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On one-sided MPCEP-inverse for matrices of an arbitrary index

Sanzhang Xu
Faculty of Mathematics and Physics
Huaiyin Institute of Technology
Huaian, 223003
China
xusanzhang5222@126.com

Xiaofei Cao∗

Faculty of Mathematics and Physics
Huaiyin Institute of Technology
Huaian, 223003
China
caoxiaofei258@126.com

Xue Hua
School of Mathematics and Physics
Guangxi Minzu University
Nanning 530006
China and Faculty of Mathematics and Physics
Huaiyin Institute of Technology
Huaian, 223003
China
xuehua8557@163.com

Ber-Lin Yu
Faculty of Mathematics and Physics

Huaiyin Institute of Technology

Huaian, 223003

China

berlinyu@hyit.edu.cn
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1. Introduction

Let C be the complex filed. The set Cm×n denotes the set of all m×n matrices
over C. Let A ∈ Cm×n. The symbol A∗ denotes the conjugate transpose of A.
Notations R(A) = {y ∈ Cm : y = Ax, x ∈ Cn}, N (A) = {x ∈ Cn : Ax = 0}
and CCM

n = {A ∈ Cn×n| rank (A) = rank (A2)} will be used in the sequel. The
smallest positive integer k such that rank (Ak) = rank(Ak+1) is called the index
of A ∈ Cn×n and denoted by ind(A).

Let A ∈ Cm×n. If a matrix X ∈ Cn×m satisfies

AXA = A, XAX = X, (AX)∗ = AX and (XA)∗ = XA,

then X is called the Moore-Penrose inverse of A [11, 15] and denoted by X =
A†.We call X is an inner inverse of A, if we have AXA = A. The set A{1}
denotes the set of all inner inverse of A. We call X is a {1, 4} inverse of A,
if we have AXA = A and (XA)∗ = XA. The set A{1, 4} denotes the set of
all {1, 4} inverse of A. The Moore-Penrose can be used to represent orthogonal
projectors PA ≜ AA† and QA ≜ A†A onto R(A) and R(A∗), respectively. Let
A,X ∈ Cn×n with ind (A) = k. Then, algebraic definition of the Drazin inverse
as follows: if

X = XAX, XAk+1 = Ak and AX = XA,

then X is called a Drazin inverse of A. It is unique and denoted by AD [4]. Note
that, for a square complex matrix, the algebraic definition of the Drazin inverse
is equivalent to the functional definition of the Drazin inverse. If ind (A) = 1,
the Drazin inverse is called the group inverse of A and denoted by A#. The
core inverse and the dual core inverse for a complex matrix were introduced by
Baksalary and Trenkler [2]. Let A ∈ Cn×n. A matrix X ∈ Cn×n is called a
core inverse of A, if it satisfies AX = PA and R(X) ⊆ R(A), where PA is the
orthogonal projector onto R(A). And if such a matrix exists, then it is unique
(and denoted by A#O). Baksalary and Trenkler gave several characterizations
of the core inverse by using the decomposition of Hartwig and Spindelböck [7].
Let A ∈ Cn×n, the DMP inverse of A was introduced by using the Drazin and
the Moore-Penrose inverses of A in [14], and the formula of the DMP inverse
of A is AD,† = ADAA† [14, Theorem 2.2]. The CMP inverse of A ∈ Cn×n

was introduced by Mehdipour and Salemi in [13], who using the core part in
core-nilpotent decomposition of A and the Moore-Penrose inverse of A, the
CMP inverse of A was denoted by Ac,†. Manjunatha Prasad and Mohana [12]
introduced the core-EP inverse of matrix [12, Definition 3.1]. Let A ∈ Cn×n. If
there exists X ∈ Cn×n such that XAX = X,R(X) = R(X∗) = R(Ak), then
X is called the core-EP inverse of A. If such inverse exists, then it is unique
and denoted by A �O. The concept of the MPCEP-inverse of a Hilbert space
operators was initially introduced by Chen, Mosić and Xu [3] and this concept
was expanded on quaternion matrices by Kyrchei, Mosić and Stanimirović [8, 9].
Let A ∈ Cn×n with ind (A) = k. If there exists a matrix X ∈ Cn×n such that

XAX = X, AX = AA �O and XA = A†AA �OA
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then X is called the MPCEP-inverse of A and denoted by A†, �O.

In [18, Theorem 2.1], Wang introduced a new matrix decomposition, namely
the Core-EP decomposition of A ∈ Cn×n with ind (A) = k. Given a matrix A ∈
Cn×n, then A can be written as the sum of matrices A1 ∈ Cn×n and A2 ∈ Cn×n,
that is A = A1 + A2, where A1 ∈ CCM

n , Ak
2 = 0 and A∗

1A2 = A2A1 = 0. In
[18, Theorem 2.3 and Theorem 2.4], Wang proved this matrix decomposition is
unique and there exists a unitary matrix U ∈ Cn×n such that

(1) A1 = U

[
T S
0 0

]
U∗ and A2 = U

[
0 0
0 N

]
U∗,

where T ∈ Cr×r is nonsingular and N ∈ C(n−r)×(n−r) is nilpotent with rank (Ak)
= r.

Let A,B,C ∈ Cn×n. We say that Y ∈ Cn×n is a (B,C)-inverse of A if we
have

Y AB = B, CAY = C, N (C) ⊆ N (Y ) and R(Y ) ⊆ R(B).

If such Y exists, then it is unique (see [1, Definition 4.1] and [16, Definition 1.2]).
Note that, the (B,C)-inverse was introduced in the setting of semigroups [5].

In [6, Definition 1.2] and [10, Definition 2.1], the authors introduced the
one-sided (b, c)-inverse in rings. In [1, Definition 2.7], the authors introduced
the one-sided (B,C)-inverse for complex matrices. Let A,B,C ∈ Cn×n. We
call that X ∈ Cn×n is a left (B,C)-inverse of A if we have N (C) ⊆ N (X) and
XAB = B. We call that Y ∈ Cn×n is a right (B,C)-inverse of A if we have
R(Y ) ⊆ R(B) and CAY = C.

In fact, there is an important generalized inverse was introduced in [17] by
Rao and Mitra. Let A ∈ Cn×n. In [16], Rakić showed that Rao and Mitra’s
constrained inverse of A coincides with the (B,C)-inverse of A, where B,C ∈
Cn×n.

In 1972, Rao and Mitra introduced two different types of constraints in order
to extend the concept of Bott-Duffin inverse and define a new constrained inverse
Y ∈ Cn×n of a matrix A ∈ Cn×n in [17]. Let B,C ∈ Cn×n.

Constraints of type 1 :

c : Y maps vectors of Cm into R(B);

r : Y ∗ maps vectors of Cn into R(C∗);

Constraints of type 2 :

C : Y A is an identity on R(B);

R : (AY )∗ is an identity on R(C∗).

Note that, Rao and Mitra denoted their inverse by AcrCR . In fact, they
defined this inverse in a broader context, where A is an m× n matrix mapping
vectors of Cn to Cm, where Cn denotes an n dimensional vector space with an
inner product.
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Let A,B,C ∈ Cn×n. A matrix Y ∈ Cn×n is a crCR constrained inverse of A
if it satisfies constraints c, r,C and R. Here the crCR constrained inverse of A
will be denoted by A∥(B,C). In the sequel, one can see that the crCR constrained
inverse of A coincides with the (B,C)-inverse of A, thus, we use the symbol of
the (B,C)-inverse to denoted the crCR constrained inverse of A.

In order to rewrite the constraints c, r,C and R in purely multiplicative
language, we need the following fact: the condition R(Y ) ⊆ R(B) if and only
if Y = BK, for some K ∈ Cn×n; the condition R(Y ∗) ⊆ R(C∗) if and only if
N (C) ⊆ R(Y ) if and only if Y = LC, for some L ∈ Cn×n; the constraint C is
clearly equivalent to Y AB = B and the constraint R is equivalent to CAY = C.
Therefore, these constraints can be rewritten as follows:

Constraints of type 1 :

c : R(Y ) ⊆ R(B);

r : R(Y ∗) ⊆ R(C∗);

Constraints of type 2 :

C : Y AB = B;

R : CAY = C.

Let A ∈ Cm×n with rank (A) = r. Let T, S be two subspaces of Cn with

dim (T ) = s ⩽ r and dim (S) = n − r. Recall that the out inverse A
(2)
T,S with

prescribed the column space T and null space S is the unique matrix X ∈ Cn×m

satisfying AT ⊕ S = Cn. It is well-known fact that the following ten kinds of

generalized inverse are all special cases of the out inverse A
(2)
T,S with prescribed

the column space T and null space S: the Moore-Penrose inverse A† [11, 15],
the Drazin inverse AD [4], the group inverse A# [4], the core inverse A#O [2], the
DMP-inverse AD,† [14] and the core-EP inverse A �O [12]. Thus, all the results

related the the out inverse A
(2)
T,S with prescribed the column space T and null

space S are applicable to these generalized inverses.

2. Existence criteria and expressions of one sided MPCEP-inverse

In [18, Theorem 2.3], Wang proved that A1 can be described by using the Moore-
Penrose inverse of Ak. The explicit expressions of A1 can be found in the follows
lemma.

Lemma 2.1. Let A ∈ Cn×n with ind(A) = k. If A = A1 + A2 is the Core-EP
decomposition of A, then A1 = Ak(Ak)†A and A2 = A−Ak(Ak)†A.

Motivated by the ideal of one-sided (B,C)-inverse of A, one-sided MPCEP-
inverse was introduced.

Definition 2.1. Let A ∈ Cn×n with ind (A) = k. We call that X ∈ Cn×n is a
left MPCEP-inverse of A if we have

(2) R(Ak)⊥ ⊆ N (X) and XAk = A†Ak.
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We call that Y ∈ Cn×n is a right MPCEP-inverse of A if we have

(3) R(Y ) ⊆ R(A†Ak) and (AY )∗Ak = Ak.

Theorem 2.1. Let A ∈ Cn×n with ind (A) = k. Then, A†Ak(Ak)† is a left
MPCEP-inverse of A.

Proof. Let X be a left MPCEP-inverse of A. Then, by Definition 2.1, we have

(4) R(Ak)⊥ ⊆ N (X) and XAk = A†Ak.

Then

X = U(Ak)∗ for some U ∈ Cn×n

= U(Ak)∗[(Ak)∗]†(Ak)∗ = X[(Ak)∗]†(Ak)∗

= X[Ak(Ak)†]∗ = XAk(Ak)† = A†Ak(Ak)†

(5)

by (4). Thus, A†Ak(Ak)† is a left MPCEP-inverse of A by (5).

In the following theorem, a general expression of the left MPCEP-inverse of
A was given.

Theorem 2.2. Let A ∈ Cn×n with ind (A) = k. Then, a general solution of the
left MPCEP-inverse of A is

A†Ak(Ak)† + V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗,

for any V ∈ Cn×n, any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}.

Proof. Let X be a left MPCEP-inverse of A. Then, by Definition 2.1, we have

(6) R(Ak)⊥ ⊆ N (X) and XAk = A†Ak.

Then

(7) X = U(Ak)∗ for some U ∈ Cn×n.

Hence

(8) A†Ak = XAk = U(Ak)∗Ak

by (6) and (7). That is A†Ak = U(Ak)∗Ak.

Since rank
(
(Ak)∗Ak

)
= rank (Ak), so one can check that

(
(Ak)∗Ak

)−
=

(Ak)−
(
(Ak)∗

)−
, for any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1} as

follows:
The condition rank

(
(Ak)∗Ak

)
= rank (Ak) implies N

(
(Ak)∗Ak

)
= N (Ak).

We have the equality (Ak)∗Ak[In −
(
(Ak)∗Ak

)−
(Ak)∗Ak] = 0 in view of the
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equality (Ak)∗Ak
(
(Ak)∗Ak

)−
(Ak)∗Ak = (Ak)∗Ak, so In−

(
(Ak)∗Ak

)−
(Ak)∗Ak ∈

N ((Ak)∗Ak) ⊆ N (Ak), thus Ak[In −
(
(Ak)∗Ak

)−
(Ak)∗Ak] = 0, that is

Ak = Ak
(
(Ak)∗Ak

)−
(Ak)∗Ak,

gives
(
(Ak)∗Ak

)−
(Ak)∗ is an inner inverse of Ak.

Since
(
(Ak)∗Ak

)−
(Ak)∗ ∈ Ak{1}, so let (Ak)− =

(
(Ak)∗Ak

)−
(Ak)∗, then

(Ak)∗Ak(Ak)−((Ak)∗)−(Ak)∗Ak = (Ak)∗Ak[((Ak)∗Ak)−(Ak)∗]((Ak)∗)−(Ak)∗Ak

= (Ak)∗Ak((Ak)∗Ak)−((Ak)∗((Ak)∗)−(Ak)∗)Ak

= (Ak)∗Ak((Ak)∗Ak)−(Ak)∗Ak

= (Ak)∗Ak.

That is, for any
(
(Ak)∗

)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}, the equality(
(Ak)∗Ak

)−
= (Ak)−

(
(Ak)∗

)−
holds.

Since{
A†

(
(Ak)†

)∗
+ V

[
In − (Ak)∗Ak

(
(Ak)∗Ak

)−
]}

(Ak)∗Ak

= A†
(
(Ak)†

)∗
(Ak)∗Ak + V

[
In − (Ak)∗Ak

(
(Ak)∗Ak

)−
]
(Ak)∗Ak

= A†
(
(Ak)†

)∗
(Ak)∗Ak = A†

(
Ak(Ak)†

)∗
Ak

= A†Ak,

hence a general solution of A†Ak = U(Ak)∗Ak is

A†
(
(Ak)†

)∗
+ V

[
In − (Ak)∗Ak

(
(Ak)∗Ak

)−
]

can be written as

A†
(
(Ak)†

)∗
+ V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
,

for any V ∈ Cn×n, any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}. Let
X̃ = A†Ak(Ak)† + V

[
In − (Ak)∗Ak(Ak)−((Ak)∗)−

]
(Ak)∗. One can check X̃ is

a left MPCEP-inverse of A in what follows.

X̃Ak = A†Ak(Ak)†Ak + V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗Ak

= A†Ak(Ak)†Ak + V

[
In − (Ak)∗Ak

(
(Ak)∗Ak

)−
]
(Ak)∗Ak

= A†Ak + V

[
In(A

k)∗Ak − (Ak)∗Ak
(
(Ak)∗Ak

)−
(Ak)∗Ak

]
= A†Ak.

(9)
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Since

X̃ = A†Ak(Ak)† + V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗

= A†
[
Ak(Ak)†

]∗
+ V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗

= A†
[
(Ak)†

]∗
(Ak)∗ + V

[
In − (Ak)∗Ak(Ak)−

(
(Ak)∗

)−
]
(Ak)∗

= Q(Ak)∗,

(10)

where Q = A†[(Ak)†]∗ + V [In − (Ak)∗Ak(Ak)−((Ak)∗)−]. Hence, (10) gives

(11) X̃ = Q(Ak)∗.

The equality in (11) is equivalent to R(Ak)⊥ ⊆ N (X̃). Thus, X̃ is a left
MPCEP-inverse of A by R(Ak)⊥ ⊆ N (X̃) and X̃Ak = A†Ak in (9).

Theorem 2.3. Let A ∈ Cn×n with ind (A) = k. Then, A†Ak(Ak)† is a right
MPCEP-inverse of A.

Proof. Let Y be a right MPCEP-inverse of A. Then, by Definition 2.1, we have

(12) R(Y ) ⊆ R(A†Ak) and (AY )∗Ak = Ak.

Then

Y = A†AkV for some V ∈ Cn×n

= A†Ak(Ak)†AkV = A†
[
Ak(Ak)†

]∗
AkV = A†

[
(Ak)†

]∗
(Ak)∗AkV

= A†
[
(Ak)†

]∗
(Ak−1)∗A∗AkV = A†

[
(Ak)†

]∗
(Ak−1)∗(AA†A)∗AkV

= A†
[
(Ak)†

]∗
(Ak−1)∗A∗(AA†)∗AkV=A†

[
(Ak)†

]∗
(Ak−1)∗A∗AA†AkV

= A†
[
(Ak)†

]∗
(Ak)∗AA†AkV = A†

[
(Ak)†

]∗
(Ak)∗AY

= A†
[
(Ak)†

]∗ [
(AY )∗Ak

]∗
= A†

[
(Ak)†

]∗
(Ak)∗

= A†Ak(Ak)†

(13)

by (12). Thus, A†Ak(Ak)† is a right MPCEP-inverse of A by (13).

Theorem 2.4. Let A ∈ Cn×n with ind (A) = k. Then, a general solution of the
right MPCEP-inverse of A is

A†Ak(Ak)† +A†Ak

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T,

for any T ∈ Cn×n, any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}.
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Proof. Let Y be a right MPCEP-inverse of A. Then, by Definition 2.1, we have

(14) R(Y ) ⊆ R(A†Ak) and (AY )∗Ak = Ak.

Then

(15) Y = A†AkS for some S ∈ Cn×n.

Hence

(16) (Ak)∗ = (Ak)∗AY = (Ak)∗AA†AkS = (Ak)∗AY = (Ak)∗AkS

by (14) and (15). That is (Ak)∗ = (Ak)∗AkS.

Since rank
(
(Ak)∗Ak

)
= rank (Ak), so

(
(Ak)∗Ak

)−
= (Ak)−

(
(Ak)∗

)−
, for

any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1} by the proof Theorem 2.2.
Since

(Ak)∗Ak

{
(Ak)† +

[
In −

(
(Ak)∗Ak

)−
(Ak)∗Ak

]
T

}
= (Ak)∗Ak(Ak)† + (Ak)∗Ak

[
In −

(
(Ak)∗Ak

)−
(Ak)∗Ak

]
T

= (Ak)∗Ak(Ak)† = (Ak)∗[Ak(Ak)†]∗

= (Ak)∗,

hence a general solution of (Ak)∗ = (Ak)∗AkS is

(Ak)† +

[
In −

(
(Ak)∗Ak

)−
(Ak)∗Ak

]
T

can be written as

(Ak)† +

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T,

for any T ∈ Cn×n, any ((Ak)∗)− ∈ (Ak)∗{1} and some (Ak)− ∈ Ak{1}. Let
Ỹ = A†Ak(Ak)† + A†Ak[In − (Ak)−((Ak)∗)−(Ak)∗Ak]T . One can check Ỹ is a
right MPCEP-inverse of A in what follows.

Ỹ = A†Ak(Ak)† +A†Ak

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

= A†Ak

{
(Ak)† +

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

}
= A†AkP,

(17)

where P = (Ak)† + [In − (Ak)−((Ak)∗)−(Ak)∗Ak]T . Hence, (17) gives

(18) Ỹ = A†AkP.



ON ONE-SIDED MPCEP-INVERSE FOR MATRICES OF AN ARBITRARY INDEX 527

The following equality will be used in the sequel.

Ak = Ak(Ak)†Ak =
[
Ak(Ak)†

]∗
Ak =

[
(Ak)†

]∗
(Ak)∗Ak

=
[
(Ak)†

]∗
(Ak)∗Ak

[
(Ak)∗Ak

]−
(Ak)∗Ak

= Ak
[
(Ak)∗Ak

]−
(Ak)∗Ak

= Ak(Ak)−
(
(Ak)∗

)−
(Ak)∗Ak

(19)

by
(
(Ak)∗Ak

)−
= (Ak)−

(
(Ak)∗

)−
, for any ((Ak)∗)− ∈ (Ak)∗{1} and some

(Ak)− ∈ Ak{1}.
Since

(AỸ )∗Ak =

{
AA†Ak(Ak)†+AA†Ak

[
In−(Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

}∗
Ak

=

{
Ak(Ak)† +Ak

[
In − (Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

}∗
Ak

=

{
Ak(Ak)† +

[
Ak −Ak(Ak)−

(
(Ak)∗

)−
(Ak)∗Ak

]
T

}∗
Ak

=
[
Ak(Ak)†

]∗
Ak

= Ak

(20)

by (19). The equality in (18) is equivalent to R(Ỹ ) ⊆ R(A†Ak). Thus, Ỹ is a
right MPCEP-inverse of A by R(Ỹ ) ⊆ R(A†Ak) and (AỸ )∗Ak = Ak in (20).

In the following theorem, we will use the core part A1 of the Core-EP de-
composition to describe the left MPCEP-inverse of A.

Theorem 2.5. Let A ∈ Cn×n with ind (A) = k. Then, X ∈ Cn×n is a left
MPCEP-inverse of A if and only if N (A1A

†) ⊆ N (X) and XAA†A1 = A†A1

hold.

Proof. Firstly, we will prove N (A1A
†) = R(Ak)⊥. Let u ∈ N

(
(Ak)∗AA†),

then

A1A
†u = Ak(Ak)†AA†u =

[
Ak(Ak)†

]∗
AA†u

=
[
(Ak)†

]∗
(Ak)∗AA†u = 0

(21)

by Lemma 2.1. Let v ∈ N (A1A
†), then

(Ak)∗AA†v = (Ak)∗
[
(Ak)∗

]†
(Ak)∗AA†v = (Ak)∗

[
Ak(Ak)†

]∗
AA†v

= (Ak)∗Ak(Ak)†AA†v = (Ak)∗A1A
†v = 0

(22)
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by Lemma 2.1. So, by (21) and (22) we have

(23) N (A1A
†) = N

(
(Ak)∗AA†

)
Note that

(24) R(Ak)⊥ = N
(
(Ak)∗

)
= N

(
(AA†Ak)∗

)
= N

(
(Ak)∗AA†

)
.

The equality N (A1A
†) = N ((Ak)∗AA†) in (23) gives N (A1A

†) = R(Ak)⊥ by
(24). Hence, N (A1A

†) ⊆ N (X) if and only if R(Ak)⊥ ⊆ N (X) by N (A1A
†) =

R(Ak)⊥.
Next, we will prove XAA†A1 = A†A1 if and only if XAk = A†Ak. The

condition XAA†A1 = A†A1 can be written as

(25) XAA†Ak(Ak)†A = A†Ak(Ak)†A

by Lemma 2.1, (25) can be written as

(26) XAk(Ak)†A = A†Ak(Ak)†A

by Lemma AA†A = A. Post-multiplying by Ak−1 on (26) gives

XAk(Ak)†AAk−1 = A†Ak(Ak)†AAk−1,

that is XAk = A†Ak.

In the following theorem, we will use the core part A1 of the Core-EP de-
composition to describe the right MPCEP-inverse of A.

Theorem 2.6. Let A ∈ Cn×n with ind (A) = k. Then, Y ∈ Cn×n is a right
MPCEP-inverse of A if and only if R(Y ) ⊆ R(A†A1) and A1A

†AY = A1A
†

hold.

Proof. Firstly, we will proof R(A†Ak) = R(A†A1). Since, we have

(27) A†A1 = A†Ak(Ak)†A

and

(28) A†Ak = A†Ak(Ak)†Ak = A†Ak(Ak)†AAk−1 = A†A1A
k−1

by Lemma 2.1. The conditions in (27) and (28) imply R(A†Ak) = R(A†A1).
Since

A1A
†AY = A1A

†

⇔ Ak(Ak)†AA†AY = Ak(Ak)†AA†

⇔ Ak(Ak)†AY = Ak(Ak)†AA†

⇔ (Ak)†AY = (Ak)†AA†

⇔ (Ak)∗AY = (Ak)∗AA†

⇔ (Ak)∗AY = (Ak)∗(AA†)∗

⇔ (Ak)∗AY = (AA†Ak)∗

⇔ (AY )∗Ak = Ak

(29)



ON ONE-SIDED MPCEP-INVERSE FOR MATRICES OF AN ARBITRARY INDEX 529

by Lemma 2.1.

Theorem 2.7. Let A ∈ Cn×n. If A is both left and right MPCEP-invertible,
then the left MPCEP-inverse of A and the right MPCEP-inverse of A are
unique. Moreover, the left MPCEP-inverse of A coincides with the right MPCEP-
inverse of A.

Proof. Let X be a left MPCEP-inverse of A and Y be a right MPCEP-inverse
of A. Then

(30) R(Ak)⊥ ⊆ N (X) and XAk = A†Ak.

and

(31) R(Y ) ⊆ R(A†Ak) and (AY )∗Ak = Ak

hold. Thus, X = U(Ak)∗ and Y = A†AkV , for some U, V ∈ Cn×n by (30) and
(31). Therefore,

X = U(Ak)∗ = U(Ak)∗AY = XAY,

Y = A†AkV = XAkV = XAA†AkV = XAY
(32)

by (30) and (31). Hence, X = Y by (32). If Z is a another right MPCEP-
inverse of A, one can prove X = Z in a similar way. Then, Y = Z by X = Y
and X = Z, which says the right MPCEP-inverse of A is unique. One also can
prove the left MPCEP-inverse of A is unique by a similar proof of the uniqueness
of the right MPCEP-inverse of A. By the above proof, we can get that the left
MPCEP-inverse of A coincides with the right MPCEP-inverse of A.

The concept of the MPCEP-inverse of A will be introduced by using left
MPCEP-inverse of A and right MPCEP-inverse of A. The concept of the
MPCEP-inverse of a Hilbert space operators was introduced by Chen, Mosić
and Xu in [3].

Definition 2.2. Let A ∈ Cn×n with ind (A) = k. We call that X ∈ Cn×n is
the MPCEP-inverse of A if A is both left MPCEP-invertible and right MPCEP-
invertible. That is,

(33) R(Ak)⊥ ⊆ N (X),R(X) ⊆ R(A†Ak), XAk = A†Ak and (AX)∗Ak = Ak.

And X is denoted by the symbol A†, �O, that is A†, �O = X.

By Theorem 2.7 and Definition 2.2, we have the uniqueness of the MPCEP-
inverse of A in what follows:

We have A†, �O=A†AA �O = A†AADAk(Ak)† = A†ADAk+1(Ak)† = A†Ak(Ak)†

by A �O = ADAk(Ak)†. So, the MPCEP-inverse defined in Definition 2.2 coin-
cides with ones introduced in [3] that was expanded to matrices in [8, 9].
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Theorem 2.8. Let A ∈ Cn×n. Then, the MPCEP-inverse of A is unique.

The formula of the MPCEP-inverse of a complex matrix was given in the
following theorem.

Theorem 2.9. Let A ∈ Cn×n with ind (A) = k. Then, A†Ak(Ak)† is the
MPCEP-inverse of A.

Proof. By Definition 2.2, a MPCEP-invertible matrix, is both left MPCEP-
invertible and right MPCEP-invertible. Then, By Theorem 2.1, we have
A†Ak(Ak)† is a left MPCEP-inverse of A. And by Theorem 2.3, we have
A†Ak(Ak)† is a right MPCEP-inverse of A. The proof is finished by Theo-
rem 2.7.

3. Existence criteria and expressions of the MPCEP-inverse

The CMP inverse of A ∈ Cn×n was introduced by Mehdipour and Salemi in
[13], who using the core part in core-nilpotent decomposition of A and the
Moore-Penrose inverse of A. Motivated by the above method, we have a natural
question as follows: Using the core part A1 in Core-EP decomposition of A and
the Moore-Penrose inverse of A to introduce a matrix X = A†A1A

†.
Question What is X ?
In the following theorem, we answer this question, we proved that X =

A†A1A
† is a formula of the MPCEP-inverse.

Theorem 3.1. Let A ∈ Cn×n with ind(A) = k and A = A1+A2 is the Core-EP
decomposition of A. Then, the formula of the MPCEP-inverse is X = A†A1A

†.

Proof. Let X = A†A1A
†. Then, by Lemma 2.1, we have

X = A†A1A
† = A†Ak(Ak)†AA†

= A†[Ak(Ak)†]∗(AA†)∗ = A†[AA†Ak(Ak)†]∗

= A†[Ak(Ak)†]∗ = A†[(Ak)†]∗(Ak)∗.

(34)

The condition R(Ak)⊥ ⊆ N (X) holds by (34). Since

(35) X = A†A1A
† = A†Ak(Ak)†AA†

so, the condition R(X) ⊆ R(A†Ak) holds by (35). Since

(36) XAk = A†Ak(Ak)†AA†Ak = A†Ak(Ak)†Ak = A†Ak

so, the condition XAk = A†Ak holds by (36). Since

(37) (AX)∗Ak = [AA†Ak(Ak)†AA†]∗Ak = AA†Ak(Ak)†AA†Ak = Ak

so, the condition (AX)∗Ak = Ak holds by (37). Thus, the proof is finished by
Definition 2.2.
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The following exmaple shows that the core part in core-nilpotent decom-
position of A is different from the core part in Core-EP decomposition of A.
Moreover, this example also shows that the MPCEP-inverse is different from
the CMP inverse.

Example 3.1. Let A =


1 −1 1 0
0 0 0 0
0 1 0 0
0 0 1 0

 ∈ C4×4. Then, the core part

in core-nilpotent decomposition of A is AADA =


1 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 and the

core part in Core-EP decomposition of A is AA �OA =


1 −1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 Thus,

Ac,† =


1 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 by Ac,† = A†AADAA† and A†, �O =


1 0 0 −2
0 0 0 0
0 0 0 0
0 0 0 0


by A†, �O = A†AA �OAA†.

The following example shows that the MPCEP-inverse can equal to the CMP
inverse.

Example 3.2. Let A =


1 0 1 2
0 1 1 2
0 0 2 4
0 0 −1 4

 ∈ C4×4. It is easy to check that the

index of A is 2. By [18, Corollary 3.3], we have

A �O=A2(A3)#O=A2(A2)#O=A2(A2)#A2(A2)†=A2(A2)†=


1 0 1 2
0 1 1 2
0 0 0 0
0 0 0 0

 = AD,

which gives the core part in core-nilpotent decomposition of A equals to the
core part in Core-EP decomposition of A. Moreover, the MPCEP-inverse of A
equals to the CMP inverse of A.

In [18, Theorem 3.4], Wang proved that A1 can be described by using the
Core-EP inverse of A. The explicit expressions of A1 can be found in the follows
lemma.

Lemma 3.1. Let A ∈ Cn×n with ind(A) = k. If A = A1 + A2 is the Core-EP
decomposition of A, then A1 = AA �OA and A2 = A−AA �OA.
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Theorem 3.2. Let A ∈ Cn×n. Then, the MPCEP-inverse of A is an outer
inverse of A.

Proof. Let A = A1 +A2 is the Core-EP decomposition of A and X ∈ Cn×n be
the MPCEP-inverse of A. Then, X = A†A1A

† by Theorem 3.1, thus

XAX = A†A1A
†AA†A1A

† = A†A1A
†A1A

†

= A†Ak(Ak)†AA†Ak(Ak)†AA†

= A†Ak(Ak)†Ak(Ak)†AA†

= A†Ak(Ak)†AA†

= A†A1A
†

= X

(38)

by Lemma 2.1.

Let A ∈ Cn×n and i,m ∈ N. A matrix X ∈ Cn×n is called an ⟨i,m⟩-core
inverse of A, if it satisfies

(39) X = ADAX and AmX = Ai(Ai)†.

The ⟨i,m⟩-core inverse of A is unique and denoted by A⊕
i,m.

Proposition 3.1 ([19, Proposition 1]). Let A ∈ Cn×n with ind (A) = k. If

i ⩾ k, then AmA⊕
i,m is the orthogonal projector onto R(Ai) along R(Ai)

⊥
.

Theorem 3.3. Let A ∈ Cn×n with ind (A) = k and i,m ∈ N. If i ⩾ k, then

AA†, �O is the orthogonal projector onto R(Ai) along R(Ai)
⊥
. Moreover, we have

(40) AA†, �O = A1A
† = AA �O = AmA⊕

i,m = Ak(Ak)† = Ai(Ai)†,

where A1 is the core part A1 in Core-EP decomposition of A and A �O is the
Core-EP inverse of A.

Proof. By Theorem 2.9, we have A†, �O = A†Ak(Ak)†. Then

(41) AA†, �O = AA†Ak(Ak)† = Ak(Ak)†.

The equality AA �O = Ak(Ak)† can be got [18, Corollary 3.3]. The equality
AmA⊕

i,m = Ak(Ak)† = Ai(Ai)† is hold by Lemma 3.1. By Lemma 2.1, we have

A1 = Ak(Ak)†A, then

A1A
† = Ak(Ak)†AA† = [Ak(Ak)†]∗(AA†)∗

= [AA†Ak(Ak)†]∗ = [Ak(Ak)†]∗

= Ak(Ak)†.

Thus, the proof is finished by (41).
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Theorem 3.4. Let A ∈ Cn×n and X ∈ Cn×n be the MPCEP-inverse of A.
Then, X can be written as the crCR constrained inverse of A, where

Constraints of type 1 :

c : R(X) ⊆ R(A†A1);

r : R(X∗) ⊆ R((A1A
†)∗);

Constraints of type 2 :

C : XAA†A1 = A†A1;

R : A1A
†AX = A1A

†.

Where A1 is the core part of the Core-EP decomposition of A.

Proof. The proof of Constraints of type 1:

Let X ∈ Cn×n be the MPCEP-inverse of A. Then, X = A†A1A
† by The-

orem 3.1, which gives the condition c : R(X) ⊆ R(A†A1). Let u ∈ N (A1A
†),

then Xu = A†A1A
†u = 0, which implies N (A1A

†) ⊆ N (X). The condi-
tion r : R(X∗) ⊆ R((A1A

†)∗) is satisfied by R(X∗) ⊆ R((A1A
†)∗) if and only if

N (A1A
†) ⊆ N (X).

The proof of Constraints of type 2:

By Lemma 2.1, we have A1 = Ak(Ak)†A. Then

XAA†A1 = XAA†A1 = A†A1A
†AA†A1

= A†A1A
†A1 = A†Ak(Ak)†AA†Ak(Ak)†A

= A†Ak(Ak)†Ak(Ak)†A

= A†Ak(Ak)†A

= A†A1,

A1A
†AX = A1A

†AA†A1A
†

= A1A
†A1A

† = Ak(Ak)†AA†Ak(Ak)†AA†

= Ak(Ak)†Ak(Ak)†AA†

= Ak(Ak)†AA†

= A1A
†.

(42)

The condition C and R are satisfied by (42).

If we let B = A†A1 and C = A1A
†, then by the proof of Theorem 3.4, we

have that the MPCEP-inverse of A coincides with the (A†A1, A1A
†)-inverse of

A. That is, we have the following theorem.

Theorem 3.5. Let A ∈ Cn×n and X ∈ Cn×n be the MPCEP-inverse of A.
Then, X is the (A†A1, A1A

†)-inverse of A, where A1 is the core part of the
Core-EP decomposition of A.
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Theorem 3.6. Let A ∈ Cn×n with ind (A) = k. The MPCEP-inverse of A
coincides with the (A†Ak, (Ak)∗)-inverse of A.

Proof. One can prove this theorem by using Theorem 2.5, Theorem 2.6 and
Theorem 2.7.

The MPCEP-inverse of A can be got by using the “S” part of the Core-EP
inverse and the “T” part of the CMP inverse by Theorem 3.6.

4. The CE matrix based on the Core-EP decomposition

We introduced CE matrix by mimicking the concept of EP matrix. The notation
[A,B] = AB −BA will be used in the sequel.

Definition 4.1. Let A ∈ Cn×n with A = A1+A2 be the Core-EP decomposition
of A as in (1). If A†A1 = A1A

†, then we call A is a CE matrix.

Let A ∈ Cn×n and X ∈ Cn×n be the MPCEP-inverse of A. If A is a CE
matrix, then X is the (A†A1, A1A

†)-inverse by Theorem 3.5.

Theorem 4.1. Let A ∈ Cn×n. Then, A is a CE matrix if and only if [A†, �O, A] =
0.

Proof. By Theorem 3.3, we have AA†, �O = A1A
†. By Theorem 2.9, we have

A†, �O = A†Ak(Ak)†. Then, A†, �OA = A†Ak(Ak)†A = A†[Ak(Ak)†A] = A†A1.
Thus

A†, �OA−AA†, �O = A†A1 −A1A
† = 0

by the definition of the CE matrix.

Proposition 4.1. Let A ∈ Cn×n is a CE matrix with ind (A) = k. Then,
A†Ak+1 = Ak.

Proof. By the definition of the CE matrix, we have A†A1 = A1A
†, which is

equivalent to

(43) A†Ak(Ak)†A = Ak(Ak)†AA†

by Lemma 2.1. Post-multiplying by Ak on (43) gives

A†Ak(Ak)†AAk = Ak(Ak)†AA†Ak

⇔ A†Ak(Ak)†AkA = Ak(Ak)†Ak

⇔ A†Ak+1 = Ak.

(44)

Thus, A†Ak(Ak)†AAk = Ak(Ak)†AA†Ak if and only if A†Ak+1 = Ak. The proof
is finished by A†A1 = A1A

† implies A†Ak(Ak)†AAk = Ak(Ak)†AA†Ak.

Proposition 4.2. Let A ∈ Cn×n with ind (A) = k. If A†Ak+1 = Ak, then
A†A2 ∈ A†, �O{1, 4}.
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Proof. By the hypothesis of the proposition, we have A†Ak+1 = Ak. From
Theorem 3.3, we have AA†, �O = A1A

† = Ak(Ak)†. In view of Lemma 2.1, we
have A1 = Ak(Ak)†A. Then

AA†, �O = A1A
† = Ak(Ak)†AA† = A†Ak+1(Ak)†AA†

= A†AAk(Ak)†AA† = A†A[Ak(Ak)†]∗(AA†)∗

= A†A[AA†Ak(Ak)†]∗ = A†A[Ak(Ak)†]∗

= A†AAk(Ak)† = A†AAA†, �O

= A†A2A†, �O.

(45)

The equality (45) gives AA†, �O = A†A2A†, �O. By Theorem 3.2, we have the
MPCEP-inverse of A is an outer inverse of A. Pre-multiplying by A†, �O on
AA†, �O = A†A2A†, �O gives A†, �O = A†, �OAA†, �O = A†, �OA†A2A†, �O, that is A†A2 is
an inner inverse of A†, �O. Since A†A2A†, �O = A†A2A†Ak(Ak)† = A†AAk(Ak)† =
A†Ak+1(Ak)† = Ak(Ak)†, then A†A2 ∈ A†, �O{4} by Ak(Ak)† = [Ak(Ak)†]∗.

5. Conclusions

One-sided MPCEP-inverse for matrices was introduced in this paper. The
MPCEP-inverse can be described by using the core part A1 in Core-EP de-
composition of A and the Moore-Penrose inverse of A. The MPCEP-inverse of
A coincides with the (A†Ak, (Ak)∗)-inverse of A, that is, the MPCEP-inverse

of A is A
(2)

R(A†Ak),N ((Ak)∗)
. In addition, the CE matrix was introduced, a nec-

essary and sufficient condition such that a matrix A to be a CE matrix is the
MPCEP-inverse of A commutes with A, that is [A†, �O, A] = 0, where A†, �O is the
MPCEP-inverse of A. The future perspectives for research are proposed:

Part 1. The reverse order law of the MPCEP-inverse.
Part 2. The rank properties of the MPCEP-inverse.
Part 3. The weighted MPCEP-inverse of matrices.
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