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Abstract. In this paper, we present some numerical applications for the equation
x2+ax+ b = 0, where a, b are two quaternionic elements in H(α, β). H(α, β) represents
the algebra of real quaternions with parameterized coefficients by α and β. The algebra
of real quaternions is an extension of complex numbers and is represented by algebraic
objects called quaternions. These quaternions are composed of four components: a
real part and three imaginary components. In general, H(α, β) indicates a family of
parameterized quaternion algebras, in which the specific values of α and β determine
the specific properties and structure of the quaternion algebra. Based on well-known
solving methods, we have developed a new numerical algorithm that solves the equation
for any quaternions a and b in any algebra H(α, β).
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Introduction

Quaternions are a number system first introduced in 1843 by Irish mathemati-
cian Sir William Rowan Hamilton. Hamilton was seeking a way to extend the
complex numbers to three dimensions and realized that he could do so by adding
an additional imaginary unit.

Quaternions are different from complex numbers in that they are non-commu-
tative. Quaternions have found many practical applications in fields such as
computer graphics, physics, and engineering. For instance, they are used in
computer graphics to represent 3D rotations and orientations, and in aerospace
engineering to model spacecraft altitude and control systems.

Quaternions are essential in control systems for guiding aircraft and rockets:
each quaternion has an axis indicating the direction and a magnitude deter-
mining the size of the rotation. Instead of representing an orientation change
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through three separate rotations, quaternions use a single rotation to achieve
the same transformation.

Despite their usefulness, quaternions are not as widely used as complex num-
bers, largely due to their non-commutative nature. However, they remain an
important topic in mathematics and physics, and continue to be studied and
applied in various fields to this day. ([1], [4], [6], [10], [13])

We will numerically solve the monic quadratic equation with quaternion
coefficients in the algebra H(α, β) using Scilab, a free and open-source software
for numerical computation.

We chose to use the Scilab software to numerically solve the monic quadratic
equations with quaternionic coefficients in the algebra H(α, β) because Scilab
is a free and open-source software, making it accessible and usable by a large
number of users. Additionally, this software allows us to customize and adapt
it to the specific needs and requirements of our problem. Scilab is renowned for
its powerful functionality in numerical computation. It offers a wide range of
mathematical and algebraic functions, including an integrated solver for poly-
nomial equations. The built-in polynomial equation solver in Scilab provides us
with the necessary tools to efficiently solve the monic quadratic equation with
quaternionic coefficients. Scilab, such as Matlab, which is more widely known,
has a user-friendly and intuitive interface, facilitating ease of use and navigation
within the software. The programming is very intuitive and doesn’t require defi-
nition of any parameters, so the main focus remains the mathematical modeling
of the equations and the algorithm. This decision allows us to obtain precise
and efficient results in studying and applying our new findings in quaternion
algebra.

The aim of the paper is to present an innovative, efficient, and accurate
method for the numerical solution of monic quadratic equations in the algebra
of real quaternions using the Scilab software. We develop a new algorithm that
solves these equations for any quaternionic coefficients in any algebra H(α, β).
Our ultimate goal is to contribute to the development and application of this
knowledge in various fields such as computer graphics, physics, and engineering,
opening up new research and application perspectives for quaternions and monic
quadratic equations with quaternionic coefficients.

1. Preliminaries

The quadratic equation has been explored in the context of Hamilton quater-
nions in the works [11], [13]. In [11], the equation x2+bx+c = 0 is analyzed and
explicit formulas for its roots are obtained. These formulas were subsequently
used in the classification of quaternionic Möbius transformations [14], [2]. In
Hamilton quaternions, every nonzero element can be inverted, while in H(α, β)
there exist split quaternions that cannot be inverted. In an algebraic system,
finding the roots of a quadratic equation is always connected to the factorization
of a quadratic polynomial [12]. In the case of real numbers (R) and complex
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numbers (C), the two problems are identical. However, in noncommutative al-
gebra, these two problems are interconnected. Scharler et al. [15] analyzed
the factorizability of a quadratic split quaternion polynomial, revealing certain
information about the roots of a split quaternionic quadratic equation.

In a publication from 2022, [7] exploring algebras derived from the Cayley-
Dickson process presents challenges in achieving desirable properties due to com-
putational complexities. Hence, the discovery of identities within these algebras
it gains meaning, helping to acquire new properties and making calculations
easier. To this end, the study introduces several fresh identities and proper-
ties within the algebras derived from the Cayley-Dickson process. Furthermore,
when certain elements serve as coefficients, quadratic equations in real division
quaternion algebra can be solved, showcasing the authors ability to provide
direct solutions without relying on specialized software.

In the paper [3], the author specifically focuses on deriving explicit formulas
for the roots of the quadratic equation x2 + bx + c = 0 where b and c are split
quaternions (HS).

The same subject can be found in [1], where quadratic formulas for gener-
alized quaternions are studied. It focuses on obtaining explicit formulas for the
roots of quadratic equations in this specific context of generalized quaternions.

Let H(α, β) be the generalized quaternion algebra over an arbitrary field K,
that is the algebra of the elements of the form q = q1+ q2e1+ q3e2+ q4e3 where
qi ∈ K, i ∈ {1, 2, 3, 4}, and the basis elements {1, e1, e2, e3} satisfy the following
multiplication table:

(1)

· 1 e1 e2 e3
1 1 e1 e2 e3
e1 e1 α e3 αe2
e2 e2 −e3 β −βe1
e3 e3 −αe2 βe1 −αβ

The conjugate of a quaternion is obtained by changing the sign of the imag-
inary part: q = q1 − q2e1 − q3e2 − q4e3, where q = q1 + q2e1 + q3e2 + q4e3.

The norm of a quaternion is defined as the sum of the squares of its compo-
nents, for this case, the norm is:

n (q) = q · q = ||q||2 = q21 − αq22 − βq23 + αβq24.

If for x ∈ H (α, β), the relation n(x) = 0 implies x = 0, then the algebra
H (α, β) is called a division algebra, otherwise the quaternion algebra is called
a split algebra. (see [4])

If α and β are negative real numbers, it becomes a division algebra, therefore
the norm will be different from zero. The role of α and β is to parameterize
the coefficients of the quaternion algebra H(α, β). These values determine the
specific properties and structure of the quaternion algebra. In the multiplication
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table given in equation (1), α and β appear as parameters that determine the
specific structure and properties of the quaternion algebra H(α, β).

The role of the norm is to provide a measure of the size of a quaternion in the
algebra H(α, β). The norm expression involves the coefficients q1, q2, q3, q4, and
the parameters α and β. The norm plays a crucial role in determining whether
the algebra H(α, β) is a division algebra or a split algebra, based on whether
the norm is nonzero or zero, respectively.

Split quaternions form an algebraic structure and are linear combinations
with real coefficients. Every quaternion can be written as a linear combination
of the elements 1, e1, e2, and e3, where e1, e2, and e3 are the imaginary units
that satisfy the relations e21 = α, e22 = β, and e23 = −αβ.

We will now present some of the most important properties and relations
of quaternions, which play a fundamental role in various fields such as physics,
engineering, computer science, and applied mathematics:

� The addition is done component-wise:
a = a1 · 1 + a2e1 + a3e2 + a4e3,
b = b1 · 1 + b2e1 + b3e2 + b4e3,
⇒ a+ b = (a1 + b1) · 1 + (a2 + b2)e1 + (a3 + b3)e2 + (a4 + b4)e3.

� Quaternion multiplication is not commutative:
a · b = (a1b1+αa2b2+βa3b3−αβa4b4)+ e1(a1b2+a2b1−βa3b4+βa4b3)+
e2(a1b3 + αa2b4 + a3b1 − αa4b2) + e3(a1b4 + a2b3 − a3b2 + a4b1)
b ·a = (a1b1+αa2b2+βa3b3−αβa4b4)+ e1(a2b1+a1b2−βa4b3+βa3b4)+
e2(a3b1 + αa4b2 + a1b3 − αa2b4) + e3(a4b1 + a3b2 − a2b3 + a1b4)
⇒ a · b ̸= b · a.

� Quaternions are associative: (a · b) · c = a · (b · c) = a · b · c.

� The trace of the element q:

t(q) = q + q.

� The multiplication of a quaternion by a scalar:

α·q = α·(q1+q2e1+q3e2+q4e3) = (α·q1)+(α·q2)·e1+(α·q3)·e2+(α·q4)·e3.

� The inverse of a non-zero quaternion q is given by

q−1 =
q

||q||2
=

q1 − q2e1 − q3e2 − q4e3
q21 − αq22 − βq23 + αβq24

.

� The dot product of two quaternions can be defined as q · r = (qr + rq)/2.

These are just some of the many important relations and properties of
quaternions. All these properties make quaternions a powerful tool in math-
ematics and practical applications.
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2. Known results

In [16] and [17], to find the root of the equation f(xt) = 0, the Newton-Raphson
method relies on the Taylor series expansion of the function around the estimate
xi to find a better estimate xi+1:

f(xi+1) = f(xi) + f ′(xi)(xi+1 − xi) +O(h2),

where xi+1 is the estimate of the root after iteration i+1 and xi is the estimate
at iteration i. O(h2) means the order of error of the Taylor series around the
point xi. Assuming f(xi+1) = 0 and rearranging:

xi+1 ≈ xi −
f(xi)

f ′(xi)
.

The procedure is as follows. Setting an initial guess x0, a tolerance εs, and
a maximum number of iterations N :

At iteration i, calculate xi ≈ xi−1 − f(xi−1)
f ′(xi−1)

and εr. If εr ≤ εs or if i ≥ N ,
stop the procedure. Otherwise, repeat.

In [10], the authors present specific formulas to solve the monic quadratic
equation x2 + bx + c = 0 with b, c ∈ H (α, β) , where α = −1, β = −1, the real
division algebra, according to the multiplication table presented in (1). In the
following we present the results we will use in developing our solutions, and a
proof of lemma 2:

Lemma 2.1 ([10], Lemma 2.1). Let A,B,C ∈ R with the following properties:
C ̸= 0, A < 0 implies A2 < 4B.

Then the equation of order 3:

(2) y3 + 2Ay2 + (A2 − 4B)y − C2 = 0

has exactly one positive solution y.

Lemma 2.2 ([10], Lemma 2.2). Let A,B,C ∈ R such that: B ≥ 0 and A < 0
implies A2 < 4B then the real system:

(3)

{
Y 2 − (A+W 2)Y +B = 0,

W 3 + (A− 2Y )W + C = 0

has at most two solutions (W,Y ) with W ∈ R and Y ≥ 0 as follows:

(i) W = 0, Y = A±
√
A2−4B
2 provided that C = 0, A2 ≥ 4B;

(ii) W = ±
√

2
√
B −A, Y =

√
B provided that C = 0, A2 < 4B.

(iii) W = ±
√
z, Y = W 3+AW+C

2W provided that C ̸= 0 and z is the unique
positive solution of the real polynomial:

z3 + 2Az2 + (A2 − 4B)z − C2 = 0.
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Proof. Let A,B,C ∈ R such that B ≥ 0 and A < 0 =⇒ A2 < 4B.
We want to show that the real system has at most two solutions (W,Y ) with
W ∈ R and Y ≥ 0 as follows:

(i) W = 0, Y = A±
√
A2−4B
2 provided that C = 0, A2 ≥ 4B;

(ii) W = ±
√
2
√
B −A, Y =

√
B provided that C = 0, A2 < 4B;

(iii) W = ±
√
z, Y = W 3+AW+C

2W provided that C ̸= 0 and z is the unique
positive solution of the real polynomial:

z3 + 2Az2 + (A2 − 4B)z − C2 = 0.

From Lemma 2.1, we know that the polynomial z3+2Az2+(A2−4B)z−C2 = 0
has exactly one positive solution z when C ̸= 0.

For the cases (i) and (ii), when C = 0, the first equation becomes a quadratic
equation in Y . If A2 ≥ 4B, there are two real solutions for Y , and if A2 < 4B,
there is one real solution for Y . Since W = 0, these solutions correspond to the
cases 1. and 2. in the lemma.

The case (iii), when C ̸= 0, we can express Y as a function of W using the

second equation: Y = W 3+AW+C
2W . Substituting this expression for Y in the

first equation, we obtain a polynomial equation in W 2 of degree 3. Since z is
the unique positive solution of this polynomial, there are two solutions for W :
W = ±

√
z. These solutions correspond to the case 3. in the lemma.

In conclusion, the real system (3) has at most two solutions (W,Y ) with
W ∈ R and Y ≥ 0 as described in the lemma.

Theorem 2.3 ([10], Theorem 2.3). The solution of the quadratic equation x2+
bx+ c = 0 can be obtained in the following way:

Case 1. If b, c ∈ R and b2 < 4c then:

(4) x =
1

2
(−b+ e · e1 + f · e2 + g · e3),

where e2 + f2 + g2 = 4c− b2 where e, f, g ∈ R.

Case 2. If b, c ∈ R and b2 ≥ 4c then:

(5) x =
−b±

√
b2 − 4c

2
.

Case 3. If b ∈ R, c /∈ R then:

(6) x =
−b

2
± m

2
∓ c1

m
· e1 ∓

c2
m

· e2 ∓
c3
m

· e3,

where c = c0 + c1 · e1 + c2 · e2 + c3 · e3, and

(7) m =

√
b2 − 4c0 +

√
(b2 − 4c0)2 + 16(c21 + c22 + c23)

2
.
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Case 4. If b /∈ R then:

(8) x =
(−Re(b))

2
− (b′ +W )−1(c′ − Y ),

where b′ = b − Re(b) = Im(b), c′ = c − (Re(b)/2)(b − (Re(b))/2), where
(W,Y ) are chosen in the following way:

(i) W = 0, Y = (A±
√
A2 − 4B)/2 provided that C = 0, A2 ≥ 4B;

(ii) W = ±
√

2
√
B −A, Y =

√
B provided that C = 0, A2 < 4B;

(iii) W = ±
√
z, Y = (W 3 + AW + C)/2W provided that C ̸= 0 and z is the

unique positive solution of the equation:

z3 + 2Az2 + (A2 − 4B)z − C2 = 0,

where A = |b′|2 + 2Re(c′), B = |c′|2 and C = 2Re(b′c′).

Corollary 2.4 ([10], Corollary 2.4). The equation has an infinity of solutions
if b, c ∈ R and b2 < 4c.

Corollary 2.5 ([10], Corollary 2.6). The equation has an unique solution if and
only if:

1. b, c ∈ R and b2 − 4c = 0;

2. b /∈ R and C = 0 = A2 − 4B.

Corollary 2.6. If the quadratic equation x2 + bx + c = 0 has real coefficients
b and c, and b2 < 4c, then the solution of the equation can be expressed as
x = 1

2(−b+ e · e1 + f · e2 + g · e3), where e2 + f2 + g2 = 4c− b2 and e, f, g ∈ R.

Corollary 2.7. If the quadratic equation x2 + bx+ c = 0 has real coefficients b

and c, and b2 ≥ 4c, then the solutions of the equation are x = −b±
√
b2−4c
2 .

Corollary 2.8. If b and c are the coefficients of the quadratic equation x2 +
bx + c = 0, such that b /∈ R, then the solution of the equation can be expressed
as:

x =
(−Re(b))

2
− (b′ +W )−1(c′ − Y ),

where b′ = b − Re(b) = Im(b), c′ = c − (Re(b)/2)(b − (Re(b))/2), and (W,Y )
are chosen such that:

� W = 0, Y = (A±
√
A2 − 4B)/2 if C = 0 and A2 ≥ 4B;

� W = ±
√

2
√
B −A, Y =

√
B if C = 0 and A2 < 4B;

� W = ±
√
z, Y = (W 3 + AW + C)/2W if C ̸= 0 and z is the unique

positive solution of the equation z3 + 2Az2 + (A2 − 4B)z −C2 = 0, where
A = |b′|2 + 2Re(c′), B = |c′|2 and C = 2Re(b′c′).
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3. The solutions of the second-degree equation in real quaternions

It is important to mention that the algebra H(α, β) is a mathematical construc-
tion, and its properties can vary depending on the values chosen for α and β.
When we take negative values for α and β in the algebra H(α, β)), it becomes a
division algebra. This means that every nonzero element in the algebra can be
inverted. Multiplication and inversion of elements can be performed using the
specific rules of this algebra.

Therefore, for the algebra H(α, β), we will take negative values for α and β,
thus making it a division algebra, and the norm will be nonzero. If the values
of α and β are positive, we no longer have a division algebra because the norm
is zero.

Next, we will describe the solution of a monic quadratic equation in the alge-
bra of real quaternions. This statement provides an explicit formula for finding
the solutions of the equation and explains how to perform the necessary calcu-
lations. It presents the general formula for the solution of the monic quadratic
equation, where the equation’s coefficients are represented as real quaternions,
and the solution is a linear combination of the imaginary units of the quater-
nions. This formula is presented in a detailed manner, specifying the values
of each component of the solution in terms of the coefficients and other terms
involved in the equation.

Proposition 3.1. Let b = b0+b1·e1+b2·e2+b3·e3 and c = c0+c1·e1+c2·e2+c3·e3
where b, c are two quaternionic elements in H(α, β) and knowing W and Y of
the Theorem 2.3 the solution of the second degree equation x2 + bx+ c = 0 is of
the form

(9) x = x1 + x2e1 + x3e2 + x4e3,

where:

x1 = −t−[Wc1−YW−b2c2α−b3c3β+b4c4αβ−t(Wt−b22α−b23β+b24αβ)]/m,

x2 = (Wc2 − b2c1 + b2Y + b3c4β − b4c3β − tb2(W − t))/m,

x3 = (Wc3 − b2c4α− b3c1 + b3Y + b4c2α− tb3(W − t))/m,

x4 = (Wc4 − b2c3 + b3c2 + b4c1 + b4Y − tb4(W − t))/m

with t = b1
2 and

m = W 2 − αb22 − βb23 + αβb24.

Proof. Let b = b1 + b2 · e1 + b3 · e2 + b4 · e3 and c = c1 + c2 · e1 + c3 · e2 + c4 · e3.
for this case, the norm is:

n (a) = aa = a21 − αa22 − βa23 + αβa24.

We compute the necessary elements for applying the theorem: Re(b) = b1.
Therefore,

b′ = b−Re(b) = Im(b) = b2 · e1 + b3 · e2 + b4 · e3
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and

c′ = c− (Re(b)/2)(b− (Re(b))/2)

= c1 + c2 · e1 + c3 · e2 + c4 · e3 −
b1
2

(
b1 + b2 · e1 + b3 · e2 + b4 · e3 −

b1
2

)
=

(
c1 −

b21
2

+
b21
4

)
+

(
c2 −

b1b2
2

)
e1 +

(
c3 −

b1b3
2

)
e2 +

(
c4 −

b1b4
2

)
e3

=

(
c1 −

b21
4

)
+

(
c2 −

b1b2
2

)
e1 +

(
c3 −

b1b3
2

)
e2 +

(
c4 −

b1b4
2

)
e3.

Using all the above and C = 2Re(b′c′), we find

C = 2Re((−b2 · e1 − b3 · e2 − b4 · e3) · ((c1 −
b21
4
) + (c2 −

b1b2
2

)e1

+ (c3 −
b1b3
2

)e2 + (c4 −
b1b4
2

)e3)).

The real part is obtained only by multiplying terms of the same kind, therefore
we obtain:

C = −2b2c2α+ b1b
2
2α− 2b3c3β + b1b

2
3β + 2b4c4αβ − b1b

2
4αβ

and A = |b′|2 + 2Re(c′) = (−αb22 − βb32 + αβb24) + 2(c1 − b21
4 ). Then A =

−αb22 − βb32 + αβb24 + 2c1 −
b21
2

Computing B = |c′|2 we get

B =

(
c1 −

b21
4

)2

− α

(
c2 −

b1b2
2

)2

− β

(
c3 −

b1b3
2

)2

+ αβ

(
c4 −

b1b4
2

)2

.

We denote b1
2 = t and obtain:

B = (c1 − t2)2 − α(c2 − tb2)
2 − β(c3 − tb3)

2 + αβ(c4 − tb4)
2.

We compute W and Y according to the cases of the theorem. By denoting
m = |b′ +W | = W 2 − αb22 − βb23 + αβb24 and cu t = b1/2, we apply equation (8)
and we find

x1 = −t− (Wc1 − YW − b2c2α− b3c3β + b4c4αβ

− t(Wt− b22α− b23β + b24αβ))/m,

x2 = (Wc2 − b2c1 + b2Y + b3c4β − b4c3β − tb2(W − t))/m,

x3 = (Wc3 − b2c4α− b3c1 + b3Y + b4c2α− tb3(W − t))/m,

x4 = (Wc4 − b2c3 + b3c2 + b4c1 + b4Y − tb4(W − t))/m.

We obtain the solution as

x = x1 + x2e1 + x3e2 + x4e3.
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4. Numerical applications and examples

For the implementation of numerical applications, let’s consider the general case
of H(α, β), b = b1 + b2 · e1 + b3 · e2 + b4 · e3 and c = c1 + c2 · e1 + c3 · e2 + c4 · e3.
Using Proposition 4.1, we present the algorithm from the table 1. The algorithm
described has been implemented in Scilab 6.1.1. To verify our computations, we
apply all the formulas, on some remarkable examples.

Steps

1. Input α, β, b, c

2. Compute C, A, B

3. Identify case

4. If case 1: Compute W = 0,

C = 0, A ≥ 4B Y = (A±
√
A2 − 4B)/2

If case 2: Compute W = ±
√
2
√
B −A,

C = 0, A2 < 4B Y =
√
B

If case 3: Solve the polynomial equations
C ̸= 0 z3 + 2Az2 + (A2 − 4B)z − C2 = 0

and find the positive root.

5. Compute solutions using formula (9).

Table 1: Algorithm for computing the solutions of the quadratic equation.

Example 4.1 ([10], Example 2.12). Consider the quadratic equation x2+xe1+
(1 + e2) = 0, i.e., b = e1 and c = 1+ e2. This belongs to Case 4 in Theorem 2.3.
Then b′ = e1 and c′ = 1 + e2. Moreover, A = 3, B = 2, C = 0. It is Subcase 1
in Case 4. Hence, W = 0 and Y = 2 or Y = 1. Consequently, the two solutions
are x1 = −e1 + e3 and x2 = e3. For α = −1, β = −1, the solution is:

C = 0.000000,

A = 3.000000,

B = 2.000000,

Y1 = 2.000000,

Y2 = 1.000000,
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x1 = −0.000000− 1.000000e1 − 0.000000e2 + 1.000000e3,

x2 = −0.000000− 0.000000e1 − 0.000000e2 + 1.000000e3.

Example 4.2. ([10], Example 2.13) Consider the quadratic equation x2+xe1+
e2 = 0, i.e., b = e1 and c = e2. This belongs to Case 4 in Theorem 2.3. Then
b′ = e1 and c′ = e2. Moreover, A = 1, B = 1, C = 0. It is Subcase 2 in Case
4. Hence, W = +1 or −1 and Y = 1. Consequently, the two solutions are
x1 = (e1 + 1)−1(1− e2) = (1/2)(1− e1 − e2 + e3) and x2 = (e1 − 1)−1(1− e2) =
(1/2)(−1− e1 + e2 + e3). For α = −1, β = −1, the solution of the program:

C = 0.000000,

A = 1.000000,

B = 1.000000,

x1 = 0.500000− 0.500000e1 − 0.500000e2 + 0.500000e3,

x2 = −0.500000− 0.500000e1 + 0.500000e2 + 0.500000e3.

Example 4.3. ([10], Example 2.14) Consider the quadratic equation x2+xe1+
(1 + e1 + e2) = 0, i.e., b = e1 and c = 1 + e1 + e2. This belongs to Case 4 in
Theorem 2.3. Then b′ = e1 and c′ = 1+e1+e2. Moreover, A = 3, B = 3, C = 2.
It is Subcase 3 in Case 4. Now the unique positive roots of z3 + 6z2 − 3z − 4 is
1, and hence,W = 1 and Y = 3 or W = −1 and Y = 1. Consequently, the two
solutions are x1 = (1/2)(1 − 3e1 − e2 + e3) and x2 = (1/2)(−1 + e1 + e2 + e3).
For α = −1, β = −1, the solution of the program:

C = 2.000000,

A = 3.000000,

B = 3.000000,

x1 = 0.500000− 1.500000e1 − 0.500000e2 + 0.500000e3,

x2 = −0.500000 + 0.500000e1 + 0.500000e2 + 0.500000e3.

The results obtained in Examples 5.1-5.3 are exactly the ones obtain by
direct computation by the authors in [10].

In the following, we will present a few examples using the results presented
above and also calculate the solutions of the equations using the described al-
gorithm, for different values of α and β.

Example 4.4. Next, we aim to find the solution of the equation x2+bx+c = 0
in the case where b and c are quaternions:

b = 5 · 1 + 6 · e1 + 7 · e2 + 8 · e3

and

c = 2 · 1 + 3 · e1 + 4 · e2 + 5 · e3.
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For α = −1, β = −1, we can compute b′ = b−Re(b) = 6e1 + 7e2 + 8e3 and

c′ = c− 1

2
Re(b)

(
b− 1

2
Re(b)

)
,

c′ =

(
2− 25

2
+

25

4

)
1 + (3− 15) e1 +

(
4− 35

2

)
e2 + (5− 20) e3.

Then

c′ = −17

4
− 12e1 −

27

2
e2 − 15e3.

Consequently,

A = |b′|2 + 2Re(c′) = 62 + 72 + 82 + 2

(
−17

4

)
= 140, 5,

B = |c′|2 =
(
−17

4

)2

+ 122 +

(
27

2

)2

+ (15)2 = 569, 3125,

C = 2Re(b′c′) = −573.

We can check that A2 ≥ 4B, so we can use case 4. Using the formulas in case
4, the next step is to find the values of (W,Y ) using one of the three situations
described in the formula from case 4. Since C ̸= 0, we will use situation 3
z3 + 2Az2 + (A2 − 4B)z − C2 = 0.

To find the unique positive solution z, we will use the Newton-Raphson
method. In this case, we have:

f(z) = z3 + 2Az2 + (A2 − 4B)z − C2,

f ′(z) = 3z2 + 4Az + (A2 − 4B).

The analytical method to find the solutions of the equation is given by
choosing z0 = 1 and applying the Newton-Raphson formula. We can obtain
successive values for z as the fixed number given by:

z1 = z0 −
f(z0)

f ′(z0)
= 1− f(1)

f ′(1)
,

z2 = z1 −
f(z1)

f ′(z1)
,

z3 = z2 −
f(z2)

f ′(z2)
,

z4 = z3 −
f(z3)

f ′(z3)
.

Computing by this formula we use decimal fractions with many decimals,
therefore we used the Scilab solver:

p = −328329 + 17463x+ 281x2 + x3.
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By using of the solver in Scilab, we obtain: W1 = ±3.871934, and using a
numerical application, we obtain:

C = −573.000000,

A = 140.500000,

B = 569.312500,

x1 = −0.564033 + 0.008853e1 + 0.306465e2 − 0.017904e3,

x2 = −4.435967− 5.972266e1 − 6.647896e2 − 7.945509e3.

For α = −2, β = −3, the solution is

C = −2295.000000,

A = 594.500000,

B = 2202.812500,

W = ±3.813764,

x1 = −0.593118 + 0.012038e1 + 0.168839e2 − 0.004699e3,

x2 = −4.406882− 5.982890e1 − 6.819067e2 − 7.985585e3.

Example 4.5 ([7]). We aim to solve the following equation: x2 + (2 + 3e1 +
4e2 + 5e3)x+ (4− 5e1 − 6e2 − 7e3) = 0. For α = −1, β = −1, we write:

(a+be1+ce2+de3)
2+(2+3e1+4e2+5e3)(a+be1+ce2+de3)+(4−5e1−6e2−7e3) = 0.

We expand this equation and group the terms based on the quaternionic units:

(a2 − b2 − c2 − d2 + 2a− 3b− 4c− 5d+ 4) + (2ab+ 3a+ 2b− 5c+ 4d− 5)e1

+ (2ac+ 4a+ 5b+ 2c− 3d− 6)e2 + (2ad+ 5a− 4b+ 3c+ 2d− 7)e3 = 0.

Thus, we can obtain a system of linear equations with 4 equations and 4 un-
knowns: 

a2 − b2 − c2 − d2 + 2a− 3b− 4c− 5d+ 4 = 0,

2ab+ 3a+ 2b− 5c+ 4d− 5 = 0,

2ac+ 4a+ 5b+ 2c− 3d− 6 = 0,

2ad+ 5a− 4b+ 3c+ 2d− 7 = 0.

Solving this system of equations can provide us with the quaternionic solu-
tions to the initial equation. Unfortunately, this system does not seem to have
a simple and analytical solution, but we can try to solve it numerically or look
for a specialized method for solving quaternionic equations.

Using the algorithm, we found the following results:

C = −248.000000,

A = 56.000000,

B = 317.000000,

x1 = 0.988335 + 0.435138e1 − 0.199557e2 + 0.624407e3,

x2 = −2.988335− 3.374360e1 − 5.198324e2 − 5.563629e3.
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For α = −2.35, β = −100, the solution of the equations is

x1 = 1.416406 + 0.030602e1 − 0.009466e2 + 0.006083e3,

x2 = −3.416406− 2.977407e1 − 4.019286e2 − 5.005551e3.

Moreover, C = −36312.800000, A = 7502.150000, B = 43999.400000.

Example 4.6. Next, we aim to find the solution of the equation in the case
where b and c are quaternions: b = 1.25 + 0.2e1 − 0.31e2 − 0.69e3 and c =
−1 + 0.56e1 − 2.35e2 − 4.56e2. Then, the equations is

x2 + (1.25 + 0.2e1 − 0.31e2 − 0.69e3)x− 1 + 0.56e1 − 2.35e2 − 4.56e2 = 0.

Using the program, for α = −1, β = −1, we found the following results:

C = 7.208550,

A = −2.169050,

B = 23.819054,

W = ±3.485216,

x1 = 1.117608 +−0.251329e1 + 0.667362e2 + 1.505501e3,

x2 = −2.367608 + 0.018740e1 − 0.560890e2 − 0.861963e3.

For α = −6, β = −8.5, the solution is

C = 302.988862,

A = 22.556700,

B = 911.964612,

W = ±7.155732,

x1 = 2.952866− 0.219073e1 + 0.340546e2 + 0.917961e3,

x2 = −4.202866− 0.027102e1 − 0.234104e2 − 0.235706e3.

Example 4.7. Next, we aim to calculate by using of the program an example
where C = 0:

Find the solutions of the equation: x2+(e1+e2+e3)x+(−3e1−4e2+7e3) = 0.
We can see that b = e1 + e2 + e3 /∈ R, so we need to use the formula from

case 4. Firstly, we will calculate the values of b′, c′, A, B, and C:

b′ = b− Re(b) = e1 + e2 + e3,

c′ = c− Re(b)

2
(b− Re(b)

2
) = −3e1 − 4e2 + 7e3,

A = |b′|2 + 2Re(c′) = 3,

B = |c′|2 = 74,

C = 2Re(b′c′) = 0.
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The next step is to find the values of (W,Y ) using one of the three situations
described in the formula from case 4. Since C = 0 and A2 < 4B. Now we
can calculate (W,Y ): W = ±

√
2
√
B −A = ±3, 7689057476 and Y =

√
B =

8, 602325267.

By using of the program, we have found the following results:

C = 0.000000,

A = 3.000000,

B = 74.000000,

W = ±3.768906,

Y = 8.602325,

x1 = 1.884453 + 0.796552e1 + 0.608748e2 − 2.091566e3,

x2 = −1.884453− 0.517828e1 − 1.143758e2 + 0.975319e3.

The same equation can be solved for α = −6 and β = −9. In this case,
C ̸= 0. We get

C = 2088.000000,

A = 528.000000,

B = 2844.000000,

W = ±3.919010,

x1 = 1.959505− 0.537980e1 − 1.973780e2 − 3.017625e3,

x2 = −1.959505 + 0.399290e1 − 0.070390e2 + 0.024986e3.

Example 4.8. Next, we intend to use the program to calculate an example
where C=0:

Let’s find the solutions of the equation: x2+(e1+e2+e3)x+(−e1+e3) = 0.

We can see that b = e1 + e2 + e3 /∈ R, so we need to use the formula from
case 4.

Firstly, we will calculate the values of b′, c′, A, B and C:

b′ = b− Re(b) = e1 + e2 + e3,

c′ = c− Re(b)

2
(b− Re(b)

2
) = −e1 + e3,

A = |b′|2 + 2Re(c′) = 3,

B = |c′|2 = 2,

C = 2Re(b′c′) = 0.

The next step is to find the values of (W,Y ) using one of the three situations
described in the formula of case 4. Since C = 0 and A2 ≥ 4B, we will use
situation 1, W = 0, Y = (A±

√
A2 − 4B)/2 result Y1 = 2,Y2 = 1.
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Calculating with the numerical application, we get:

C = 0.000000,

A = 3.000000,

B = 2.000000,

Y1 = 2.000000,

Y2 = 1.000000,

x1 = −0.000000− 0.333333e1 − 0.666667e2 − 0.333333e3,

x2 = −0.000000− 0.000000e1 − 0.333333e2 − 0.000000e3.

For α = −100, β = −100, we get C ̸= 0, like in the other example, and the
solution is

C = 19800.000000,

A = 10200.000000,

B = 10100.000000,

W = ±1.940836,

x1 = 0.970418− 0.989912e1 − 0.999903e2 − 0.999995e3,

x2 = −0.970418 + 0.009513e1 − 0.000097e2 + 0.000191e3.

Example 4.9. ([7]) Let fn be the Fibonacci sequence define as f0 = 0, f1 = 1
and fk = fk−1 + fk−2. We define the quaternion Fn = fn + fn+1e1 + fn+2e2 +
fn+3e3.

Consider the monic quadratic equation x2+Fnx+Fm = 0. We use the same
algorithm for solving the equation.

For n = 3,m = 3, case discussed in ([7]), we obtain F3 = 2+3e1 +5e2 +8e3
and the equation x2 + (2 + 3e1 + 5e2 + 8e3)x+ (2 + 3e1 + 5e2 + 8e3) = 0.

Solving the equations for α = −1, β = −1, and we get

C = 0.000000,

A = 100.000000,

B = 1.000000,

Y1 = 99.989999,

Y2 = 0.010001,

x1 = −1.000000− 3.030306e1 − 4.560714e2 − 8.080816e3,

x2 = −1.000000 + 0.030306e1 + 0.540306e2 + 0.080816e3.

Solving the equations for α = −6.3, β = −5.25, and we get

C = 0.000000,

A = 2306.750000,
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B = 1.000000,

Y1 = 2306.749566,

Y2 = 0.000434,

x1 = −1.000000 +−3.001301e1 − 4.870961e2 − 8.003470e3,

x2 = −1.000000 + 0.001301e1 + 0.133376e2 + 0.003470e3.

For n = 5,m = 10 we obtain F5 = 5+8e1 +13e2 +21e3, and F10 = 55+ 89e1 +
144e2 +233e3. Thus, the equation in this case is x2 +F5x+F10 = 0. Then, the
solution for α = −1, β = −1 found by the algorithm is

C = 11584.000000,

A = 771.500000,

B = 52150.062500,

W = ±13.722364,

x1 = 4.361182− 9.008123e1 − 10.308573e2 − 23.657396e3,

x2 = −9.361182 + 1.019720e1 + 5.966780e2 + 2.645800e3.

For α = −6.3, β = −5.25 the solution provided by the algorithm is

C = −272916.525000,

A = 15974.025000,

B = 1175231.943750,

W = ±16.934907,

x1 = 5.967453− 8.058866e1 − 11.642625e2 − 21.158442e3,

x2 = −10.967453 + 0.062114e1 + 1.552659e2 + 0.157823e3.

Example 4.10. Let pn be the Pell sequence define as p0 = 0, p1 = 1 and
pk = 2pk−1+pk−2. Consider the quaternions Pn = pn+pn+1e1+pn+2e2+pn+3e3.
We solve the monic quadratic equation x2 + Pnx + Pm = 0. For n = 3,m = 3,
we get P3 = 3 + 7e1 + 17e2 + 41e3 and the equation is x2 + (3 + 7e1 + 17e2 +
41e3)x+ 3 + 7e1 + 17e2 + 41e3 = 0.

Solving the equations for α = −1, β = −1 using the algorithm we obtain

C = −2019.000000,

A = 2020.500000,

B = 505.312500,

W = ±0.999011,

x1 = −1.000494 + 0.003464e1 + 0.292570e2 + 0.020287e3,

x2 = −1.999506− 7.003464e1 − 16.724253e2 − 41.020287e3.
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For α = −7, β = −6 the solutions are

C = −72679.000000,

A = 72680.500000,

B = 18170.312500,

W = ±0.999972,

x1 = −1.000014 + 0.000096e1 + 0.055517e2 + 0.000564e3,

x2 = −1.999986− 7.000096e1 − 16.944950e2 − 41.000564e3.

For n = 12,m = 19, the quaternions are P12 = 8119 + 19601e1 + 47321e2 +
114243e3 and P19 = 3880899 + 9369319e1 + 22619537e2 + 54608393e3. The
equations is x2 + P12x+ P19 = 0. Solving for α = −1, β = −1, we get

C = −112279524556439.000000,

A = 15649742008.500000,

B = 201223166914529952.000000,

W = ±7162.787683,

x1 = −478.106158 + 0.284778e1 + 136.813987e2 + 1.659808e3,

x2 = −7640.893842− 19601.284778e1 − 47185.561043e2 − 114244.659808e3.

For α = −7, β = −6 the solutions are

C = −4041981872234103.000000,

A = 564261307428.500000,

B = 7238333535486963712.000000,

W = ±7162.990016,

x1 = −478.004992 + 0.007936e1 + 26.572949e2 + 0.046254e3,

x2 = −7640.995008− 19601.007936e1 − 47294.465369e2 − 114243.046254e3.

Example 4.11. Consider now the Lucas number sequences define as l0 = 2, l1 =
1 and ln = ln−1 + ln−2. We define the quaternion Ln = ln + ln+1e1 + ln+2e2 +
ln+3e3. We solve the monic quadratic equation x2 + Lnx + Lm = 0. For n =
3,m = 8, the quaternions are L3 = 4+ 7e1 + 11e2 + 18e3 and L8 = 47 + 76e1 +
123e2 + 199e3.

Solving the equation x2 + L3x+ L8 = 0 for α = −1, β = −1, we get

C = 8958.000000,

A = 580.000000,

B = 42463.000000,

W = ±13.777285,

x1 = 4.888642− 8.113676e1 − 8.726917e2 − 20.805123e3,

x2 = −8.888642 + 1.040556e1 + 5.802217e2 + 2.878243e3.
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On the other hand, for α = −3, β = −10, the solution are

C = 200864.000000,

A = 11163.000000,

B = 912461.000000,

W = ±17.747518,

x1 = 6.873759− 7.095766e1 − 10.394477e2 − 18.193193e3,

x2 = −10.873759 + 0.051875e1 + 0.848658e2 + 0.197582e3.

For n = 11,m = 14, L11 = 199+322e1+521e2+843e3 and L14 = 843+1364e1+
2207e2 + 3571e3.

Solving the equation x2 + L11x+ L14 = 0 for α = −1, β = −1, we get

C = −4638388100.000000,

A = 24326817.500000,

B = 221017587902.562500,

W = ±190.527592,

x1 = −4.236204 + 0.000233e1 + 0.283353e2 + 0.000622e3,

x2 = −194.763796− 322.000241e1 − 520.717414e2 − 843.000621e3.

Finally, we solve the same equation for α = −1.236, β = −10.023, the solu-
tion are

C = −2220150838.889460,

A = 11634516.036772,

B = 105832184609.751312,

W = ±190.527281,

x1 = −4.236359 + 0.000487e1 + 0.243975e2 + 0.001297e3,

x2 = −194.763641− 322.000504e1 − 520.757626e2 − 843.001295e3.

Conclusion

In this article, we have provided an algorithm in Scilab which allows us to find
solutions for the monic quadratic equation x2 + bx+ c = 0, with b, c ∈ H(α, β).

In Theorem 2.3, the authors offer solutions for all cases of the monic equation
x2 + bx + c = 0. We are interested only in cases 3 and 4 of the theorem. The
article presents several equations solved using the algorithm, implemented in
Scilab. By assigning specific values to the two quaternions, b and c, in the form
of b = b1 + b2e1 + b3e2 + b4e3 and c = c1 + c2e1 + c3e2 + c4e3, and utilizing the
formulas provided in the article, we perform the following calculations: Compute
the values of A,B, and C: A is determined by evaluating the expression A =
|b′|2 +2Re(c′), where b′ = b−Re(b) and c′ = c− (Re(b)/2)(b− (Re(b))/2). B is
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computed as B = |c′|2. C is obtained by calculating C = 2Re(b′c′). Identify the
case we are in, based on the four cases specified in the theorem. Proceeding with
the determined case, we find the two solutions of the monic quadratic equation,
x2 + bx + c = 0, using the appropriate formulas presented in the article. That
this detailed procedure allows us to obtain precise and accurate solutions for
the given quadratic equation in the context of the algebra of real quaternions.

The algorithm can solve monic quadratic equations for any base that respects
the multiplication table of quaternions.
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