α∂β
; ρ−2 =

1

2α2

(
∂2L

∂α2
− 1

α

∂L

∂α

)
,

where subscripts 1, 0, -1, -2 gives us the degree of homogeneity of these invari-
ants.

For a Finsler space with (α, β)-metric we have,

(2.7) ρ−1β + ρ−2α
2 = 0

with respect to the notations we have that the metric tensor gij of a Finsler
space with (α,β)–metric is given by [9].

(2.8) gij(x, y) = ρaij(x) + ρ0bi(x) + ρ−1{bi(x)yj + bj(x)yi} + ρ−2yiyj .

From (2.8) we can see that gij is the result of two Finsler deformations:

I. aij → hij = ρaij +
1

ρ−2
(ρ−1bi + ρ−2yi)(ρ−1bj + ρ−2yj).

(2.9) II. hij → gij = hij +
1

ρ−2
(ρ0ρ−1 − ρ2−1)bibj .

The nonholonomic Finsler frame that corresponding to the Ist deformation (2.9)
is according to the theorem (7.9.1) in [4], given by,

(2.10) Xi
j =

√
ρδij −

1

β2
{√ρ+

√
ρ+

β2

ρ−2
}(ρ−1b

i + ρ−2y
i)(ρ−1bj + ρ−2yj),
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where B2 = aij(ρ−1b
i + ρ−2y

i)(ρ−1bj + ρ−2yj) = ρ2−1b
2 + βρ−1ρ−2.

This metric tensor aij and hij are related by,

(2.11) hij = Xk
i X

l
jakl.

Again the frame that corresponds to the IInd deformation (2.9) given by,

(2.12) Y i
j = δij −

1

C2
{1 ±

√
1 +

(
ρ−2C2

ρ0ρ−2 − ρ2−1

)
}bibj ,

where C2 = hijb
ibj = ρb2 + 1

ρ−2
(ρ−1b

2 + ρ−2β)2.

The metric tensor hij and gij are related by the formula;

(2.13) gmn = Y i
mY

j
nhij .

Theorem 2.3 ([4]). Let F 2(x, y) = L{α(x, y), β(x, y)} be the metric function
of a Finsler space with (α,β) metric for which the condition (2.7) is true. Then

V i
j = Xi

kY
k
j

is a nonholonomic Finsler frame with Xi
k and Y k

j are given by (2.10) and (2.12)
respectively.

3. Nonholonomic frames for Finsler geometry with (α, β)-metric

In this section we consider four cases of nonholonomic Finlser frames with special
(α, β)-metrics, such a Ist Finsler frame product of ( Randers metric + Kropina
metric ) and Riemannian metric ; IInd Finsler frame product of ( Randers
metric + Kropina metric ) and 1-form metric;IIIrd Finsler frame product of
approxomate Matsumoto metric and Riemannian metric ;IV th Finsler frame
product of approxomate Matsumoto metric and 1-form metric.

3.1 Nonholonomic frame for L = (α+ β + α2

β )α = α2 + αβ + α3

β

In the first case, for a Finsler space with the fundamental function L = (α +

β + α2

β )α = α2 + αβ + α3

β the Finsler invariants (2.6) are given by

ρ1 = 1 +
β

2α
+

3α

2β
, ρ0 =

α2β − α3

2β2
,

ρ−1 =
β2 − 3α2

2αβ2
, ρ−2 =

3α2 − β2

2α3β
,(3.1)

B2 =
(β2 − 3α)2(α2b2 − β2)

4α4β4
.
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Using (3.1) in (2.10) we have,

Xi
j =

√
1 +

β

2α
+

3α

2β
δij −

(β2 − 3α2)2

4α2β6
[

√
1 +

β

2α
+

3α

2β
(3.2) √

1 +
β

2α
+

3α

2β
+

2α3β3

(3α2 − β)2
](bi − β

α2
yi)(bj −

β

α2
yj).

Again using (3.1) in (2.12) we have,

(3.3) Y i
j = δij −

1

C2
{1 ±

√
1 +

2β3C2

αβ3 − α3β − 3α3 + αβ2
}bibj ,

where C2 = (1 + β
2α + 3α

2β )b2 − (3α2−β2)
2α3β3 (α2b2 − β2)2.

Theorem 3.1. Let L = (α + β + α2

β )α = α2 + αβ + α3

β be the metric function
of a Finsler space with (α, β) metric for which the condition (2.7) is true. Then

V i
j = Xi

kY
k
j

is nonholonomic Finsler Frame with Xi
k and Y k

j are given by (3.2) and (3.3)
respectively.

3.2 Nonholonomic frame for
L = (α+ β + α2

β )β = (α+ β + β2

α )α = α2 + αβ + β2

In the second and third case, for a Finsler space with the fundamental function
L = (α2 + αβ + β2) are the same , the Finsler invariants (2.6) are given by

ρ1 = 1 +
β

2α
, ρ0 = 1,

ρ−1 =
1

2α
, ρ−2 =

−β
2α

,(3.4)

B2 =
(α2b2 − β2)

4α4
.

Using (3.4) in (2.10) we have,

Xi
j =

√
1 +

β

2α
δij −

1

4α2β
[

√
1 +

β

2α

+

√
1 +

β

2α
− 2α3β](bi − β

α2
yi)(bj −

β

α2
yj).(3.5)

Again using (3.4) in (2.12) we have,

(3.6) Y i
j = δij −

1

C2
{1 ±

√
1 +

2αβC2

1 + 2αβ
}bibj ,

where C2 = (1 + β
2α)b2 − 1

2α3β
(α2b2 − β2)2.
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Theorem 3.2. Let L = (α + β + α2

β )β = (α + β + β2

α )α = α2 + αβ + β2 be
the metric function of a Finsler space with (α,β) metric for which the condition
(2.7) is true. Then

V i
j = Xi

kY
k
j

is nonholonomic Finsler Frame with Xi
k and Y k

j are given by (3.5) and (3.6)
respectively.

3.3 Nonholonomic frame for L = (α+ β + β2

α )β = αβ + β2 + β3

α

In the fourth case, for a Finsler space with the fundamental function L = (α+

β + β2

α )β = αβ + β2 + β3

α the Finsler invariants (2.6) are given by

ρ1 =
α2β − β3

2α3
, ρ0 =

α+ 3β

α
,(3.7)

ρ−1 =
α2 − 3β2

2α3
, ρ−2 =

3β3 − αβ2

2α5
,

B2 =
(α2 − 3β2)2(α2b2 − β2)

4α8
.

Using (3.7) in (2.10) we have,

Xi
j =

√
α2β − β3

2α3
δij −

(α2 − 3β2)2

4α6β2
[

√
α2β − β3

2α3

+

√
α2β − β3

2α3
+

2α5β

3β2 − α2
](bi − β

α2
yi)(bj −

β

α2
yj).(3.8)

Again using (3.7) in (2.12) we have,

(3.9) Y i
j = δij −

1

C2
{1 ±

√
1 +

2αβC2

α2 + 3β2 + 2αβ
}bibj ,

where C2 = (α
2β−β3

2α3 )b2 + (3β2−α2)
β (α2b2 − β2)2.

Theorem 3.3. Let L = (α + β + β2

α )β = αβ + β2 + β3

α be the metric function
of a Finsler space with (α,β) metric for which the condition (2.7) is true. Then

V i
j = Xi

kY
k
j

is nonholonomic Finsler Frame with Xi
k and Y k

j are given by (3.8) and (3.9)
respectively.

4. Conclusion

Nonholonomic frame relates a semi-Riemannian metric (the Minkowski or the
Lorentz metric) with an induced Finsler metric. Antonelli and Bucataru [1, 2],
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have determined such a nonholonomic frame for two important classes of Finsler
spaces that are dual in the sense of Randers and Kropina spaces [10]. As Randers
and Kropina spaces are members of a bigger class of Finsler spaces, namely the
Finsler spaces with (α,β)-metric, it appears a natural question: Does how many
Finsler space with(α,β)-metrics have such a nonholonomic frame? The answer
is yes, there are many Finsler space with(α, β)-metrics.

In this work, we consider the special Finsler (α, β) metrics,first approximate
Matsomoto metric, Riemannian metric and 1-form metric we determine the
nonholonomic Finsler frames. But, in Finsler geometry, there are many (α,β)-
metrics, in future work we can determine the frames for them also.
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Abstract. Let G be a finite group, χ a non-linear irreducible character of G. dz(χ)
denotes the set of all prime divisors p of |G| such that χ is a p−defect zero character,
dz(G) denotes the union of dz(χ) for all non-linear irreducible characters χ of G, i.e.,
χ ∈ Irr(G|G′). A finite group G such that

∩
χ∈Irr(G|G′) dz(χ) ̸= ∅ was studied in 1996.

Finite groups G satisfying dz(χ) = π(χ(1)) for all χ ∈ Irr(G|G′) were classified in 2007.
We are motivated to study more general case, i.e., a finite group G satisfying dz(χ) ̸= ∅
for every χ ∈ Irr(G|G′). At first, we study a solvable group G and come to a necessary
and sufficient condition. Secondly, for a non-solvable group, we prove that K3-simple
groups can be uniquely determined by dz(G) and the order of G.

Keywords: finite group, irreducible character, p-defect zero, structure of a group.

1. Introduction

All groups considered are finite, all characters considered are afforded by ordi-
nary representations. Let n be a positive integer, define π(n) to be the set of
prime divisors of n. For a set of some primes π, we define nπ to be the positive
divisor of n such that n = nπ × k, where π(nπ) ⊆ π and π(k)∩π = ∅, especially
while π = {p}, we write np instead of nπ. Let G be a finite group and N a normal
subgroup of G, π(G) denotes the set of prime divisors of |G|, Irr(G) the set of
irreducible characters of G, and Irr(G|N) = {χ

∣∣χ ∈ Irr(G) and N ̸⊆ Ker(χ)},
Irr(G/N) = {χ

∣∣χ ∈ Irr(G) and N ⊆ Ker(χ)}. For a prime p ∈ π(G), an
irreducible character χ ∈ Irr(G) is called p-defect zero if χ(1)p = |G|p. Set

dz(χ) = { p ∈ π(G) | χ is p-defect zero } and dz(G) =
∪

χ∈Irr(G|G′)

dz(χ).

All other notations are referred to [2] and [4].
In 1996, Ren studied finite groups G such that

∩
χ∈Irr(G|G′) dz(χ) ̸= ∅ in [7].

In 2007, Liang, Qian and Shi classified finite groups G satisfying dz(χ) = π(χ(1))
for all χ ∈ Irr(G|G′) in [5].

∗. Corresponding author
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We are motivated to study more general case, that is, a finite group G
satisfying dz(χ) ̸= ∅ for every χ ∈ Irr(G|G′). We first focus on a finite solvable
group, and come to the following theorem in Section 2:

Theorem A. Let G be a non-abelian solvable group. Then dz(χ) ̸= ∅ holds for
every χ ∈ Irr(G|G′) if and only if there exists a series of normal Hall-subgroups

G = M0 > M1 > · · · > Mr > 1

with r > 1, such that following statements hold.
(a) For 0 ≤ i ≤ r − 1, Mi are non-abelian groups;
(b) For 1 6 i 6 r, Mi−1/Mi is a cyclic Sylow subgroup of G;
(c) For 1 6 i 6 r and every λ ∈ Irr(Mi/M

′
i), it follows IMi−1(λ) = Mi or

Mi−1. Moreover for each non-linear irreducible character χ of Mr with dz(λ) =
∅, if there exists, it follows IMr−1(λ) = Mr.

By Theorem A, we have the following two corollaries.

Corollary A. Let G be a non-abelian solvable group. Then dz(χ) = π(χ(1))
holds for every χ ∈ Irr(G|G′) if and only if there exists a series of normal Hall
subgroups

G = M0 > M1 > · · · > Mr > 1

with r > 1, such that following statements hold.
(a) For 0 ≤ i ≤ r − 1, Mi are non-abelian groups, but Mr is an abelian

group;
(b) For 1 6 i 6 r, Mi−1/Mi is a cyclic Sylow subgroup of G;
(c) For 1 6 i 6 r and every λ ∈ Irr(Mi), it follows IMi−1(λ) = Mi or Mi−1.

Corollary B. Let G be a group and π be a nonempty proper subset of π(G).
Suppose π ⊆ dz(χ) for every χ ∈ Irr(G|G′). Then cd(G) = {1, f} if and only
if G has an abelian normal subgroup N of index f such that

(a) G/N is cyclic;
(b) for every λ ∈ Irr(N), IG(λ) = G or N .

For a non-solvable group, we cannot get a beautiful result as Theorem A.
It is worth to mention a result about simple group, which is in [3, Corollary 2],
Granville and Ono proved that every finite simple group M satisfies dz(M) =
π(M) with the following exceptions:

(a) M has no character of 2-defect zero if it is isomorphic to M12, M22, M24,
J2, HS, Suz, Ru, Co1, Co3, BM , or An, where n ̸= 2m2 +m nor 2m2 +m+ 2
for any integer m;

(b) M has no character of 3-defect zero if it is isomorphic to Suz, Co3, or
An with 3n+ 1 = m2r, where r is square free and divisible by some prime q ≡ 2
mod 3.

Above result means that most simple groups M satisfies dz(M) = π(M).
But if a finite group G satisfying dz(G) = dz(M), can we get G ∼= M? Surely
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we cannot. For example, let r be a positive integer such that (r, |M |) = 1 and
Cr a cyclic group of order r, then dz(M) = dz(M ×Cr), but M ̸∼= M ×Cr. So it
is a meaningful topic to study ‘adding what kind of condition to dz(G) = dz(M),
we can get G ∼= M ’.

Here we try to study K3-simple groups. A finite group M is called a Kn-
group if the order of M has exactly n distinct prime divisors. We shall prove in
Section 3 that a K3-simple group M can be uniquely determined by dz(M) and
|M |, that is the following theorem.

Theorem B. Let G be a finite group, M a K3-simple group. Then G ∼= M if
and only if

(a) |G| = |M |,
(b) dz(G) = dz(M).

2. Proof of Theorem A

At first we introduce a result in [6].

Lemma 2.1 ([6], Theorem A). Let G be a group, 1 < N ▹ G, P a Sylow p-
subgroup of G, where p ∈ π(G). Then p /∈ V (G|N) if and only if N is a p′-group

and P acts frobeniusly on N , where V (G|N) =
∪

χ∈Irr(G|N) π
( |G|
| kerχ|χ(1)

)
.

Lemma 2.2. Let G be a group, K a normal Hall subgroup of G. If G/K
is solvable and ξ ∈ Irr(K) is invariant in G. Then ξ has a unique extension
χ ∈ Irr(G) with o(χ) = o(ξ).

Proof. The lemma follows straight forward from [4, Corollary 6.28].

Lemma 2.3. Let G be a group, π a nonempty proper subset of π(G). Suppose
π ⊆ dz(χ) for every χ ∈ Irr(G|G′). Then the following statements hold.

(a) For every p ∈ π and P ∈ Sylp(G), P acts frobeniusly on G′. In particular,
G is solvable;

(b) G = H nK, where H is a cyclic Hall π-subgroup of G, K is a normal
Hall π′-subgroup of G;

(c) For every ξ ∈ Irr(K), IG(ξ) = G or K. Especially while IG(ξ) = G, ξ is
linear.

Proof. By formula

|G| = |G/G′| +
∑

χ∈Irr(G|G′)

χ(1)2,

we have |G|π
∣∣|G/G′|. Hence 1 < G′ � G. For every p ∈ π and P ∈ Sylp(G),

it follows by Lemma 2.1 that P acts frobeniusly on G′. Then G′ is a nilpotent
π′-group. Thus G is solvable.
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Since G/G′ is abelian, we have G/G′ = HG′/G′ ×K/G′, where H is a Hall
π-subgroup of G, K a normal Hall π′-subgroup of G. Note that HG′/G′ ∼= H
is abelian. Then H is cyclic by argument in preceding paragraph.

Let ξ ∈ Irr(K). If some constituents of ξG are non-linear, say, one is ϕ,
then ϕ(1)/ξ(1)

∣∣|H|. Since π(H) = π, we have |H|
∣∣ϕ(1) by the hypothesis. Note

that ξ(1) is a π′-number. We get ϕ(1) = |H|ξ(1) = ξG(1). Then ξG = ϕ, i.e.,
IG(ξ) = K. If all irreducible constituents of ξG are linear, then ξ is extendible
to G. Therefore IG(ξ) = G and ξ(1) = 1.

Remark 2.1. The statements (a) and (b) have been given in [7, Theorem 1].
However, the approach of proof in [7] is different from ours.

Conversely, assume that G is solvable and satisfies statements (b) and (c)
of Lemma 2.3. Let χ ∈ Irr(G|G′) and ξ be an irreducible constituent of χK . If
IG(ξ) = K, then χ = ξG and χ(1) = |H|ξ(1). So π ⊆ dz(χ).

If IG(ξ) = G, then ξ is linear by (c). By Lemma 2.2, there exists ϕ ∈ Irr(G)
such that ϕK = ξ. Hence characters of form like βϕ for β ∈ Irr(G/K) are all
irreducible constituents of ξG by [4, Corollary 6.17]. Therefore all irreducible
constituents of ξG are linear, so χ is linear, a contradiction. Thus we come to
the following lemma.

Lemma 2.4. Let G be a group and π a nonempty proper subset of π(G). Then
π ⊆ dz(χ) holds for every χ ∈ Irr(G|G′) if and only if G is solvable and satisfies

(a) G = H nK where H is a cyclic Hall π-subgroup of G, K is a normal
Hall π′-subgroup of G;

(b) for every ξ ∈ Irr(K), IG(ξ) = G or K. Especially while IG(ξ) = G, ξ is
linear.

In order to write the proof of Theorem A to be readable, we make following
hypothesis for brevity.

Hypothesis 2.1. Let X be a non-abelian solvable group. Suppose dz(χ) ̸= ∅
holds for every χ ∈ Irr(X|X ′).

The Proof of Theorem A. Firstly, we show the necessity. Now G satisfies Hy-
pothesis 2.1. Let K be a maximal normal subgroup of G such that G/K is
non-abelian. By [4, Lemma 12.3], it follows that |cd(G/K)| = 2. Let χ be a
non-linear irreducible character of G/K, then cd(G/K) = {1, χ(1)}, and there
exists a prime p ∈ dz(χ). By setting π = {p} in Lemma 2.4, we see that the
Sylow p-subgroup of G/K is cyclic and G/K has a normal Hall p′-subgroup
M/K. Since K is a p′-group, we conclude that M is a normal Hall p′-subgroup
of G. By Schur-Zassenhaus Theorem the Sylow p-subgroup of G is isomorphic
to G/M and is cyclic.

We denote above M as M1, p as p1. If M1 does not satisfy Hypothesis 2.1,
we stop and let r = 1. If M1 satisfies Hypothesis 2.1, by the same argument in
the preceding paragraph, we get that M1 has a cyclic Sylow p2-subgroup and
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has a normal p2-complement M2. If M2 does not satisfy Hypothesis 2.1, we stop
and let r=2. Repeating this process, we obtain a series of normal Hall subgroups

G = M0 > M1 > · · · > Mr > 1

such that M1, M2, · · · , Mr−1 satisfy Hypothesis 2.1 and Mr does not. This
means the statements (a) and (b) are proved.

Let |Mi−1/Mi| = pαi
i , where pαi

i

∣∣∣∣ |G|, 1 6 i 6 r. For every λ ∈ Irr(Mi/M
′
i),

if all irreducible constituents of λMi−1 are linear, then λ is extendible to Mi−1,
moreover IMi−1(λ) = Mi−1. Otherwise there exists ϕ ∈ Irr(Mi−1|M ′

i−1) to be
an irreducible constituent of λMi−1 . Then ϕ(1)/λ(1)

∣∣|Mi−1/Mi|, i.e., ϕ(1)
∣∣pαi

i .
Since Mi−1 satisfies Hypothesis 2.1, it follows dz(ϕ) ̸= ∅. So ϕ(1) = pαi

i =
pαi
i λ(1), and consequently ϕ = λMi−1 . This implies IMi−1(λ) = Mi. We have

proved the first part of (c).
Now assume Mr is non-abelian and ξ ∈ Irr(Mr|M ′

r) with dz(ξ) = ∅. Let
φ ∈ Irr(Mr−1) be an irreducible constituent of ξMr−1 . Then φ(1)/ξ(1)

∣∣pαr
r .

Since Mr−1 satisfies Hypothesis 2.1 and ξ(1) is a p′r-number and dz(ξ) = ∅, it
follows that φ has to be pr-defect zero, and φ(1) = pαr

r ξ(1), further φ = ξMr−1

and IMr−1(ξ) = Mr. The second part of (c) is proved.
Now we prove the sufficiency. Assume χ ∈ Irr(Mr−1|M ′

r−1). Let λ be an
irreducible constituent of χMr .

If λ is linear, then IMr−1(λ) = Mr or Mr−1 by (c). If IMr−1(λ) = Mr−1, λ is
extendible to Mr−1 by Lemma 2.2. Hence all irreducible constituents of λMr−1

are linear by [4, Corollary 6.17] and (b). This contradicts that χ is a non-linear
irreducible constituent of λMr−1 . Hence IMr−1(λ) = Mr and χ(1) = pαr

r λ(1) =
pαr
r . So pr ∈ dz(χ).

If λ is non-linear. Then Mr must be non-ableian. If dz(λ) ̸= ∅, then dz(λ) ⊆
dz(χ) ̸= ∅. Otherwise dz(λ) = ∅, and it follows by (c) that IMr−1(λ) = Mr,
which implies that χ(1) = pαr

r λ(1), pr ∈ dz(λ) ⊆ dz(χ). Hence it always follows
that dz(χ) ̸= ∅. Therefore Mr−1 satisfies Hypothesis 2.1.

If r = 1, then sufficiency follows. Now assume r > 1. For any χ ∈
Irr(Mr−2|M ′

r−2), let λ be an irreducible constituent of χMr−1 . If λ is linear,
then IMr−2(λ) = Mr−1 or Mr−2 by (c). By the same arguments as in preceding
paragraph, we have IMr−2(λ) = Mr−1, and pr−1 ∈ dz(χ). If λ is non-linear.
Since Mr−1 satisfies Hypothesis 2.1 , we have dz(λ) ̸= ∅. By dz(λ) ⊆ dz(χ), we
have dz(χ) ̸= ∅. So anyhow dz(χ) ̸= ∅ always follows. Thus Mr−2 satisfies Hy-
pothesis 2.1. Repeating above process, we get at last that G satisfies Hypothesis
2.1.

Remark 2.2. By the proof of Theorem A, one can see to that Mi satisfies
Hypothesis 2.1, 0 6 i 6 r − 1. But Mr does not.

In order to write the proof readable, we make a another hypothesis.

Hypothesis 2.2. LetX be a finite non-abelian solvable group. Suppose dz(χ) =
π(χ(1)) for every χ ∈ Irr(X|X ′).
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The Proof of Corollary A. Firstly, by assumptionG satisfies Hypothesis 2.2. By
Theorem A, in order to prove statement (a), it is enough to prove Mr is abelian.

By Remark 2.2, we take r as large as possible, and Mr does not satisfy
Hypothesis 2.1. By [5, Lemma 2.2], every non-abelian normal Hall subgroup of
G satisfies Hypothesis 2.2. Therefore Mr is abelian. The statement (a) follows.

The statement (b) follows trivially from Theorem A.

Now we prove statement (c). For 1 6 i 6 r, let λ ∈ Irr(Mi) and χ an
irreducible constituent of λMi−1 . Let |Mi−1/Mi| = pαi

i , 1 6 i 6 r, where
pαi
i

∣∣∣∣ |G|. If dz(χ) = dz(λ), then χ(1) = λ(1). It follows that χ is an extension
of λ, so IMi−1(λ) = Mi−1. If dz(χ) ̸= dz(λ). Then dz(χ) \ dz(λ) = {pi}, so
χ(1) = pαi

i λ(1) = λMi−1(1). Hence χ = λMi−1 and IMi−1(λ) = Mi.

Conversely, suppose χ ∈ Irr(Mr−1|M ′
r−1) and λ is an irreducible constituent

of χMr . By statement (c), we see that IMr−1(λ) = Mr or Mr−1. Assume
IMr−1(λ) = Mr. Then χ = λMr−1 and χ(1) = pαr

r · λ(1). Notice that λ is linear.
Then dz(χ) = {pr} = π(χ(1)). Now assume IMr−1(λ) = Mr−1. By Lemma 2.2, λ
is extendible to Mr−1. By (b) and [4, Corollary 6.17], we have χ(1) = λ(1) = 1.
This contradicts χ ∈ Irr(Mr−1|M ′

r−1). Therefore Mr−1 satisfies Hypothesis 2.2.

If r = 1, then proof is finished. Now assume r > 1.

For any χ ∈ Irr(Mr−2|M ′
r−2), let λ be an irreducible constituent of χMr−1 .

By (c), IMr−2(λ) = Mr−1 or Mr−2. Firstly, assume IMr−2(λ) = Mr−1. Then
χ = λMr−2 and χ(1) = p

αr−1

r−1 · λ(1). If λ is linear, then dz(χ) = π(χ(1)).
Otherwise λ is non-linear. Since Mr−1 satisfies Hypothesis 2.2, we have dz(λ) =
π(λ(1)). It follows that dz(χ) = π(λ(1)) ∪ {pr} = π(χ(1)). Secondly, assume
IMr−2(λ) = Mr−2. By the same argument as in the preceding paragraph, we get
χ(1) = λ(1). It follows that λ is non-linear, which implies dz(λ) = π(λ(1)) since
Mr−1 satisfies Hypothesis 2.2. Therefore it always follows dz(χ) = π(χ(1)),
so Mr−2 also satisfies Hypothesis 2.2. Repeating this process, we get that G
satisfies Hypothesis 2.2.

The Proof of Corollary B. Suppose cd(G) = {1, f}. Let K be a maximal nor-
mal subgroup such that G/K is non-abelian. By Lemma 2.4, G is solvable. Thus
G/K satisfies the assumption of Lemma 12.3 in [4]. By the proof of Theorem
12.5 in [4], G has an abelian normal subgroup N of index f such that G/N is
cyclic.

Assume λ ∈ Irr(N) and ϕ is a non-linear irreducible constituent of λG.
Notice that λG(1) = |G : N | = f = ϕ(1), we have that λG is irreducible. Hence
IG(λ) = N .

Conversely, let χ ∈ Irr(G|G′) and λ be an irreducible constituent of χN . If
IG(λ) = N , then λG = χ and χ(1) = |G : N | = f .

Assume IG(λ) = G. We assert that λG has no linear irreducible constituent.
Otherwise, let ϕ be a linear irreducible constituent of λG, then ϕN = λ. By [4,
Corollary 6.17], all irreducible constituents of λG are linear, a contradiction to
χ is a non-linear irreducible constituent of λG.
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Let Irr(λG) = {χ1 = χ, χ2, · · · , χt}, where χi ∈ Irr(G|G′), i = 1, 2, · · · , t.
By Frobenius reciprocity, we have

[χi, λ
G] = [(χi)N , λ] = χi(1), i = 1, 2, · · · , t.

This implies λG =
∑t

i=1 χi(1)χi, so λG(1) =
∑t

i=1 χi(1)2. Thus
∑t

i=1 χi(1)2 =
f .

For p ∈ π, let pr
∣∣∣∣|G|. By the assumption, we have pr|χi(1), so p2r|f . But

this contradicts f
∣∣|G| and pr

∣∣∣∣|G|. The proof is finished.

3. Proof of Theorem B

Lemma 3.1. Let G be a group. If dz(G) = π(G), then G is a non-solvable
group. Moreover, the minimal subnormal subgroup of G is a non-abelian simple
group.

Proof. We assert that every nontrivial normal subgroup N of G is non-abelian.
Otherwise, let N be an abelian non-trivial subgroup of G, then χ(1)

∣∣|G : N |
for every χ ∈ Irr(G). But by assumption, for every p ∈ π(N), there exists
ξ ∈ Irr(G) such that ξ(1)p = |G|p, a contradiction.

By the fact that every finite solvable group contains an abelian minimal
normal subgroup, we get that G is non-solvable.

By Clifford Theorem, it is easy to see that the condition dz(G) = π(G) is
inherited by a normal subgroup, thus a minimal subnormal subgroup of G must
be a non-abelian simple group.

Since the group of order paqb is solvable, a finite group G satisfying dz(G) =
π(G) has at least three prime factors by Lemma 3.1. That is to say, when
we investigate a finite group G satisfying dz(G) = π(G), we must start from
investigating a finite group with |π(G)| = 3, i.e., a K3-simple group, they are
A5, A6, L2(7)(= L3(2)), L2(17), L3(3), U4(2)(= S4(3)), L2(8)(= R(3)′) and
U3(3). Now we set up following lemma.

Lemma 3.2. Let G be a group and |G| = paqbr, where p, q, r are distinct
primes with p < q < r. Suppose that G satisfies dz(G) = π(G). Then G is
one of K3-simple groups, Aut(L2(8)), Aut(L3(3)), Aut(U3(3)) and subgroups of
Aut(A6).

Proof. Since every minimal normal subgroup N of G is a direct product of
isomorphic non-abelian simple group by Lemma 3.1, we have pqr

∣∣|N |. But
r
∣∣∣∣|G|, so N is a non-abelian simple group and is a unique minimal normal

subgroup of G. Consequently CG(N) = 1, thus N E G . Aut(N), and N is a
K3-simple group. For N = A5, A6, L2(7), L2(17), L3(3), U4(2), L2(8) and
U3(3), checking character tables of group G such that N EG . Aut(N) in [1],
we found that dz(G) = π(G) holds only if G = N is a K3-group, Aut(L2(8)),
Aut(L3(3)), Aut(U3(3)) or a subgroup of Aut(A6). This completes the proof.
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The Proof of Theorem B. It is enough to prove the sufficiency. For any K3-
simple group M , it always follows dz(M) = π(M). By assumption |G| = |M |,
one has that π(G) = π(M), and dz(G) = dz(M) = π(M) = π(G). Hence
G satisfies conditions of Lemma 3.2, G is a K3-simple group. The sufficiency
follows from |G| = |M |. Thus Theorem B follows.
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1. Introduction and preliminaries

Two very important kinds of the notions in mathematical analysis are well
known: modular function spaces and modular metric spaces. For details on
modular function spaces, readers can see [22], while for modular metric spaces
see [9].

Both the kinds of modular concept are in fact generalizations of the standard
metric spaces, was introduced by Nakano [27] and was intensively developed
by several authors. Example 2.1 presented by Abdon and Khamsi [1] is an
important motivation for developing the theory of modular metric spaces. Also,
see the introduction section in [3].

Otherwise, modular function spaces, that is, modular metric spaces theory
has many applications for example in physical interpretations of the modular,
the electrorheological fluids, economy, engineering, further in applications to
integral operators, approximation and fixed point results. For more details, see
([1]-[7], [9]-[12], [14]-[28]).

Now, we will begin with a brief recollection of basic notions and the facts in
modular (metric) spaces. Let X be a nonempty set and w : (0,∞) ×X ×X →
[0,∞] be a function. For simplicity, it is denoted by

wλ (x, y) = w (λ, x, y) ,

for all λ > 0 and x, y ∈ X.

Definition 1.1 ([9]). Let X be a nonempty set. Assume that the map ω :
(0,∞) ×X ×X → [0,∞] satisfies the following conditions for all x, y, z ∈ X:

(1) ωλ(x, y) = 0 for all λ > 0 if and only if x = y;

(2) ωλ(x, y) = ωλ(y, x) for all λ > 0;

(3) ωλ+µ(x, z) ≤ ωλ(x, y) + ωµ(y, z) for all λ, µ > 0.

In this case, ω is a said a (metric) modular on X.

A (metric) modular w is said to be strict if it has the following property:
given x, y ∈ X with x ̸= y, we have ω(λ, x, y) > 0 for all λ > 0.

A (metric) modular w on X is said to be convex [10] if, instead of (3), it
satisfies the stronger inequality:

(1.1) ωλ+µ(x, z) ≤ λ

λ+ µ
ωλ(x, y) +

µ

µ+ λ
ωµ(y, z)

for all λ, µ > 0.

Let (X, d) be a metric space such that X has at least two elements. Then
we obtain the following examples of a metric modular w.
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Example 1.1 ([3]). Let

ω(λ, x, y) = wλ (x, y) = d (x, y) ,

for all λ > 0. This modular is not convex. Indeed, putting z = y and µ = λ in
(1.1), the result follows.

Example 1.2 ([3]). Let

ω(λ, x, y) = wλ (x, y) =
d (x, y)

λ
,

for all λ > 0. This modular is convex.

Example 1.3 ([3]). Let

wλ (x, y) =

{
∞ if λ < d (x, y) ,
0 if λ ≥ d (x, y) .

This modular w is also convex.

Example 1.4. Let X = R be endowed with the mapping wλ : (0,∞) ×X ×X
defined as

wλ (x, y) =

{ |x|+|y|
λ , if x ̸= y

0 if x = y

for all x, y ∈ X and λ > 0. It is clear that this mapping is a modular.

Definition 1.2 ([9, 11]). Given a modular ω on X, the two sets

Xω ≡ Xω(x0) = {x ∈ X : ωλ(x, x0) → 0 as λ→ ∞}

and

X∗
ω ≡ X∗

ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) <∞}

are said to be modular spaces (around x0).

It is not hard to see that Xw ≡ Xw (x0) = {x0} in Examples 1.1 and 1.2,
while X∗

w ≡ X∗
w (x0) = X in both cases.

Definition 1.3 ([10]). Let ω be a modular on X. A sequence {xn} in X is said
to be ω-convergent (or modular convergent) to an element x ∈ X if there exists a
number λ > 0, possibly depending on {xn} and x, such that limn→∞ ωλ(xn, x) =
0. A sequence {xn} in X is said to be ω-Cauchy if there exists λ > 0, possibly
depending on the sequence, such that ωλ(xm, xn) → 0 as m,n → ∞. X is said
to be ω−complete if every ω−Cauchy sequence is ω−convergent.
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Definition 1.4 ([10]). Let w be a modular on a set X and let X∗
ω be a mod-

ular set. A mapping T : X∗
ω → X∗

ω is said to be modular contractive (or an
ω−contraction) if there exist numbers k ∈ (0, 1) and λ0 > 0 such that

(1.2) ωkλ(Tx, Ty) ≤ ωλ(x, y)

for all 0 < λ ≤ λ0 and for all x, y ∈ X∗
ω.

Definition 1.5 ([10]). Let w be a modular on a set X and let X∗
w be a modular

set. A mapping T : X∗
w → X∗

w is said to be strongly modular contractive (or a
strongly ω-contraction) if there exist k ∈ (0, 1) and λ0 > 0 such that

(1.3) w kλ (Tx, Ty) ≤ kwλ (x, y)

for all 0 < λ ≤ λ0 and all x, y ∈ X∗
w.

The following proposition is the key in enough proofs in the context of mod-
ular metric spaces.

Proposition 1.1 ([3], Proposition 2.4). Let w be a modular on the set X.

(a) For every x, y ∈ X, the function λ 7→ wλ (x, y) is non-increasing;

(b) Let w be a convex modular. For x, y ∈ X, if wλ (x, y) is finite for at least
one value of λ, then wλ (x, y) → 0 as λ→ ∞ and wλ (x, y) → ∞ as λ→ 0+;

(c) If w is a convex modular, then the function vλ (x, y) = wλ(x,y)
λ is a

modular on X.

2. Reich-type theorem in modular spaces

Definition 2.1. Let w be a modular on a set X and let X∗
ω be a modular set.

A mapping T : X∗
ω → X∗

ω is said to be a Reich ω−contraction if there exist
a, b, c ∈ (0, 1) with a+ b+ c < 1 and λ0 > 0 such that

(2.1) ωλ(Tx, Ty) ≤ ωλ
a
(x, y) + ωλ

b
(x, Tx) + ωλ

c
(y, Ty),

for all 0 < λ ≤ λ0 and for all x, y ∈ X∗
ω.

The following theorem is an analog of the fixed point theorem by Reich [29]
in the framework of modular spaces.

Theorem 2.1. Let ω be a strict convex modular on X such that the modular
space X∗

ω is ω-complete and let T : X∗
ω → X∗

ω be a Reich ω-contractive map such
that for each λ > 0, there exists x = x(λ) ∈ X∗

ω such that ωλ(x, Tx) <∞. Then
T has a fixed point x∗ in X∗

ω. If the modular w assumes only finite values on
X∗

ω, then the condition ωλ(x, Tx) < ∞ is redundant, and so the fixed point x∗

of T is unique and for each x0 ∈ X∗
ω, the sequence of iterates Tnx0 is modular

convergent to x∗.
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Proof. Let x0 ∈ X∗
ω and xn = Tnx0, n = 0, 1, 2, . . . Putting x = xn and y =

xn−1 in inequality (2.1), we obtain

(2.2) ωλ(xn+1, xn) ≤ ωλ
a
(xn, xn−1) + ωλ

b
(xn, xn+1) + ωλ

c
(xn−1, xn).

Next, we have

ωλ
a
(xn, xn−1) = ωλ+λ 1−a

a
(xn, xn−1)

≤ λ
λ
a

ωλ(xn, xn−1) +
λ1−a

a
λ
a

ωλ 1−a
a

(xn−1, xn−1)

= aωλ(xn, xn−1).

So,

(2.3) ωλ
a
(xn, xn−1) ≤ aωλ(xn, xn−1).

Similarly,

(2.4) ωλ
b
(xn, xn+1) ≤ bωλ(xn, xn+1)

and

(2.5) ωλ
c
(xn, xn−1) ≤ cωλ(xn, xn−1).

Using (2.2), (2.3), (2.4) and (2.5), we obtain that

(2.6) ωλ(xn+1, xn) ≤ a+ c

1 − b
ωλ(xn, xn−1).

From (2.6), by induction we have

(2.7) ωλ(xn+1, xn) ≤
(
a+ c

1 − b

)n

ωλ(x1, x0).

If we put = xm−1 and y = xn−1 in the inequality (2.1), we get that

(2.8) ωλ(xm, xn) ≤ ωλ
a
(xm−1, xn−1) + ωλ

b
(xm−1, xm) + ωλ

c
(xn−1, xn).

On the other hand, we have

ωλ
a
(xm−1, xn−1) = ωλ(1−a)

2a
+λ+

λ(1−a)
2a

(xm−1, xn−1)

≤ 1 − a

2
ωλ(1−a)

2a

(xm−1, xm) + aωλ(xm, xn)

+
1 − a

2
ωλ(1−a)

2a

(xn, xn−1).
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Using (2.8), we get

(1 − a)ωλ(xm, xn) ≤ ωλ
b
(xm−1, xm) +

1 − a

2
ωλ(1−a)

2a

(xm−1, xm)

+ ωλ
c
(xn−1, xn) +

1 − a

2
ωλ(1−a)

2a

(xn, xn−1).

Now, by (2.7), we conclude that {xn} is a Cauchy sequence. Since ω is strict,
the modular limit X∗ of the sequence {xn} is determined uniquely. Let us show
that x∗ is a fixed point of T . We have the following

ωλ
c
(x∗, Tx∗) = ωλ(1−c)

c
+λ

(x∗, Tx∗)

≤ (1 − c)ωλ(1−c)
c

(x∗, xn+1) + cωλ(xn+1, Tx
∗)

= (1 − c)ωλ(1−c)
c

(x∗, xn+1) + cωλ(Txn, Tx
∗)

≤ (1 − c)ωλ(1−c)
c

(x∗, xn+1) + c[ωλ
a
(xn, x

∗)

+ ωλ
b
(xn, xn+1) + ωλ

c
(x∗, Tx∗)].

If we let n→ ∞ in the last inequality, we get

ωλ
c
(x∗, Tx∗) ≤ cωλ

c
(x∗, Tx∗),

so, Tx∗ = x∗.
Uniqueness. Let x∗ and y∗ be two fixed points. Then we have

ωλ(x∗, y∗) = ωλ(Tx∗, T y∗)

≤ ωλ
a
(x∗, y∗) + ωλ

b
(x∗, Tx∗)

+ ωλ
c
(y∗, T y∗)

≤ aωλ(x∗, y∗),

so, x∗ = y∗.

Corollary 2.1. If in the condition (2.1), b and c tend to 0+, then we obtain
the Banach contraction principle in the context of strict convex modular metric
spaces.

Corollary 2.2. If in the condition (2.1), a tends to 0+, then we obtain the
Kannan-type contraction result in the context of strict convex modular metric
spaces.

Now, we give an example supporting Theorem 2.1.

Example 2.1. Let Xw = [0, 1] be endowed with the modular metric

wλ (x, y) =

{
x+y
λ , if x ̸= y

0, if x = y
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for all x, y ∈ Xw and λ > 0. Clearly, (Xw, wλ) is a w−complete modular metric
space. Define the self-mapping T : Xw → Xw by Tx = x

2 and put a = b = c = 1
4 .

It is easy to check that all the conditions of Theorem 2.1 hold and T has a fixed
point, which is x = 0.

Definition 2.2. Let w be a modular on a set X and let X∗
w be a modular set. A

mapping T : X∗
w → X∗

w is said to be a Hardy-Rogers ([28], (18)) ω− contraction
if there exist a, b, c, d, e ∈ (0, 1) with a+ b+ c+ d+ e < 1 and λ0 > 0 such that
(2.9)
wλ (Tx, Ty) ≤ w λ

a
(x, y) +w λ

b
(x, Tx) +w λ

c
(y, Ty) +w λ

d
(x, Ty) +w λ

e
(y, Tx) ,

for all 0 < λ ≤ λ0 and all x, y ∈ X∗
w.

Now, we present the following open question (Hardy-Rogers ω− contraction):
Prove or disprove the following statement:

• Let w be a strict convex modular on X such that the modular space X∗
w is

w-complete and let T : X∗
w → X∗

w be a Hardy-Rogers ω-contractive map such
that for each λ > 0, there exists x = x (λ) ∈ X∗

w such that wλ (x, Tx) < ∞.
Then T has a fixed point x∗ in X∗

w. If the modular w assumes only finite values
on X∗

w, then the condition wλ (x, Tx) <∞ is redundant, and so the fixed point
x∗ of T is unique and for each x0 ∈ X∗

w, the sequence of iterates Tnx0 is modular
convergent to x∗.

3. Contractions on h-convex modular spaces

We introduce the concept of C−type functions.

Definition 3.1. A function h : (0, 1) → [0,∞) is said to be C−type if it has
the following properties:

(C1) there exists Ch > 0 such that h(x)h(y) ≤ Chh(xy) for all x, y ∈ (0, 1);

(C2) lim
t→0+

h(t) = 0.

Definition 3.2. Let X be a nonempty set and h be a C−type function. A
map ω : (0,∞) × X × X → [0,∞] is said to be a h-convex modular if for all
x, y, z ∈ X, the following conditions are satisfied:

(1h) ωλ(x, y) = 0 for all λ > 0 if and only if x = y;

(2h) ωλ(x, y) = ωλ(y, x) for all λ > 0;

(3h) ωλ+µ(x, z) ≤ h
(

λ
λ+µ

)
ωλ(x, y) + h

(
µ

µ+λ

)
ωµ(y, z) for all λ, µ > 0.

A triplet (X,ω, h) is called a h-convex modular space.

Note that, if h(x) = x, then we obtain a convex modular. A convex modular
is also a h-convex modular, but the converse is not true in general.
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Example 3.1. 1. Let h1 : (0, 1) → [0,∞) be a function defined by h1(x) = xs

with s ∈ (0, 1]. Then h1 is a C−type with Ch1 = 1 and we obtain

ωλ+µ(x, z) ≤
(

λ

λ+ µ

)s

ωλ(x, y) +

(
µ

µ+ λ

)s

ωµ(y, z)

for all λ, µ > 0.

2. Similarly, let h2 : (0, 1) → [0,∞) be a function defined by h2(x) = sx
with s ≥ 1. Then h2 is a C−type with Ch2 = s and we obtain

ωλ+µ(x, z) ≤ s

[
λ

λ+ µ
ωλ(x, y) +

µ

µ+ λ
ωµ(y, z)

]
for all λ, µ > 0.

Lemma 3.1. Let ω be an h−convex modular. If for x, y ∈ X, ωλ(x, y) is finite
for at least one value of λ, then ωα(x, y) → 0 as α→ ∞.

Proof. If we set z = y in condition (3h), then

ωλ+µ(x, y) ≤ h

(
λ

λ+ µ

)
ωλ(x, y).

Now, from condition (C2), it follows the assertion (by taking α = λ + µ and
µ→ ∞).

The following theorem is the analogue of Banach contraction principle in
h-convex modular spaces.

Theorem 3.1. Let ω be a strict h-convex modular on X such that the modular
space X∗

ω is ω-complete and let T : X∗
ω → X∗

ω be a ω-contractive map such that
for each λ > 0, there exists x = x(λ) ∈ X∗

ω such that ωλ(x, Tx) < ∞. Then
T has a fixed point x∗ in X∗

ω. If the modular w assumes only finite values on
X∗

ω, then the condition ωλ(x, Tx) < ∞ is redundant, and so the fixed point x∗

of T is unique and for each x0 ∈ X∗
ω the sequence of iterates Tnx0 is modular

convergent to x∗.

Proof. From the condition lim
t→0+

h(t) = 0, we obtain that there exists n0 ∈ N
such that

(3.1) h(kn0) < min

{
1,

1

Ch

}
.
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Further, let λ1, λ2 > 0 be such that λ1 + λ2 + kn0λ = λ. Since ω is h−convex
modular, we obtain that

ωλ1+kn0λ+λ2(x, y) ≤ h(
λ1 + kn0λ

λ
)ωλ1+kn0λw(x, Tn0y)

+ h(
λ2
λ

)ωλ2(Tn0y, y)

≤ h(
λ1 + kn0λ

λ
)[h(

λ1
λ1 + kn0λ

)ωλ1(x, Tn0x)

+ h(
kn0λ

λ1 + kn0λ
)ωkn0λ(Tn0x, Tn0y)]

+ h(
λ2
λ

)ωλ2(Tn0y, y)

≤ Ch[h(
λ1
λ
t)ωλ1(x, Tn0x) + h(kn0)ωkn0λ(Tn0x, Tn0y)]

+ h(
λ2
λ

)ωλ2(Tn0y, y).

The condition (1.2) yields that

ωkn0λ(Tn0x, Tn0y) ≤ ωλ(x, y),

so we obtain

(3.2) ωλ(x, y) ≤
Chh(λ1

λ )ωλ1(x, Tn0x) + h(λ2
λ )ωλ2(Tn0y, y)

1 − Chh(kn0)
.

For x0 ∈ X∗
ω, let xn = Tnx0. By (3.2), we obtain

ωλ(xm, xn) ≤
Chh(λ1

λ )ωλ1(xm, xm+n0) + h(λ2
λ )ωλ2(xn+n0 , xn)

1 − Chh(kn0)

≤
Chh(λ1

λ )ωk−mλ1
(x0, xn0) + h(λ2

λ )ωk−nλ2
(xn0 , x0)

1 − Chh(kn0)

→ 0 as m,n→ ∞,

that is, {xn} is Cauchy. Let limn→∞ xn = x∗. Then we have

ω(k+1)λ(Tx∗, x∗) ≤ h

(
kλ

(k + 1)λ

)
ωkλ(Tx∗, xn) + h

(
λ

(k + 1)λ

)
ωλ(xn, x

∗)

≤ h

(
k

k + 1

)
ωλ(x∗, xn−1) + h

(
1

k + 1

)
ωλ(xn, x

∗)

→ 0 as n→ ∞.

By the strictness of ω, Tx∗ = x∗. Suppose x∗, y∗ ∈ X∗
ω are such that Tx∗ = x∗

and Ty∗ = y∗. Then we have

ωλ(x∗, y∗) ≤ h(kn0)ωkn0λ(x∗, y∗) + h(1 − kn0)ω(1−kn0 )λ(y∗, y∗)

= h(kn0)ωkn0λ(x∗, y∗)

= h(kn0)ωkn0λ(Tn0x∗, Tn0y∗)

≤ h(kn0)ωλ(x∗, y∗).
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Since ωλ(x∗, y∗) is finite, by inequality (3.1), we obtain x∗ = y∗.

Remark 3.1. For some details on so-called h-convexity, see [31].
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Abstract. This study aims to examine the association between earning management
and dividend policy. Industrial companies listed in Amman Stock Exchange (ASE)
are used as a sample for the years from 2010 to 2016. The dividend policy (DP)
measured by dividends (DPO) payout ratio while earnings management (EM) measured
by discretionary accruals (DAER) and real earning management (REM). Variables such
as Firm size (SIZE), return on equity (ROE), financial leverage (LIV) and market to
book value (MB) were also utilized as control variables. Ordinary least square was used
to estimate the model built for the study and modified Cross Sectional models of this
paper adopts the two modified Models of Kothari et al. (2005) and Roychowdhury
model (2006). Our results show that dividend policy of a firm has a positive significant
association with earnings management for. On the other hand the association between
dividends policy and real earning management it has not been supported statistically.

Keywords: earning management, real earning management, return on equity, firm
size, financial leverage, dividend policy, market to book value.

1. Introduction

Firm’s financial reports are aimed to provide an accurate, true and faithful pic-
ture about the firms’ activities and financial situation. The accurateness of such
reports are approved when it is prepared based on historical date but when it
is dealt with future uncertainties it become complex and questionable. There-
fore, accounting uncertainties such as provisions and accruals may be seen a
questionable act by different users of financial reports. The issuance of Inter-
national Accounting Standard (IAS, 37) worked as a mechanism to prohibit
manager’s discretion from preparing accounting information for their benefit.
Even nowadays, this problem still existed between managers and external infor-
mation users about the asymmetric information; management always seeks to
present accounting results using the most favorable methods by making a great
one-off provision in years with high levels of underlying earnings was generated.
Such provisions are called big-bath provisions, which were in turn made avail-
able to shield expenditure in future years when the earnings are not so good.
That is, provisions are being used for earnings smoothened and the stakeholders



692 MOHAMMAD ALADWAN

are made to believe by relying on the financial statements produced, that the
firm is performing well (Monsuru and Adetunji, 2014)

After several worldwide scandals such as Enron, WorldCom earning man-
agement practices gained more interest by external users of financial reports;
auditors, analysts and tax authorities gave more attention to unusual results
from earning management practices. This issue also promoted researchers and
scholars to devote some of their efforts to bring more insight to the problem in
terms of legitimacy and the side effects for reflecting earning management num-
bers in financial statements. Given the importance of historical dividend policy
to firms dividends can has been used as a predictor of earnings whereas earnings
can also be used as a predictor of dividends. Thus both of these concepts are in-
terrelated as both determine each other’s value. This mutual relationship helps
to understand why managers of a firm are more interested in maximizing the
firm’s earnings. Earnings are considered the most important item that signals
how much firm is involved in value adding services. With this much increased
emphasis over importance of earnings for a firm, it is no wonder if company
management takes vital interest in the manner their earnings are reported. An
increase in earnings depicts the increase in overall value of a company and vice
versa (Lev, 1989). Particularly to conceal the losses of a company, earnings
are managed to show beneficial situation (Hayn, 1995). This presents the idea
of earnings management that is use of accounting choices to amend reported
earnings for the sake of managers’ benefits.

Corporate managers in their daily course of action make a number of crucial
decisions related to their entities financial status. From such decisions, Div-
idend payout decisions which is regarded as one of the most crucial financial
decisions to the entity (Baker and Powell, 1999). The dividend payout ratio is
regarded as a symbol for good financial health of entity; hence, managers work
hardily to improve this ratio in the eyes of external users. According to efficient
market theory value of firm cannot be enhanced by increasing the dividends
payout ratio due to the fact that perfect efficient market unobtainable (Miller
and Modigliani, 1961). Although prior literature provided evidence in favor for
the use of earning management to effect the dividends payout ratio and thus
increase up the market value (e.g. Clientele theory, bird-in-hand theory, agency
theory, and signaling theory); many arguments were raised that such act might
have been managed and cooked to suite dividends distributions. Therefore, this
study is promoted by the need to bring more insight to this issue by investigat-
ing the role of earning management in effecting the dividends policy in emerged
country Jordan as example. In Jordan, several authors have investigated the
relationship between corporate governance and earnings management (e.g. Fay-
oumi et al., 2010; Abbadi et al., 2016), but the relationship between earnings
management and dividend policy has not been ascertained. As a contribution
to the existing literature, this present study intends to examine the association
between earnings management on dividend policy using quoted financial data
for industrial companies in Jordan.
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The rest of the paper is sectioned as follows; literature review hypotheses
development, methodology, discussion of results and discussion and the last
section for conclusion.

2. Literature review and development of hypotheses

It is will know from literatures earnings management occurs when managers
use judgment in financial reporting to alter financial reports and mislead some
stakeholders about the underlying economic performance of the company. (Ak-
ers et al, 2007) indicates that earnings management is attempts by management
to influence or manipulate reported earnings by using specific accounting meth-
ods, recognizing, deferring or accelerating expense or revenue transactions, or
influencing short-term earnings, to achieve stable and predictable financial re-
sults.

According to the agency theory high level of information asymmetry leads to
several agency conflicts e.g. moral hazard between managers (agent) and owners
(principle). Information asymmetry is attributed to the lack of available public
information about the firm when it was a private company (Aharony et al.,
1993). Monsuru and Adetunji (2014) argued that asymmetric information opens
the door for managers to manipulate the accounting information for their own
benefits and achieve private gains by use their discretion to mislead stakeholders
about the economic performance of the company or to influence contractual
outcomes. Likewise, Bukit and Iskandar (2009) in their outcomes also found
that misrepresentation and lake of disclosure in financial information are normal
results for the behavior of earnings management through using bonus plans,
implicit contract, need for external financing, political and regulatory process
and earnings decreases or losses. Earnings management is regarded as one of the
major indicators of earnings quality, since earnings management can be utilized
to report more relevant information about earnings numbers that reflects true
performance of the institutions (Dechow et al, 2010).

Many of previous literature on earning management suggests that Firms
confirmed the use of some earnings management strategies, i.e., accrual-based
and real earnings management, in order to manage their earnings (e.g. Co-
hen and Zarowin, 2010; Dechow et al., 2010; Badertscher, 2011; Kothari et al.,
2012). Accrual-based earnings management is known as; choosing accounting
policies from a set of accounting policies in order to hit earnings objectives
whether upward or downward. Other strategies for earning management such
as real earnings management is undertaken by managers by changing the time
or restructuring of operations to deviate from normal business practices, like
manipulating sales, reducing discretionary expenditures and overproducing in-
ventory in order to decrease the costs of goods sold, (Roychowdhury, 2006).
Literally real earnings management concept is regarded to be more expensive
than that of accrual-based earnings management (Graham et al., 2005; Kim and
Sohn, 2013). Darrough and Rangan (2005) and Mizik and Jacobson (2008) ar-
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gued that greatest effect of accrual-based and real earnings management would
be attained through a coordinated use of both tools.

Accrual-based or real earnings management is used by companies to manage
their earnings (Badertscher, 2011). These strategies are basically constructed
on selecting the accounting policies, estimates or changing accounting methods
within the generally accepted proper accounting principles to achieve earnings
desired level (Dechow and Skinner, 2000). Although of real earning management
complexity it is a preferred option for managers since it is hard to detected, and
applied with high secrecy (Manowan and Lin, 2013). On the other hand accruals
earnings management is generally more constraint to specific times and period’s
while real earnings management can be applied throughout the year, (Zang,
2012).

A great deal of the extant literature has examined how earning management
can affect dividend policy but the direction of this relationship still ambigu-
ous and mixed. Monsuru and Adetunji (2014) when investigated the effect of
earnings management on dividend policy in Nigeria, concluded that if managers
increase discretionary accruals of company dividend percentage will not increase;
the same conclusion was found by shah (2010) who showed that earnings man-
agement measured by discretionary accruals has no impact on dividend payout
policy for Pakistani Listed Companies and Chinese listed Companies. Several
other studies also found the same results and denied the existence of such rela-
tionship (Haider et al, 2012; Aurangzeb and Dilawe, 2012).

Despite of previous literature that denies the relationship between earning
management and dividends policy, other studies results proved this relationship.
Im et al, (2015) when examined discretionary accruals and real earnings man-
agement, found a pressure on firms to maintain consistency in the payout of
dividends, this turn managers to become dependable on earnings management
as a means to increase the income from which dividends are paid especially
when facing decreased earnings or losses. In the same direction Chansarn and
Chansarn (2016) when investigated the influence of earnings management on
dividend policy in Thailand revealed that earnings management is positively
correlated to dividends. Similarly, for a sample of German firms, Savov (2006)
showed that firms having high investments tend to report more discretionary
accrual in their earnings.

Several studies suggested that managers are likely conduct in earning man-
agement as an attempt to increase earnings when they realize that their firms
are not likely to meet the earnings level required for dividend payouts thus
manipulate earnings upward to maintain dividend levels (Morghri and Galo-
gah, 2013; Chansarn and Chansarn, 2016). Some researchers argued that, high
dividend payout ratios lead to more informative earnings and there is positive
impact for dividend policy on informativeness of reported earnings in countries
with relatively poor information environment (Farooq, 2018). The explanation
of this is increased sensitivity of earnings management to permanent earnings
and tendency to increase dividend payment to attract investors and thus leading
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to an increase in stock prices. Greater earnings numbers and stock prices do
not necessarily reflect the true performance and earnings of companies because
earnings management reflects manager’s intent to present the best financial pic-
ture of the company outcomes through discretionary accruals (Baatour et al,
2017).

Although prior studies have found evidence that Jordanian public firms uti-
lize earnings management to meet several targets (Abed et al., 2012; Hamdan
et al., 2013; Abu Jebril and Al.Thuneibat, 2016; Alzoubi, 2016; Alqatamin et
al., 2017; Ibrahim and Al Awawdeh, 2017, Alhadab, 2018; Alkurdi et al., 2017),
no studies to date have examined the relationship between dividends policy and
earning management in Jordan. Based on our prior review and discussion of
related letreture we assume the following two hypotheses for our study.

H1: There Is An Association Between Dividends Policy And Earning Man-
agement Engagement Using Discretionary Accruals.

H2: There Is An Association Between Dividends Policy And Earning Man-
agement Engagement Using Real Earning Management.

3. Methodology

3.1 Method and sample

Investigating the study hypothesis was based on applying multiple regression
analysis using Ordinary Least square (OLS) in order to examine the relation-
ship between dividend policy and earnings management. The population used in
this study comprises the listed industrial companies in Amman stock exchange.
The industrial sector in Jordan is very crucial sector to our Jordanian economy,
and regarded as the biggest sector in Jordanian economy; and a source of em-
ployment and economic growth. The study sample consisted of all industrial
companies that reported distributions of dividends from year 2010 to 2016. The
sample consisted of 57 company; companies that do not show dividends were
excluded. The final total sample consisted of 392 observations.

3.2 Model specification

Traditionally the distribution of dividends by firms is regarded as a strong signal
about the firm’s future cash flows. A considerable number of prior literature
studies reported several important factors that are capable to influence firm div-
idends decisions; examples of such factors are: previous cash flows, investment
returns, general earnings, the level of liquidity; the expected future returns,
previously distributed dividend, inflation, interest rates, legal factors, future
growth, ownership structure and the size of firms (Brigham, 1995; Foong et al.,
2007; Uwuigbe et al., 2012). In order to capture the association between divi-
dends policy and earnings management we followed the two popular real earning
models of Kothari et al. (2005) and Roychowdhury (2006). The first model of
Kothari et al. (2005) suggests that firm’s earnings management behavior is a
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function of discretionary accruals; and according to this model discretionally
accruals (DISACC) can be estimated by the following equation:

DISACCit =

(
TAit

Ait−1

)
− β0

(
1

Ait−1

)
+ β1

(
∆RETit − ∆RECit

Ait−1

)
+ β2

(
PPEit

Ait−1

)
+ β3lagged(ROAit−1) + E.(1)

Where: TAit = the total accruals in year t of the firm, measured by the
difference between income before extraordinary items and discontinued opera-
tions and cash flows from operations (Collins and Hribrar, 2002); PPEit = the
net value of property, plant, and equipment at the end of year t-1 of the firm.
Ait−1 = Total assets in year t1 RETit = Sale revenue in year t RECit = Account
receivable in year t PPEit = properties, plant and equipment in year t; lagged
ROAit = Return on assets in year t.

Our methodology also employs Roychowdhury (2006) model, our second
model this model suggests that earning management is a function of three el-
ements: abnormal levels of cash flow from operations (CFO), abnormal lev-
els of production costs (PROD) and abnormal levels of discretionary expenses
(DISCexp). Given sales levels, firms that conduct in real earnings manage-
ment essentially exhibit one or more of the following signs: abnormal low cash
flows from operations, and/or abnormal high production costs, and/or abnor-
mal low discretionary expenses. Based on this argument the estimation of firm’s
real earnings management behavior is captured through equations (2) to (4) as
follows: (

∆CFOit

ASSETSit−1

)
= γ1

(
1

ASSETSit−1

)
+ γ2

(
∆SALESit
ASSETSit−1

)
+ γ3

(
∆SALESit−1

ASSETSit−1

)
+ E(2)

Where: CFOit = net cash from the operations of firm i in year t; ASSETSit−1

= total assets at the end of year t− 1 of the firm; SALESit = net sales in year
t of the firm; ∆SALESit = change in net sales from year t − 1 to t of the
firm. Abnormal CFO was measured by the estimated residual from Equation
(2). Since price discounts and more lenient credit terms will decrease cash flows
for the period. The low negative residuals imply unusual low levels of cash flows
from operations suggesting more sales manipulation to manage reported upward
earnings (Roychowdhury, 2006; Cohen and Zarowin, 2010; Dechow et al., 1995).

(
PRODit

ASSETSit−1
) = γ1

(
1

ASSETSit−1

)
+ γ2

(
∆SALESit
ASSETSit−1

)
+ γ3

(
∆SALESit−1

ASSETSit−1

)
+ E.(3)
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Where: PRODit = costs of goods sold of firm i in year t. The abnormal
production cost (PROD) is the difference between actual and normal levels of
production costs; this measure is calculated using the estimated coefficients from
Equation (3). Overproduction will result in positive residuals in equation (3).
High positive values of PROD imply a real activity for manipulation through
overproduction, which results in a reduction of cost of goods sold (Roychowd-
hury, 2006; Cohen and Zarowin, 2010; e.g. Dechow et al., 1995).

(4)

(
DISC exp it

ASSETSit−1

)
= γ1

(
1

ASSETSit−1

)
+ γ2

(
∆SALESit−1

ASSETSit−1

)
+ E.

Where: DISC exp it = the discretionary expenses, and calculated as the sum
of selling, general, administrative expenses (S&GA) and (research & develop-
ment) expenses. S&GA are those expenses do not directly attribute to produc-
tion activities rather they related to selling, general and administrative functions
and also includes advertising expenses and R&D expenses which consist of all
direct and indirect costs that are related to the creation and development of new
processes, techniques, applications and products with commercial possibilities.
The abnormal expenses could be generated by cutting the discretionary expenses
such as advertising, research and development and administrative (SG&A) ex-
penses. The abnormal levels of discretionary expenses are (DISCexp) as a
measure is estimated as the residual from Equation (4). Low negative residuals
indicate that firms cut amounts of discretionary expenses to increase reported
earnings. For interpretation purposes higher residuals imply high levels of real
activities of manipulation (Roychowdhury, 2006; Cohen and Zarowin, 2010; e.g.
Dechow et al., 1995).

3.3 Research model

Based on previous discussion we constructed the following two models to inves-
tigate the association between firm’s dividends payout ratio and firm’s earnings
management:

DAEMit = α0 + α1DPO + α2SIZE + α3MB + α4ROE + α5LEV + E,(5)

REMit = α0 + α1DPO + α2SIZE + α3MB + α4ROE + α5LEV + E.(6)

The main variables that are included in the models are as follows: we used
the discretionary accruals of earning management (DAEM) as the dependent
variable for the first model as appears in Equation (5); this dependent variable is
to show the relationship between earnings management and the dividend policy
(DPO). In model 2 equation (6) we substitutes discretionary accruals with
real earning management (REM); many of previous research regarded both of
real and accrual based earnings management as substitutes in managing the
earnings behavior (Cohen and Zarowin, 2010; Zang, 2012; Chang et al., 2015).
As also appears in the two models dividends policy was twice measured by
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the payout ratio (DPO). And in order to capture the real effect of dividends
policy on earning management and isolate any other factors effects’ the following
control variable were added to the model; first, the study controls the firm
size; prior literature revealed mixed results for the effect of SIZE effect on
discretionary accruals (Gu et al., 2005 and Aini et al., 2006). On one hand, Gu
et al., 2005, found negative association between size and discretionary accruals.
While on the other hand, Aini et al., 2006, claimed that the larger the firm
size, the more likely it could select income decreasing policy to avoid political
costs. The second control variable was market to book value (MB); this variable
represents growth factor. Generally, growth firms are more likely to manage
their performance; some results found a strong association between market to
book value and earning management (Cohen and Zarowin, 2010; Chaney et al.,
2011).

The third control variable was profitability of firm (ROE); previous litera-
ture suggests that low profitable firms have considerable incentives to conduct
earning management; dividend payments will impact the net shareholder equity
on the balance sheet and will therefore influence the ROE figure. When a busi-
ness pays dividends, its retained earnings will decline. Since retained earnings
is added to the paid-in capital to calculate the total shareholder equity, divi-
dend payments will reduce the total shareholder equity on the balance sheet. A
reduction in shareholder equity translates to a smaller denominator in the ROE
equation. In other words, the analyst divides the net income figure by a smaller
number, which results in a larger ROE. In sum, dividends reduce shareholder
equity and boost ROE (Kothari et al., 2005; Jiraporn et al., 2007). And finally;
we control the leverage (LEV); this factor represents the firm financial stability
and risk, some studies found positive relationship between leverage and EM,
in contrast to other studies that showed negative relationship between leverage
and EM (Sweeney, 1994; Dichev and Skinner, 2002; Gu et al., 2005; Rashidah
and Haneem, 2006).

3.4 Variable measurement

Table 1 shows the Variable measurements for the employed variable in the study
models:

4. Results and discussion

4.1 Descriptive statistics

Table (2) show the results of descriptive statistics for the variables regarding
392 observations of 57 industrial companies listed on ASE during the period
(2010-2016). The results in table 2 show that the dividends payout ratio varied
from -0.714 to 1.255 with an average of 0.571 which indicates that profitable
companies tend to report at least 50 percent distributions of their earnings;
this policy of showing high percentages of dividends aimed to boost the market
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Table 1: Variable measurement

Variable Type of Abbreviation Description
variable

DA. earning management dependent DAEM Discretionary accruals computed
using the Kothari et al. (2005)

Real earning management dependent REM Real earning management
using Roychowdhury model (2006)

Dividends policy dependent DPO Payout ratio = Dividends
per share/ earning per share

Firm size control SIZE Log of total assets
Return on equity control ROE Net income/ shareholders’

equity
leverage control LIV Total debt/ total

assets
Market to book MB market capitalization/ common

equity

value of company and share prices. The same table also show that discretionary
accruals ranges from 0.000 to 0.491 with an average of 0.137; this proves that
engage in earning management behavior, either by raising profit levels to denote
higher profitability or, reducing profit levels to avoid taxes and distributions.
The results of real earning management ranged from -0.529 to 0.277 with an
average of 0.093; similarly this rate also indicates management manipulation in
earnings through cash flow or sales or expenses. The values of both real and
accrual earnings management were greater than the mean values this implies the
existence of earning management behavior. The size effect of these companies
varies from 11.150 to 25.916 with an average of 14.331, on average these assets
are financed through debt rate of 0.000 to 0.438. Finally, return on assets varied
from -41.255 to 28.019 with an average of 3.976, which implies how management
is utilizing company’s assets to make profits.

Table 2: Descriptive statistics for the study variable
Variables Minimum Mean Maximum Std. deviation

DAEM 0 0.137 0.491 0.161

REM -0.529 0.093 0.277 0.319

DPO -0.714 0.571 1.255 2.593

SIZE 11.15 14.331 25.916 0.832

ROE -41.255 3.976 28.019 5.61

LIV 0 0.295 0.438 0.188

MB 0 0.627 2.791 3.477

* N= 392
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4.2 Empirical results

4.2.1 Correlation results

Table 3 depicts the correlation matrix for the coefficients of the study variables.
As presented in table (3) there is a positive association between dividends pol-
icy and both of accrual and real earnings management. The results show that
this association is significant at a level 5 percent with accrual earning manage-
ment and at 10 percent level with real earning management. This result implies
and provides preliminary evidence that Jordanian industrial companies man-
age upwards their reported earnings. Table 3 also reveals positive correlation
between financial leverage (LEV), this indicate that companies with a higher
debt ratio engage in a higher level of earnings management. The size effect was
found negatively associated with earning management; this result suggests that
large companies avoid earning management behavior. Market to book value
variable was found negatively associated with earning management; this also
suggests that high market value companies do not apply earning management
management practices. Finally the profitability showed mixed results with both
of accrual and real earning management.

Table 3: The correlation results for the study variables

Variables DAEM REM DPO SIZE ROE LIV MB
DAEM 1
REM 0.621** 1
DPO 0.352** 0.247* 1
SIZE -0.318** -0.293** 0.159* 1
ROE 0.337** -0.264* 0.215* 0.141* 1
LIV 0.364** 0.311** 0.128* 0.112* 0.163* 1
MB -0.351** -0.259* 0.266* 0.098 0.196* 0.170* 1
*** sig 1%, ** sig 5%,
* sig 10%

4.2.2 Regression results

Table 4 and 5 show the results of the regression analyses for the hypothesized as-
sociation between accrual and real earnings management with dividends policy.
Table 4 represents the results of discretionary accruals are estimated using the
modified version of Jones (1991) model as suggested by Kothari et al. (2005);
and table 5 show the results of real earning measures estimated using Roychowd-
hury (2006) model. ***, ** and *, represent significance at the one percent, five
percent, and ten percent levels, respectively; all variables are defined earlier in
variables measurement.

In table 4 the three models are the results for the association between earn-
ings management measured by DAEM and dividends policy measured by payout
ratio (DPO) while controlling the other variables (SIZE), (ROE), (LIV) and
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(MB). If we review the three models it appears that the association between
(DAEM) and (DPO) found positive and statically significant; this suggests that
the effect of a firm’s dividend policy on the firm’s earnings management dur-
ing the sample period to verify for our first hypothesis that asserts that there
is an association between payout policy behavior drives earnings management
behavior with discretionary accruals. From Column (1) to Column (3) in Table
3, a positive coefficient is observed on DPO (i > Coef: 0.083, t-value: 2.714, ii
> Coef: 0.113, t-value: 3.017, iii > Coef: 0.097, t-value: 1.933).

Table 4: Regression results for dependent variable discretionary accruals
(DAEM)

variable Model 1 Model 2 Model 3
B T- value B T-value B T-value

Constant 0.261 6.337** 0.186 2.580** 0.144 2.299**
DPO 0.083 2.714** 0.113 3.017** 0.097 1.933**
SIZE -0.052 -1.481* -0.039 -2.105** -0.031 -1.866**
MB -0.049 -1.277* -0.043 -1.250* -0.039 -1.199
ROE 0.063 1.511* 0.049 1.361* 0.017 0.979
LIV 0.071 0.055 0.03
F-value 17.109 13.922 11.677
Adj-R2 0.351 0.319 0.299
N 392 392 392
*** sig 1%, ** sig 5%,
sig 10%

Similarly, in table 5 the three models provide evidence for the positive as-
sociation between earnings management measured by REM and dividends pol-
icy measured by payout ratio (DPO). The positive coefficient of DPO shows a
positive association with REM (real earnings management); (i > Coef: 0.009,
t-value: 0.551, ii > Coef: 0.007, t-value: 0.480, iii > Coef: 0.008, t-value:
0.611). Unfortunately, although these results show an association between a
firm’s dividend policy and real earnings management behavior but they are not
significance at a level of 5 percent. Generally, the Overall results of DPO in
tables 4 and 5 provided evidence that firm’s dividend policy is likely to increase
earnings management. This result supports our hypotheses for the existence of
the relationship between dividend policy and both of accrual and real earnings
management; this assures that Jordanian companies engage in earnings man-
agement, especially by using discretionary accruals to create retained earnings
from which managers can pay dividends to shareholders.

Regarding the other variables, included as control variables, tables 4 and
5 showed that; the Size of company (SIZE) was negatively significant associ-
ated with both accrual and real earning management; this result assures the
avoidance of large companies in earning management behavior, This is may
possibly attributed to their benefits from economies of scale compared with
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Table 5: Regression results for dependent variable real earning management
(REM)

variable Model 1 Model 2 Model 3
B T- value B T-value B T-value

Constant 0.264 6.893** 0.173 2.105** 0.161 2.080**
DPO 0.009 0.551* 0.007 0.480* 0.008 0.611*
SIZE -0.047 -1.399** -0.044 -2.388** -0.029 -1.155**
MB -0.023 -1.019* -0.022 -1.614* -0.027 -2.366**
ROE 0.059 1.488* 0.071 2.233** 0.041 1.377*
LIV 0.051 0.034 0.021
F-value 14.333 9.725 8.166
Adj-R2 0.383 0.316 0.309
N 392 392 392
*** sig 1%, ** sig 5%,
sig 10%

small companies that tend to manipulate earning to cover their high marginal
cost (Alhadab, 2018). we also found that leverage (LEV) is not been supported
statistically in all models but proved to be positively associated with earning
management this results assures that high financial leverage companies have no
incentives to manage their income. Likewise, profitability (ROE) results were
not significantly affecting earning management but positively related with the
two types of earning management that means high profitable companies are
rarely engaged in earnings management. The last control variable market to
book value (MB); the results revealed that this variable is negatively associated
with earning management in all models; however, it has not been supported
statistically in all models.

In summary, the results reported in table 4& 5 provide evidence to literature
that earing management in Jordanian industrial companies is associated with
dividends policy using accrual earnings management; this evidence is consistent
with the first main hypothesis of this study. Based on the above mentioned
results, our first hypothesis is accepted and the second hypothesis is rejected.

5. Conclusion

This study was an attempt to contribute to accounting literature by investigat-
ing the association between dividend policy and both of accrual and real earn-
ings management in emerged country context. This study examines whether
Jordanian industrial companies engage in earning management both real and
accrual-based in order to discrete earnings during the period that took place
between 2010 and 2016. The findings of this study provide supportive evidence
to the literature that dividends policy is associated with accrual-based earning
management; This supports our assertion that managers are likely to conduct
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earnings management and practice opportunistic behavior to increase retained
earnings from which dividends are paid out, as the pressure on the firm is to
maintain consistency in the payout of dividends, even when facing decreased
earnings or losses. Regarding the association between dividend policy and real
earning management the study results did not provide conclusive evidence for
such relationship. Regarding control variables the results found the Size of com-
pany (SIZE) was negatively significant associated with both accrual and real
earning management; leverage (LEV) has not proved to be positively associated
with earning management; profitability (ROE) results were not also not found
significantly affecting earning management but positively related with the two
types of earning management; market to book value (MB) was found negatively
associated with earning management.

This study contributes to the knowledge through several aspects. First,
it provides new evidence on the use earnings management in Jordanian con-
text. Hence, our findings can be generalized to for developing countries that
have stock exchanges with similar characteristics to more developed countries.
Second, this study provides more insight for earnings management behavior
association with dividends policy. In particular, the findings revealed that ac-
crual earnings management is applied by Jordanian companies to manipulate
financial results. Third, higher levels of public monitoring and governance and
increasing constraints over accounting discretion regarding the different forms
of earnings management, positively or negatively affect for the efficient alloca-
tion of resources. Finally, this study suggests a new avenue for future research
in Jordan to investigate earning management with other financial information
factors.
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1. Introduction

The fixed point theorem, generally known as the Banach contraction mapping
principle [11], appeared in explicit form in Banach thesis in 1922. Fixed point
theory is also very famous due to its variety of applications in numerous areas
such as engineering, computer sciences, economics, etc. The contractive type
conditions play an important role in the fixed point theory. Many researchers
have extended and generalized Banach contraction principle because it is the
heart of this theory.

In 1994, Matthews [20] introduced the notion of a partial metric space and
proved the contraction principle of Banach in this new framework. Next, many
fixed point theorems in partial metric spaces have been given by several math-
ematicians. Recently, Haghi et al. published [17] a paper which stated that we
should be careful on partial metric fixed point results along with giving some
results. They showed that some fixed point results in partial metric spaces can
be obtained from the corresponding results in metric spaces. Going in same
direction, see [7, 26].

In 2014, Asadi et al. [8] extended the partial metric space to a M -metric
space, and proved some of the main theorems by generalizing contractions to get
existence of (common) fixed points. For more information on M -metric spaces,
see also [1, 9, 10, 22, 23, 27].

Consider the operator equation

X −
∞∑
n=1

L∗
nXLn = Q,(1.1)

where {L1, L2, · · · , Ln} is a subset of the set of linear bounded operators on
an Hilbert space H, X ∈ L(H) and Q ∈ L(H)+ is a positive linear bounded
operator on the Hilbert space H. Then we convert the operator equation to the
mapping F : L(H) → L(H) which is defined by

F (X) =

∞∑
n=1

L∗
nXLn +Q.(1.2)

Observe that the range of mapping F is not a real number, but it is a linear
bounded operator on the Hilbert space H. Therefore, the Banach contraction
principle cannot be applied with this problem. Afterward, does such mapping
have a fixed point which is equivalent to the solution of operator equation?

Recently in 2014, Ma et al. in [19] introduced C∗-algebra-valued metric
spaces as a new concept which is more general than metric spaces, replacing the
set of real numbers by C∗-algebras, and established a fixed point theorem for self-
maps involving contractive or expansive conditions on such spaces, analogous to
the Banach contraction principle. As applications, the existence and uniqueness
results for an integral type equation and operator type equation were given and
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were able to solve the above problem if the elements L1, L2, · · · , Ln ∈ L(H)
satisfy

∑∞
n=1 ∥Ln∥2 < 1.

In 2014, Ansari [2] introduced the concept of C-class functions covering a
large class of contractive conditions. For more details, see also [4, 5, 6, 12, 16, 21].

This paper is organized as follows: In section 2, we give the required in-
formation, notions and definitions about M -metric spaces and C∗-algebras. In
section 3, we introduce the concept of C∗-algebra-valued M -metric spaces. Some
properties and examples of such spaces are given and several essential lemmas
are proved. Finally in section 4, our main results are established and by apply-
ing C∗-class functions, some fixed point results are proved in C∗-algebra-valued
M -metric spaces.

2. Preliminaries

To begin with, we give some basic definitions, notations and theorems which
will be used later.

Definition 2.1 ([8]). Let X be a non empty set. A function m : X ×X → R+

is called a M -metric if the following conditions are satisfied:

(m1) m(x, x) = m(y, y) = m(x, y) ⇐⇒ x = y;

(m2) mxy ≤ m(x, y) where mxy := min{m(x, x),m(y, y)};

(m3) m(x, y) = m(y, x);

(m4) (m(x, y) −mxy) ≤ (m(x, z) −mxz) + (m(z, y) −mzy) .

Then the pair (X,m) is called a M -metric space.

We begin with the basic concept of C∗-algebras. A real or a complex linear
space A is an algebra if the vector multiplication is defined for every pair of
elements of A satisfying two conditions such that A is a ring with respect to
vector addition and vector multiplication and for every scalar α and every pair
of elements x, y ∈ A, α(xy) = (αx)y = x(αy). A norm ∥.∥ on A is said to
be sub-multiplicative if ∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A. In this case (A, ∥.∥) is
called normed algebra. A complete normed algebra is called Banach algebra.
An involution on the algebra A is a conjugate linear map a 7→ a∗ on A such
that a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. (A, ∗) is called an ∗-algebra. A
Banach ∗-algebra A is an ∗-algebra A with a complete sub-multiplicative norm
such that ∥a∗∥ = ∥a∥ for all a ∈ A. A C∗-algebra is a Banach ∗-algebra such
that ∥a∗a∥ = ∥a∥2. There are many examples of C∗-algebras, such as the set of
complex numbers, the set of all bounded linear operators on a Hilbert space H,
L(H), and the set of n × n-matrices, Mn(C). If a normed algebra A admits a
unit I, Ia = aI = a for all a ∈ A and ∥I∥ = 1, we say that A is a unital normed
algebra. A complete unital normed algebra A is called a unital Banach algebra.
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For properties on C∗-algebras, we refer to [13, 14, 24] and the references therein.
A positive element of A is an element a ∈ A such that a∗ = a and its spectrum
σ(a) ⊂ R+, where σ(a) = {λ ∈ R : λI − a is noninvertible}. The set of all
positive elements will be denoted by A+. Such elements allow us to define a
partial ordering ’≽’ on the elements of A. That is,

b ≽ a if and only if b− a ∈ A+.

If a ∈ A is positive, then we write a ≽ θ, where θ is the zero element of A
(θ = 0A). Each positive element a of a C∗-algebra A has a unique positive
square root. From now on, by A, we mean a unital C∗-algebra with identity
element I. Further, A+ = {a ∈ A : a ≽ θ} and (a∗a)

1
2 = |a|.

Lemma 2.2 ([15]). Suppose that A is a unital C∗-algebra with a unit I.

(1) For any x ∈ A+, we have x ≼ I ⇔ ∥x∥ ≤ 1;

(2) If a ∈ A+ with ∥a∥ < 1
2 , then I − a is invertible and ∥a(I − a)−1∥ < 1;

(3) Suppose that a, b ∈ A with a, b ≽ θ and ab = ba, then ab ≽ θ;

(4) By A′ we denote the set {a ∈ A : ab = ba, ∀b ∈ A}. Let a ∈ A′ if b, c ∈ A
with b ≽ c ≽ θ, and I − a ∈ A′ is an invertible operator, then

(I − a)−1b ≽ (I − a)−1c.

Notice that in a C∗-algebra, if θ ≼ a, b, one cannot conclude that θ ≼

ab. For example, consider the C∗-algebra M2(C) and set a =

[
3 2
2 3

]
, b =[

1 − 2
−2 4

]
, then ab =

[
−1 2
−4 8

]
. Clearly a, b ∈ M2(C)+, while ab is not.

Definition 2.3 ([19]). Let X be a non empty set. A function d : X×X → A is
called a C∗-algebra-valued metric on X if the following conditions are satisfied:

(c1) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ ⇔ x = y;

(c2) d(x, y) = d(y, x) for all x, y ∈ X;

(c3) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then the pair (X,A, d) is called a C∗-algebra-valued metric space.

Definition 2.4 ([19]). Suppose that (X,A, d) is a C∗-algebra-valued metric
space, x ∈ X and {xn} is a sequence in (X,A, d). Then

(1) {xn} converges to x with respect to A, if for any ϵ > 0, there is a positive
integer N such that ∥d(xn, x)∥ ≤ ϵ for all n ≥ N . We denote it by
limn→∞ xn = x;
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(2) {xn} is Cauchy with respect to A, if for any ϵ > 0 there is a positive integer
N such that ∥d(xn, xm)∥ ≤ ϵ for all n,m ≥ N ;

(3) (X,A, d) is complete if every Cauchy sequence with respect to A in X
converges to a point in X.

In 2017, Ansari et al. [3] introduced the concept of complex C-class functions
as follows:

Definition 2.5. Let S = {z ∈ C : 0 - z}, then a continuous function F : S2 →
C is called a complex C -class function if for any s, t ∈ S, the following conditions
hold:

(1) F (s, t) - s;
(2) F (s, t) = s implies that either s = 0 or t = 0.

The same letter C will denote the class of all complex C-class functions. For
some examples of these functions, see [3].

3. C∗-algebra-valued M-metric spaces

In this section, let A be a unital C∗-algebra with unit I. We introduce the
concept of C∗-algebra-valued M -metric spaces, which is more general than M -
metric spaces.

Define a partial ordering ≽ on the elements of A as

B ≽ A ⇐⇒ B −A ∈ A+ ⇐⇒ B −A ≽ θ.

A,B ∈ A are comparable if and only if

A ≽ B or B ≽ A.

So if all elements of a set D ⊆ A are comparable pairwise, then we can define
”min” and ”max” for D as follows:

max{Ai : Ai ∈ D, i = 1, 2, · · · , n} = Ak

⇐⇒ Ak ≽ Ai, ∀i = 1, 2, · · · , n
⇐⇒ Ak −Ai ∈ A+, ∀i = 1, 2, · · · , n
⇐⇒ Ak −Ai ≽ θ, ∀i = 1, 2, · · · , n,

and

min{Ai : Ai ∈ D, i = 1, 2, · · · , n} = Ak

⇐⇒ Ai ≽ Ak, ∀i = 1, 2, · · · , n
⇐⇒ Ai −Ak ∈ A+, ∀i = 1, 2, · · · , n
⇐⇒ Ai −Ak ≽ θ, ∀i = 1, 2, · · · , n,

for some k ∈ {1, 2, 3, · · · , n}.



C∗-ALGEBRA-VALUED M-METRIC SPACES ... 713

Definition 3.1. Let X be a non empty set. A function m : X × X → A is
called a C∗-algebra-valued M -metric if the following conditions are satisfied:

(cm1) θ ≼ m(x, y) for all x, y ∈ X and m(x, x) = m(y, y) = m(x, y) ⇐⇒ x = y,

(cm2) m(x, x) and m(y, y) be comparable for all x, y ∈ X;

(cm3) mxy ≼ m(x, y) for all x, y ∈ X, where mxy = min{m(x, x),m(y, y)};

(cm4) m(x, y) = m(y, x) for all x, y ∈ X;

(cm5) (m(x, y) −mxy) ≼ (m(x, z) −mxz) + (m(z, y) −mzy) for all x, y, z ∈ X.

Then the pair (X,A,m) is called a C∗-algebra-valued M -metric space.

Remark 3.2. Note that if we take A = R, then the new notion of C∗-algebra-
valued M -metric space becomes equivalent to Definition 2.1 of the real M -metric
space.

Let (X,A,m) be a C∗-algebra-valued M -metric space. Define Mxy by

Mxy = max{m(x, x),m(y, y)}.

Remark 3.3. For every x, y, z ∈ X, we have

1. θ ≼Mxy +mxy = m(x, x) +m(y, y);

2. θ ≼Mxy −mxy = (m(x, x) −m(y, y)) ∨ (m(y, y) −m(x, x));

3. Mxy −mxy ≼ (Mxz −mxz) + (Mzy −mzy).

It is clear that each C∗-algebra-valued M -metric p on X generates a T0
topology τm on X. Let θ ≺ ε ∈ A. The set

{Bm(x, ε) : x ∈ X, ε ≻ θ},

where
Bm(x, ε) = {y ∈ X : m(x, y) ≺ mxy + ε},

for all x ∈ X and ε ≻ θ, forms the base of τm.

Definition 3.4. Let (X,A,m) be a C∗-algebra-valued M -metric space, x ∈ X
and {xn} be a sequence in X. Then

1. {xn} converges to x with respect to A, whenever for every ϵ > 0 there is
a natural number N such that ∥m(xn, x) −mxnx∥ ≤ ϵ for all n ≥ N . We
denote this by

(3.1) lim
n→∞

(m(xn, x) −mxnx) = θ;



714 B. MOEINI, M. ASADI, H. AYDI, H. ALSAMIR and M.S. NOORANI

2. {xn} is a m-Cauchy sequence with respect to A, whenever for every ϵ > 0
there is a natural number N such that ∥m(xn, xm)−2mxnxm+Mxnxm∥ ≤ ϵ,
for all m,n ≥ N ;

3. (X,A,m) is complete if every m-Cauchy sequence with respect to A, con-
verges to a point X such that

lim
n→∞

(m(xn, x) − 2mxnx +Mxnx) = θ.

The next example states that ms and mw are C∗-algebra-valued metrics.

Example 3.5. Let m be a C∗-algebra-valued M -metric. Put

1. mw(x, y) = m(x, y) − 2mxy +Mxy;

2. ms(x, y) = m(x, y) −mxy if x ̸= y and ms(x, y) = θ if x = y.

Then mw and ms are C∗-algebra-valued metrics.

Proof. We have mw(x, y) ≽ θ and if mw(x, y) = θ, then

m(x, y) = 2mxy −Mxy.(3.2)

From (3.2) and the fact that mxy ≼ m(x, y), we get mxy = Mxy = m(x, x) =
m(y, y), so by (3.2), we obtain m(x, y) = m(x, x) = m(y, y). Therefore, x = y.
For the triangle inequality, it is enough that we consider (cm5) together with
Remark 3.3. Similarly, we can show that ms is a C∗-algebra-valued metric.

Remark 3.6. For every x, y ∈ X, we have

1. m(x, y) −Mxy ≼ mw(x, y) ≼ m(x, y) +Mxy;

2. (m(x, y) −Mxy) ≼ ms(x, y) ≼ m(x, y).

Lemma 3.7. Let (X,A,m) be a C∗-algebra-valued M -metric space. Then

1. {xn} is a m-Cauchy sequence in (X,A,m) if and only if it is Cauchy in
the C∗-algebra-valued metric space (X,A,mw);

2. A C∗-algebra-valued M -metric space (X,A,m) is complete if and only if
the C∗-algebra-valued metric space (X,A,mw) is complete. Furthermore,

lim
n→∞

mw(xn, x) = θ ⇐⇒ ( lim
n→∞

(m(xn, x) −mxnx) = θ &

lim
n→∞

(Mxnx −mxnx) = θ).

Proof. It suffices to use Definition 2.3, Definition 3.4 and Example 3.5.

Likewise, above lemma also holds for ms.
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Lemma 3.8. Assume that xn → x and yn → y as n→ ∞ in a C∗-algebra-valued
M -metric space (X,A,m). Then

lim
n→∞

(m(xn, yn) −mxnyn) = m(x, y) −mxy.

Proof. It suffices to write that

(m(xn, yn) −mxnyn)−(m(x, y) −mxy) ≼ (m(xn, x) −mxnx)+(m(y, yn) −myyn) ,

and

(m(x, y) −mxy)−(m(xn, yn) −mxnyn) ≼ (m(xn, x) −mxnx)+(m(y, yn) −myyn) .

From Lemma 3.8, we can deduce the following.

Lemma 3.9. Assume that xn → x as n→ ∞ in a C∗-algebra-valued M -metric
space (X,A,m). Then

lim
n→∞

(m(xn, y) −mxny) = m(x, y) −mxy,

for all y ∈ X.

Similarly, we may state

Lemma 3.10. Assume that xn → x and xn → y as n → ∞ in a C∗-algebra-
valued M -metric space (X,A,m). Then m(x, y) = mxy. Further, if m(x, x) =
m(y, y), then x = y.

Proof. By Lemma 3.8, we have θ = limn→∞(m(xn, xn) −mxnxn) = m(x, y) −
mxy.

We present the following examples.

Example 3.11. Let X = [0,∞) and A = Mn(C). An element A = (aij)n×n ∈
A = Mn(C) is a positive element ( written as A ≽ θ) means that

aij ≽ 0 ∀i, j ∈ {1, 2, · · · , n},

where θ is the zero matrix in Mn(C). We define a partial ordering ≼ on A as
follows

A ≼ B iff θ ≼ B −A.

It is clear that ≼ is a partial order relation. Define

m(x, y) =



x+y
2 + ix+y

2 0 0 · · · 0

0 x+y
2 + ix+y

2 0 · · · 0

0 0 x+y
2 + ix+y

2 · · ·
...

...
...

...
. . .

...

0 0 0 · · · x+y
2 + ix+y

2

 ,(3.3)
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where x, y ∈ X. A norm ∥.∥ on A is defined by

∥A∥ = max
i,j

|aij |2,

where A = (aij)n×n ∈ A. The involution is given by A∗ = (A)T , the conjugate
transpose of matrix A:

A∗ =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


∗

=


a11 a21 · · · an1
a12 a22 · · · an2
...

...
. . .

...
a1n a2n · · · ann



=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .
It is easy to verify that m is a C∗-algebra valued M -metric and (X,Mn(C),m)
is a complete C∗-algebra valued M -metric space of C.

Example 3.12. Let X = {1, 2, 3} and A = M2(R). Define

m(1, 2) = m(2, 1) = m(1, 1) =

[
8 0
0 8

]

m(1, 3) = m(3, 1) = m(3, 2) = m(2, 3) =

[
7 0
0 7

]
m(2, 2) =

[
9 0
0 9

]
m(3, 3) =

[
5 0
0 5

]
,

so m is a C∗-algebra-valued M -metric. Consider D(x, y) = m(x, y) −mxy. We

have m(1, 2) = m12 =

[
8 0
0 8

]
. Also, D(1, 2) = θ =

[
0 0
0 0

]
. Since 1 ̸= 2,

this means that D is not a C∗-algebra-valued metric.

Example 3.13. Let (X,A, d) be a C∗-algebra-valued metric space. Take ϕ :
A+ → {A ∈ A : ϕ(θ) ≼ A} a one to one, nondecreasing or strictly increasing
mapping where ϕ(θ) ≽ θ is defined, such that

ϕ(x+ y) ≼ ϕ(x) + ϕ(y) − ϕ(θ), ∀x, y ≽ A+.

Then m defined by m(x, y) = ϕ(d(x, y)), is a complex valued M -metric.

Proof. (cm1), (cm2), (cm3) and (cm4) are clear. For (cm5), we have

ϕ(d(x, y)) ≼ ϕ(d(x, z) + d(z, y))

≼ ϕ(d(x, z)) + ϕ(d(z, y)) − ϕ(θ),
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then

(ϕ(d(x, y)) − ϕ(θ)) ≼ (ϕ(d(x, z)) − ϕ(θ)) + (ϕ(d(z, y)) − ϕ(θ)).

This means that (m(x, y) −mxy) ≼ (m(x, z) −mxz) + (m(z, y) −mzy) .

Example 3.14. Let (X,A, d) be a C∗-algebra-valued metric space. Thenm(x, y)
= ad(x, y) + bI where a, b > 0, is a C∗-algebra-valued M -metric. It suffices to
take ϕ(t) = at+ bI, for all t ∈ A+.

4. Main results

In this section, first we introduce the concept of a C∗-class function. The main
idea consists in using the set of elements of a unital C∗-algebra instead of the
set of complex numbers.

Definition 4.1 (C∗-class function). Suppose that A is a unital C∗-algebra, then
a continuous function F : A+ ×A+ → A is called a C∗-class function if for any
A,B ∈ A+, the following conditions hold

(1) F (A,B) ≼ A;
(2) F (A,B) = A implies that either A = θ or B = θ.

The letter C∗ will denote the class of all C∗-class functions.

Remark 4.2. The class C∗ includes the set of complex C-class functions intro-
duced in [3]. It is sufficient to take A = C in Definition 4.1.

The following examples show that the class C∗ is nonempty.

Example 4.3. Let A = M2(R), of all 2 × 2 matrices with the usual operation
of addition, scalar multiplication, and matrix multiplication. Define a norm on

A by ∥A∥ =
(∑2

i,j=1 |aij |2
) 1

2
. Consider ∗ : A → A, given by A∗ = A, for all

A ∈ A. It defines a convolution on A. Thus A becomes a C∗-algebra. For

A =

[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
∈ A = M2(R),

we denote A ≼ B if and only if (aij − bij) ≤ 0, for all i, j = 1, 2.
(1) Define F∗ : A+ × A+ → A by

F∗(A,B) = A−B, i.e.,

F∗

([ a11 a12
a21 a22

]
,

[
b11 b12
b21 b22

] )
=

[
a11 − b11 a12 − b12
a21 − b21 a22 − b22

]
for all ai,j , bi,j ∈ R+ and i, j ∈ {1, 2}. Then F∗ is a C∗-class function.
(2) Define F∗ : A+ × A+ → A by

F∗

([ a11 a12
a21 a22

]
,

[
b11 b12
b21 b22

] )
= m

[
a11 a12
a21 a22

]
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for all ai,j , bi,j ∈ R+, (i, j ∈ {1, 2}), where m ∈ (0, 1). Then F∗ is a C∗-class
function.

Example 4.4. Let X = L∞(E) and H = L2(E), where E is a Lebesgue mea-
surable set. Denote B(H) the set of bounded linear operators on the Hilbert
space H. Clearly, B(H) is a C∗-algebra with the usual operator norm.
Define F∗ : B(H)+ ×B(H)+ → B(H) by

F∗(U, V ) = U − φ(U),

where φ : B(H)+ → B(H)+ is a continuous function such that φ(U) = θ if and
only if U = θ (θ = 0B(H)). Then F∗ is a C∗-class function.

Let Ψ be the set of all continuous functions ψ : A+ → A+ satisfying the
following conditions:

(ψ1) ψ is continuous and non-decreasing;

(ψ2) ψ(T ) = θ if and only if T = θ.

Our essential main result is

Theorem 4.5. Let (X,A,m) be a C∗-algebra-valued M -metric space and T :
X → X be a self-mapping satisfying

(4.1) ψ(m(Tx, Ty)) ≼ F∗

(
ψ(m(x, y)), ϕ(m(x, y))

)
for all x, y ∈ X,

where ψ, ϕ ∈ Ψ and F∗ ∈ C∗. Then T has a unique fixed point.

Proof. Fix x0 ∈ X. Define xn = Tnx0 for every n = 1, 2, 3, · · · . We shall prove
that

m(xn, xn+1) → θ as n→ ∞.

We have

ψ(m(xn, xn+1)) = ψ(m(Txn−1, Txn))

≼ F∗

(
ψ(m(xn−1, xn)), ϕ(m(xn−1, xn))

)
≼ ψ(m(xn−1, xn)).(4.2)

So we get

ψ(m(xn, xn+1)) ≼ ψ(m(xn−1, xn)).

ψ is nondecreasing, so the sequence {m(xn, xn+1)} is monotone decreasing in
A+ and hence there exists θ ≼ t ∈ A+ such that

m(xn, xn+1) → t as n→ ∞.
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Letting n → ∞ in (4.2), by definition of F∗ and continuity of ψ and ϕ, we
obtain ψ(t) ≼ F∗(ψ(t), ϕ(t)) ≼ ψ(t). Thus F∗(ψ(t), ϕ(t)) = ψ(t), so ψ(t) = θ or
ϕ(t) = θ, hence t = θ. That is

(4.3) m(xn, xn+1) → θ as n→ ∞.

Now, we want to show that {xn} is a m-Cauchy sequence in (X,A,m). By
Lemma 3.7, it suffices to prove that {xn} is a Cauchy sequence in (X,A,mw).
We obtained limn→∞m(xn, xn+1) = θ. Having in mind that θ ≼ mxnxn+1 ≼
m(xn, xn+1), so

(4.4) lim
n→∞

mxnxn+1 = θ.

Also, mxnxn+1 = min{m(xn, xn),m(xn+1, xn+1)}. In view of the above, one can
write

lim
n→∞

m(xn, xn) = θ.

Recall thatmxnxm = min{m(xn, xn),m(xm, xm)} andMxnxm = max{m(xn, xn),
m(xm, xm)}. We deduce that

(4.5) lim
n,m→∞

mxnxm = lim
n,m→∞

Mxnxm = θ.

Assume that {xn} is not Cauchy in (X,A,mw). Then there exist ϵ > 0 and
subsequences {xlk}, {xnk

} of {xn} with nk > lk > k such that ∥mw(xlk , xnk
)∥ >

ϵ. Now, corresponding to lk, we can choose nk such that it is the smallest integer
with nk > lk and satisfying above inequality. Hence ∥mw(xlk , xnk−1)∥ ≤ ϵ. So,
we have

ϵ < ∥mw(xlk , xnk
)∥ ≤ ∥mw(xlk , xnk−1)∥ + ∥mw(xnk−1, xnk

)∥
≤ ϵ+ ∥mw(xnk−1, xnk

)∥.(4.6)

We know that

(4.7) mw(xnk−1, xnk
) = m(xnk−1, xnk

) − 2mxnk−1xnk
+Mxnk−1xnk

.

Clearly, by (4.3) and (4.5),

(4.8) lim
k→∞

∥mw(xnk−1, xnk
)∥ = 0.

Using (4.8) in (4.6), we have

(4.9) lim
k→∞

∥mw(xlk , xnk
)∥ = ϵ.

Again,

∥mw(xnk
, xlk)∥ ≤ ∥mw(xnk

, xnk−1)∥ + ∥mw(xnk−1, xlk−1)∥
+ ∥mw(xlk−1, xlk)∥,(4.10)
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and

∥mw(xnk−1, xlk−1)∥ ≤ ∥mw(xnk−1, xnk
)∥ + ∥mw(xnk

, xlk)∥
+ ∥mw(xlk , xlk−1)∥.(4.11)

Letting k → ∞ in (4.10) and (4.11) and using (4.8) and (4.9), we have

lim
k→∞

∥mw(xnk−1, xlk−1)∥ = ϵ.

Thus

lim
k→∞

∥m(xnk−1, xlk−1)∥ = lim
k→∞

∥(m(xnk−1, xlk−1)−2mxnk−1xlk−1
+Mxnk−1xlk−1

)∥

= lim
k→∞

∥mw(xnk−1, xlk−1)∥ = ϵ.

Since m(xnk−1, xlk−1),m(xnk
, xlk) ∈ A+ and

lim
k→∞

∥m(xnk−1, xlk−1)∥ = lim
k→∞

∥m(xnk
, xlk)∥ = ϵ,

so there exists a ∈ A+ with ∥a∥ = ϵ such that

lim
k→∞

m(xnk−1, xlk−1) = lim
k→∞

m(xnk
, xlk) = a.

Now, by (4.1), we have

ψ(a) = lim
k→∞

ψ(m(xnk
, xlk))

≼ lim
k→∞

F∗

(
ψ(m(xnk−1, xlk−1)), ϕ(m(xnk−1, xlk−1))

)
.

Therefore,

ψ(a) ≼ F∗

(
ψ(a), ϕ(a)

)
≼ ψ(a).

Hence ψ(a) = θ or ϕ(a) = θ, so a = θ, which is a contradiction. Thus {xn} is
a Cauchy sequence in the complete C∗-algebra-valued metric space (X,A,mw),
and so {xn} is m-Cauchy in the complete C∗-algebra-valued M -metric space
(X,A,m). Hence there exists some v ∈ X such that

lim
n→∞

(m(xn, v) −mxnv) = θ.

Due to (4.4), we have limn→∞mxnv = θ, hence limn→∞m(xn, v) = θ. By
Remark 3.3, m(v, v) = θ. Now, we want to show that v is the fixed point
of T . By (4.1), we have θ ≼ ψ(m(Tv, Tv)) ≼ F∗(ψ(m(v, v)), ϕ(m(v, v))) =
F∗(ψ(θ), ϕ(θ)) = θ. Thus ψ(m(Tv, Tv)) = θ ⇒ m(Tv, Tv) = θ. On the other
hand

ψ(m(xn, T v)) ≼ F∗

(
ψ(m(xn−1, v)), ϕ(m(xn−1, v))

)
.



C∗-ALGEBRA-VALUED M-METRIC SPACES ... 721

Then letting n→ ∞, making use of Lemma 3.9 and continuity of functions F∗,
ψ and ϕ, we obtain that m(v, Tv) = θ. Hence we have

(4.12) m(v, v) = m(Tv, Tv) = m(v, Tv) = θ,

so by (cm2), we have Tv = v. Now, let u, v ∈ X be two fixed points of T . From
(4.1),

ψ(m(v, v)) = ψ(m(Tv, Tv)) ≼ F∗

(
ψ(m(v, v)), ϕ(m(v, v))

)
≼ ψ(m(v, v)),

so ψ(m(v, v)) = θ or ϕ(m(v, v)) = θ. Thus m(v, v) = θ. Similarly, we obtain
m(u, u) = θ. Again, by (4.1), we have

ψ(m(v, u)) = ψ(m(Tv, Tu)) ≼ F∗

(
ψ(m(v, u)), ϕ(m(v, u))

)
≼ ψ(m(v, u)).

Hence ψ(m(v, u)) = θ or ϕ(m(v, u)) = θ, so m(v, u) = θ. we obtained that
m(v, v) = m(u, u) = m(v, u) = θ. By (cm2), u = v.

If in Theorem 4.5, we take F∗(s, t) = s− t, where s, t ∈ A+, then we get the
following.

Corollary 4.6. Let (X,A,m) be a complete C∗-algebra-valued M -metric space
and T : X → X be a self-mapping satisfying

(4.13) ψ(m(Tx, Ty)) ≼ ψ(m(x, y)) − ϕ(m(x, y)) for all x, y ∈ X,

where ψ, ϕ ∈ Ψ. Then T has a unique fixed point.

Remark 4.7. If in Corollary 4.6, we take A = R, then we obtain Theorem 3.1
of [23].

Remark 4.8. If in Corollary 4.6, we take A = R and ϕ(t) = (1 − k)ψ(t) with
0 < k < 1, then we obtain the M -metric generalization of the result in [18].

Remark 4.9. If in Corollary 4.6, we take A = R and ψ(t) = t, then we obtain
the M -metric generalization for the weakly contractive fixed point theorem in
[25].
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Abstract. The adoption of International Financial Reporting Standards (IFRS)
around the world is gaining popularity and Jordan not being an exception. This adop-
tion brings about improvement in accountability and quality of accounting Information
through a uniform set of standards for financial reporting. The objective of this paper
is to examine whether the early adoption of IFRS 15 that supersede the International
Accounting Standards (IAS) 18 concerning revenue recognition has effected Jordanian
companies revenue levels and the value of stock price or not. The paper measures rev-
enue and stock prices pre and post the IFRS 15 implementation. Two hypotheses was
developed and tested at five (5) percent level of significance. The findings revealed that
there is significance quantitative difference between the arithmetic means for both of
revenue and stock price pre and post the standard application. Further, the results of
the study provided conclusive evidence that IFRS 15 have impacted on accountability
and quality of information that reported in financial statement for Jordanian mining,
construction and engineering companies.

Keywords: IFRS 15, IAS 18, revenue, stock prices, volatility, Jordan.

1. Introduction

The main objective for business entities is to generate profit, this motive, how-
ever, although this concept have been criticised widely, income is regarded as
vital element to business financial performance, and also seen as the essential
component for business profitability and sustainability. The treatment of rev-
enues is crucial when recognizing income; and the primary source of revenue is
the income that is generated from daily operating activities. Therefore, revenue
is one of the most decisive items of financial reports as it often forms the fun-
damental basis for investment decision-making. The main aim of the standard
IAS 18 and IFRS 15 is to give guidance on the revenue recognition and help
in the application of the revenue recognition criteria. Revenue recognition has
become controversial issue today, hence, the major objectives (among others)
when International Accounting Standard Board (IASB) issued the IASB 18 is
to overcome any problems associated with the principle of revenue recognition
by providing more guidance and clarity to accountants to report reliable and
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relevant information concerning revenue; however, the standard worked well
for more than decade (Knachel, 2016; Bloom and Kamm, 2014; Aladwan and
Alsinglawi, 2016).

In order to achieve the convergence project between FASB and IASB to unify
the accounting standards, on May, 2014, the FASB and IASB issued their long-
awaited converged standard on revenue recognition, IFRS 15; as a replacement
of previously applied IAS 18. Almost all entities will be affected to some ex-
tent by the significant increase in required disclosures. But the changes extend
beyond disclosures, and the effect on entities will vary depending on industry
and current accounting practices (IASB, 2014; FASB, 2015; Ernst and Young,
2014). Entities that apply this standard need to consider changes that might
be necessary to information technology systems, processes, and internal con-
trols to capture new data and address changes in financial reporting (Beaver
et al., 2012; Aladwan, 2018). This new converged standard aims to eliminate
the differences and inconsistencies incorporated between US GAAP and IFRS
to promote a single set of high-quality globally accepted accounting standards
that allows for comparability of firms within an industry and on a global finan-
cial market; furthermore, the standard targets to incorporate the changes made
to the theoretical basis of IFRS that took place during recent years with the
project on the Conceptual Framework (FW) and other important standards.

Most studies on IFRS have concentrated on it as a financial reporting is-
sue. But financial reporting is one aspect of the total impact of IFRS composi-
tion. Much more significant is the impact of a set of standards on a companys
organization, accountability philosophy, and business structure compliance to
the standards, performance management, and internal control and so on (Hale,
2016; AICPA, 2016; Deloitte, 2014; KPMG, 2016). Therefore, the objective of
the study is to examine whether the new enacted and implemented IFRS 15
has enhanced the entity financial status in comparison to IAS 18. Further, the
study is promoted by the need to bring more insight to such issue by investigat-
ing the comprehensive effect of IFRS 15 on both of earnings and company value
in emerged country Jordan as that early adopted this standards in some eco-
nomic sectors. Another contribution to the existing literature that, this study
is considered from the earliest studies in the whole region intends to examine
the new effect for such standards on companies.

The remaining part of this paper is devoted for the in-depth review of the
literature of IAS 18 and the IFRS 15 with proper formulation of the study
hypotheses through literature review hypotheses development section followed
by the methodology of the study, discussion of results and discussion and the
last section for conclusion.
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2. Review of literature

2.1 Financial reporting

The (IASB) Framework assured that; the main objective of financial statements
is to provide a set of financial statements about entity financial position, per-
formance and changes in financial position that is useful to a wide range of
decisions makers (IASB, 2010; IASB, 2015). These financial statements are re-
garded traditionally as the first source of independent and true communication
about the performance of managers (Sloan, 2001; Wagenhofer, 2014). And in
order to be able to meet the needs of users, such financial statements must
not only comply with the (IFRS), but also be beneficial for decision making
(IASB, 2010). Historically, The IFRS/IAS standards consist of a set of interna-
tional accounting and reporting standards established to provide a clear rules
and guidance for the accounting profession. Such rules are the fundamental for
accountants to draw up comparable and transparent annual reports and finan-
cial statements (Cardozza, 2008; IASB, 2010; Alsinglawi and Aladwan, 2016).
Their adoption represents an essential element to the success of accounting and
auditing profession (Deloitte, 2016).

Nowadays, the term (IFRS) has both a narrow and a broad meaning (Ias-
plus, 2010); narrowly, those IFRS refer to the any new numbered series of pro-
nouncements that the IASB is issuing continuously, as distinct from the In-
ternational Accounting Standards (IASs) series issued by its predecessor. More
broadly, IFRSs are regarded as the entire body of International Accounting Stan-
dards Board (IASB) pronouncements, including standards and interpretations
approved by the IASB and IASs and the Standards Interpretations Commit-
tee (SIC) (now replaced with International Financial Reporting Interpretations
Committee (IFRIC) interpretations approved by the predecessor International
Accounting Standards Committee (Iasplus, 2010).

2.2 IFRS 15 vs. IAS 18

The (IASB) and the US Financial Accounting Standards Board (FASB) (collec-
tively, the Boards) have jointly issued a new revenue standard, IFRS 15 Rev-
enue from Contracts with Customers, that will supersede virtually all revenue
recognition requirements in IFRS and US GAAP. Noting several concerns with
existing requirements for revenue recognition under both US GAAP and IFRS,
the Boards decided to develop a joint revenue standard that would: remove
inconsistencies and weaknesses in the current revenue recognition literature;
provide a more robust framework for addressing revenue recognition issues; im-
prove comparability of revenue recognition practices across industries, entities
within those industries, jurisdictions and capital markets; reduce the complex-
ity of applying revenue recognition requirements by reducing the volume of the
relevant standards and interpretations; and provide more useful information to
users through new disclosure requirements (Schipper et al., 2009; Prakash and



FLUCTUATIONS OF STOCK PRICE AND REVENUE AFTER ... 727

Sinha, 2012). IFRS 15 Revenue from Contracts with Customers specifies the
accounting treatment for all revenue arising from contracts with customers. It
applies to all entities that enter into contracts to provide goods or services to
their customers (IFRS 15, 2015).

The new standard is mandatorily effective for annual periods beginning on
or after January 1, 2018, with earlier application permitted starting on May 1,
2014, and to be applied retrospectively using either a full retrospective approach
(subject to certain practical expedients) or a modified retrospective approach.
IFRS 15 establishes a comprehensive framework for recognition of revenue from
contracts with customers based on a core principle that an entity should recog-
nize revenue representing the transfer of promised goods or services to customers
in an amount that reflects the consideration to which the entity expects to be
entitled in exchange for those goods or services (IFRS 15, 2015; Cohen et al.,
2014). The core principle of IFRS 15 is that an entity shall recognize revenue
to depict the transfer of promised goods or services to customers in an amount
that reflects the consideration to which the entity expects to be entitled to in
exchange for those goods or services (Deloitte, 2014; Dyson, 2015).

IFRS 15 defines revenue somewhat more simply than the existing standard
IAS 18, as income arising in the course of an entitys ordinary activities. Ac-
cording to IFRS 15, an entity shall generally recognize revenue when (or as)
the entity transfers a promised good or service (i.e. an asset) to a customer.
An asset is transferred when (or as) the customer obtains control of that asset;
previously, the revenue model depended on whether a contract was covered by
IAS 11 or IAS 18 and was based on the type of transaction or event (i.e. whether
the entity was performing under a construction contract, sold a good, rendered
a service or had income from interest, royalties and dividends (Deloitte, 2014;
KPMG, 2016). The amount of revenue recognized is the amount allocated to the
satisfied performance obligation. A performance obligation may be satisfied at
a point in time (typically for promises to transfer goods to a customer) or over
time (typically for promises to transfer services to a customer (Badertscher et
al., 2012). For performance obligations satisfied over time, an entity recognizes
revenue over time by selecting an appropriate method for measuring its progress
towards complete satisfaction of that performance obligation (IFRS 15, 2015;
Dyson, 2015).

Altogether, revenue is the gross inflow of economic benefits during the period
arising in the course of the ordinary activities of an entity when those inflows
result in increases in equity, other than increases relating to contributions from
equity participants. The objective of the revenue standard is to provide a single,
comprehensive revenue recognition model for all contracts with customers to
improve comparability within industries, across industries, and across capital
markets. The revenue standard contains principles that an entity will apply
to determine the measurement of revenue and timing of when it is recognized.
The underlying principle is that an entity will recognize revenue to depict the
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transfer of goods or services to customers at an amount that the entity expects
to be entitled to in exchange for those goods or services.

2.3 Previous literature and hypotheses development

Recent convergence in accounting standards could provide direction and guid-
ance on how business enterprises in a globalized world could achieve the goal
of proper record keeping, transparency, uniformity, comparability and enhanc-
ing public confidence in financial reporting (McCarthy and McCarthy, 2014).
Moreover, the failure for such global convergence according to Altamuro et al
(2005) would result in inconsistencies, lack of accountability and transparency,
distortion in financial reports, which in turn results into poor financial report-
ing practices and dissemination of accounting information that is of less value
to any particular group of users (Zang, 2012; Aladwan et al., 2018). Revenue is
regarded as a type of income that arises in the course of ordinary activities of
an entity and is referred to by a variety of different names including sales, fees,
interest, dividends and royalties. The primary issue in accounting for revenue
is determining when to recognize revenue; and according to IAS 18 and IFRS
15; revenue is recognized when it is probable that future economic benefits will
flow to the entity and these benefits can be measured reliably. This definition
of revenue caused debate on the exact time and conditions that allow entities to
report income; this argument promoted the need for practical guidance on the
application of revenue recognition (IFRS 15, 2015).

Most of theoretical literature agreed that revenue is the total of benefits that
inflow during a period of time arising from the course of the ordinary activities of
an business when those inflows result in increases in equity, other than increases
relating to contributions from equity participants (IAS 18). According to Ernst
and Young (2014) revenue does not include any gains from the sale of property
plant and equipment (PPE) unless the PPE items were leased out under an
operating lease - or other fixed assets and net finance income (IAS 18). As
a consequence for the changes occurred on the scope of IFRS 15 the amount
of revenue that recognized in financial statements is expected to be changed,
therefore our first hypothesis is:

H1: There is a significant difference in the mean of revenue for companies
pre and post the application of new revenue standard IFRS 15.

There is a consensus among scholars, researchers, analysts and users that
financial information have to mirror that business performance reality (Atrill
and Mclaney, 2015; Benedict and Elliott, 2011). Thus, the content of financial
reports must give the true substance for entity economic status. One of the fun-
damental requirements of Generally Accepted Accounting Principles (GAAP) is
that entities should prepare and disclose financial information that serve the in-
ternal and external interested parties of such information (IASB, 2010). So the
standards legislators demanded all business entities to publish financial state-
ments about their financial position (statement of financial position), perfor-
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mance (comprehensive income statement), monetary position (cash flow state-
ment), and owners position (changes in owner equity). Moreover, the conceptual
framework of accounting stated that the financial statements have to include
useful information for the decision making process (IASB, 2010). According to
Kenneth (2012) the quality of financial reporting is indispensable to the need
of users who requires them for investment and other decision making purposes.
Financial reports can only be regarded as useful if it represents the economic
substance of an organization in terms of relevance, reliability, comparability and
aids interpretation simplicity.

In Jordan, Amman stock exchange (ASE) requires from companies to fully
comply with IFRSs, entities whose financial statements do comply with IFRSs
are prevented from publishing their financial reports in the market (ASE, 2007).
All companies that have publicly traded stocks are mandated to comply with
the new standards and they should revise their periodical financial statements
to comply with such standards. Duru (2012) assured that, any revisions on
financial statements that are published will in turn change the opinion of internal
users as well as a wide range of external parties. Likewise, Leuz and Wysocki
(2016) also believed that financial statement guide the decision maker behavior.

The pioneer work of Ball and Brown (1968) was always admired as the start-
ing point for all research concerned with the relationship between accounting
information and stock price. Their study provided a strong empirical evidence
for the relationship between earnings disclosures and stock prices; they pointed
that, if entity reported excess earnings this could enable investors to obtain
abnormal returns. Their remarkable foundings also suggests that, the financial
informations usefulness relies basically on the ability of this information to guide
stock price behavior. Several other studies also confirmed this assumed relation-
ship between stock prices value and the accounting information that disclosed
through regular financial reports (Safajou et al., 2005; Bohusova and Nerudova,
2015; Chandra and Ro, 2008; Pourheydari et al., 2008; Fosbre et al., 2009).
Dechow et al (2010) pointed out that financial statements can take many forms;
the best known is the profit or loss account and balance sheet of businesses.
Decision makers attention historically approved to be mostly on income from
regular operations therefore revenue gain high priority in decision maker mind
relative to other accounting disclosed numbers (Chandra and Ro, 2008; Dechow
et al., 2010; Srivastava, 2014).

Historically, the annual reports and accounts of companies are produced by
management to serve shareholders and other people such as potential investors,
tax authorities, banks, regulators, suppliers, customers and employees may also
have an interest in knowing that the financial statements are presented fairly, in
all material aspects (Chandra and Ro, 2008; Fosbre et al., 2009). Such produced
annual reports contain or effected by the amount of revenue reported by the
business; when these reports that contain information about revenue or net
income are disclosed to market the stock price of entity in market is influenced
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and volatile depending on the amount reported (Ball and Brown, 1968). Based
on previous review of literature our second hypothesis is:

H2: There is a significant difference between the relationship of stock price
and revenue of companys pre and post the application of new revenue standard
IFRS 15.

3. Methodology

3.1 Sample and method

The population used in this study comprises the listed mining, construction
and engineering companies in Amman stock exchange. This sample sector in
Jordan is very crucial part of Jordanian economic sector, the mining sector is
regarded as the important sector that might be effected by the new standard
IFRS 15; on the other hand construction and engineering sectors is also greatly
affected by the new standard after IAS 11 on construction is eliminated and these
companies are now comply with IFRS 15 concerning revenue. The study data
was obtained from company quid and annual reports issued by Amman Stock
Exchange (ASE) for the years from 2012 to 2017. The sample consisted of 23
company; companies that do not apply IFRS 15 were excluded from the sample.
The final total sample consisted of 138 observations; these observation comprises
69 before the application of the standard and for the years from 2012-2014 and
the same 69 after the standard application for the years from 2015-2017.

The methodology of the study follows two steps; firstly a comparison of
means for revenue before and after the inclusion of the standard to capture if
there is any difference in athematic means. Secondly, a simple regression analysis
will be used Ordinary Least square (OLS) in order to examine the relationship
between revenue and stock prices pre and post the IFRS 15 application. The
proposed model to test this relationship is as follows:

(1) Pit = α0 + α1REV it + E

Where Pit: Stock price Firm i at the end of year t. REVit: Revenue (sales)
for firm i during period t. Eit: any other value relevant information of firm i for
period t.

3.2 Results and discussion

3.2.1 Descriptive statistics

The descriptive statistics of the studys variables are over viewed in table (1),
the average of market value of stocks price before the standard application was
2.78 JD, and this value fluctuated between the minimum value of 0.26 JD and
the maximum value of 28.05 JD. On the other hand, the average of stocks price
after the standard application was 1.85 JD, and this value fluctuated between
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a minimum value of 0.17 JD, and the maximum value of 21.00 JD. As appear
from these results that the value of stock prices was decreased with about 51%;
the possible explanation for this decrease can be attributed to the decrease of
revenue for these companies after the application of the standard. As we can
observe from the same table that the average of revenue before the standard
application was 114,622 JD, and this value fluctuated between the minimum
value of 256.77 JD and the maximum value of 938,429 JD; whilst the average of
revenue after the standard application was 61,943 JD, and this value fluctuated
between a minimum value of 0 JD, and the maximum value of 750,174 JD. The
percentage decrease in revenue average after the application of the standard
was about 85% ; and the percentage decrease in total revenue was about 25%
. These results provides preliminary evidence that the new standard of revenue
recognition (IFRS 15) affected negatively the reported revenues by companies,
moreover, the new standard as observed from the results caused also a decrease
in the stock prices of these companies after the year 2014.

Table 1: Descriptive Statistics of Model Variables
Variables Minimum Mean Maximum Std. Deviation

P -befor 0.26 28.05 2.78 4.74

REV -before (000) -256.77 938,429 114,622 164,504

P -after 0.17 21.00 1.85 3.93

REV -after (000) 0 750,174 61,943 155,672

* N= 69

Figure 1: The average revenue for companies from 2005-2017

3.2.2 Empirical results

For further exhibition of the effect of IFRS 15 on both of revenue and stock
price we demonstrated this effect using excels charts. As appear from chart 1&2
both of revenue and stock prices was continuously declined for the three years
that followed the inclusion of IFRS 15 starting the year 2015.

In order to examine the effect for the inclusion of IFRS 15 on companies a
compare of means test was conducted to investigate whether there is a difference
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Figure 2: The average stock price of companies from 2005-2017

between the means before and after standard inclusion. But before that we
tested if there is a correlation between the years before and after the inclusion
of the standard to capture if there any effect for previous years before 2015 on
revenue and stock prices after 2015. The results of paired samples correlation
appear in table (2). The results of this test show that there is no significant
correlation between the two samples before and after the reforms. Therefore we
can conclude that the change in companies revenues and stock prices is devoted
to the new standard application.

3.2.3 Paired samples correlation

Table 2: the correlation of results before and after IFRS 15
Variables N Correlation Sig.

Pair 1 BEFOR and AFTER 69 0.009 0.916

The second step in compare of means for the new standard effect, we con-
ducted a test of means difference between the both of revenue and stock price
pre and post the inclusion of IFRS 15, a paired t-test was employed to capture
this effect; and the comparison results between the two means are shown in
table (3). In table (3) we can observe that the revenue mean after the stan-
dard inclusion was (55,943), while the mean before the standard was applied
was (67,622), the change in mean was a decrease with about (-21)%. Similarly,
the stocks price mean after the standard inclusion was (2.15) and appears less
than that of mean before (2.78), the change in mean was a decrease with about
(-29)%. These results prove that the new accounting standard (IFRS 15) that
applied starting year 2015 negatively influenced both of revenue and stock prices
for the companies under study. Moreover, the results in table (3) for parametric
and non-parametric statistical tests that show the means difference for revenue
and stock prices showed that, the calculated (t-stat) for both of revenues and
stock price was significant; and the P-value (two-tails test) for both of variables
was below 5%. Thus we can conclude that, there is a significant difference in
the value of revenue and stock prices before and after the new standard inclu-
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sion. Also the two related samples test (Wilcoxon) show that, the (Z-stat) for
both of revenue and stock prices was 0.000, which is significantly below 5%.
Consequently, Jordanian mining, construction and engineering companies t-stat
and Z-stat, parametric and non-parametric statistical tests supports the results
that we obtained from our previous tests that is, there is a significant difference
between the means of revenue and stock prices before and after new standard
inclusion.

Table 3: compare of means for revenue & stock prices before and after inclusion
of IFRS 15

Variables (under IAS 18) (under IFRS 15) change

Revenue Mean (000) 67,622 55,943 -21%

Revenue Variance (000) 27,061 22,233 -22%

Stocks Mean 2.78 2.15 -29%

Observations 69 69

Def. 68 68

t-stat (revenue difference) 2.875

Sig 0.000

t-stat (stocks difference) 3.495

Sig 0.000

2-related-samples test (Wilcoxon)

Z stat(revenue difference) -2.785

Sig 0.000

Z stat (stock difference) -4.557

Sig 0.000

* the results are sig (p < 0.05).

3.2.4 Regression results

For more exploration to compare of means results, we conducted simple re-
gression test in order to capture the change for the effect IFRS 15 before and
after year 2015 on revenue. The results are shown in table (4). We recall our
previously mentioned model equation as:

(2) Pit = α0 + α1REV it + E

Our simple regression applied run twice the first run on data from 2012-2014
before the inclusion of IFRS 15, and the second run on data from years 2015-
2017 after the application of IFRS15. The results of simple regression for the
correlation between revenue (REV) as independent variable and the dependent
variable sock price (P) are presented in table (4). As appear in table simple
regression results for the effect of revenue on stock price before IFRS 15 show
that; the model was fit and statically significant with an F-value of 49.788; Adj
R2 was about 51 percent, Coef = 2.08, t-value = 7.056 with sig less than 5
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percent. On the other hand the second run of regression show that model also
was significantly fit with F-value of 30.365; the Adj R2 was about 39 percent,
Coef =1.59, t-value =5.510 with sig less than 5 percent.

Table 4: regression results for revenue & stock prices before and after inclusion
of IFRS 15

Ind-variable R R2 Adj R2 Coef t t- sig. F F-sig

Rev-before 0.721 0.520 0.509 2.08 7.056 0.000 49.788 0.000

Rev-after 0.631 0.398 0.385 1.59 5.510 0.000 30.365 0.000

change -14% -30% -32% -30% -28% -64%

These results indicate that there is a statically significant effect for revenue
on stock price pre and post the IFRS 15 inclusion, but this effect was decreased
with about 32% percent as appear in the difference between Adj R2 before
and after standard implementation. Another difference appears in the value of
coefficients and t-value these two results also was decreased with about 29%.
This great decrease in all results of regression indicates that the inclusion of
IFRS 15 starting the year 2015 instead of AIS 18 has significant negative effect
on revenue level that caused witnessed negative decrease in the stock prices
for Jordanian companies. However, these results provide more indication that,
in Jordan there is a gradual decrease in realization of revenue following the
year 2015 and this decrease can be contributed to IFRS 15, thus, and based
on previous results of compare of means test and regression test results the
hypotheses of the study 1 & 2 are accepted that is, Jordanian companies revenue
was gradually changed after the application of new revenue standard IFRS 15;
furthermore, stock prices of Jordanian companies were also greatly negatively
affected after IFRS 15 application.

4. Conclusion

This study was an attempt to contribute for accounting literature by examining
the effect of the adoption of the new revenue recognition standard IFRS 15
and its economic consequences on both of revenue and stock market price. The
study was conducted on a sample of Jordanian companies that highly influenced
after the inclusion of the new standard. The study measured revenue and stock
prices pre and post IFRS 15 implementation; results showed that there were a
significant difference in the value of revenue and stock prices before and after the
new standard inclusion. Moreover, both of revenue and stock prices was found
negatively decreased after IFRS 15 inclusion. These findings provide supportive
evidence to literature that Jordanian market have the ability to capture and
reflect any changes that occurs in accounting standards. This study contributes
to the knowledge through several aspects. First, it provides new evidence on the
use of IFRS 15 in Jordanian context. Hence, our findings can be generalized to
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for developing countries that have stock exchanges with similar characteristics to
more developed countries. Second, this study provides more insight for market
value behavior association with revenue recognition principle. Third, higher
levels of restrictions on revenue recognition could cause an increase in accounting
discretion regarding the different forms of earnings. Finally, this study suggests
a new avenue for future research in Jordan to investigate the influence of this
standard on other economic sectors.
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