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1. Introduction

Let C be the complex filed. The set C"™*™ denotes the set of all m x n matrices
over C. Let A € C"™*™. The symbol A* denotes the conjugate transpose of A.
Notations R(A) = {y € C™ : y = Az,z € C"}, N(A) = {z € C" : Az = 0}
and CEM = {A € C™"|rank (A) = rank (A2)} will be used in the sequel. The
smallest positive integer & such that rank (A*) = rank(A**!) is called the index
of A € C"" and denoted by ind(A).

Let A € C™*™. If a matrix X € C™*"™ satisfies

AXA=A, XAX =X, (AX)* = AX and (XA)* = XA,

then X is called the Moore-Penrose inverse of A [11, 15] and denoted by X =
AT We call X is an inner inverse of A, if we have AXA = A. The set A{1}
denotes the set of all inner inverse of A. We call X is a {1,4} inverse of A,
if we have AXA = A and (XA)* = XA. The set A{1,4} denotes the set of
all {1,4} inverse of A. The Moore-Penrose can be used to represent orthogonal
projectors P4 £ AAT and Q4 £ ATA onto R(A) and R(A*), respectively. Let
A, X € C"" with ind (A) = k. Then, algebraic definition of the Drazin inverse
as follows: if
X = XAX, XA = AF and AX = X 4,

then X is called a Drazin inverse of A. It is unique and denoted by AP [4]. Note
that, for a square complex matrix, the algebraic definition of the Drazin inverse
is equivalent to the functional definition of the Drazin inverse. If ind (4) = 1,
the Drazin inverse is called the group inverse of A and denoted by A#. The
core inverse and the dual core inverse for a complex matrix were introduced by
Baksalary and Trenkler [2]. Let A € C™*". A matrix X € C"*" is called a
core inverse of A, if it satisfies AX = P4 and R(X) C R(A), where P4 is the
orthogonal projector onto R(A). And if such a matrix exists, then it is unique
(and denoted by A®). Baksalary and Trenkler gave several characterizations
of the core inverse by using the decomposition of Hartwig and Spindelbock [7].
Let A € C™*"™ the DMP inverse of A was introduced by using the Drazin and
the Moore-Penrose inverses of A in [14], and the formula of the DMP inverse
of Ais APT = APAA' [14, Theorem 2.2]. The CMP inverse of A € C"™*"
was introduced by Mehdipour and Salemi in [13], who using the core part in
core-nilpotent decomposition of A and the Moore-Penrose inverse of A, the
CMP inverse of A was denoted by A%T. Manjunatha Prasad and Mohana [12]
introduced the core-EP inverse of matrix [12, Definition 3.1]. Let A € C"*". If
there exists X € C"*" such that XAX = X,R(X) = R(X*) = R(A¥), then
X is called the core-EP inverse of A. If such inverse exists, then it is unique
and denoted by A®. The concept of the MPCEP-inverse of a Hilbert space
operators was initially introduced by Chen, Mosi¢ and Xu [3] and this concept
was expanded on quaternion matrices by Kyrchei, Mosi¢ and Stanimirovié¢ [8, 9].
Let A € C™*™ with ind (A) = k. If there exists a matrix X € C"*" such that

XAX =X, AX = AAD and XA = ATAADA
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then X is called the MPCEP-inverse of A and denoted by Ah®.

In [18, Theorem 2.1], Wang introduced a new matrix decomposition, namely
the Core-EP decomposition of A € C"*" with ind (A) = k. Given a matrix A €
C™ ™ then A can be written as the sum of matrices A1 € C"*™ and Ay € C"*™,
that is A = Ay + As, where A7 € (CgM, A’; =0 and A7Ay = A2A4; = 0. In
[18, Theorem 2.3 and Theorem 2.4], Wang proved this matrix decomposition is
unique and there exists a unitary matrix U € C"*" such that

T S

(1) Ale{O O}U* aIldAQZU[O O}U*,

0 N
where T' € C"*" is nonsingular and N € C(*~")*("=7) js nilpotent with rank (A¥)
=7.

Let A, B,C € C"*". We say that Y € C"*" is a (B, C)-inverse of A if we

have
YAB =B, CAY =C, N(C) CN(Y) and R(Y) C R(B).

If such Y exists, then it is unique (see [1, Definition 4.1] and [16, Definition 1.2]).
Note that, the (B, C)-inverse was introduced in the setting of semigroups [5].

In [6, Definition 1.2] and [10, Definition 2.1], the authors introduced the
one-sided (b, ¢)-inverse in rings. In [1, Definition 2.7], the authors introduced
the one-sided (B, C)-inverse for complex matrices. Let A, B,C € C"*". We
call that X € C™" is a left (B, C)-inverse of A if we have N(C) C N (X) and
XAB = B. We call that Y € C"*" is a right (B, C)-inverse of A if we have
R(Y) C R(B) and CAY = C.

In fact, there is an important generalized inverse was introduced in [17] by
Rao and Mitra. Let A € C™*". In [16], Raki¢ showed that Rao and Mitra’s
constrained inverse of A coincides with the (B, C)-inverse of A, where B,C €
C'I’an‘

In 1972, Rao and Mitra introduced two different types of constraints in order
to extend the concept of Bott-Duffin inverse and define a new constrained inverse
Y € C"*" of a matrix A € C**" in [17]. Let B,C € C"*™.

Constraints of type 1:

¢: Y maps vectors of C™ into R(B);
t: Y™ maps vectors of C" into R(C™);
Constraints of type 2 :

¢: YA is an identity on R(B);

R: (AY)" is an identity on R(C*).

Note that, Rao and Mitra denoted their inverse by A.ex. In fact, they
defined this inverse in a broader context, where A is an m x n matrix mapping
vectors of C™ to C™, where C™ denotes an n dimensional vector space with an
inner product.
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Let A,B,C € C"™. A matrix Y € C"*" is a a¢®® constrained inverse of A
if it satisfies constraints ¢, v, ¢ and 9. Here the c¢™}
will be denoted by Al(B:C). In the sequel, one can see that the ¢t constrained
inverse of A coincides with the (B, C)-inverse of A, thus, we use the symbol of
the (B, C)-inverse to denoted the ¢t®® constrained inverse of A.

In order to rewrite the constraints c¢,v,&€ and PR in purely multiplicative
language, we need the following fact: the condition R(Y) C R(B) if and only
if Y = BK, for some K € C"*"; the condition R(Y*) C R(C*) if and only if
N(C) CR(Y) if and only if Y = LC, for some L € C"*"; the constraint C' is
clearly equivalent to Y AB = B and the constraint R is equivalent to CAY = C.
Therefore, these constraints can be rewritten as follows:

constrained inverse of A

Constraints of type 1:
c: R(Y) CR(B);

t: R(Y") CR(C*);
Constraints of type 2 :
¢: YAB=B;

R: CAY =C.

Let A € C™™ with rank (A) = r. Let T,S be two subspaces of C" with
dim (T) = s < r and dim (S) = n — r. Recall that the out inverse Ag,??.; with

prescribed the column space T' and null space S is the unique matrix X € C"*™
satisfying AT & S = C”. It is well-known fact that the following ten kinds of
(2)

generalized inverse are all special cases of the out inverse A} g with prescribed

the column space T and null space S: the Moore-Penrose inverse Af [11, 15],
the Drazin inverse AP [4], the group inverse A% [4], the core inverse A® [2], the
DMP-inverse AP>T [14] and the core-EP inverse A® [12]. Thus, all the results
related the the out inverse Ag?’ )s with prescribed the column space 1" and null
space S are applicable to these generalized inverses.

2. Existence criteria and expressions of one sided MPCEP-inverse

In [18, Theorem 2.3], Wang proved that A; can be described by using the Moore-
Penrose inverse of A*. The explicit expressions of A; can be found in the follows
lemma.

Lemma 2.1. Let A € C"*™ with ind(A) = k. If A = Ay + Ag is the Core-EP
decomposition of A, then A; = AF(AF)TA and Ay = A — AF(AF)TA.
Motivated by the ideal of one-sided (B, C')-inverse of A, one-sided MPCEP-

inverse was introduced.

Definition 2.1. Let A € C"*" with ind (A) = k. We call that X € C™" is a
left MPCEP-inverse of A if we have

(2) R(AF)L C N(X) and X AF = AT A",
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We call that Y € C™*™ is a right MPCEP-inverse of A if we have
3) R(Y) C R(ATA*) and (AY)*A* = A,

Theorem 2.1. Let A € C™*" with ind (A) = k. Then, ATAF(AF)T is a left
MPCEP-inverse of A.

Proof. Let X be a left MPCEP-inverse of A. Then, by Definition 2.1, we have

(4) R(AF)E C N(X) and X AF = AT AP,
Then
X = U(A®)* for some U € C™"
(5) = U(AF)*[(AF)]T (AR = X[(A")]F(A")”
= X[AR(AR)T]* = X AR (AR)T = ATAR(AR)T
by (4). Thus, ATA¥(A®)T is a left MPCEP-inverse of A by (5). O

In the following theorem, a general expression of the left MPCEP-inverse of
A was given.

Theorem 2.2. Let A € C"*™ with ind (A) = k. Then, a general solution of the
left MPCEP-inverse of A is

ATARARYT 4V (1, - (40 a0 ()|

for any V € CV" any ((A¥)*)~ € (A¥)*{1} and some (A*)~ € A¥{1}.
Proof. Let X be a left MPCEP-inverse of A. Then, by Definition 2.1, we have

(6) R(AF)L C N(X) and X AF = AT A*,
Then

(7) X = U(A®)* for some U € C™*™,
Hence

(8) ATAR = X AF = U (AF)* A

by (6) and (7). That is ATAF = U(AF)*A*.
Since rank ((A*)*AF) = rank (A¥), so one can check that ((A*)*A%)" =
(AR)= ((A%)*) ", for any ((4%)*)~ € (4%)*{1} and some (A*)~ € A*{1} as
follows:
The condition rank ((A%)*A¥) = rank (4%) implies N ((AF)*A*) = N(4F).
We have the equality (A*)*AF[I,, — ((A%)*A%)™ (AF)*A*] = 0 in view of the
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equality (AR)* AR ((AF)*AR)™ (AF)* AR = (AF)* AR so I, —((AF)*AR) ™ (AF)* Ak €
N((AF)*AF) C N (AF), thus AF[T,, — ((AF)*AF)™ (4F)*A*] = 0, that is

Ak: _ Ak: <(Ak)*Ak>_ (Ak)*Ak,

gives ((A4F)*A*)™ (4F)* is an inner inverse of A".
Since ((AF)*AF)™ (AF)* e Ak{l} so let (A%)™ = ((AF)*A*)™ (4%)*, then

(AF)" AR(AF)7((AF)") 7 (AF) A" = (AF)" AR((AF)"AF)7(AR)7)((4%)") 7 (4F) 4P
= (AR AR((AF)"AF)7((AF)"((AM)7) 7 (Ah)) A"
= (A%)rAR((AR) AR) 7 (A)r A
— (AFy* AP,

That is, for any ((A¥)*)” € (4%)*{1} and some (4%)~ € A*{1}, the equality
((AF)*AF)™ = (4%)~ ((A%)*) " holds.
Since

{AT ((A’“)T)* LV [In _ (AF)yr A ((Ak)*Ak)_] } (AF)* A¥

gt ((Ak)g* (AR Ak 4 v |:In — (Ak)* Ak ((Ak)*Akz)} (Ak)* 4K

— At ((Ak)T)* (AFy* AR = At (A’f(A’f)T>* AF

= AT A*,
hence a general solution of ATA* = U(A*)*AF is

Af <(Ak>T)* LV [In ARy A ((Ak)*Ak)_]
can be written as
A ((Ak)T>* LV [In — (AFY AR (AF)- ((Ak)*)} ,

for any V' € C"*", any ((AF))~ € (AF)*{1} and some (A¥)~ ¢ AF{1}. Let
X = ATAR(AR)T + V [I, — (AF)* AR(AF)=((AF)*)~] (A%)*. One can check X is
a left MPCEP-inverse of A in what follows.

o) — ATAR(AR) AR 4V {In — (AFy AR ((Ak)*Ak)_} (AF)*AF

— Afak 4 v [ (Ak) Ak _ (Ak)*Ak ((Ak)*Ak)_ (Ak)*Ak]

= AT AF,
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Since

X = Atab(ah 4+ v [In — (AF)rAR(AR) ((A’“)*)} (AR
" = At [ + v [In — (Aby Ak ARy ((Ak)*)_} (AF)*
= at [(at)] by v byt ()] by
= QAN
where Q = AT[(A®)T]* + VI, — (A¥)* A*(A*)~ ((AF)*)~]. Hence, (10) gives
(11) T = Qahy

The equality in (11) is equivalent to R(A*)+ C N (X). Thus, X is a left
MPCEP-inverse of A by R(A¥)+ C M (X) and X AF = ATA* in (9). O

Theorem 2.3. Let A € C™*" with ind (A) = k. Then, ATA*(AF)! is a right
MPCEP-inverse of A.

Proof. Let Y be a right MPCEP-inverse of A. Then, by Definition 2.1, we have
(12) R(Y) C R(ATAF) and (AY)*A* = AF,
Then
Y = AT A*V for some V € C™*"
= ATAR(AR) ARV = AT [AR(AR)1] A = At [(ah)] " (aby aty
— AT [(4F)T]" (aF-1yrar Aby = At [(ah)T] T (AR (AATA) APy

(13) = AF[(Amt] Ak ar(aaty Ak =at [( )T} (AR A* aAt ARy

4
= Al '(A’f)T' (AF)*AAT APV = AT[ T] (AF)* A
(

— At [(amt] [(ay) A'f] [( ) ] Aky*
— AAR(ARYT
by (12). Thus, AT A*(A®)T is a right MPCEP-inverse of A by (13). O

Theorem 2.4. Let A € C"*™ with ind (A) = k. Then, a general solution of the
right MPCEP-inverse of A is

ATAR(AR)T 4 AT AR [In — (AF)" <(A’“)*) ) (A’“)*Ak} T

for any T € C™", any ((AF)*)~ € (AF)*{1} and some (A*)~ € AF{1}.
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Proof. Let Y be a right MPCEP-inverse of A. Then, by Definition 2.1, we have

(14) R(Y) C R(ATAF) and (AY)* A% = AF,
Then

(15) Y = ATAKS for some S € C™¥™.
Hence

(16)  (AF)" = (AM)*AY = (AF)*AATARS = (AF)*AY = (4F)*AFs
by (14) and (15). That is (A¥)* = (AF)*AkS.
Since rank ((4%)*AF) = rank (4%), so ((4%)*AF)" = (4%)~ ((4%)*)", for
any ((A*)*)~ € (A¥)*{1} and some (A*)~ € A*{1} by the proof Theorem 2.2.
Since

(AF)* AR {(Ak)T + [In - ((A’“)*Ak)i (Ak)*Ak] T}

= (AFyr Ak (A 4 (AF) AR [In ~ ((afyat) (Ak)*A’“] T

= (AR AR(AR)T = (AF) AR (AR

= (AMy,
hence a general solution of (A¥)* = (AF)*AkS is

(AR + [In _ ((Ak)*Ak>_ (A’f)*A’f] T
can be written as
(A |1 = (4 ()t

for any T € C™", any ((A)*)~ € (A4¥)*{1} and some (4¥)~ € A*{1}. Let

Y = AtAR(AR)T - ATAR[L, — (AF)~((AF)*)~(AF)* AF]T. One can check Y is a
right MPCEP-inverse of A in what follows.

Y = At AR (AR 4 AT Ak [In — (AR ((Ak)*)* (A’“)*Ak] T
= ATA*P,
where P = (AF)T + [, — (A*)~((AF)*)~(A*)*A*]T. Hence, (17) gives

(18) Y = ATAFP.



ON ONE-SIDED MPCEP-INVERSE FOR MATRICES OF AN ARBITRARY INDEX 527

The following equality will be used in the sequel.

_ [(Ak:)Tr (AFY* AP [(Ak)*Ak:}_ (AFY* AF

(19) — 4k [(Ak)*Ak]_ (AR)* AR
— Ak(AR)~ ((Ak)*)’ (AF)* AR

by ((AF)*AF)" = (AF)= ((4%)*)", for any ((4%)*)~ € (AF)*{1} and some

(AF)~ € AF{1}.

Since
(AV)* Ak = {AATA’“(A’“)T+AATA’“ [In—(Ak) ((Ak)*)_(Ak)*A’f] T}*Ak

— {Ak(Ak)T + AF [In = (A~ (b)) (A’“)*Ak} T}* Ab

(20) _ {Ak(Ak)’r + [Ak _ Ak(AR)~ ((Ak)*>_ (Ak)*Ak] T}*Ak
_ [Ak(Ak)TrA’“

k

I
N

by (19). The equality in (18) is equivalent to R(Y) C R(A1A*). Thus, Y is a
right MPCEP-inverse of A by R(Y) C R(ATA) and (AY)*A* = A¥ in (20). O

In the following theorem, we will use the core part A; of the Core-EP de-
composition to describe the left MPCEP-inverse of A.

Theorem 2.5. Let A € C"*" with ind (A) = k. Then, X € C™" is a left
MPCEP-inverse of A if and only if N(A1AT) C N(X) and XAATA; = ATA;
hold.

Proof. Firstly, we will prove N'(4;AT) = R(A*)-. Let u € N((A%)*AAT),
then

Ay Al = AF(Ab) AT = [ (a9)T] " AAty

(21) .

= [(45)1] (4 aatu =0

by Lemma 2.1. Let v € N'(A4;A"), then

(AR AAty = (AR)* [(A’“)*]T (AR AATy = (AFY* [Ak(Ak)T]* AAty
= (AR AR (AR AATY = (AF)* A1 ATv = 0

(22)
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by Lemma 2.1. So, by (21) and (22) we have

(23) N(AAT) = N ((4%)* 24T)

Note that

(24 RANT =N((4h)) = v ((a4T45)) = N ((ah) a4h).

The equality V(41 AT) = N((A¥)*AAT) in (23) gives N(A1AT) = R(AF)* by
(24). Hence, N(A;AT) C NV(X) if and only if R(A*)L C N(X) by N (A AT) =
R(AF)L.

Next, we will prove XAATA; = AYA; if and only if XAF = AtA*. The
condition X AATA; = ATA; can be written as

(25) XAATAR(ARYT A = ATAR(AR)TA
by Lemma 2.1, (25) can be written as
(26) X AF(ARYTA = ATAR(AR)TA
by Lemma AATA = A. Post-multiplying by A*~! on (26) gives
XAF(ARYT AR = ATAR(AR)TAART
that is X AF = ATA*. O
In the following theorem, we will use the core part A; of the Core-EP de-
composition to describe the right MPCEP-inverse of A.

Theorem 2.6. Let A € C"*" with ind (A) = k. Then, Y € C"" is a right
MPCEP-inverse of A if and only if R(Y) C R(ATA;) and AjATAY = A; AT
hold.

Proof. Firstly, we will proof R(ATA*) = R(ATA;). Since, we have

(27) ATA; = ATAR(ARYTA

and

(28) ATAR = ATAR(ARYT AR = ATAR(AR)TAARL = ATA AR

by Lemma 2.1. The conditions in (27) and (28) imply R(ATA*) = R(ATA;).
Since

AATAY = A AT

o AF(ARYTAATAY = AF(AR)TAAT
o AF(ARTAY = AF(AF)TAAT
WAY = (4F)TAAT

& (AR AY = (4F)*AAT

& (AF)FAY = (4F)F(4AT)*

& (AR AY = (AATAR)*

< (
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by Lemma 2.1. O

Theorem 2.7. Let A € C™*". If A is both left and right MPCEP-invertible,
then the left MPCEP-inverse of A and the right MPCEP-inverse of A are
unique. Moreover, the left MPCEP-inverse of A coincides with the right MPCEP-
inverse of A.

Proof. Let X be a left MPCEP-inverse of A and Y be a right MPCEP-inverse
of A. Then

(30) R(AML C N (X) and X AF = AT A,
and
(31) R(Y) C R(ATAF) and (AY)*AF = AF

hold. Thus, X = U(A¥)* and Y = ATA*V, for some U,V € C™™ by (30) and
(31). Therefore,

X = U(AR)" = U(4F)*AY = X AY,

32) YV = ATAPV = X ARV = X AATAFYV = X AY

by (30) and (31). Hence, X = Y by (32). If Z is a another right MPCEP-
inverse of A, one can prove X = Z in a similar way. Then, Y = Z by X =Y
and X = Z, which says the right MPCEP-inverse of A is unique. One also can
prove the left MPCEP-inverse of A is unique by a similar proof of the uniqueness
of the right MPCEP-inverse of A. By the above proof, we can get that the left
MPCEP-inverse of A coincides with the right MPCEP-inverse of A. O

The concept of the MPCEP-inverse of A will be introduced by using left
MPCEP-inverse of A and right MPCEP-inverse of A. The concept of the
MPCEP-inverse of a Hilbert space operators was introduced by Chen, Mosié¢
and Xu in [3].

Definition 2.2. Let A € C™*" with ind (A) = k. We call that X € C™™" is
the MPCEP-inverse of A if A is both left MPCEP-invertible and right MPCEP-

wnvertible. That is,
(33) R(AF)T C N(X),R(X) C R(ATA¥), XAF = ATAF and (AX)*AF = AF.
And X is denoted by the symbol AV® that is Ab® = X

By Theorem 2.7 and Definition 2.2, we have the uniqueness of the MPCEP-
inverse of A in what follows:

We have AT@=ATAAD = ATAADP AR(AF)T = ATAD AFH1(AF)T = AT AR (AF)T
by A® = AP A*(A*)T. So, the MPCEP-inverse defined in Definition 2.2 coin-
cides with ones introduced in [3] that was expanded to matrices in [8, 9].
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Theorem 2.8. Let A € C"*™. Then, the MPCEP-inverse of A is unique.

The formula of the MPCEP-inverse of a complex matrix was given in the
following theorem.

Theorem 2.9. Let A € C™ " with ind (A) = k. Then, ATAF(AF)T is the
MPCEP-inverse of A.

Proof. By Definition 2.2, a MPCEP-invertible matrix, is both left MPCEP-
invertible and right MPCEP-invertible. Then, By Theorem 2.1, we have
ATAR(AR)T is a left MPCEP-inverse of A. And by Theorem 2.3, we have
ATAR(AR)T is a right MPCEP-inverse of A. The proof is finished by Theo-
rem 2.7. 0

3. Existence criteria and expressions of the MPCEP-inverse

The CMP inverse of A € C™*" was introduced by Mehdipour and Salemi in
[13], who using the core part in core-nilpotent decomposition of A and the
Moore-Penrose inverse of A. Motivated by the above method, we have a natural
question as follows: Using the core part A in Core-EP decomposition of A and
the Moore-Penrose inverse of A to introduce a matrix X = AT A; Af.

Question What is X 7

In the following theorem, we answer this question, we proved that X =
AT A1 At is a formula of the MPCEP-inverse.

Theorem 3.1. Let A € C™*™ with ind(A) = k and A = A1+ Ay is the Core-EP
decomposition of A. Then, the formula of the MPCEP-inverse is X = AT A AT,

Proof. Let X = ATA; AT, Then, by Lemma 2.1, we have
X = ATA AT = ATAR(AF)TAAT

(34) = AT[AR(A")T]*(AAT)" = AT[AATAR (AN

= AT[AR (AR = AT[(AF)T](4F)".
The condition R(A¥)+ C M(X) holds by (34). Since
(35) X = ATA AT = ATAR(AF)TAAT
so, the condition R(X) C R(ATA¥) holds by (35). Since
(36) X AR = ATAR(ARYTAAT AR = ATAR(AF)TAR = ATAF
so, the condition X A* = A A* holds by (36). Since
(37) (AX)*AF = [AATAR(ARYTAAT* AR = AATAR(AF)TAAT AR = AF

so, the condition (AX)*A* = AF holds by (37). Thus, the proof is finished by
Definition 2.2. O
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The following exmaple shows that the core part in core-nilpotent decom-
position of A is different from the core part in Core-EP decomposition of A.
Moreover, this example also shows that the MPCEP-inverse is different from
the CMP inverse.

1 -1 1 0
0O 0 0 0 Axd
Example 3.1. Let A = 0 1 00 € C***. Then, the core part
0 0 1 0
1 020
. . .. . D 00 0O
in core-nilpotent decomposition of A is AAYA = 00 0 0 and the
00 0O
1 -1 10
. .. . 0O 0 0 O
core part in Core-EP decomposition of A is AAPA = 00 0 0 Thus,
0O 0 0 O
1 01 1 1 0 0 -2
00 0O 000 O
ot — et — ATAAD AAT Lo —
A 00 0 0 by A ATAAP AAT and A 000 0
00 0O 0 00 O

by AM® = ATAAD AAT.

The following example shows that the MPCEP-inverse can equal to the CMP
inverse.

10 1 2
01 1 2 ied e
Example 3.2. Let A = 00 2 4 € C***. It is easy to check that the
0 0 -1 4
index of A is 2. By [18, Corollary 3.3], we have
1 01 2
AO= (4N = A (AP (A)F A2 (AN = ()= | ) L =P,
00 0O

which gives the core part in core-nilpotent decomposition of A equals to the
core part in Core-EP decomposition of A. Moreover, the MPCEP-inverse of A
equals to the CMP inverse of A.

In [18, Theorem 3.4], Wang proved that A; can be described by using the
Core-EP inverse of A. The explicit expressions of A; can be found in the follows
lemma.

Lemma 3.1. Let A € C"*" with ind(A) = k. If A= Ay + Ag is the Core-EP
decomposition of A, then Ay = AAPA and Ay = A — AADA,
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Theorem 3.2. Let A € C"*". Then, the MPCEP-inverse of A is an outer
inverse of A.

Proof. Let A = A; + A5 is the Core-EP decomposition of A and X € C™*" be
the MPCEP-inverse of A. Then, X = A'A; A" by Theorem 3.1, thus

XAX = ATA{ATAATA AT = ATA AT A AT
= ATAF(AFYTAAT AR (AR AAT

(38) = ATAF(AF)TAR(AFYTAAT
= ATAF(AF)TAAT
= ATA AT
=X
by Lemma 2.1. O

Let A € C"" and i,m € N. A matrix X € C"*" is called an (i, m)-core
inverse of A, if it satisfies

(39) X = APAX and A™X = AY(AYT.
The (i, m)-core inverse of A is unique and denoted by A??m.

Proposition 3.1 ([19, Proposition 1]). Let A € C™*™ with ind (A) = k. If

i >k, then AmA?m is the orthogonal projector onto R(A*) along R(Ai)L.

Theorem 3.3. Let A € C"*" with ind (A) = k and i,m € N. If i > k, then
AAT® s the orthogonal projector onto R(A?) along R(Ai)J‘. Moreover, we have

(40) AAT® = A1 AT = AA® = AMAT = AF(AM)T = AT(AN)T,

where Ay is the core part Ay in Core-EP decomposition of A and A® is the
Core-EP inverse of A.

Proof. By Theorem 2.9, we have AT® = ATA¥(A*)T. Then
(41) AAT® = AATAF(AR)T = AR (AR)T,

The equality AA® = A*(A*)T can be got [18, Corollary 3.3]. The equality
AmAf?m = AF(AF)T = AT(AD)T is hold by Lemma 3.1. By Lemma 2.1, we have
Ay = AF(AF)T A, then
A AT = AF(ARYTAAT = [AF(AF)T) (AAT)*
= [AATAR(AF)T)" = (AR (AM)T]?
= AF(AM)T

Thus, the proof is finished by (41). O
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Theorem 3.4. Let A € C™*" and X € C"™™ be the MPCEP-inverse of A.
Then, X can be written as the c¢® constrained inverse of A, where

Constraints of type 1:
¢: R(X) CR(ATAy);
v R(X*) C R((A1AN));
Constraints of type 2 :
C: XAATA, = ATA;;
R: AJATAX = A AT.

Where Ay is the core part of the Core-EP decomposition of A.

Proof. The proof of Constraints of type 1:

Let X € C™" be the MPCEP-inverse of A. Then, X = ATA; A" by The-
orem 3.1, which gives the condition ¢ : R(X) C R(ATA;). Let u € N(A;AT),
then Xu = A'A;Afu = 0, which implies N (4;AT) € N(X). The condi-
tion v: R(X*) C R((A1AT)*) is satisfied by R(X*) C R((A; AT)*) if and only if
N(A1 AT C N(X).

The proof of Constraints of type 2:

By Lemma 2.1, we have A; = A*(A*)TA. Then

XAATA; = XAATA| = ATA ATAATA,
= ATA ATA] = ATAR(AR)TAAT AR (AR)TA
= ATAR(AF)TAR(AFYTA
= ATAF(AF)TA
= AT A,
AJATAX = A ATAATA AT
= A ATA AT = AF(AF)TAATAF(AF)TAAT
= AF(AR)T Ak (AF)TAAT
= AF(AF)TAAT
= A AT

The condition € and R are satisfied by (42). O

If we let B = ATA; and C = A, A", then by the proof of Theorem 3.4, we
have that the MPCEP-inverse of A coincides with the (ATA;, AlAT)—inverse of
A. That is, we have the following theorem.

Theorem 3.5. Let A € C"™ and X € C""™ be the MPCEP-inverse of A.
Then, X is the (ATAy, AjAV)-inverse of A, where Ay is the core part of the
Core-EP decomposition of A.



534 S.Z. XU, X.F. CAO, X. HUA anNp B.L. YU

Theorem 3.6. Let A € C" " with ind (A) = k. The MPCEP-inverse of A
coincides with the (AT A, (AF)*)-inverse of A.

Proof. One can prove this theorem by using Theorem 2.5, Theorem 2.6 and
Theorem 2.7. 0

The MPCEP-inverse of A can be got by using the “S” part of the Core-EP
inverse and the “I” part of the CMP inverse by Theorem 3.6.

4. The CE matrix based on the Core-EP decomposition

We introduced CE matrix by mimicking the concept of EP matrix. The notation
[A, B] = AB — BA will be used in the sequel.

Definition 4.1. Let A € C™*™ with A = A1+ As be the Core-EP decomposition
of A asin (1). If ATAy = A1 AT, then we call A is a CE matrix.

Let A € C"*™ and X € C™*" be the MPCEP-inverse of A. If A is a CE
matrix, then X is the (ATAl, AlAT)—inverse by Theorem 3.5.

Theorem 4.1. Let A € C™™. Then, A is a CE matriz if and only if [AH®, A] =
0.

Proof. By Theorem 3.3, we have AAH® = A; A", By Theorem 2.9, we have
AP® = ATAR(AR)T. Then, AT®A = ATAR(AR)TA = AT[AF(AF)TA] = ATA;.
Thus

ATOA — AAT® = ATA; — A1 AT =0

by the definition of the CE matrix. 0

Proposition 4.1. Let A € C"*" 4s a CE matriz with ind (A) = k. Then,
AT AR+ = Ak,

Proof. By the definition of the CE matrix, we have ATA; = A;Af, which is
equivalent to

(43) ATAR(ARYTA = AR(AF)TAAT

by Lemma 2.1. Post-multiplying by A on (43) gives
ATAF(ARYTAAR = AF(AF)TAAT AP

(44) o ATAR(ARYTARA = AR(AF)T AR
o ATAFL = 4%

Thus, ATAF(AF)TAAF = AF(AF)T AAT A* if and only if ATA*+! = A% The proof
is finished by ATA; = A; AT implies ATAF(AR)TAAR = AR(AR)TAAT AR, O

Proposition 4.2. Let A € C™ " with ind (A) = k. If ATA* = AF then
ATA% € AT®{1,4}.
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Proof. By the hypothesis of the proposition, we have ATA¥+1 = A% From
Theorem 3.3, we have AAT® = A; AT = A¥(AF)T. In view of Lemma 2.1, we
have A; = A*(AF)TA. Then
AAT® = A AT = AF(AF)TAAT = ATARFL(ARYTAAT
= ATAAR(ARYTAAT = ATA[AR(AF)T]F(AAT)*

(45) = ATA[AATAR(AF)T]* = ATA[AR(AR)T)
= ATAAR(AR)T = ATAAAT®
— ATA2ATO,

The equality (45) gives AAT® = ATA2AT®. By Theorem 3.2, we have the
MPCEP-inverse of A is an outer inverse of A. Pre-multiplying by A"® on
AAT® = ATAZAT® gives AT® = AT@AAT® = ATOATA2AT® | that is ATA? is
an inner inverse of AH®. Since ATAZAT® = ATAZAT AR (AR = ATAAR(AR)T =
ATARFL(ARYT = AR (AR)T then ATA? € AV®{4} by AF(AR)T = [Ak(AM)T]. O

5. Conclusions

One-sided MPCEP-inverse for matrices was introduced in this paper. The
MPCEP-inverse can be described by using the core part A; in Core-EP de-
composition of A and the Moore-Penrose inverse of A. The MPCEP-inverse of
A coincides with the (ATAF, (A¥)*)-inverse of A, that is, the MPCEP-inverse

of Ais AT\ iy
essary and sufficient condition such that a matrix A to be a CE matrix is the
MPCEP-inverse of A commutes with A, that is [AT®, A] = 0, where A" ® is the
MPCEP-inverse of A. The future perspectives for research are proposed:

Part 1. The reverse order law of the MPCEP-inverse.

Part 2. The rank properties of the MPCEP-inverse.

Part 3. The weighted MPCEP-inverse of matrices.

In addition, the CE matrix was introduced, a nec-
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