A method for solving quadratic equations in real quaternion algebra by using Scilab software

Geanina Zaharia*
PhD student at Doctoral School of Mathematics
Ovidius University of Constanţa
Romania
geanina.zaharia@365.univ-ovidius.ro
Diana-Rodica Munteanu
Ovidius University of Constanţa
Faculty of Psychology and Educational Sciences
diana_munteanu@365.univ-ovidius.ro

Abstract

In this paper, we present some numerical applications for the equation $x^{2}+a x+b=0$, where a, b are two quaternionic elements in $\mathbb{H}(\alpha, \beta) . \mathbb{H}(\alpha, \beta)$ represents the algebra of real quaternions with parameterized coefficients by α and β. The algebra of real quaternions is an extension of complex numbers and is represented by algebraic objects called quaternions. These quaternions are composed of four components: a real part and three imaginary components. In general, $\mathbb{H}(\alpha, \beta)$ indicates a family of parameterized quaternion algebras, in which the specific values of α and β determine the specific properties and structure of the quaternion algebra. Based on well-known solving methods, we have developed a new numerical algorithm that solves the equation for any quaternions a and b in any algebra $\mathbb{H}(\alpha, \beta)$.

Keywords: quaternion, quadratic formula, solving polynomial equation.
MSC 2020: 17A35, 17A45, 15A18

Introduction

Quaternions are a number system first introduced in 1843 by Irish mathematician Sir William Rowan Hamilton. Hamilton was seeking a way to extend the complex numbers to three dimensions and realized that he could do so by adding an additional imaginary unit.

Quaternions are different from complex numbers in that they are non-commutative. Quaternions have found many practical applications in fields such as computer graphics, physics, and engineering. For instance, they are used in computer graphics to represent 3D rotations and orientations, and in aerospace engineering to model spacecraft altitude and control systems.

Quaternions are essential in control systems for guiding aircraft and rockets: each quaternion has an axis indicating the direction and a magnitude determining the size of the rotation. Instead of representing an orientation change

[^0]through three separate rotations, quaternions use a single rotation to achieve the same transformation.

Despite their usefulness, quaternions are not as widely used as complex numbers, largely due to their non-commutative nature. However, they remain an important topic in mathematics and physics, and continue to be studied and applied in various fields to this day. ([1], [4], [6], [10], [13])

We will numerically solve the monic quadratic equation with quaternion coefficients in the algebra $\mathbb{H}(\alpha, \beta)$ using Scilab, a free and open-source software for numerical computation.

We chose to use the Scilab software to numerically solve the monic quadratic equations with quaternionic coefficients in the algebra $\mathbb{H}(\alpha, \beta)$ because Scilab is a free and open-source software, making it accessible and usable by a large number of users. Additionally, this software allows us to customize and adapt it to the specific needs and requirements of our problem. Scilab is renowned for its powerful functionality in numerical computation. It offers a wide range of mathematical and algebraic functions, including an integrated solver for polynomial equations. The built-in polynomial equation solver in Scilab provides us with the necessary tools to efficiently solve the monic quadratic equation with quaternionic coefficients. Scilab, such as Matlab, which is more widely known, has a user-friendly and intuitive interface, facilitating ease of use and navigation within the software. The programming is very intuitive and doesn't require definition of any parameters, so the main focus remains the mathematical modeling of the equations and the algorithm. This decision allows us to obtain precise and efficient results in studying and applying our new findings in quaternion algebra.

The aim of the paper is to present an innovative, efficient, and accurate method for the numerical solution of monic quadratic equations in the algebra of real quaternions using the Scilab software. We develop a new algorithm that solves these equations for any quaternionic coefficients in any algebra $\mathbb{H}(\alpha, \beta)$. Our ultimate goal is to contribute to the development and application of this knowledge in various fields such as computer graphics, physics, and engineering, opening up new research and application perspectives for quaternions and monic quadratic equations with quaternionic coefficients.

1. Preliminaries

The quadratic equation has been explored in the context of Hamilton quaternions in the works [11], [13]. In [11], the equation $x^{2}+b x+c=0$ is analyzed and explicit formulas for its roots are obtained. These formulas were subsequently used in the classification of quaternionic Möbius transformations [14], [2]. In Hamilton quaternions, every nonzero element can be inverted, while in $\mathbb{H}(\alpha, \beta)$ there exist split quaternions that cannot be inverted. In an algebraic system, finding the roots of a quadratic equation is always connected to the factorization of a quadratic polynomial [12]. In the case of real numbers (\mathbb{R}) and complex
numbers (\mathbb{C}), the two problems are identical. However, in noncommutative algebra, these two problems are interconnected. Scharler et al. [15] analyzed the factorizability of a quadratic split quaternion polynomial, revealing certain information about the roots of a split quaternionic quadratic equation.

In a publication from 2022, [7] exploring algebras derived from the CayleyDickson process presents challenges in achieving desirable properties due to computational complexities. Hence, the discovery of identities within these algebras it gains meaning, helping to acquire new properties and making calculations easier. To this end, the study introduces several fresh identities and properties within the algebras derived from the Cayley-Dickson process. Furthermore, when certain elements serve as coefficients, quadratic equations in real division quaternion algebra can be solved, showcasing the authors ability to provide direct solutions without relying on specialized software.

In the paper [3], the author specifically focuses on deriving explicit formulas for the roots of the quadratic equation $x^{2}+b x+c=0$ where b and c are split quaternions $\left(\mathbb{H}_{S}\right)$.

The same subject can be found in [1], where quadratic formulas for generalized quaternions are studied. It focuses on obtaining explicit formulas for the roots of quadratic equations in this specific context of generalized quaternions.

Let $\mathbb{H}(\alpha, \beta)$ be the generalized quaternion algebra over an arbitrary field \mathbb{K}, that is the algebra of the elements of the form $q=q_{1}+q_{2} e_{1}+q_{3} e_{2}+q_{4} e_{3}$ where $q_{i} \in \mathbb{K}, i \in\{1,2,3,4\}$, and the basis elements $\left\{1, e_{1}, e_{2}, e_{3}\right\}$ satisfy the following multiplication table:

\cdot	1	e_{1}	e_{2}	e_{3}
1	1	e_{1}	e_{2}	e_{3}
e_{1}	e_{1}	α	e_{3}	αe_{2}
e_{2}	e_{2}	$-e_{3}$	β	$-\beta e_{1}$
e_{3}	e_{3}	$-\alpha e_{2}$	βe_{1}	$-\alpha \beta$

The conjugate of a quaternion is obtained by changing the sign of the imaginary part: $\bar{q}=q_{1}-q_{2} e_{1}-q_{3} e_{2}-q_{4} e_{3}$, where $q=q_{1}+q_{2} e_{1}+q_{3} e_{2}+q_{4} e_{3}$.

The norm of a quaternion is defined as the sum of the squares of its components, for this case, the norm is:

$$
\boldsymbol{n}(q)=q \cdot \bar{q}=\|q\|^{2}=q_{1}^{2}-\alpha q_{2}^{2}-\beta q_{3}^{2}+\alpha \beta q_{4}^{2} .
$$

If for $x \in \mathbb{H}(\alpha, \beta)$, the relation $n(x)=0$ implies $x=0$, then the algebra $\mathbb{H}(\alpha, \beta)$ is called a division algebra, otherwise the quaternion algebra is called a split algebra. (see [4])

If α and β are negative real numbers, it becomes a division algebra, therefore the norm will be different from zero. The role of α and β is to parameterize the coefficients of the quaternion algebra $\mathbb{H}(\alpha, \beta)$. These values determine the specific properties and structure of the quaternion algebra. In the multiplication
table given in equation (1), α and β appear as parameters that determine the specific structure and properties of the quaternion algebra $\mathbb{H}(\alpha, \beta)$.

The role of the norm is to provide a measure of the size of a quaternion in the algebra $\mathbb{H}(\alpha, \beta)$. The norm expression involves the coefficients $q_{1}, q_{2}, q_{3}, q_{4}$, and the parameters α and β. The norm plays a crucial role in determining whether the algebra $\mathbb{H}(\alpha, \beta)$ is a division algebra or a split algebra, based on whether the norm is nonzero or zero, respectively.

Split quaternions form an algebraic structure and are linear combinations with real coefficients. Every quaternion can be written as a linear combination of the elements $1, e_{1}, e_{2}$, and e_{3}, where e_{1}, e_{2}, and e_{3} are the imaginary units that satisfy the relations $e_{1}^{2}=\alpha, e_{2}^{2}=\beta$, and $e_{3}^{2}=-\alpha \beta$.

We will now present some of the most important properties and relations of quaternions, which play a fundamental role in various fields such as physics, engineering, computer science, and applied mathematics:

- The addition is done component-wise:
$a=a_{1} \cdot 1+a_{2} e_{1}+a_{3} e_{2}+a_{4} e_{3}$,
$b=b_{1} \cdot 1+b_{2} e_{1}+b_{3} e_{2}+b_{4} e_{3}$,
$\Rightarrow a+b=\left(a_{1}+b_{1}\right) \cdot 1+\left(a_{2}+b_{2}\right) e_{1}+\left(a_{3}+b_{3}\right) e_{2}+\left(a_{4}+b_{4}\right) e_{3}$.
- Quaternion multiplication is not commutative:
$a \cdot b=\left(a_{1} b_{1}+\alpha a_{2} b_{2}+\beta a_{3} b_{3}-\alpha \beta a_{4} b_{4}\right)+e_{1}\left(a_{1} b_{2}+a_{2} b_{1}-\beta a_{3} b_{4}+\beta a_{4} b_{3}\right)+$ $e_{2}\left(a_{1} b_{3}+\alpha a_{2} b_{4}+a_{3} b_{1}-\alpha a_{4} b_{2}\right)+e_{3}\left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}\right)$ $b \cdot a=\left(a_{1} b_{1}+\alpha a_{2} b_{2}+\beta a_{3} b_{3}-\alpha \beta a_{4} b_{4}\right)+e_{1}\left(a_{2} b_{1}+a_{1} b_{2}-\beta a_{4} b_{3}+\beta a_{3} b_{4}\right)+$ $e_{2}\left(a_{3} b_{1}+\alpha a_{4} b_{2}+a_{1} b_{3}-\alpha a_{2} b_{4}\right)+e_{3}\left(a_{4} b_{1}+a_{3} b_{2}-a_{2} b_{3}+a_{1} b_{4}\right)$ $\Rightarrow a \cdot b \neq b \cdot a$.
- Quaternions are associative: $(a \cdot b) \cdot c=a \cdot(b \cdot c)=a \cdot b \cdot c$.
- The trace of the element q:

$$
t(q)=q+\bar{q} .
$$

- The multiplication of a quaternion by a scalar: $\alpha \cdot q=\alpha \cdot\left(q_{1}+q_{2} e_{1}+q_{3} e_{2}+q_{4} e_{3}\right)=\left(\alpha \cdot q_{1}\right)+\left(\alpha \cdot q_{2}\right) \cdot e_{1}+\left(\alpha \cdot q_{3}\right) \cdot e_{2}+\left(\alpha \cdot q_{4}\right) \cdot e_{3}$.
- The inverse of a non-zero quaternion q is given by

$$
q^{-1}=\frac{\bar{q}}{\|q\|^{2}}=\frac{q_{1}-q_{2} e_{1}-q_{3} e_{2}-q_{4} e_{3}}{q_{1}^{2}-\alpha q_{2}^{2}-\beta q_{3}^{2}+\alpha \beta q_{4}^{2}} .
$$

- The dot product of two quaternions can be defined as $q \cdot r=(q r+r q) / 2$.

These are just some of the many important relations and properties of quaternions. All these properties make quaternions a powerful tool in mathematics and practical applications.

2. Known results

In [16] and [17], to find the root of the equation $f\left(x_{t}\right)=0$, the Newton-Raphson method relies on the Taylor series expansion of the function around the estimate x_{i} to find a better estimate x_{i+1} :

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)+\mathcal{O}\left(h^{2}\right),
$$

where x_{i+1} is the estimate of the root after iteration $i+1$ and x_{i} is the estimate at iteration $i . \mathcal{O}\left(h^{2}\right)$ means the order of error of the Taylor series around the point x_{i}. Assuming $f\left(x_{i+1}\right)=0$ and rearranging:

$$
x_{i+1} \approx x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} .
$$

The procedure is as follows. Setting an initial guess x_{0}, a tolerance ε_{s}, and a maximum number of iterations N :

At iteration i, calculate $x_{i} \approx x_{i-1}-\frac{f\left(x_{i-1}\right)}{f^{\prime}\left(x_{i-1}\right)}$ and ε_{r}. If $\varepsilon_{r} \leq \varepsilon_{s}$ or if $i \geq N$, stop the procedure. Otherwise, repeat.

In [10], the authors present specific formulas to solve the monic quadratic equation $x^{2}+b x+c=0$ with $b, c \in \mathbb{H}(\alpha, \beta)$, where $\alpha=-1, \beta=-1$, the real division algebra, according to the multiplication table presented in (1). In the following we present the results we will use in developing our solutions, and a proof of lemma 2 :

Lemma 2.1 ([10], Lemma 2.1). Let $A, B, C \in \mathbf{R}$ with the following properties: $C \neq 0, A<0$ implies $A^{2}<4 B$.

Then the equation of order 3 :

$$
\begin{equation*}
y^{3}+2 A y^{2}+\left(A^{2}-4 B\right) y-C^{2}=0 \tag{2}
\end{equation*}
$$

has exactly one positive solution y.
Lemma 2.2 ([10], Lemma 2.2). Let $A, B, C \in R$ such that: $B \geq 0$ and $A<0$ implies $A^{2}<4 B$ then the real system:

$$
\left\{\begin{array}{l}
Y^{2}-\left(A+W^{2}\right) Y+B=0 \tag{3}\\
W^{3}+(A-2 Y) W+C=0
\end{array}\right.
$$

has at most two solutions (W, Y) with $W \in \mathbf{R}$ and $Y \geq 0$ as follows:
(i) $W=0, Y=\frac{A \pm \sqrt{A^{2}-4 B}}{2}$ provided that $C=0, A^{2} \geq 4 B$;
(ii) $W= \pm \sqrt{2 \sqrt{B}-A}, Y=\sqrt{B}$ provided that $C=0, A^{2}<4 B$.
(iii) $W= \pm \sqrt{z}, Y=\frac{W^{3}+A W+C}{2 W}$ provided that $C \neq 0$ and z is the unique positive solution of the real polynomial:

$$
z^{3}+2 A z^{2}+\left(A^{2}-4 B\right) z-C^{2}=0
$$

Proof. Let $A, B, C \in \mathbf{R}$ such that $B \geq 0$ and $A<0 \Longrightarrow A^{2}<4 B$.
We want to show that the real system has at most two solutions (W, Y) with $W \in \mathbf{R}$ and $Y \geq 0$ as follows:
(i) $W=0, Y=\frac{A \pm \sqrt{A^{2}-4 B}}{2}$ provided that $C=0, A^{2} \geq 4 B$;
(ii) $W= \pm \sqrt{2 \sqrt{B}-A}, Y=\sqrt{B}$ provided that $C=0, A^{2}<4 B$;
(iii) $W= \pm \sqrt{z}, Y=\frac{W^{3}+A W+C}{2 W}$ provided that $C \neq 0$ and z is the unique positive solution of the real polynomial:

$$
z^{3}+2 A z^{2}+\left(A^{2}-4 B\right) z-C^{2}=0
$$

From Lemma 2.1, we know that the polynomial $z^{3}+2 A z^{2}+\left(A^{2}-4 B\right) z-C^{2}=0$ has exactly one positive solution z when $C \neq 0$.

For the cases (i) and (ii), when $C=0$, the first equation becomes a quadratic equation in Y. If $A^{2} \geq 4 B$, there are two real solutions for Y, and if $A^{2}<4 B$, there is one real solution for Y. Since $W=0$, these solutions correspond to the cases 1 . and 2 . in the lemma.

The case (iii), when $C \neq 0$, we can express Y as a function of W using the second equation: $Y=\frac{W^{3}+A W+C}{2 W}$. Substituting this expression for Y in the first equation, we obtain a polynomial equation in W^{2} of degree 3 . Since z is the unique positive solution of this polynomial, there are two solutions for W : $W= \pm \sqrt{z}$. These solutions correspond to the case 3 . in the lemma.

In conclusion, the real system (3) has at most two solutions (W, Y) with $W \in \mathbf{R}$ and $Y \geq 0$ as described in the lemma.

Theorem 2.3 ([10], Theorem 2.3). The solution of the quadratic equation $x^{2}+$ $b x+c=0$ can be obtained in the following way:
Case 1. If $b, c \in \mathbf{R}$ and $b^{2}<4 c$ then:

$$
\begin{equation*}
x=\frac{1}{2}\left(-b+e \cdot e_{1}+f \cdot e_{2}+g \cdot e_{3}\right), \tag{4}
\end{equation*}
$$

where $e^{2}+f^{2}+g^{2}=4 c-b^{2}$ where e, $f, g \in \mathbf{R}$.
Case 2. If $b, c \in \mathbf{R}$ and $b^{2} \geq 4 c$ then:

$$
\begin{equation*}
x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2} \tag{5}
\end{equation*}
$$

Case 3. If $b \in \mathbf{R}, c \notin \mathbf{R}$ then:

$$
\begin{equation*}
x=\frac{-b}{2} \pm \frac{m}{2} \mp \frac{c_{1}}{m} \cdot e_{1} \mp \frac{c_{2}}{m} \cdot e_{2} \mp \frac{c_{3}}{m} \cdot e_{3}, \tag{6}
\end{equation*}
$$

where $c=c_{0}+c_{1} \cdot e_{1}+c_{2} \cdot e_{2}+c_{3} \cdot e_{3}$, and

$$
\begin{equation*}
m=\sqrt{\frac{b^{2}-4 c_{0}+\sqrt{\left(b^{2}-4 c_{0}\right)^{2}+16\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)}}{2}} . \tag{7}
\end{equation*}
$$

Case 4. If $b \notin \mathbf{R}$ then:

$$
\begin{equation*}
x=\frac{(-\operatorname{Re}(b))}{2}-\left(b^{\prime}+W\right)^{-1}\left(c^{\prime}-Y\right), \tag{8}
\end{equation*}
$$

where $b^{\prime}=b-\operatorname{Re}(b)=\operatorname{Im}(b), c^{\prime}=c-(\operatorname{Re}(b) / 2)(b-(\operatorname{Re}(b)) / 2)$, where (W, Y) are chosen in the following way:
(i) $W=0, Y=\left(A \pm \sqrt{A^{2}-4 B}\right) / 2$ provided that $C=0, A^{2} \geq 4 B$;
(ii) $W= \pm \sqrt{2 \sqrt{B}-A}, Y=\sqrt{B}$ provided that $C=0, A^{2}<4 B$;
(iii) $W= \pm \sqrt{z}, Y=\left(W^{3}+A W+C\right) / 2 W$ provided that $C \neq 0$ and z is the unique positive solution of the equation:

$$
z^{3}+2 A z^{2}+\left(A^{2}-4 B\right) z-C^{2}=0
$$

where $A=\left|b^{\prime}\right|^{2}+2 \operatorname{Re}\left(c^{\prime}\right), B=\left|c^{\prime}\right|^{2}$ and $C=2 \operatorname{Re}\left(\overline{b^{\prime}} c^{\prime}\right)$.
Corollary 2.4 ([10], Corollary 2.4). The equation has an infinity of solutions if $b, c \in \mathbf{R}$ and $b^{2}<4 c$.

Corollary 2.5 ([10], Corollary 2.6). The equation has an unique solution if and only if:

1. $b, c \in \mathbf{R}$ and $b^{2}-4 c=0$;
2. $b \notin \mathbf{R}$ and $C=0=A^{2}-4 B$.

Corollary 2.6. If the quadratic equation $x^{2}+b x+c=0$ has real coefficients b and c, and $b^{2}<4 c$, then the solution of the equation can be expressed as $x=\frac{1}{2}\left(-b+e \cdot e_{1}+f \cdot e_{2}+g \cdot e_{3}\right)$, where $e^{2}+f^{2}+g^{2}=4 c-b^{2}$ and $e, f, g \in \mathbf{R}$.

Corollary 2.7. If the quadratic equation $x^{2}+b x+c=0$ has real coefficients b and c, and $b^{2} \geq 4 c$, then the solutions of the equation are $x=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}$.
Corollary 2.8. If b and c are the coefficients of the quadratic equation $x^{2}+$ $b x+c=0$, such that $b \notin \mathbf{R}$, then the solution of the equation can be expressed as:

$$
x=\frac{(-\operatorname{Re}(b))}{2}-\left(b^{\prime}+W\right)^{-1}\left(c^{\prime}-Y\right),
$$

where $b^{\prime}=b-\operatorname{Re}(b)=\operatorname{Im}(b), c^{\prime}=c-(\operatorname{Re}(b) / 2)(b-(\operatorname{Re}(b)) / 2)$, and (W, Y) are chosen such that:

- $W=0, Y=\left(A \pm \sqrt{A^{2}-4 B}\right) / 2$ if $C=0$ and $A^{2} \geq 4 B$;
- $W= \pm \sqrt{2 \sqrt{B}-A}, Y=\sqrt{B}$ if $C=0$ and $A^{2}<4 B$;
- $W= \pm \sqrt{z}, Y=\left(W^{3}+A W+C\right) / 2 W$ if $C \neq 0$ and z is the unique positive solution of the equation $z^{3}+2 A z^{2}+\left(A^{2}-4 B\right) z-C^{2}=0$, where $A=\left|b^{\prime}\right|^{2}+2 \operatorname{Re}\left(c^{\prime}\right), B=\left|c^{\prime}\right|^{2}$ and $C=2 \operatorname{Re}\left(\overline{b^{\prime}} c^{\prime}\right)$.

3. The solutions of the second-degree equation in real quaternions

It is important to mention that the algebra $\mathbb{H}(\alpha, \beta)$ is a mathematical construction, and its properties can vary depending on the values chosen for α and β. When we take negative values for α and β in the algebra $\mathbb{H}(\alpha, \beta))$, it becomes a division algebra. This means that every nonzero element in the algebra can be inverted. Multiplication and inversion of elements can be performed using the specific rules of this algebra.

Therefore, for the algebra $\mathbb{H}(\alpha, \beta)$, we will take negative values for α and β, thus making it a division algebra, and the norm will be nonzero. If the values of α and β are positive, we no longer have a division algebra because the norm is zero.

Next, we will describe the solution of a monic quadratic equation in the algebra of real quaternions. This statement provides an explicit formula for finding the solutions of the equation and explains how to perform the necessary calculations. It presents the general formula for the solution of the monic quadratic equation, where the equation's coefficients are represented as real quaternions, and the solution is a linear combination of the imaginary units of the quaternions. This formula is presented in a detailed manner, specifying the values of each component of the solution in terms of the coefficients and other terms involved in the equation.
Proposition 3.1. Let $b=b_{0}+b_{1} \cdot e_{1}+b_{2} \cdot e_{2}+b_{3} \cdot e_{3}$ and $c=c_{0}+c_{1} \cdot e_{1}+c_{2} \cdot e_{2}+c_{3} \cdot e_{3}$ where b, c are two quaternionic elements in $\mathbb{H}(\alpha, \beta)$ and knowing W and Y of the Theorem 2.3 the solution of the second degree equation $x^{2}+b x+c=0$ is of the form

$$
\begin{equation*}
x=x_{1}+x_{2} e_{1}+x_{3} e_{2}+x_{4} e_{3}, \tag{9}
\end{equation*}
$$

where:

$$
\begin{aligned}
& x_{1}=-t-\left[W c_{1}-Y W-b_{2} c_{2} \alpha-b_{3} c_{3} \beta+b_{4} c_{4} \alpha \beta-t\left(W t-b_{2}^{2} \alpha-b_{3}^{2} \beta+b_{4}^{2} \alpha \beta\right)\right] / m, \\
& x_{2}=\left(W c_{2}-b_{2} c_{1}+b_{2} Y+b_{3} c_{4} \beta-b_{4} c_{3} \beta-t b_{2}(W-t)\right) / m, \\
& x_{3}=\left(W c_{3}-b_{2} c_{4} \alpha-b_{3} c_{1}+b_{3} Y+b_{4} c_{2} \alpha-t b_{3}(W-t)\right) / m, \\
& x_{4}=\left(W c_{4}-b_{2} c_{3}+b_{3} c_{2}+b_{4} c_{1}+b_{4} Y-t b_{4}(W-t)\right) / m
\end{aligned}
$$

with $t=\frac{b_{1}}{2}$ and

$$
m=W^{2}-\alpha b_{2}^{2}-\beta b_{3}^{2}+\alpha \beta b_{4}^{2} .
$$

Proof. Let $b=b_{1}+b_{2} \cdot e_{1}+b_{3} \cdot e_{2}+b_{4} \cdot e_{3}$ and $c=c_{1}+c_{2} \cdot e_{1}+c_{3} \cdot e_{2}+c_{4} \cdot e_{3}$. for this case, the norm is:

$$
\boldsymbol{n}(a)=a \bar{a}=a_{1}^{2}-\alpha a_{2}^{2}-\beta a_{3}^{2}+\alpha \beta a_{4}^{2} .
$$

We compute the necessary elements for applying the theorem: $\operatorname{Re}(b)=b_{1}$. Therefore,

$$
b^{\prime}=b-\operatorname{Re}(b)=\operatorname{Im}(b)=b_{2} \cdot e_{1}+b_{3} \cdot e_{2}+b_{4} \cdot e_{3}
$$

and

$$
\begin{aligned}
c^{\prime} & =c-(\operatorname{Re}(b) / 2)(b-(\operatorname{Re}(b)) / 2) \\
& =c_{1}+c_{2} \cdot e_{1}+c_{3} \cdot e_{2}+c_{4} \cdot e_{3}-\frac{b_{1}}{2}\left(b_{1}+b_{2} \cdot e_{1}+b_{3} \cdot e_{2}+b_{4} \cdot e_{3}-\frac{b_{1}}{2}\right) \\
& =\left(c_{1}-\frac{b_{1}^{2}}{2}+\frac{b_{1}^{2}}{4}\right)+\left(c_{2}-\frac{b_{1} b_{2}}{2}\right) e_{1}+\left(c_{3}-\frac{b_{1} b_{3}}{2}\right) e_{2}+\left(c_{4}-\frac{b_{1} b_{4}}{2}\right) e_{3} \\
& =\left(c_{1}-\frac{b_{1}^{2}}{4}\right)+\left(c_{2}-\frac{b_{1} b_{2}}{2}\right) e_{1}+\left(c_{3}-\frac{b_{1} b_{3}}{2}\right) e_{2}+\left(c_{4}-\frac{b_{1} b_{4}}{2}\right) e_{3} .
\end{aligned}
$$

Using all the above and $C=2 \operatorname{Re}\left(\overline{b^{\prime}} c^{\prime}\right)$, we find

$$
\begin{aligned}
C & =2 R e\left((- b _ { 2 } \cdot e _ { 1 } - b _ { 3 } \cdot e _ { 2 } - b _ { 4 } \cdot e _ { 3 }) \cdot \left(\left(c_{1}-\frac{b_{1}^{2}}{4}\right)+\left(c_{2}-\frac{b_{1} b_{2}}{2}\right) e_{1}\right.\right. \\
& \left.\left.+\left(c_{3}-\frac{b_{1} b_{3}}{2}\right) e_{2}+\left(c_{4}-\frac{b_{1} b_{4}}{2}\right) e_{3}\right)\right)
\end{aligned}
$$

The real part is obtained only by multiplying terms of the same kind, therefore we obtain:

$$
C=-2 b_{2} c_{2} \alpha+b_{1} b_{2}^{2} \alpha-2 b_{3} c_{3} \beta+b_{1} b_{3}^{2} \beta+2 b_{4} c_{4} \alpha \beta-b_{1} b_{4}^{2} \alpha \beta
$$

and $A=\left|b^{\prime}\right|^{2}+2 R e\left(c^{\prime}\right)=\left(-\alpha b_{2}^{2}-\beta b_{2}^{3}+\alpha \beta b_{4}^{2}\right)+2\left(c_{1}-\frac{b_{1}^{2}}{4}\right)$. Then $A=$ $-\alpha b_{2}^{2}-\beta b_{2}^{3}+\alpha \beta b_{4}^{2}+2 c_{1}-\frac{b_{1}^{2}}{2}$

Computing $B=\left|c^{\prime}\right|^{2}$ we get

$$
B=\left(c_{1}-\frac{b_{1}^{2}}{4}\right)^{2}-\alpha\left(c_{2}-\frac{b_{1} b_{2}}{2}\right)^{2}-\beta\left(c_{3}-\frac{b_{1} b_{3}}{2}\right)^{2}+\alpha \beta\left(c_{4}-\frac{b_{1} b_{4}}{2}\right)^{2}
$$

We denote $\frac{b_{1}}{2}=t$ and obtain:

$$
B=\left(c_{1}-t^{2}\right)^{2}-\alpha\left(c_{2}-t b_{2}\right)^{2}-\beta\left(c_{3}-t b_{3}\right)^{2}+\alpha \beta\left(c_{4}-t b_{4}\right)^{2}
$$

We compute W and Y according to the cases of the theorem. By denoting $m=\left|b^{\prime}+W\right|=W^{2}-\alpha b_{2}^{2}-\beta b_{3}^{2}+\alpha \beta b_{4}^{2}$ and cu $t=b_{1} / 2$, we apply equation (8) and we find

$$
\begin{aligned}
x_{1} & =-t-\left(W c_{1}-Y W-b_{2} c_{2} \alpha-b_{3} c_{3} \beta+b_{4} c_{4} \alpha \beta\right. \\
& \left.-t\left(W t-b_{2}^{2} \alpha-b_{3}^{2} \beta+b_{4}^{2} \alpha \beta\right)\right) / m \\
x_{2} & =\left(W c_{2}-b_{2} c_{1}+b_{2} Y+b_{3} c_{4} \beta-b_{4} c_{3} \beta-t b_{2}(W-t)\right) / m \\
x_{3} & =\left(W c_{3}-b_{2} c_{4} \alpha-b_{3} c_{1}+b_{3} Y+b_{4} c_{2} \alpha-t b_{3}(W-t)\right) / m \\
x_{4} & =\left(W c_{4}-b_{2} c_{3}+b_{3} c_{2}+b_{4} c_{1}+b_{4} Y-t b_{4}(W-t)\right) / m
\end{aligned}
$$

We obtain the solution as

$$
x=x_{1}+x_{2} e_{1}+x_{3} e_{2}+x_{4} e_{3}
$$

4. Numerical applications and examples

For the implementation of numerical applications, let's consider the general case of $\mathbb{H}(\alpha, \beta), b=b_{1}+b_{2} \cdot e_{1}+b_{3} \cdot e_{2}+b_{4} \cdot e_{3}$ and $c=c_{1}+c_{2} \cdot e_{1}+c_{3} \cdot e_{2}+c_{4} \cdot e_{3}$. Using Proposition 4.1, we present the algorithm from the table 1. The algorithm described has been implemented in Scilab 6.1.1. To verify our computations, we apply all the formulas, on some remarkable examples.

Steps		
1.		Input α, β, b, c
2.		Compute C, A, B
3.		Identify case
4.	If case 1 : $C=0, A \geq 4 B$	Compute $W=0$, $Y=\left(A \pm \sqrt{A^{2}-4 B}\right) / 2$
	If case 2 : $C=0, A^{2}<4 B$	Compute $\begin{aligned} W & = \pm \sqrt{2 \sqrt{B}-A}, \\ Y & =\sqrt{B} \end{aligned}$
	If case 3 : $C \neq 0$	Solve the polynomial equations $z^{3}+2 A z^{2}+\left(A^{2}-4 B\right) z-C^{2}=0$ and find the positive root.
5.		Compute solutions using formula (9).

Table 1: Algorithm for computing the solutions of the quadratic equation.

Example 4.1 ([10], Example 2.12). Consider the quadratic equation $x^{2}+x e_{1}+$ $\left(1+e_{2}\right)=0$, i.e., $b=e_{1}$ and $c=1+e_{2}$. This belongs to Case 4 in Theorem 2.3. Then $b^{\prime}=e_{1}$ and $c^{\prime}=1+e_{2}$. Moreover, $A=3, B=2, C=0$. It is Subcase 1 in Case 4. Hence, $W=0$ and $Y=2$ or $Y=1$. Consequently, the two solutions are $x_{1}=-e_{1}+e_{3}$ and $x_{2}=e_{3}$. For $\alpha=-1, \beta=-1$, the solution is:

$$
\begin{aligned}
& C=0.000000, \\
& A=3.000000, \\
& B=2.000000, \\
& Y_{1}=2.000000 \\
& Y_{2}=1.000000,
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=-0.000000-1.000000 e_{1}-0.000000 e_{2}+1.000000 e_{3}, \\
& x_{2}=-0.000000-0.000000 e_{1}-0.000000 e_{2}+1.000000 e_{3} .
\end{aligned}
$$

Example 4.2. ([10], Example 2.13) Consider the quadratic equation $x^{2}+x e_{1}+$ $e_{2}=0$, i.e., $b=e_{1}$ and $c=e_{2}$. This belongs to Case 4 in Theorem 2.3. Then $b^{\prime}=e_{1}$ and $c^{\prime}=e_{2}$. Moreover, $A=1, B=1, C=0$. It is Subcase 2 in Case 4. Hence, $W=+1$ or -1 and $Y=1$. Consequently, the two solutions are $x_{1}=\left(e_{1}+1\right)^{-1}\left(1-e_{2}\right)=(1 / 2)\left(1-e_{1}-e_{2}+e_{3}\right)$ and $x_{2}=\left(e_{1}-1\right)^{-1}\left(1-e_{2}\right)=$ $(1 / 2)\left(-1-e_{1}+e_{2}+e_{3}\right)$. For $\alpha=-1, \beta=-1$, the solution of the program:

$$
\begin{aligned}
& C=0.000000, \\
& A=1.000000, \\
& B=1.000000 \\
& x_{1}=0.500000-0.500000 e_{1}-0.500000 e_{2}+0.500000 e_{3}, \\
& x_{2}=-0.500000-0.500000 e_{1}+0.500000 e_{2}+0.500000 e_{3} .
\end{aligned}
$$

Example 4.3. ([10], Example 2.14) Consider the quadratic equation $x^{2}+x e_{1}+$ $\left(1+e_{1}+e_{2}\right)=0$, i.e., $b=e_{1}$ and $c=1+e_{1}+e_{2}$. This belongs to Case 4 in Theorem 2.3. Then $b^{\prime}=e_{1}$ and $c^{\prime}=1+e_{1}+e_{2}$. Moreover, $A=3, B=3, C=2$. It is Subcase 3 in Case 4 . Now the unique positive roots of $z^{3}+6 z^{2}-3 z-4$ is 1 , and hence, $W=1$ and $Y=3$ or $W=-1$ and $Y=1$. Consequently, the two solutions are $x_{1}=(1 / 2)\left(1-3 e_{1}-e_{2}+e_{3}\right)$ and $x_{2}=(1 / 2)\left(-1+e_{1}+e_{2}+e_{3}\right)$. For $\alpha=-1, \beta=-1$, the solution of the program:

$$
\begin{aligned}
& C=2.000000, \\
& A=3.000000, \\
& B=3.000000 \\
& x_{1}=0.500000-1.500000 e_{1}-0.500000 e_{2}+0.500000 e_{3}, \\
& x_{2}=-0.500000+0.500000 e_{1}+0.500000 e_{2}+0.500000 e_{3} .
\end{aligned}
$$

The results obtained in Examples 5.1-5.3 are exactly the ones obtain by direct computation by the authors in [10].

In the following, we will present a few examples using the results presented above and also calculate the solutions of the equations using the described algorithm, for different values of α and β.

Example 4.4. Next, we aim to find the solution of the equation $x^{2}+b x+c=0$ in the case where b and c are quaternions:

$$
b=5 \cdot 1+6 \cdot e_{1}+7 \cdot e_{2}+8 \cdot e_{3}
$$

and

$$
c=2 \cdot 1+3 \cdot e_{1}+4 \cdot e_{2}+5 \cdot e_{3} .
$$

For $\alpha=-1, \beta=-1$, we can compute $b^{\prime}=b-\operatorname{Re}(b)=6 e_{1}+7 e_{2}+8 e_{3}$ and

$$
\begin{aligned}
& c^{\prime}=c-\frac{1}{2} \operatorname{Re}(b)\left(b-\frac{1}{2} \operatorname{Re}(b)\right), \\
& c^{\prime}=\left(2-\frac{25}{2}+\frac{25}{4}\right) 1+(3-15) e_{1}+\left(4-\frac{35}{2}\right) e_{2}+(5-20) e_{3} .
\end{aligned}
$$

Then

$$
c^{\prime}=-\frac{17}{4}-12 e_{1}-\frac{27}{2} e_{2}-15 e_{3}
$$

Consequently,

$$
\begin{aligned}
& A=\left|b^{\prime}\right|^{2}+2 \operatorname{Re}\left(c^{\prime}\right)=6^{2}+7^{2}+8^{2}+2\left(-\frac{17}{4}\right)=140,5 \\
& B=\left|c^{\prime}\right|^{2}=\left(\frac{-17}{4}\right)^{2}+12^{2}+\left(\frac{27}{2}\right)^{2}+(15)^{2}=569,3125 \\
& C=2 \operatorname{Re}\left(\overline{b^{\prime}} c^{\prime}\right)=-573
\end{aligned}
$$

We can check that $A^{2} \geq 4 B$, so we can use case 4 . Using the formulas in case 4 , the next step is to find the values of (W, Y) using one of the three situations described in the formula from case 4 . Since $C \neq 0$, we will use situation 3 $z^{3}+2 A z^{2}+\left(A^{2}-4 B\right) z-C^{2}=0$.

To find the unique positive solution z, we will use the Newton-Raphson method. In this case, we have:

$$
\begin{aligned}
& f(z)=z^{3}+2 A z^{2}+\left(A^{2}-4 B\right) z-C^{2} \\
& f^{\prime}(z)=3 z^{2}+4 A z+\left(A^{2}-4 B\right)
\end{aligned}
$$

The analytical method to find the solutions of the equation is given by choosing $z_{0}=1$ and applying the Newton-Raphson formula. We can obtain successive values for z as the fixed number given by:

$$
\begin{aligned}
& z_{1}=z_{0}-\frac{f\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}=1-\frac{f(1)}{f^{\prime}(1)} \\
& z_{2}=z_{1}-\frac{f\left(z_{1}\right)}{f^{\prime}\left(z_{1}\right)} \\
& z_{3}=z_{2}-\frac{f\left(z_{2}\right)}{f^{\prime}\left(z_{2}\right)} \\
& z_{4}=z_{3}-\frac{f\left(z_{3}\right)}{f^{\prime}\left(z_{3}\right)}
\end{aligned}
$$

Computing by this formula we use decimal fractions with many decimals, therefore we used the Scilab solver:

$$
p=-328329+17463 x+281 x^{2}+x^{3} .
$$

By using of the solver in Scilab, we obtain: $W_{1}= \pm 3.871934$, and using a numerical application, we obtain:

$$
\begin{aligned}
& C=-573.000000, \\
& A=140.500000, \\
& B=569.312500, \\
& x_{1}=-0.564033+0.008853 e_{1}+0.306465 e_{2}-0.017904 e_{3}, \\
& x_{2}=-4.435967-5.972266 e_{1}-6.647896 e_{2}-7.945509 e_{3} .
\end{aligned}
$$

For $\alpha=-2, \beta=-3$, the solution is

$$
\begin{aligned}
& C=-2295.000000, \\
& A=594.500000, \\
& B=2202.812500, \\
& W= \pm 3.813764, \\
& x_{1}=-0.593118+0.012038 e_{1}+0.168839 e_{2}-0.004699 e_{3}, \\
& x_{2}=-4.406882-5.982890 e_{1}-6.819067 e_{2}-7.985585 e_{3} .
\end{aligned}
$$

Example 4.5 ([7]). We aim to solve the following equation: $x^{2}+\left(2+3 e_{1}+\right.$ $\left.4 e_{2}+5 e_{3}\right) x+\left(4-5 e_{1}-6 e_{2}-7 e_{3}\right)=0$. For $\alpha=-1, \beta=-1$, we write:
$\left(a+b e_{1}+c e_{2}+d e_{3}\right)^{2}+\left(2+3 e_{1}+4 e_{2}+5 e_{3}\right)\left(a+b e_{1}+c e_{2}+d e_{3}\right)+\left(4-5 e_{1}-6 e_{2}-7 e_{3}\right)=0$.
We expand this equation and group the terms based on the quaternionic units:

$$
\begin{aligned}
& \left(a^{2}-b^{2}-c^{2}-d^{2}+2 a-3 b-4 c-5 d+4\right)+(2 a b+3 a+2 b-5 c+4 d-5) e_{1} \\
& +(2 a c+4 a+5 b+2 c-3 d-6) e_{2}+(2 a d+5 a-4 b+3 c+2 d-7) e_{3}=0 .
\end{aligned}
$$

Thus, we can obtain a system of linear equations with 4 equations and 4 unknowns:

$$
\left\{\begin{array}{l}
a^{2}-b^{2}-c^{2}-d^{2}+2 a-3 b-4 c-5 d+4=0 \\
2 a b+3 a+2 b-5 c+4 d-5=0 \\
2 a c+4 a+5 b+2 c-3 d-6=0 \\
2 a d+5 a-4 b+3 c+2 d-7=0
\end{array}\right.
$$

Solving this system of equations can provide us with the quaternionic solutions to the initial equation. Unfortunately, this system does not seem to have a simple and analytical solution, but we can try to solve it numerically or look for a specialized method for solving quaternionic equations.

Using the algorithm, we found the following results:

$$
\begin{aligned}
& C=-248.000000, \\
& A=56.000000, \\
& B=317.000000, \\
& x_{1}=0.988335+0.435138 e_{1}-0.199557 e_{2}+0.624407 e_{3}, \\
& x_{2}=-2.988335-3.374360 e_{1}-5.198324 e_{2}-5.563629 e_{3} .
\end{aligned}
$$

For $\alpha=-2.35, \beta=-100$, the solution of the equations is

$$
\begin{aligned}
& x_{1}=1.416406+0.030602 e_{1}-0.009466 e_{2}+0.006083 e_{3} \\
& x_{2}=-3.416406-2.977407 e_{1}-4.019286 e_{2}-5.005551 e_{3}
\end{aligned}
$$

Moreover, $C=-36312.800000, A=7502.150000, B=43999.400000$.
Example 4.6. Next, we aim to find the solution of the equation in the case where b and c are quaternions: $b=1.25+0.2 e_{1}-0.31 e_{2}-0.69 e_{3}$ and $c=$ $-1+0.56 e_{1}-2.35 e_{2}-4.56 e_{2}$. Then, the equations is

$$
x^{2}+\left(1.25+0.2 e_{1}-0.31 e_{2}-0.69 e_{3}\right) x-1+0.56 e_{1}-2.35 e_{2}-4.56 e_{2}=0
$$

Using the program, for $\alpha=-1, \beta=-1$, we found the following results:

$$
\begin{aligned}
C & =7.208550, \\
A & =-2.169050, \\
B & =23.819054, \\
W & = \pm 3.485216, \\
x_{1} & =1.117608+-0.251329 e_{1}+0.667362 e_{2}+1.505501 e_{3}, \\
x_{2} & =-2.367608+0.018740 e_{1}-0.560890 e_{2}-0.861963 e_{3} .
\end{aligned}
$$

For $\alpha=-6, \beta=-8.5$, the solution is

$$
\begin{aligned}
& C=302.988862 \\
& A=22.556700 \\
& B=911.964612 \\
& W= \pm 7.155732 \\
& x_{1}=2.952866-0.219073 e_{1}+0.340546 e_{2}+0.917961 e_{3} \\
& x_{2}=-4.202866-0.027102 e_{1}-0.234104 e_{2}-0.235706 e_{3}
\end{aligned}
$$

Example 4.7. Next, we aim to calculate by using of the program an example where $C=0$:

Find the solutions of the equation: $x^{2}+\left(e_{1}+e_{2}+e_{3}\right) x+\left(-3 e_{1}-4 e_{2}+7 e_{3}\right)=0$.
We can see that $b=e_{1}+e_{2}+e_{3} \notin \mathbb{R}$, so we need to use the formula from case 4 . Firstly, we will calculate the values of $b^{\prime}, c^{\prime}, A, B$, and C :

$$
\begin{aligned}
& b^{\prime}=b-\operatorname{Re}(b)=e_{1}+e_{2}+e_{3}, \\
& c^{\prime}=c-\frac{\operatorname{Re}(b)}{2}\left(b-\frac{\operatorname{Re}(b)}{2}\right)=-3 e_{1}-4 e_{2}+7 e_{3}, \\
& A=\left|b^{\prime}\right|^{2}+2 \operatorname{Re}\left(c^{\prime}\right)=3 \text {, } \\
& B=\left|c^{\prime}\right|^{2}=74 \text {, } \\
& C=2 \operatorname{Re}\left(\overline{b^{\prime}} c^{\prime}\right)=0 .
\end{aligned}
$$

The next step is to find the values of (W, Y) using one of the three situations described in the formula from case 4. Since $C=0$ and $A^{2}<4 B$. Now we can calculate $(W, Y): W= \pm \sqrt{2 \sqrt{B}-A}= \pm 3,7689057476$ and $Y=\sqrt{B}=$ 8, 602325267 .

By using of the program, we have found the following results:

$$
\begin{aligned}
& C=0.000000, \\
& A=3.000000, \\
& B=74.000000, \\
& W= \pm 3.768906, \\
& Y=8.602325, \\
& x_{1}=1.884453+0.796552 e_{1}+0.608748 e_{2}-2.091566 e_{3}, \\
& x_{2}=-1.884453-0.517828 e_{1}-1.143758 e_{2}+0.975319 e_{3} .
\end{aligned}
$$

The same equation can be solved for $\alpha=-6$ and $\beta=-9$. In this case, $C \neq 0$. We get

$$
\begin{aligned}
& C=2088.000000 \\
& A=528.000000 \\
& B=2844.000000 \\
& W= \pm 3.919010 \\
& x_{1}=1.959505-0.537980 e_{1}-1.973780 e_{2}-3.017625 e_{3} \\
& x_{2}=-1.959505+0.399290 e_{1}-0.070390 e_{2}+0.024986 e_{3}
\end{aligned}
$$

Example 4.8. Next, we intend to use the program to calculate an example where $\mathrm{C}=0$:

Let's find the solutions of the equation: $x^{2}+\left(e_{1}+e_{2}+e_{3}\right) x+\left(-e_{1}+e_{3}\right)=0$.
We can see that $b=e_{1}+e_{2}+e_{3} \notin \mathbb{R}$, so we need to use the formula from case 4 .

Firstly, we will calculate the values of $b^{\prime}, c^{\prime}, A, B$ and C :

$$
\begin{aligned}
b^{\prime} & =b-\operatorname{Re}(b)=e_{1}+e_{2}+e_{3} \\
c^{\prime} & =c-\frac{\operatorname{Re}(b)}{2}\left(b-\frac{\operatorname{Re}(b)}{2}\right)=-e_{1}+e_{3} \\
A & =\left|b^{\prime}\right|^{2}+2 \operatorname{Re}\left(c^{\prime}\right)=3 \\
B & =\left|c^{\prime}\right|^{2}=2 \\
C & =2 \operatorname{Re}\left(\overline{b^{\prime}} c^{\prime}\right)=0
\end{aligned}
$$

The next step is to find the values of (W, Y) using one of the three situations described in the formula of case 4 . Since $C=0$ and $A^{2} \geq 4 B$, we will use situation $1, W=0, Y=\left(A \pm \sqrt{A^{2}-4 B}\right) / 2$ result $Y_{1}=2, Y_{2}=1$.

Calculating with the numerical application, we get:

$$
\begin{aligned}
& C=0.000000, \\
& A=3.000000, \\
& B=2.000000, \\
& Y_{1}=2.000000, \\
& Y_{2}=1.000000, \\
& x_{1}=-0.000000-0.333333 e_{1}-0.666667 e_{2}-0.333333 e_{3}, \\
& x_{2}=-0.000000-0.000000 e_{1}-0.333333 e_{2}-0.000000 e_{3} .
\end{aligned}
$$

For $\alpha=-100, \beta=-100$, we get $C \neq 0$, like in the other example, and the solution is

$$
\begin{aligned}
& C=19800.000000, \\
& A=10200.000000, \\
& B=10100.000000, \\
& W= \pm 1.940836, \\
& x_{1}=0.970418-0.989912 e_{1}-0.999903 e_{2}-0.999995 e_{3}, \\
& x_{2}=-0.970418+0.009513 e_{1}-0.000097 e_{2}+0.000191 e_{3} .
\end{aligned}
$$

Example 4.9. ([7]) Let f_{n} be the Fibonacci sequence define as $f_{0}=0, f_{1}=1$ and $f_{k}=f_{k-1}+f_{k-2}$. We define the quaternion $F_{n}=f_{n}+f_{n+1} e_{1}+f_{n+2} e_{2}+$ $f_{n+3} e_{3}$.

Consider the monic quadratic equation $x^{2}+F_{n} x+F_{m}=0$. We use the same algorithm for solving the equation.

For $n=3, m=3$, case discussed in ([7]), we obtain $F_{3}=2+3 e_{1}+5 e_{2}+8 e_{3}$ and the equation $x^{2}+\left(2+3 e_{1}+5 e_{2}+8 e_{3}\right) x+\left(2+3 e_{1}+5 e_{2}+8 e_{3}\right)=0$.

Solving the equations for $\alpha=-1, \beta=-1$, and we get

$$
\begin{aligned}
& C=0.000000, \\
& A=100.000000, \\
& B=1.000000, \\
& Y_{1}=99.989999, \\
& Y_{2}=0.010001, \\
& x_{1}=-1.000000-3.030306 e_{1}-4.560714 e_{2}-8.080816 e_{3}, \\
& x_{2}=-1.000000+0.030306 e_{1}+0.540306 e_{2}+0.080816 e_{3} .
\end{aligned}
$$

Solving the equations for $\alpha=-6.3, \beta=-5.25$, and we get

$$
\begin{aligned}
& C=0.000000, \\
& A=2306.750000,
\end{aligned}
$$

$$
\begin{aligned}
& B=1.000000 \\
& Y_{1}=2306.749566 \\
& Y_{2}=0.000434 \\
& x_{1}=-1.000000+-3.001301 e_{1}-4.870961 e_{2}-8.003470 e_{3} \\
& x_{2}=-1.000000+0.001301 e_{1}+0.133376 e_{2}+0.003470 e_{3}
\end{aligned}
$$

For $n=5, m=10$ we obtain $F_{5}=5+8 e_{1}+13 e_{2}+21 e_{3}$, and $F_{10}=55+89 e_{1}+$ $144 e_{2}+233 e_{3}$. Thus, the equation in this case is $x^{2}+F_{5} x+F_{10}=0$. Then, the solution for $\alpha=-1, \beta=-1$ found by the algorithm is

$$
\begin{aligned}
& C=11584.000000 \\
& A=771.500000 \\
& B=52150.062500 \\
& W= \pm 13.722364 \\
& x_{1}=4.361182-9.008123 e_{1}-10.308573 e_{2}-23.657396 e_{3} \\
& x_{2}=-9.361182+1.019720 e_{1}+5.966780 e_{2}+2.645800 e_{3}
\end{aligned}
$$

For $\alpha=-6.3, \beta=-5.25$ the solution provided by the algorithm is

$$
\begin{aligned}
& C=-272916.525000 \\
& A=15974.025000 \\
& B=1175231.943750 \\
& W= \pm 16.934907 \\
& x_{1}=5.967453-8.058866 e_{1}-11.642625 e_{2}-21.158442 e_{3} \\
& x_{2}=-10.967453+0.062114 e_{1}+1.552659 e_{2}+0.157823 e_{3}
\end{aligned}
$$

Example 4.10. Let p_{n} be the Pell sequence define as $p_{0}=0, p_{1}=1$ and $p_{k}=2 p_{k-1}+p_{k-2}$. Consider the quaternions $P_{n}=p_{n}+p_{n+1} e_{1}+p_{n+2} e_{2}+p_{n+3} e_{3}$. We solve the monic quadratic equation $x^{2}+P_{n} x+P_{m}=0$. For $n=3, m=3$, we get $P_{3}=3+7 e_{1}+17 e_{2}+41 e_{3}$ and the equation is $x^{2}+\left(3+7 e_{1}+17 e_{2}+\right.$ $\left.41 e_{3}\right) x+3+7 e_{1}+17 e_{2}+41 e_{3}=0$.

Solving the equations for $\alpha=-1, \beta=-1$ using the algorithm we obtain

$$
\begin{aligned}
& C=-2019.000000 \\
& A=2020.500000 \\
& B=505.312500 \\
& W= \pm 0.999011 \\
& x_{1}=-1.000494+0.003464 e_{1}+0.292570 e_{2}+0.020287 e_{3} \\
& x_{2}=-1.999506-7.003464 e_{1}-16.724253 e_{2}-41.020287 e_{3}
\end{aligned}
$$

For $\alpha=-7, \beta=-6$ the solutions are

$$
\begin{aligned}
& C=-72679.000000, \\
& A=72680.500000, \\
& B=18170.312500, \\
& W= \pm 0.999972, \\
& x_{1}=-1.000014+0.000096 e_{1}+0.055517 e_{2}+0.000564 e_{3}, \\
& x_{2}=-1.999986-7.000096 e_{1}-16.944950 e_{2}-41.000564 e_{3} .
\end{aligned}
$$

For $n=12, m=19$, the quaternions are $P_{12}=8119+19601 e_{1}+47321 e_{2}+$ $114243 e_{3}$ and $P_{19}=3880899+9369319 e_{1}+22619537 e_{2}+54608393 e_{3}$. The equations is $x^{2}+P_{12} x+P_{19}=0$. Solving for $\alpha=-1, \beta=-1$, we get

$$
\begin{aligned}
& C=-112279524556439.000000 \\
& A=15649742008.500000 \\
& B=201223166914529952.000000 \\
& W= \pm 7162.787683 \\
& x_{1}=-478.106158+0.284778 e_{1}+136.813987 e_{2}+1.659808 e_{3}, \\
& x_{2}=-7640.893842-19601.284778 e_{1}-47185.561043 e_{2}-114244.659808 e_{3} .
\end{aligned}
$$

For $\alpha=-7, \beta=-6$ the solutions are

$$
\begin{aligned}
& C=-4041981872234103.000000 \\
& A=564261307428.500000 \\
& B=7238333535486963712.000000 \\
& W= \pm 7162.990016 \\
& x_{1}=-478.004992+0.007936 e_{1}+26.572949 e_{2}+0.046254 e_{3}, \\
& x_{2}=-7640.995008-19601.007936 e_{1}-47294.465369 e_{2}-114243.046254 e_{3} .
\end{aligned}
$$

Example 4.11. Consider now the Lucas number sequences define as $l_{0}=2, l_{1}=$ 1 and $l_{n}=l_{n-1}+l_{n-2}$. We define the quaternion $L_{n}=l_{n}+l_{n+1} e_{1}+l_{n+2} e_{2}+$ $l_{n+3} e_{3}$. We solve the monic quadratic equation $x^{2}+L_{n} x+L_{m}=0$. For $n=$ $3, m=8$, the quaternions are $L_{3}=4+7 e_{1}+11 e_{2}+18 e_{3}$ and $L_{8}=47+76 e_{1}+$ $123 e_{2}+199 e_{3}$.

Solving the equation $x^{2}+L_{3} x+L_{8}=0$ for $\alpha=-1, \beta=-1$, we get

$$
\begin{aligned}
& C=8958.000000, \\
& A=580.000000, \\
& B=42463.000000, \\
& W= \pm 13.777285, \\
& x_{1}=4.888642-8.113676 e_{1}-8.726917 e_{2}-20.805123 e_{3}, \\
& x_{2}=-8.888642+1.040556 e_{1}+5.802217 e_{2}+2.878243 e_{3} .
\end{aligned}
$$

On the other hand, for $\alpha=-3, \beta=-10$, the solution are

$$
\begin{aligned}
& C=200864.000000, \\
& A=11163.000000, \\
& B=912461.000000, \\
& W= \pm 17.747518, \\
& x_{1}=6.873759-7.095766 e_{1}-10.394477 e_{2}-18.193193 e_{3}, \\
& x_{2}=-10.873759+0.051875 e_{1}+0.848658 e_{2}+0.197582 e_{3} .
\end{aligned}
$$

For $n=11, m=14, L_{11}=199+322 e_{1}+521 e_{2}+843 e_{3}$ and $L_{14}=843+1364 e_{1}+$ $2207 e_{2}+3571 e_{3}$.

Solving the equation $x^{2}+L_{11} x+L_{14}=0$ for $\alpha=-1, \beta=-1$, we get

$$
\begin{aligned}
& C=-4638388100.000000 \\
& A=24326817.500000 \\
& B=221017587902.562500 \\
& W= \pm 190.527592 \\
& x_{1}=-4.236204+0.000233 e_{1}+0.283353 e_{2}+0.000622 e_{3} \\
& x_{2}=-194.763796-322.000241 e_{1}-520.717414 e_{2}-843.000621 e_{3} .
\end{aligned}
$$

Finally, we solve the same equation for $\alpha=-1.236, \beta=-10.023$, the solution are

$$
\begin{aligned}
& C=-2220150838.889460 \\
& A=11634516.036772 \\
& B=105832184609.751312 \\
& W= \pm 190.527281 \\
& x_{1}=-4.236359+0.000487 e_{1}+0.243975 e_{2}+0.001297 e_{3} \\
& x_{2}=-194.763641-322.000504 e_{1}-520.757626 e_{2}-843.001295 e_{3}
\end{aligned}
$$

Conclusion

In this article, we have provided an algorithm in Scilab which allows us to find solutions for the monic quadratic equation $x^{2}+b x+c=0$, with $b, c \in \mathbb{H}(\alpha, \beta)$.

In Theorem 2.3, the authors offer solutions for all cases of the monic equation $x^{2}+b x+c=0$. We are interested only in cases 3 and 4 of the theorem. The article presents several equations solved using the algorithm, implemented in Scilab. By assigning specific values to the two quaternions, b and c, in the form of $b=b_{1}+b_{2} e_{1}+b_{3} e_{2}+b_{4} e_{3}$ and $c=c_{1}+c_{2} e_{1}+c_{3} e_{2}+c_{4} e_{3}$, and utilizing the formulas provided in the article, we perform the following calculations: Compute the values of A, B, and C : A is determined by evaluating the expression $A=$ $\left|b^{\prime}\right|^{2}+2 \operatorname{Re}\left(c^{\prime}\right)$, where $b^{\prime}=b-\operatorname{Re}(b)$ and $c^{\prime}=c-(\operatorname{Re}(b) / 2)(b-(\operatorname{Re}(b)) / 2) . B$ is
computed as $B=\left|c^{\prime}\right|^{2}$. C is obtained by calculating $C=2 R e\left(\overline{b^{\prime}} c^{\prime}\right)$. Identify the case we are in, based on the four cases specified in the theorem. Proceeding with the determined case, we find the two solutions of the monic quadratic equation, $x^{2}+b x+c=0$, using the appropriate formulas presented in the article. That this detailed procedure allows us to obtain precise and accurate solutions for the given quadratic equation in the context of the algebra of real quaternions.

The algorithm can solve monic quadratic equations for any base that respects the multiplication table of quaternions.

References

[1] M. Abrate, Quadratic formulas for generalized quaternions, Journal of Algebra and Its Applications, 8 (2009), 289-306.
[2] W. Cao, J.R. Parker, X. Wang, On the classification of quaternionic Möbius transformations, Math. Proc. Camb. Phil. Soc., 137 (2004), 349-361.
[3] W. Cao, Quadratic equation in split quaternions, Axioms, 11 (2022), 188.
[4] C. Flaut, D. Savin, Quaternion algebras and generalized Fibonacci-Lucas quaternions, Adv. Appl. Clifford Algebras, 25 (2015), 853-862.
[5] C. Flaut, D. Savin, Some remarks regarding (a, b, x_{0}, x_{1})-numbers and (a, b, x_{0}, x_{1})-quaternions, https://arxiv.org/pdf/1705.00361.pdf.
[6] C. Flaut, V. Shpakivskyi, An efficient method for solving equations in generalized quaternion and octonion algebras, Adv. Appl. Clifford Algebras, 25 (2015), 337-350.
[7] C. Flaut, G. Zaharia, Remarks regarding computational aspects in algebras obtained by Cayley-Dickson process and some of their applications, Mathematics, 10 (2022), 1141.
[8] A.F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly, 68 (1961), 455-459.
[9] A.F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly, 70 (1963), 289-291.
[10] L. Huang, W. So, Quadratic formulas for quaternions, Applied Mathematics Letters, 15 (2002), 533-540,.
[11] L. Huang, W. Thus, Quadratic formulas for quaternions, Appl. Math. Lett., 15 (2002), 533-540.
[12] Z. Li, D.F. Scharler, H.P. Schröcker, Factorization results for left polynomials in some associative real algebras: state of the art, applications, and open questions, J. Comput. Appl. Math., 349 (2019), 508-522.
[13] R. Porter, Quaternionic linear and quadratic equations, J. Nat. Geom., 11 (1997), 101-106.
[14] J.R. Parker, I. Short, Conjugacy classification of quaternionic Möbius transformations, Comput. Methods Funct. Theory, 9 (2009), 13-25.
[15] D.F. Scharler, J. Siegele, H.P. Schröcker, Quadratic split quaternion polynomials: factorization and geometry, Adv. Appl. Clifford Algebras, 30 (2020), 11.
[16] https://mathworld.wolfram.com/NewtonsMethod.html (accessed: 11.04.2023)
[17] https://engcourses-uofa.ca/books/numericalanalysis/finding-roots-of-equations/open-methods/newton-raphson-method/ (accessed: 11.04.2023)

Accepted: August 10, 2023

[^0]: *. Corresponding author

