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Abstract. In this paper, we show some inequalities for the generalized inverse trigono-
metric and hyperbolic functions with one parameter of (2, q). Especially, we also present
several Shafer-Fink, Wilker and Huygens type inequalities of these functions. These re-
sults are consistent with previously known results.
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1. Introduction

For p, q ∈ (1,+∞) and x ∈ [0, 1], the function sinp,q(x) is defined by the inverse
function of

sin−1
p,q(x) =

∫ x

0
(1− tq)−1/pdt.

The function sin−1
p,q(x) is increasing in [0, 1] onto [0, πp,q/2] where

πp,q
2

= sin−1
p,q(1) =

∫ 1

0
(1− tq)−1/pdt =

1

q
B(1− 1

p
,
1

q
).

The function sinp,q(x) is defined on [0, πp,q/2] and can be extended to (−∞,+∞).
Similarly, we can define cosp,q(x), tanp,q(x) and their inverses (see [11]). In the
same way, we can define the generalized hyperbolic functions as follows:

sinh−1
p,q(x) =

∫ x

0
(1 + tq)−1/pdt, x ∈ R.

*. Corresponding author
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Recently, the arc lemniscate sine function and the hyperbolic arc lemniscate
sine function defined by

arcsl(x) =

∫ x

0
(1− t4)−1/2dt, |x| < 1(1)

and

arcslh(x) =

∫ x

0
(1 + t4)−1/2dt, x ∈ R(2)

are deeply studied. In fact, (1) and (2) are sin−1
2,4 and sinh−1

2,4 respectively.
Neuman used the arc lemniscate sine function and the hyperbolic arc lem-

niscate sine function, respectively, to define the arc lemniscate tangent function
and the hyperbolic arc lemniscate tangent function, as follows(see [14], [15]):

arctl(x) = arcsl

(
x

4
√
1 + x4

)
, x ∈ R,

arctlh(x) = arcslh

(
x

4
√
1− x4

)
, |x| < 1.

(3)

In [3], [4], Chen established several lemniscate function inequalities of the
Wilker and Huygens type. Recently, some Shafer-Fink type inequalities for the
lemniscate functions were established. In [5], inequalities of the Wilker and
Huygens type involving inverse trigonometric functions were given by Chen et.
al.. For more results, the reader may see references: [6], [10], [13], [16], [17].
In [18], Xu et. al. got some new bounds for the arc lemniscate functions. In
particular, from the point view of bivariate means, Zhao [20, 21, 22] et. al. dealt
with the arc lemniscate functions and got optimal bounds for these bivariate
means.

For several functions connected to the generalized inverse lemniscate and the
generalized hyperbolic inverse lemniscate functions, Yin and Lin [19] investi-
gated monotonicity and some inequalities. By utilizing the Lerch Phi function,
they provided a bound estimation of the generalized inverse lemniscate func-
tions. Later, some inequalities of the Shafer-Fink, Wilker, and Huygens types
were obtained.

The lemniscate inverse functions and the generalized inverse lemniscate func-
tions are the generalized (2, 4)-trigonometric and (2, 6)-trigonometric functions
respectively, thus are the special cases of the generalized (2, q)-trigonometric
functions. Motivated by the work of references [1, 4, 17, 19], we mainly study
the generalized (2, q)-trigonometric and hyperbolic functions:

sin−1
2,q(x) =

∫ x

0
(1− tq)−1/2dt, |x| < 1,

sinh−1
2,q(x) =

∫ x

0
(1 + tq)−1/2dt, x ∈ R.
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Previously, mathematicians focused on the study of generalized trigonomet-
ric and hyperbolic functions, the reader may refer to the literature [7, 8, 9, 12].
However, the generalized (2, q)-trigonometric and hyperbolic functions have
rarely been studied. Here, we mainly showed several the Shafer-Fink, Wilker
and Huygens type inequalities for the generalized (2, q)-trigonometric and hy-
perbolic functions.

2. Bounds of sin−1
2,q(x)

Lemma 2.1 ([19, Theorem 1.1]). Let −∞ < a < b < +∞, and let f, g : [a, b] →
R be continuous functions that are differentiable on (a, b) with f(a) = g(a) = 0
or f(b) = g(b) = 0. Assume that g′(x) ̸= 0 for each x ∈ (a, b). If f ′/g′ is
increasing (decreasing) on (a, b), then so is f/g.

Theorem 2.1. For all x ∈ (0, 1) and q ≥ 4, we have

(4) αxΦ(xq, 3/2, 1/q) < sin−1
2,q(x) < βxΦ(xq, 3/2, 1/q)

with the best possible constants α = q−
3
2 and β = B(1/2,1/q)

qζ(3/2,1/q) where

Φ(z, s, α) =
∞∑
n=0

zn

(n+ α)s
, α ̸= 0,−1 . . . , |z| < 1,

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt,

ζ(s, α) = Φ(1, s, α) =
∞∑
n=0

1

(n+ α)s

are Lerch Phi function, classical beta function and Hurwitz zeta function respec-
tively. If 1 < q ≤ 3, the inequalities (4) are inverse.

Proof of Theorem 2.1. Let

(5) F (x) =
sin−1

2,q(x)

xΦ(xq, 3/2, 1/q)
.

Applying the Lemma 2.1 with f(x) = sin−1
2,q(x) and g(x) = xΦ(xq, 3/2, 1/q) and

simple computation, we get

f(0+) = g(0+) = 0, f ′(x) =
1√

1− xq
, g′(x) = q

3
2

∞∑
n=0

xqn√
qn+ 1

.

So, we obtain
f ′(x)

g′(x)
=

1

q
3
2h(xq)

,
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where

h(t) =
√
1− t

∞∑
n=0

tn√
qn+ 1

, t ∈ (0, 1).

By differentiation, we get

2
√
1− th′(t) =

∞∑
n=0

(
2n+ 2√
qn+ q + 1

− 2n+ 1√
qn+ 1

)tn.

Let an = 2n+2√
qn+q+1

− 2n+1√
qn+1

, then

an =
(4− q)n+ 3− q

(2n+ 2)(qn+ 1)
√
qn+ q + 1 + (2n+ 1)(qn+ q + 1)

√
qn+ 1

.

If q ≥ 4, we have an < 0, thus h′(t) < 0, it follows that h(t) is strictly decreasing

on (0, 1). This implies thatf
′(x)

g′(x) is strictly increasing on(0, 1), by Lemma 2.1,

we conclude that F (x) is strictly increasing on(0, 1). Thus F (0) < F (x) < F (1)
for x ∈ (0, 1). By simple computation, we get

F (0+) = lim
x→0+

f ′(x)

g′(x)
= q−

3
2 ,

F (1−) =
sin−1

2,q(1)

Φ(1, 3/2, 1/q)
=

B(1/2, 1/q)

qζ(3/2, 1/q)
.

(6)

If 1 < q ≤ 3, we easily complete the proof.

Remark 2.1. When 3 < q < 4, the situation is more complex. Taking q = 3.1
as an example, then by (5), we have

F (x) =
sin−1

2, 31
10

(x)

xΦ(x
31
10 , 32 ,

10
31)

.

By (6), we get

F (1−) =
B(12 ,

10
31)

31
10ζ(

3
2 ,

10
31)

= 0.183373 . . . .

However, F (0.9) = 0.183419 . . . > F (1−). Therefore, it is necessary to find the
maximum value of F (x) in (0, 1). This is a challenging problem and open.

3. Shafer-Fink type inequalities

Lemma 3.1. For q > 1, we have

(i) The function f1(x) =
sin−1

2,q(x)

x is strictly increasing on (0, 1) with range
(1,

π2,q

2 ), where
π2,q

2 = sin−1
2,q(1) =

1
qB(12 ,

1
q );
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(ii) The function f2(x) =
sinh−1

2,q(x)

x is strictly decreasing on (0,+∞) with range
(0, 1).

Proof of Lemma 3.1. Lemma 2.1 allows us to simply finish the proof.

Lemma 3.2. For q ≥ 4, we have

(i) The function g1(x) =
x− q√1−xq sin−1

2,q(x)

sin−1
2,q(x)−x

is strictly increasing on (0, 1) with

range ( q+2
q , 2

π2,q−2);

(ii) The function g2(x) =
q√1+xq sinh−1

2,q(x)−x

x−sinh−1
2,q(x)

is strictly decreasing on (0,+∞)

with range (
π2q/(q+2),q

2 − 1, q+2
q ) where

π2q/(q+2),q

2 = 1
qB( q−2

2q , 1q ).

Proof of Lemma 3.2. (i) Let g1(x) =
g11(x)
g12(x)

where g11(x) = x− q
√
1− xq sin−1

2,q(x)

and g12(x) = sin−1
2,q(x)− x. Then g11(0

+) = g12(0
+) = 0. By differentiation, we

obtain

g′11(x)

g′12(x)
=

1 + xq−1(1− xq)
1−q
q sin−1

2,q(x)− (1− xq)
2−q
2q

(1− xq)−
1
2 − 1

with g′11(0
+) = g12(0

+) = 0. Computing once more, we obtain

g′′11(x)

g′′12(x)
=

2(q − 1)

q

sin−1
2,q(x)

x
(1− xq)

2−q
2q +

4− q

q
(1− xq)

1
q .

As q ≥ 4, by lemma 3.1,
g′′11(x)
g′′12(x)

is strictly increasing, as a result, g1(x) strictly

increases by Lemma 2.1, it follows that g1(0
+) < g1(x) < g1(1

−). Simple com-
putation yields g1(0

+) = q+2
q and g1(1

−) = 2
π2,q−2 .

(ii) Let g2(x) =
g21(x)
g22(x)

where g21(x) =
q
√
1 + xq sinh−1

2,q(x) − x and g22(x) =

x− sinh−1
2,q(x). Then g21(0

+) = g22(0
+) = 0. By differentiation, we obtain

g′21(x)

g′22(x)
=

xq−1(1 + xq)
1−q
q sinh−1

2,q(x) + (1 + xq)
2−q
2q − 1

1− (1− xq)−
1
2

with g′11(0
+) = g′12(0

+) = 0. Differentiating again, we get

g′′21(x)

g′′22(x)
=

2(q − 1)

q

sinh−1
2,q(x)

x
(1 + xq)

2−q
2q +

4− q

q
(1 + xq)

1
q .

As q ≥ 4,
g′′21(x)
g′′22(x)

is strictly decreasing by lemma 3.1. Hence, g2(x) is strictly de-

creasing by Lemma 2.1, thus, it follows g2(0
+) > g2(x) > g2(+∞). The limiting

values read as follows

g2(0
+) =

q + 2

q
,
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g2(+∞) = sinh−1
2.q(+∞)− 1 =

∫ +∞

0
(1 + tq)−1/2dt− 1

=

∫ 1

0
(1− sq)

−q−2
2q ds− 1 =

π2q/(q+2),q

2
− 1,

where we apply the substitution 1 + tq = 1
1−sq . This completes the proof.

Theorem 3.1. For q ≥ 4, the following inequalities exist:

(i)
π2,q

2 + (π2,q − 2) q
√
1− xq

<
sin−1

2,q(x)

x
<

2q + 2

q + 2 + q q
√
1− xq

, 0 < |x| < 1;

(ii)
π2q/(q+2),q

(π2q/(q+2),q − 2) + 2 q
√
1 + xq

<
sinh−1

2,q(x)

x
<

2q + 2

q + 2 + q q
√
1 + xq

, |x| > 0.

Proof of Theorem 3.1. We finished the proof by utilizing Lemma 3.2.

4. Wilker and Huygens type inequalities

The fact that the Pochhammers symbol (a)n is defined by

(a)0 = 1, (a)n = a(a+ 1) . . . (a+ n− 1), n = 1, 2, . . . ,

and the ordinary binomial expansion can be written with the following notation,

(7) (1− z)−a =
∞∑
n=0

(a)n
n!

zn.

As an analogy to arc lemniscate functions which are defined in (3), tan−1
2,q(x)

and tanh−1
2,q(x) have been defined as follows:

tan−1
2,q(x) = sin−1

2,q

(
x

q
√
1 + xq

)
=

∫ x
q√1+xq

0
(1− tq)−1/2dt, x ∈ R,

tanh−1
2,q(x) = sinh−1

2,q

(
x

q
√
1− xq

)
=

∫ x
q√1−xq

0
(1 + tq)−1/2dt, |x| < 1.

By using (7), we get the following power series expansions:

Lemma 4.1. For q > 1, we have

sin−1
2,q(x) =

∞∑
n=0

(12)n

(qn+ 1)n!
xqn+1, |x| < 1,(8)

sinh−1
2,q(x) =

∞∑
n=0

(−1)n
(12)n

(qn+ 1)n!
xqn+1, x ∈ R,(9)

tan−1
2,q(x) =

∞∑
n=0

(−1)n
(12 + 1

q )n

(qn+ 1)n!
xqn+1, x ∈ R,(10)

tanh−1
2,q(x) =

∞∑
n=0

(12 + 1
q )n

(qn+ 1)n!
xqn+1, x ∈ R, |x| < 1.(11)
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Proof of Lemma 4.1. We only prove (10), other proofs are completely similar.
By simple computation, we get

d

dx

(
tan−1

2,q(x)
)
=

d

dx

∫ x
q√1+xq

0

1√
1− tq

dt = (1 + xq)
− 1

2
− 1

q

=

∞∑
n=0

(−1)n
(12 + 1

q )n

n!
xqn.

Hence,

tan−1
2,q(x) =

∞∑
n=0

(−1)n
(12 + 1

q )n

(qn+ 1)n!
xqn+1.

Lemma 4.2. Let q ≥ 1 be an integer. Then for all 0 < x < 1,

(12) (i)

2p−1∑
k=0

(−1)kakx
qk+1 < sinh−1

2,q(x) <

2p∑
k=0

(−1)kakx
qk+1

where

ak =
(12)k

(qk + 1)k!
, k = 0, 1 . . . .

(13) (ii)

2p−1∑
k=0

(−1)kbkx
qk+1 < tan−1

2,q(x) <

2p∑
k=0

(−1)kbkx
qk+1

where

bk =
(12 + 1

q )k

(qk + 1)k!
, k = 0, 1 . . . .

Proof of Lemma 4.2. We only prove (i). Simple computation results in

ak
ak+1

=
(12)k

(qk + 1)k!

(qk + q + 1)(k + 1)!

(12)k+1

=
(qk + q + 1)(2k + 2)

(qk + 1)(2k + 1)
> 1.

That is to say, ak > ak+1. We have

akx
qk+1 − ak+1x

q(k+1)+1 = xqk+1(ak − ak+1x
q) > 0

because of ak+1x
q < ak+1 < ak. According to (9), we get

sinh−1
2,q(x) =

∞∑
n=0

(−1)nanx
qn+1

= (a0x− a1x
q+1) + (a2x

2q+1 − a3x
3q+1) + . . .(14)

= a0x− (a1x
q+1 − a2x

2q+1)− (a3x
3q+1 − a4x

4q+1) + . . . .(15)

By using (14) and (15), we complete the proof of (i).
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Theorem 4.1. For q ≥ 2 and 0 < x < 1, we have

(16)

(
sin−1

2,q(x)

x

)2

+
tan−1

2,q(x)

x
> 2.

Proof of Theorem 4.1. For 0 < x < 1, by using (8) and (13), we get(
sin−1

2,q(x)

x

)2

=

(
1 +

1

2(q + 1)
xq +

3

8(2q + 1)
x2q + . . .

)2

= 1 +
1

q + 1
xq +

3q2 + 8q + 4

4(2q + 1)(q + 1)2
x2q + . . .

> 1 +
1

q + 1
xq +

3q2 + 8q + 4

4(2q + 1)(q + 1)2
x2q(17)

and

(18) 1− q + 2

2q(q + 1)
xq <

tan−1
2,q(x)

x
< 1.

So, we find(
sin−1

2,q(x)

x

)2

+
tan−1

2,q(x)

x
− 2

> 1 +
1

q + 1
xq +

3q2 + 8q + 4

4(2q + 1)(q + 1)2
x2q + 1− q + 2

2q(q + 1)
xq − 2

>
q − 2

2q(q + 1)
xq +

3q2 + 8q + 4

4(2q + 1)(q + 1)2
x2q > 0

since q ≥ 2.

Theorem 4.2. For q ≥ 3 and 0 < x < 1, we have

(19)

(
x

sin−1
2,q(x)

)2

+
x

tan−1
2,q(x)

< 2.

Proof of Theorem 4.2. For 0 < x < 1, by using (17) and (18), we get(
x

sin−1
2,q(x)

)2

+
x

tan−1
2,q(x)

− 2

<
1

1 + 1
q+1x

q + 3q2+8q+4
4(2q+1)(q+1)2

x2q
+

1

1− q+2
2q(q+1)x

q
− 2

=

xq[(q + 2)(3q2 + 8q + 4)x2q − (q + 1)(3q3 − 16q − 8)xq

− 2(q − 2)(2q + 1)(q + 1)2]

4q(2q + 1)(q + 1)3(1 + 1
q+1x

q + 3q2+8q+4
4(2q+1)(q+1)2

x2q)(1− q+2
2q(q+1)x

q)
.
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Let f(t) = at2 + bt+ c where

a = (q + 2)(3q2 + 8q + 4),

b = −(q + 1)(3q3 − 16q − 8),

c = −2(q − 2)(2q + 1)(q + 1)2,

t = xq ∈ (0, 1).

As q ≥ 3, so a > 0, b < 0, c < 0 and f(1−) = −7q4 − 2q3 + 42q2 + 58q + 20 < 0,
Using the property of quadratic function, we get f(t) < 0, for all t ∈ (0, 1).
Hence, (

x

sin−1
2,q(x)

)2

+
x

tan−1
2,q(x)

− 2 < 0.

The proof is complete.

Corollary 4.1. For q ≥ 3 and 0 < x < 1, we have

(20)
2 sin−1

2,q(x)

x
+

tan−1
2,q(x)

x
> 3.

Proof of Corollary 4.1. Another option for inequality (19) is

2
1(

sin−1
2,q(x)

x

)2 + 1
tan−1

2,q(x)

x

> 1.

The arithmetic-geometric-harmonic mean inequality provides the following re-
sult:

2 sin−1
2,q(x)

x
+

tan−1
2,q(x)

x
≥ 3

3

√√√√(sin−1
2,q(x)

x

)2
tan−1

2,q(x)

x

≥ 3
2

1(
sin−1

2,q(x)

x

)2 + 1
tan−1

2,q(x)

x

> 3.

In [2], Chen and Cheung proved the following inequalities:( x

arcsinx

)2
+

x

arctanx
< 2, 0 < |x| < 1,

2 arcsinx

x
+

arctanx

x
> 3, 0 < |x| < 1.

So, we conject that the condition q ≥ 3 in Theorem 4.2 and Corollary 4.1 can
be changed to q ≥ 2.
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Theorem 4.3. For q > 1 and 0 < x < 1, we have

(21)

(
x

tanh−1
2,q(x)

)2

+
x

sinh−1
2,q(x)

< 2.

Proof of Theorem 4.3. For 0 < x < 1, by using (11) and (12), we have(
tanh−1

2,q(x)

x

)2

=

(
1 +

q + 2

2q(q + 1)
xq + . . .

)2

= 1 +
q + 2

q(q + 1)
xq + . . .

> 1 +
q + 2

q(q + 1)
xq

and
sinh−1

2,q(x)

x
> 1− 1

2(q + 1)
xq.

So, we get (
x

tanh−1
2,q(x)

)2

+
x

sinh−1
2,q(x)

− 2

<
1

1 + q+2
q(q+1)x

q
+

1

1− 1
2(q+1)x

q
− 2

=
xq ((2q + 4)xq − (q + 1)(q + 4))

(2q + 2− xq) (q2 + q + (q + 2)xq)
< 0

since

(2q + 4)xq − (q + 1)(q + 4) < (2q + 4)− (q + 1)(q + 4) < 0.

This completes the proof.

Corollary 4.2. For q > 1 and 0 < x < 1, we have

(22)

(
tanh−1

2,q(x)

x

)2

+
sinh−1

2,q(x)

x
> 2

and

(23)
2 tanh−1

2,q(x)

x
+

sinh−1
2,q(x)

x
> 3.

Proof of Corollary 4.2. Inequality (21) can be rewritten as

2
1(

tanh−1
2,q(x)

x

)2 + 1
sinh−1

2,q(x)

x

> 1.
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The result of applying the arithmetic-geometric-harmonic mean inequality is(
tanh−1

2,q(x)

x

)2

+
sinh−1

2,q(x)

x

2
≥

√√√√(tanh−1
2,q(x)

x

)2
sinh−1

2,q(x)

x

≥ 2
1(

tanh−1
2,q(x)

x

)2 + 1
sinh−1

2,q(x)

x

> 1

and

2 tanh−1
2,q(x)

x
+

sinh−1
2,q(x)

x
≥ 3

3

√√√√(tanh−1
2,q(x)

x

)2
sinh−1

2,q(x)

x
> 3.
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